Sample records for kaeri-inp joint research

  1. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  2. When is an INP not an INP?

    NASA Astrophysics Data System (ADS)

    Simpson, Emma; Connolly, Paul; McFiggans, Gordon

    2016-04-01

    Processes such as precipitation and radiation depend on the concentration and size of different hydrometeors within clouds therefore it is important to accurately predict them in weather and climate models. A large fraction of clouds present in our atmosphere are mixed phase; contain both liquid and ice particles. The number of drops and ice crystals present in mixed phase clouds strongly depends on the size distribution of aerosols. Cloud condensation nuclei (CCN), a subset of atmospheric aerosol particles, are required for liquid drops to form in the atmosphere. These particles are ubiquitous in the atmosphere. To nucleate ice particles in mixed phase clouds ice nucleating particles (INP) are required. These particles are rarer than CCN. Here we investigate the case where CCN and INPs are in direct competition with each other for water vapour within a cloud. Focusing on the immersion and condensation modes of freezing (where an INP must be immersed within a liquid drop before it can freeze) we show that the presence of CCN can suppress the formation of ice. CCN are more hydrophilic than IN and as such are better able to compete for water vapour than, typically insoluble, INPs. Therefore water is more likely to condense onto a CCN than INP, leaving the INP without enough condensed water on it to be able to freeze in the immersion or condensation mode. The magnitude of this suppression effect strongly depends on a currently unconstrained quantity. Here we refer to this quantity as the critical mass of condensed water required for freezing, Mwc. Mwc is the threshold amount of water that must be condensed onto a INP before it can freeze in the immersion or condensation mode. Using the detailed cloud parcel model, Aerosol-Cloud-Precipiation-Interaction Model (ACPIM), developed at the University of Manchester we show that if only a small amount of water is required for freezing there is little suppression effect and if a large amount of water is required there is a

  3. Integrated cloud infrastructure of the LIT JINR, PE "NULITS" and INP's Astana branch

    NASA Astrophysics Data System (ADS)

    Mazhitova, Yelena; Balashov, Nikita; Baranov, Aleksandr; Kutovskiy, Nikolay; Semenov, Roman

    2018-04-01

    The article describes the distributed cloud infrastructure deployed on the basis of the resources of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research (LIT JINR) and some JINR Member State organizations. It explains a motivation of that work, an approach it is based on, lists of its participants among which there are private entity "Nazarbayev University Library and IT services" (PE "NULITS") Autonomous Education Organization "Nazarbayev University" (AO NU) and The Institute of Nuclear Physics' (INP's) Astana branch.

  4. Electron guns and collectors developed at INP for electron cooling devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapa, A.N.; Shemyakin, A.V.

    1997-09-01

    Institute of Nuclear Physics (INP) has a rich experience in designing electron guns and collectors for electron cooling devices. This paper is a review of the experience of several INP research groups in this field. Some results obtained at INP for systems without a guiding magnetic field are also discussed.

  5. Summary of Workshop on InP: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Walters, R. J.; Weinberg, I.

    1994-01-01

    The primary objective of most of the programs in InP solar cells is the development of the most radiation hard solar cell technology. In the workshop, it was generally agreed that the goal is a cell which displays high radiation tolerance in a radiation environment equivalent to a 1 MeV electron fluence of about 10(exp 16)/sq cm. Furthermore, it is desired that the radiation response of the cell be essentially flat out to this fluence - i.e. that the power output of the cell not decrease from its beginning of life (BOL) value in this radiation environment. It was also agreed in the workshop that the manufacturability of InP solar cells needs to be improved. In particular, since InP wafers are relatively dense and brittle, alternative substrates need to be developed. Research on hetero-epitaxial InP cells grown on Si, Ge, and GaAs substrates is currently underway. The ultimate goal is to develop hetero-epitaxial InP solar cells using a cheap, strong, and lightweight substrate.

  6. Single-crystalline cubic structured InP nanosprings

    NASA Astrophysics Data System (ADS)

    Shen, G. Z.; Bando, Y.; Zhi, C. Y.; Yuan, X. L.; Sekiguchi, T.; Golberg, D.

    2006-06-01

    Cubic structured nanosprings, InP nanosprings, have been synthesized via a simple thermochemical process using InP and ZnS as the source materials. Each InP nanospring is formed by rolling up a single InP nanobelt with the growth direction along the ⟨111⟩ orientation. The formation of these novel nanostructures is mainly attributed to the minimization of the electrostatic energy due to the polar charges on the ±(002) side surfaces of cubic InP. Cathodoluminescence properties were also studied, which reveal that the InP nanosprings have three emission bands centered at ˜736, ˜920, and ˜980nm.

  7. Peptides for functionalization of InP semiconductors.

    PubMed

    Estephan, Elias; Saab, Marie-belle; Larroque, Christian; Martin, Marta; Olsson, Fredrik; Lourdudoss, Sebastian; Gergely, Csilla

    2009-09-15

    The challenge is to achieve high specificity in molecular sensing by proper functionalization of micro/nano-structured semiconductors by peptides that reveal specific recognition for these structures. Here we report on surface modification of the InP semiconductors by adhesion peptides produced by the phage display technique. An M13 bacteriophage library has been used to screen 10(10) different peptides against the InP(001) and the InP(111) surfaces to finally isolate specific peptides for each orientation of the InP. MALDI-TOF/TOF mass spectrometry has been employed to study real affinity of the peptide towards the InP surfaces. The peptides serve for controlled placement of biotin onto InP to bind then streptavidin. Our Atomic Force Microscopy study revealed a total surface coverage of molecules when the InP surface was functionalized by its specific biotinylated peptide (YAIKGPSHFRPS). Finally, fluorescence microscopy has been employed to demonstrate the preferential attachment of the peptide onto a micro-patterned InP surface. Use of substrate specific peptides could present an alternative solution for the problems encountered in the actually existing sensing methods and molecular self-assembly due to the unwanted unspecific interactions.

  8. Long-Term INP Measurements within the BACCHUS project

    NASA Astrophysics Data System (ADS)

    Schrod, Jann; Bingemer, Heinz; Curtius, Joachim

    2016-04-01

    The European research project BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) studies the interactions between aerosols, clouds and the climate system, and tries to reconstruct pre-industrial aerosol and cloud conditions from data collected in pristine environments. The number concentration of Ice Nucleating Particles (INP) is an important, yet scarcely known parameter. As a partner of Work package 1 of BACCHUS we began in September 2014 to operate a globally spanned network of four INP sampling stations, which is the first of its kind. The stations are located at the ATTO observatory in the Brazilian Rainforest, the Caribbean Sea (Martinique), the Zeppelin Observatory at Svalbard in the Arctic, and in central Europe (Germany). Samples are collected routinely every day or every few days by electrostatic precipitation of aerosol particles onto Si substrates. The samples are stored in petri-slides, and shipped to our laboratory in Frankfurt, Germany. The number of ice nucleating particles on the substrate is analyzed in the isothermal static diffusion chamber FRIDGE by growing ice on the INP and photographing and counting the crystals. The measurements in the temperature range from -20°C to -30°C and relative humidities of 100-135% (with respect to ice) address primarily the deposition/condensation nucleation modes. Here we present INP and supporting aerosol data from this novel INP network for the first time.

  9. Workshop on Heteroepitaxial InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Walters, R. W.

    1993-01-01

    In a generic sense, the justification for any sort of InP solar cell research applies, i.e. to take advantage of the inherently high radiation resistance and efficiency of InP solar cells. To be more specific, the approach is justified by its potential for significant cost reduction and the availability of greatly increased cell area afforded by substrates such as Si and Ge. The use of substrates, such as the latter two, would result in increased ruggedness, ease of handling, and improved manufacturability. The use of more rugged substrates would lead to a greatly increased capability for cell thinning leading to the desirable feature of reduced array weight.

  10. Encapsulation and Implantation Studies of InP.

    DTIC Science & Technology

    1982-07-01

    concluded that PSG encapsulation best preserves the initial characteristics of encapsulated InP during furnace anneals. ( t PL measurements indicate that...gradients in these zones than does Fe. Under typical annealing conditions for InP ( T > 700 C, t = 15-30 min) it is observed using SIMS that implanted 9Be...conditions for InP ( T > 700*C, t - 15-30 min) it is observed using SIMS that implanted 9Be is a rapid diffusant in SI InP. High dose (1015 cm -2

  11. Space radiation effects in InP solar cells

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Messenger, S. R.; Summers, G. P.; Burke, E. A.; Keavney, C. J.

    1991-12-01

    InP solar cells and mesa diodes grown by metalorganic chemical vapor deposition (MOCVD) were irradiated with electrons and protons at room temperature. The radiation-induced defects (RIDs) were characterized by deep level transient spectroscopy (DLTS), and the degradation of the solar cell performance was determined through I-V measurements. The nonionizing energy loss (NIEL) of electrons and protons in InP was calculated as a function of energy from 1 to 200 MeV and compared to the measured defect introduction rates. A linear dependence was evident. InP solar cells showed significantly more radiation resistance than c-Si or GaAs/Ge cells under 1 MeV electron irradiation. Using the calculated InP damage rates and measured damage factors, the performance of InP solar cells as a function of orbital altitude and time in orbit was predicted and compared with the performance of c-Si solar cells in the same environment. In all cases, the InP cells showed highly superior radiation resistance.

  12. InP materials/cell fabrication

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.

    1987-01-01

    The main points of discussion, conclusions and recommendations of a workshop on InP materials and cell fabrication are given. The importance of assessing the quality of p-Inp crystals supplied by different vendors, back contacts to solar cells, junction formation, energy conversion efficiency, testing for radiation resistance, and future develpments were among the topics discussed.

  13. High-efficiency, deep-junction, epitaxial InP solar cells on (100) and (111)B InP substrates

    NASA Technical Reports Server (NTRS)

    Venkatasubramanian, R.; Timmons, M. L.; Hutchby, J. A.; Walters, Robert J.; Summers, Geoffrey P.

    1994-01-01

    We report on the development and performance of deep-junction (approximately 0.25 micron), graded-emitter-doped, n(sup +)-p InP solar cells grown by metallorganic chemical vapor deposition (MOCVD). A novel, diffusion-transport process for obtaining lightly-doped p-type base regions of the solar cell is described. The I-V data and external quantum-efficiency response of these cells are presented. The best active-area AMO efficiency for these deep-junction cells on (100)-oriented InP substrates is 16.8 percent, with a J(sub SC) of 31.8 mA/sq cm, a V(sub OC) of 0.843 V, and a fill-factor of 0.85. By comparison, the best cell efficiency on the (111)B-oriented InP substrates was 15.0 percent. These efficiency values for deep-junction cells are encouraging and compare favorably with performance of thin-emitter (0.03 micron) epitaxial cells as well as that of deep-emitter diffused cells. The cell performance and breakdown voltage characteristics of a batch of 20 cells on each of the orientations are presented, indicating the superior breakdown voltage properties and other characteristics of InP cells on the (111)B orientation. Spectral response, dark I-V data, and photoluminescence (PL) measurements on the InP cells are presented with an analysis on the variation in J(sub SC) and V(sub OC) of the cells. It is observed, under open-circuit conditions, that lower-V(sub OC) cells exhibit higher band-edge PL intensity for both the (100) and (111)B orientations. This anomalous behavior suggests that radiative recombination in the heavily-doped n(sup +)-InP emitter may be detrimental to achieving higher V(sub OC) in n(sup +)-p InP solar cells.

  14. The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Lacher, Larissa; Lohmann, Ulrike; Boose, Yvonne; Zipori, Assaf; Herrmann, Erik; Bukowiecki, Nicolas; Steinbacher, Martin; Kanji, Zamin A.

    2017-12-01

    In this work we describe the Horizontal Ice Nucleation Chamber (HINC) as a new instrument to measure ambient ice-nucleating particle (INP) concentrations for conditions relevant to mixed-phase clouds. Laboratory verification and validation experiments confirm the accuracy of the thermodynamic conditions of temperature (T) and relative humidity (RH) in HINC with uncertainties in T of ±0.4 K and in RH with respect to water (RHw) of ±1.5 %, which translates into an uncertainty in RH with respect to ice (RHi) of ±3.0 % at T > 235 K. For further validation of HINC as a field instrument, two measurement campaigns were conducted in winters 2015 and 2016 at the High Altitude Research Station Jungfraujoch (JFJ; Switzerland, 3580 m a. s. l. ) to sample ambient INPs. During winters 2015 and 2016 the site encountered free-tropospheric conditions 92 and 79 % of the time, respectively. We measured INP concentrations at 242 K at water-subsaturated conditions (RHw = 94 %), relevant for the formation of ice clouds, and in the water-supersaturated regime (RHw = 104 %) to represent ice formation occurring under mixed-phase cloud conditions. In winters 2015 and 2016 the median INP concentrations at RHw = 94 % was below the minimum detectable concentration. At RHw = 104 %, INP concentrations were an order of magnitude higher, with median concentrations in winter 2015 of 2.8 per standard liter (std L-1; normalized to standard T of 273 K and pressure, p, of 1013 hPa) and 4.7 std L-1 in winter 2016. The measurements are in agreement with previous winter measurements obtained with the Portable Ice Nucleation Chamber (PINC) of 2.2 std L-1 at the same location. During winter 2015, two events caused the INP concentrations at RHw = 104 % to significantly increase above the campaign average. First, an increase to 72.1 std L-1 was measured during an event influenced by marine air, arriving at the JFJ from the North Sea and the Norwegian Sea. The contribution from anthropogenic or other

  15. Operational training for the mission operations at the Brazilian National Institute for Space Research (INPE)

    NASA Technical Reports Server (NTRS)

    Rozenfeld, Pawel

    1993-01-01

    This paper describes the selection and training process of satellite controllers and data network operators performed at INPE's Satellite Tracking and Control Center in order to prepare them for the mission operations of the INPE's first (SCD1) satellite. An overview of the ground control system and SCD1 architecture and mission is given. Different training phases are described, taking into account that the applicants had no previous knowledge of space operations requiring, therefore, a training which started from the basics.

  16. DOR/Tp53inp2 and Tp53inp1 constitute a metazoan gene family encoding dual regulators of autophagy and transcription.

    PubMed

    Sancho, Ana; Duran, Jordi; García-España, Antonio; Mauvezin, Caroline; Alemu, Endalkachew A; Lamark, Trond; Macias, Maria J; DeSalle, Rob; Royo, Miriam; Sala, David; Chicote, Javier U; Palacín, Manuel; Johansen, Terje; Zorzano, Antonio

    2012-01-01

    Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28-42; region 2, 66-112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription.

  17. DOR/Tp53inp2 and Tp53inp1 Constitute a Metazoan Gene Family Encoding Dual Regulators of Autophagy and Transcription

    PubMed Central

    Sancho, Ana; Duran, Jordi; García-España, Antonio; Mauvezin, Caroline; Alemu, Endalkachew A.; Lamark, Trond; Macias, Maria J.; DeSalle, Rob; Royo, Miriam; Sala, David; Chicote, Javier U.; Palacín, Manuel; Johansen, Terje; Zorzano, Antonio

    2012-01-01

    Human DOR/TP53INP2 displays a unique bifunctional role as a modulator of autophagy and gene transcription. However, the domains or regions of DOR that participate in those functions have not been identified. Here we have performed structure/function analyses of DOR guided by identification of conserved regions in the DOR gene family by phylogenetic reconstructions. We show that DOR is present in metazoan species. Invertebrates harbor only one gene, DOR/Tp53inp2, and in the common ancestor of vertebrates Tp53inp1 may have arisen by gene duplication. In keeping with these data, we show that human TP53INP1 regulates autophagy and that different DOR/TP53INP2 and TP53INP1 proteins display transcriptional activity. The use of molecular evolutionary information has been instrumental to determine the regions that participate in DOR functions. DOR and TP53INP1 proteins share two highly conserved regions (region 1, aa residues 28–42; region 2, 66–112 in human DOR). Mutation of conserved hydrophobic residues in region 1 of DOR (that are part of a nuclear export signal, NES) reduces transcriptional activity, and blocks nuclear exit and autophagic activity under autophagy-activated conditions. We also identify a functional and conserved LC3-interacting motif (LIR) in region 1 of DOR and TP53INP1 proteins. Mutation of conserved acidic residues in region 2 of DOR reduces transcriptional activity, impairs nuclear exit in response to autophagy activation, and disrupts autophagy. Taken together, our data reveal DOR and TP53INP1 as dual regulators of transcription and autophagy, and identify two conserved regions in the DOR family that concentrate multiple functions crucial for autophagy and transcription. PMID:22470510

  18. Experiences with digital processing of images at INPE

    NASA Technical Reports Server (NTRS)

    Mascarenhas, N. D. A. (Principal Investigator)

    1984-01-01

    Four different research experiments with digital image processing at INPE will be described: (1) edge detection by hypothesis testing; (2) image interpolation by finite impulse response filters; (3) spatial feature extraction methods in multispectral classification; and (4) translational image registration by sequential tests of hypotheses.

  19. Sharing of Data Products From CPTEC/INPE and New Developments for Data Distribution

    NASA Astrophysics Data System (ADS)

    Almeida, W. G.; Lima, A. A.; Pessoa, A. S.; Ferreira, A. T.; Mendes, M. V.; Ferreira, N. J.; Silva Dias, M. F.; Yoksas, T.

    2006-05-01

    The CPTEC is the Center for Weather Forecast and Climatic Analysis, a division of the INPE, the Brazilian National Institute for Space Research. The CPTEC is an operational and research center, that runs the fastest supercomputer and is a pioneer in global and regional numerical weather forecasting in South America. The INPE is a traditional provider of data, softwares and services for researchers, forecasters and decision makers in Brazil and South America. The institution is a reference for space science, satellite imagery, and environmental studies. Several of the INPE's departments and centers, like the CPTEC, have a variety of valuable datasets, many of them freely available. Currently the politics of "free data and software" is being strengthened, as the INPE's administration has stated it as a priority for the following years. The CPTEC/INPE distributes outputs from several numerical models, like the COLA/CPTEC global model, and regional models for South America, among others. The web and FTP servers also are used to disseminate satellite imagery, satellite derived products, and data from INPE's automated reporting network. Products from the GTS data also are available. To improve these services new servers for FTP and internet are being installed. The data-sharing component of the Unidata Internet Data Distribution (IDD) also is being used to disseminate these data to university participants in both the South American IDD-Brazil and North American IDD. The IDD- Brasil is the expansion of the IDD system in Brazil, and now is delivering data to a rapidly increasing community of university users. Some months ago the CPTEC finished the installation of two new LDM/IDD servers for data relaying and dissemination. With this infrastructure the author believe that the LDM/IDD demand in South America must be attended for the next three years. Some projects and developments are under execution to provide external access to broader set of meteorological and hydro

  20. InP nanopore arrays for photoelectrochemical hydrogen generation.

    PubMed

    Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong

    2016-02-19

    We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.

  1. Study by AES, EELS Spectroscopy of electron Irradiation on InP and InPO4/InP in comparison with Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Lounis, Z.; Bouslama, M.; Hamaida, K.; Jardin, C.; Abdellaoui, A.; Ouerdane, A.; Ghaffour, M.; Berrouachedi, N.

    2012-02-01

    We give the great interest to characterise the InP and InPO4/InP submitted to electron beam irradiation owing to the Auger Electron Spectroscopy (AES) associated to both methods Electron Energy Loss Spectroscopy (EELS). The incident electron produces breaking of (In-P) chemical bonds. The electron beam even acts to stimulate oxidation of InP surface involving on the top layers. Other, the oxide InPO4 developed on InP does appear very sensitive to the irradiation due to electron beam shown by the monitoring of EELS spectra recorded versus the irradiated times of the surface. There appears a new oxide thought to be In2O3. We give the simulation methods Casino (Carlo simulation of electron trajectory in solids) for determination with accuracy the loss energy of backscattered electrons and compared with reports results have been obtained with EELS Spectroscopy. These techniques of spectroscopy alone do not be able to verify the affected depth during interaction process. So, using this simulation method, we determine the interaction of electrons in the matter.

  2. Young's Modulus of Wurtzite and Zinc Blende InP Nanowires.

    PubMed

    Dunaevskiy, Mikhail; Geydt, Pavel; Lähderanta, Erkki; Alekseev, Prokhor; Haggrén, Tuomas; Kakko, Joona-Pekko; Jiang, Hua; Lipsanen, Harri

    2017-06-14

    The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E [0001] = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E [0001] = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E [111] = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E [111] = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.

  3. P/N InP solar cells on Ge wafers

    NASA Technical Reports Server (NTRS)

    Wojtczuk, Steven; Vernon, Stanley; Burke, Edward A.

    1994-01-01

    Indium phosphide (InP) P-on-N one-sun solar cells were epitaxially grown using a metalorganic chemical vapor deposition process on germanium (Ge) wafers. The motivation for this work is to replace expensive InP wafers, which are fragile and must be thick and therefore heavy, with less expensive Ge wafers, which are stronger, allowing use of thinner, lighter weight wafers. An intermediate InxGs1-xP grading layer starting as In(0.49)Ga(0.51) at the GaAs-coated Ge wafer surface and ending as InP at the top of the grading layer (backside of the InP cell) was used to attempt to bend some of the threading dislocations generated by lattice-mismatch between the Ge wafer and InP cell so they would be harmlessly confined in this grading layer. The best InP/Ge cell was independently measured by NASA-Lewis with a one-sun 25 C AMO efficiently measured by NASA-Lewis with a one-circuit photocurrent 22.6 mA/sq cm. We believe this is the first published report of an InP cell grown on a Ge wafer. Why get excited over a 9 percent InP/Ge cell? If we look at the cell weight and efficiency, a 9 percent InP cell on an 8 mil Ge wafer has about the same cell power density, 118 W/kg (BOL), as the best InP cell ever made, a 19 percent InP cell on an 18 mil InP wafer, because of the lighter Ge wafer weight. As cell panel materials become lighter, the cell weight becomes more important, and the advantage of lightweight cells to the panel power density becomes more important. In addition, although InP/Ge cells have a low beginning-of-life (BOL) efficiency due to dislocation defects, the InP/Ge cells are very radiation hard (end-of-life power similar to beginning-of-life). We have irradiated an InP/Ge cell with alpha particles to an equivalent fluence of 1.6 x 10(exp 16) 1 MeV electrons/sq cm and the efficiency is still 83 percent of its BOL value. At this fluence level, the power output of these InP/Ge cells matches the GaAs/Ge cell data tabulated in the JPL handbook. Data are presented

  4. CNPq/INPE-LANDSAT system

    NASA Technical Reports Server (NTRS)

    Debarrosaguirre, J. L.

    1985-01-01

    The current status of the Brazilian LANDSAT facilities operated by Instituto de Pesquisas Espaciais (INPE) and the results achieved during the period from October 1, 1984 to August 31, 1985 are presented. INPE's Receiving Station at Cuiaba, MT, operates normally the two tracking and receiving systems it has installed, the old one (1973) for Band S and the new one (February 1983) for dual S- and X-band. Both MSS and TM recording capabilities are functional. Support to the NASA Backup Plan for MSS data also remains active. Routine recordings are being made for LANDSAT-5 only, for both MSS and TM. Originally, MSS was recorded over the full acquisition range. However, since December, 1984, due to further reduction of operational expenses, both instruments are being recorded over Brazilian territory only.

  5. InP concentrator solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Ward, J. S.; Wanlass, M. W.; Coutts, T. J.; Emery, K. A.

    1991-01-01

    The design, fabrication, and characterization of high-performance, n(+)/p InP shallow-homojunction (SHJ) concentrator solar cells is described. The InP device structures were grown by atmospheric-pressure metalorganic vapor phase epitaxy (APMOVPE). A preliminary assessment of the effects of grid collection distance and emitter sheet resistance on cell performance is presented. At concentration ratios of over 100, cells with AM0 efficiencies in excess of 21 percent at 25 C and 19 percent at 80 C are reported. These results indicate that high-efficiency InP concentrator cells can be fabricated using existing technologies. The performance of these cells as a function of temperature is discussed, and areas for future improvement are outlined.

  6. Graphene enhanced field emission from InP nanocrystals.

    PubMed

    Iemmo, L; Di Bartolomeo, A; Giubileo, F; Luongo, G; Passacantando, M; Niu, G; Hatami, F; Skibitzki, O; Schroeder, T

    2017-12-08

    We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

  7. Lateral spreading of Au contacts on InP

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1990-01-01

    The contact spreading phenomenon observed when small area Au contacts on InP are annealed at temperatures above about 400 C was investigated. It was found that the rapid lateral expansion of the contact metallization which consumes large quantities of InP during growth is closely related to the third stage in the series of solid state reactions that occur between InP and Au, i.e., to the Au3In-to-Au9In4 transition. Detailed descriptions are presented of both the spreading process and the Au3In-to-Au9In4 transition along with arguments that the two processes are manifestations of the same basic phenomenon.

  8. Graphene enhanced field emission from InP nanocrystals

    NASA Astrophysics Data System (ADS)

    Iemmo, L.; Di Bartolomeo, A.; Giubileo, F.; Luongo, G.; Passacantando, M.; Niu, G.; Hatami, F.; Skibitzki, O.; Schroeder, T.

    2017-12-01

    We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

  9. FAO UN-REDD- INPE Joint Programme on Forest Monitoring Systems based on RS and GIS techniques

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.; FAO UN-REDD MRV Team

    2010-12-01

    Capacity Development and Training for National Forest Monitoring Systems for Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+) REDD+, which stands for ’Reducing Emissions from Deforestation and Forest Degradation in Developing Countries’ - is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. The UN-REDD Programme, a collaborative partnership between FAO, UNDP and UNEP launched in September 2008, supports countries to develop capacity to REDD+ and to implement a future REDD+ mechanism in a post-2012 climate regime. The programme works at both the national and global scale, through support mechanisms for country-driven REDD strategies and international consensus-building on REDD+ processes. The UN-REDD Programme gathers technical teams from around the world to develop common approaches, analyses and guidelines on issues such as measurement, reporting and verification (MRV) of carbon emissions and flows, remote sensing, and greenhouse gas inventories. Within the partnership, FAO supports countries on technical issues related to forestry and the development of cost effective and credible MRV processes for emission reductions. While at the international level, it fosters improved guidance on MRV approaches, including consensus on principles and guidelines for MRV and training programmes. It provides guidance on how best to design and implement REDD+, to ensure that forests continue to provide multiple benefits for livelihoods and biodiversity to societies while storing carbon at the same time. Other areas of work include national forest assessments and monitoring of in-country policy and institutional change. FAO and INPE (Brazilian Space Agency) have joint forces through a MoU signed last year in Copenhagen. A major joint programme has been agreed upon to set

  10. High Efficiency InP Solar Cells from Low Toxicity Tertiarybutylphosphine

    NASA Technical Reports Server (NTRS)

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Wilt, David M.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David A.

    1994-01-01

    Large scale manufacture of phosphide based semiconductor devices by organo-metallic vapor phase epitaxy (OMVPE) typically requires the use of highly toxic phosphine. Advancements in phosphine substitutes have identified tertiarybutylphosphine (TBP) as an excellent precursor for OMVPE of InP. High quality undoped and doped InP films were grown using TBP and trimethylindium. Impurity doped InP films were achieved utilizing diethylzinc and silane for p and n type respectively. 16 percent efficient solar cells under air mass zero, one sun intensity were demonstrated with Voc of 871 mV and fill factor of 82.6 percent. It was shown that TBP could replace phosphine, without adversely affecting device quality, in OMVPE deposition of InP thus significantly reducing toxic gas exposure risk.

  11. Performance, defect behavior and carrier enhancement in low energy, proton irradiated p+nn+ InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    The highest AMO efficiency (19.1 percent) InP solar cell consisted of an n+pp+ structure epitaxially grown on a p+ InP substrate. However, the high cost and relative fragility of InP served as motivation for research efforts directed at heteroepitaxial growth of InP on more viable substrates. The highest AMO efficiency (13.7 percent) for this type of cell was achieved using a GaAs substrate. Considering only cost and fracture toughness, Si would be the preferred substrate. The fact that Si is a donor in InP introduces complexities which are necessary in order to avoid the formation of an efficiency limiting counterdiode. One method used to overcome this problem lies in employing an n+p+ tunnel junction in contact with the cell's p region. A simpler method consists of using an n+ substrate and processing the cell in the p+ nn+ configuration. This eliminates the need for a tunnel junction. Unfortunately, the p/n configuration has received relatively little attention the best cell with this geometry having achieved an efficiency of 17 percent. Irradiation of these homoepitaxial cells, with 1 Mev electrons, showed that they were slightly more radiation resistant than diffused junction n/p cells. Additional p/n InP cells have been processed by some activity aimed at diffusion. Currently, there has been some activity aimed at producing heteroepitaxial p+nn+ InP cells using n+ Ge substrates. Since, like Si, Ge is an n-dopant in InP, use of this configuration obviates the need for a tunnel junction. Obviously, before attempting to process heteroepitaxial cells, one must produce a reasonably good homoepitaxial cell. In the present case we focus our attention on homoepitaxially on an n+ Ge substrate.

  12. High performance photodetectors based on high quality InP nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Yan-Kun; Yang, Tie-Feng; Li, Hong-Lai; Qi, Zhao-Yang; Chen, Xin-Liang; Wu, Wen-Qiang; Hu, Xue-Lu; He, Peng-Bin; Jiang, Ying; Hu, Wei; Zhang, Qing-Lin; Zhuang, Xiu-Juan; Zhu, Xiao-Li; Pan, An-Lian

    2016-11-01

    In this paper, small diameter InP nanowires with high crystal quality were synthesized through a chemical vapor deposition method. Benefitting from the high crystallinity and large specific surface area of InP nanowires, the simply constructed photodetector demonstrates a high responsivity of up to 1170 A·W-1 and an external quantum efficiency of 2.8×105% with a fast rise time of 110 ms and a fall time of 130 ms, even at low bias of 0.1 V. The effect of back-gate voltage on photoresponse of the device was systematically investigated, confirming that the photocurrent dominates over thermionic and tunneling currents in the whole operation. A mechanism based on energy band theory at the junction between metal and semiconductor was proposed to explain the back-gate voltage dependent performance of the photodetectors. These convincing results indicate that fine InP nanowires will have a brilliant future in smart optoelectronics. Project supported by the National Natural Science Foundation of China (Grant Nos. 51525202, 61574054, 61505051, and 61474040), the Science and Technology Plan of Hunan Province, China (Grant Nos. 2014FJ2001 and 2014TT1004), and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.

  13. Preferentially etched epitaxial liftoff of InP material

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G. (Inventor); Wilt, David M. (Inventor); Deangelo, Frank L. (Inventor)

    1995-01-01

    The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.

  14. Preferentially Etched Epitaxial Liftoff of InP Material

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G. (Inventor); Wilt, David M. (Inventor); DeAngelo, Frank L. (Inventor)

    1997-01-01

    The present invention is directed toward a method of removing epitaxial substrates from host substrates. A sacrificial release layer of ternary material is placed on the substrate. A layer of InP is then placed on the ternary material. Afterward a layer of wax is applied to the InP layer to apply compressive force and an etchant material is used to remove the sacrificial release layer.

  15. Joint NOSC/NRL (Naval Ocean Systems Center/Naval Research Laboratory) InP Microwave/Millimeter Wave Technology Workshop Held in San Diego, California on 25-26 January 1989

    DTIC Science & Technology

    1989-12-01

    A 11A Novel Applications of InP Based Technology: Neurocomputing ........... Aw ru Millimeter-Wave InAlAs/InGaAs/InP Lattice -Matched...Dielectrics) * II-A FLUORIDES (CaF2, BaF2 , SrF2 and their mixtures) e LATTICE MATCH TO MOST IMPORTANT SEMICON- DUCTORS (Slight mismatch can be used for...strained super lattice approach) e COMPARED TO AMORPHOUS DIELECTRICS ORDERED SEMICONDUCTOR-DIELECTRIC INTERFACE (I) Improved carrier transport (high

  16. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes.

    PubMed

    Hettick, Mark; Zheng, Maxwell; Lin, Yongjing; Sutter-Fella, Carolin M; Ager, Joel W; Javey, Ali

    2015-06-18

    To date, some of the highest performance photocathodes of a photoelectrochemical (PEC) cell have been shown with single-crystalline p-type InP wafers, exhibiting half-cell solar-to-hydrogen conversion efficiencies of over 14%. However, the high cost of single-crystalline InP wafers may present a challenge for future large-scale industrial deployment. Analogous to solar cells, a thin-film approach could address the cost challenges by utilizing the benefits of the InP material while decreasing the use of expensive materials and processes. Here, we demonstrate this approach, using the newly developed thin-film vapor-liquid-solid (TF-VLS) nonepitaxial growth method combined with an atomic-layer deposition protection process to create thin-film InP photocathodes with large grain size and high performance, in the first reported solar device configuration generated by materials grown with this technique. Current-voltage measurements show a photocurrent (29.4 mA/cm(2)) and onset potential (630 mV) approaching single-crystalline wafers and an overall power conversion efficiency of 11.6%, making TF-VLS InP a promising photocathode for scalable and efficient solar hydrogen generation.

  17. Electrochemical characterization of p(+)n and n(+)p diffused InP structures

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Faur, Maria; Faur, Mircea; Goradia, M.; Vargas-Aburto, Carlos

    1993-01-01

    The relatively well documented and widely used electrolytes for characterization and processing of Si and GaAs-related materials and structures by electrochemical methods are of little or no use with InP because the electrolytes presently used either dissolve the surface preferentially at the defect areas or form residual oxides and introduce a large density of surface states. Using an electrolyte which was newly developed for anodic dissolution of InP, and was named the 'FAP' electrolyte, accurate characterization of InP related structures including nature and density of surface states, defect density, and net majority carrier concentration, all as functions of depth was performed. A step-by-step optimization of n(+)p and p(+)n InP structures made by thermal diffusion was done using the electrochemical techniques, and resulted in high performance homojunction InP structures.

  18. Wafer-scale self-organized InP nanopillars with controlled orientation for photovoltaic devices.

    PubMed

    Sanatinia, Reza; Berrier, Audrey; Dhaka, Veer; Perros, Alexander P; Huhtio, Teppo; Lipsanen, Harri; Anand, Srinivasan

    2015-10-16

    A unique wafer-scale self-organization process for generation of InP nanopillars is demonstrated, which is based on maskless ion-beam etching (IBE) of InP developed to obtain the nanopillars, where the height, shape, and orientation of the nanopillars can be varied by controlling the processing parameters. The fabricated InP nanopillars exhibit broadband suppression of the reflectance, 'black InP,' a property useful for solar cells. The realization of a conformal p-n junction for carrier collection, in the fabricated solar cells, is achieved by a metalorganic vapor phase epitaxy (MOVPE) overgrowth step on the fabricated pillars. The conformal overgrowth retains the broadband anti-reflection property of the InP nanopillars, indicating the feasibility of this technology for solar cells. Surface passivation of the formed InP nanopillars using sulfur-oleylamine solution resulted in improved solar-cell characteristics. An open-circuit voltage of 0.71 V and an increase of 0.13 V compared to the unpassivated device were achieved.

  19. Cathodoluminescence of InP

    NASA Technical Reports Server (NTRS)

    Gatos, C. H.; Vaughan, J. J.; Lagowski, J.; Gatos, H. C.

    1981-01-01

    Cathodoluminescence studies were carried out on p-type InP having carrier concentrations ranging from 7.2 x 10 to the 16th to 7.4 x 10 to the 18th per cu cm in the temperature range of 80-580 K. It was found that low-temperature spectra exhibited peaks at 1.41 and 1.38 eV. These peaks were attributed to band-to-band and band-acceptor transitions, respectively. The dependence of the band-to-band peak on temperature was used to extend knowledge of the temperature dependence of the energy gap of InP to 550 K. It was shown that the half-width of the cathodoluminescence peak can be used for the determination of carrier concentration and carrier-concentration inhomogeneities in the material. The variations of the cathodoluminescence peak height with temperature indicated the possibility of Auger recombination for high carrier concentrations (7.4 x 10 to the 18th per cu cm) at temperatures above 450 K.

  20. Carrier thermalization dynamics in single zincblende and wurtzite InP Nanowires.

    PubMed

    Wang, Yuda; Jackson, Howard E; Smith, Leigh M; Burgess, Tim; Paiman, Suriati; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2014-12-10

    Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole-plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices.

  1. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy.

    PubMed

    Joyce, Hannah J; Wong-Leung, Jennifer; Yong, Chaw-Keong; Docherty, Callum J; Paiman, Suriati; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Lloyd-Hughes, James; Herz, Laura M; Johnston, Michael B

    2012-10-10

    Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering.

  2. Unit cell parameters of wurtzite InP nanowires determined by x-ray diffraction.

    PubMed

    Kriegner, D; Wintersberger, E; Kawaguchi, K; Wallentin, J; Borgström, M T; Stangl, J

    2011-10-21

    High resolution x-ray diffraction is used to study the structural properties of the wurtzite polytype of InP nanowires. Wurtzite InP nanowires are grown by metal-organic vapor phase epitaxy using S-doping. From the evaluation of the Bragg peak position we determine the lattice parameters of the wurtzite InP nanowires. The unit cell dimensions are found to differ from the ones expected from geometric conversion of the cubic bulk InP lattice constant. The atomic distances along the c direction are increased whereas the atomic spacing in the a direction is reduced in comparison to the corresponding distances in the zinc-blende phase. Using core/shell nanowires with a thin core and thick nominally intrinsic shells we are able to determine the lattice parameters of wurtzite InP with a negligible influence of the S-doping due to the much larger volume in the shell. The determined material properties will enable the ab initio calculation of electronic and optical properties of wurtzite InP nanowires.

  3. Radiation effects in heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Curtis, H. B.; Swartz, C. K.; Brinker, D. J.; Vargas-Aburto, C.

    1993-01-01

    Heteroepitaxial InP solar cells, with GaAs substrates, were irradiated by 0.5 and 3 MeV protons and their performance, temperature dependency, and carrier removal rates determined as a function of fluence. The radiation resistance of the present cells was significantly greater than that of non-heteroepitaxial InP cells at both proton energies. A clear difference in the temperature dependency of V(sub oc), was observed between heteroepitaxial and homoepitaxial InP cells. The analytically predicted dependence of dV(sub oc)/dT on Voc was confirmed by the fluence dependence of these quantities. Carrier removal was observed to increase with decreasing proton energy. The results obtained for performance and temperature dependency were attributed to the high dislocation densities present in the heteroepitaxial cells while the energy dependence of carrier removal was attributed to the energy dependence of proton range.

  4. Radiation effects on p+n InP junctions grown by MOCVD

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Walters, Robert J.; Panunto, M. J.; Summers, Geoffrey P.

    1994-01-01

    The superior radiation resistance of InP over other solar cell materials such as Si or GaAs has prompted the development of InP cells for space applications. The early research on radiation effects in InP was performed by Yamaguchi and co-workers who showed that, in diffused p-InP junctions, radiation-induced defects were readily annealed both thermally and by injection, which was accompanied by significant cell recovery. More recent research efforts have been made using p-InP grown by metalorganic chemical vapor deposition (MOCVD). While similar deep level transient spectroscopy (DLTS) results were found for radiation induced defects in these cells and in diffused junctions, significant differences existed in the annealing characteristics. After injection annealing at room temperature, Yamaguchi noticed an almost complete recovery of the photovoltaic parameters, while the MOCVD samples showed only minimal annealing. In searching for an explanation of the different annealing behavior of diffused junctions and those grown by MOCVD, several possibilities have been considered. One possibility is the difference in the emitter structure. The diffused junctions have S-doped graded emitters with widths of approximately 0.3 micrometers, while the MOCVD emitters are often doped with Si and have widths of approximately 300A (0.03 micrometers). The difference in the emitter thickness can have important effects, e.g. a larger fraction of the total photocurrent is generated in the n-type material for thicker emitters. Therefore the properties of the n-InP material may explain the difference in the observed overall annealing behavior of the cells.

  5. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.

    PubMed

    Oliveira, D S; Zavarize, M; Tizei, L H G; Walls, M; Ospina, C A; Iikawa, F; Ugarte, D; Cotta, M A

    2017-12-15

    We report on the existence of two different regimes in one-step Ag-seeded InP nanowire growth. The vapor-liquid-solid-mechanism is present at larger In precursor flows and temperatures, ∼500 °C, yielding high aspect ratio and pure wurtzite InP nanowires with a semi-spherical metal particle at the thin apex. Periodic diameter oscillations can be achieved under extreme In supersaturations at this temperature range, showing the presence of a liquid catalyst. However, under lower temperatures and In precursor flows, large diameter InP nanowires with mixed wurtzite/zincblende segments are obtained, similarly to In-assisted growth. Chemical composition analysis suggest that In-rich droplet formation is catalyzed at the substrate surface via Ag nanoparticles; this process might be facilitated by the sulfur contamination detected in these nanoparticles. Furthermore, part of the original Ag nanoparticle remains solid and is embedded inside the actual catalyst, providing an in situ method to switch growth mechanisms upon changing In precursor flow. Nevertheless, our Ag-seeded InP nanowires exhibit overall optical emission spectra consistent with the observed structural properties and similar to Au-catalyzed InP nanowires. We thus show that Ag nanoparticles may be a suitable replacement for Au in InP nanowire growth.

  6. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

  7. Joint Advertising Market Research & Studies (JAMRS)

    Science.gov Websites

    Market Research & Studies Marketing Communications Recruiting Database Affiliations WELCOME TO JOINT joint marketing communications and market research and studies. One of JAMRS' objectives is to explore reported to Congress. Our marketing communications programs help increase awareness and broaden people's

  8. The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program

    NASA Astrophysics Data System (ADS)

    Schuch, Nelson Jorge; Cupertino Durao, Otavio S.

    The Brazilian INPE-UFSM NANOSATC-BR CubeSat Development Capacity Building Program (CBP) and the results of the NANOSATC-BR1, the first Brazilian CubeSat launching, expected for 2014's first semester, are presented. The CBP consists of two CubeSats, NANOSATC-BR 1 (1U) & 2 (2U) and is expected operate in orbit for at least 12 months each, with capacity building in space science, engineering and computer sciences for the development of space technologies using CubeSats satellites. The INPE-UFSM’s CBP Cooperation is basically among: (i) the Southern Regional Space Research Center (CRS), from the Brazilian INPE/MCTI, where acts the Program's General Coordinator and Projects NANOSATC-BR 1 & 2 Manager, having technical collaboration and management of the Mission’s General Coordinator for Engineering and Space Technology at INPE’s Headquarter (HQ), in São José dos Campos, São Paulo; (ii) the Santa Maria Space Science Laboratory (LACESM/CT) from the Federal University of Santa Maria - (UFSM); (iii) the Santa Maria Design House (SMDH); (iv) the Graduate Program in Microelectronics from the Federal University of Rio Grande do Sul (MG/II/UFRGS); and (v) the Aeronautic Institute of Technology (ITA/DCTA/CA-MD). The INPE-UFSM’s CBP has the involvement of UFSM' undergraduate students and graduate students from: INPE/MCTI, MG/II/UFRGS and ITA/DCTA/CA-MD. The NANOSATC-BR 1 & 2 Projects Ground Stations (GS) capacity building operation with VHF/UHF band and S-band antennas, are described in two specific papers at this COSPAR-2014. This paper focuses on the development of NANOSATC-BR 1 & 2 and on the launching of NANOSATC-BR1. The Projects' concepts were developed to: i) monitor, in real time, the Geospace, the Ionosphere, the energetic particle precipitation and the disturbances at the Earth's Magnetosphere over the Brazilian Territory, and ii) the determination of their effects on regions such as the South American Magnetic Anomaly (SAMA) and the Brazilian sector of the

  9. The start-up phase of the national satellite forest monitoring systems for DRC and PNG: a joint venture between FAO and INPE

    NASA Astrophysics Data System (ADS)

    Jonckheere, I. G.; FAO UN-REDD Team Forestry Department

    2011-12-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme, a partnership between UNEP, FAO and UNDP, assists developing countries to prepare and implement national REDD+ strategies. Designed collaboratively by a broad range of stakeholders, national UN-REDD Programmes are informed by the technical expertise of FAO, UNDP and UNEP. For the monitoring, reporting and verification, FAO supports the countries to develop satellite forest monitoring systems that allow for credible measurement, reporting and verification (MRV)of REDD+ activities. These are among the most critical elements for the successful implementation of any REDD+ mechanism, also following the COP 16 decisions in Cancun last year. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost-effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. To develop strong nationally-owned forest monitoring systems, technical and institutional capacity building is key. The UN-REDD Programme, through FAO, has taken on intensive training together with INPE, and has provided technical help and assistance for in-country training and implementation for national satellite forest monitoring. The goal of the start-up phase for DRC and Papua New Guinea (PNG) in this capacity building effort is the

  10. [The Detection of Ultra-Broadband Terahertz Spectroscopy of InP Wafer by Using Coherent Heterodyne Time-Domain Spectrometer].

    PubMed

    Zhang, Liang-liang; Zhang, Rui; Xu, Xiao-yan; Zhang, Cun-lin

    2016-02-01

    Indium Phosphide (InP) has attracted great physical interest because of its unique characteristics and is indispensable to both optical and electronic devices. However, the optical property of InP in the terahertz range (0. 110 THz) has not yet been fully characterized and systematically studied. The former researches about the properties of InP concentrated on the terahertz frequency between 0.1 and 4 THz. The terahertz optical properties of the InP in the range of 4-10 THz are still missing. It is fairly necessary to fully understand its properties in the entire terahertz range, which results in a better utilization as efficient terahertz devices. In this paper, we study the optical properties of undoped (100) InP wafer in the ultra-broad terahertz frequency range (0.5-18 THz) by using air-biased-coherent-detection (ABCD) system, enabling the coherent detection of terahertz wave in gases, which leads to a significant improvement on the dynamic range and sensitivity of the system. The advantage of this method is broad frequency bandwidth from 0.2 up to 18 THz which is only mainly limited by laser pulse duration since it uses ionized air as terahertz emitter and detector instead of using an electric optical crystal or photoconductive antenna. The terahertz pulse passing through the InP wafer is delayed regarding to the reference pulse and has much lower amplitude. In addition, the frequency spectrum amplitude of the terahertz sample signal drops to the noise floor level from 6.7 to 12.1 THz. At the same time InP wafer is opaque at the frequencies spanning from 6.7 to 12.1 THz. In the frequency regions of 0.8-6.7 and 12.1-18 THz it has relativemy low absorption coefficient. Meanwhile, the refractive index increases monotonously in the 0.8-6.7 THz region and 12.1-18 THz region. These findings will contribute to the design of InP based on nonlinear terahertz devices.

  11. Single n+-i-n+ InP nanowires for highly sensitive terahertz detection.

    PubMed

    Peng, Kun; Parkinson, Patrick; Gao, Qian; Boland, Jessica L; Li, Ziyuan; Wang, Fan; Mokkapati, Sudha; Fu, Lan; Johnston, Michael B; Tan, Hark Hoe; Jagadish, Chennupati

    2017-03-24

    Developing single-nanowire terahertz (THz) electronics and employing them as sub-wavelength components for highly-integrated THz time-domain spectroscopy (THz-TDS) applications is a promising approach to achieve future low-cost, highly integrable and high-resolution THz tools, which are desirable in many areas spanning from security, industry, environmental monitoring and medical diagnostics to fundamental science. In this work, we present the design and growth of n + -i-n + InP nanowires. The axial doping profile of the n + -i-n + InP nanowires has been calibrated and characterized using combined optical and electrical approaches to achieve nanowire devices with low contact resistances, on which the highly-sensitive InP single-nanowire photoconductive THz detectors have been demonstrated. While the n + -i-n + InP nanowire detector has a only pA-level response current, it has a 2.5 times improved signal-to-noise ratio compared with the undoped InP nanowire detector and is comparable to traditional bulk THz detectors. This performance indicates a promising path to nanowire-based THz electronics for future commercial applications.

  12. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    NASA Technical Reports Server (NTRS)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  13. An improved large signal model of InP HEMTs

    NASA Astrophysics Data System (ADS)

    Li, Tianhao; Li, Wenjun; Liu, Jun

    2018-05-01

    An improved large signal model for InP HEMTs is proposed in this paper. The channel current and charge model equations are constructed based on the Angelov model equations. Both the equations for channel current and gate charge models were all continuous and high order drivable, and the proposed gate charge model satisfied the charge conservation. For the strong leakage induced barrier reduction effect of InP HEMTs, the Angelov current model equations are improved. The channel current model could fit DC performance of devices. A 2 × 25 μm × 70 nm InP HEMT device is used to demonstrate the extraction and validation of the model, in which the model has predicted the DC I–V, C–V and bias related S parameters accurately. Project supported by the National Natural Science Foundation of China (No. 61331006).

  14. Joint Online Thesis and Research System (JOTARS)

    DTIC Science & Technology

    2006-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited JOINT ONLINE ...September 2006 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE: Joint Online Thesis and Research System (JOTARS) 6. AUTHOR...prototype website is the Joint Online Thesis and Research System (JOTARS). The specific functional objectives of JOTARS are to establish standard

  15. Wurtzite-Phased InP Micropillars Grown on Silicon with Low Surface Recombination Velocity.

    PubMed

    Li, Kun; Ng, Kar Wei; Tran, Thai-Truong D; Sun, Hao; Lu, Fanglu; Chang-Hasnain, Connie J

    2015-11-11

    The direct growth of III-V nanostructures on silicon has shown great promise in the integration of optoelectronics with silicon-based technologies. Our previous work showed that scaling up nanostructures to microsize while maintaining high quality heterogeneous integration opens a pathway toward a complete photonic integrated circuit and high-efficiency cost-effective solar cells. In this paper, we present a thorough material study of novel metastable InP micropillars monolithically grown on silicon, focusing on two enabling aspects of this technology-the stress relaxation mechanism at the heterogeneous interface and the microstructure surface quality. Aberration-corrected transmission electron microscopy studies show that InP grows directly on silicon without any amorphous layer in between. A set of periodic dislocations was found at the heterointerface, relaxing the 8% lattice mismatch between InP and Si. Single crystalline InP therefore can grow on top of the fully relaxed template, yielding high-quality micropillars with diameters expanding beyond 1 μm. An interesting power-dependence trend of carrier recombination lifetimes was captured for these InP micropillars at room temperature, for the first time for micro/nanostructures. By simply combining internal quantum efficiency with carrier lifetime, we revealed the recombination dynamics of nonradiative and radiative portions separately. A very low surface recombination velocity of 1.1 × 10(3) cm/sec was obtained. In addition, we experimentally estimated the radiative recombination B coefficient of 2.0 × 10(-10) cm(3)/sec for pure wurtzite-phased InP. These values are comparable with those obtained from InP bulk. Exceeding the limits of conventional nanowires, our InP micropillars combine the strengths of both nanostructures and bulk materials and will provide an avenue in heterogeneous integration of III-V semiconductor materials onto silicon platforms.

  16. Oxidation of InP nanowires: a first principles molecular dynamics study.

    PubMed

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  17. A high-coverage nanoparticle monolayer for the fabrication of a subwavelength structure on InP substrates.

    PubMed

    Kim, Dae-Seon; Park, Min-Su; Jang, Jae-Hyung

    2011-08-01

    Subwavelength structures (SWSs) were fabricated on the Indium Phosphide (InP) substrate by utilizing the confined convective self-assembly (CCSA) method followed by reactive ion etching (RIE). The surface condition of the InP substrate was changed by depositing a 30-nm-thick SiO2 layer and subsequently treating the surface with O2 plasma to achieve better surface coverage. The surface coverage of nanoparticle monolayer reached 90% by using O2 plasma-treated SiO2/InP substrate among three kinds of starting substrates such as the bare InP, SiO2/InP and O2 plasma-treated SiO2/InP substrate. A nanoparticle monolayer consisting of polystyrene spheres with diameter of 300 nm was used as an etch mask for transferring a two-dimensional periodic pattern onto the InP substrate. The fabricated conical SWS with an aspect ratio of 1.25 on the O2 plasma-treated SiO2/InP substrate exhibited the lowest reflectance. The average reflectance of the conical SWS was 5.84% in a spectral range between 200 and 900 nm under the normal incident angle.

  18. Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires

    NASA Astrophysics Data System (ADS)

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H+ irradiation with fluences ranging from 1 × 1011 to 5 × 1013 p cm‑2. It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  19. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.

    PubMed

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H + irradiation with fluences ranging from 1 × 10 11 to 5 × 10 13 p cm -2 . It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  20. Systems and methods for advanced ultra-high-performance InP solar cells

    DOEpatents

    Wanlass, Mark

    2017-03-07

    Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.

  1. Voc Degradation in TF-VLS Grown InP Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the wholemore » sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.« less

  2. Scalable InP integrated wavelength selector based on binary search.

    PubMed

    Calabretta, Nicola; Stabile, Ripalta; Albores-Mejia, Aaron; Williams, Kevin A; Dorren, Harm J S

    2011-10-01

    We present an InP monolithically integrated wavelength selector that implements a binary search for selecting one from N modulated wavelengths. The InP chip requires only log(2)N optical filters and log(2)N optical switches. Experimental results show nanosecond reconfiguration and error-free wavelength selection of four modulated wavelengths with 2 dB of power penalty. © 2011 Optical Society of America

  3. Enhanced light output from the nano-patterned InP semiconductor substrate through the nanoporous alumina mask.

    PubMed

    Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha

    2012-07-01

    A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.

  4. Annealing of irradiated n+p InP buried homojunctions

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Timmons, M. L.; Venkatasubramanian, R.; Hancock, J. A.; Hills, J. S.

    1994-01-01

    At the last SPRAT conference, the Naval Research Laboratory (NRL) presented results from two experiments. One studied n+p diffused junction (DJ) InP solar cells, and the other studied n+p shallow homojunction (SHJ) InP mesa diodes grown by metalorganic chemical vapor deposition (MOCVD). The former work showed that a DJ solar cell in which the maximum power P(sub max) had been degraded by nearly 80 percent under irradiation recovered completely under short circuit illumination at 450K. The recovery was accompanied by the removal of all but one of the radiation-induced defect levels. The latter work, on the other hand, showed that the radiation-induced defects in the SHJ diodes did not anneal until the temperature reached 650K. These results suggest that an irradiated DJ solar cell, under illumination, will anneal at a temperature 200K lower than an irradiated SHJ cell. This is an unexpected result considering the similarity of the devices. The goal of the present research is to explain this different behavior. This paper investigates two points which arose from the previous studies. The first point is that the DJ cells were annealed under illumination while the SHJ diodes were annealed without bias. The second point investigated here is that the emitters of the DJ and SHJ devices were significantly different.

  5. Comparative modeling of InP solar cell structures

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1991-01-01

    The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed.

  6. Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles.

    PubMed

    Iqbal, Azhar; Beech, Jason P; Anttu, Nicklas; Pistol, Mats-Erik; Samuelson, Lars; Borgström, Magnus T; Yartsev, Arkady

    2013-03-22

    We demonstrate a method that enables the study of photoluminescence of as-grown nanowires on a native substrate by non-destructively suppressing the contribution of substrate photoluminescence. This is achieved by using polarized photo-excitation and photoluminescence and by making an appropriate choice of incident angle of both excitation beam and photoluminescence collection direction. Using TE-polarized excitation at a wavelength of 488 nm at an incident angle of ∼70° we suppress the InP substrate photoluminescence relative to that of the InP nanowires by about 80 times. Consequently, the photoluminescence originating from the nanowires becomes comparable to and easily distinguishable from the substrate photoluminescence. The measured photoluminescence, which peaks at photon energies of ∼1.35 eV and ∼1.49 eV, corresponds to the InP substrate with zinc-blende crystal structure and to the InP nanowires with wurtzite crystal structure, respectively. The photoluminescence quantum yield of the nanowires was found to be ∼20 times lower than that of the InP substrate. The nanowires, grown vertically in a random ensemble, neither exhibit substantial emission polarization selectivity to the axis of the nanowires nor follow excitation polarization preferences observed previously for a single nanowire.

  7. Terahertz excitation spectra of InP single crystals

    NASA Astrophysics Data System (ADS)

    Norkus, R.; Arlauskas, A.; Krotkus, A.

    2018-07-01

    Investigation of terahertz (THz) pulse generation from semi-insulating and n-type InP crystals surfaces is presented in this letter. In order to determine energy separation between the main and subsidiary conduction band valleys, THz pulse amplitude dependences on the photoexcitation wavelength (in a range of 410–950 nm) were measured. These dependences had a clear maximum at ∼540 nm, from which the inter-valley energy separation in the conduction band of InP as equal to 0.75 eV was determined. Moreover, THz generation mechanisms at laser excited surfaces of InP were investigated by additionally analyzing the azimuthal angle dependences of the emitted THz signal amplitude and power. It has been shown that the main physical mechanism of the surface THz emission in this material is the spatial separation of photoexcited electrons and holes, which can also lead to a symmetry similar to the second order optical nonlinearity. Photocurrent surge in the surface electric field can also contribute to the THz emission from a semi-insulating crystal illuminated by optical pulses with the wavelengths close to the absorption edge.

  8. Low temperature InP /Si wafer bonding using boride treated surface

    NASA Astrophysics Data System (ADS)

    Huang, Hui; Ren, Xiaomin; Wang, Wenjuan; Song, Hailan; Wang, Qi; Cai, Shiwei; Huang, Yongqing

    2007-04-01

    An approach for InP /Si wafer bonding based on boride-solution treatment was presented. The bonding energy is higher than the InP fracture energy by annealing at 280°C. An In0.53Ga0.47As/InP multiple-quantum-well (MQW) structure grown on InP was transferred onto Si substrate via the bonding process. X-ray diffraction and photoluminescence reveal that crystal quality of the bonded MQW was preserved. A thin B2O3-POx-SiO2 oxide layer of about 28nm thick at the bonding interface was detected. X-ray photoelectron spectroscopy and Raman analyses indicate that the formation of oxygen bridging bonds by boride treatment is responsible for the strong fusion obtained at such low temperature.

  9. Better Ohmic Contacts For InP Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Four design modifications enable fabrication of improved ohmic contacts on InP-based semiconductor devices. First modification consists of insertion of layer of gold phosphide between n-doped InP and metal or other overlayer of contact material. Second, includes first modification plus use of particular metal overlayer to achieve very low contact resistivities. Third, also involves deposition of Au(2)P(3) interlayer; in addition, refractory metal (W or Ta) deposited to form contact overlayer. In fourth, contact layer of Auln alloy deposited directly on InP. Improved contacts exhibit low electrical resistances and fabricated without exposing devices to destructive predeposition or postdeposition treatments.

  10. Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates

    DOE PAGES

    Gary, Dylan C.; Terban, Maxwell W.; Billinge, Simon J. L.; ...

    2015-01-30

    We report on the role of magic-sized clusters (MSCs) as key intermediates in the synthesis of indium phosphide quantum dots (InP QDs) from molecular precursors. These observations suggest that previous efforts to control nucleation and growth by tuning precursor reactivity have been undermined by formation of these kinetically persistent MSCs prior to QD formation. The thermal stability of InP MSCs is influenced by the presence of exogenous bases as well as choice of the anionic ligand set. Addition of a primary amine, a common additive in previous InP QD syntheses, to carboxylate terminated MSCs was found to bypass the formationmore » of MSCs, allowing for homogeneous growth of InP QDs through a continuum of isolable sizes. Substitution of the carboxylate ligand set for a phosphonate ligand set increased the thermal stability of one particular InP MSC to 400°C. The structure and optical properties of the MSCs with both carboxylate and phosphonate ligand sets were studied by UV-Vis absorption spectroscopy, powder XRD analysis, and solution ³¹P{¹H} and ¹H NMR spectroscopy. Finally, the carboxylate terminated MSCs were identified as effective single source precursors (SSPs) for the synthesis of high quality InP QDs. Employing InP MSCs as SSPs for QDs effectively decouples the formation of MSCs from the subsequent second nucleation event and growth of InP QDs. The concentration dependence of this SSP reaction, as well as the shape uniformity of particles observed by TEM suggests that the stepwise growth from MSCs directly to QDs proceeds via a second nucleation event rather than an aggregative growth mechanism.« less

  11. Theoretical and experimental research in space photovoltaics

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria

    1995-01-01

    Theoretical and experimental research is outlined for indium phosphide solar cells, other solar cells for space applications, fabrication and performance measurements of shallow homojunction InP solar cells for space applications, improved processing steps and InP material characterization with applications to fabrication of high efficiency radiation resistant InP solar cells and other opto-electronic InP devices, InP solar cells fabricated by thermal diffusion, experiment-based predicted high efficiency solar cells fabricated by closed-ampoule thermal diffusion, radiation resistance of diffused junction InP solar cells, chemical and electrochemical characterization and processing of InP diffused structures and solar cells, and progress in p(+)n InP diffused solar cells.

  12. Diameter Dependence of Planar Defects in InP Nanowires

    PubMed Central

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  13. Diameter Dependence of Planar Defects in InP Nanowires.

    PubMed

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-09-12

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.

  14. Transfer of InP epilayers by wafer bonding

    NASA Astrophysics Data System (ADS)

    Hjort, Klas

    2004-08-01

    Wafer bonding increases the freedom of design in the integration of dissimilar materials. For example, it is interesting to combine III-V compounds that have direct band gap and high mobility with silicon (Si) that is extensively used in microelectronic applications. The interest to integrate III-V-based materials with Si arises primarily from two types of applications: smart pixels for optical intra- and inter-chip interconnects in the so-called optoelectronic integrated circuits, and optoelectronic devices using some material advantages of combining III-V with Si. Also, in the III-V industry larger substrates are crucial for higher efficiency in high-volume production, and especially so for monolithic microwave integrated circuits (MMIC). For indium phosphide (InP) the development of large-area substrates has not been able to keep up with market demands. One way to circumvent this problem is to use silicon substrates that are large-area, low-cost, and mechanically strong with high thermal conductivity. In addition, silicon is transparent at the emission wavelengths most often used in InP-based optoelectronics. Unfortunately, the large lattice-mismatch, 8.1%, between silicon and InP, has limited the success of heteroepitaxial growth. Hence, one alternative to be reviewed is InP-to-Si wafer bonding. When a direct semiconductor interface is not needed there are several other means of wafer bonding, e.g. adhesive, eutectic, and solid-state. These processes can be used for direct integration of small islets of epitaxially thin InP microelectronics onto other substrates, e.g. by transferring of InP-based epilayers to a Si-based microwave circuit by pick-and-place, BCB resist adhesive bonding and sacrificing of the InP substrate.

  15. Fabrication and magnetic properties of granular Co/porous InP nanocomposite materials

    PubMed Central

    2011-01-01

    A novel Co/InP magnetic semiconductor nanocomposite was fabricated by electrodeposition magnetic Co nanoparticles into n-type porous InP templates in ethanol solution of cobalt chloride. The content or particle size of Co particles embedded in porous InP increased with increasing deposition time. Co particles had uniform distribution over pore sidewall surface of InP template, which was different from that of ceramic template and may open up new branch of fabrication of nanocomposites. The magnetism of such Co/InP nanocomposites can be gradually tuned from diamagnetism to ferromagnetism by increasing the deposition time of Co. Magnetic anisotropy of this Co/InP nanocomposite with magnetization easy axis along the axis of InP square channel was well realized by the competition between shape anisotropy and magnetocrystalline anisotropy. Such Co/InP nanocomposites with adjustable magnetism may have potential applications in future in the field of spin electronics. PACS: 61.46. +w · 72.80.Tm · 81.05.Rm · 75.75. +a · 82.45.Aa PMID:21711809

  16. Fabrication and magnetic properties of granular Co/porous InP nanocomposite materials.

    PubMed

    Zhou, Tao; Cheng, Dandan; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2011-03-31

    A novel Co/InP magnetic semiconductor nanocomposite was fabricated by electrodeposition magnetic Co nanoparticles into n-type porous InP templates in ethanol solution of cobalt chloride. The content or particle size of Co particles embedded in porous InP increased with increasing deposition time. Co particles had uniform distribution over pore sidewall surface of InP template, which was different from that of ceramic template and may open up new branch of fabrication of nanocomposites. The magnetism of such Co/InP nanocomposites can be gradually tuned from diamagnetism to ferromagnetism by increasing the deposition time of Co. Magnetic anisotropy of this Co/InP nanocomposite with magnetization easy axis along the axis of InP square channel was well realized by the competition between shape anisotropy and magnetocrystalline anisotropy. Such Co/InP nanocomposites with adjustable magnetism may have potential applications in future in the field of spin electronics.PACS: 61.46. +w · 72.80.Tm · 81.05.Rm · 75.75. +a · 82.45.Aa.

  17. Low-Temperature epitaxial growth of InGaAs films on InP(100) and InP(411) A substrates

    NASA Astrophysics Data System (ADS)

    Galiev, G. B.; Klimova, E. A.; Pushkarev, S. S.; Klochkov, A. N.; Trunkin, I. N.; Vasiliev, A. L.; Maltsev, P. P.

    2017-07-01

    The structural and electrical characteristics of In0.53Ga0.47As epitaxial films, grown in the low-temperature mode on InP substrates with (100) and (411) A crystallographic orientations at flow ratios of As4 molecules and In and Ga atoms of γ = 29 and 90, have been comprehensively studied. The use of InP(411) A substrates is shown to increase the probability of forming two-dimensional defects (twins, stacking faults, dislocations, and grain boundaries), thus reducing the mobility of free electrons, and AsGa point defects, which act as donors and increase the free-electron concentration. An increase in γ from 29 to 90 leads to transformation of single-crystal InGaAs films grown on (100) and (411) A substrates into polycrystalline ones.

  18. Tailoring the optical characteristics of microsized InP nanoneedles directly grown on silicon.

    PubMed

    Li, Kun; Sun, Hao; Ren, Fan; Ng, Kar Wei; Tran, Thai-Truong D; Chen, Roger; Chang-Hasnain, Connie J

    2014-01-08

    Nanoscale self-assembly offers a pathway to realize heterogeneous integration of III-V materials on silicon. However, for III-V nanowires directly grown on silicon, dislocation-free single-crystal quality could only be attained below certain critical dimensions. We recently reported a new approach that overcomes this size constraint, demonstrating the growth of single-crystal InGaAs/GaAs and InP nanoneedles with the base diameters exceeding 1 μm. Here, we report distinct optical characteristics of InP nanoneedles which are varied from mostly zincblende, zincblende/wurtzite-mixed, to pure wurtzite crystalline phase. We achieved, for the first time, pure single-crystal wurtzite-phase InP nanoneedles grown on silicon with bandgaps of 80 meV larger than that of zincblende-phase InP. Being able to attain excellent material quality while scaling up in size promises outstanding device performance of these nanoneedles. At room temperature, a high internal quantum efficiency of 25% and optically pumped lasing are demonstrated for single nanoneedle as-grown on silicon substrate. Recombination dynamics proves the excellent surface quality of the InP nanoneedles, which paves the way toward achieving multijunction photovoltaic cells, long-wavelength heterostructure lasers, and advanced photonic integrated circuits.

  19. High performance InP JFETs grown by MOCVD using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Hashemi, M. M.; Shealy, J. B.; Corvini, P. J.; Denbaars, S. P.; Mishra, U. K.

    1994-02-01

    Indium phosphide channel junction field effect transistors were fabricated by metalorganic chemical vapor deposition using tertiarybulylphosphine (TBP) as the alternative source for phosphine. At growth temperatures of 600°C, InP with specular surface morphology and mobilities as high as 61000 cm2/V s at 77Khas been achieved using trimethylindium and TBP. To improve device isolation, pinch-off characteristics, and output transconductance, we employ a high resistivity (1 × 108 Ω-cm) semi-insulating InP buffer layer using ferrocene as the Fe-dopant. Devices with gate lengths of 1 urn exhibit very high extrinsic transconductance of 130 mS/mm, gate-drain breakdown voltage exceeding 20 V, maximum current density of >450 mA/mm with record high fT and fmax of 15 GHz and 35 GHz, respectively. These results indicate: that InP JFETs are promising electronic devices for microwave power amplification, and that TBP is capable of device quality materials.

  20. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    PubMed

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  1. Thermal degradation of InP in open tube processing: deep-level photoluminescence

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Srivastava, A. K.; Arora, B. M.

    1990-09-01

    Thermal processing of InP at temperatures above 500 °C is indispensable in the growth and device fabrication of InGaAsP alloy semiconductors for optoelectronic and microwave applications. Incongruous loss of P at these temperatures creates native defects and their complexes. The presence of such defects modifies the electrical and optical properties of the material resulting in poor device performance. In addition, native defects play a significant role in dopant diffusion which is a topic of current interest. We have measured deep-level photoluminescence (PL) on undoped InP after heat treatments at 500 and 550 °C in an open-tube processing system in different protective environments of powder InP, and Sn-InP melt together with an InP cover. In this paper we shall present the PL results which have bearing on the question of defects. We find that (1) the Sn-InP melt provides better protection in preserving the overall luminescence in InP; (2) the deep-level PL related to defects has at least two components in the virgin samples, viz., MnIn, and band C, which is a native defect complex related to VP; (3) a new defect appears in samples heated in a P-deficient environment; and (4) the enhancement in the deep-level luminescence intensity after heat treatment can be attributed to the excess defect concentrations existing under nonequilibrium conditions of an open-tube processing environment.

  2. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    NASA Technical Reports Server (NTRS)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  3. Structural, electronic and magnetic properties of metal thiophosphate InPS4

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Nayak, Vikas; Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.

    2017-05-01

    The non-centrosymmetric crystal, InPS4, has been investigated by means of density functional theory (DFT). In this paper we have calculated the structural parameters, electronic band structures, density of states plot and magnetic properties using full potential linearized augmented plane wave (FP-LAPW) method. The exchange correlation has been solved employing the generalised gradient approximation due to Perdew-Burke-Ernzerhof. The calculations are performed both without spin as well as spin polarized. The results show that InPS4 is an indirect band gap semiconductor with (N-Г) energy gap of 2.32eV (without spin) and 1.86eV in spin up and down channels.The obtained lattice parameters and energy gap agree well with the experimental results. Our reported magnetic moment results show that the property of InPS4is nonmagnetic.

  4. InP on SOI devices for optical communication and optical network on chip

    NASA Astrophysics Data System (ADS)

    Fedeli, J.-M.; Ben Bakir, B.; Olivier, N.; Grosse, Ph.; Grenouillet, L.; Augendre, E.; Phillippe, P.; Gilbert, K.; Bordel, D.; Harduin, J.

    2011-01-01

    For about ten years, we have been developing InP on Si devices under different projects focusing first on μlasers then on semicompact lasers. For aiming the integration on a CMOS circuit and for thermal issue, we relied on SiO2 direct bonding of InP unpatterned materials. After the chemical removal of the InP substrate, the heterostructures lie on top of silicon waveguides of an SOI wafer with a separation of about 100nm. Different lasers or photodetectors have been achieved for off-chip optical communication and for intra-chip optical communication within an optical network. For high performance computing with high speed communication between cores, we developed InP microdisk lasers that are coupled to silicon waveguide and produced 100μW of optical power and that can be directly modulated up to 5G at different wavelengths. The optical network is based on wavelength selective circuits with ring resonators. InGaAs photodetectors are evanescently coupled to the silicon waveguide with an efficiency of 0.8A/W. The fabrication has been demonstrated at 200mm wafer scale in a microelectronics clean room for CMOS compatibility. For off-chip communication, silicon on InP evanescent laser have been realized with an innovative design where the cavity is defined in silicon and the gain localized in the QW of bonded InP hererostructure. The investigated devices operate at continuous wave regime with room temperature threshold current below 100 mA, the side mode suppression ratio is as high as 20dB, and the fibercoupled output power is {7mW. Direct modulation can be achieved with already 6G operation.

  5. Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.

    1991-01-01

    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.

  6. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    PubMed

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  7. Unraveling aminophosphine redox mechanisms for glovebox-free InP quantum dot syntheses.

    PubMed

    Laufersky, Geoffry; Bradley, Siobhan; Frécaut, Elian; Lein, Matthias; Nann, Thomas

    2018-05-10

    The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.

  8. Hydrogen passivation of n+p and p+n heteroepitaxial InP solar cell structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, B.; Ringel, S. A.; Hoffman, R., Jr.

    1995-01-01

    High-efficiency, heteroepitaxial (HE) InP solar cells, grown on GaAs, Si or Ge substrates, are desirable for their mechanically strong, light-weight and radiation-hard properties. However, dislocations, caused by lattice mismatch, currently limit the performance of the HE cells. This occurs through shunting paths across the active photovoltaic junction and by the formation of deep levels. In previous work we have demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of dislocations in specially designed HE InP test structures. In this work, we present the first report of successful hydrogen passivation in actual InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in HE n+n InP cell structures from as-grown values of approximately 10(exp 15)/cm(exp -3), down to 1-2 x 10(exp 13)/cm(exp -3). The deep levels in the p-type base region of the cell structure match those of our earlier p-type test structures, which were attributed to dislocations or related point defect complexes. All dopants were successfully reactivated by a 400 C, 5 minute anneal with no detectable activation of deep levels. I-V analysis indicated a subsequent approximately 10 fold decrease in reverse leakage current at -1 volt reverse bias, and no change in the forward biased series resistance of the cell structure which indicates complete reactivation of the n+ emitter. Furthermore, electrochemical C-V profiling indicates greatly enhanced passivation depth, and hence hydrogen diffusion, for heteroepitaxial structures when compared with identically processed homoepitaxial n+p InP structures. An analysis of hydrogen diffusion in dislocated InP will be discussed, along with comparisons of passivation effectiveness for n+p versus p+n heteroepitaxial cell configurations. Preliminary hydrogen

  9. High ESD Breakdown-Voltage InP HBT Transimpedance Amplifier IC for Optical Video Distribution Systems

    NASA Astrophysics Data System (ADS)

    Sano, Kimikazu; Nagatani, Munehiko; Mutoh, Miwa; Murata, Koichi

    This paper is a report on a high ESD breakdown-voltage InP HBT transimpedance amplifier IC for optical video distribution systems. To make ESD breakdown-voltage higher, we designed ESD protection circuits integrated in the TIA IC using base-collector/base-emitter diodes of InP HBTs and resistors. These components for ESD protection circuits have already existed in the employed InP HBT IC process, so no process modifications were needed. Furthermore, to meet requirements for use in optical video distribution systems, we studied circuit design techniques to obtain a good input-output linearity and a low-noise characteristic. Fabricated InP HBT TIA IC exhibited high human-body-model ESD breakdown voltages (±1000V for power supply terminals, ±200V for high-speed input/output terminals), good input-output linearity (less than 2.9-% duty-cycle-distortion), and low noise characteristic (10.7pA/√Hz averaged input-referred noise current density) with a -3-dB-down higher frequency of 6.9GHz. To the best of our knowledge, this paper is the first literature describing InP ICs with high ESD-breakdown voltages.

  10. Beyond G-band : a 235 GHz InP MMIC amplifier

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  11. Potential for use of InP solar cells in the space radiation environment

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1985-01-01

    Indium phosphide solar cells were observed to have significantly higher radiation resistance than either GaAs or Si after exposure to 10 MeV proton irradiation data and previous 1 MeV electron data together with projected efficiencies for InP, it was found that these latter cells produced more output power than either GaAs or Si after specified fluences of 10 MeV protons and 1 MeV electrons. Estimates of expected performance in a proton dominated space orbit yielded much less degradation for InP when compared to the remaining two cell types. It was concluded that, with additional development to increase efficiency, InP solar cells would perform significantly better than either GaAs or Si in the space radiation environment.

  12. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  13. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires.

    PubMed

    Zilli, Attilio; De Luca, Marta; Tedeschi, Davide; Fonseka, H Aruni; Miriametro, Antonio; Tan, Hark Hoe; Jagadish, Chennupati; Capizzi, Mario; Polimeni, Antonio

    2015-04-28

    Semiconductor nanowires (NWs) formed by non-nitride III-V compounds grow preferentially with wurtzite (WZ) lattice. This is contrary to bulk and two-dimensional layers of the same compounds, where only zincblende (ZB) is observed. The absorption spectrum of WZ materials differs largely from their ZB counterparts and shows three transitions, referred to as A, B, and C in order of increasing energy, involving the minimum of the conduction band and different critical points of the valence band. In this work, we determine the temperature dependence (T = 10-310 K) of the energy of transitions A, B, and C in ensembles of WZ InP NWs by photoluminescence (PL) and PL excitation (PLE) spectroscopy. For the whole temperature and energy ranges investigated, the PL and PLE spectra are quantitatively reproduced by a theoretical model taking into account contribution from both exciton and continuum states. WZ InP is found to behave very similarly to wide band gap III-nitrides and II-VI compounds, where the energy of A, B, and C displays the same temperature dependence. This finding unveils a general feature of the thermal properties of WZ materials that holds regardless of the bond polarity and energy gap of the crystal. Furthermore, no differences are observed in the temperature dependence of the fundamental band gap energy in WZ InP NWs and ZB InP (both NWs and bulk). This result points to a negligible role played by the WZ/ZB differences in determining the deformation potentials and the extent of the electron-phonon interaction that is a direct consequence of the similar nearest neighbor arrangement in the two lattices.

  14. Hydrogen passivation of N(+)-P and P(+)-N heteroepitaxial InP solar cell structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, Basab; Davis, William C.; Ringel, Steve A.; Hoffman, Richard, Jr.

    1996-01-01

    Dislocations and related point defect complexes caused by lattice mismatch currently limit the performance of heteroepitaxial InP cells by introducing shunting paths across the active junction and by the formation of deep traps within the base region. We have previously demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of such defects in specially designed heteroepitaxial InP test structures to probe hydrogen passivation at typical base depths within a cell structure. In this work, we present our results on the hydrogen passivation of actual heteroepitaxial n-p and p-n InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in the base regions of both n(+)-p and p(+)-n heteroepitaxial InP cell structures from as-grown values of 5-7 x 10(exp 14) cm(exp -3), down to 3-5 x 10(exp 12) cm(exp -3). All dopants were successfully reactivated by a 400 C, 5 minute anneal with no detectable activation of deep levels. One to five analysis indicated a subsequent approximately 100 fold decrease in reverse leakage current at -1 volt reverse bias, and an improved built in voltage for the p(+)-n structures. In addition to being passivated, dislocations are also shown to participate in secondary interactions during hydrogenation. We find that the presence of dislocations enhances hydrogen diffusion into the cell structure, and lowers the apparent dissociation energy of Zn-H complexes from 1.19 eV for homoepitaxial Zn-doped InP to 1.12 eV for heteroepitaxial Zn-doped InP. This is explained by additional hydrogen trapping at dislocations subsequent to the reactivation of Zn dopants after hydrogenation.

  15. Hydrogen Passivation of N(+)P and P(+)N Heteroepitaxial InP Solar Cell Structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, B.; Davis, W. C.; Ringel, S. A.; Hoffman, R., Jr.

    1995-01-01

    Dislocations and related point defect complexes caused by lattice mismatch currently limit the performance of heteroepitaxial InP cells by introducing shunting paths across the active junction and by the formation of deep traps within the base region. We have previously demonstrated that plasma hydrogenation is an effective and stable means to passivate the electrical activity of such defects in specially designed heteroepitaxial InP test structures to probe hydrogen passivation at typical base depths within a cell structure. In this work, we present our results on the hydrogen passivation of actual heteroepitaxial n(+)p and p(+)n InP cell structures grown on GaAs substrates by metalorganic chemical vapor deposition (MOCVD). We have found that a 2 hour exposure to a 13.56 MHz hydrogen plasma at 275 C reduces the deep level concentration in the base regions of both n(+)p and p(+)n heteroepitaxial InP cell structures from as-grown values of 5 - 7 x 10(exp 14)/cc, down to 3 - 5 x 10(exp 12)/cc. All dopants were successfully reactivated by a 400 C, 5 minute anneal With no detectable activation of deep levels. I-V analysis indicated a subsequent approx. 100 fold decrease In reverse leakage current at -1 volt reverse bias, and an improved built in voltage for the p(+)n structures. ln addition to being passivated,dislocations are also shown to participate in secondary interactions during hydrogenation. We find that the presence of dislocations enhances hydrogen diffusion into the cell structure, and lowers the apparent dissociation energy of Zn-H complexes from 1.19 eV for homoepitaxial Zn-doped InP to 1.12 eV for heteroepitaxial Zn-doped InP. This is explained by additional hydrogen trapping at dislocations subsequent to the reactivation of Zn dopants after hydrogenation.

  16. InP and InAs nanowires hetero- and homojunctions: energetic stability and electronic properties.

    PubMed

    Dionízio Moreira, M; Venezuela, P; Miwa, R H

    2010-07-16

    We performed an ab initio total energy investigation, within the density functional theory, of the energetic stability and the electronic properties of hydrogenated InAs/InP nanowire (NW) heterojunctions, as well as InAs and InP homojunctions composed of different structural arrangements, zinc-blend (zb) and wurtzite (w). For InAs/InP NW heterojunctions our results indicate that w and zb NW heterojunctions are quite similar, energetically, for thin NWs. We also examined the robustness of the abrupt interface through an atomic <--> swap at the InAs/InP interface. Our results support the formation of abrupt (non-abrupt) interfaces in w (zb) InAs/InP heterojunctions. Concerning InAs/InP NW-SLs, our results indicate a type-I band alignment, with the energy barrier at the InP layers, in accordance with experimental works. For InAs or InP zb/w homojunctions, we also found a type-I band alignment for thin NWs, however, on increasing the NW diameter both InAs and InP homojunctions exhibit a type-II band alignment.

  17. Optical properties of Sulfur doped InP single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  18. Band gap and band offset of (GaIn)(PSb) lattice matched to InP

    NASA Astrophysics Data System (ADS)

    Köhler, F.; Böhm, G.; Meyer, R.; Amann, M.-C.

    2005-07-01

    Metastable (GaxIn1-x)(PySb1-y) layers were grown on (001) InP substrates by gas source molecular beam epitaxy. Low-temperature photoluminescence spectroscopy was applied to these heterostructures and revealed spatially indirect band-to-band recombination of electrons localized in the InP with holes in the (GaxIn1-x)(PySb1-y). In addition, samples with layer thicknesses larger than 100nm showed direct PL across the band gap of (GaxIn1-x)(PySb1-y). Band-gap energies and band offset energies of (GaxIn1-x)(PySb1-y) relative to InP were derived from these PL data. A strong bowing parameter was observed.

  19. Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region.

    PubMed

    Alyabyeva, L N; Zhukova, E S; Belkin, M A; Gorshunov, B P

    2017-08-04

    We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2-700 cm -1 (0.06-21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.

  20. Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang

    2016-04-01

    We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.

  1. Carrier removal and defect behavior in p-type InP

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  2. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  3. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    PubMed

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  4. [Managment system in safety and health at work organization. An Italian example in public sector: Inps].

    PubMed

    Di Loreto, G; Felicioli, G

    2010-01-01

    The Istituto Nazionale della Previdenza Sociale (Inps) is one of the biggest Public Sector organizations in Italy; about 30.000 people work in his structures. Fifteen years ago, Inps launched a long term project with the objective to create a complex and efficient safety and health at work organization. Italian law contemplates a specific kind of physician working on safety and health at work, called "Medico competente", and 85 Inps's physicians work also as "Medico competente". This work describes how IT improved coordination and efficiency in this occupational health's management system.

  5. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, Allison M.; Mangum, Benjamin D.; Piryatinski, Andrei

    2012-06-21

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDsmore » to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.« less

  6. Band Offsets and Interfacial Properties of HfAlO Gate Dielectric Grown on InP by Atomic Layer Deposition.

    PubMed

    Yang, Lifeng; Wang, Tao; Zou, Ying; Lu, Hong-Liang

    2017-12-01

    X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy have been used to determine interfacial properties of HfO 2 and HfAlO gate dielectrics grown on InP by atomic layer deposition. An undesirable interfacial InP x O y layer is easily formed at the HfO 2 /InP interface, which can severely degrade the electrical performance. However, an abrupt interface can be achieved when the growth of the HfAlO dielectric on InP starts with an ultrathin Al 2 O 3 layer. The valence and conduction band offsets for HfAlO/InP heterojunctions have been determined to be 1.87 ± 0.1 and 2.83 ± 0.1 eV, respectively. These advantages make HfAlO a potential dielectric for InP MOSFETs.

  7. Correlation of electron and proton irradiation-induced damage in InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1996-01-01

    The measured degradation of epitaxial shallow homojunction n(+)/p InP solar cells under 1 MeV electron irradiation is correlated with that measured under 3 MeV proton irradiation based on 'displacement damage dose'. The measured data is analyzed as a function of displacement damage dose from which an electron to proton dose equivalency ratio is determined which enables the electron and proton degradation data to be described by a single degradation curve. It is discussed how this single curve can be used to predict the cell degradation under irradiation by any particle energy. The degradation curve is used to compare the radiation response of InP and GaAs/Ge cells on an absolute damage energy scale. The comparison shows InP to be inherently more resistant to displacement damage deposition than the GaAs/Ge.

  8. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  9. Optical and structural properties of 100 MeV Fe{sup 9+} ion irradiated InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubey, R. L., E-mail: radhekrishna.dubey@xaviers.edu; Department of Physics, University of Mumbai, Mumbai-400 032; Dubey, S. K.

    2016-05-06

    Single crystal InP samples were irradiated with 100 MeV Fe{sup 9+} ions for ion fluences 1x10{sup 12} and 1x10{sup 13} cm{sup −2}. Optical properties of irradiated InP was investigated by Spectroscopic Ellipsometry and UV-VIS-NIR spectroscopy. The optical parameters like, refractive index, extinction coefficient, absorption coefficient is found to be fluence dependent near the surface as well as near the projected range. Small change in the optical parameters near the surface region as investigated by Spectroscopic Ellipsometry indicatesthat the surfaces of irradiated InP are similar to non-irradiated InP. This is also supported by RBS/C measurements. The UV-VIS-NIR study revealed the decrease inmore » the band gap and increase in the defect concentration in the irradiated sample as a result of nuclear energy loss.« less

  10. InP solar cell with window layer

    NASA Technical Reports Server (NTRS)

    Jain, Raj K. (Inventor); Landis, Geoffrey A. (Inventor)

    1994-01-01

    The invention features a thin light transmissive layer of the ternary semiconductor indium aluminum arsenide (InAlAs) as a front surface passivation or 'window' layer for p-on-n InP solar cells. The window layers of the invention effectively reduce front surface recombination of the object semiconductors thereby increasing the efficiency of the cells.

  11. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  12. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    PubMed

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-12-17

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO 2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency of 19.2%.

  13. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.

    PubMed

    Kim, Seung Hyun; Mohseni, Parsian K; Song, Yi; Ishihara, Tatsumi; Li, Xiuling

    2015-01-14

    Creating high aspect ratio (AR) nanostructures by top-down fabrication without surface damage remains challenging for III-V semiconductors. Here, we demonstrate uniform, array-based InP nanostructures with lateral dimensions as small as sub-20 nm and AR > 35 using inverse metal-assisted chemical etching (I-MacEtch) in hydrogen peroxide (H2O2) and sulfuric acid (H2SO4), a purely solution-based yet anisotropic etching method. The mechanism of I-MacEtch, in contrast to regular MacEtch, is explored through surface characterization. Unique to I-MacEtch, the sidewall etching profile is remarkably smooth, independent of metal pattern edge roughness. The capability of this simple method to create various InP nanostructures, including high AR fins, can potentially enable the aggressive scaling of InP based transistors and optoelectronic devices with better performance and at lower cost than conventional etching methods.

  14. Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.

    PubMed

    Schukfeh, M I; Storm, K; Hansen, A; Thelander, C; Hinze, P; Beyer, A; Weimann, T; Samuelson, L; Tornow, M

    2014-11-21

    We present a method to fabricate nanometer scale gaps within InAs nanowires by selectively etching InAs/InP heterostructure nanowires. We used vapor-liquid-solid grown InAs nanowires with embedded InP segments of 10-60 nm length and developed an etching recipe to selectively remove the InP segment. A photo-assisted wet etching process in a mixture of acetic acid and hydrobromic acid gave high selectivity, with accurate removal of InP segments down to 20 nm, leaving the InAs wire largely unattacked, as verified using scanning electron and transmission electron microscopy. The obtained nanogaps in InAs wires have potential as semiconducting electrodes to investigate electronic transport in nanoscale objects. We demonstrate this functionality by dielectrophoretically trapping 30 nm diameter gold nanoparticles into the gap.

  15. TP53INP1 is a novel p73 target gene that induces cell cycle arrest and cell death by modulating p73 transcriptional activity.

    PubMed

    Tomasini, Richard; Seux, Mylène; Nowak, Jonathan; Bontemps, Caroline; Carrier, Alice; Dagorn, Jean-Charles; Pébusque, Marie-Josèphe; Iovanna, Juan L; Dusetti, Nelson J

    2005-12-08

    TP53INP1 is an alternatively spliced gene encoding two nuclear protein isoforms (TP53INP1alpha and TP53INP1beta), whose transcription is activated by p53. When overexpressed, both isoforms induce cell cycle arrest in G1 and enhance p53-mediated apoptosis. TP53INP1s also interact with the p53 gene and regulate p53 transcriptional activity. We report here that TP53INP1 expression is induced during experimental acute pancreatitis in p53-/- mice and in cisplatin-treated p53-/- mouse embryo fibroblasts (MEFs). We demonstrate that ectopic expression of p73, a p53 homologue, leads to TP53INP1 induction in p53-deficient cells. In turn, TP53INP1s alters the transactivation capacity of p73 on several p53-target genes, including TP53INP1 itself, demonstrating a functional association between p73 and TP53INP1s. Also, when overexpressed in p53-deficient cells, TP53INP1s inhibit cell growth and promote cell death as assessed by cell cycle analysis and colony formation assays. Finally, we show that TP53INP1s potentiate the capacity of p73 to inhibit cell growth, that effect being prevented when the p53 mutant R175H is expressed or when p73 expression is blocked by a siRNA. These results suggest that TP53INP1s are functionally associated with p73 to regulate cell cycle progression and apoptosis, independently from p53.

  16. Periprosthetic Joint Infections: Clinical and Bench Research

    PubMed Central

    Legout, Laurence; Senneville, Eric

    2013-01-01

    Prosthetic joint infection is a devastating complication with high morbidity and substantial cost. The incidence is low but probably underestimated. Despite a significant basic and clinical research in this field, many questions concerning the definition of prosthetic infection as well the diagnosis and the management of these infections remained unanswered. We review the current literature about the new diagnostic methods, the management and the prevention of prosthetic joint infections. PMID:24288493

  17. High Beginning-of-Life Efficiency p/n InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Weizer, Victor G.; Jenkins, Phillip P.; Ringel, Steven A.; Scheiman, David A.; Wilt, David M.; Brinker, David J.

    2004-01-01

    We have achieved a new record efficiency of 17.6%, (AM0) for a p/n InP homo-epitaxy solar cell. In addition, we have eliminated a previously observed photo-degradation of cell performance, which was due to losses in J(sub sc). Cells soaked in AM0 spectrum at one-sun intensity for an hour showed no significant change in cell performance. We have discovered carrier passivation effects when using Zn as the p-type dopant in the OMVPE growth of InP and have found a method to avoid the unexpected effects which result from typical operation of OMVPE cell growth.

  18. Deposition of InP on Si Substrates for Monolithic Integration of Advanced Electronics

    DTIC Science & Technology

    1988-05-01

    radiation resistance of InP has been demonstrated (in terms of solar cell experiments) to be quite superior to that of either GaAs or Si.( 1 , 2) In fact... photovoltaic p/n junction devices irradiated by I MeV electrons have been shown to almost totallv recover their electrical performance by annealing at...in the literature.(l5 2 2) The NTT group has succeeded in growing InP films directly on Si substrates and in fabricating solar cells (approximately 3

  19. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact

    PubMed Central

    2015-01-01

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%. PMID:25679010

  20. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO 2 Contact

    DOE PAGES

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; ...

    2014-09-25

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (~10 nm) of amorphous TiO 2 deposited at 120°C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. Lastly, a hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency ofmore » 19.2%.« less

  1. Ohio Route 50 joint sealant experiment : research implementation plan.

    DOT National Transportation Integrated Search

    2005-05-01

    Research in the state of Wisconsin over the past forty years has found no noticeable difference in : performance between jointed concrete pavement (JCP) constructed with a sealed contraction joint and : JCP constructed with a single, narrow, unsealed...

  2. Pressure-Dependent Photoluminescence Study of Wurtzite InP Nanowires.

    PubMed

    Chauvin, Nicolas; Mavel, Amaury; Patriarche, Gilles; Masenelli, Bruno; Gendry, Michel; Machon, Denis

    2016-05-11

    The elastic properties of InP nanowires are investigated by photoluminescence measurements under hydrostatic pressure at room temperature and experimentally deduced values of the linear pressure coefficients are obtained. The pressure-induced energy shift of the A and B transitions yields a linear pressure coefficient of αA = 88.2 ± 0.5 meV/GPa and αB = 89.3 ± 0.5 meV/GPa with a small sublinear term of βA = βB = -2.7 ± 0.2 meV/GPa(2). Effective hydrostatic deformation potentials of -6.12 ± 0.04 and -6.2 ± 0.04 eV are derived from the results for the A and B transitions, respectively. A decrease of the integrated intensity is observed above 0.5 GPa and is interpreted as a carrier transfer from the first to the second conduction band of the wurtzite InP.

  3. Effects of nitrogen incorporation in HfO(2) grown on InP by atomic layer deposition: an evolution in structural, chemical, and electrical characteristics.

    PubMed

    Kang, Yu-Seon; Kim, Dae-Kyoung; Kang, Hang-Kyu; Jeong, Kwang-Sik; Cho, Mann-Ho; Ko, Dae-Hong; Kim, Hyoungsub; Seo, Jung-Hye; Kim, Dong-Chan

    2014-03-26

    We investigated the effects of postnitridation on the structural characteristics and interfacial reactions of HfO2 thin films grown on InP by atomic layer deposition (ALD) as a function of film thickness. By postdeposition annealing under NH3 vapor (PDN) at 600 °C, an InN layer formed at the HfO2/InP interface, and ionized NHx was incorporated in the HfO2 film. We demonstrate that structural changes resulting from nitridation of HfO2/InP depend on the film thickness (i.e., a single-crystal interfacial layer of h-InN formed at thin (2 nm) HfO2/InP interfaces, whereas an amorphous InN layer formed at thick (>6 nm) HfO2/InP interfaces). Consequently, the tetragonal structure of HfO2 transformed into a mixture structure of tetragonal and monoclinic because the interfacial InN layer relieved interfacial strain between HfO2 and InP. During postdeposition annealing (PDA) in HfO2/InP at 600 °C, large numbers of oxidation states were generated as a result of interfacial reactions between interdiffused oxygen impurities and out-diffused InP substrate elements. However, in the case of the PDN of HfO2/InP structures at 600 °C, nitrogen incorporation in the HfO2 film effectively blocked the out-diffusion of atomic In and P, thus suppressing the formation of oxidation states. Accordingly, the number of interfacial defect states (Dit) within the band gap of InP was significantly reduced, which was also supported by DFT calculations. Interfacial InN in HfO2/InP increased the electron-barrier height to ∼0.6 eV, which led to low-leakage-current density in the gate voltage region over 2 V.

  4. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Coutts, T. J.

    1988-01-01

    The radiation resistance of ITO/InP cells processed by dc magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistances significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectrosocpy, and determinations of surface conductivity type are used to investigate the configuration of the ITO/InP cells. It is concluded that these latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor.

  5. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Coutts, T. J.

    1988-01-01

    The radiation resistance of ITO/InP cells processed by DC magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistance significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectroscopy, and determinations of surface conductivity types are used to investigate the configuration of the ITO/InP cells. It is concluded that thesee latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor.

  6. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  7. Quiet Short-Haul Research Aircraft Joint Navy/NASA Sea Trials

    NASA Technical Reports Server (NTRS)

    Queen, S.; Cochrane, J.

    1982-01-01

    The Quiet Short-Haul Research Aircraft (QSRA) is a flight facility which Ames Research Center is using to conduct a broad program of terminal area and low-speed, propulsive-life flight research. A joint Navy/NASA flight research program used the QSRA to investigate the application of advanced propulsive-lift technology to the naval aircraft-carrier environment. Flight performance of the QSRA is presented together with the results or the joint Navy/NASA flight program. During the joint program, the QSRA operated aboard the USS Kitty Hawk for 4 days, during which numerous unarrested landings and free deck takeoffs were accomplished. These operations demonstrated that a large aircraft incorporating upper-surface-blowing, propulsive-life technology can be operated in the aircraft-carrier environment without any unusual problems.

  8. INPE LANDSAT-D thematic mapper computer compatible tape format specification

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Desouza, R. C. M.

    1982-01-01

    The format of the computer compatible tapes (CCT) which contain Thematic Mapper (TM) imagery data acquired from the LANDSAT D and D Prime satellites by the INSTITUTO DE PERSQUISAS ESPACIALS (CNPq-INPE/BRAZIL) is defined.

  9. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  10. Carrier-induced ferromagnetism in the insulating Mn-doped III-V semiconductor InP

    NASA Astrophysics Data System (ADS)

    Bouzerar, Richard; May, Daniel; Löw, Ute; Machon, Denis; Melinon, Patrice; Zhou, Shengqiang; Bouzerar, Georges

    2016-09-01

    Although InP and GaAs have very similar band structure their magnetic properties appear to drastically differ. Critical temperatures in (In,Mn)P are much smaller than those of (Ga,Mn)As and scale linearly with Mn concentration. This is in contrast to the square-root behavior found in (Ga,Mn)As. Moreover the magnetization curve exhibits an unconventional shape in (In,Mn)P contrasting with the conventional one of well-annealed (Ga,Mn)As. By combining several theoretical approaches, the nature of ferromagnetism in Mn-doped InP is investigated. It appears that the magnetic properties are essentially controlled by the position of the Mn acceptor level. Our calculations are in excellent agreement with recent measurements for both critical temperatures and magnetizations. The results are only consistent with a Fermi level lying in an impurity band, ruling out the possibility to understand the physical properties of Mn-doped InP within the valence band scenario. The quantitative success found here reveals a predictive tool of choice that should open interesting pathways to address magnetic properties in other compounds.

  11. Public priorities for joint pain research: results from a general population survey

    PubMed Central

    Carter, Pam; Ong, Bie Nio; Bedson, John; Jordan, Kelvin P.; Jinks, Clare

    2012-01-01

    Objective. We aimed to identify the priorities for joint pain research from a large general population survey and identify characteristics associated with these priorities. Methods. A question about research priorities was developed in collaboration with the Arthritis Research UK Primary Care Centre’s Research Users’ Group. The question was embedded in a postal survey to an existing cohort of adults with self-reported joint pain, aged ≥56 years, in North Staffordshire. Respondents were asked to rank their top three priorities for research. Factor mixture modelling was used to determine subgroups of priorities. Results. In all, 1756 (88%) people responded to the survey. Of these, 1356 (77%) gave three priorities for research. Keeping active was rated the top priority by 38%, followed by research around joint replacement (9%) and diet/weight loss (9%). Two clusters of people were identified: 62% preferred lifestyle/self-management topics (e.g. keeping active, weight loss) and 38% preferred medical intervention topics (e.g. joint replacement, tablets). Those who preferred the medical options tended to be older and have hip or foot pain. Conclusion. This study has provided population data on priorities for joint pain research expressed by a large cohort of older people who report joint pain. The most popular topics for research were linked to lifestyle and self-management opportunities. Pharmaceutical and invasive interventions, despite being common topics of research, are of less importance to these respondents than non-medical topics. Specific research questions will be generated from this study with collaboration of the patient’s group. PMID:22886341

  12. Effect of dislocations on properties of heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Curtis, H. B.; Brinker, D. J.; Jenkins, P.; Faur, M.

    1991-01-01

    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells.

  13. On the usage of classical nucleation theory in quantification of the impact of bacterial INP on weather and climate

    NASA Astrophysics Data System (ADS)

    Sahyoun, Maher; Wex, Heike; Gosewinkel, Ulrich; Šantl-Temkiv, Tina; Nielsen, Niels W.; Finster, Kai; Sørensen, Jens H.; Stratmann, Frank; Korsholm, Ulrik S.

    2016-08-01

    Bacterial ice-nucleating particles (INP) are present in the atmosphere and efficient in heterogeneous ice-nucleation at temperatures up to -2 °C in mixed-phase clouds. However, due to their low emission rates, their climatic impact was considered insignificant in previous modeling studies. In view of uncertainties about the actual atmospheric emission rates and concentrations of bacterial INP, it is important to re-investigate the threshold fraction of cloud droplets containing bacterial INP for a pronounced effect on ice-nucleation, by using a suitable parameterization that describes the ice-nucleation process by bacterial INP properly. Therefore, we compared two heterogeneous ice-nucleation rate parameterizations, denoted CH08 and HOO10 herein, both of which are based on classical-nucleation-theory and measurements, and use similar equations, but different parameters, to an empirical parameterization, denoted HAR13 herein, which considers implicitly the number of bacterial INP. All parameterizations were used to calculate the ice-nucleation probability offline. HAR13 and HOO10 were implemented and tested in a one-dimensional version of a weather-forecast-model in two meteorological cases. Ice-nucleation-probabilities based on HAR13 and CH08 were similar, in spite of their different derivation, and were higher than those based on HOO10. This study shows the importance of the method of parameterization and of the input variable, number of bacterial INP, for accurately assessing their role in meteorological and climatic processes.

  14. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine

    PubMed Central

    2012-01-01

    Colloidal III-V semiconductor nanocrystal quantum dots [NQDs] have attracted interest because they have reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals are limited by difficulties in their synthesis. In particular, it is difficult to control nucleation because the molecular bonds in III-V semiconductors are highly covalent. A synthetic approach of InP NQDs was presented using newly synthesized organometallic phosphorus [P] precursors with different functional moieties while preserving the P-Si bond. Introducing bulky side chains in our study improved the stability while facilitating InP formation with strong confinement at a readily low temperature regime (210°C to 300°C). Further shell coating with ZnS resulted in highly luminescent core-shell materials. The design and synthesis of P precursors for high-quality InP NQDs were conducted for the first time, and we were able to control the nucleation by varying the reactivity of P precursors, therefore achieving uniform large-sized InP NQDs. This opens the way for the large-scale production of high-quality Cd-free nanocrystal quantum dots. PMID:22289352

  15. Triple and Quadruple Junctions Thermophotovoltaic Devices Lattice Matched to InP

    NASA Technical Reports Server (NTRS)

    Bhusal, L.; Freundlich, A.

    2007-01-01

    Thermophotovoltaic (TPV) conversion of IR radiation emanating from a radioisotope heat source is under consideration for deep space exploration. Ideally, for radiator temperatures of interest, the TPV cell must convert efficiently photons in the 0.4-0.7 eV spectral range. Best experimental data for single junction cells are obtained for lattice-mismatched 0.55 eV InGaAs based devices. It was suggested, that a tandem InGaAs based TPV cell made by monolithically combining two or more lattice mismatched InGaAs subcells on InP would result in a sizeable efficiency improvement. However, from a practical standpoint the implementation of more than two subcells with lattice mismatch systems will require extremely thick graded layers (defect filtering systems) to accommodate the lattice mismatch between the sub-cells and could detrimentally affect the recycling of the unused IR energy to the emitter. A buffer structure, consisting of various InPAs layers, is incorporated to accommodate the lattice mismatch between the high and low bandgap subcells. There are evidences that the presence of the buffer structure may generate defects, which could extend down to the underlying InGaAs layer. The unusual large band gap lowering observed in GaAs(1-x)N(x) with low nitrogen fraction [1] has sparked a new interest in the development of dilute nitrogen containing III-V semiconductors for long-wavelength optoelectronic devices (e.g. IR lasers, detector, solar cells) [2-7]. Lattice matched Ga1-yInyNxAs1-x on InP has recently been investigated for the potential use in the mid-infrared device applications [8], and it could be a strong candidate for the applications in TPV devices. This novel quaternary alloy allows the tuning of the band gap from 1.42 eV to below 1 eV on GaAs and band gap as low as 0.6eV when strained to InP, but it has its own limitations. To achieve such a low band gap using the quaternary Ga1-yInyNxAs1-x, either it needs to be strained on InP, which creates further

  16. Study of surface passivation as a function of InP closed-ampoule solar cell fabrication processing variables

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Jenkins, Phillip; Goradia, Manju; Goradia, Chandra; Bailey, Sheila; Weinberg, Irving; Jayne, Douglas

    1990-01-01

    The effects of various surface preparation procedures, including chemical treatment and anodic or chemical oxidation, closed-ampoule diffusion conditions, and post-diffusion surface preparation and annealing conditions, on the passivating properties of InP have been investigated in order to optimize the fabrication procedures of n(+)p InP solar cells made by closed-ampoule diffusion of sulfur into p-type InP. The InP substrates used were p-type Cd-doped to a level of 1.7 x 10 to the 16th/cu cm, Zn-doped to levels of 2.2 x 10 to the 16th and 1.2 x 10 to the 18th/cu cm, and n-type S-doped to 4.4 x 10 to the 18th/cu cm. The passivating properties have been evaluated from photoluminescence (PL) and conductance-voltage (G-V) data. Good agreement was found between the level of surface passivation and the composition of different surface layers as revealed by X-ray photoelectron spectroscopy (XPS) analysis.

  17. Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B., E-mail: galiev-galib@mail.ru; Grekhov, M. M.; Kitaeva, G. Kh.

    2017-03-15

    The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In{sub 0.53}Ga{sub 0.47}As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In{sub 0.53}Ga{sub 0.47}As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds thatmore » from similar layers formed on the (100) InP substrates by a factor of 3–5.« less

  18. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Guifeng; Wang, Mengxue; Yang, Wenxian; Tan, Ming; Wu, Yuanyuan; Dai, Pan; Huang, Yuyang; Lu, Shulong

    2017-12-01

    Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of -5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector. Project supported by the Key R&D Program of Jiangsu Province (No. BE2016085) , the National Natural Science Foundation of China (Nos. 61674051), and the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121E32KYSB20160071).

  19. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2018-01-16

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  20. Post deposition annealing effect on the properties of Al2O3/InP interface

    NASA Astrophysics Data System (ADS)

    Kim, Hogyoung; Kim, Dong Ha; Choi, Byung Joon

    2018-02-01

    Post deposition in-situ annealing effect on the interfacial and electrical properties of Au/Al2O3/n-InP junctions were investigated. With increasing the annealing time, both the barrier height and ideality factor changed slightly but the series resistance decreased significantly. Photoluminescence (PL) measurements showed that the intensities of both the near band edge (NBE) emission from InP and defect-related bands (DBs) from Al2O3 decreased with 30 min annealing. With increasing the annealing time, the diffusion of oxygen (indium) atoms into Al2O3/InP interface (into Al2O3 layer) occurred more significantly, giving rise to the increase of the interface state density. Therefore, the out-diffusion of oxygen atoms from Al2O3 during the annealing process should be controlled carefully to optimize the Al2O3/InP based devices.

  1. InP tunnel junction for InGaAs/InP tandem solar cells

    NASA Technical Reports Server (NTRS)

    Vilela, M. F.; Freundlich, A.; Bensaoula, A.; Medelci, N.; Renaud, P.

    1995-01-01

    Chemical beam epitaxy (CBE) has been shown to allow the growth of high quality materials with reproducible complex compositional and doping profiles. The main advantage of CBE compared to metalorganic chemical vapor deposition (MOCVD), the most popular technique for InP-based photovoltaic device fabrication, is the ability to grow high purity epilayers at much lower temperatures (450-530 C). We have previously shown that CBE is perfectly suited toward the fabrication of complex photovoltaic devices such as InP/InGaAs monolithically integrated tandem solar cells, because its low process temperature preserves the electrical characteristics of the InGaAs tunnel junction commonly used as an ohmic interconnect. In this work using CBE for the fabrication of optically transparent (with respect to the bottom cell) InP tunnel diodes is demonstrated. Epitaxial growth were performed in a Riber CBE 32 system using PH3 and TMIn as III and V precursors. Solid Be (p-type) and Si (n-type) have been used as doping sources, allowing doping levels up to 2 x 10(exp -19)/cu cm and 1 x 10(exp -19)/cu cm for n and p type respectively. The InP tunnel junction characteristics and the influence of the growth's conditions (temperature, growth rate) over its performance have been carefully investigated. InP p(++)/n(++) tunnel junction with peak current densities up to 1600 A/sq cm and maximum specific resistivities (V(sub p)/I(sub p) - peak voltage to peak current ratio) in the range of 10(exp -4) Omega-sq cm were obtained. The obtained peak current densities exceed the highest results previously reported for their lattice matched counterparts, In(0.53)Ga( 0.47)As and should allow the realization of improved minimal absorption losses in the interconnect InP/InGaAs tandem devices for Space applications. Owing to the low process temperature required for the top cell, these devices exhibit almost no degradation of its characteristics after the growth of subsequent thick InP layer suggesting

  2. Investigation of the open-circuit voltage in wide-bandgap InGaP-host InP quantum dot intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Aihara, Taketo; Tayagaki, Takeshi; Nagato, Yuki; Okano, Yoshinobu; Sugaya, Takeyoshi

    2018-04-01

    To analyze the open-circuit voltage (V oc) in intermediate-band solar cells, we investigated the current-voltage characteristics in wide-bandgap InGaP-based InP quantum dot (QD) solar cells. From the temperature dependence of the current-voltage curves, we show that the V oc in InP QD solar cells increases with decreasing temperature. We use a simple diode model to extract V oc at the zero-temperature limit, V 0, and the temperature coefficient C of the solar cells. Our results show that, while the C of InP QD solar cells is slightly larger than that of the reference InGaP solar cells, V 0 significantly decreases and coincides with the bandgap energy of the InP QDs rather than that of the InGaP host. This V 0 indicates that the V oc reduction in the InP QD solar cells is primarily caused by the breaking of the Fermi energy separation between the QDs and the host semiconductor in intermediate-band solar cells, rather than by enhanced carrier recombination.

  3. Formation mechanisms for the dominant kinks with different angles in InP nanowires.

    PubMed

    Zhang, Minghuan; Wang, Fengyun; Wang, Chao; Wang, Yiqian; Yip, SenPo; Ho, Johnny C

    2014-01-01

    The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties.

  4. Formation mechanisms for the dominant kinks with different angles in InP nanowires

    PubMed Central

    2014-01-01

    The morphologies and microstructures of kinked InP nanowires (NWs) prepared by solid-source chemical vapor deposition method were examined using scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Statistical analysis and structural characterization reveal that four different kinds of kinks are dominant in the grown InP NWs with a bending angle of approximately 70°, 90°, 110°, and 170°, respectively. The formation mechanisms of these kinks are discussed. Specifically, the existence of kinks with bending angles of approximately 70° and 110° are mainly attributed to the occurrence of stacking faults and nanotwins in the NWs, which could easily form by the glide of {111} planes, while approximately 90° kinks result from the local amorphorization of InP NWs. Also, approximately 170° kinks are mainly caused by small-angle boundaries, where the insertion of extra atomic planes could make the NWs slightly bent. In addition, multiple kinks with various angles are also observed. Importantly, all these results are beneficial to understand the formation mechanisms of kinks in compound semiconductor NWs, which could guide the design of nanostructured materials, morphologies, microstructures, and/or enhanced mechanical properties. PMID:24910572

  5. Highly doped InP as a low loss plasmonic material for mid-IR region.

    PubMed

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  6. [Research progress of three-dimensional printing technique in joint surgery].

    PubMed

    Wang, Fuyou; Ren, Xiang; Yang, Liu

    2014-03-01

    To summarize the application status of three-dimensional (3-D) printing technique in joint surgery and look forward to the future research directions. The recent original articles about the application and research of 3-D printing technique in joint surgery were extensively reviewed and analyzed. In clinical applications, 3-D printing technique can provide "tailored" treatment and custom implants for patients, which helps doctors to perform the complex operations easier and more safely; in fundamental research, tissue engineered scaffolds with desirable external shape and internal organization are easily fabricated with 3-D printing technique, which can meet the demand of cell adherence and proliferation. Even more, cells may be deposited with the biomaterials during the printing. With the development of medical imaging, digital medicine and new materials, 3-D printing technique will have a wider range of applications in joint surgery.

  7. Determination of the spin orbit coupling and crystal field splitting in wurtzite InP by polarization resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Chauvin, Nicolas; Mavel, Amaury; Jaffal, Ali; Patriarche, Gilles; Gendry, Michel

    2018-02-01

    Excitation photoluminescence spectroscopy is usually used to extract the crystal field splitting (ΔCR) and spin orbit coupling (ΔSO) parameters of wurtzite (Wz) InP nanowires (NWs). However, the equations expressing the valence band splitting are symmetric with respect to these two parameters, and a choice ΔCR > ΔSO or ΔCR < ΔSO has to be taken into account in order to assign the numerical values. To solve this issue, polarization resolved micro-photoluminescence was performed on vertically aligned and untapered Wz InP NWs grown on silicon. The experimental results combined with a theoretical model and finite difference time domain calculations allow us to conclude that ΔCR > ΔSO in Wz InP.

  8. High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV.

    PubMed

    Tran, Thai-Truong D; Sun, Hao; Ng, Kar Wei; Ren, Fan; Li, Kun; Lu, Fanglu; Yablonovitch, Eli; Chang-Hasnain, Constance J

    2014-06-11

    The growth of III-V nanowires on silicon is a promising approach for low-cost, large-scale III-V photovoltaics. However, performances of III-V nanowire solar cells have not yet been as good as their bulk counterparts, as nanostructured light absorbers are fundamentally challenged by enhanced minority carriers surface recombination rates. The resulting nonradiative losses lead to significant reductions in the external spontaneous emission quantum yield, which, in turn, manifest as penalties in the open-circuit voltage. In this work, calibrated photoluminescence measurements are utilized to construct equivalent voltage-current characteristics relating illumination intensities to Fermi level splitting ΔF inside InP microillars. Under 1 sun, we show that splitting can exceed ΔF ∼ 0.90 eV in undoped pillars. This value can be increased to values of ΔF ∼ 0.95 eV by cleaning pillar surfaces in acidic etchants. Pillars with nanotextured surfaces can yield splitting of ΔF ∼ 0.90 eV, even though they exhibit high densities of stacking faults. Finally, by introducing n-dopants, ΔF of 1.07 eV can be achieved due to a wider bandgap energy in n-doped wurzite InP, the higher brightness of doped materials, and the extraordinarily low surface recombination velocity of InP. This is the highest reported value for InP materials grown on a silicon substrate. These results provide further evidence that InP micropillars on silicon could be a promising material for low-cost, large-scale solar cells with high efficiency.

  9. Far field emission profile of pure wurtzite InP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgarini, Gabriele, E-mail: g.bulgarini@tudelft.nl; Reimer, Michael E.; Zwiller, Val

    2014-11-10

    We report on the far field emission profile of pure wurtzite InP nanowires in comparison to InP nanowires with predominantly zincblende crystal structure. The emission profile is measured on individual nanowires using Fourier microscopy. The most intense photoluminescence of wurtzite nanowires is collected at small angles with respect to the nanowire growth axis. In contrast, zincblende nanowires present a minimum of the collected light intensity in the direction of the nanowire growth. Results are explained by the orientation of electric dipoles responsible for the photoluminescence, which is different from wurtzite to zincblende. Wurtzite nanowires have dipoles oriented perpendicular to themore » nanowire growth direction, whereas zincblende nanowires have dipoles oriented along the nanowire axis. This interpretation is confirmed by both numerical simulations and polarization dependent photoluminescence spectroscopy. Knowledge of the dipole orientation in nanostructures is crucial for developing a wide range of photonic devices such as light-emitting diodes, photodetectors, and solar cells.« less

  10. Correlation of electron and proton irradiation-induced damage in InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.

  11. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  12. Integrating Quantitative and Qualitative Results in Health Science Mixed Methods Research Through Joint Displays.

    PubMed

    Guetterman, Timothy C; Fetters, Michael D; Creswell, John W

    2015-11-01

    Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. © 2015 Annals of Family Medicine, Inc.

  13. Integrating Quantitative and Qualitative Results in Health Science Mixed Methods Research Through Joint Displays

    PubMed Central

    Guetterman, Timothy C.; Fetters, Michael D.; Creswell, John W.

    2015-01-01

    PURPOSE Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. METHODS We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. RESULTS The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. CONCLUSIONS Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. PMID:26553895

  14. Electronic and Vibrational Spectra of InP Quantum Dots Formed by Sequential Ion Implantation

    NASA Technical Reports Server (NTRS)

    Hall, C.; Mu, R.; Tung, Y. S.; Ueda, A.; Henderson, D. O.; White, C. W.

    1997-01-01

    We have performed sequential ion implantation of indium and phosphorus into silica combined with controlled thermal annealing to fabricate InP quantum dots in a dielectric host. Electronic and vibrational spectra were measured for the as-implanted and annealed samples. The annealed samples show a peak in the infrared spectra near 320/cm which is attributed to a surface phonon mode and is in good agreement with the value calculated from Frolich's theory of surface phonon polaritons. The electronic spectra show the development of a band near 390 nm that is attributed to quantum confined InP.

  15. Electronic properties of wurtzite-phase InP nanowires determined by optical and magneto-optical spectroscopy

    NASA Astrophysics Data System (ADS)

    De Luca, Marta; Polimeni, Antonio

    2017-12-01

    Thanks to their peculiar shape and dimensions, semiconductor nanowires (NWs) are emerging as building components of novel devices. The presence of wurtzite (WZ) phase in the lattice structure of non-nitride III-V NWs is one of the most surprising findings in these nanostructures: this phase, indeed, cannot be found in the same materials in the bulk form, where the zincblende (ZB) structure is ubiquitous, and therefore the WZ properties are poorly known. This review focuses on WZ InP NWs, because growth techniques have reached a high degree of control on the structural properties of this material, and optical studies performed on high-quality samples have allowed determining the most useful electronic properties, which are reviewed here. After an introduction summarizing the reasons for the interest in WZ InP nanowires (Sec. I), we give an overview on growth process and structural and optical properties of WZ InP NWs (Sec. II). In Sec. III, a complete picture of the energy and symmetry of the lowest-energy conduction and valence bands, as assessed by polarization-resolved photoluminescence (PL) and photoluminescence-excitation (PLE) studies is drawn and compared to all the available theoretical information. The elastic properties of WZ InP (determined by PL under hydrostatic pressure) and the radiative recombination dynamics of spatially direct and indirect (namely, occurring across the WZ/ZB interfaces) transitions are also discussed. Section IV, focuses on the magneto-optical studies of WZ InP NWs. The diagram of the energy levels of excitons in WZ materials—with and without magnetic field—is first provided. Then, all theoretical and experimental information available about the changes in the transport properties (i.e., carrier effective mass) caused by the ZB→WZ phase variation are reviewed. Different NW/magnetic field geometrical configurations, sensitive to polarization selection rules, highlight anisotropies in the diamagnetic shifts, Zeeman splitting

  16. Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters

    NASA Astrophysics Data System (ADS)

    Shi, Bei; Li, Qiang; Lau, Kei May

    2018-05-01

    Monolithic integration of InP on a Si platform ideally facilitates on-chip light sources in silicon photonic applications. In addition to the well-developed hybrid bonding techniques, the direct epitaxy method is spawning as a more strategic and potentially cost-effective approach to monolithically integrate InP-based telecom lasers. To minimize the unwanted defects within the InP crystal, we explore multiple InAs/InP quantum dots as dislocation filters. The high quality InP buffer is thus obtained, and the dislocation filtering effects of the quantum dots are directly examined via both plan-view and cross-sectional transmission electron microscopy, along with room-temperature photoluminescence. The defect density on the InP surface was reduced to 3 × 108/cm2, providing an improved optical property of active photonic devices on Si substrates. This work offers a novel solution to advance large-scale integration of InP on Si, which is beneficial to silicon-based long-wavelength lasers in telecommunications.

  17. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP.

    PubMed

    Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J

    2011-07-04

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster.

  18. InP Devices For Millimeter-Wave Monolithic Circuits

    NASA Astrophysics Data System (ADS)

    Binari, S. C.; Neidert, R. E.; Dietrich, H. B.

    1989-11-01

    High efficiency, mm-wave operation has been obtained from lateral transferred-electron devices (TEDs) designed with a high resistivity region located near the cathode contact. At 29.9 GHz, a CW power output of 29.1 mW with a conversion efficiency of 6.7% has been achieved with cavity-tuned discrete devices. This result represents the highest power output and efficiency of a lateral TED in this frequency range. The lateral devices also had a CW power output of 0.4 mW at 98.5 GHz and 0.9 mW at 75.2 GHz. In addition, a monolithic oscillator incorporating the lateral TED has been demonstrated at 79.9 GHz. InP Schottky-barrier diodes have been fabricated using selective MeV ion implantation into semi-insulating InP substrates. Using Si implantation with energies of up to 6.0 MeV, n+ layers as deep as 3 μm with peak carrier concentrations of 2 x 1018 cm-3 have been obtained. These devices have been evaluated as mixers and detectors at 94 GHz and have demonstrated a conversion loss of 7.6 dB and a zero-bias detector sensitivity as high as 400 mV/mW.

  19. Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments.

    PubMed

    Byun, Ho-June; Lee, Ju Chul; Yang, Heesun

    2011-03-01

    InP quantum dots (QDs) were solvothermally synthesized by using a greener phosphorus source of P(N(CH(3))(2))(3) instead of highly toxic P(TMS)(3) widely used, and subsequently subjected to a size-sorting processing. While as-grown QDs showed an undetectably low emission intensity, post-synthetic treatments such as photo-etching, photo-radiation, and photo-assisted ZnS shell coating gave rise to a substantial increase in emission efficiency due to the effective removal and passivation of surface states. The emission efficiency of the photo-etched QDs was further enhanced by a consecutive UV photo-radiation, attributable to the photo-oxidation at QD surface. Furthermore, a relatively thick ZnS shell on the surface of InP QDs that were surface-modified with hydrophilic ligands beforehand was photochemically generated in an aqueous solution at room temperature. The resulting InP/ZnS core/shell QDs, emitting from blue to red wavelengths, were more efficient than the above photo-treated InP QDs, and their luminescent properties (emission bandwidth and quantum yield) were comparable to those of InP QDs synthesized with P(TMS)(3). Structural, size, and compositional analyses on InP/ZnS QDs were also conducted to elucidate their core/shell structure. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Insulated InP (100) semiconductor by nano nucleus generation in pure water

    NASA Astrophysics Data System (ADS)

    Ghorab, Farzaneh; Es'haghi, Zarrin

    2018-01-01

    Preparation of specified designs on optoelectronic devices such as Light-Emitting Diodes (LEDs) and Laser Diodes (LDs) by using insulated thin films is very important. InP as one of those semiconductors which is used as optoelectronic devices, have two different kinds of charge carriers as n-InP and p-InP in the microelectronic industry. The surface preparation of this kind of semiconductor can be accomplished with individually chemical, mechanical, chemo - mechanical and electrochemical methods. But electrochemical method can be suitably replaced instead of the other methods, like CMP (Chemical Mechanical Polishing), because of the simplicity. In this way, electrochemically formation of insulated thin films by nano nucleus generation on semiconductor (using constant current density of 0.07 mA /cm2) studied in this research. Insulated nano nucleus generation and their growth up to thin film formation on semiconductor single crystal (100), n-InP, inpure water (0.08 µs/cm,25°c) characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Four-point probe and Styloprofilometer techniques. The SEM images show active and passive regions on the n-InP surface and not uniform area on p-InP surface by passing through the passive condition. So the passive regions were nonuniform, and only the active regions were uniform and clean. The various semiconducting behavior in electrochemical condition, studied and compared with structural specification of InP type group (III-V).

  1. Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yu; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    We report InGaAs quasi-quantum wires embedded in planar InP nanowires grown on (001) silicon emitting in the 1550 nm communication band. An array of highly ordered InP nanowire with semi-rhombic cross-section was obtained in pre-defined silicon V-grooves through selective-area hetero-epitaxy. The 8% lattice mismatch between InP and Si was accommodated by an ultra-thin stacking disordered InP/GaAs nucleation layer. X-ray diffraction and transmission electron microscope characterizations suggest excellent crystalline quality of the nanowires. By exploiting the morphological evolution of the InP and a self-limiting growth process in the V-grooves, we grew embedded InGaAs quantum-wells and quasi-quantum-wires with tunable shape and position. Roommore » temperature analysis reveals substantially improved photoluminescence in the quasi-quantum wires as compared to the quantum-well reference, due to the reduced intrusion defects and enhanced quantum confinement. These results show great promise for integration of III-V based long wavelength nanowire lasers on the well-established (001) Si platform.« less

  2. Future Research Opportunities in Peri-Prosthetic Joint Infection Prevention.

    PubMed

    Berbari, Elie; Segreti, John; Parvizi, Javad; Berríos-Torres, Sandra I

    Peri-prosthetic joint infection (PJI) is a serious complication of prosthetic joint arthroplasty. A better understanding and reversal of modifiable risk factors may lead to a reduction in the incidence of incisional (superficial and deep) and organ/space (e.g., PJI) surgical site infections (SSI). Recently, the Centers for Disease Control and Prevention (CDC) and the Healthcare Infection Control Practices Advisory Committee (HICPAC) published the Guideline for Prevention of Surgical Site Infection. This targeted update applies evidence-based methodology in drafting recommendations for potential strategies to reduce the risk of SSI both across surgical procedures and specifically in prosthetic joint arthroplasty. A panel of PJI content experts identified nine PJI prevention research opportunities based on both evidence gaps identified through the guideline development process (transfusion, immunosuppressive therapy, anticoagulation, orthopedic space suit, and biofilm) and expert opinion (anesthesia, operative room environment, glycemic control, and Staphylococcus aureus nasal screening and decolonization. This article offers a road map for PJI prevention research.

  3. Growth factor of Fe-doped semi-insulating InP by LP-MOCVD

    NASA Astrophysics Data System (ADS)

    Yan, Xuejin; Zhu, Hongliang; Wang, Wei; Xu, Guoyang; Zhou, Fan; Ma, Chaohua; Wang, Xiaojie; Tian, Huijiang; Zhang, Jingyuan; Wu, Rong Han; Wang, Qiming

    1998-08-01

    The semi-insulating InP has been grown using ferrocene as a dopant source by low pressure MOCVD. Fe doped semi-insulating InP material whose resistivity is equal to 2.0 X 108(Omega) *cm and the breakdown field is greater than 4.0 X 104Vcm-1 has been achieved. It is found that the magnitude of resistivity increases with growing pressure enhancement under keeping TMIn, PH3, ferrocene [Fe(C5H5)2] flow constant at 620 degrees Celsius growth temperature. Moreover, the experimental results which resistivity varies with ferrocene mole fraction are given. It is estimated that active Fe doping efficiency, (eta) , is equal to 8.7 X 10-4 at 20 mbar growth pressure and 620 degrees Celsius growth temperature by the comparison of calculated and experimental results.

  4. Surface passivation of InP solar cells with InAlAs layers

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.

    1993-01-01

    The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.

  5. The LANDSAT system operated in Brazil by CNPq/INPE - results obtained in the area of mapping and future perspectives

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Barbosa, M. N.

    1981-01-01

    The LANDSAT system, operated in the country by CNPg/INPE since 1973, systematically acquires, produces, and distributes both multispectral and panchromatic images obtained through remote sensing satellites to thousands of researchers and technicians involved in the natural resources survey. To cooperate in the solution of national problems, CNPq/INPE is developing efforts in the area of manipulation of those images with the objective of making them useful as planimetric bases for the simple revision of already published maps or for its utilization as basic material in regions not yet reliability mapped. The results obtained from performed tests are presented and the existing limitations are discussed. The new system purchased to handle data from the next series of LANDSAT as well as from MAPSAT and SPOT which will be in operation within the 80's decade, and are designed not only for natural resources survey but also for the solution of cartographic problems.

  6. Formation of vacancy-impurity complexes in heavily Zn-doped InP

    NASA Astrophysics Data System (ADS)

    Slotte, J.; Saarinen, K.; Salmi, A.; Simula, S.; Aavikko, R.; Hautojärvi, P.

    2003-03-01

    Positron annihilation spectroscopy has been applied to observe the spontaneous formation of vacancy-type defects by annealing of heavily Zn-doped InP at 500 700 K. The defect is identified as the VP-Zn pair by detecting the annihilation of positrons with core electrons. We conclude that the defect is formed through a diffusion process; a phosphorus vacancy migrates until trapped by a Zn impurity and forms a negatively charged VP-Zn pair. The kinetics of the diffusion process is investigated by measuring the average positron lifetime as a function of annealing time and by fitting a diffusion model to the experimental results. We deduce a migration energy of 1.8±0.2 eV for the phosphorus vacancy. Our results explain both the presence of native VP-Zn pairs in Zn-doped InP and their disappearance in post-growth annealings.

  7. Simulation and Experiment Research on Fatigue Life of High Pressure Air Pipeline Joint

    NASA Astrophysics Data System (ADS)

    Shang, Jin; Xie, Jianghui; Yu, Jian; Zhang, Deman

    2017-12-01

    High pressure air pipeline joint is important part of high pressure air system, whose reliability is related to the safety and stability of the system. This thesis developed a new type-high pressure air pipeline joint, carried out dynamics research on CB316-1995 and new type-high pressure air pipeline joint with finite element method, deeply analysed the join forms of different design schemes and effect of materials on stress, tightening torque and fatigue life of joint. Research team set up vibration/pulse test bench, carried out joint fatigue life contrast test. The result shows: the maximum stress of the joint is inverted in the inner side of the outer sleeve nut, which is consistent with the failure mode of the crack on the outer sleeve nut in practice. Simulation and experiment of fatigue life and tightening torque of new type-high pressure air pipeline joint are better than CB316-1995 joint.

  8. Mass spectrometric studies of phosphine pyrolysis and OMVPE growth of InP. [organometallic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1987-01-01

    The mechanism of PH3 decomposition was studied by using D2 as a carrier gas and analyzing the reaction products with a mass spectrometer. The effects of InP and silica surfaces were investigated. The only gaseous product below 600 C is H2. Since any gas-phase H atoms would produce HD, the reaction occurs entirely on the surface. The slow step is the unimolecular removal of the first hydrogen atom, with an activation energy of 36.0 kcal/mole on InP surfaces. The reaction on InP is first-order for PH3 concentrations as high as 15 percent, so the surface is not saturated at those conditions. When trimethylindium (TMIn) is added to the gas mixture, the mechanism changes dramatically, probably proceeding via an unstable intermediate adduct of TMIn and PH3 which eliminates CH4 upon formation. This concerted reaction lowers the pyrolysis temperatures of both PH3 and TMIn.

  9. Weakly doped InP layers prepared by liquid phase epitaxy using a modulated cooling rate

    NASA Astrophysics Data System (ADS)

    Krukovskyi, R.; Mykhashchuk, Y.; Kost, Y.; Krukovskyi, S.; Saldan, I.

    2017-04-01

    Epitaxial structures based on InP are widely used to manufacture a number of devices such as microwave transistors, light-emitting diodes, lasers and Gunn diodes. However, their temporary instability caused by heterogeneity of resistivity along the layer thickness and the influence of various external or internal factors prompts the need for the development of a new reliable technology for their preparation. Weak doping by Yb, Al and Sn together with modulation of the cooling rate applied to prepare InP epitaxial layers is suggested to be adopted within the liquid phase epitaxy (LPE) method. The experimental results confirm the optimized conditions created to get a uniform electron concentration in the active n-InP layer. A sharp profile of electron concentration in the n+-InP(substrate)/n-InP/n+-InP epitaxial structure was observed experimentally at the proposed modulated cooling rate of 0.3 °С-1.5 °С min-1. The proposed technological method can be used to control the electrical and physical properties of InP epitaxial layers to be used in Gunn diodes.

  10. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    PubMed

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as

  11. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer

    PubMed Central

    2017-01-01

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and

  12. Simple intrinsic defects in GaP and InP

    NASA Astrophysics Data System (ADS)

    Schultz, Peter A.

    2012-02-01

    To faithfully simulate evolution of defect chemistry and electrical response in irradiated semiconductor devices requires accurate defect reaction energies and energy levels. In III-Vs, good data is scarce, theory hampered by band gap and supercell problems. I apply density functional theory (DFT) to intrinsic defects in GaP and InP, predicting stable charge states, ground state configurations, defect energy levels, and identifying mobile species. The SeqQuest calculations incorporate rigorous charge boundary conditions removing supercell artifacts, demonstrated converged to the infinite limit. Computed defect levels are not limited by a band gap problem, despite Kohn-Sham gaps much smaller than the experimental gap. As in GaAs, [P.A. Schultz and O.A. von Lilienfeld, Modeling Simul. Mater. Sci. Eng. 17, 084007 (2009)], defects in GaP and InP exhibit great complexity---multitudes of charge states, bistabilities, and negative U systems---but show similarities to each other (and to GaAs). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Fabrication of InP-pentacene inorganic-organic hybrid heterojunction using MOCVD grown InP for photodetector application

    NASA Astrophysics Data System (ADS)

    Sarkar, Kalyan Jyoti; Pal, B.; Banerji, P.

    2018-04-01

    We fabricated inorganic-organic hybrid heterojunction between indium phosphide (InP) and pentacene for photodetector application. InP layer was grown on n-Si substrate by atmospheric pressure metal organic chemical vapour deposition (MOCVD) technique. Morphological properties of InP and pentacene thin film were characterized by atomic force microscopy (AFM). Current-voltage characteristics were investigated in dark and under illumination condition at room temperature. During illumination, different wavelengths of visible and infrared light source were employed to perform the electrical measurement. Enhancement of photocurrent was observed with decreasing in wavelength of incident photo radiation. Ideality factor was found to be 1.92. High rectification ratio of 225 was found at ± 3 V in presence of infrared light source. This study provides new insights of inorganic-organic hybrid heterojunction for broadband photoresponse in visible to near infrared (IR) region under low reverse bias condition.

  14. Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment

    NASA Astrophysics Data System (ADS)

    Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.

    2014-10-01

    The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.

  15. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  16. Minority-carrier lifetime in InP as a function of light bias

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Weinberg, I.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    Minority-carrier lifetime in InP is studied as a function of doping level and laser intensity using time-resolved photoluminescence. A continuous wave diode laser illuminates bulk InP and acts as a light bias, injecting a steady-state concentration of carriers. A 200 ps laser pulse produces a small transient signal on top of the steady-state luminescence, allowing lifetime to be measured directly as a function of incident intensity. For p-InP, lifetime increases with light bias up to a maximum value. Bulk recombination centers are presumably filled to saturation, allowing minority carriers to live longer. The saturation bias scales with dopant concentration for a particular dopant species. As light bias is increased for n-InP, minority-carrier lifetime increases slightly but then decreases, suggesting radiative recombination as a dominant decay mechanism.

  17. TP53INP2/DOR, a mediator of cell autophagy, promotes rDNA transcription via facilitating the assembly of the POLR1/RNA polymerase I preinitiation complex at rDNA promoters.

    PubMed

    Xu, Yinfeng; Wan, Wei; Shou, Xin; Huang, Rui; You, Zhiyuan; Shou, Yanhong; Wang, Lingling; Zhou, Tianhua; Liu, Wei

    2016-07-02

    Cells control their metabolism through modulating the anabolic and catabolic pathways. TP53INP2/DOR (tumor protein p53 inducible nuclear protein 2), participates in cell catabolism by serving as a promoter of autophagy. Here we uncover a novel function of TP53INP2 in protein synthesis, a major biosynthetic and energy-consuming anabolic process. TP53INP2 localizes to the nucleolus through its nucleolar localization signal (NoLS) located at the C-terminal domain. Chromatin immunoprecipitation (ChIP) assays detected an association of TP53INP2 with the ribosomal DNA (rDNA), when exclusion of TP53INP2 from the nucleolus repressed rDNA promoter activity and the production of ribosomal RNA (rRNA) and proteins. The removal of TP53INP2 also impaired the association of the POLR1/RNA polymerase I preinitiation complex (PIC) with rDNA. Further, TP53INP2 interacts directly with POLR1 PIC, and is required for the assembly of the complex. These data indicate that TP53INP2 promotes ribosome biogenesis through facilitating rRNA synthesis at the nucleolus, suggesting a dual role of TP53INP2 in cell metabolism, assisting anabolism on the nucleolus, and stimulating catabolism off the nucleolus.

  18. Crystallinity, Surface Morphology, and Photoelectrochemical Effects in Conical InP and InN Nanowires Grown on Silicon.

    PubMed

    Parameshwaran, Vijay; Xu, Xiaoqing; Clemens, Bruce

    2016-08-24

    The growth conditions of two types of indium-based III-V nanowires, InP and InN, are tailored such that instead of yielding conventional wire-type morphologies, single-crystal conical structures are formed with an enlarged diameter either near the base or near the tip. By using indium droplets as a growth catalyst, combined with an excess indium supply during growth, "ice cream cone" type structures are formed with a nanowire "cone" and an indium-based "ice cream" droplet on top for both InP and InN. Surface polycrystallinity and annihilation of the catalyst tip of the conical InP nanowires are observed when the indium supply is turned off during the growth process. This growth design technique is extended to create single-crystal InN nanowires with the same morphology. Conical InN nanowires with an enlarged base are obtained through the use of an excess combined Au-In growth catalyst. Electrochemical studies of the InP nanowires on silicon demonstrate a reduction photocurrent as a proof of photovolatic behavior and provide insight as to how the observed surface polycrystallinity and the resulting interface affect these device-level properties. Additionally, a photovoltage is induced in both types of conical InN nanowires on silicon, which is not replicated in epitaxial InN thin films.

  19. Aerosol measurements during COPE: composition, size, and sources of CCN and INPs at the interface between marine and terrestrial influences

    NASA Astrophysics Data System (ADS)

    Taylor, Jonathan W.; Choularton, Thomas W.; Blyth, Alan M.; Flynn, Michael J.; Williams, Paul I.; Young, Gillian; Bower, Keith N.; Crosier, Jonathan; Gallagher, Martin W.; Dorsey, James R.; Liu, Zixia; Rosenberg, Philip D.

    2016-09-01

    Heavy rainfall from convective clouds can lead to devastating flash flooding, and observations of aerosols and clouds are required to improve cloud parameterisations used in precipitation forecasts. We present measurements of boundary layer aerosol concentration, size, and composition from a series of research flights performed over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) of summer 2013. We place emphasis on periods of southwesterly winds, which locally are most conducive to convective cloud formation, when marine air from the Atlantic reached the peninsula. Accumulation-mode aerosol mass loadings were typically 2-3 µg m-3 (corrected to standard cubic metres at 1013.25 hPa and 273.15 K), the majority of which was sulfuric acid over the sea, or ammonium sulfate inland, as terrestrial ammonia sources neutralised the aerosol. The cloud condensation nuclei (CCN) concentrations in these conditions were ˜ 150-280 cm-3 at 0.1 % and 400-500 cm-3 at 0.9 % supersaturation (SST), which are in good agreement with previous Atlantic measurements, and the cloud drop concentrations at cloud base ranged from 100 to 500 cm-3. The concentration of CCN at 0.1 % SST was well correlated with non-sea-salt sulfate, meaning marine sulfate formation was likely the main source of CCN. Marine organic aerosol (OA) had a similar mass spectrum to previous measurements of sea spray OA and was poorly correlated with CCN. In one case study that was significantly different to the rest, polluted anthropogenic emissions from the southern and central UK advected to the peninsula, with significant enhancements of OA, ammonium nitrate and sulfate, and black carbon. The CCN concentrations here were around 6 times higher than in the clean cases, and the cloud drop number concentrations were 3-4 times higher. Sources of ice-nucleating particles (INPs) were assessed by comparing different parameterisations used to predict INP concentrations, using measured

  20. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility; Notice of Meeting The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory...

  1. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  2. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings The Department of Veterans Affairs gives notice under the Public Law 92-463 (Federal Advisory Committee Act) that...

  3. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The Department of Veterans Affairs (VA) gives notice under the Public Law 92-463 (Federal Advisory Committee Act...

  4. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board Panel for Eligibility, Notice of Meeting The Department of Veterans Affairs (VA) gives notice under Public Law 92-463 (Federal Advisory...

  5. Synthesis and properties of ultra-long InP nanowires on glass.

    PubMed

    Dhaka, Veer; Pale, Ville; Khayrudinov, Vladislav; Kakko, Joona-Pekko; Haggren, Tuomas; Jiang, Hua; Kauppinen, Esko; Lipsanen, Harri

    2016-12-16

    We report on the synthesis of Au-catalyzed InP nanowires (NWs) on low-cost glass substrates. Ultra-dense and ultra-long (up to ∼250 μm) InP NWs, with an exceptionally high growth rate of ∼25 μm min -1 , were grown directly on glass using metal organic vapor phase epitaxy (MOVPE). Structural properties of InP NWs grown on glass were similar to the ones grown typically on Si substrates showing many structural twin faults but the NWs on glass always exhibited a stronger photoluminescence (PL) intensity at room temperature. The PL measurements of NWs grown on glass reveal two additional prominent impurity related emission peaks at low temperature (10 K). In particular, the strongest unusual emission peak with an activation energy of 23.8 ± 2 meV was observed at 928 nm. Different possibilities including the role of native defects (phosphorus and/or indium vacancies) are discussed but most likely the origin of this PL peak is related to the impurity incorporation from the glass substrate. Furthermore, despite the presence of suspected impurities, the NWs on glass show outstanding light absorption in a wide spectral range (60%-95% for λ = 300-1600 nm). The optical properties and the NW growth mechanism on glass is discussed qualitatively. We attribute the exceptionally high growth rate mostly to the atmospheric pressure growth conditions of our MOVPE reactor and stronger PL intensity on glass due to the impurity doping. Overall, the III-V NWs grown on glass are similar to the ones grown on semiconductor substrates but offer additional advantages such as low-cost and light transparency.

  6. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    PubMed

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical <111>-oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  7. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.

    PubMed

    Niu, Gang; Capellini, Giovanni; Hatami, Fariba; Di Bartolomeo, Antonio; Niermann, Tore; Hussein, Emad Hameed; Schubert, Markus Andreas; Krause, Hans-Michael; Zaumseil, Peter; Skibitzki, Oliver; Lupina, Grzegorz; Masselink, William Ted; Lehmann, Michael; Xie, Ya-Hong; Schroeder, Thomas

    2016-10-12

    The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO 2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

  8. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The Department of Veterans Affairs (VA) gives notice under the Federal Advisory Committee Act, 5 U.S.C. App...

  9. FAA/NASA Joint University Program for Air Transportation Research, 1992-1993

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1994-01-01

    The research conducted during the academic year 1992-1993 under the FAA/NASA sponsored Joint University Program for Air Transportation Research is summarized. The year end review was held at Ohio University, Athens, Ohio, 17-18 June 1993. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance, and control theory and practice, aircraft performance, human factors and air traffic management. An overview of the year's activities for each university is also presented.

  10. Progress in p(+)n InP solar cells fabricated by thermal diffusion

    NASA Technical Reports Server (NTRS)

    Flood, D. J.; Brinker, D. J.; Weinberg, I.; Vargas, C.; Faur, Mircea; Faur, Maria; Goradia, C.; Goradia, M.; Fatemi, N. S.

    1993-01-01

    The performance results of our most recently thermally diffused InP solar cells using the p(+)n (Cd,S) structures are presented. We have succeeded in fabricating cells with measured AMO, 25 C V(sub oc) exceeding 880 mV (bare cells) which to the best of our knowledge is higher than previously reported V(sub oc) values for any InP homojunction solar cells. The cells were fabricated by thinning the emitter, after Au-Zn front contacting, from its initial thickness of about 4.5 microns to about 0.6 microns. After thinning, the exposed surface of the emitter was passivated by a thin (approximately 50A) P-rich oxide. Based on the measured EQY and J(sub sc)-V(sub oc) characteristics of our experimental high V(sub oc) p(+)n InP solar cells, we project that reducing the emitter thickness to 0.3 microns, using an optimized AR coating, maintaining the surface hole concentration of 3 x 10(exp 18)cm(sup -3), reducing the grid shadowing from actual 10.55 percent to 6 percent and reducing the contact resistance will increase the actual measured 12.57 percent AMO 25 C efficiency to about 20.1 percent. By using our state-of-the-art p(+)n structures which have a surface hole concentration of 4 x 10(exp 18)cm(sup -3) and slightly improving the front surface passivation, an even higher practically achievable AMO, 25 C efficiency of 21.3 percent is projected.

  11. University Research and Development Activities: The Federal Income Tax Consequences of Research Contracts, Research Subsidiaries and Joint Ventures.

    ERIC Educational Resources Information Center

    Kertz, Consuelo Lauda; Hasson, James K., Jr.

    1986-01-01

    Features of the federal income tax law applying to income received from commercially funded university-based scientific research and development activities are discussed, including: industry-sponsored research contracts, separately incorporated entities, partnerships and joint ventures, subsidiaries and unrelated income consequences of…

  12. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  13. An electron trap related to phosphorus deficiency in high-purity InP grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, Norio; Uwai, Kunihiko; Takahei, Kenichiro

    1989-04-01

    Deep levels in high-purity InP crystal grown by metalorganic chemical vapor deposition (MOCVD) have been measured by deep level transient spectroscopy. While no electron traps are observed in the samples grown at 600 °C with a [PH3]/[In(C2H5)3] of 170, three electron traps with activation energies of 0.80, 0.44, and 0.24 eV were observed in the samples grown at 500 °C with the same [PH3]/[In(C2H5)3]. The 0.44-eV trap, whose capture cross section is 1.5×10-18 cm2, observed at a low [PH3]/[In(C2H5)3] shows a decrease in concentration as [PH3]/[In(C2H5)3] is increased, and becomes less than 5×1012 cm-3 at a [PH3]/[In(C2H5)3] of more than 170. The comparison of annealing behavior of this trap in MOCVD InP and that in liquid-encapsulated Czochralski InP suggests that the 0.44-eV trap is related to a complex formed from residual impurities and native defects related to a phosphorus deficiency such as phosphorus vacancies or indium interstitials. This trap is found to show configurational bistability similar to that observed for the trap in an Fe-doped InP, MFe center.

  14. Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE

    NASA Astrophysics Data System (ADS)

    Kelrich, A.; Dubrovskii, V. G.; Calahorra, Y.; Cohen, S.; Ritter, D.

    2015-02-01

    We present experimental results showing how the growth rate, morphology and crystal structure of Au-catalyzed InP nanowires (NWs) fabricated by selective area metal organic molecular beam epitaxy can be tuned by the growth parameters: temperature and phosphine flux. The InP NWs with 20-65 nm diameters are grown at temperatures of 420 and 480 °C with the PH3 flow varying from 1 to 9 sccm. The NW tapering is suppressed at a higher temperature, while pure wurtzite crystal structure is preferred at higher phosphine flows. Therefore, by combining high temperature and high phosphine flux, we are able to fabricate non-tapered and stacking fault-free InP NWs with the quality that other methods rarely achieve. We also develop a model for NW growth and crystal structure which explains fairly well the observed experimental tendencies.

  15. Status of Diffused Junction p(+)n InP Solar Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Faur, Maria; Flood, D. J.; Brinker, D. J.; Goradia, C.; Fatemi, N. S.; Jenkins, P. P.; Wilt, D. M.; Bailey, S.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(+)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3%. The maximum AMO, 25 C efficiency recorded to date on bare cells is, however, only 13.2%. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(+)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: 1) the formation of thin p(+) InP:Cd emitter layers, 2) electroplated front contacts, 3) surface passivation and 4) the design of a new native oxide/AI203/MgF2 three layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  16. Exploring the effective photon management by InP nanoparticles: Broadband light absorption enhancement of InP/In{sub 0.53}Ga{sub 0.47}As/InP thin-film photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dong; Zhu, Xi; Li, Jian

    2015-05-28

    High-index dielectric and semiconductor nanoparticles with the characteristics of low absorption loss and strong scattering have attracted more and more attention for improving performance of thin-film photovoltaic devices. In this paper, we focus our attention on InP nanoparticles and study the influence of the substrate and the geometrical configurations on their scattering properties. We demonstrate that, compared with the InP sphere, the InP cylinder has higher coupling efficiency due to the stronger interactions between the optical mode in the nanoparticle and its induced mirror image in the substrate. Moreover, we propose novel thin-film InGaAs photodetectors integrated with the periodically arrangedmore » InP nanoparticles on the substrate. Broadband light absorption enhancement is achieved over the wavelength range between 1.0 μm and 1.7 μm. The highest average absorption enhancement of 59.7% is realized for the photodetector with the optimized cylinder InP nanoparticles. These outstanding characteristics attribute to the preferentially forward scattering of single InP nanoparticle along with the effective coupling of incident light into the guided modes through the collective diffraction effect of InP nanoparticles array.« less

  17. Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.

    PubMed

    Gnaser, Hubert; Radny, Tobias

    2015-12-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.

  18. Impact of P/In flux ratio and epilayer thickness on faceting for nanoscale selective area growth of InP by molecular beam epitaxy.

    PubMed

    Fahed, M; Desplanque, L; Coinon, C; Troadec, D; Wallart, X

    2015-07-24

    The impact of the P/In flux ratio and the deposited thickness on the faceting of InP nanostructures selectively grown by molecular beam epitaxy (MBE) is reported. Homoepitaxial growth of InP is performed inside 200 nm wide stripe openings oriented either along a [110] or [1-10] azimuth in a 10 nm thick SiO2 film deposited on an InP(001) substrate. When varying the P/In flux ratio, no major shape differences are observed for [1-10]-oriented apertures. On the other hand, the InP nanostructure cross sections strongly evolve for [110]-oriented apertures for which (111)B facets are more prominent and (001) ones shrink for large P/In flux ratio values. These results show that the growth conditions allow tailoring the nanocrystal shape. They are discussed in the framework of the equilibrium crystal shape model using existing theoretical calculations of the surface energies of different low-index InP surfaces as a function of the phosphorus chemical potential, directly related to the P/In ratio. Experimental observations strongly suggest that the relative (111)A surface energy is probably smaller than the calculated value. We also discuss the evolution of the nanostructure shape with the InP-deposited thickness.

  19. Draft Genome Sequence of Aeromonas caviae Strain 429865 INP, Isolated from a Mexican Patient

    PubMed Central

    Padilla, Juan Carlos A.; Bustos, Patricia; Sánchez-Varela, Alejandro; Palma-Martinez, Ingrid; Arzate-Barbosa, Patricia; García-Pérez, Carlos A.; López-López, María de Jesús; González, Víctor

    2015-01-01

    Aeromonas caviae is an emerging human pathogen. Here, we report the draft genome sequence of Aeromonas caviae strain 429865 INP which shows the presence of various putative virulence-related genes. PMID:26494682

  20. Electron beam induced damage in PECVD Si3N4 and SiO2 films on InP

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.; Kapoor, Vik J.; Young, Paul G.; Williams, Wallace D.; Dickman, John E.

    1990-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectic. The electron beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  1. Rapid thermal anneal in InP, GaAs and GaAs/GaAlAs

    NASA Astrophysics Data System (ADS)

    Descouts, B.; Duhamel, N.; Godefroy, S.; Krauz, P.

    Ion implantation in semiconductors provides a doping technique with several advantages over more conventional doping methods and is now extensively used for device applications, e.g. field effect transistors (MESFET GaAs, MIS (InP), GaAs/GaAlAs heterojunction bipolar transistors (HBT). Because of the lattice disorder produced by the implantation, the dopant must be made electrically active by a postimplant anneal. As the device performances are very dependent on its electrical characteristics, the anneal is a very important stage of the process. Rapid anneal is known to provide less exodiffusion and less induffusion of impurities compared to conventional furnace anneal, so this technique has been used in this work to activate an n-type dopant (Si) in InP and a p-type dopant (Mg) in GaAs and GaAs/GaAIAs. These two ions have been chosen to realize implanted MIS InP and the base contacts for GaAs/GaAlAs HBTs. The experimental conditions to obtain the maximum electrical activity in these two cases will be detailed. For example, although we have not been able to obtain a flat profile in Mg + implanted GaAs/GaAlAs heterostructure by conventional thermal anneal, rapid thermal anneal gives a flat hole profile over a depth of 0.5 μm with a concentration of 1 x 10 19 cm -3.

  2. Research into automatic recognition of joints in human symmetrical movements

    NASA Astrophysics Data System (ADS)

    Fan, Yifang; Li, Zhiyu

    2008-03-01

    High speed photography is a major means of collecting data from human body movement. It enables the automatic identification of joints, which brings great significance to the research, treatment and recovery of injuries, the analysis to the diagnosis of sport techniques and the ergonomics. According to the features that when the adjacent joints of human body are in planetary motion, their distance remains the same, and according to the human body joint movement laws (such as the territory of the articular anatomy and the kinematic features), a new approach is introduced to process the image thresholding of joints filmed by the high speed camera, to automatically identify the joints and to automatically trace the joint points (by labeling markers at the joints). Based upon the closure of marking points, automatic identification can be achieved through thresholding treatment. Due to the screening frequency and the laws of human segment movement, when the marking points have been initialized, their automatic tracking can be achieved with the progressive sequential images.Then the testing results, the data from three-dimensional force platform and the characteristics that human body segment will only rotate around the closer ending segment when the segment has no boding force and only valid to the conservative force all tell that after being analyzed kinematically, the approach is approved to be valid.

  3. Kinetic effects in InP nanowire growth and stacking fault formation: the role of interface roughening.

    PubMed

    Chiaramonte, Thalita; Tizei, Luiz H G; Ugarte, Daniel; Cotta, Mônica A

    2011-05-11

    InP nanowire polytypic growth was thoroughly studied using electron microscopy techniques as a function of the In precursor flow. The dominant InP crystal structure is wurtzite, and growth parameters determine the density of stacking faults (SF) and zinc blende segments along the nanowires (NWs). Our results show that SF formation in InP NWs cannot be univocally attributed to the droplet supersaturation, if we assume this variable to be proportional to the ex situ In atomic concentration at the catalyst particle. An imbalance between this concentration and the axial growth rate was detected for growth conditions associated with larger SF densities along the NWs, suggesting a different route of precursor incorporation at the triple phase line in that case. The formation of SFs can be further enhanced by varying the In supply during growth and is suppressed for small diameter NWs grown under the same conditions. We attribute the observed behaviors to kinetically driven roughening of the semiconductor/metal interface. The consequent deformation of the triple phase line increases the probability of a phase change at the growth interface in an effort to reach local minima of system interface and surface energy.

  4. Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates

    NASA Technical Reports Server (NTRS)

    Oh, J. E.; Bhattacharya, P. K.; Chen, Y. C.; Tsukamoto, S.

    1989-01-01

    Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures.

  5. High resolution electrolyte for thinning InP by anodic dissolution and its applications to EC-V profiling, defect revealing and surface passivation

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Weinberg, Irving; Goradia, Manju; Vargas, Carlos

    1991-01-01

    An extensive experimental study was conducted using various electrolytes in an effort to find an appropriate electrolyte for anodic dissolution of InP. From the analysis of electrochemical characteristics in the dark and under different illumination levels, x ray photoelectron spectroscopy and SEM/Nomarski inspection of the surfaces, it was determined that the anodic dissolution of InP front surface layers by FAP electrolyte is a very good choice for rendering smooth surfaces, free of oxides and contaminants and with good electrical characteristics. The FAP electrolyte, based on HF, CH3COOH, and H2O2 appears to be inherently superior to previously reported electrolytes for performing accurate EC-V profiling of InP at current densities of up to 0.3 mA/sq cm. It can also be used for accurate electrochemical revealing of either precipitates or dislocation density with application to EPD mapping as a function of depth, and for defect revealing of multilayer InP structures at any depth and/or at the interfaces.

  6. AES, EELS and TRIM simulation method study of InP(100) subjected to Ar+, He+ and H+ ions bombardment.

    NASA Astrophysics Data System (ADS)

    Ghaffour, M.; Abdellaoui, A.; Bouslama, M.; Ouerdane, A.; Abidri, B.

    2012-06-01

    Auger Electron Spectroscopy (AES) and Electron Energy Loss Spectroscopy (EELS) have been performed in order to investigate the InP(100) surface subjected to ions bombardment. The InP(100) surface is always contaminated by carbon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even at low energy of ions beam (300 eV) indium clusters and phosphorus vacancies are usually formed on the surface. The aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The helium ions accelerated at 500V voltage and for 45 mn allow removing contaminants but induces damaged and no stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemical reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the experimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter) simulation method in order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of the target by argon, helium or proton ions.

  7. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  8. Measurement of third-order nonlinear susceptibility tensor in InP using extended Z-scan technique with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-05-01

    The elliptical polarization dependence of the two-photon absorption coefficient β in InP has been measured by the extended Z-scan technique for thick materials in the wavelength range from 1640 to 1800 nm. The analytical formula of the Z-scan technique has been extended with consideration of multiple reflections. The Z-scan results have been fitted very well by the formula and β has been evaluated accurately. The three independent elements of the third-order nonlinear susceptibility tensor in InP have also been determined accurately from the elliptical polarization dependence of β.

  9. Status of diffused junction p+n InP solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Faur, Mircea; Goradia, C.; Faur, Maria; Fatemi, N. S.; Jenkins, P. P.; Flood, D. J.; Brinker, D. J.; Wilt, D. M.; Bailey, S.; Goradia, M.

    1994-01-01

    Recently, we have succeeded in fabricating diffused junction p(sup +)n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V(sub OC)) of 887.6 mV, which, to the best of our knowledge, is higher than previously reported V(sub OC) values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating and emitter thickness. This paper summarizes recent advances in the technology of fabrication of p(sup +)n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p(sup +) InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.

  10. Status of diffused junction p+n InP solar cells for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faur, M.; Goradia, C.; Faur, M.

    1994-09-01

    Recently, the authors have succeeded in fabricating diffused junction p{sup +}n(Cd,S) InP solar cells with measured AMO, 25 C open circuit voltage (V{sub OC}) of 887.6 mV, which, to the best of their knowledge, is higher than previously reported V{sub OC} values for any InP homojunction solar cells. The experiment-based projected achievable efficiency of these cells using LEC grown substrates is 21.3 percent. The maximum AMO, 25 C internal losses due to date on bare cells is, however, only 13.2 percent. This is because of large external and internal losses due to non-optimized front grid design, antireflection (AR) coating andmore » emitter thickness. This paper summarizes recent advances in the technology of fabrication of p{sup +}n InP diffused structures and solar cells, resulted from a study undertaken in an effort to increase the cell efficiency. The topics discussed in this paper include advances in: (1) the formation on thin p{sup +} InP:Cd emitter layers, (2) electroplated front contacts, (3) surface passivation and (4) the design of a new native oxide/Al2O3/MgF2 tree layer AR coating using a chemically-grown P-rich passivating oxide as a first layer. Based on the high radiation resistance and the excellent post-irradiation annealing and recovery demonstrated in the early tests done to date, as well as the projected high efficiency and low-cost high-volume fabricability, these cells show a very good potential for space photovoltaic applications.« less

  11. Electrodeposition of CdSe on GaAs and InP substrates

    NASA Astrophysics Data System (ADS)

    Etcheberry, A.; Cachet, H.; Cortes, R.; Froment, M.

    2001-06-01

    Epitaxial CdSe layers have been electrodeposited on the (1 0 0) and ( 1¯ 1¯ 1¯) faces of GaAs and InP single crystals. Chemical composition and crystalline quality of CdSe have been studied by X-photoelectron spectroscopy, reflection high energy electron diffraction and X-ray diffraction. Influence of the substrate has been pointed out.

  12. New connecting elements for cascade photoelectric converters based on InP

    NASA Astrophysics Data System (ADS)

    Marichev, A. E.; Pushnyi, B. V.; Levin, R. V.; Lebedeva, N. M.; Prasolov, N. D.; Kontrosh, E. V.

    2018-03-01

    In this paper, we report on the initial studies of connecting elements for cascade photodetectors. The heterostructures used in this work are based on InP. As a connecting element, it is proposed to use nanocrystalline inclusions instead of the tunnel junction. GaP nanocrystals are most suitable for this purpose because this material does not cause absorption of the incident radiation.

  13. Dopant Segregation in Earth- and Space-Grown InP Crystals

    NASA Astrophysics Data System (ADS)

    Danilewsky, Andreas Nikolaus; Okamoto, Yusuke; Benz, Klaus Werner; Nishinaga, Tatau

    1992-07-01

    Macro- and microsegregation of sulphur in InP crystals grown from In solution by the travelling heater method under microgravity and normal gravity are analyzed using spatially resolved photoluminescence. Whereas the macrosegregation in earth- as well as space-grown crystals is explained by conventional steady-state models based on the theory of Burton, Prim and Slichter (BPS), the microsegregation can only be understood in terms of the non-steady-state step exchange model.

  14. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  15. Lasing characteristics of InAs quantum dot laers on InP substrate

    NASA Technical Reports Server (NTRS)

    Yang, Y.; Qiu, D.; Uhl, R.; Chacon, R.

    2003-01-01

    Single-stack InAs self-assembled quantum dots (QD) lasers based on InP substrate have been grown by metalorganic vapor phase epitaxy. The narrow ridge waveguide lasers lased up to 260 K in continuous wave operation, and near room temperature in pulsed mode, with wavelengths between 1.59 to 1.74 mu m.

  16. Electrolyte for EC-V profiling of InP and GaAs based structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faur, M.; Faur, M.; Goradia, M.

    Electrochemical C-V (EC-V) profiling is the most often used and convenient method for accurate majority carrier concentration depth profiling of semiconductors. Although, according to the authors, FAP is the best electrolyte for accurate profiling of InP structures, it does not work well with other III-V compounds. To overcome this, recently, the authors have developed a new electrolyte, which they call UNIEL (UNIversal ELectrolyte), which works well with all the materials. However, as with the FAP electrolyte, the presence of HF makes the UNIEL incompatible with the electrochemical cell of Polaron EC-V profilers manufactured by BIO-RAD. By slightly modifying the electrochemicalmore » cell configuration the authors are able to use both the FAP and UNIEL electrolytes, without destroying the calomel electrode. Recently, they have, nevertheless, experimented with variations of the UNIEL with no HF content for EC-V profiling of structures based on InP and GaAs. Presently available results are presented here.« less

  17. A guided tour of current research in synovial joints with reference to wavelet methodology

    NASA Astrophysics Data System (ADS)

    Agarwal, Ruchi; Salimath, C. S.; Alam, Khursheed

    2017-10-01

    Main aim of this article is to provide a comprehensive overview of biomechanical aspects of synovial joints of human body. This can be considered as a part of continued research work carried out by various authors over a period of time. Almost every person once in life time has suffered from joint disease; this has triggered intensive investigation into various biomechanical aspects of synovial joints. This has also resulted into an increase of arthroplasty with introduction to various clinical trials. From last few decades new improvements and ideas for new technologies have been introduced to decrease the incidence of joint problem. In this paper a literature survey of recent advances, developments and recognition of wear and tear of human joint is presented. Wavelet method in Computational fluid dynamics (CFD) is relatively a new research field. This review aims to provide a glimpse of wavelet methodology in CFD. Wavelets methodology has played a vital role in the solution of governing equation of synovial fluid flow in the synovial joints represented by Reynolds equation and its modified version.

  18. Wavelength Shifting in InP based Ultra-thin Quantum Well Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Sengupta, D. K.; Gunapala, S. D.; Bandara, S. V.; Pool, F.; Liu, J. K.; McKelvy, M.

    1998-01-01

    We have demonstrated red-shifting of the wavelength response of a bound-to-continuum p-type ultra-thin InGaAs/Inp quantum well infrared photodetector after growth via rapid thermal annealing. Compared to the as-grown detector, the peak spectral response of the annealed detector was shifted to longer wavelength without any major degradation in responsivity characteristics.

  19. Indium phosphide solar cell research in the United States: Comparison with non-photovoltaic sources

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1989-01-01

    Highlights of the InP solar cell research program are presented. Homojunction cells with efficiencies approaching 19 percent are demonstrated, while 17 percent is achieved for ITO/InP cells. The superior radiation resistance of the two latter cell configurations over both Si and GaAs cells has been shown. InP cells aboard the LIPS3 satellite show no degradation after more than a year in orbit. Computed array specific powers are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.

  20. Chemical nature of silicon nitride-indium phosphide interface and rapid thermal annealing for InP MISFETs

    NASA Technical Reports Server (NTRS)

    Biedenbender, M. D.; Kapoor, V. J.

    1990-01-01

    A rapid thermal annealing (RTA) process in pure N2 or pure H2 was developed for ion-implanted and encapsulated indium phosphide compound semiconductors, and the chemical nature at the silicon nitride-InP interface before and after RTA was examined using XPS. Results obtained from SIMS on the atomic concentration profiles of the implanted silicon in InP before and after RTA are presented, together with electrical characteristics of the annealed implants. Using the RTA process developed, InP metal-insulator semiconductor FETs (MISFETS) were fabricated. The MISFETS prepared had threshold voltages of +1 V, transconductance of 27 mS/mm, peak channel mobility of 1200 sq cm/V per sec, and drain current drift of only 7 percent.

  1. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements.

    PubMed

    Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T

    2018-05-09

    III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.

  2. Electron transport in gated InGaAs and InAsP quantum well wires in selectively grown InP ridge structures

    NASA Astrophysics Data System (ADS)

    Granger, G.; Kam, A.; Studenikin, S. A.; Sachrajda, A. S.; Aers, G. C.; Williams, R. L.; Poole, P. J.

    2010-09-01

    The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov-de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.

  3. Ferroelectric behavior of Al substituted InP

    NASA Astrophysics Data System (ADS)

    Park, C. S.; Lee, S. J.; Kang, T. W.; Fu, D. J.

    2006-12-01

    InP:Al was grown by the liquid phase epitaxy method on InP (100)substrates. X-ray diffraction confirmed the epitaxial growth along (100) of AlInP. Photoluminescence spectra showed the evident effect of Al content. Ferroelectric characterization of the sample revealed a clear hysteresis in its polarization-voltage curves. The remnant polarization of InP:Al amounts to 1.99μC/cm2 at 300Hz, and it decreases with increasing temperature in a continuous and diffusive manner. Resistance measurement demonstrated a maximum resistance at 160°C, tentatively consistent with the transition temperature of remnant polarization. The ferroelectricity is accounted by the collective interaction between nuclei having the microscopic instability from the cation size difference in InP:Al.

  4. Non-destructive, ultra-low resistance, thermally stable contacts for use on shallow junction InP solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Fatemi, N. S.; Korenyi-Both, A. L.

    1993-01-01

    Contact formation to InP is plagued by violent metal-semiconductor intermixing that takes place during the contact sintering process. Because of this the InP solar cell cannot be sintered after contact deposition. This results in cell contact resistances that are orders of magnitude higher than those that could be achieved if sintering could be performed in a non-destructive manner. We report here on a truly unique contact system involving Au and Ge, which is easily fabricated, which exhibits extremely low values of contact resistivity, and in which there is virtually no metal-semiconductor interdiffusion, even after extended sintering. We present a description of this contact system and suggest possible mechanisms to explain the observed behavior.

  5. Aqueous synthesis of III-V semiconductor GaP and InP exhibiting pronounced quantum confinement.

    PubMed

    Gao, Shanmin; Lu, Jun; Chen, Nan; Zhao, Yan; Xie, Yi

    2002-12-21

    A mild aqueous synthesis route was successfully established to synthesize well crystallized and monodisperse GaP and InP nanocrystals, which were proved to exhibit pronounced quantum confinement by room-temperature UV/Vis adsorption and photoluminescence (PL) spectra.

  6. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2018-01-01

    Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s-1, corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.

  7. Surface characterization of InP trenches embedded in oxide using scanning probe microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannarino, Manuel, E-mail: manuel.mannarino@imec.be, E-mail: manuelmannarino@gmail.com; Chintala, Ravi; Vandervorst, Wilfried

    2015-12-14

    Metrology for structural and electrical analyses at device level has been identified as one of the major challenges to be resolved for the sub-14 nm technology nodes. In these advanced nodes, new high mobility semiconductors, such as III–V compounds, are grown in narrow trenches on a Si substrate. Probing the nature of the defects, the defect density, and the role of processing steps on the surface of such structures are prime metrology requirements. In order to enable defect analysis on a (III–V) surface, a proper sample preparation for oxide removal is of primary importance. In this work, the effectiveness of differentmore » chemical cleanings and thermal annealing procedures is investigated on both blanket InP and oxide embedded InP trenches by means of scanning probe microscopy techniques. It is found that the most effective approach is a combination of an HCl-based chemical cleaning combined with a low-temperature thermal annealing leading to an oxide free surface with atomically flat areas. Scanning tunneling microscopy (STM) has been the preferred method for such investigations on blanket films due to its intrinsic sub-nm spatial resolution. However, its application on oxide embedded structures is non-trivial. To perform STM on the trenches of interest (generally <20 nm wide), we propose a combination of non-contact atomic force microscopy and STM using the same conductive atomic force microscopy tip Our results prove that with these procedures, it is possible to perform STM in narrow InP trenches showing stacking faults and surface reconstruction. Significant differences in terms of roughness and terrace formation are also observed between the blanket and the oxide embedded InP.« less

  8. Optimized efficiency in InP nanowire solar cells with accurate 1D analysis.

    PubMed

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2018-01-26

    Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s -1 , corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.

  9. High-efficiency red electroluminescent device based on multishelled InP quantum dots.

    PubMed

    Jo, Jung-Ho; Kim, Jong-Hoon; Lee, Ki-Heon; Han, Chang-Yeol; Jang, Eun-Pyo; Do, Young Rag; Yang, Heesun

    2016-09-01

    We report on the synthesis of highly fluorescent red-emitting InP quantum dots (QDs) and their application to the fabrication of a high-efficiency QD-light-emitting diode (QLED). The core/shell heterostructure of the QDs is elaborately tailored toward a multishelled structure with a composition-gradient ZnSeS intermediate shell and an outer ZnS shell. Using the resulting InP/ZnSeS/ZnS QDs as an emitting layer, all-solution-processible red InP QLEDs are fabricated with a hybrid multilayered device structure having an organic hole transport layer (HTL) and an inorganic ZnO nanoparticle electron transport layer. Two HTLs of poly(9-vinlycarbazole) or poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenyl-amine), whose hole mobilities are different by at least three orders of magnitude, are individually applied for QLED fabrication and such HTL-dependent device performances are compared. Our best red device displays exceptional figures of merit such as a maximum luminance of 2849  cd/m2, a current efficiency of 4.2  cd/A, and an external quantum efficiency of 2.5%.

  10. W-Band InP Wideband MMIC LNA with 30K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.

    2000-01-01

    This paper describe a millimeter wave low noise amplifier with extraordinary low noise, low consumption, and wide frequency range. These results are achieved utilizing state-of-the-art InP HEMT transistors coupled with CPW circuit design. The paper describes the transistor models, modeled and measured on-wafer and in-module results at both 300K am 24K operating temperatures for many samples of the device.

  11. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  12. Epitaxial lateral overgrowth of InP on Si from nano-openings: Theoretical and experimental indication for defect filtering throughout the grown layer

    NASA Astrophysics Data System (ADS)

    Olsson, F.; Xie, M.; Lourdudoss, S.; Prieto, I.; Postigo, P. A.

    2008-11-01

    We present a model for the filtration of dislocations inside the seed window in epitaxial lateral overgrowth (ELO). We found that, when the additive effects of image and gliding forces exceed the defect line tension force, filtering can occur even in the openings. The model is applied to ELO of InP on Si where the opening size and the thermal stress arising due to the mask and the grown material are taken into account and analyzed. Further, we have also designed the mask patterns in net structures, where the tilting angles of the openings in the nets are chosen in order to take advantage of the filtering in the openings more effectively, and to minimize new defects due to coalescence in the ELO. Photoluminescence intensities of ELO InP on Si and on InP are compared and found to be in qualitative agreement with the model.

  13. Biological constraints limit the use of rapamycin-inducible FKBP12-Inp54p for depleting PIP2 in dorsal root ganglia neurons.

    PubMed

    Coutinho-Budd, Jaeda C; Snider, Samuel B; Fitzpatrick, Brendan J; Rittiner, Joseph E; Zylka, Mark J

    2013-09-08

    Rapamycin-induced translocation systems can be used to manipulate biological processes with precise temporal control. These systems are based on rapamycin-induced dimerization of FK506 Binding Protein 12 (FKBP12) with the FKBP Rapamycin Binding (FRB) domain of mammalian target of rapamycin (mTOR). Here, we sought to adapt a rapamycin-inducible phosphatidylinositol 4,5-bisphosphate (PIP2)-specific phosphatase (Inp54p) system to deplete PIP2 in nociceptive dorsal root ganglia (DRG) neurons. We genetically targeted membrane-tethered CFP-FRBPLF (a destabilized FRB mutant) to the ubiquitously expressed Rosa26 locus, generating a Rosa26-FRBPLF knockin mouse. In a second knockin mouse line, we targeted Venus-FKBP12-Inp54p to the Calcitonin gene-related peptide-alpha (CGRPα) locus. We hypothesized that after intercrossing these mice, rapamycin treatment would induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in CGRP+ DRG neurons. In control experiments with cell lines, rapamycin induced translocation of Venus-FKBP12-Inp54p to the plasma membrane, and subsequent depletion of PIP2, as measured with a PIP2 biosensor. However, rapamycin did not induce translocation of Venus-FKBP12-Inp54p to the plasma membrane in FRBPLF-expressing DRG neurons (in vitro or in vivo). Moreover, rapamycin treatment did not alter PIP2-dependent thermosensation in vivo. Instead, rapamycin treatment stabilized FRBPLF in cultured DRG neurons, suggesting that rapamycin promoted dimerization of FRBPLF with endogenous FKBP12. Taken together, our data indicate that these knockin mice cannot be used to inducibly deplete PIP2 in DRG neurons. Moreover, our data suggest that high levels of endogenous FKBP12 could compete for binding to FRBPLF, hence limiting the use of rapamycin-inducible systems to cells with low levels of endogenous FKBP12.

  14. Investigation of anodic and chemical oxides grown on p-type InP with applications to surface passivation for n(+)-p solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Faur, Maria; Faur, Mircea; Goradia, Manju; Goradia, Chandra; Jenkins, Phillip; Jayne, Douglas; Weinberg, Irving

    1991-01-01

    Most of the previously reported InP anodic oxides were grown on a n-type InP with applications to fabrication of MISFET structures and were described as a mixture of In2O3 and P2O5 stoichiometric compounds or nonstoichiometric phases which have properties similar to crystalline compounds In(OH)3, InPO4, and In(PO3)3. Details of the compositional change of the anodic oxides grown under different anodization conditions were previously reported. The use of P-rich oxides grown either by anodic or chemical oxidation are investigated for surface passivation of p-type InP and as a protective cap during junction formation by closed-ampoule sulfur diffusion. The investigation is based on but not limited to correlations between PL intensity and X-ray photoelectron spectroscopy (XPS) chemical composition data.

  15. A Ploidy-Sensitive Mechanism Regulates Aperture Formation on the Arabidopsis Pollen Surface and Guides Localization of the Aperture Factor INP1

    PubMed Central

    Reeder, Sarah H.; Lee, Byung Ha; Fox, Ronald; Dobritsa, Anna A.

    2016-01-01

    Pollen presents a powerful model for studying mechanisms of precise formation and deposition of extracellular structures. Deposition of the pollen wall exine leads to the generation of species-specific patterns on pollen surface. In most species, exine does not develop uniformly across the pollen surface, resulting in the formation of apertures–openings in the exine that are species-specific in number, morphology and location. A long time ago, it was proposed that number and positions of apertures might be determined by the geometry of tetrads of microspores–the precursors of pollen grains arising via meiotic cytokinesis, and by the number of last-contact points between sister microspores. We have tested this model by characterizing Arabidopsis mutants with ectopic apertures and/or abnormal geometry of meiotic products. Here we demonstrate that contact points per se do not act as aperture number determinants and that a correct geometric conformation of a tetrad is neither necessary nor sufficient to generate a correct number of apertures. A mechanism sensitive to pollen ploidy, however, is very important for aperture number and positions and for guiding the aperture factor INP1 to future aperture sites. In the mutants with ectopic apertures, the number and positions of INP1 localization sites change depending on ploidy or ploidy-related cell size and not on INP1 levels, suggesting that sites for aperture formation are specified before INP1 is brought to them. PMID:27177036

  16. Indium phosphide solar cell research in the US: Comparison with nonphotovoltaic sources

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.

    1989-01-01

    Highlights of the InP solar cell research program are presented. Homojunction cells with AMO efficiences approaching 19 percent were demonstrated while 17 percent was achieved for indium tin oxide (ITO)/InP cells. The superior radiation resistance of these latter two cell configurations over both Si and GaAs were demonstrated. InP cells on board the LIPS III satellite show no degradation after more than a year in orbit. Computer modeling calculations were directed toward radiation damage predictions and the specification of concentrator cell parameters. Computed array specific powers, for a specific orbit, are used to compare the performance of an InP solar cell array to solar dynamic and nuclear systems.

  17. Dynamics of the cascade capture of electrons by charged donors in GaAs and InP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshkin, V. Ya., E-mail: aleshkin@ipmras.ru; Gavrilenko, L. V.

    2016-08-15

    The times for the cascade capture of an electron by a charged impurity have been calculated for pulsed and stationary excitations of impurity photoconductivity in GaAs and InP. The characteristic capture times under pulsed and continuous excitations are shown to differ noticeably both from each other and from the value given by the Abakumov–Perel–Yassievich formula for a charged impurity concentration greater than 10{sup 10} cm{sup –3}. The cause of this difference has been established. The Abakumov–Perel–Yassievich formula for the cascade capture cross section in the case of stationary excitation has been generalized. The dependences of the cascade capture rate onmore » the charged impurity concentration in GaAs and InP have been found for three temperatures in the case of pulsed excitation.« less

  18. Minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Bailey, Sheila G.

    1993-01-01

    A scanning electron microscope was used to obtain the electron-beam-induced current (EBIC) profiles in InP specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure the edge surface-recombination velocity. These values were used in a fit of the experimental EBIC data with a theoretical expression for normalized EBIC (Donolato, 1982) to obtain the electron (minority carrier) diffusion length.

  19. A novel optical fibre doped with the nano-material as InP

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Lee, Ly Guat; Zhang, Ru

    2007-11-01

    As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.

  20. Carbon incorporation in InP grown by metalorganic chemical vapor deposition and application to InP/InGaAs heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Stockman, S. A.; Fresina, M. T.; Hartmann, Q. J.; Hanson, A. W.; Gardner, N. F.; Baker, J. E.; Stillman, G. E.

    1994-04-01

    The incorporation of residual carbon has been studied for InP grown at low temperatures using TMIn and PH3 by low-pressure metalorganic chemical vapor deposition. n-type conduction is observed with electron concentrations as high as 1×1018 cm-3, and the electrical activation efficiency is 5%-15%. Carbon incorporation is found to be highly dependent on substrate temperature, suggesting that the rate-limiting step is desorption of CHy (0≤y≤3) from the surface during growth. Hydrogen is also incorporated in the layers during growth. The electron mobilities are lower for C-doped InP than for Si-doped InP. InP/InGaAs heterojunction bipolar transistors with C as the p-type base dopant and either Si or C as the n-type emitter dopant have been fabricated and compared. Devices with a carbon-doped base and emitter showed degraded performance, likely as a result of deep levels incorporated during growth of the emitter.

  1. High-Yield Growth and Characterization of ⟨100⟩ InP p-n Diode Nanowires.

    PubMed

    Cavalli, Alessandro; Wang, Jia; Esmaeil Zadeh, Iman; Reimer, Michael E; Verheijen, Marcel A; Soini, Martin; Plissard, Sebastien R; Zwiller, Val; Haverkort, Jos E M; Bakkers, Erik P A M

    2016-05-11

    Semiconductor nanowires are nanoscale structures holding promise in many fields such as optoelectronics, quantum computing, and thermoelectrics. Nanowires are usually grown vertically on (111)-oriented substrates, while (100) is the standard in semiconductor technology. The ability to grow and to control impurity doping of ⟨100⟩ nanowires is crucial for integration. Here, we discuss doping of single-crystalline ⟨100⟩ nanowires, and the structural and optoelectronic properties of p-n junctions based on ⟨100⟩ InP nanowires. We describe a novel approach to achieve low resistance electrical contacts to nanowires via a gradual interface based on p-doped InAsP. As a first demonstration in optoelectronic devices, we realize a single nanowire light emitting diode in a ⟨100⟩-oriented InP nanowire p-n junction. To obtain high vertical yield, which is necessary for future applications, we investigate the effect of the introduction of dopants on the nanowire growth.

  2. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-01

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm2. At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  3. Growth of SiO 2 on InP substrate by liquid phase deposition

    NASA Astrophysics Data System (ADS)

    Lei, Po Hsun; Yang, Chyi Da

    2010-04-01

    We have grown silicon dioxide (SiO 2) on indium phosphorous (InP) substrate by liquid phase deposition (LPD) method. With inserting InP wafer in the treatment solution composed of SiO 2 saturated hydrofluorosilicic acid (H 2SiF 6), 0.1 M boric acid (H 3BO 3) and 1.74 M diluted hydrochloric acid (HCl), the maximum deposition rate and refractive index for the as-grown LPD-SiO 2 film were about 187.5 Å/h and 1.495 under the constant growth temperature of 40 °C. The secondary ion mass spectroscope (SIMS) and energy dispersive X-ray (EDX) confirmed that the elements of silicon, oxygen, and chloride were found in the as-grown LPD-SiO 2 film. On the other hand, the effects of treatment solution incorporated with the hydrogen peroxide (H 2O 2) that can regulate the concentration of OH - ion were also shown in this article. The experimental results represented that the deposition rate decreases with increasing the concentration of hydrogen peroxide due to the reduced concentration of SiO 2 saturated H 2SiF 6 in treatment solution.

  4. Sulfur as a surface passivation for InP

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Chang, R. R.; Lile, D. L.

    1988-01-01

    The use of liquid and gas phase sulfur pretreatment of the surface of InP as a way to form a near-ideal passivated surface prior to chemical vapor deposition of SiO2 was investigated. Results of high-frequency and quasi-static capacitance-voltage measurements, as well as enhancement mode insulated gate field-effect transistor (FET) transductance and drain current stability studies, all support the efficacy of this approach for metal-insulator-semiconductor application of this semiconductor. In particular, surface state values in the range of 10 to the 10th to a few 10 to the 11th/sq cm per eV and enhancement mode FET drain current drifts of less than 5 percent over a 12 h test period were measured.

  5. Self-assembly of InAs ring complexes on InP substrates by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noda, T.; Mano, T.; Jo, M.

    We report the self-assembly of InAs ring complexes on InP (100) substrates by droplet epitaxy. Single-ring, ring-disk complex, and concentric double-ring structures were formed by controlling the As beam flux and substrate temperature. A clear photoluminescence signal was detected in a sample where InAs rings were embedded in InGaAs.

  6. A G-band terahertz monolithic integrated amplifier in 0.5-μm InP double heterojunction bipolar transistor technology

    NASA Astrophysics Data System (ADS)

    Ou-Peng, Li; Yong, Zhang; Rui-Min, Xu; Wei, Cheng; Yuan, Wang; Bing, Niu; Hai-Yan, Lu

    2016-05-01

    Design and characterization of a G-band (140-220 GHz) terahertz monolithic integrated circuit (TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm InGaAs/InP double heterojunction bipolar transistor (DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the InP substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140-190 GHz respectively. The saturation output powers are -2.688 dBm at 210 GHz and -2.88 dBm at 220 GHz, respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501091) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. ZYGX2014J003 and ZYGX2013J020).

  7. Performance, Defect Behavior and Carrier Enhancement in Low Energy, Proton Irradiated p(+)nn(+) InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Rybicki, G. C.; Vargas-Aburto, C.; Jain, R. K.; Scheiman, D.

    1994-01-01

    InP p(+)nn(+) cells, processed by MOCVD, were irradiated by 0.2 MeV protons and their performance and defect behavior observed to a maximum fluence of 10(exp 13)/sq cm. Their radiation induced degradation, over this fluence range, was considerably+less than observed for similarly irradiated, diffused junction n p InP cells. Significant degradation occurred in both the cell's emitter and base regions the least degradation occurring in the depletion region. A significant increase in series resistance occurs at the highest fluenc.e. Two majority carrier defect levels, E7 and E10, are observed by DLTS with activation energies at (E(sub C) - 0.39)eV and (E(sub C) - 0.74)eV respectively. The relative concentration of these defects differs considerably from that observed after 1 MeV electron irradiation. An increased carrier concentration in the cell's n-region was observed at the highest proton fluence, the change in carrier concentration being insignificant at the lower fluences. In agreement with previous results, for 1 and 1.5 MeV electron irradiated InP p(+)n junctions, the defect level E10 is attributed to a complex between zinc, diffused into the n-region from the zinc doped emitter, and a radiation induced defect. The latter is assumed to be either a phosphorus vacancy or interstitial. The increased, or enhanced carrier concentration is attributed to this complex acting as a donor.

  8. InGaAsBi alloys on InP for efficient near- and mid-infrared light emitting devices

    NASA Astrophysics Data System (ADS)

    Jin, Shirong; John Sweeney, Stephen

    2013-12-01

    We present the band parameters such as band gap, spin-orbit splitting energy, band offsets and strain of InGaAsBi on InP based on recent experimental data. It is shown that InGaAsBi is promising for near- and mid-infrared photonic devices operating from 0.3-0.8 eV (1.5-4 μm) on conventional InP substrates. We also show how bismuth may be used to form alloys whereby the spin-orbit splitting energy (ΔSO) is large and controllable and can, for example, be made larger than the band gap (Eg) thereby providing a means of suppressing non-radiative hot-hole producing Auger recombination and inter-valence band absorption both involving the spin-orbit band. This is expected to improve the high-temperature performance and thermal stability of light emitting devices.

  9. Design and research on the two-joint mating system of underwater vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-lin; Wang, Li-quan

    2013-03-01

    In the 21st century, people have come to the era of ocean science and ocean economy. With the development of ocean science and technology and the thorough research on the ocean, underwater mating technique has been widely used in such fields as sunk ship salvage, deep ocean workstation, submarine lifesaving aid and military affairs. In this paper, researches are made home and abroad on mating technology. Two-joint mating system of underwater vehicle is designed including plane system, three-dimensional assembly system and control system in order to increase the capacity of adapting platform obliquity and adopting rotational skirt scheme. It is clear that the system fits the working space of underwater vehicle passageway and there is no interference phenomenon in assembly design. The finite element model of the system shell and the pressurization of the joint are established. The results of the finite element computing and the pressing test are accordant, and thus it can testify that the shell material meet the need of intension and joint pressurization is reliable. Modeling of the control system is accomplished, and simulation and analysis are made, which can provide directions for the controller design of mating system of underwater vehicles.

  10. Anomalous photoluminescence in InP1−xBix

    PubMed Central

    Wu, Xiaoyan; Chen, Xiren; Pan, Wenwu; Wang, Peng; Zhang, Liyao; Li, Yaoyao; Wang, Hailong; Wang, Kai; Shao, Jun; Wang, Shumin

    2016-01-01

    Low temperature photoluminescence (PL) from InP1−xBix thin films with Bi concentrations in the 0–2.49% range reveals anomalous spectral features with strong and very broad (linewidth of 700 nm) PL signals compared to other bismide alloys. Multiple transitions are observed and their energy levels are found much smaller than the band-gap measured from absorption measurements. These transitions are related to deep levels confirmed by deep level transient spectroscopy, which effectively trap free holes and enhance radiative recombination. The broad luminescence feature is beneficial for making super-luminescence diodes, which can theoretically enhance spatial resolution beyond 1 μm in optical coherent tomography (OCT). PMID:27291823

  11. In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ozanyan, K. B.; Parbrook, P. J.; Hopkinson, M.; Whitehouse, C. R.; Sobiesierski, Z.; Westwood, D. I.

    1997-07-01

    Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10-7 and 3.5×10-6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7-1.9 and 2.6-2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed.

  12. 15 CFR 295.23 - Dissolution of joint research and development ventures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false Dissolution of joint research and development ventures. 295.23 Section 295.23 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL...

  13. 15 CFR 295.23 - Dissolution of joint research and development ventures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Dissolution of joint research and development ventures. 295.23 Section 295.23 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL...

  14. 15 CFR 295.23 - Dissolution of joint research and development ventures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Dissolution of joint research and development ventures. 295.23 Section 295.23 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL...

  15. 15 CFR 295.23 - Dissolution of joint research and development ventures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Dissolution of joint research and development ventures. 295.23 Section 295.23 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL...

  16. 15 CFR 295.23 - Dissolution of joint research and development ventures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Dissolution of joint research and development ventures. 295.23 Section 295.23 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL...

  17. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    PubMed Central

    2011-01-01

    Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content. PMID:21711912

  18. Al2O3 Passivation Effect in HfO2·Al2O3 Laminate Structures Grown on InP Substrates.

    PubMed

    Kang, Hang-Kyu; Kang, Yu-Seon; Kim, Dae-Kyoung; Baik, Min; Song, Jin-Dong; An, Youngseo; Kim, Hyoungsub; Cho, Mann-Ho

    2017-05-24

    The passivation effect of an Al 2 O 3 layer on the electrical properties was investigated in HfO 2 -Al 2 O 3 laminate structures grown on indium phosphide (InP) substrate by atomic-layer deposition. The chemical state obtained using high-resolution X-ray photoelectron spectroscopy showed that interfacial reactions were dependent on the presence of the Al 2 O 3 passivation layer and its sequence in the HfO 2 -Al 2 O 3 laminate structures. Because of the interfacial reaction, the Al 2 O 3 /HfO 2 /Al 2 O 3 structure showed the best electrical characteristics. The top Al 2 O 3 layer suppressed the interdiffusion of oxidizing species into the HfO 2 films, whereas the bottom Al 2 O 3 layer blocked the outdiffusion of In and P atoms. As a result, the formation of In-O bonds was more effectively suppressed in the Al 2 O 3 /HfO 2 /Al 2 O 3 /InP structure than that in the HfO 2 -on-InP system. Moreover, conductance data revealed that the Al 2 O 3 layer on InP reduces the midgap traps to 2.6 × 10 12 eV -1 cm -2 (compared to that of HfO 2 /InP, that is, 5.4 × 10 12 eV -1 cm -2 ). The suppression of gap states caused by the outdiffusion of In atoms significantly controls the degradation of capacitors caused by leakage current through the stacked oxide layers.

  19. Diffusion length damage coefficient and annealing studies in proton-irradiated InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell

    1993-01-01

    We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.

  20. Value and Anisotropy of the Electron and Hole Mass in Pure Wurtzite InP Nanowires.

    PubMed

    Tedeschi, D; De Luca, M; Granados Del Águila, A; Gao, Q; Ambrosio, G; Capizzi, M; Tan, H H; Christianen, P C M; Jagadish, C; Polimeni, A

    2016-10-12

    The effective mass of electrons and holes in semiconductors is pivotal in determining the dynamics of carriers and their confinement energy in nanostructured materials. Surprisingly, this quantity is still unknown in wurtzite (WZ) nanowires (NWs) made of III-V compounds (e.g., GaAs, InAs, GaP, InP), where the WZ phase has no bulk counterpart. Here, we investigate the magneto-optical properties of InP WZ NWs grown by selective-area epitaxy that provides perfectly ordered NWs featuring high-crystalline quality. The combined analysis of the energy of free exciton states and impurity levels under magnetic field (B up to 29 T) allows us to disentangle the dynamics of oppositely charged carriers from the Coulomb interaction and thus to determine the values of the electron and hole effective mass. By application of B⃗ along different crystallographic directions, we also assess the dependence of the transport properties with respect to the NW growth axis (namely, the WZ ĉ axis). The effective mass of electrons along ĉ is m e ∥ = (0.078 ± 0.002) m 0 (m 0 is the electron mass in vacuum) and perpendicular to ĉ is m e ⊥ = (0.093 ± 0.001) m 0 , resulting in a 20% mass anisotropy. Holes exhibit a much larger (∼320%) and opposite mass anisotropy with their effective mass along and perpendicular to ĉ equal to m h ∥ = (0.81 ± 0.18) m 0 and m h ⊥ = (0.250 ± 0.016) m 0 , respectively. While no full consensus is found with current theoretical results on WZ InP, our findings show trends remarkably similar to the experimental data available in WZ bulk materials, such as InN, GaN, and ZnO.

  1. Tapping the potential of trioctylphosphine (TOP) in the realization of highly luminescent blue-emitting colloidal indium phosphide (InP) quantum dots

    NASA Astrophysics Data System (ADS)

    Singh, Akanksha; Chawla, Parul; Jain, Shefali; Sharma, Shailesh Narain

    2017-06-01

    In this work, extremely small blue emitting colloidal InP-based quantum dots (size 2-5 nm) have been synthesized using trioctylphosphine (TOP) as a source of phosphorus. The method reported here is unconventional, quite rapid ( 90 min), more viable, less expensive and relatively greener as compared to other conventional methods that employ tristrimethylsilyylphosphine(P(SiMe3)3) which is scarce, expensive, flammable, highly toxic and even banned in a few countries. Highly luminescent InP QDs having bluish-green emission (λ 490 nm) can be synthesized using this method without resorting to any post-synthesis etching to tune the emission to the blue region. Besides being the source of phosphorus and the particle size regulating agent, the efficacy of TOP is further realized during synthesis via its reduction of indium salt, which aids in the formation of indium metal and then subsequently in the development of InP QDs. The PL intensity of as-synthesized InP QDs is further enhanced by growing a shell of wide band gap material, i.e. ZnS resulting in a concurrent increment in quantum yield from 25% to 38% respectively.

  2. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition.

    PubMed

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O; Taylor, Aidan; Isaac, Brandon; Bowers, John E; Klamkin, Jonathan

    2018-02-26

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO₂) stripes and oriented along the [110] direction. Undercut at the Si/SiO₂ interface was used to reduce the propagation of defects into the III-V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 10⁸/cm² and 1.2 nm; respectively and 7.8 × 10⁷/cm² and 10.8 nm for the GaAs-on-Si layer.

  3. Strain-Compensated InGaAsP Superlattices for Defect Reduction of InP Grown on Exact-Oriented (001) Patterned Si Substrates by Metal Organic Chemical Vapor Deposition

    PubMed Central

    Megalini, Ludovico; Šuran Brunelli, Simone Tommaso; Charles, William O.; Taylor, Aidan; Isaac, Brandon; Klamkin, Jonathan

    2018-01-01

    We report on the use of InGaAsP strain-compensated superlattices (SC-SLs) as a technique to reduce the defect density of Indium Phosphide (InP) grown on silicon (InP-on-Si) by Metal Organic Chemical Vapor Deposition (MOCVD). Initially, a 2 μm thick gallium arsenide (GaAs) layer was grown with very high uniformity on exact oriented (001) 300 mm Si wafers; which had been patterned in 90 nm V-grooved trenches separated by silicon dioxide (SiO2) stripes and oriented along the [110] direction. Undercut at the Si/SiO2 interface was used to reduce the propagation of defects into the III–V layers. Following wafer dicing; 2.6 μm of indium phosphide (InP) was grown on such GaAs-on-Si templates. InGaAsP SC-SLs and thermal annealing were used to achieve a high-quality and smooth InP pseudo-substrate with a reduced defect density. Both the GaAs-on-Si and the subsequently grown InP layers were characterized using a variety of techniques including X-ray diffraction (XRD); atomic force microscopy (AFM); transmission electron microscopy (TEM); and electron channeling contrast imaging (ECCI); which indicate high-quality of the epitaxial films. The threading dislocation density and RMS surface roughness of the final InP layer were 5 × 108/cm2 and 1.2 nm; respectively and 7.8 × 107/cm2 and 10.8 nm for the GaAs-on-Si layer. PMID:29495381

  4. 75 FR 14190 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Joint Venture To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Joint Venture To Perform Project Entitled Robotic Rehabilitation of Aging Water... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et sect. (``the Act''), Joint [[Page 14191...

  5. STUDY BY AES AND EELS OF InP, InSb, InPO4 AND InxGa1-xAs SUBMITTED TO ELECTRON IRRADIATION

    NASA Astrophysics Data System (ADS)

    Ghaffour, M.; Abdellaoui, A.; Bouslama, M.; Ouerdane, A.; Al-Douri, Y.

    2012-02-01

    The surface of materials plays an important role in their technological applications. In the interest to study the stability of materials and their behavior, we irradiate them by the electrons by using the electron spectroscopy such as the Auger electron spectroscopy (AES) and the electron energy loss spectroscopy (EELS). These methods have proved their good sensitivity to study material surfaces. In this paper, we give some results about the effect of the electron beam irradiating the compounds InP, InSb, InPO4 and InxGa1-xAs. The III-V semiconductors InP and InSb seem to be sensitive to the electron irradiation. This breaks the chemical bonds between the element III and V which leads to an oxidation process at the surface. The AES and EELS spectroscopy are also used to characterize the oxide InPO4 whose thickness is about 10 Å grown on the substrate InP(100). The irradiation of the system InPO4/InP(100) by the electron beam of 5 keV energy leads to a structural change of the surface, so that there is breaking of chemical bonds between indium and phosphorus (In-P) and formation of new oxide other than InPO4. In this study we show an important result concerning the effect of the electron beam on the compound InxGa1-xAs by varying the parameter x to obtain In0.2Ga0.8As and In0.53Ga0.47As. It appears that the electron beam affects In0.2Ga0.8As too much in comparison with In0.53Ga0.47As. In the case of the irradiation of In0.2Ga0.8As, there is breaking of chemical bonds between indium and GaAs leading to formation of indium oxide associated to GaAs.

  6. An Efficient and Effective Design of InP Nanowires for Maximal Solar Energy Harvesting.

    PubMed

    Wu, Dan; Tang, Xiaohong; Wang, Kai; He, Zhubing; Li, Xianqiang

    2017-11-25

    Solar cells based on subwavelength-dimensions semiconductor nanowire (NW) arrays promise a comparable or better performance than their planar counterparts by taking the advantages of strong light coupling and light trapping. In this paper, we present an accurate and time-saving analytical design for optimal geometrical parameters of vertically aligned InP NWs for maximal solar energy absorption. Short-circuit current densities are calculated for each NW array with different geometrical dimensions under solar illumination. Optimal geometrical dimensions are quantitatively presented for single, double, and multiple diameters of the NW arrays arranged both squarely and hexagonal achieving the maximal short-circuit current density of 33.13 mA/cm 2 . At the same time, intensive finite-difference time-domain numerical simulations are performed to investigate the same NW arrays for the highest light absorption. Compared with time-consuming simulations and experimental results, the predicted maximal short-circuit current densities have tolerances of below 2.2% for all cases. These results unambiguously demonstrate that this analytical method provides a fast and accurate route to guide high performance InP NW-based solar cell design.

  7. InP MOS capacitor and E-mode n-channel FET with ALD Al2O3-based high- k dielectric

    NASA Astrophysics Data System (ADS)

    Yen, Chih-Feng; Yeh, Min-Yen; Chong, Kwok-Keung; Hsu, Chun-Fa; Lee, Ming-Kwei

    2016-07-01

    The electrical characteristics of atomic-layer-deposited Al2O3/TiO2/Al2O3 on (NH4)2S-treated InP MOS capacitor and related MOSFET were studied. The electrical characteristics were improved from the reduction of native oxides and sulfur passivation on InP by (NH4)2S treatment. The high bandgap Al2O3 on TiO2 can reduce the thermionic emission, and the Al2O3 under TiO2 improves the interface-state density by self-cleaning. The high dielectric constant TiO2 is used to lower the equivalent oxide thickness. The leakage currents can reach 2.3 × 10-8 and 2.2 × 10-7 A/cm2 at ±2 MV/cm, respectively. The lowest interface-state density is 4.6 × 1011 cm-2 eV-1 with a low-frequency dispersion of 15 %. The fabricated enhancement-mode n-channel sulfur-treated InP MOSFET exhibits good electrical characteristics with a maximum transconductance of 146 mS/mm and effective mobility of 1760 cm2/V s. The subthreshold swing and threshold voltage are 117 mV/decade and 0.44 V, respectively.

  8. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  9. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.

    1996-01-01

    The Naval Research Laboratory (NRL) has been involved in the development of solar cells for space applications since the 1960s. It quickly became apparent in this work that radiation damage caused to solar cells by electrons and protons trapped by the earth's magnetic field would seriously degrade the power output of photovoltaic arrays in extended missions. Techniques were therefore developed to harden the cells by shielding them with coverglass, etc. Ultimately, however, there is a limit to such approaches, which is determined by the radiation response of the semiconductor material employed. A desire for high efficiency and radiation resistance led to the development of alternative cell technologies such as GaAs, which has since become the technology of choice for many applications. InP cells are currently the most radiation resistant, high efficiency, planar cells known. NRL first sponsored InP solar cell technology in 1986, when Arizona State University was contracted to grow p/n cells by liquid phase epitaxy. NRL's interest in InP cells was generated by the results presented by Yamaguchi and his co-workers in the early 1980s on the remarkable radiation resistance of cells grown by diffusion of S into Zn doped p-type InP substrates. These cells also had beginning of life (BOL) efficiencies approximately 16%(AM0). Related to the radiation resistance of the cells was the fact that radiation-induced damage could be optically annealed by sunlight. Relatively large quantities of 1 x 2 cm(exp 2) diffused junction cells were made and were used on the MUSES-A and the EXOS-D satellites. These cells were also available in the U.S. through NIMCO, and were studied at NRL and elsewhere. Workers at NASA Lewis became involved in research in InP cells about the same time as NRL.

  10. The joint center for energy storage research: A new paradigm for battery research and development

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2015-03-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  11. Coupled optical and electrical study of thin-film InGaAs photodetector integrated with surface InP Mie resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dong; Song, Jiakun; Yu, Hailong

    2016-03-14

    High-index dielectric and semiconductor nanostructures with characteristics of low absorption loss and artificially controlled scattering properties have grasped an increasing attention for improving the performance of thin-film photovoltaic devices. In this work, combined optical and electrical simulations were performed for thin-film InP/In{sub 0.53}Ga{sub 0.47}As/InP hetero-junction photodetector with periodically arranged InP nano-cylinders in the in-coupling configuration. It is found that the carefully designed InP nano-cylinders possess strongly substrate-coupled Mie resonances and can effectively couple incident light into the guided mode, both of which significantly increase optical absorption. Further study from the electrical aspects shows that enhancement of external quantum efficiency ismore » as high as 82% and 83% in the configurations with the optimized nano-cylinders and the optimized period, respectively. Moreover, we demonstrate that the integration of InP nano-cylinders does not degrade the electrical performance, since the surface recombination is effectively suppressed by separating the absorber layer where carriers generate and the air/semiconductor interface. The comprehensive modeling including optical and electrical perspectives provides a more practical description for device performance than the optical-only simulation and is expected to advance the design of thin-film absorber layer based optoelectronic devices for fast response and high efficiency.« less

  12. Design issues for directional coupler- and MMI-based optical microring resonator filters on InP

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michalis; Rajarajan, Muttukrishnan; Rahman, B. M. A.; Grattan, Kenneth T. V.

    2004-08-01

    The characterization and optimization of optical microring resonator-based optical filters on deeply etched GaInAsP-Inp waveguides, using the finite element-based beam propagation approach is presented here. Design issues for directional coupler- and multimode interference coupler-based devices, such as field evolution, optical power, phase, fabrication tolerance and wavelength dependence have been investigated.

  13. InP and GaAs characterization with variable stoichiometry obtained by molecular spray

    NASA Technical Reports Server (NTRS)

    Massies, J.; Linh, N. T.; Olivier, J.; Faulconnier, P.; Poirier, R.

    1979-01-01

    Both InP and GaAs surfaces were studied in parallel. A molecular spray technique was used to obtain two semiconductor surfaces with different superficial compositions. The structures of these surfaces were examined by electron diffraction. Electron energy loss was measured spectroscopically in order to determine surface electrical characteristics. The results are used to support conclusions relative to the role of surface composition in establishing a Schottky barrier effect in semiconductor devices.

  14. Self-organizing nanodot structures on InP surfaces evolving under low-energy ion irradiation: analysis of morphology and composition.

    PubMed

    Radny, Tobias; Gnaser, Hubert

    2014-01-01

    Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence Φ the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18) cm(-2), and ion fluxes f of (0.4 - 2) × 10(14) cm(-2) s(-1) were used. The surface morphology resulting from these ion irradiations was examined by atomic force microscopy (AFM). Generally, nanodot structures are formed on the surface; their dimensions (diameter, height and separation), however, were found to depend critically on the specific bombardment conditions. As a function of ion fluence, the mean radius r, height h, and spacing l of the dots can be fitted by power-law dependences: r ∝ Φ(0.40), h ∝ Φ(0.48), and l ∝ Φ(0.19). In terms of ion flux, there appears to exist a distinct threshold: below f ~ (1.3 ± 0.2) × 10(14) cm(-2) s(-1), no ordering of the dots exists and their size is comparatively small; above that value of f, the height and radius of the dots becomes substantially larger (h ~ 40 nm and r ~ 50 nm). This finding possibly indicates that surface diffusion processes could be important. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that APT can provide analytical information on the composition of individual InP nanodots. By means of 3D APT data, the surface region of such nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of approximately 1 nm and amount to 1.3 to 1.7.

  15. Control of joint motion simulators for biomechanical research

    NASA Technical Reports Server (NTRS)

    Colbaugh, R.; Glass, K.

    1992-01-01

    The authors present a hierarchical adaptive algorithm for controlling upper extremity human joint motion simulators. A joint motion simulator is a computer-controlled, electromechanical system which permits the application of forces to the tendons of a human cadaver specimen in such a way that the cadaver joint under study achieves a desired motion in a physiologic manner. The proposed control scheme does not require knowledge of the cadaver specimen dynamic model, and solves on-line the indeterminate problem which arises because human joints typically possess more actuators than degrees of freedom. Computer simulation results are given for an elbow/forearm system and wrist/hand system under hierarchical control. The results demonstrate that any desired normal joint motion can be accurately tracked with the proposed algorithm. These simulation results indicate that the controller resolved the indeterminate problem redundancy in a physiologic manner, and show that the control scheme was robust to parameter uncertainty and to sensor noise.

  16. Evaluation of narrow transverse contraction joints in jointed plain concrete pavements.

    DOT National Transportation Integrated Search

    2006-03-01

    This report presents the results of a research project conducted at the Louisiana Transportation Research Center (LTRC) to evaluate the performance of narrow transverse contraction joints to control cracking in jointed plain concrete pavements. In ad...

  17. Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on a variety of cells were also presented.

  18. The joint center for energy storage research: A new paradigm for battery research and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George

    2015-03-30

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomesmore » or legacies and first year accomplishments.« less

  19. Current limiting cathodes for non transit-time limited operation of InP TED's in the 100 GHz window

    NASA Astrophysics Data System (ADS)

    Friscouri, Marie-Renée; Rolland, Paul-Alain

    1985-03-01

    Reverse-biased low-barrier Schottky contact and reverse-biased isotype GaInAsP/InP heterojunction, used as current limiting cathodes for InP TED's, are investigated on the basis of output power and efficiency improvement as compared to N +NN + devices.

  20. Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayagaki, Takeshi, E-mail: tayagaki-t@aist.go.jp; Sugaya, Takeyoshi

    2016-04-11

    We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔE{sub c} ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carriermore » capture in QDs via Auger relaxation.« less

  1. Soils under fire: soils research and the Joint Fire Science Program.

    Treesearch

    Heather E. Erickson; Rachel White

    2008-01-01

    Soils are fundamental to a healthy and functioning ecosystem. Therefore, forest land managers can greatly benefit from a more thorough understanding of the ecological impacts of fire and fuel management activities on the vital services soils provide. We present a summary of new research on fire effects and soils made possible through the Joint Fire Science Program and...

  2. [The development of research in tribology of artificial joints].

    PubMed

    Dai, Zhendong; Gong, Juanqing

    2006-06-01

    Aseptic loosening of the prosthesis is a major form for the failure of artificial joints, which results in the conglomeration of wear particles at the bone-implant interface. This paper briefly reviews the recent development of tribology of artificial joints preserving good lubrication, enhancing the wear resistance of materials for the joints, reducing the generation of sensitive-size particles and depressing the debris-tissue reactions. Suggestion for improvement in the design of artificial joints is presented.

  3. A new high efficiency InP acousto-optic device for IR wavelengths

    NASA Astrophysics Data System (ADS)

    Soos, Jolanta I.; Rosemeier, Ronald G.; Rosenbaum, Joel

    1990-09-01

    InP acoustooptic Bragg cells which are IR-transparent in the 1-10 micron bandpass have a center frequency in the 200-600 MHz range, and a diffraction efficiency of 40-60 percent, on the basis of 1-W RF driving power. These devices are anticipated to be ideal in such applications as fiber-optic modulators, IR scanners, deflectors, and HF mode-lockers. In the course of fabrication, the photoelastic constant p44 has been defined; using other crystallographic configurations, such photoelastic constants as p11 and p12 are expected to emerge.

  4. Modelling of OPNMR phenomena using photon energy-dependent 〈Sz〉 in GaAs and InP.

    PubMed

    Wheeler, Dustin D; Willmering, Matthew M; Sesti, Erika L; Pan, Xingyuan; Saha, Dipta; Stanton, Christopher J; Hayes, Sophia E

    2016-12-01

    We have modified the model for optically-pumped NMR (OPNMR) to incorporate a revised expression for the expectation value of the z-projection of the electron spin, 〈S z 〉 and apply this model to both bulk GaAs and a new material, InP. This expression includes the photon energy dependence of the electron polarization when optically pumping direct-gap semiconductors in excess of the bandgap energy, E g . Rather than using a fixed value arising from coefficients (the matrix elements) for the optical transitions at the k=0 bandedge, we define a new parameter, S opt (E ph ). Incorporating this revised element into the expression for 〈S z 〉, we have simulated the photon energy dependence of the OPNMR signals from bulk semi-insulating GaAs and semi-insulating InP. In earlier work, we matched calculations of electron spin polarization (alone) to features in a plot of OPNMR signal intensity versus photon energy for optical pumping (Ramaswamy et al., 2010). By incorporating an electron spin polarization which varies with pump wavelength into the penetration depth model of OPNMR signal, we are able to model features in both III-V semiconductors. The agreement between the OPNMR data and the corresponding model demonstrates that fluctuations in the OPNMR intensity have particular sensitivity to light hole-to-conduction band transitions in bulk systems. We provide detailed plots of the theoretical predictions for optical pumping transition probabilities with circularly-polarized light for both helicities of light, broken down into illustrative plots of optical magnetoabsorption and spin polarization, shown separately for heavy-hole and light-hole transitions. These plots serve as an effective roadmap of transitions, which are helpful to other researchers investigating optical pumping effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Modelling of OPNMR phenomena using photon energy-dependent 〈Sz〉 in GaAs and InP

    NASA Astrophysics Data System (ADS)

    Wheeler, Dustin D.; Willmering, Matthew M.; Sesti, Erika L.; Pan, Xingyuan; Saha, Dipta; Stanton, Christopher J.; Hayes, Sophia E.

    2016-12-01

    We have modified the model for optically-pumped NMR (OPNMR) to incorporate a revised expression for the expectation value of the z-projection of the electron spin, 〈Sz 〉 and apply this model to both bulk GaAs and a new material, InP. This expression includes the photon energy dependence of the electron polarization when optically pumping direct-gap semiconductors in excess of the bandgap energy, Eg . Rather than using a fixed value arising from coefficients (the matrix elements) for the optical transitions at the k = 0 bandedge, we define a new parameter, Sopt (Eph) . Incorporating this revised element into the expression for 〈Sz 〉 , we have simulated the photon energy dependence of the OPNMR signals from bulk semi-insulating GaAs and semi-insulating InP. In earlier work, we matched calculations of electron spin polarization (alone) to features in a plot of OPNMR signal intensity versus photon energy for optical pumping (Ramaswamy et al., 2010). By incorporating an electron spin polarization which varies with pump wavelength into the penetration depth model of OPNMR signal, we are able to model features in both III-V semiconductors. The agreement between the OPNMR data and the corresponding model demonstrates that fluctuations in the OPNMR intensity have particular sensitivity to light hole-to-conduction band transitions in bulk systems. We provide detailed plots of the theoretical predictions for optical pumping transition probabilities with circularly-polarized light for both helicities of light, broken down into illustrative plots of optical magnetoabsorption and spin polarization, shown separately for heavy-hole and light-hole transitions. These plots serve as an effective roadmap of transitions, which are helpful to other researchers investigating optical pumping effects.

  6. C-band fundamental/first-order mode converter based on multimode interference coupler on InP substrate

    NASA Astrophysics Data System (ADS)

    Limeng, Zhang; Dan, Lu; Zhaosong, Li; Biwei, Pan; Lingjuan, Zhao

    2016-12-01

    The design, fabrication and characterization of a fundamental/first-order mode converter based on multimode interference coupler on InP substrate were reported. Detailed optimization of the device parameters were investigated using 3D beam propagation method. In the experiments, the fabricated mode converter realized mode conversion from the fundamental mode to the first-order mode in the wavelength range of 1530-1565 nm with excess loss less than 3 dB. Moreover, LP01 and LP11 fiber modes were successfully excited from a few-mode fiber by using the device. This InP-based mode converter can be a possible candidate for integrated transceivers for future mode-division multiplexing system. Project supported by the National Basic Research Program of China (No. 2014CB340102) and in part by the National Natural Science Foundation of China (Nos. 61274045, 61335009).

  7. Plasma deposited diamondlike carbon on GaAs and InP

    NASA Technical Reports Server (NTRS)

    Warner, J. D.; Pouch, J. J.; Alterovitz, S. A.; Liu, D. C.; Lanford, W. A.

    1984-01-01

    The properties of diamond like carbon films grown by RF flow discharge 30 kHz plasma using methane are reported. The Cls XPS line shape of films showed localized hybrid carbon bonds as low as 40 to as high as 95 percent. Infrared spectroscopy and N(15) nuclear reaction profiling data indicated 35 to 42 percent hydrogen, depending inversely on deposition temperature. The deposition rate of films on Si falls off exponentially with substrate temperature, and nucleation does not occur above 200 C on GaAs and InP. Optical data of the films showed bandgap values of 2.0 to 2.4 eV increasing monotonically with CH4 flow rate.

  8. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    NASA Astrophysics Data System (ADS)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  9. The INPE handouts to the 6th LANDSAT Technical Working Group (LTWG) Meeting

    NASA Technical Reports Server (NTRS)

    Debarrosaguirre, J. L. (Principal Investigator); Parada, L. E. M.; Depaulapereira, S.

    1984-01-01

    LANDSAT receiving and processing system in its present configuration and status are described, as well as the experience already obtained with LANDSATs 4 and 5. The revised table of station plans for TM reception and products and of implementation schedule for data formats employing superstructure conventions is updated. Standardization of the worldwide reference systems is proposed. The INPE preliminary TM products price list is included. A TM image received and processed is shown to illustrate the appearance of the products offered.

  10. Thermally stable, low resistance contact systems for use with shallow junction p(+) nn(+) and n(+)pp(+) InP solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.; Fatemi, N. S.; Hoffman, R. W.

    1995-01-01

    Two contact systems for use on shallow junction InP solar cells are described. The feature shared by these two contact systems is the absence of the metallurgical intermixing that normally takes place between the semiconductor and the contact metallization during the sintering process. The n(+)pp(+) cell contact system, consisting of a combination of Au and Ge, not only exhibits very low resistance in the as-fabricated state, but also yields post-sinter resistivity values of 1(exp -7) ohms-sq cm, with effectively no metal-InP interdiffusion. The n(+)pp(+)cell contact system, consisting of a combination of Ag and Zn, permits low resistance ohmic contact to be made directly to a shallow junction p/n InP device without harming the device itself during the contacting process.

  11. Group-V atoms exchange due to exposure of InP surface to AsH3(+PH3) revealed by x-ray CTR scattering

    NASA Astrophysics Data System (ADS)

    Tabuchi, M.; Yamada, N.; Fujibayashi, K.; Takeda, Y.; Kamei, H.

    1996-05-01

    We conducted x-ray crystal truncation rod (CTR) measurements using synchro-tron radiation to analyze the As atom distribution in InP to the order of 1 ML. The InP samples which were only exposed to AsH3(+PH3) and capped by InP were investigated to study the effect of the purge sequence. The purge sequence is unavoidable to grow heteroepitaxial layers by OMVPE and is considered to affect largely the structure of the interface. From the results of the measurement and the computer simulation, the distribution of P and As atoms of the order of 1 ML was discussed as functions of the exposing time. It was shown that the number of As atoms contained in the samples saturated when the AsH3-exposure time is longer than 10 s. Comparing the profiles of AsH3-exposed samples with that of (AsH3 + PH3)-exposed samples, it was found that the As distribution in the buffer layer was suppressed in (AsH3 + PH3)-exposed samples. In order to obtain the sharp interfaces, the AsH3-exposure time must be shorter than 0.5 s.

  12. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties.

    PubMed

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  13. Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate

    NASA Technical Reports Server (NTRS)

    Qiu, Y.; Uhl, D.

    2002-01-01

    InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.

  14. Proposal for research and education: joint lectures and practicals on central nervous system anatomy and physiology.

    PubMed

    Kageyama, Ikuo; Yoshimura, Ken; Satoh, Yoshihide; Nanayakkara, Chinthani D; Pallegama, Ranjith W; Iwasaki, Shin-Ichi

    2016-07-01

    We coordinated anatomy and physiology lectures and practicals to facilitate an integrated understanding of morphology and function in a basic medical science program for dental students and to reduce the time spent on basic science education. This method is a means to provide the essential information and skills in less time. The overall impression was that the practice of joint central nervous system lectures and practicals was an efficient method for students, which suggests that joint lectures might also be useful for clinical subjects. About two-thirds of students felt that the joint anatomy and physiology lecture on the central nervous system was useful and necessary in understanding the relationship between morphology and function, at least for this subject. One-third of students were neutral on the effectiveness of this method. However, the survey results suggest that improvements are needed in the method and timing of joint lectures and practicals. The present teaching approach can be further improved by conducting combined lectures in which the form and function of anatomic structures are presented by the relevant departments during the same lecture. Finally, joint lecturers and practicals offer an opportunity to increase student understanding of the importance of new research findings by the present authors and other researchers.

  15. LETTER TO THE EDITOR: Surface passivation of (100) InP by organic thiols and polyimide as characterized by steady-state photoluminescence

    NASA Astrophysics Data System (ADS)

    Schvartzman, M.; Sidorov, V.; Ritter, D.; Paz, Y.

    2001-10-01

    A method for the passivation of indium phosphide, based on thiolated organic self-assembled monolayers (SAMs) that form highly ordered, close-packed structures on the semiconductor surface, is presented. It is shown that the intensity of steady-state photoluminescence (PL) of n-type InP wafers covered with the thiolated SAMs increases significantly (as much as 14-fold) upon their covering with the monolayers. The ease with which one can tailor the outer functional groups of the SAMs provides a way to connect this new class of passivators with standard encapsulators, such as polyimide. Indeed, the PL intensity of SAM-coated InP wafers was not altered upon their overcoating with polyimide, despite the high curing temperature of the polymer (200 °C).

  16. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    NASA Technical Reports Server (NTRS)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  17. Joint Research on Scatterometry and AFM Wafer Metrology

    NASA Astrophysics Data System (ADS)

    Bodermann, Bernd; Buhr, Egbert; Danzebrink, Hans-Ulrich; Bär, Markus; Scholze, Frank; Krumrey, Michael; Wurm, Matthias; Klapetek, Petr; Hansen, Poul-Erik; Korpelainen, Virpi; van Veghel, Marijn; Yacoot, Andrew; Siitonen, Samuli; El Gawhary, Omar; Burger, Sven; Saastamoinen, Toni

    2011-11-01

    Supported by the European Commission and EURAMET, a consortium of 10 participants from national metrology institutes, universities and companies has started a joint research project with the aim of overcoming current challenges in optical scatterometry for traceable linewidth metrology. Both experimental and modelling methods will be enhanced and different methods will be compared with each other and with specially adapted atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurement systems in measurement comparisons. Additionally novel methods for sophisticated data analysis will be developed and investigated to reach significant reductions of the measurement uncertainties in critical dimension (CD) metrology. One final goal will be the realisation of a wafer based reference standard material for calibration of scatterometers.

  18. Ex-Situ and In-Situ Ellipsometric Studies of the Thermal Oxide on InP

    DTIC Science & Technology

    1990-12-06

    ion---- Distribution/ Availabilit ? Codes£v l llt Codes Avail and/or Dist| Special Abstract The thermally grown InP oxide as etched by an aqueous...aqueous NH4OH/NH4F, and Law(17) has reported observations of orientational ordering of water and organic solvents on pyrex surfaces by in-situ...minutes, followed by a sequence of acetone, deionized water (d. i. water ) rinse. After being dipped in a concentrated aqueous HF solution for 15 seconds

  19. Joint Control: A Discussion of Recent Research

    PubMed Central

    Palmer, David C

    2006-01-01

    The discrimination of the onset of joint control is an important interpretive tool in explaining matching behavior and other complex phenomena, but the difficulty of getting experimental control of all relevant variables stands in the way of a definitive experiment. The studies in the present issue of The Analysis of Verbal Behavior illustrate how modest experiments can take their place in a web of interpretation to make a strong case that joint control is a necessary element of such phenomena. PMID:22477357

  20. Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor.

    PubMed

    Wu, Yi-Zhou; Sun, Jie; Zhang, Yaqin; Pu, Maomao; Zhang, Gen; He, Nongyue; Zeng, Xin

    2017-04-19

    Rapid diagnosis and targeted drug treatment require agents that possess multiple functions. Nanomaterials that facilitate optical imaging and direct drug delivery have shown great promise for effective cancer treatment. In this study, we first modified near-infrared fluorescent indium phosphide quantum dots (InP QDs) with a vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody to afford targeted drug delivery function. Then, a miR-92a inhibitor, an antisense microRNA that enhances the expression of tumor suppressor p63, was attached to the VEGFR2-InP QDs via electrostatic interactions. The functionalized InP nanocomposite (IMAN) selectively targets tumor sites and allows for infrared imaging in vivo. We further explored the mechanism of this active targeting. The IMAN was endocytosed and delivered in the form of microvesicles via VEGFR2-CD63 signaling. Moreover, the IMAN induced apoptosis of human myelogenous leukemia cells through the p63 pathway in vitro and in vivo. These results indicate that the IMAN may provide a new and promising chemotherapy strategy against cancer cells, particularly by its active targeting function and utility in noninvasive three-dimensional tumor imaging.

  1. Anomalous B-field Dependence of Spin-flip Time in High Purity InP

    NASA Astrophysics Data System (ADS)

    Linpeng, Xiayu; Karin, Todd; Barbour, Russell; Glazov, Mikhail; Fu, Kai-Mei

    2015-03-01

    We observe an anomalous B-field dependence of the spin-flip time (T1) of electrons bound to shallow donors which cannot be explained by current spin-relaxation theories. We conduct resonant pump-probe measurements in high-purity InP from the low to high magnetic field regimes, with a maximum T1 (400 μs) observed near the turning point gμB B ~=kB T . At low B, the T1 dependence on B is consistent with an electron correlation time (τc) in the tens of nanoseconds. The physical mechanism for the short τc in this high-purity sample (n ~= 2 ×1014 cm-3) is unclear, but a strong temperature (T) dependence indicates T1 can be further increased by lowering T below the 1.5 K experimental temperature. At high B, a B-3 dependence is observed, in contrast to the expected B-5 predicted by single-phonon spin-orbit mediated interactions. An understanding of the anomalous B-field dependence is expected to elucidate the effect of electron transport (low-field) and phonons (high-field) on T1 for shallow donors, which is of interest for both ensemble and single-spin quantum information applications. This material is based upon work supported by the National Science Foundation under Grant No. 1150647, DGE-0718124 and DGE-1256082. InP samples were graciously provided by Simon Watkins at Simon Fraser University.

  2. Passion Research: A Joint Venture To Interest High School Students in Chemistry.

    ERIC Educational Resources Information Center

    Carriere, Francois J.; Abouaf, Madeleine

    1997-01-01

    Describes a joint venture between the Centre National de la Recherche Scientifique (CNRS) and the Department of Education in France that was created to allow students to do practical scientific work with the help of a CNRS researcher. Presents two practical projects done by students on organic polymers and on color. Concludes that this increases…

  3. InP shallow-homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Keavney, Christopher; Spitzer, Mark B.; Vernon, Stanley M.; Haven, Victor E.; Augustine, Godfrey

    1989-01-01

    Indium phosphide solar cells with very thin n-type emitters have been made by both ion implantation and metalorganic chemical vapor deposition. Air mass zero efficiencies as high as 18.8 percent (NASA measurement) have been achieved. Although calculations show that, as is the case with GaAs, a heterostructure is expected to be required for the highest efficiencies attainable, the material properties of InP give the shallow-homojunction structure a greater potential than in the case of GaAs. The best cells, which were those made by ion implantation, show open-circuit voltage (V sub oc) of 873 mV, short-circuit current of 357 A/sq m (35.7 mA/sq cm), and fill factor of 0.829. Improvements are anticipated in all three of these parameters. Internal quantum efficiency peaks at over 90 percent in the red end of the spectrum, but drops to 54 percent in the blue end. Other cells have achieved 74 percent in the blue end. Detailed modeling of the data indicates that a high front surface recombination velocity is responsible for the low blue response, that the carrier lifetime is high enough to allow good carrier collection from both the base and the emitter, and that the voltage is base-limited.

  4. Transport Properties of Thin Bismuth Films on InP (110) Surfaces by Scanning Tunneling Potentiometry

    NASA Astrophysics Data System (ADS)

    Feenstra, R. M.; Briner, B. G.; Chin, T. P.; Woodall, J. M.

    1996-03-01

    Charge transport in 20--30 Å thick Bi-films is studied by scanning tunneling potentiometry (STP) at room temperature. The Bi is deposited on cleaved InP(110) surfaces at temperatures near 140 K, yielding atomically flat films interspersed with 12 Å deep holes. The InP substrates contain conducting/insulating/conducting layers, which in cross-section are used to form contacts to the film, thus enabling lateral current densities as high as 8 × 10^6 A/cm^2 . Potential variations due to scattering of this lateral current is detected using STP, by locating the zero-crossing of current-voltage characteristics at each pixel in an image. Potential images reveal, on a coarse scale, a smooth ramp arising from the electric field due to phonon scattering in the film, from which an electron-phonon scattering length of >1000 Å is deduced. On a finer scale, potential steps 2--10 mV high are seen near surface holes and grain boundaries in the film. Detailed study of the ballistic scattering near the holes reveals a dipole shaped feature, which is identified as a residual resistivity dipole. *present address: Physics, Carnegie Mellon Univ., Pittsburgh PA 15213 **now at: Fritz-Haber-Institut, 14195 Berlin, briner@fhi-berlin.mpg.de

  5. Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative.

    PubMed

    Galanopoulou, Aristea S; French, Jacqueline A; O'Brien, Terence; Simonato, Michele

    2017-11-01

    Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent video-electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  6. Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements

    NASA Astrophysics Data System (ADS)

    Amirouche, Farid

    2008-06-01

    Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As

  7. MIMIC-compatible GaAs and InP field effect controlled transferred electron (FECTED) oscillators

    NASA Astrophysics Data System (ADS)

    Scheiber, Helmut; Luebke, Kurt; Diskus, Christian G.; Thim, Hartwig W.; Gruetzmacher, D.

    1989-12-01

    A MIMIC-(millimeter and microwave integrated circuit) compatible transferred electron oscillator is investigated which utilizes the frequency-independent negative resistance of the stationary charge dipole domain that forms in the channel of a MESFET. The device structure, analysis, and simulation are described. Devices fabricated from GaAs and InP exhibit very high power levels of 56 mW at 29 GHz and 55 mW at 34 GHz, respectively. Continuous wave power levels are somewhat lower (30 mW).

  8. Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-05-01

    The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on amore » variety of cells were also presented. Separate abstracts have been prepared for articles from this report.« less

  9. Observed circuit limits to time resolution in correlation measurements with Si-on-sapphire, GaAs, and InP picosecond photoconductors

    NASA Astrophysics Data System (ADS)

    Hammond, R. B.; Paulter, N. G.; Wagner, R. S.

    1984-08-01

    Cross-correlation measurements of the response of photoconductor pulsers and sampling gates excited by a femtosecond laser are reported. The photoconductors were fabricated in microstrip transmission line structures on Si-on-sapphire, semiinsulating GaAs, and semiinsulating InP wafers. The photoconductor sampling gates were ion beam-damaged to produce short carrier lifetimes (less than 3 ps in one case). Damage was introduced with 6 MeV Ne-20 on the Si-on-sapphire, 2 MeV H-2 on the GaAs, and 2 MeV He-4 on the InP. Doses in the range 10 to the 12th - 10 to the 15th were used. Results show circuit limits to the time resolution in correlation measurements from two sources: (1) RC time constants due to photoconductor gap capacitance and transmission line characteristic impedance and (2) dispersion in microstrip transmission lines.

  10. Influence of running velocity on vertical, leg and joint stiffness : modelling and recommendations for future research.

    PubMed

    Brughelli, Matt; Cronin, John

    2008-01-01

    Human running can be modelled as either a spring-mass model or multiple springs in series. A force is required to stretch or compress the spring, and thus stiffness, the variable of interest in this paper, can be calculated from the ratio of this force to the change in spring length. Given the link between force and length change, muscle stiffness and mechanical stiffness have been areas of interest to researchers, clinicians, and strength and conditioning practitioners for many years. This review focuses on mechanical stiffness, and in particular, vertical, leg and joint stiffness, since these are the only stiffness types that have been directly calculated during human running. It has been established that as running velocity increases from slow-to-moderate values, leg stiffness remains constant while both vertical stiffness and joint stiffness increase. However, no studies have calculated vertical, leg or joint stiffness over a range of slow-to-moderate values to maximum values in an athletic population. Therefore, the effects of faster running velocities on stiffness are relatively unexplored. Furthermore, no experimental research has examined the effects of training on vertical, leg or joint stiffness and the subsequent effects on running performance. Various methods of training (Olympic style weightlifting, heavy resistance training, plyometrics, eccentric strength training) have shown to be effective at improving running performance. However, the effects of these training methods on vertical, leg and joint stiffness are unknown. As a result, the true importance of stiffness to running performance remains unexplored, and the best practice for changing stiffness to optimize running performance is speculative at best. It is our hope that a better understanding of stiffness, and the influence of running speed on stiffness, will lead to greater interest and an increase in experimental research in this area.

  11. 78 FR 20120 - Cooperative Research and Development Agreement: Joint Technical Demonstration of Tactical Data...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Development Agreement: Joint Technical Demonstration of Tactical Data Link Range Enhancement Software AGENCY... (TDL) range enhancement software technologies to improve operational effectiveness and communications... Range Enhancement Software Technologies, U.S. Coast Guard Research and Development Center, 1 Chelsea...

  12. Common base amplifier with 7 - dB gain at 176 GHz in InP mesa DHBT technology

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Paidi, V.; Griffith, Z.; Dahlstrom, M.; Wei, Y.; Urteaga, M.; Rodell, M. J. W.; Fung, A.

    2004-01-01

    We report a single stage tunded amplifier that exhibits 7 dB small signal gain at 176 GHz. Common Base topology is chosen as it has the best maximum stable gain (MSG) in this frequency band when compared to common emitter and common collector topologies. The amplifiers are designed and fabricated in InP mesa double heterojunction bipolar transistor (DHBT) technology.

  13. The research of laryngeal joints to reconstruction and modeling.

    PubMed

    Zhang, Yi; Shi, Tingchun

    2014-01-01

    Larynx has a complex structure with joints and multiple functions. In order to study the artificial larynx and artificial auricle scaffold, a three-dimensional digital model of laryngeal joint is established in this paper using MIMICS with its biomechanical properties analyzed and calculated by using the finite element method. This model is based on the CT scanned images of 281 layers with an interlamellar spacing of 1.25 mm. The obtained data are denoised, segmented and smoothed before being loaded into MIMICS. By further optimizations, an accurate and complete 3D model can be obtained. Subsequently, a 3D FEM of the normal larynx joint is performed which allows observations from any dimensions and angles. Compared with natural laryngeal joint, this model has good geometric similarity and mechanically similar throat voicing functions.

  14. Refractive indexes of (Al, Ga, In) as epilayers on InP for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Mondry, M. J.; Babic, D. I.; Bowers, J. E.; Coldren, L. A.

    1992-06-01

    MBE grown bulk and short period superlattices of (Al, Ga, In) As epilayers lattice matched to InP were characterized by double-crystal diffractometry and low-temperature photoluminescence. A reflection spectroscopy technique was used to determine the refractive index of (Al, Ga, In) As films as a function of wavelength. The measured data were fitted to a single-oscillator dispersion model and the model coefficients are given. The resulting expression can be used in the design of wave-guides, modulators, and other optical devices.

  15. The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles

    NASA Astrophysics Data System (ADS)

    Bednyakov, V. A.; Russakovich, N. A.

    2018-05-01

    The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.

  16. The effect of process conditions on the performance of epitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandi, S. K.

    1991-01-01

    Indium phosphide solar cells have a higher resistance to electron irradiation than Si or GaAs cells of comparable junction depth. As a result, there is much interest in the use of this material for space applications. Cells of this material were made in bulk InP by a number of techniques, including ion implantation, direct diffusion in sealed ampoules, and by open tube diffusion. However, it is generally considered that the epitaxial approach will be superior to all of these techniques. The epitaxy of InP is considerably more difficult than that of gallium arsenide, for a number of reasons. Perhaps the most important is the fact that the native oxides of Indium are extremely difficult to remove, as compared to that of Gallium. In addition, thermal treatments for the desorption of these oxides often result in the formation of phosphorus vacancies and free indium on the surface. Thus, inadequate sample preparation before epitaxy, poor reactor cleaning procedures, or poor transition procedures between the growth of successive layers, all give rise to trap phenomena and to high interface recombination velocities. Moreover, the lifetime of the grown material is dominated by the occurrence of native defects, so that it is a strong function of growth parameters. These problems are of special interest to the fabrication of solar cells, where long life-time, combined with the absence of traps, is highly desirable. A study of this problem is described using a non-invasive diagnostic technique which was developed.

  17. InP tunnel junctions for InP/InGaAs tandem solar cells

    NASA Technical Reports Server (NTRS)

    Vilela, Mauro F.; Freundlich, Alex; Renaud, P.; Medelci, N.; Bensaoula, A.

    1996-01-01

    We report, for the first time, an epitaxially grown InP p(+)/n(++) tunnel junction. A diode with peak current densities up to 1600 A/cm and maximum specific resistivities (Vp/Ip - peak voltage to peak current ratio) in the range of 10(exp -4)Omega cm(exp 2) is obtained. This peak current density is comparable to the highest results previously reported for lattice matched In(0.53)Ga(0.47)As tunnel junctions. Both results were obtained using chemical beam epitaxy (CBE). In this paper we discuss the electrical characteristics of these tunnel diodes and how the growth conditions influence them.

  18. InP Tunnel Junctions for InP/InGaAs Tandem Solar Cells

    NASA Technical Reports Server (NTRS)

    Vilela, M. F.; Medelci, N.; Bensaoula, A.; Freundlich, A.; Renaud, P.

    1995-01-01

    We report, for the first time, an epitaxially grown InP p(+)/n(++) tunnel junction. A diode with peak current densities up to 1600 Al/sq cm and maximum specific resistivities (Vp/lp - peak voltage to peak current ratio) in the range of 10(exp -4)Om sq cm is obtained. This peak current density is comparable to the highest results previously reported for lattice matched In(0.53)Ga(0.47)As tunnel junctions. Both results were obtained using chemical beam epitaxy (CBE). In this paper we discuss the electrical characteristics of these tunnel diodes and how the growth conditions influence them.

  19. Structural properties of H-implanted InP crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bocchi, C.; Franzosi, P.; Lazzarini, L.

    1993-07-01

    H has been implanted in InP crystals at the energy E [equals] 100 keV and at different doses ranging from [sigma] [equals] 1 x 10[sup 13] to [sigma] [equals] 5 x 10[sup 16] cm[sup [minus]2]. The depth dependence of the elastic lattice strain has been investigated by high resolution X-ray diffractometry. The implantation produces a lattice dilation. The strain increases with increasing depth, reaches the maximum at about 0.75 [mu]m, and then decreases rapidly; moreover the maximum strain is proportional to the dose. No extended crystal defects have been detected by transmission electron microscopy up to [sigma] <1 x 10[supmore » 16] cm[sup [minus]2] a buried amorphous layer 28 nm in thickness has been observed at the same depth where the strain is maximum. The thickness of the amorphous layer increases by further increasing the dose and reaches a value of about 0.18 [mu]m for [sigma] [equals] 5 x 10[sup 16] cm[sup [minus]2].« less

  20. Spatial modulation of above-the-gap cathodoluminescence in InP nanowires

    NASA Astrophysics Data System (ADS)

    Tizei, L. H. G.; Zagonel, L. F.; Tencé, M.; Stéphan, O.; Kociak, M.; Chiaramonte, T.; Ugarte, D.; Cotta, M. A.

    2013-12-01

    We report the observation of light emission on wurtzite InP nanowires excited by fast electrons. The experiments were performed in a scanning transmission electron microscope using an in-house-built cathodoluminescence detector. Besides the exciton emission, at 850 nm, emission above the band gap from 400 to 800 nm was observed. In particular, this broad emission presented systematic periodic modulations indicating variations in the local excitation probability. The physical origin of the detected emission is not clear. Measurements of the spatial variation of the above-the-gap emission points to the formation of leaky cavity modes of a plasmonic nature along the nanowire length, indicating the wave nature of the excitation. We propose a phenomenological model, which fits closely the observed spatial variations.

  1. The Achievement of Near-Theoretical-Minimum Contact Resistance to InP

    NASA Technical Reports Server (NTRS)

    Fatemi, Navid S.; Weizer, Victor G.

    1993-01-01

    We have investigated the electrical and metallurgical behavior of the InP/Au/Ni contact system. We show that when a layer of Au, 100 A or more in thickness, is introduced between n-InP and Ni contact metallization, specific contact resistivity R, values in the low 10(exp -8) Omega cm(exp 2) range are achieved after sintering. It is suggested that these ultralow values of R(sub c) are due to the presence, at the metal-InP interface, of a Ni3P layer combined with a stoichiometry change in the InP surface. We show, in addition, that it is possible to achieve very low R(sub c) values with this system without incurring device destroying sinter-induced metallurgical interdiffusion.

  2. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houghton, John; Weatherwax, Sharlene; Ferrell, John

    2006-06-07

    The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical rolesmore » in any deployment scheme.« less

  3. Mechanical Stress in InP Structures Etched in an Inductively Coupled Plasma Reactor with Ar/Cl2/CH4 Plasma Chemistry

    NASA Astrophysics Data System (ADS)

    Landesman, Jean-Pierre; Cassidy, Daniel T.; Fouchier, Marc; Pargon, Erwine; Levallois, Christophe; Mokhtari, Merwan; Jimenez, Juan; Torres, Alfredo

    2018-02-01

    We investigated the crystal lattice deformation that can occur during the etching of structures in bulk InP using SiNx hard masks with Ar/Cl2/CH4 chemistries in an inductively coupled plasma reactor. Two techniques were used: degree of polarization (DOP) of the photo-luminescence, which gives information on the state of mechanical stress present in the structures, and spectrally resolved cathodo-luminescence (CL) mapping. This second technique also provides elements on the mechanical stress in the samples through analysis of the spectral shift of the CL intrinsic emission lines. Preliminary DOP mapping experiments have been conducted on the SiNx hard mask patterns without etching the underlying InP. This preliminary study demonstrated the potential of DOP to map mechanical stress quantitatively in the structures. In a second step, InP patterns with various widths between 1 μm and 20 μm, and various depths between 1 μm and 6 μm, were analyzed by the 2 techniques. DOP measurements were made both on the (100) top surface of the samples and on the (110) cleaved cross section. CL measurements were made only from the (100) surface. We observed that inside the etched features, close to the vertical etched walls, there is always some compressive deformation, while it is tensile just outside the etched features. The magnitude of these effects depends on the lateral and depth dimensions of the etched structures, and on the separation between them (the tensile deformation increases between them due to some kind of proximity effect when separation decreases).

  4. Naval Research Laboratory's programs in advanced indium phosphide solar cell development

    NASA Technical Reports Server (NTRS)

    Summers, Geoffrey P.

    1995-01-01

    The Naval Research Laboratory has been involved in developing InP solar cell technology since 1988. The purpose of these programs was to produce advanced cells for use in very high radiation environments, either as a result of operating satellites in the Van Allen belts or for very long duration missions in other orbits. Richard Statler was technical representative on the first program, with Spire Corporation as the contractor, which eventually produced several hundred, high efficiency 2 x 2 sq cm single crystal InP cells. The shallow homojunction technology which was developed in this program enabled cells to be made with AMO, one sun efficiencies greater than 19%. Many of these cells have been flown on space experiments, including PASP Plus, which have confirmed the high radiation resistance of InP cells. NRL has also published widely on the radiation response of these cells and also on radiation-induced defect levels detected by DLTS, especially the work of Rob Walters and Scott Messenger. In 1990 NRL began another Navy-sponsored program with Tim Coutts and Mark Wanlass at the National Renewable Energy Laboratory (NREL), to develop a one sun, two terminal space version of the InP-InGaAs tandem junction cell being investigated at NREL for terrestrial applications. These cells were grown on InP substrates. Several cells with AM0, one sun efficiencies greater than 22% were produced. Two 2 x 2 sq cm cells were incorporated on the STRV lA/B solar cell experiment. These were the only two junction, tandem cells on the STRV experiment. The high cost and relative brittleness of InP wafers meant that if InP cell technology were to become a viable space power source, the superior radiation resistance of InP would have to be combined with a cheaper and more robust substrate. The main technical challenge was to overcome the effect of the dislocations produced by the lattice mismatch at the interface of the two materials. Over the last few years, NRL and Steve Wojtczuk at

  5. Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts.

    PubMed

    Zwanenburg, F A; van der Mast, D W; Heersche, H B; Kouwenhoven, L P; Bakkers, E P A M

    2009-07-01

    We demonstrate electric field control of sign and magnitude of the magnetoresistance in InP nanowires with ferromagnetic contacts. The sign change in the magnetoresistance is directly correlated with a sign change in the transconductance. Additionally, the magnetoresistance is shown to persist at such a high bias that Coulomb blockade has been lifted. We also observe the magnetoresistance when one of the ferromagnets is replaced by a nonmagnetic metal. We conclude that it must be induced by a single ferromagnetic contact, and that spin transport can be ruled out as the origin. Our results emphasize the importance of a systematic investigation of spin-valve devices in order to discriminate between ambiguous interpretations.

  6. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate

    NASA Astrophysics Data System (ADS)

    Ren, Kun; Zheng, Jiachen; Lu, Haiyan; Liu, Jun; Wu, Lishu; Zhou, Wenyong; Cheng, Wei

    2018-05-01

    This paper investigated the DC and RF performance of the InP double heterojunction bipolar transistors (DHBTs) transferred to RF CMOS wafer substrate. The measurement results show that the maximum values of the DC current gain of a substrate transferred device had one emitter finger, of 0.8 μm in width and 5 μm in length, are changed unobviously, while the cut-off frequency and the maximum oscillation frequency are decreased from 220 to 171 GHz and from 204 to 154 GHz, respectively. In order to have a detailed insight on the degradation of the RF performance, small-signal models for the InP DHBT before and after substrate transferred are presented and comparably extracted. The extracted results show that the degradation of the RF performance of the device transferred to RF CMOS wafer substrate are mainly caused by the additional introduced substrate parasitics and the increase of the capacitive parasitics induced by the substrate transfer process itself. Project supported by the National Natural Science Foundation of China (No. 61331006) and the Natural Science Foundation of Zhejiang Province (No. Y14F010017).

  7. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1997-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1997 to September 30, 1998. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the Institute include the following: (1) To conduct basic and applied research; (2) to promote joint endeavors between Center scientists and those in the academic community; (3) to provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute; (4) to provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute; and (5) to disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.

  8. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1996-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the one-year period October 1, 1996 to September 30, 1997. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics, high lift modeling studies and luminescent paint applications. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the noise and high lift activities. The program will be conducted within the general framework of the Memorandum of Understanding (1976) establishing the Institute, as updated in 1993. As outlined in the agreement, the purposes of the institute include the following: To conduct basic and applied research. To promote joint endeavors between Center scientists and those in the academic community To provide training to graduate students in specialized areas of aeronautics and acoustics through participation in the research programs of the Institute. To provide opportunities for Post-Doctoral Fellows to collaborate in research programs of the Institute. To disseminate information about important aeronautical topics and to enable scientists and engineers of the Center to stay abreast of new advances through symposia, seminars and publications.

  9. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    PubMed

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  10. The joint cardiovascular research profile of the university medical centres in the Netherlands.

    PubMed

    van Welie, S D; van Leeuwen, T N; Bouma, C J; Klaassen, A B M

    2016-05-01

    Biomedical scientific research in the Netherlands has a good reputation worldwide. Quantitatively, the university medical centres (UMCs) deliver about 40 % of the total number of scientific publications of this research. Analysis of the bibliometric output data of the UMCs shows that their research is highly cited. These output-based analyses also indicate the high impact of cardiovascular scientific research in these centres, illustrating the strength of this research in the Netherlands. A set of six joint national cardiovascular research topics selected by the UMCs can be recognised. At the top are heart failure, rhythm disorder research and atherosclerosis. National collaboration of top scientists in consortia in these three areas is successful in acquiring funding of large-scale programs. Our observations suggest that funding national consortia of experts focused on a few selected research topics may increase the international competitiveness of cardiovascular research in the Netherlands.

  11. Hydrogen Passivation of Interstitial Zn Defects in Heteroepitaxial InP Cell Structures and Influence on Device Characteristics

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Chatterjee, B.

    2004-01-01

    Hydrogen passivation of heteroepitaxial InP solar cells is of recent interest for deactivation of dislocations and other defects caused by the cell/substrate lattice mismatch that currently limit the photovoltaic performance of these devices. In this paper we present strong evidence that, in addition to direct hydrogen-dislocation interactions, hydrogen forms complexes with the high concentration of interstitial Zn defects present within the p(+) Zn-doped emitter of MOCVD-grown heteroepitaxial InP devices, resulting in a dramatic increase of the forward bias turn-on voltage by as much as 280 mV, from 680 mV to 960 mV. This shift is reproducible and thermally reversible and no such effect is observed for either n(+)p structures or homoepitaxial p(+)n structures grown under identical conditions. A combination of photoluminescence (PL), electrochemical C-V dopant profiling, SIMS and I-V measurements were performed on a set of samples having undergone a matrix of hydrogenation and post-hydrogenation annealing conditions to investigate the source of this voltage enhancement and confirm the expected role of interstitial Zn and hydrogen. A precise correlation between all measurements is demonstrated which indicates that Zn interstitials within the p(+) emitter and their interaction with hydrogen are indeed responsible for this device behavior.

  12. The Practice of Institutional Research. Proceedings of a Joint Conference of the Southern Association for Institutional Research and the North Carolina Association for Institutional Research (Charlotte, North Carolina, October 29-30, 1981).

    ERIC Educational Resources Information Center

    Martin, Mary P., Ed.; Staman, E. Michael, Ed.

    Proceedings of a 1981 joint conference sponsored by the Southern Association for Institutional Research (SAIR) and the North Carolina Association for Institutional Research are presented. The conference theme was the practice of institutional research. Contents include preconference workshop reports, speeches, abstracts of papers, and reports of…

  13. InP and InGaAs Submicron Gate Microwave Power Transistors for 20 GHz Applications

    DTIC Science & Technology

    1991-06-01

    APLIC ( ATIO NS I:F ( 6 AUTHORiSI VI )N4Wh 7 ERFORMLNG ORGANIZATION NAME(IS) AND ADORE SCISI S Naval Ocean Systems Center San DiegEE, CA 92152-5300(0 9...electronic material for high frequency applications. In0 .5 3Ga. 4 7 As lattice matched to semi-insulating (SI) InP has higher low field mobility , peak...lattice parameter was < ±5 x 10- 4 . The InGaAs mobility at 300 K was 5500 cm 2/V sec. For the device fabrication, the samples were initially cleaned

  14. Measurement of the minority carrier diffusion length and edge surface-recombination velocity in InP

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Hakimzadeh, Roshanak

    1993-01-01

    A scanning electron microscope (SEM) was used to measure the electron (minority carrier) diffusion length (L(sub n)) and the edge surface-recombination velocity (V(sub s)) in zinc-doped Czochralski-grown InP wafers. Electron-beam-induced current (EBIC) profiles were obtained in specimens containing a Schottky barrier perpendicular to the scanned (edge) surface. An independent technique was used to measure V(sub s), and these values were used in a theoretical expression for normalized EBIC. A fit of the experimental data with this expression enabled us to determine L(sub n).

  15. Research review: Social motivation and oxytocin in autism--implications for joint attention development and intervention.

    PubMed

    Stavropoulos, Katherine K M; Carver, Leslie J

    2013-06-01

    The social motivation hypothesis (SMH) suggests that individuals with autism spectrum disorders (ASD) are less intrinsically rewarded by social stimuli than their neurotypical peers. This difference in social motivation has been posited as a factor contributing to social deficits in ASD. Social motivation is thought to involve the neuropeptide oxytocin. Here, we review the evidence for oxytocin effects in ASD, and discuss its potential role in one important social cognitive behavior. Systematic searches were conducted using the PsychINFO and MEDLINE databases and the search terms 'oxytocin' and 'autism'; the same databases were used for separate searches for 'joint attention', 'intervention', and 'autism', using the same inclusion criteria as an earlier 2011 review but updating it for the period 2010 to October 2012. Several studies suggest that giving oxytocin to both individuals with ASD and neurotypical individuals can enhance performance on social cognitive tasks. Studies that have attempted to intervene in joint attention in ASD suggest that social motivation may be a particular obstacle to lasting effects. The review of the evidence for the SMH suggests a potential role for oxytocin in social motivation deficits in ASD. Because of its importance for later communicative and social development, the focus here is on implications of oxytocin and social motivation in the development of and interventions in joint attention. Joint attention is a central impairment in ASD, and as a result is the focus of several behavioral interventions. In describing this previous research on joint attention interventions in ASD, we pay particular attention to problems encountered in such studies, and propose ways that oxytocin may facilitate behavioral intervention in this area. For future research, integrating behavioral and pharmacological interventions (oxytocin administration) would be a worthwhile experimental direction to improve understanding of the role of oxytocin in ASD

  16. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    NASA Technical Reports Server (NTRS)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  17. Establishing a Research and Evaluation Capability for the Joint Medical Education and Training Campus.

    PubMed

    Kirby, Sheila Nataraj; Marsh, Julie A; Thie, Harry J

    2011-01-01

    In calling for the transformation of military medical education and training, the 2005 Base Realignment and Closure Commission recommended relocating basic and specialty enlisted medical training to a single site to take advantage of economies of scale and the opportunity for joint training. As a result, a joint medical education and training campus (METC) has been established at Fort Sam Houston, Texas. Two of METC's primary long-term goals are to become a high-performing learning organization and to seek accreditation as a community college. Such goals require a clear model of organizational improvement with well-defined metrics for measuring its performance and using research and evaluation to assess and improve that performance. Lessons learned from a review of practices at institutions with similar missions-such as community colleges, corporate universities, the UK's Defence Medical Education and Training Agency, and other federal agencies, such as the Veterans Health Administration-establish a clear need for an office of institutional research to help METC attain its organizational goals. They also provide useful recommendations regarding the METC office's structure, scope, and governance.

  18. Establishing a Research and Evaluation Capability for the Joint Medical Education and Training Campus

    PubMed Central

    Kirby, Sheila Nataraj; Marsh, Julie A.; Thie, Harry J.

    2011-01-01

    Abstract In calling for the transformation of military medical education and training, the 2005 Base Realignment and Closure Commission recommended relocating basic and specialty enlisted medical training to a single site to take advantage of economies of scale and the opportunity for joint training. As a result, a joint medical education and training campus (METC) has been established at Fort Sam Houston, Texas. Two of METC's primary long-term goals are to become a high-performing learning organization and to seek accreditation as a community college. Such goals require a clear model of organizational improvement with well-defined metrics for measuring its performance and using research and evaluation to assess and improve that performance. Lessons learned from a review of practices at institutions with similar missions—such as community colleges, corporate universities, the UK's Defence Medical Education and Training Agency, and other federal agencies, such as the Veterans Health Administration—establish a clear need for an office of institutional research to help METC attain its organizational goals. They also provide useful recommendations regarding the METC office's structure, scope, and governance. PMID:28083182

  19. 76 FR 8788 - National Nanotechnology Coordination Office; Bridging NanoEHS Research Efforts: A Joint US-EU...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office; Bridging NanoEHS Research Efforts: A Joint US-EU Workshop: Public Meeting AGENCY: National Nanotechnology Coordination Office, STPO. ACTION: Notice of public meeting. SUMMARY: The National Nanotechnology Coordination...

  20. High-temperature degradation-free rapid thermal annealing of GaAs and InP

    NASA Astrophysics Data System (ADS)

    Pearton, Stephen J.; Katz, Avishay; Geva, Michael

    1991-04-01

    Rapid thermal annealing of GaAs and InP within enclosed SiC-coated graphite susceptors is shown to eliminate slip formation during implant activation treatments and to provide much better protection against surface degradation at the edges of wafers compared to the more conventional proximity method. Two different types of susceptor were investigated-the first type must be charged with As or P prior to the annealing cycles while the second type incorporates small reservoirs into the susceptor which provide a continuous overpressure of the group V species. Degradation-free annealing of patterned metallized wafers is possible using the latter type of susceptor. The activation of Si and Be implants in GaAs by RTA is also discussed.

  1. Joint Task Force National Capital Region Medical: Integration of Education, Training, and Research

    DTIC Science & Technology

    2009-05-01

    Defense established the Joint Task Force National Capital Region Medical (JTF CapMed ) on the National Naval Medical Center campus in Bethesda, Maryland in...transfor- mation of military health services in the National Capital Area including education, training, and research activities. JTF CAPMED ...BACKGROUND JTF CapMed was established to lead the integration of mili- tary health care in the National Capital Region. The Command is charged with overseeing

  2. Development of InP solid state detector and liquid scintillator containing metal complex for measurement of pp/7Be solar neutrinos and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoshiyuki; Moriyama, Shigetaka

    2012-07-01

    A large volume solid state detector using a semi-insulating Indium Phosphide (InP) wafer have been developed for measurement of pp/7Be solar neutrinos. Basic performance such as the charge collection efficiency and the energy resolution were measured by 60% and 20%, respectively. In order to detect two gammas (115keV and 497keV) from neutrino capture, we have designed hybrid detector which consist InP detector and liquid xenon scintillator for IPNOS experiment. New InP detector with thin electrode (Cr 50Å- Au 50Å). For another possibility, an organic liquid scintillator containing indium complex and zirconium complex were studied for a measurement of low energy solar neutrinos and neutrinosless double beta decay, respectively. Benzonitrile was chosen as a solvent because of good solubility for the quinolinolato complexes (2 wt%) and of good light yield for the scintillation induced by gamma-ray irradiation. The photo-luminescence emission spectra of InQ3 and ZrQ4 in benzonitrile was measured and liquid scintillator cocktail using InQ3 and ZrQ4 (50mg) in benzonitrile solutions (20 mL) with secondary scintillators with PPO (100mg) and POPOP (10mg) was made. The energy spectra of incident gammas were measured, and they are first results of the gamma-ray energy spectra using luminescent of metal complexes.

  3. Solid State Research, 1975:4

    DTIC Science & Technology

    1975-11-15

    2.8kA/cm for broad- area devices, has been achieved for Ga. In As, _ P /inP double-heterostructure 1 -x x 1 -y y diode lasers emitting ... LIGHT (b) reverse-biasing the p -n~ junction). This should facilitate the fabrication of modulators and switches using electroabsorption and...temperature operation of Ga In As, P /inP double-heterostructure (DH) diode lasers has been achieved. Broad-area devices emitting at 1.1

  4. Kinetics of low pressure CVD growth of SiO2 on InP and Si

    NASA Technical Reports Server (NTRS)

    Iyer, R.; Lile, D. L.

    1988-01-01

    The kinetics of low pressure CVD growth of SiO2 from SiH4 and O2 has been investigated for the case of an indirect (remote) plasma process. Homogeneous (gas phase) and heterogeneous operating ranges have been experimentally identified. The process was shown to be consistent within the heterogeneous surface-reaction dominated range of operation. A kinetic rate equation is given for growth at 14 W RF power input and 400 mtorr total pressure on both InP and Si substrates. The process exhibits an activation energy of 8.4 + or - 0.6 kcal/mol.

  5. A 311-GHz Fundamental Oscillator Using InP HBT Technology

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Fung, King Man; Samoska, Lorene; Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, W.R.

    2010-01-01

    This oscillator uses a single-emitter 0.3- m InP heterojunction bipolar transistor (HBT) device with maximum frequency of oscillation (fmax) greater than 500 GHz. Due to high conductor and substrate losses at submillimeterwave frequencies, a primary challenge is to efficiently use the intrinsic device gain. This was done by using a suitable transmission-line media and circuit topology. The passive components of the oscillator are realized in a twometal process with benzocyclobutene (BCB) used as the primary transmission line dielectric. The circuit was designed using microstrip transmission lines. The oscillator is implemented in a common-base topology due to its inherent instability, and the design includes an on-chip resonator, outputmatching circuitry, and an injection-locking port, the port being used to demonstrate the injection-locking prin ciple. A free-running frequency of 311.6 GHz has been measured by down-converting the signal. Ad di tionally, injection locking has been successfully demonstrated with up to 17.8 dB of injection-locking gain. The injection-locking reference signal is generated using a 2 20 GHz frequency synthesizer, followed by a doubler, active tripler, a W-band amplifier, and then a passive tripler. Therefore, the source frequency is multiplied 18 times to obtain a signal above 300 GHz that can be used to injection lock the oscillator. Measurement shows that injection locking has improved the phase noise of the oscillator and can be also used for synchronizing a series of oscillators. A signal conductor is implemented near the BCP -InP interface and the topside of the BCB layer is fully metallized as a signal ground. Because the fields are primarily constrained in the lower permittivity BCB region, this type of transmission line is referred to as an inverted microstrip. In addition, both common-emitter and commonbase circuits were investigated to determine optimum topology for oscillator design. The common -base topology required smaller

  6. Space Photovoltaic Research and Technology 1995

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  7. Space Photovoltaic Research and Technology 1995

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1996-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  8. Research on the Implementation of the NASA Joint Sponsored Research Program and other Innovative Mechanism for Commercializing NASA Funded Technologies

    NASA Technical Reports Server (NTRS)

    Robbins, Karen Risa

    1997-01-01

    A goal of the ERAST Program is the commercial application of technology resulting from the work if the ERAST Alliance. This goal is sufficiently primary to be called out in the recitals section of the ERAST Joint Sponsored Research Agreement. In support of this goal, two activities described below were commenced in 1996 to assess and explore commercial applications of UAV technologies relevant to the ERAST Alliance.

  9. Research Review: Social motivation and oxytocin in autism – implications for joint attention development and intervention

    PubMed Central

    Stavropoulos, Katherine K. M.; Carver, Leslie J.

    2013-01-01

    Background and Scope The social motivation hypothesis (SMH) suggests that individuals with autism spectrum disorders (ASD) are less intrinsically rewarded by social stimuli than their neurotypical peers. This difference in social motivation has been posited as a factor contributing to social deficits in ASD. Social motivation is thought to involve the neuropeptide oxytocin. Here, we review the evidence for oxytocin effects in ASD, and discuss its potential role in one important social cognitive behavior. Methods Systematic searches were conducted using the PsychINFO and MEDLINE databases and the search terms “oxytocin”, and “autism”; the same databases were used for separate searches for “joint attention”, “intervention”, and “autism”, using the same inclusion criteria as an earlier 2011 review but updating it for the period 2010 to October 2012. Findings Several studies suggest that giving oxytocin to both individuals with ASD and typically developing individuals can enhance performance on social cognitive tasks. Studies that have attempted to intervene in joint attention in ASD suggest that social motivation may be a particular obstacle to lasting effects. Conclusions The review of the evidence for the SMH suggests a potential role for oxytocin in social motivation deficits in ASD. Because of its importance for later communicative and social development, the focus here is on implications of oxytocin and social motivation in the development of and interventions in joint attention. Joint attention is a central impairment in ASD, and as a result is the focus of several behavioral interventions. In describing this previous research on joint attention interventions in ASD, we pay particular attention to problems encountered in such studies, and propose ways that oxytocin may facilitate behavioral intervention in this area. For future research, integrating behavioral and pharmacological interventions (oxytocin administration) would be a worthwhile

  10. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying

    2018-03-01

    In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.

  11. Polarization-analyzing circuit on InP for integrated Stokes vector receiver.

    PubMed

    Ghosh, Samir; Kawabata, Yuto; Tanemura, Takuo; Nakano, Yoshiaki

    2017-05-29

    Stokes vector modulation and direct detection (SVM/DD) has immense potentiality to reduce the cost burden for the next-generation short-reach optical communication networks. In this paper, we propose and demonstrate an InGaAsP/InP waveguide-based polarization-analyzing circuit for an integrated Stokes vector (SV) receiver. By transforming the input state-of-polarization (SOP) and projecting its SV onto three different vectors on the Poincare sphere, we show that the actual SOP can be retrieved by simple calculation. We also reveal that this projection matrix has a flexibility and its deviation due to device imperfectness can be calibrated to a certain degree, so that the proposed device would be fundamentally robust against fabrication errors. A proof-of-concept photonic integrated circuit (PIC) is fabricated on InP by using half-ridge waveguides to successfully demonstrate detection of different SOPs scattered on the Poincare sphere.

  12. Modeling of InP metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Black, Linda R.; Clark, Ivan O.; Kui, J.; Jesser, William A.

    1991-01-01

    The growth of InP by metalorganic chemical vapor deposition (MOCVD) in a horizontal reactor is being modeled with a commercially available computational fluid dynamics modeling code. The mathematical treatment of the MOCVD process has four primary areas of concern: 1) transport phenomena, 2) chemistry, 3) boundary conditions, and 4) numerical solution methods. The transport processes involved in CVD are described by conservation of total mass, momentum, energy, and atomic species. Momentum conservation is described by a generalized form of the Navier-Stokes equation for a Newtonian fluid and laminar flow. The effect of Soret diffusion on the transport of particular chemical species and on the predicted deposition rate is examined. Both gas-phase and surface chemical reactions are employed in the model. Boundary conditions are specified at the inlet and walls of the reactor for temperature, fluid flow and chemical species. The coupled set of equations described above is solved by a finite difference method over a nonuniform rectilinear grid in both two and three dimensions. The results of the 2-D computational model is presented for gravity levels of zero- and one-g. The predicted growth rates at one-g are compared to measured growth rates on fused silica substrates.

  13. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    NASA Astrophysics Data System (ADS)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  14. The joint flanker effect and the joint Simon effect: On the comparability of processes underlying joint compatibility effects.

    PubMed

    Dittrich, Kerstin; Bossert, Marie-Luise; Rothe-Wulf, Annelie; Klauer, Karl Christoph

    2017-09-01

    Previous studies observed compatibility effects in different interference paradigms such as the Simon and flanker task even when the task was distributed across two co-actors. In both Simon and flanker tasks, performance is improved in compatible trials relative to incompatible trials if one actor works on the task alone as well as if two co-actors share the task. These findings have been taken to indicate that actors automatically co-represent their co-actor's task. However, recent research on the joint Simon and joint flanker effect suggests alternative non-social interpretations. To which degree both joint effects are driven by the same underlying processes is the question of the present study, and it was scrutinized by manipulating the visibility of the co-actor. While the joint Simon effect was not affected by the visibility of the co-actor, the joint flanker effect was reduced when participants did not see their co-actors but knew where the co-actors were seated. These findings provide further evidence for a spatial interpretation of the joint Simon effect. In contrast to recent claims, however, we propose a new explanation of the joint flanker effect that attributes the effect to an impairment in the focusing of spatial attention contingent on the visibility of the co-actor.

  15. Numerical analysis and experimental research of the rubber boot of the joint drive vehicle

    NASA Astrophysics Data System (ADS)

    Ziobro, Jan

    2016-04-01

    The article presents many numerical studies and experimental research of the drive rubber boot of the joint drive vehicle. Performance requirements have been discussed and the required coefficients of the mathematical model for numerical simulation have been determined. The behavior of living in MSC.MARC environment was examined. In the analysis the following have been used: hyperplastic two-parameter model of the Mooney-Rivlin material, large displacements procedure, safe contact condition, friction on the sides of the boots. 3D numerical model of the joint bootwas analyzed under influence of the forces: tensile, compressive, centrifugal and angular. Numerous results of studies have been presented. An appropriate test stand was built and comparison of the results of the numerical analysis and the results of experimental studies was made. Numerous requests and recommendations for utilitarian character have been presented.

  16. Pressure relief and other joint rehabilitation techniques

    DOT National Transportation Integrated Search

    1987-02-01

    A study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the following for each...

  17. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui

    2005-01-01

    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  18. Enhanced Photocatalytic Reduction of CO2 to CO through TiO2 Passivation of InP in Ionic Liquids.

    PubMed

    Zeng, Guangtong; Qiu, Jing; Hou, Bingya; Shi, Haotian; Lin, Yongjing; Hettick, Mark; Javey, Ali; Cronin, Stephen B

    2015-09-21

    A robust and reliable method for improving the photocatalytic performance of InP, which is one of the best known materials for solar photoconversion (i.e., solar cells). In this article, we report substantial improvements (up to 18×) in the photocatalytic yields for CO2 reduction to CO through the surface passivation of InP with TiO2 deposited by atomic layer deposition (ALD). Here, the main mechanisms of enhancement are the introduction of catalytically active sites and the formation of a pn-junction. Photoelectrochemical reactions were carried out in a nonaqueous solution consisting of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4), dissolved in acetonitrile, which enables CO2 reduction with a Faradaic efficiency of 99% at an underpotential of +0.78 V. While the photocatalytic yield increases with the addition of the TiO2 layer, a corresponding drop in the photoluminescence intensity indicates the presence of catalytically active sites, which cause an increase in the electron-hole pair recombination rate. NMR spectra show that the [EMIM](+) ions in solution form an intermediate complex with CO2(-), thus lowering the energy barrier of this reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Doping inhomogeneities and behavior of compensation of n-type GaAs and InP

    NASA Astrophysics Data System (ADS)

    Wruck, D.; Knauer, A.

    1988-11-01

    A comparison was made of the distributions of Sn and of the chalcogens S and Se in InP and GaAs, determined from infrared absorption and the Hall effect. An analysis was made of the possible cause of the difference between the values of the degree of compensation determined by the two methods.

  20. Report from the Third Annual Symposium of the RIKEN-Max Planck Joint Research Center for Systems Chemical Biology.

    PubMed

    Brunschweiger, Andreas

    2014-08-15

    The third Annual Symposium of the RIKEN-Max Planck Joint Research Center for Systems Chemical Biology was held at Ringberg castle, May 21-24, 2014. At this meeting 45 scientists from Japan and Germany presented the latest results from their research spanning a broad range of topics in chemical biology and glycobiology.

  1. Wide bandgap, strain-balanced quantum well tunnel junctions on InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumb, M. P.; US Naval Research Laboratory, Washington, DC 20375; Yakes, M. K.

    In this work, the electrical performance of strain-balanced quantum well tunnel junctions with varying designs is presented. Strain-balanced quantum well tunnel junctions comprising compressively strained InAlAs wells and tensile-strained InAlAs barriers were grown on InP substrates using solid-source molecular beam epitaxy. The use of InAlAs enables InP-based tunnel junction devices to be produced using wide bandgap layers, enabling high electrical performance with low absorption. The impact of well and barrier thickness on the electrical performance was investigated, in addition to the impact of Si and Be doping concentration. Finally, the impact of an InGaAs quantum well at the junction interfacemore » is presented, enabling a peak tunnel current density of 47.6 A/cm{sup 2} to be realized.« less

  2. Formation of Size- and Position-Controlled Nanometer Size Pt Dots on GaAs and InP Substrates by Pulsed Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Sato, Taketomo; Kaneshiro, Chinami; HiroshiOkada, HiroshiOkada; Hasegawa, Hideki

    1999-04-01

    Attempts were made to form regular arrays of size- andposition-controlled Pt-dots on GaAs and InP by combining an insitu electrochemical process with the electron beam (EB)lithography. This utilizes the precipitation of Pt nano-particles atthe initial stage of electrodeposition. First, electrochemicalconditions were optimized in the mode of self-assembled dot arrayformation on unpatterned substrates. Minimum in-plane dot diameters of22 nm and 26 nm on GaAs and InP, respectively, were obtained underthe optimal pulsed mode. Then, Pt dots were selectively formed onpatterned substrates with open circular windows formed by EBlithography, thereby realizing dot-position control. The Pt dot wasfound to have been deposited at the center of each open window, andthe in-plane diameter of the dot could be controlled by the number,width and period of the pulse-waveform applied to substrates. Aminimum diameter of 20 nm was realized in windows with a diameter of100 nm, using a single pulse. Current-voltage (I-V)measurements using an atomic force microscopy (AFM) system with aconductive probe indicated that each Pt dot/n-GaAs contact possessed ahigh Schottky barrier height of about 1 eV.

  3. The German joint research project "concepts for future gravity satellite missions"

    NASA Astrophysics Data System (ADS)

    Reubelt, Tilo; Sneeuw, Nico; Fichter, Walter; Müller, Jürgen

    2010-05-01

    Within the German joint research project "concepts for future gravity satellite missions", funded by the Geotechnologies programme of the German Federal Ministry of Education and Research, options and concepts for future satellite missions for precise (time-variable) gravity field recovery are investigated. The project team is composed of members from science and industry, bringing together experts in geodesy, satellite systems, metrology, sensor technology and control systems. The majority of team members already contributed to former gravity missions. The composition of the team guarantees that not only geodetic aspects and objectives are investigated, but also technological and financial constraints are considered. Conversely, satellite, sensor and system concepts are developed and improved in a direct exchange with geodetic and scientific claims. The project aims to develop concepts for both near and mid-term future satellite missions, taking into account e.g. advanced satellite formations and constellations, improved orbit design, innovative metrology and sensor systems and advances in satellite systems.

  4. Differential InP HEMT MMIC Amplifiers Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene

    2009-01-01

    Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have

  5. Effects of joints in truss structures

    NASA Technical Reports Server (NTRS)

    Ikegami, R.

    1988-01-01

    The response of truss-type structures for future space applications, such as Large Deployable Reflector (LDR), will be directly affected by joint performance. Some of the objectives of research at BAC were to characterize structural joints, establish analytical approaches that incorporate joint characteristics, and experimentally establish the validity of the analytical approaches. The test approach to characterize joints for both erectable and deployable-type structures was based upon a Force State Mapping Technique. The approach pictorially shows how the nonlinear joint results can be used for equivalent linear analysis. Testing of the Space Station joints developed at LaRC (a hinged joint at 2 Hz and a clevis joint at 2 Hz) successfully revealed the nonlinear characteristics of the joints. The Space Station joints were effectively linear when loaded to plus or minus 500 pounds with a corresponding displacement of about plus or minus 0.0015 inch. It was indicated that good linear joints exist which are compatible with errected structures, but that difficulty may be encountered if nonlinear-type joints are incorporated in the structure.

  6. Choosing sheep (Ovis aries) as animal model for temporomandibular joint research: Morphological, histological and biomechanical characterization of the joint disc.

    PubMed

    Angelo, D F; Morouço, P; Alves, N; Viana, T; Santos, F; González, R; Monje, F; Macias, D; Carrapiço, B; Sousa, R; Cavaco-Gonçalves, S; Salvado, F; Peleteiro, C; Pinho, M

    2016-12-01

    Preclinical trials are essential to the development of scientific technologies. Remarkable molecular and cellular research has been done using small animal models. However, significant differences exist regarding the articular behavior between these models and humans. Thus, large animal models may be more appropriate to perform trials involving the temporomandibular joint (TMJ). The aim of this work was to make a morphological (anatomic dissection and white light 3D scanning system), histological (TMJ in bloc was removed for histologic analysis) and biomechanical characterization (tension and compression tests) of sheep TMJ comparing the obtained results with human data. Results showed that sheep processus condylaris and fossa mandibularis are anatomically similar to the same human structures. TMJ disc has an elliptical perimeter, thinner in the center than in periphery. Peripheral area acts as a ring structure supporting the central zone. The disc cells display both fibroblast and chondrocyte-like morphology. Marginal area is formed by loose connective tissue, with some chondrocyte-like cells and collagen fibers in diverse orientations. Discs obtained a tensile modulus of 3.97±0.73MPa and 9.39±1.67MPa, for anteroposterior and mediolateral assessment. The TMJ discs presented a compressive modulus (E) of 446.41±5.16MPa and their maximum stress value (σmax) was 18.87±1.33MPa. Obtained results suggest that these animals should be considered as a prime model for TMJ research and procedural training. Further investigations in the field of oromaxillofacial surgery involving TMJ should consider sheep as a good animal model due to its resemblance of the same joint in humans. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Space Photovoltaic Research and Technology Conference

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Eleventh Space Photovoltaic Research and Technology conference was held at NASA Lewis Research Center from May 7 to 9, 1991. The papers and workshop summaries presented here report remarkable progress on a wide variety of approaches in space photovoltaics, both near and far term applications. Papers were presented in a variety of technical areas, including multijunction cell technology, GaAs and InP cells, system studies, cell and array development, and photovoltaics for conversion of laser radiation. Three workshops were held to discuss thin film cell development, III-V cell development, and space environmental effects.

  8. Physiological effects of oral glucosamine on joint health: current status and consensus on future research priorities

    PubMed Central

    2013-01-01

    The aim of this paper was to provide an overview of the current knowledge and understanding of the potential beneficial physiological effects of glucosamine (GlcN) on joint health. The objective was to reach a consensus on four critical questions and to provide recommendations for future research priorities. To this end, nine scientists from Europe and the United States were selected according to their expertise in this particular field and were invited to participate in the Hohenheim conference held in August 2011. Each expert was asked to address a question that had previously been posed by the chairman of the conference. Based on a systematic review of the literature and the collection of recent data, the experts documented the effects of GlcN on cartilage ageing, metabolic/kinetic and maintenance of joint health as well as reduction of risk of OA development. After extensive debate and discussion the expert panel addressed each question and a general consensus statement was developed, agreeing on the current state-of-the-art and future areas for basic and clinical studies. This paper summarizes the available evidence for beneficial effects of GlcN on joint health and proposes new insight into the design of future clinical trials aimed at identifying beneficial physiological effect of GlcN on joint tissues. PMID:23531101

  9. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    PubMed Central

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-01-01

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714

  10. Research on joint parameter inversion for an integrated underground displacement 3D measuring sensor.

    PubMed

    Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie

    2015-04-13

    Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0~30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor.

  11. Pressure relief and other joint rehabilitation techniques : appendices

    DOT National Transportation Integrated Search

    1987-02-01

    Appendices of a study of four major concrete pavement joint rehabilitation techniques has been conducted, including: pressure relief joints, full-depth repairs, partial-depth repairs and joint resealing. The products of this research include the foll...

  12. Microbiology and Biogeochemical Study of Underground Research Tunnel for the Geological Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Oh, J.; Seo, H.; Rhee, S.

    2007-12-01

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe- metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal- reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI.

  13. High and Low Energy Proton Radiation Damage in p/n InP MOCVD Solar Cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irv; Scheiman, Dave; Vargas-Aburto, Carlos; Uribe, Roberto

    1995-01-01

    InP p(+)/n/n(+) solar cells, fabricated by metal organic chemical vapor deposition, (MOCVD) were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The power output degradation, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton-irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 MeV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton-irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a deep level transient spectroscopy (DLTS) study of the irradiated samples, the minority carrier defects H4 and H5 at E(sub v) + 0.33 and E(sub v) + 0.52 eV and the majority carrier defects E7 and El0 at E(sub c) - 0.39 and E(sub c) - 0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect El0, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  14. High and low energy proton radiation damage in p/n InP MOCVD solar cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos

    1995-01-01

    InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  15. Gulf Coast Joint Venture - Contact Us

    Science.gov Websites

    Contact us Gulf Coast Joint Venture Wetland and Aquatic Research Center 700 Cajundome Blvd. Lafayette, LA Coast Joint Venture - 700 Cajundome Blvd. - Lafayette, LA 70506 Phone: 337-266-8801 Fax: 337-266-8800

  16. Optical investigation of InAs quantum dashes grown on InP(0 0 1) vicinal substrate

    NASA Astrophysics Data System (ADS)

    Besahraoui, F.; Bouslama, M.; Saidi, F.; Bouzaiene, L.; Hadj Alouane, M. H.; Maaref, H.; Chauvin, N.; Gendry, M.; Lounis, Z.; Ghaffour, M.

    2014-01-01

    We investigate with photoluminescence (PL) measurements the optoelectronic properties of self-organized InAs quantum dots (QDs) grown on nominal InP(0 0 1) substrate. InAs/InP(0 0 1) QDs are grown by Molecular Beam Epitaxy (MBE) method with optimized conditions in Stranski-Krastanov regime. A lateral coupling behavior was shown by photoluminescence spectroscopy. This phenomena is considered as a degradation source of the optoelectronic properties of InAs/InP(0 0 1) QDs used in lasers applications. In order to overcome this disadvantage behavior, we have studied the optical properties of InAs quantum islands (QIs) grown on vicinal InP(0 0 1) with 2° off miscut angle toward the [1 1 0] direction. From Polarized Photoluminescence (PPL) measurements, we have deduced that InAs quantum nanostructures have quantum dashes (QDas) form elongated in [1-10] direction. From excitation density PL measurements, we have evidenced that the different observed PL peaks are attributed to the emission of InAs QDas of different size. The lateral coupling behavior is completely eliminated in the case of this sample. The temperature-dependent PL measurements show a good thermal stability and an emission wavelength at room temperature around 1.55 μm of the vicinal sample. All these properties prove that this sample possess favorable characteristics for microlasers based devices functioning at room temperature and for optical telecommunication with long range weapon. The broad emission range observed at 300 K of the vicinal sample gives the possibility to use it as an active zone in solar cells and in infrared photodectectors of high optical gain and excellent sensitivity on a wide energy range.

  17. Demonstration of a Sub-Millimeter Wave Integrated Circuit (S-MMIC) using InP HEMT with a 35-nm Gate

    NASA Technical Reports Server (NTRS)

    Deal, W. R.; Din, S.; Padilla, J.; Radisic, V.; Mei, G.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Gaier, T.; hide

    2006-01-01

    In this paper, we present two single stage MMIC amplifiers with the first demonstrating a measured S21 gain of 3-dB at 280-GHz and the second demonstrating 2.5-dB gain at 300- GHz, which is the threshold of the sub-millimeter wave regime. The high-frequency operation is enabled by a high-speed InP HEMT with a 35-nm gate. This is the first demonstrated S21 gain at sub-millimeter wave frequencies in a MMIC.

  18. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  19. Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection.

    PubMed

    Kwack, Myung-Joon; Tanemura, Takuo; Higo, Akio; Nakano, Yoshiaki

    2012-12-17

    A strictly non-blocking 8 × 8 switch for high-speed WDM optical interconnection is realized on InP by using the phased-array scheme for the first time. The matrix switch architecture consists of over 200 functional devices such as star couplers, phase-shifters and so on without any waveguide cross-section. We demonstrate ultra-broad optical bandwidth covering the entire C-band through several Input/Output ports combination with extinction ratio performance of more than 20dB. Also, nanoseconds reconfiguration time was successfully achieved by dynamic switching experiment. Error-free transmission was verified for 40-Gbps (10-Gbps × 4ch) WDM signal.

  20. The Scintillation Prediction Observations Research Task (SPORT) Mission

    NASA Technical Reports Server (NTRS)

    Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Denardin, Clezio; hide

    2017-01-01

    SPORT is a science mission using a 6U CubeSat and integrated ground network that will (1) advance understanding and (2) enable improved predictions of scintillation occurrence that impact GPS signals and radio communications. This is the science of Space Weather. SPORT is an international partnership with NASA, U.S. institutions, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA).

  1. Native oxides formation and surface wettability of epitaxial III-V materials: The case of InP and GaAs

    NASA Astrophysics Data System (ADS)

    Gocalinska, A.; Rubini, S.; Pelucchi, E.

    2016-10-01

    The time dependent transition from hydrophobic to hydrophilic states of the metalorganic vapour phase epitaxy (MOVPE) grown InP, GaAs and InAs is systematically documented by contact angle measurements. Natural oxides forming on the surfaces of air-exposed materials, as well as the results of some typical wet chemical process to remove those oxides, were studied by X-ray photoemission spectroscopy (XPS), revealing, surprisingly, a fundamental lack of strong correlations between the surface oxide composition and the reported systematic changes in hydrophobicity.

  2. Research on Joint Sealant Materials to Improve Installation and Performance : Final Report

    DOT National Transportation Integrated Search

    2017-12-01

    The objectives of this project were to 1) identify failure modes and their mechanisms in joint seals in Texas, and to 2) identify what needs to be done to minimize the failures and improve joint seal performance. To achieve these objectives efficient...

  3. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schneider, J.; Schmidt, S.; Weinbruch, S.; Ebert, M.

    2015-04-01

    In the present work, three different techniques to separate ice-nucleating particles (INPs) as well as ice particle residuals (IPRs) from non-ice-active particles are compared. The Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI) sample ice particles from mixed-phase clouds and allow after evaporation in the instrument for the analysis of the residuals. The Fast Ice Nucleus Chamber (FINCH) coupled with the Ice Nuclei Pumped Counterflow Virtual Impactor (IN-PCVI) provides ice-activating conditions to aerosol particles and extracts the activated particles for analysis. The instruments were run during a joint field campaign which took place in January and February 2013 at the High Alpine Research Station Jungfraujoch (Switzerland). INPs and IPRs were analyzed offline by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Online analysis of the size and chemical composition of INP activated in FINCH was performed by laser ablation mass spectrometry. With all three INP/IPR separation techniques high abundances (median 20-70%) of instrumental contamination artifacts were observed (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). After removal of the instrumental contamination particles, silicates, Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types obtained by all three techniques. In addition, considerable amounts (median abundance mostly a few percent) of soluble material (e.g., sea salt, sulfates) were observed. As these soluble particles are often not expected to act as INP/IPR, we consider them as potential measurement artifacts. Minor types of INP/IPR include soot and Pb-bearing particles. The Pb-bearing particles are mainly present as an internal mixture with other particle types. Most samples showed a maximum of the INP/IPR size distribution at 200

  4. Surrogate Joint Aerial Layer Network (JALN) Experiment: Applications of Commercial-Off-The-Shelf Technologies for Researching Future JALN Challenges

    DTIC Science & Technology

    2014-12-01

    CHALLENGES DECEMBER 2014 TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR FORCE RESEARCH LABORATORY INFORMATION...JOINT AERIAL LAYER NETWORK (JALN) EXPERIMENT: APPLICATION OF COMMERCIAL-OFF-THE-SHELF TECHNOLOGIES FOR RESEARCHING FUTURE JALN CHALLENGES 5a... challenge JALN developers. The use of low-cost COTS wireless technology is found to be a suitable surrogate for military hardware for investigating

  5. Joint research effort on vibrations of twisted plates, phase 1: Final results

    NASA Technical Reports Server (NTRS)

    Kielb, R. E.; Leissa, A. W.; Macbain, J. C.; Carney, K. S.

    1985-01-01

    The complete theoretical and experimental results of the first phase of a joint government/industry/university research study on the vibration characteristics of twisted cantilever plates are given. The study is conducted to generate an experimental data base and to compare many different theoretical methods with each other and with the experimental results. Plates with aspect ratios, thickness ratios, and twist angles representative of current gas turbine engine blading are investigated. The theoretical results are generated by numerous finite element, shell, and beam analysis methods. The experimental results are obtained by precision matching a set of twisted plates and testing them at two laboratories. The second and final phase of the study will concern the effects of rotation.

  6. Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research: scientific and cultural exchange in undergraduate engineering.

    PubMed

    Wisneski, Andrew D; Huang, Lixia; Hong, Bo; Wang, Xiaoqin

    2011-01-01

    A model for an international undergraduate biomedical engineering research exchange program is outlined. In 2008, the Johns Hopkins University in collaboration with Tsinghua University in Beijing, China established the Tsinghua-Johns Hopkins Joint Center for Biomedical Engineering Research. Undergraduate biomedical engineering students from both universities are offered the opportunity to participate in research at the overseas institution. Programs such as these will not only provide research experiences for undergraduates but valuable cultural exchange and enrichment as well. Currently, strict course scheduling and rigorous curricula in most biomedical engineering programs may present obstacles for students to partake in study abroad opportunities. Universities are encouraged to harbor abroad opportunities for undergraduate engineering students, for which this particular program can serve as a model.

  7. 75 FR 20002 - Notice Pursuant to the National Cooperative Research and Production Act of 1993 Joint Venture...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... demonstrate the production of low-cost, high-quality metallic and semiconducting single wall carbon nanotube... Production Act of 1993 Joint Venture Under Tip Award Number: 7ONANB1OHOO1 Notice is hereby given that, on February 3, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993...

  8. Joint Hampton-Michigan Program for Training Minority and Women Researchers. Volume II of II Volumes. Final Report.

    ERIC Educational Resources Information Center

    Michigan Univ., Ann Arbor. School of Education.

    The papers presented in this volume are the team research reports of the Joint Hampton-Michigan Program conducted in 1979-1980 for junior faculty members of the Hampton Institute (Virginia) and graduate students and faculty members of the University of Michigan. The titles of the papers are: (1) Social and Economic Implications of Teacher Training…

  9. Ice Nucleation Activity of Black Carbon and Organic Aerosol Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Rauker, A. M.; Schill, G. P.; Hill, T. C. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2017-12-01

    Ice-nucleating particles (INPs) must be present in clouds warmer than approximately -36 °C for initial ice crystal formation to occur. Although rare, they modify the lifetime, albedo and precipitation rates of clouds. Black carbon (BC) particles are present in the upper troposphere, and have been implicated as possible INPs, but recent research has not led to a consensus on their importance as INPs. Biomass burning is known to be a source of INPs as well as a major contributor to BC concentrations. Preliminary research from both prescribed burns (Manhattan, Kanas) and wildfires (Boise, Idaho and Weldon, Colorado), using the Colorado State University Continuous Flow Diffusion Chamber (CSU-CFDC) coupled to a Single Particle Soot Photometer (SP2), suggest that BC contributed ≤ 10% to INP concentrations in biomass burning conditions. To evaluate the identity of non-BC as an INP, filters were collected downwind from the same prescribed burns and wildfires, and particles re-suspended in water were subjected to the immersion freezing method to quantify INP concentrations. The contributions of biological and total organic species to INP concentrations were determined through heat and hydrogen peroxide pre-treatments. Total INPs ranged from 0.88 - 31 L-1 air at -20 °C with 82 - 99 % of the INPs at that temperature being organic (i.e., deactivated by H2O2 digestion). Results are consistent with CSU-CFDC-SP2 derived rBC INP contributions from the same fires. The results from the study also support previous findings that prescribed burns and wildfires produce plumes enriched in INPs.

  10. Recent developments in indium phosphide space solar cell research

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Weinberg, Irving

    1987-01-01

    Recent developments and progress in indium phosphide solar cell research for space application are reviewed. Indium phosphide homojunction cells were fabricated in both the n+p and p+n configurations with total area efficiencies of 17.9 and 15.9% (air mass 0 and 25 C) respectively. Organometallic chemical vapor deposition, liquid phase epitaxy, ion implantation and diffusion techniques were employed in InP cell fabrication. A theoretical model of a radiation tolerant, high efficiency homojunction cell was developed. A realistically attainable AMO efficiency of 20.5% was calculated using this model with emitter and base doping of 6 x 10 to the 17th power and 5 x 10 the the 16th power/cu cm respectively. Cells of both configurations were irradiated with 1 MeV electrons and 37 MeV protons. For both proton and electron irradiation, the n+p cells are more radiation resistant at higher fluences than the p+n cells. The first flight module of four InP cells was assembled for the Living Plume Shield III satellite.

  11. Torque Limit for Bolted Joint For Composites. Part B; Experimentation

    NASA Technical Reports Server (NTRS)

    Kostreva, Kristian M.

    2003-01-01

    Today, aerospace quality composite parts are generally made from either a unidirectional tape or a fabric prepreg form depending on the application. The matrix material, typically epoxy because of it dimensional stability, is pre-impregnated onto the fibers to ensure uniform distribution. Both of these composite forms are finding themselves used in applications where a joint is required. Two widely used joint methods are the classic mechanically fastened joint, and the contemporary bonded joint; however, the mechanically fastened joint is most commonly used by design engineers. A major portion of the research up-to-date about bolted composite joints has dealt with the inplane static load capacity. This work has helped to spawn standards dealing with filled-hole static joint strength. Other research has clearly shown that the clamp-up load in the mechanical fastener significantly affects the joint strength in a beneficial manner by reducing the bearing strength dependence of the composite laminate. One author reported a maximum increase in joint strength of 28%. This finding has helped to improve the reliability and efficiency of the joint in a composite structure.

  12. 75 FR 8116 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Joint Venture...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Production Act of 1993--Joint Venture Under Tip Award No. 70NANB10H009 Notice is hereby given that, on January 15, 2010, pursuant to Section 6(a) of the National Cooperative Research and Production Act of 1993... technologies for high- speed scrap sortation of mixed metals by alloy type, and for real-time, molten metal...

  13. Solder Joint Health Monitoring Testbed

    NASA Technical Reports Server (NTRS)

    Delaney, Michael M.; Flynn, James; Browder, Mark

    2009-01-01

    A method of monitoring the health of selected solder joints, called SJ-BIST, has been developed by Ridgetop Group Inc. under a Small Business Innovative Research (SBIR) contract. The primary goal of this research program is to test and validate this method in a flight environment using realistically seeded faults in selected solder joints. An additional objective is to gather environmental data for future development of physics-based and data-driven prognostics algorithms. A test board is being designed using a Xilinx FPGA. These boards will be tested both in flight and on the ground using a shaker table and an altitude chamber.

  14. Iron incorporation in InP layers using a ferrocene source in atmospheric pressure MOVPE

    NASA Astrophysics Data System (ADS)

    Robein, D.; Kazmierski, C.; Pougnet, A. M.; Rose, B.

    1991-02-01

    Iron incorporation into InP has been studied using an AP MOVPE method. A very good control of the iron doping has been obtained with a ferrocene diffusion cell source. Semi-insulating material with a resistivity as a high as 5 × 10 8 Ω cm has been measured on n-SI-n diodes with iron-doped 1 mum thick layers. A compensation activity of iron near 100% has been found. An iron incorporation activition energy of 2.5 eV has been determined below the solubility limit. The iron concentration was found to be proportional to the gas-phase ferrocene concentration and to follow an inverse square-root law under increasing phosphine flow. In order to explain the observed phenomena, an incorporation mechanism model is developed assuming a two-phosphorus vacancy— substitutional iron complex as the incorporated species.

  15. Knee joint replacement

    MedlinePlus

    ... Knee joint replacement - series References American Academy of Orthopedic Surgeons (AAOS) website. Treatment of osteoarthritis of the knee: evidence-based guideline 2nd edition (summary) . www.aaos.org/research/guidelines/TreatmentofOsteoarthritisoftheKneeGuideline.pdf . Updated May 18, 2013. Accessed ...

  16. From Joint Experimentation to Laissez-Faire: Transdisciplinary Innovation Research for the Institutional Strengthening of a Water Users Association in Khorezm, Uzbekistan

    ERIC Educational Resources Information Center

    Djanibekov, Nodir; Hornidge, Anna-Katharina; Ul-Hassan, Mehmood

    2012-01-01

    Purpose: This article assesses a participatory action and innovation research experience, in which project researchers, farmers and staff members of a local water users association (WUA) came together to: (a) jointly test and adapt a social mobilization and institutional strengthening approach according to the local context, and by doing so, to…

  17. The Research and Training Activities for the Joint Institute for Aeronautics and Acoustics

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian

    1995-01-01

    This proposal requests continued support for the program of activities to be undertaken by the Ames-Stanford Joint Institute for Aeronautics and Acoustics during the period 1 Oct. 1995 - 30 Sept. 1996. The emphasis in this program is on training and research in experimental and computational methods with application to aerodynamics, acoustics and the important interactions between them. The program comprises activities in active flow control, Large Eddy Simulation of jet noise, flap aerodynamics and acoustics and high lift modeling studies. During the proposed period there will be a continued emphasis on the interaction between NASA Ames, Stanford University and Industry, particularly in connection with the high lift activities.

  18. Unloading joints to treat osteoarthritis, including joint distraction.

    PubMed

    Lafeber, Floris P J G; Intema, Femke; Van Roermund, Peter M; Marijnissen, Anne C A

    2006-09-01

    Patients are increasingly becoming interested in nonpharmacologic approaches to manage their osteoarthritis. This review examines the recent literature on the potential beneficial effects of unloading joints in the treatment of osteoarthritis, with a focus on joint distraction. Mechanical factors are involved in the development and progression of osteoarthritis. If "loading" is a major cause in development and progression of osteoarthritis, then "unloading" may be able to prevent progression. There is evidence that unloading may be effective in reducing pain and slowing down structural damage. This review describes unloading by footwear and bracing (nonsurgical), unloading by osteotomy (surgical), and has a focus on unloading by joint distraction. Excellent reviews in all these three fields have been published over the past few years. Recent studies argue for the usefulness of a biomechanical approach to improve function and possibly reduce disease progression in osteoarthritis. To improve patient function and possibly reduce disease progression, a biomechanical approach should be considered in treating patients with osteoarthritis. Further research (appropriate high-quality clinical trials) and analysis (clinical as well as preclinical and fundamental) are still necessary, however, to understand, validate, and refine the different approaches of unloading to treat osteoarthritis.

  19. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  20. Cooperative Engineering as a Joint Action

    ERIC Educational Resources Information Center

    Joffredo-Le Brun, Sophie; Morellato, Mireille; Sensevy, Gérard; Quilio, Serge

    2018-01-01

    This paper describes some elements of a specific kind of design-based research, cooperative engineering. In the first part of the paper, we argue that cooperative engineering can be analyzed through a joint action framework. We first present some conceptual tools that the Joint Action Theory in Didactics proposes in order to understand didactic…

  1. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  2. Morphological and chemical evolution on InP(1 0 0) surface irradiated with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Qian, H. X.; Zhou, W.; Zheng, H. Y.; Lim, G. C.

    2005-12-01

    Single crystalline InP was ablated in air with p-polarized Ti:sapphire femtosecond laser at a fixed laser fluence of 82 mJ/cm 2. Ripples parallel to the laser polarization direction were found by scanning electron microscopy and atomic force microscopy to form for laser pulses ranging from 50 to 1000, whereas flower-like structures appeared for laser pulses of 10 4 and above. Analysis by X-ray photoelectron spectroscopy showed formation of indium and phosphorus oxides on the irradiated surface and the amounts of oxides increased with increasing number of laser pulses. The oxide formation is attributed to chemical reaction between the ultrafast laser ablation plume and oxygen in air, and formation of the flower-like structures is shown to be related to deposition of the oxides on the irradiated surface.

  3. Information technology as a tool for the Italian Institute of Social Security (INPS) in the management of social security and civil disability: Pro and cons.

    PubMed

    Sammicheli, Michele; Scaglione, Marcella

    2018-01-01

    We examine, from a medical-legal perspective, the pro and cons of the information technology procedures that the Italian Institute of Social Security (INPS) has implemented to manage the provision of social disability assistance, meaning that separate from the payment of pension contributions, being welfare, anchored to an administrative requirement by way of the compulsory payment of a minimum social security contribution.

  4. Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1999-01-01

    The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available un- der the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching an@ vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.

  5. Integrated InP frequency discriminator for Phase-modulated microwave photonic links.

    PubMed

    Fandiño, J S; Doménech, J D; Muñoz, P; Capmany, J

    2013-02-11

    We report the design, fabrication and characterization of an integrated frequency discriminator on InP technology for microwave photonic phase modulated links. The optical chip is, to the best of our knowledge, the first reported in an active platform and the first to include the optical detectors. The discriminator, designed as a linear filter in intensity, features preliminary SFDR values the range between 67 and 79 dB.Hz(2/3) for signal frequencies in the range of 5-9 GHz limited, in principle, by the high value of the optical losses arising from the use of several free space coupling devices in our experimental setup. As discussed, these losses can be readily reduced by the use of integrated spot-size converters improving the SFDR by 17.3 dB (84-96 dB.Hz(2/3)). Further increase up to a range of (104-116 dB.Hz(2/3)) is possible by reducing the system noise eliminating the EDFA employed in the setup and using a commercially available laser source providing higher output power and lower relative intensity noise. Other paths for improvement requiring a filter redesign to be linear in the optical field are also discussed.

  6. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barettin, Daniele, E-mail: Daniele.Barettin@uniroma2.it; Auf der Maur, Matthias; De Angelis, Roberta

    2015-03-07

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In{sub 0.48}Ga{sub 0.52 }P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateralmore » quantum-dot molecules. Continuum electromechanical, k{sup →}·p{sup →} bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.« less

  7. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Barettin, Daniele; Auf der Maur, Matthias; De Angelis, Roberta; Prosposito, Paolo; Casalboni, Mauro; Pecchia, Alessandro

    2015-03-01

    We report on numerical simulations of InP surface lateral quantum-dot molecules on In0.48Ga0.52P buffer, using a model strictly derived by experimental results by extrapolation of the molecules shape from atomic force microscopy images. Our study has been inspired by the comparison of a photoluminescence spectrum of a high-density InP surface quantum dot sample with a numerical ensemble average given by a weighted sum of simulated single quantum-dot spectra. A lack of experimental optical response from the smaller dots of the sample is found to be due to strong inter-dot strain fields, which influence the optoelectronic properties of lateral quantum-dot molecules. Continuum electromechanical, k →.p → bandstructure, and optical calculations are presented for two different molecules, the first composed of two dots of nearly identical dimensions (homonuclear), the second of two dots with rather different sizes (heteronuclear). We show that in the homonuclear molecule the hydrostatic strain raises a potential barrier for the electrons in the connection zone between the dots, while conversely the holes do not experience any barrier, which considerably increases the coupling. Results for the heteronuclear molecule show instead that its dots do not appear as two separate and distinguishable structures, but as a single large dot, and no optical emission is observed in the range of higher energies where the smaller dot is supposed to emit. We believe that in samples of such a high density the smaller dots result as practically incorporated into bigger molecular structures, an effect strongly enforced by the inter-dot strain fields, and consequently it is not possible to experimentally obtain a separate optical emission from the smaller dots.

  8. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    PubMed

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  9. Measurement of polarization dependence of two-photon absorption coefficient in InP using extended Z-scan technique for thick materials

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-03-01

    The two-photon absorption coefficient β in InP has been measured in the wavelength range of 1640 to 1800 nm by the Z-scan technique in relatively thick materials. The values of β have been evaluated from the fit to the equation including the spatial and temporal profiles of the focused Gaussian beam. The polarization dependence of β has also been measured. The dependence has been expressed very well by the expression of β with the imaginary part of the third-order nonlinear susceptibility tensor χ(3).

  10. Joint Center for Satellite Data Assimilation Overview and Research Activities

    NASA Astrophysics Data System (ADS)

    Auligne, T.

    2017-12-01

    In 2001 NOAA/NESDIS, NOAA/NWS, NOAA/OAR, and NASA, subsequently joined by the US Navy and Air Force, came together to form the Joint Center for Satellite Data Assimilation (JCSDA) for the common purpose of accelerating the use of satellite data in environmental numerical prediction modeling by developing, using, and anticipating advances in numerical modeling, satellite-based remote sensing, and data assimilation methods. The primary focus was to bring these advances together to improve operational numerical model-based forecasting, under the premise that these partners have common technical and logistical challenges assimilating satellite observations into their modeling enterprises that could be better addressed through cooperative action and/or common solutions. Over the last 15 years, the JCSDA has made and continues to make major contributions to operational assimilation of satellite data. The JCSDA is a multi-agency U.S. government-owned-and-operated organization that was conceived as a venue for the several agencies NOAA, NASA, USAF and USN to collaborate on advancing the development and operational use of satellite observations into numerical model-based environmental analysis and forecasting. The primary mission of the JCSDA is to "accelerate and improve the quantitative use of research and operational satellite data in weather, ocean, climate and environmental analysis and prediction systems." This mission is fulfilled through directed research targeting the following key science objectives: Improved radiative transfer modeling; new instrument assimilation; assimilation of humidity, clouds, and precipitation observations; assimilation of land surface observations; assimilation of ocean surface observations; atmospheric composition; and chemistry and aerosols. The goal of this presentation is to briefly introduce the JCSDA's mission and vision, and to describe recent research activities across various JCSDA partners.

  11. Body position reproducibility and joint alignment stability criticality on a muscular strength research device

    NASA Astrophysics Data System (ADS)

    Nunez, F.; Romero, A.; Clua, J.; Mas, J.; Tomas, A.; Catalan, A.; Castellsaguer, J.

    2005-08-01

    MARES (Muscle Atrophy Research and Exercise System) is a computerized ergometer for neuromuscular research to be flown and installed onboard the International Space Station in 2007. Validity of data acquired depends on controlling and reducing all significant error sources. One of them is the misalignment of the joint rotation axis with respect to the motor axis.The error induced on the measurements is proportional to the misalignment between both axis. Therefore, the restraint system's performance is critical [1]. MARES HRS (Human Restraint System) assures alignment within an acceptable range while performing the exercise (results: elbow movement:13.94mm+/-5.45, Knee movement: 22.36mm+/- 6.06 ) and reproducibility of human positioning (results: elbow movement: 2.82mm+/-1.56, Knee movement 7.45mm+/-4.8 ). These results allow limiting measurement errors induced by misalignment.

  12. Gait analysis and weight bearing in pre-clinical joint pain research.

    PubMed

    Ängeby Möller, Kristina; Svärd, Heta; Suominen, Anni; Immonen, Jarmo; Holappa, Johanna; Stenfors, Carina

    2018-04-15

    There is a need for better joint pain treatment, but development of new medication has not been successful. Pre-clinical models with readouts that better reflect the clinical situation are needed. In patients with joint pain, pain at rest and pain at walking are two major complaints. We describe a new way of calculating results from gait analysis using the CatWalk™ setup. Rats with monoarthritis induced by injection of Complete Freund's Adjuvant (CFA) intra-articularly into the ankle joint of one hind limb were used to assess gait and dynamic weight bearing. The results show that dynamic weight bearing was markedly reduced for the injected paw. Gait parameters such as amount of normal step sequences, walking speed and duration of step placement were also affected. Treatment with naproxen (an NSAID commonly used for inflammatory pain) attenuated the CFA-induced effects. Pregabalin, which is used for neuropathic pain, had no effect. Reduced dynamic weight bearing during locomotion, assessed and calculated in the way we present here, showed a dose-dependent and lasting normalization after naproxen treatment. In contrast, static weight bearing while standing (Incapacitance tester) showed a significant effect for a limited time only. Mechanical sensitivity (von Frey Optihairs) was completely normalized by naproxen, and the window for testing pharmacological effect disappeared. Objective and reproducible effects, with an endpoint showing face validity compared to pain while walking in patients with joint pain, are achieved by a new way of calculating dynamic weight bearing in monoarthritic rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spherical Joint Piston and Connecting Rod Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal

  14. [Advances on biomechanics and kinematics of sprain of ankle joint].

    PubMed

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kips, Ruth; Lindvall, Rachel; Eppich, Gary

    Representatives from the U.S. Department of Energy’s Office of Nuclear Smuggling Detection and Deterrence (NSDD) visited the Kazakhstan Institute of Nuclear Physics (INP) to discuss the results and conclusions of a joint sample analysis (CUP-2 uranium ore concentrate) between LLNL, INP and the Japan Atomic Energy Agency (JAEA) (Fig. 1). The U.S. delegation also met with the newly-appointed Director-General of the INP (S. Sakhiyev) who expressed his continued support for this collaboration. On the last day of the visit, the delegation toured the new medical isotope production facilities (which is expected to begin operation in a few months), as wellmore » as INP’s Nuclear Security Training Center (co-funded by DOE, the Defense Threat Reduction Initiative (DTRA) and the Kazakhstan government). Construction of the Nuclear Security Training Center is expected to be completed by the end of 2016.« less

  16. Brazil's remote sensing activities in the Eighties

    NASA Technical Reports Server (NTRS)

    Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.

    1985-01-01

    Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.

  17. Early rheumatoid disease. II. Patterns of joint involvement.

    PubMed Central

    Fleming, A; Benn, R T; Corbett, M; Wood, P H

    1976-01-01

    Data from the first research clinic visit (Fleming and others, 1976) have been subjected to factor analysis to identify early patterns of joint involvement. Nine patterns emerged. Two patterns, if present early, were found to have prognostic significance. An eventually more severe disease was associated with a pattern of large joint involvement (shoulder, elbow, wrist, knee) and a pattern based on metatarsophalangeal joints I and III. PMID:970995

  18. 2011 Joint Science Education Project: Research Experience in Polar Science

    NASA Astrophysics Data System (ADS)

    Wilkening, J.; Ader, V.

    2011-12-01

    The Joint Science Education Project (JSEP), sponsored by the National Science Foundation, is a two-part program that brings together students and teachers from the United States, Greenland, and Denmark, for a unique cross-cultural, first-hand experience of the realities of polar science field research in Greenland. During JSEP, students experienced research being conducted on and near the Greenland ice sheet by attending researcher presentations, visiting NSF-funded field sites (including Summit and NEEM field stations, both located on the Greenland ice sheet), and designing and conducting research projects in international teams. The results of two of these projects will be highlighted. The atmospheric project investigated the differences in CO2, UVA, UVB, temperature, and albedo in different Arctic microenvironments, while also examining the interaction between the atmosphere and water present in the given environments. It was found that the carbon dioxide levels varied: glacial environments having the lowest levels, with an average concentration of 272.500 ppm, and non-vegetated, terrestrial environments having the highest, with an average concentration of 395.143 ppm. Following up on these results, it is planned to further investigate the interaction of the water and atmosphere, including water's role in the uptake of carbon dioxide. The ecology project investigated the occurrence of unusual large blooms of Nostoc cyanobacteria in Kangerlussuaq area lakes. The water chemistry of the lakes which contained the cyanobacteria and the lakes that did not were compared. The only noticeable difference was of the lakes' acidity, lakes containing the blooms had an average pH value of 8.58, whereas lakes without the blooms had an average pH value of 6.60. Further investigation of these results is needed to determine whether or not this was a cause or effect of the cyanobacteria blooms. As a next step, it is planned to attempt to grow the blooms to monitor their effects on

  19. Interim guide for optimum joint performance of concrete pavements.

    DOT National Transportation Integrated Search

    2011-09-01

    The purpose of this guide is to help practitioners understand how to optimize concrete pavement joint performance through the identification, mitigation, and prevention of joint deterioration. It summarizes current knowledge from research and practic...

  20. Russian Tu-144LL SST Roll-Out for Joint NASA Research Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The modified Tu-144LL supersonic flying laboratory is rolled out of its hangar at the Zhukovsky Air Development Center near Moscow, Russia in March 1996 at the beginning of a joint U.S. - Russian high-speed flight research program. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The

  1. Facile Modulation of FLP Properties: A Phosphinylvinyl Grignard Reagent and Ga/P- and In/P2 -Based Frustrated Lewis Pairs.

    PubMed

    Backs, Jana; Lange, Merten; Possart, Josephine; Wollschläger, Agnes; Mück-Lichtenfeld, Christian; Uhl, Werner

    2017-03-06

    An Al/P-based frustrated Lewis pair (FLP) reacted with PhMgCl by an unexpected transmetalation and formation of a phosphinylvinyl Grignard reagent. This compound is well suited for the transfer of the basic FLP component to other Lewis acidic metal atoms and allowed the generation of a Ga/P and an In/P 2 FLP. The Ga FLP showed a behavior different to that of the corresponding Al FLP, the In FLP allowed the chelating coordination of an Au atom by Au-Cl bond activation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. From intricate to integrated: Biofabrication of articulating joints.

    PubMed

    Groen, Wilhelmina Margaretha; Diloksumpan, Paweena; van Weeren, Paul René; Levato, Riccardo; Malda, Jos

    2017-10-01

    Articulating joints owe their function to the specialized architecture and the complex interplay between multiple tissues including cartilage, bone and synovium. Especially the cartilage component has limited self-healing capacity and damage often leads to the onset of osteoarthritis, eventually resulting in failure of the joint as an organ. Although in its infancy, biofabrication has emerged as a promising technology to reproduce the intricate organization of the joint, thus enabling the introduction of novel surgical treatments, regenerative therapies, and new sets of tools to enhance our understanding of joint physiology and pathology. Herein, we address the current challenges to recapitulate the complexity of articulating joints and how biofabrication could overcome them. The combination of multiple materials, biological cues and cells in a layer-by-layer fashion, can assist in reproducing both the zonal organization of cartilage and the gradual transition from resilient cartilage toward the subchondral bone in biofabricated osteochondral grafts. In this way, optimal integration of engineered constructs with the natural surrounding tissues can be obtained. Mechanical characteristics, including the smoothness and low friction that are hallmarks of the articular surface, can be tuned with multi-head or hybrid printers by controlling the spatial patterning of printed structures. Moreover, biofabrication can use digital medical images as blueprints for printing patient-specific implants. Finally, the current rapid advances in biofabrication hold significant potential for developing joint-on-a-chip models for personalized medicine and drug testing or even for the creation of implants that may be used to treat larger parts of the articulating joint. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:2089-2097, 2017. © 2017 The Authors. Journal of Orthopaedic

  3. Passivation of InP heterojunction bipolar transistors by strain controlled plasma assisted electron beam evaporated hafnium oxide

    NASA Astrophysics Data System (ADS)

    Driad, R.; Sah, R. E.; Schmidt, R.; Kirste, L.

    2012-01-01

    We present structural, stress, and electrical properties of plasma assisted e-beam evaporated hafnium dioxide (HfO2) layers on n-type InP substrates. These layers have subsequently been used for surface passivation of InGaAs/InP heterostructure bipolar transistors either alone or in combination with plasma enhanced chemical vapor deposited SiO2 layers. The use of stacked HfO2/SiO2 results in better interface quality with InGaAs/InP heterostructures, as illustrated by smaller leakage current and improved breakdown voltage. These improvements can be attributed to the reduced defect density and charge trapping at the dielectric-semiconductor interface. The deposition at room temperature makes these films suitable for sensitive devices.

  4. Passive and electro-optic polymer photonics and InP electronics integration

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Katopodis, V.; Groumas, P.; Konczykowska, A.; Dupuy, J.-.; Beretta, A.; Dede, A.; Miller, E.; Choi, J. H.; Harati, P.; Jorge, F.; Nodjiadjim, V.; Dinu, R.; Cangini, G.; Vannucci, A.; Felipe, D.; Maese-Novo, A.; Keil, N.; Bach, H.-.; Schell, Martin; Avramopoulos, H.; Kouloumentas, Ch.

    2015-05-01

    Hybrid photonic integration allows individual components to be developed at their best-suited material platforms without sacrificing the overall performance. In the past few years a polymer-enabled hybrid integration platform has been established, comprising 1) EO polymers for constructing low-complexity and low-cost Mach-Zehnder modulators (MZMs) with extremely high modulation bandwidth; 2) InP components for light sources, detectors, and high-speed electronics including MUX drivers and DEMUX circuits; 3) Ceramic (AIN) RF board that links the electronic signals within the package. On this platform, advanced optoelectronic modules have been demonstrated, including serial 100 Gb/s [1] and 2x100 Gb/s [2] optical transmitters, but also 400 Gb/s optoelectronic interfaces for intra-data center networks [3]. To expand the device functionalities to an unprecedented level and at the same time improve the integration compatibility with diversified active / passive photonic components, we have added a passive polymer-based photonic board (polyboard) as the 4th material system. This passive polyboard allows for low-cost fabrication of single-mode waveguide networks, enables fast and convenient integration of various thin-film elements (TFEs) to control the light polarization, and provides efficient thermo-optic elements (TOEs) for wavelength tuning, light amplitude regulation and light-path switching.

  5. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  6. Evidence for a Biological Control on Emissions of Marine Ice Nucleating Particles: Laboratory, Field and Modeling Results

    NASA Astrophysics Data System (ADS)

    McCluskey, Christina Song

    Laboratory, field, and modeling studies were used to (1) confirm the hypothesized source of marine ice nucleating particle (INP) emissions associated with marine organic aerosol that arises from elevated oceanic biological productivity; (2) identify marine INP compositions and their activation temperatures; (3) determine the natural abundances and variability of the number concentrations of marine INPs (nINPs); and (4) evaluate the current best model estimates of marine INPs against new observations. Observations of seawater biology, aerosol composition and ice nucleation ability of bulk seawater, the sea surface microlayer (upper 50 mum of the ocean surface), and laboratory-generated sea spray aerosol (SSA) during simulated phytoplankton blooms revealed that emissions of INPs active at temperatures warmer than -22°C increased during the decay of two phytoplankton blooms. Enrichment of organic matter in the sea surface microlayer and its subsequent control on transferring organic material into the aerosol phase was found to be an important factor in the release of INPs from the ocean surface. Integration of all size and compositional analyses led to two proposed classes of marine INPs: (A) ice nucleation active molecules and (B) ice nucleation active intact or fragmented microbes (e.g., diatoms or bacteria). To investigate marine INPs present in nature, several field campaigns were carried out over oceans and at two remote coastal sites. Regarding their abundance and variability, the number concentrations of ice nucleating particles, nINPs, active at temperatures warmer than -30 °C, ranged over three or more orders of magnitude at any particular temperature for samples collected in the marine boundary layer during six research voyages over the Pacific Ocean, spanning 70°S to 60°N over various seasons. nINPs were greater and more variable in the Northern Hemisphere compared to the Southern Hemisphere. Factors that contributed to this variability were

  7. Proceedings of the 14Th Space Photovoltaic Research and Technology Conference (SPRAT 14)

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  8. The Standard Joint Unit.

    PubMed

    Casajuana Kögel, Cristina; Balcells-Olivero, María Mercedes; López-Pelayo, Hugo; Miquel, Laia; Teixidó, Lídia; Colom, Joan; Nutt, David John; Rehm, Jürgen; Gual, Antoni

    2017-07-01

    Reliable data on cannabis quantities is required to improve assessment of cannabis consumption for epidemiological analysis and clinical assessment, consequently a Standard Joint Unit (SJU) based on quantity of 9-Tetrahydrocannabinol (9-THC) has been established. Naturalistic study of a convenience sample recruited from February 2015-June 2016 in universities, leisure spaces, mental health services and cannabis clubs in Barcelona. Adults, reporting cannabis use in the last 60 days, without cognitive impairment or language barriers, answered a questionnaire on cannabis use and were asked to donate a joint to further determine their 9-THC and Cannabidiol (CBD) content. 492 participants donated 315 valid joints. Donators were on average 29 years old, mostly men (77%), single (75%), with at least secondary studies (73%) and in active employment (63%). Marijuana joints (N=232) contained a median of 6.56mg of 9-THC (Interquartile range-IQR=10,22) and 0.02mg of CBD (IQR=0.02); hashish joints (N=83) a median of 7.94mg of 9-THC (IQR=10,61) and 3.24mg of CBD (IQR=3.21). Participants rolled 4 joints per gram of cannabis and paid 5€ per gram (median values). Consistent 9-THC-content in joints lead to a SJU of 7mg of 9-THC, the integer number closest to the median values shared by both cannabis types. Independently if marijuana or hashish, 1 SJU = 1 joint = 0.25 g of cannabis = 7 mg of 9-THC. For CBD, only hashish SJU contained relevant levels. Similarly to the Standard Drink Unit for alcohol, the SJU is useful for clinical, epidemiological and research purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team 1998

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1999-01-01

    The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available under the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.

  10. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si.

    PubMed

    Pantzas, K; Le Bourhis, E; Patriarche, G; Troadec, D; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A

    2016-03-18

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m(-2), respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, Paul J; Hill, Thomas CJ

    Measurements were sought to evaluate a hypotheses that sea-spray-sourced ice-nucleating particles (INPs) are of biological origin and represent a distinctly different INP population in comparison to long-range-transported desert or urban and regional land-sourced INP, and that the layering of marine within other aerosol layers feeding orographic storms over the mountains of California and the Western United States thereby leads to common and quantifiable scenarios that influence precipitation over the region. Aerosol collections on the National Oceanic and Atmospheric Administration (NOAA) research vessel (RV) Ronald H. Brown, for subsequent processing of INP immersion freezing activation temperature spectra and composition analyses, addedmore » a valuable measurement component to the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) and related CalWater2 (NOAA) studies for use in parameterizing and modeling the impacts of marine boundary layer and other aerosols on climate and radiation via aerosol indirect effects on mixed-phase clouds. Twenty-five nominally 24-hour collections were made and have been processed for immersion freezing INP number concentrations versus temperature in the mixed-phase cloud temperature regime from -10 to -27°C. The similarity of INP number concentrations compared to typical marine boundary layer values attributed to sea-spray aerosols was noted. Nevertheless, variability of INP concentrations of up to 50 times was noted at individual temperatures over the course of the study. A particular analysis possible with this data set is to examine INP budgets over oceans inside versus outside of atmospheric river conditions. These INP measurements supplemented multiple airborne INP measurements on the ARM Aerial Facility (AAF), and others on the ground during ACAPEX and CalWater2, to provide extensive spatial and temporal analyses of INP immersion freezing spectra during winter storm periods. Future analyses will use thermal sensitivity

  12. Joint BioEnergy Institute

    ScienceCinema

    Keasling, Jay; Simmons, Blake; Tartaglino, Virginia; Baidoo, Edward; Kothari, Ankita

    2018-05-11

    The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center dedicated to developing advanced biofuels—liquid fuels derived from the solar energy stored in plant biomass that can replace gasoline, diesel and jet fuels.

  13. Failure of dissimilar material bonded joints

    NASA Astrophysics Data System (ADS)

    Konstantakopoulou, M.; Deligianni, A.; Kotsikos, G.

    2016-03-01

    Joining of materials in structural design has always been a challenge for engineers. Bolting and riveting has been used for many years, until the emergence of fusion welding which revolutionised construction in areas such as shipbuilding, automotive, infrastructure and consumer goods. Extensive research in the past 50 years has resulted in better understanding of the process and minimised the occurrence of failures associated with fusion welding such as, residual stress cracking, stress corrosion and corrosion fatigue cracking, localised reduction in mechanical properties due to microstructural changes (heat affected zone) etc. Bonding has been a technique that has been proposed as an alternative because it eliminates several of the problems associated with fusion welding. But, despite some applications it has not seen wide use. There is however a renewed interest in adhesively bonded joints, as designers look for ever more efficient structures which inevitably leads to the use and consequently joining of combinations of lightweight materials, often with fundamentally different mechanical and physical properties. This chapter provides a review of adhesively bonded joints and reports on improvements to bonded joint strength through the introduction of carbon nanotubes at the bond interface. Results from various workers in the field are reported as well as the findings of the authors in this area of research. It is obvious that there are several challenges that need to be addressed to further enhance the strength of bonded joints and worldwide research is currently underway to address those shortcomings and build confidence in the implementation of these new techniques.

  14. Experimental Investigation of Solder Joint Defect Formation and Mitigation in Reduced-Gravity Environments

    NASA Technical Reports Server (NTRS)

    Watson, J. Kevin; Struk, Peter M.; Pettegrew, RIchard D.; Downs, Robert S.

    2006-01-01

    This paper documents a research effort on reduced gravity soldering of plated through hole joints which was conducted jointly by the National Center for Space Exploration Research, NASA Glenn Research Center, and NASA Johnson Space Center. Significant increases in joint porosity and changes in external geometry were observed in joints produced in reduced gravity as compared to normal gravity. Multiple techniques for mitigating the observed increase in porosity were tried, including several combinations of flux and solder application techniques, and demoisturizing the circuit board prior to soldering. Results were consistent with the hypothesis that the source of the porosity is a combination of both trapped moisture in the circuit board itself, as well as vaporized flux that is trapped in the molten solder. Other topics investigated include correlation of visual inspection results with joint porosity, pore size measurements, limited pressure effects (0.08 MPa - 0.1 MPa) on the size and number of pores, and joint cooling rate.

  15. InP electroluminescence as a tool to directly monitor carrier leakage in InGaAsP/InP buried heterostructure lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, M.B.; Brody, E.; Sowell, B.

    1987-12-15

    Direct measurements of homojunction and heterojunction carrier leakage currents in InGaAsP/InP buried heterostructure lasers have been made by monitoring the electroluminescence (EL) at 0.96 ..mu..m in the InP confinement layers. These EL measurements show directly, for the first time, a correlation between homojunction leakage currents and the sublinearity in the 1.3-..mu..m light output-current characteristic. The observed decrease in the 0.96-..mu..m intensity with increasing p-dopant concentration is a direct confirmation that heterojunction leakage is reduced when the doping level in the p-InP confinement layer is increased.

  16. Dataglove measurement of joint angles in sign language handshapes

    PubMed Central

    Eccarius, Petra; Bour, Rebecca; Scheidt, Robert A.

    2012-01-01

    In sign language research, we understand little about articulatory factors involved in shaping phonemic boundaries or the amount (and articulatory nature) of acceptable phonetic variation between handshapes. To date, there exists no comprehensive analysis of handshape based on the quantitative measurement of joint angles during sign production. The purpose of our work is to develop a methodology for collecting and visualizing quantitative handshape data in an attempt to better understand how handshapes are produced at a phonetic level. In this pursuit, we seek to quantify the flexion and abduction angles of the finger joints using a commercial data glove (CyberGlove; Immersion Inc.). We present calibration procedures used to convert raw glove signals into joint angles. We then implement those procedures and evaluate their ability to accurately predict joint angle. Finally, we provide examples of how our recording techniques might inform current research questions. PMID:23997644

  17. Characteristics of clinical shoulder research over the last decade: a review of shoulder articles in The Journal of Bone & Joint Surgery from 2004 to 2014.

    PubMed

    Gartsman, Gary M; Morris, Brent J; Unger, R Zackary; Laughlin, Mitzi S; Elkousy, Hussein A; Edwards, T Bradley

    2015-03-04

    The purpose of this study was to determine characteristics and trends in published shoulder research over the last decade in a leading orthopaedic journal. We examined all clinical shoulder articles published in The Journal of Bone & Joint Surgery from 2004 to 2014. The number of citations, authorship, academic degrees of the authors, country and institution of origin, topic, level of evidence, positive or nonpositive outcome, and inclusion of validated patient-reported outcome measures were assessed for each article. Shoulder articles that included an author with an advanced research degree (MD [Doctor of Medicine] with a PhD [Doctor of Philosophy] or other advanced degree) increased during the study period (p = 0.047). Level-I, II, and III studies were more likely to have an author with an advanced research degree, and Level-IV studies were more likely to have MDs only (p = 0.03). Overall, there was great variability of outcome measures, with at least thirty-nine different validated or nonvalidated outcome measures reported. Over the last decade, there was an improvement in the level of evidence of shoulder articles published in The Journal of Bone & Joint Surgery that corresponds with recent emphasis on evidence-based medicine. A consensus is needed in shoulder research for more consistent application of validated patient-reported outcome measurement tools. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  18. Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays

    NASA Technical Reports Server (NTRS)

    Slifer, Luther W., Jr.

    1991-01-01

    One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.

  19. Learning Disabilities: Implications for Policy regarding Research and Practice--A Report by the National Joint Committee on Learning Disabilities, March 2011

    ERIC Educational Resources Information Center

    Learning Disabilities: A Multidisciplinary Journal, 2012

    2012-01-01

    The National Joint Committee on Learning Disabilities (NJCLD) affirms that the construct of learning disabilities represents a valid, unique, and heterogeneous group of disorders, and that recognition of this construct is essential for sound policy and practice. An extensive body of scientific research on learning disabilities continues to support…

  20. Cold Atmospheric Plasma for Medicine: State of Research and Clinical Application

    NASA Astrophysics Data System (ADS)

    von Woedtke, Thomas

    2015-09-01

    Basic research in plasma medicine has made excellent progress and resulted in the fundamental insights that biological effects of cold atmospheric plasmas (CAP) are significantly caused by changes of the liquid environment of cells, and are dominated by redox-active species. First CAP sources are CE-certified as medical devices. Main focus of plasma application is on wound healing and treatment of infective skin diseases. Clinical applications in this field confirm the supportive effect of cold plasma treatment in acceleration of healing of chronic wounds above all in cases where conventional treatment fails. Cancer treatment is another actual and emerging field of CAP application. The ability of CAP to kill cancer cells by induction of apoptosis has been proved in vitro. First clinical applications of CAP in palliative care of cancer are realized. In collaboration with Hans-Robert Metelmann, University Medicine Greifswald; Helmut Uhlemann, Klinikum Altenburger Land GmbH Altenburg; Anke Schmidt and Kai Masur, Leibniz Institute for Plasma Science and Technology (INP Greifswald); Renate Schönebeck, Neoplas Tools GmbH Greifswald; and Klaus-Dieter Weltmann, Leibniz Institute for Plasma Science and Technology (INP Greifswald).

  1. Augmenting a Ballet Dance Show Using the Dancer's Emotion: Conducting Joint Research in Dance and Computer Science

    NASA Astrophysics Data System (ADS)

    Clay, Alexis; Delord, Elric; Couture, Nadine; Domenger, Gaël

    We describe the joint research that we conduct in gesture-based emotion recognition and virtual augmentation of a stage, bridging together the fields of computer science and dance. After establishing a common ground for dialogue, we could conduct a research process that equally benefits both fields. As computer scientists, dance is a perfect application case. Dancer's artistic creativity orient our research choices. As dancers, computer science provides new tools for creativity, and more importantly a new point of view that forces us to reconsider dance from its fundamentals. In this paper we hence describe our scientific work and its implications on dance. We provide an overview of our system to augment a ballet stage, taking a dancer's emotion into account. To illustrate our work in both fields, we describe three events that mixed dance, emotion recognition and augmented reality.

  2. The Effect of Buffer Types on the In0.82Ga0.18As Epitaxial Layer Grown on an InP (100) Substrate.

    PubMed

    Zhang, Min; Guo, Zuoxing; Zhao, Liang; Yang, Shen; Zhao, Lei

    2018-06-08

    In 0.82 Ga 0.18 As epitaxial layers were grown on InP (100) substrates at 530 °C by a low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. The effects of different buffer structures, such as a single buffer layer, compositionally graded buffer layers, and superlattice buffer layers, on the crystalline quality and property were investigated. Double-crystal X-ray diffraction (DC-XRD) measurement, Raman scattering spectrum, and Hall measurements were used to evaluate the crystalline quality and electrical property. Scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) were used to characterize the surface morphology and microstructure, respectively. Compared with the In 0.82 Ga 0.18 As epitaxial layer directly grown on an InP substrate, the quality of the sample is not obviously improved by using a single In 0.82 Ga 0.18 As buffer layer. By introducing the graded In x Ga 1−x As buffer layers, it was found that the dislocation density in the epitaxial layer significantly decreased and the surface quality improved remarkably. In addition, the number of dislocations in the epitaxial layer greatly decreased under the combined action of multi-potential wells and potential barriers by the introduction of a In 0.82 Ga 0.18 As/In 0.82 Al 0.18 As superlattice buffer. However, the surface subsequently roughened, which may be explained by surface undulation.

  3. Design considerations for bridge deck joint-sealing systems : summary report.

    DOT National Transportation Integrated Search

    1992-07-01

    This is a report summary which summarizes a three year research effort related to the study of bridge deck expansion joint movements. Bridge deck expansion joint systems often develop serious problems requiring extensive and expensive maintenance. Th...

  4. Degenerative joint disease: multiple joint involvement in young and mature dogs.

    PubMed

    Olsewski, J M; Lust, G; Rendano, V T; Summers, B A

    1983-07-01

    Radiologic, pathologic, and ancillary methods were used to determine the occurrence of degenerative joint disease involving multiple joints of immature and adult dogs. Animals were selected for the development of hip joint dysplasia and chronic degenerative joint disease. Of disease-prone dogs, 82% (45 of 55 dogs) had radiologic changes, indicative of hip dysplasia, by 1 year of age. At necropsy, more abnormal joints were identified than by radiographic examination. Among 92 dogs between 3 to 11 months of age that had joint abnormalities, 71% had hip joint involvement; 38%, shoulder joint involvement; 22%, stifle joint involvement; and 40% had multiple joint involvement. Polyarthritis was asymptomatic and unexpected. Radiographic examination of older dogs also revealed evidence of degenerative joint disease in many joints. Multiple joint involvement was substantiated at necropsy of young and mature dogs. A similar pattern of polyarticular osteoarthritis was revealed in a survey (computer search) of necropsy reports from medical case records of 100 adult and elderly dogs. Usually, the joint disease was an incidental observation, unrelated to the clinical disease or to the cause of death. The frequent occurrence of degenerative changes in several joints of dogs aged 6 months to 17 years indicated that osteoarthritis may be progressive in these joints and raises the possibility that systemic factors are involved in the disease process.

  5. Pelvic joint fusion in patients with severe pelvic girdle pain - a prospective single-subject research design study.

    PubMed

    Kibsgård, Thomas J; Røise, Olav; Stuge, Britt

    2014-03-15

    The fusion of the pelvic joints in patients with severe pelvic girdle pain (PGP) is a controversial and insufficiently studied procedure. The aims of this study were to evaluate physical function and pain after sacroiliac joint (SIJ) fusion. A single-subject research design study with repeated measurements was conducted; pre-operatively and at 3, 6 and 12 months post-operatively. The outcome measures considered were the Oswestry disability index (ODI), visual analogue scale (VAS), and SF-36. Eight patients with severe PGP received open-accessed unilateral anterior SIJ fusion and fusion of the pubic symphysis. Seven patients reported positive results from the surgery. At 1 year post-operation, significant (p < 0.001) reductions in ODI (54 to 37) and VAS (82 to 57) were reported. The physical functioning, bodily pain, and social functioning scores in the SF-36 were also improved. Positive and significant changes in disability and pain at 1 year after SIJ fusion were observed. Despite these positive results, open accessed anterior fusion of the SIJ was associated with adverse events and complications such as infection and nerve damage.

  6. Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.

    The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less

  7. Determination of Parachute Joint Factors using Seam and Joint Testing

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  8. Influence of the Gap Width on the Geometry of the Welded Joint in Hybrid Laser-Arc Welding

    NASA Astrophysics Data System (ADS)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Mildebrath, M.; Hassel, T.

    The aim of this research was the experimental investigation of the influence of the gap width and speed of the welding wire on the changes of the geometry in the welded joint in the hybrid laser-arc welding of shipbuilding steel RS E36. The research was divided into three parts. First, in order to understand the influence of the gap width on the welded joint geometry, experimental research was done using continuous wave fiber laser IPG YLS-15000 with arc rectifier VDU-1500DC. The second part involved study of the geometry of the welded joint and hardness test results. Three macrosections from each welded joint were obtained. Influence of the gap width and welding wire speed on the welded joint geometry was researched in the three lines: in the right side of the plates, middle welded joint and in the root welded joint.

  9. InP Nanoflag Growth from a Nanowire Template by in Situ Catalyst Manipulation.

    PubMed

    Kelrich, Alexander; Sorias, Ofir; Calahorra, Yonatan; Kauffmann, Yaron; Gladstone, Ran; Cohen, Shimon; Orenstein, Meir; Ritter, Dan

    2016-04-13

    Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall. Investigation of the mechanism responsible for catalyst movement shows that its final position is determined by the structural defect density along the nanowire. The crystal structure of the "flagpole" nanowire is epitaxially transferred to the nanoflag. Pure wurtzite InP nanomembranes with just a single stacking fault originating from the defect in the flagpole that pinned the catalyst were obtained. Optical characterization shows efficient highly polarized photoluminescence at room temperature from a single nanoflag with up to 90% degree of linear polarization. Electric field intensity enhancement of the incident light was calculated to be 57, concentrated at the nanoflag tip. The presented growth method is general and thus can be employed for achieving similar nanostructures in other III-V semiconductor material systems with potential applications in active nanophotonics.

  10. X-Ray Photoelectron Spectroscopy and Ultrahigh Vacuum Contactless Capacitance-Voltage Characterization of Novel Oxide-Free InP Passivation Process Using a Silicon Surface Quantum Well

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroshi; Hashizume, Tamotsu; Hasegawa, Hideki

    1999-02-01

    In order to understand and optimize a novel oxide-free InP passivation process using a silicon surface quantum well, a detailed in situ X-ray photoelectron spectroscopy (XPS) and ultrahigh vacuum (UHV) contactless capacitance-voltage (C-V) study of the interface was carried out. Calculation of quantum levels in the silicon quantum well was performed on the basis of the band lineup of the strained Si3N4/Si/InP interface and the result indicated that the interface should become free of gap states when the silicon layer thickness is below 5 Å. Experimentally, such a delicate Si3N4/Si/InP structure was realized by partial nitridation of a molecular beam epitaxially (MBE) grown pseudomorphic silicon layer using an electron cyclotron resonance (ECR) N2 plasma. The progress of nitridation was investigated in detail by angle-resolved XPS. A newly developed UHV contactless C-V method realized in situ characterization of surface electronic properties of InP at each processing step for passivation. It was found that the interface state density decreased substantially into the 1010 cm-2 eV-1 range by optimizing the nitridation process of the silicon layer. It was concluded that both the surface bond termination and state removal by quantum confinement are responsible for the NSS reduction.

  11. Spacesuit mobility joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1978-01-01

    Joints for use in interconnecting adjacent segments of an hermetically sealed spacesuit which have low torques, low leakage and a high degree of reliability are described. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics. Linkages which restrain the joint from longitudinal distension and a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli are featured. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  12. Computer networks for financial activity management, control and statistics of databases of economic administration at the Joint Institute for Nuclear Research

    NASA Astrophysics Data System (ADS)

    Tyupikova, T. V.; Samoilov, V. N.

    2003-04-01

    Modern information technologies urge natural sciences to further development. But it comes together with evaluation of infrastructures, to spotlight favorable conditions for the development of science and financial base in order to prove and protect legally new research. Any scientific development entails accounting and legal protection. In the report, we consider a new direction in software, organization and control of common databases on the example of the electronic document handling, which functions in some departments of the Joint Institute for Nuclear Research.

  13. A comparative study of p(+)n and n(+)p InP solar cells made by a closed ampoule diffusion

    NASA Technical Reports Server (NTRS)

    Faur, M.; Faur, M.; Flood, D. J.; Weinberg, I.; Brinker, D. J.; Goradia, C.; Fatemi, N.; Goradia, M.; Thesling, W.

    1991-01-01

    The purpose was to demonstrate the possibility of fabricating thermally diffused p(+)n InP solar cells having high open-circuit voltage without sacrificing the short circuit current. The p(+)n junctions were formed by closed-ampoule diffusion of Cd through a 3 to 5 nm thick anodic or chemical phosphorus-rich oxide cap layer grown on n-InP:S Czochralski LEC grown substrates. For solar cells made by thermal diffusion the p(+)n configuration is expected to have a higher efficiency than the n(+)p configuration. It is predicted that the AM0, BOL efficiencies approaching 19 percent should be readily achieved providing that good ohmic front contacts could be realized on the p(+) emitters of thickness lower than 1 micron.

  14. Chronic bowel inflammation and inflammatory joint disease: Pathophysiology.

    PubMed

    Speca, Silvia; Dubuquoy, Laurent

    2017-07-01

    Bowel inflammation is closely linked to chronic joint inflammation. Research reported in the 1980s demonstrated bowel inflammation with gross and microscopic pathological features identical to those of Crohn's disease in over 60% of patients with spondyloarthritis (SpA). Numerous prospective studies have evidenced joint involvement in patients with chronic inflammatory bowel disease (IBD) and bowel inflammation in patients with SpA. Nevertheless, the interactions of joint disease and chronic bowel inflammation remain incompletely elucidated. Two main hypotheses have been suggested to explain potential links between inflammation of the mucosal immune system and peripheral arthritis: one identifies gut bacteria as potentially implicated in the development of joint inflammation and the other involves the recruitment of gut lymphocytes or activated macrophages to the joints. Pathophysiological investigations have established that HLA-B27 is a pivotal pathogenic factor. Here, we review current data on links between chronic bowel inflammation and inflammatory joint disease. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  15. Neuromuscular prehabilitation to prevent osteoarthritis after a traumatic joint injury.

    PubMed

    Tenforde, Adam S; Shull, Pete B; Fredericson, Michael

    2012-05-01

    Post-traumatic osteoarthritis (PTOA) is a process resulting from direct forces applied to a joint that cause injury and degenerative changes. An estimated 12% of all symptomatic osteoarthritis (OA) of the hip, knee, and ankle can be attributed to a post-traumatic cause. Neuromuscular prehabilitation is the process of improving neuromuscular function to prevent development of PTOA after an initial traumatic joint injury. Prehabilitation strategies include restoration of normative movement patterns that have been altered as the result of traumatic injury, along with neuromuscular exercises and gait retraining to prevent the development of OA after an injury occurs. A review of the current literature shows that no studies have been performed to evaluate methods of neuromuscular prehabilitation to prevent PTOA after a joint injury. Instead, current research has focused on management strategies after knee injuries, the value of exercise in the management of OA, and neuromuscular exercises after total knee arthroplasty. Recent work in gait retraining that alters knee joint loading holds promise for preventing the development of PTOA after joint trauma. Future research should evaluate methods of neuromuscular prehabilitation strategies in relationship to the outcome of PTOA after joint injury. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Periprosthetic joint infection: are patients with multiple prosthetic joints at risk?

    PubMed

    Jafari, S Mehdi; Casper, David S; Restrepo, Camilo; Zmistowski, Benjamin; Parvizi, Javad; Sharkey, Peter F

    2012-06-01

    Patients who present with a periprosthetic joint infection in a single joint may have multiple prosthetic joints. The risk of these patients developing a subsequent infection in another prosthetic joint is unknown. Our purposes were (1) to identify the risk of developing a subsequent infection in another prosthetic joint and (2) to describe the time span and organism profile to the second prosthetic infection. We retrospectively identified 55 patients with periprosthetic joint infection who had another prosthetic joint in place at the time of presentation. Of the 55 patients, 11 (20%) developed a periprosthetic joint infection in a second joint. The type of organism was the same as the first infection in 4 (36%) of 11 patients. The time to developing a second infection averaged 2.0 years (range, 0-6.9 years). Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Studies on interface curvature during vertical Bridgman growth of InP in a flat-bottom container

    NASA Astrophysics Data System (ADS)

    Rudolph, P.; Matsumoto, F.; Fukuda, T.

    1996-01-01

    A simplified numerical simulation of the dynamic behaviour of the solid-liquid interface curvature during modified vertical Bridgman growth of 2 inch InP single crystals, in a flat-bottom container, with a seed of the same diameter is presented. The results agree with striation patterns observed by transmission X-ray topography. A nearly flat interface with slightly constant concavity has been ascertained in the front half of the grown ingots. It can be assumed that such a steady interface morphology is one of the basic requirements for the observed twin-free and reduced dislocation growth in this region. In an attempt to optimize the shape of the melting point isotherm in the last-to-freeze part of the crystals, the axial temperature gradient, the seed length, the growth velocity, the melt temperature and the conditions of heat transfer (different ambient atmospheres and plugs) as well as the temperature profile in the top region above the encapsulant have been varied in the model.

  18. InP Based Ternary And Quaternary Thin Film Structures On Large Areas Grown By LP-MOVPE

    NASA Astrophysics Data System (ADS)

    Schmitz, D.; Strauch, , G.; Jurgensen, H.; Heyen, M.; Harde, P.

    1989-11-01

    Using low pressure MOVPE and higher linear flow velocities high purity GalnAs/lnP and GalnAsP heterostructures can be prepared. Excellent homogeneity in thickness, composition, and doping on a 2" InP substrate can be realized by this approach for optimized conditions. The low growth rates required for the deposition of very narrow well structures are achieved by selecting reduced pressures of the group III and group V compounds used for deposition. The method yields structures with high electron mobilities of the two dimensional electron gas in the well and narrow PL (i.e. 2.2 meV for 20 nm wells) line widths, which is indicative of low impurity incorporation and abrupt heterojunctions. The observed energy shifts (up to 528 meV) demonstrate the large range of bandgap variation attainable by this method. A study of dopant incorporation shows, that Zn yields steep transitions in InGaAs.

  19. Self-referenced processing, neurodevelopment and joint attention in autism.

    PubMed

    Mundy, Peter; Gwaltney, Mary; Henderson, Heather

    2010-09-01

    This article describes a parallel and distributed processing model (PDPM) of joint attention, self-referenced processing and autism. According to this model, autism involves early impairments in the capacity for rapid, integrated processing of self-referenced (proprioceptive and interoceptive) and other-referenced (exteroceptive) information. Measures of joint attention have proven useful in research on autism because they are sensitive to the early development of the 'parallel' and integrated processing of self- and other-referenced stimuli. Moreover, joint attention behaviors are a consequence, but also an organizer of the functional development of a distal distributed cortical system involving anterior networks including the prefrontal and insula cortices, as well as posterior neural networks including the temporal and parietal cortices. Measures of joint attention provide early behavioral indicators of atypical development in this parallel and distributed processing system in autism. In addition it is proposed that an early, chronic disturbance in the capacity for integrating self- and other-referenced information may have cascading effects on the development of self awareness in autism. The assumptions, empirical support and future research implications of this model are discussed.

  20. Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress

    DTIC Science & Technology

    2017-01-10

    Joint Light Tactical Vehicle (JLTV): Background and Issues for Congress Andrew Feickert Specialist in Military Ground Forces January 10, 2017......Congressional Research Service Summary The Joint Light Tactical Vehicle (JLTV) is being developed by the Army and the Marine Corps as a successor to the High

  1. 78 FR 7464 - Large Scale Networking (LSN) ; Joint Engineering Team (JET)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... NATIONAL SCIENCE FOUNDATION Large Scale Networking (LSN) ; Joint Engineering Team (JET) AGENCY: The Networking and Information Technology Research and Development (NITRD) National Coordination...://www.nitrd.gov/nitrdgroups/index.php?title=Joint_Engineering_Team_ (JET)#title. SUMMARY: The JET...

  2. Experimental investigation on frequency shifting of imperfect adhesively bonded pipe joints

    NASA Astrophysics Data System (ADS)

    Haiyam, F. N.; Hilmy, I.; Sulaeman, E.; Firdaus, T.; Adesta, E. Y. T.

    2018-01-01

    Inspection tests for any manufactured structure are compulsory in order to detect the existence of damage.It is to ensure the product integrity, reliability and to avoid further catastrophic failure. In this research, modal analysis was utilized to detect structural damage as one of the Non Destructive Testing (NDT) methods. Comparing the vibration signal of a healthy structure with a non-healthy signal was performed. A modal analysis of an adhesively bonded pipe joint was investigated with a healthy joint as a reference. The damage joint was engineered by inserting a nylon fiber, which act as an impurity at adhesive region. The impact test using hammer was utilized in this research. Identification of shifting frequency of a free supported and clamped pipe joint was performed.It was found that shifting frequency occurred to the lower side by 5%.

  3. Impact extractive fracture of jointed steel plates of a bolted joint

    NASA Astrophysics Data System (ADS)

    Daimaruya, M.; Fujiki, H.; Ambarita, H.

    2012-08-01

    This study is concerned with the development of a fracture criterion for the impact fracture of jointed steel plates of a bolted joint used in a car body. For the accurate prediction of crash characteristics of car bodies by computer-aided engineering (CAE), it is also necessary to examine the behavior and fracture of jointed steel plates subjected to impact loads. Although the actual impact fracture of jointed steel plates of a bolted joint used in cars is complicated, for simplifying the problem it might be classified into the shear fracture and the extractive fracture of jointed steel plates. Attention is given to the extractive fracture of jointed steel plates in this study. The extractive behavior and fracture of three kinds of steel plates used for cars are examined in experiments and numerical simulations. The impact extraction test of steel plates jointed by a bolt is performed using the one-bar method, together with the static test. In order to understand the mechanism of extractive fracture process of jointed steel plates, numerical simulations by a FEM code LS-DYNA are also carried out. The obtained results suggest that a stress-based fracture criterion may be developed for the impact extractive fracture of jointed steel plates of a bolted joint used in a car body.

  4. Engineering studies on joint bar integrity, part II : finite element analysis

    DOT National Transportation Integrated Search

    2014-04-02

    This paper is the second in a two-part series describing : research sponsored by the Federal Railroad Administration : (FRA) to study the structural integrity of joint bars. In Part I, : observations from field surveys of joint bar inspections : cond...

  5. Parasitic Parameters Extraction for InP DHBT Based on EM Method and Validation up to H-Band

    NASA Astrophysics Data System (ADS)

    Li, Oupeng; Zhang, Yong; Wang, Lei; Xu, Ruimin; Cheng, Wei; Wang, Yuan; Lu, Haiyan

    2017-05-01

    This paper presents a small-signal model for InGaAs/InP double heterojunction bipolar transistor (DHBT). Parasitic parameters of access via and electrode finger are extracted by 3-D electromagnetic (EM) simulation. By analyzing the equivalent circuit of seven special structures and using the EM simulation results, the parasitic parameters are extracted systematically. Compared with multi-port s-parameter EM model, the equivalent circuit model has clear physical intension and avoids the complex internal ports setting. The model is validated on a 0.5 × 7 μm2 InP DHBT up to 325 GHz. The model provides a good fitting result between measured and simulated multi-bias s-parameters in full band. At last, an H-band amplifier is designed and fabricated for further verification. The measured amplifier performance is highly agreed with the model prediction, which indicates the model has good accuracy in submillimeterwave band.

  6. Dynamic analysis of clamp band joint system subjected to axial vibration

    NASA Astrophysics Data System (ADS)

    Qin, Z. Y.; Yan, S. Z.; Chu, F. L.

    2010-10-01

    Clamp band joints are commonly used for connecting circular components together in industry. Some of the systems jointed by clamp band are subjected to dynamic load. However, very little research on the dynamic characteristics for this kind of joint can be found in the literature. In this paper, a dynamic model for clamp band joint system is developed. Contact and frictional slip between the components are accommodated in this model. Nonlinear finite element analysis is conducted to identify the model parameters. Then static experiments are carried out on a scaled model of the clamp band joint to validate the joint model. Finally, the model is adopted to study the dynamic characteristics of the clamp band joint system subjected to axial harmonic excitation and the effects of the wedge angle of the clamp band joint and the preload on the response. The model proposed in this paper can represent the nonlinearity of the clamp band joint and be used conveniently to investigate the effects of the structural and loading parameters on the dynamic characteristics of this type of joint system.

  7. A novel hybrid joining methodology for composite to steel joints

    NASA Astrophysics Data System (ADS)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  8. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  9. 93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology

    NASA Astrophysics Data System (ADS)

    Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki

    2013-04-01

    In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.

  10. 76 FR 31305 - Pacific Whiting; Advisory Panel and Joint Management Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... experienced in the harvesting, processing, marketing, management, conservation, or research of the offshore... Whiting; Advisory Panel and Joint Management Committee AGENCY: National Oceanic and Atmospheric.... SUMMARY: NMFS solicits nominations for the Advisory Panel (AP) and the Joint Management Committee (JMC) on...

  11. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  12. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  13. 225-255-GHz InP DHBT Frequency Tripler MMIC Using Complementary Split-Ring Resonator

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Zhang, Yong; Li, Oupeng; Sun, Yan; Lu, Haiyan; Cheng, Wei; Xu, Ruimin

    2017-02-01

    In this paper, a novel design of frequency tripler monolithic microwave integrated circuit (MMIC) using complementary split-ring resonator (CSRR) is proposed based on 0.5-μm InP DHBT process. The CSRR-loaded microstrip structure is integrated in the tripler as a part of impedance matching network to suppress the fundamental harmonic, and another frequency tripler based on conventional band-pass filter is presented for comparison. The frequency tripler based on CSRR-loaded microstrip generates an output power between -8 and -4 dBm from 228 to 255 GHz when the input power is 6 dBm. The suppression of fundamental harmonic is better than 20 dBc at 77-82 GHz input frequency within only 0.15 × 0.15 mm2 chip area of the CSRR structure on the ground layer. Compared with the frequency tripler based on band-pass filter, the tripler using CSRR-loaded microstrip obtains a similar suppression level of unwanted harmonics and higher conversion gain within a much smaller chip area. To our best knowledge, it is the first time that CSRR is used for harmonic suppression of frequency multiplier at such high frequency band.

  14. Room-temperature continuous operation of InAsSb quantum-dot lasers near 2 mu m based on (100) InP substrate

    NASA Technical Reports Server (NTRS)

    Qui, Y.; Uhl, D.; Keo, S.

    2003-01-01

    Single-stack InAsSb self-assembled quantum-dot lasers based on (001) InP substrate have been grown by metalorganic vapor-phase epitaxy. The narrow ridge waveguide lasers lased at wavelengths near 2 mu m up to 25 degrees C in continuous-wave operation. At room temperature, a differential quantum efficiency of 13 percent is obtained and the maximum output optical power reaches 3 mW per facet with a threshold current density of 730 A/cm(sup 2). With increasing temperature the emission wavelength is extremely temperature stable, and a very low wavelength temperature sensitivity of 0.05 nm/degrees C is measured, which is even lower than that caused by the refractive index change.

  15. Design optimization and tolerance analysis of a spot-size converter for the taper-assisted vertical integration platform in InP.

    PubMed

    Tolstikhin, Valery; Saeidi, Shayan; Dolgaleva, Ksenia

    2018-05-01

    We report on the design optimization and tolerance analysis of a multistep lateral-taper spot-size converter based on indium phosphide (InP), performed using the Monte Carlo method. Being a natural fit to (and a key building block of) the regrowth-free taper-assisted vertical integration platform, such a spot-size converter enables efficient and displacement-tolerant fiber coupling to InP-based photonic integrated circuits at a wavelength of 1.31 μm. An exemplary four-step lateral-taper design featuring 0.35 dB coupling loss at optimal alignment of a standard single-mode fiber; ≥7  μm 1 dB displacement tolerance in any direction in a facet plane; and great stability against manufacturing variances is demonstrated.

  16. PCC/AC shoulder joint seal evaluation

    DOT National Transportation Integrated Search

    1999-05-07

    This report presents the findings on the evaluation of Crafco Incorporated Roadsaver 903 SL Silicone Sealant and Dow Corning 890 SL Silicone Sealant. The Research Technical Panel had proposed to use the two self-leveling silicone joint sealants in te...

  17. Evaluation of transverse joint forming methods for PCC pavement.

    DOT National Transportation Integrated Search

    2006-01-01

    The members of the Iowa Concrete Paving Association, the National Concrete Pavement Technology Center Research Committee, and : the Iowa Highway Research Board commissioned a study to examine alternative ways of developing transverse joints in portla...

  18. The hindlimb in walking horses: 2. Net joint moments and joint powers.

    PubMed

    Clayton, H M; Hodson, E; Lanovaz, J L; Colborne, G R

    2001-01-01

    The objective of the study was to describe net joint moments and joint powers in the equine hindlimb during walking. The subjects were 5 sound horses. Kinematic and force data were collected synchronously and combined with morphometric information to determine net joint moments at each hindlimb joint throughout stance and swing. The results showed that the net joint moment was on the caudal/plantar side of all hindlimb joints at the start of stance when the limb was being actively retracted. It moved to the cranial/dorsal side around 24% stride at the hip and stifle and in terminal stance at the more distal joints. It remained on the cranial/dorsal side of all joints during the first half of swing to provide active limb protraction, then moved to the caudal/plantar aspect to reverse the direction of limb motion prior to ground contact. The hip joint was the main source of energy generation throughout the stride. It was assisted by the tarsal joint in both stance and swing phases and by the fetlock joint during the stance phase. The coffin joint acted as an energy damper during stance, whereas the stifle joint absorbed almost equal amounts of energy in the stance and swing phases. The coffin and fetlock joints absorbed energy as the limb was protracted and retracted during the swing phase, suggesting that their movements were driven by inertial forces. Future studies will apply these findings to detect changes in the energy profiles due to specific soft tissue injuries.

  19. Defining the research agenda to reduce the joint burden of disease from Diabetes Mellitus and Tuberculosis

    PubMed Central

    Harries, Anthony D; Murray, Megan B; Jeon, Christie Y; Ottmani, Salah-Eddine; Lonnroth, Knut; Barreto, Mauricio L; Billo, Nils; Brostrom, Richard; Bygbjerg, Ib Christian; Fisher-Hoch, Susan; Mori, Toru; Ramaiya, Kaushik; Roglic, Gojka; Strandgaard, Hanne; Unwin, Nigel; Viswanathan, Vijay; Whiting, David; Kapur, Anil

    2015-01-01

    The steadily growing epidemic of diabetes mellitus (DM) poses a threat for global tuberculosis (TB) control. Previous studies have identified an important association between DM and TB. However, these studies have limitations: very few were carried out in low-income countries, with none in Africa, raising uncertainty about the strength of the DM-TB association in these settings, and many critical questions remain unanswered. An expert meeting was held in November 2009 to discuss where there was sufficient evidence to make firm recommendations about joint management of both diseases, to address research gaps and to develop a research agenda. Ten key research questions were identified, of which 4 were selected as high priority: i) whether, when and how to screen for TB in patients with DM and vice versa; ii) the impact of DM and non-DM hyperglycaemia on TB treatment outcomes and deaths, and the development of strategies to improve outcomes; iii) implementation and evaluation of the tuberculosis “DOTS” model for DM management; and iv) the development and evaluation of better point-of-care diagnostic and monitoring tests, including measurements of blood glucose and glycated haemoglobin A1c (HbA1c) for patients with DM. Implementation of this research agenda will benefit the control of both diseases. PMID:20406430

  20. Effect of intraarticular tramadol administration in the rat model of knee joint inflammation.

    PubMed

    Garlicki, Jarosław; Dorazil-Dudzik, Magdalena; Wordliczek, Jerzy; Przewłocka, Barbara

    2006-01-01

    Local administration of exogenous opioids may cause effective analgesia without adverse symptoms from the central nervous system. Experiments show that peripheral antinociceptive effect of opioids is observed especially in inflammatory pain. The aim of the research was to estimate the effect of tramadol on nociceptive process at the level of peripheral nervous system, after its local administration in the model of knee joint inflammation. Tramadol was administered intraarticulary into the rat knee joint, before the inflammation as a preemptive analgesia and, for comparison, after the intraarticular injection of carrageenan. The research determined the influence of tramadol injection on pain threshold for thermal stimuli, development of inflammatory processes using the measurement of joint edema and motor function following the induction of knee joint inflammation in the rat. Functional assessment of knee joint with inflammation, in terms of rats' mobility and body position as well as joint loading and mobility were studied. The results of the experiments show that local administration of tramadol induces antinociceptive effect. The effect of tramadol, which elicits also a decrease in inflammatory edema, appears not only after its administration after carrageenan when inflammation was already present, but also in the case of its injection prior to carrageenan in the scheme of preemptive analgesia. The results of the described research show that not only morphine but also another opioid, tramadol, widely used in clinical practice, inhibits nociception, edema and functional impairment of the paw after its local application directly to the inflamed knee joint.

  1. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various

  2. Spacesuit mobility knee joints

    NASA Technical Reports Server (NTRS)

    Vykukal, H. C. (Inventor)

    1979-01-01

    Pressure suit mobility joints are for use in interconnecting adjacent segments of an hermetically sealed spacesuit in which low torques, low leakage and a high degree of reliability are required. Each of the joints is a special purpose joint characterized by substantially constant volume and low torque characteristics and includes linkages which restrain the joint from longitudinal distension and includes a flexible, substantially impermeable diaphragm of tubular configuration spanning the distance between pivotally supported annuli. The diaphragms of selected joints include rolling convolutions for balancing the joints, while various joints include wedge-shaped sections which enhance the range of motion for the joints.

  3. Ice nucleating particles measured during the laboratory and field intercomparisons FIN-2 and FIN-3 by the diffusion chamber FRIDGE

    NASA Astrophysics Data System (ADS)

    Weber, Daniel; Schrod, Jann; Curtius, Joachim; Haunold, Werner; Thomson, Erik; Bingemer, Heinz

    2016-04-01

    The measurement of atmospheric ice nucleating particles (INP) is still challenging. In the absence of easily applicable INP standards the intercomparison of different methods during collaborative laboratory and field workshops is a valuable tool that can shine light on the performance of individual methods for the measurement of INP [1]. FIN-2 was conducted in March 2015 at the AIDA facility in Karlsruhe as an intercomparison of mobile instruments for measuring INP [2]. FIN-3 was a field campaign at the Desert Research Institutes Storm Peak Laboratory in Colorado in September 2015 [3]. The FRankfurt Ice nucleation Deposition freezinG Experiment (FRIDGE) participated in both experiments. FRIDGE measures ice nucleating particles by electrostatic precipitation of aerosol particles onto Si-wafers in a collection unit, followed by activation, growth, and optical detection of ice crystals on the substrate in an isostatic diffusion chamber [4,5]. We will present and discuss results of our measurements of deposition/condensation INP and of immersion INP with FRIDGE during FIN-2 and FIN-3. Acknowledgements: The valuable contributions of the FIN organizers and their institutions, and of the FIN Workshop Science team are gratefully acknowledged. Our work was supported by Deutsche Forschungsgemeinschaft (DFG) under the Research Unit FOR 1525 (INUIT) and the EU FP7-ENV- 2013 BACCHUS project under Grant Agreement 603445.

  4. Joint Services Electronics Program.

    DTIC Science & Technology

    1980-05-01

    STATEMMEN A Approved for public release, COD Distribution Unlimited.99 Joint Services Electronics Program* _-ANNUAL PROGRESS RP O. 93) 7 / Covering Period...and the temperature dependence of that (dispersive transport) trap limited mobility has shown interesting new effects. Publications of the Research...Low-Cost Laboratory Computer Interface System," (Scheduled for publication May, 1980, Review ot Scinti’i3 Instruments). | i III. INFORMATION

  5. Joint Enabling Capabilities Command

    Science.gov Websites

    Executive Director Chief of Staff Joint Planning Support Element Joint Communications Support Element mission Joint Enabling Capabilities Command provides decisive joint communications, planning and public and responsive support for joint communications, planning and public affairs. Priorities * Deliver

  6. BRESEX: On board supervision, basic architecture and preliminary aspects for payload and space shuttle interface

    NASA Technical Reports Server (NTRS)

    Bergamini, E. W.; Depaula, A. R., Jr.; Martins, R. C. D. O.

    1984-01-01

    Data relative to the on board supervision subsystem are presented which were considered in a conference between INPE and NASA personnel, with the purpose of initiating a joint effort leading to the implementation of the Brazilian remote sensing experiment - (BRESEX). The BRESEX should consist, basically, of a multispectral camera for Earth observation, to be tested in a future space shuttle flight.

  7. Web-based Comparative Patient-reported Outcome Feedback to Support Quality Improvement and Comparative Effectiveness Research in Total Joint Replacement.

    PubMed

    Zheng, Hua; Li, Wenjun; Harrold, Leslie; Ayers, David C; Franklin, Patricia D

    2014-01-01

    Patient-reported outcomes (PROs) are rarely included in quality monitoring systems, surgeon comparative feedback reports, or registries. We present the design and implementation of a secure website in a federally funded research program-Function and Outcomes Research for Comparative Effectiveness in Total Joint Replacement (FORCE-TJR)-to return comparative PRO reports to participating surgeons, in addition to including traditional quality measures, in order to monitor and improve quality and health outcomes. The surgeon-specific comparative PRO reports were designed and structured based on user input for content, data elements, integration, and display. Three questions are addressed regarding the knee and hip joint symptom profiles of patients before TJR, as well as outcomes of surgery. The website is organized with a hierarchical structure to display data at national, practice, and individual surgeon levels, and provides a comprehensive site-level executive summary and surgeon-level data reports that can be downloaded. As of September 2014, over 22,000 patients were enrolled from more than 130 surgeons in 22 states. The reporting website was launched in September 2012 and has been updated quarterly for all surgeons to review their site- and individual-specific outcomes data compared to national benchmarks. In this novel system, quarterly comparative surgeon feedback extends beyond traditional measures of complication rates to include PROs of pain relief and functional gain. We anticipate that this enhanced data will facilitate patient-centered quality improvement (QI) and outcomes research from the registry. As the Centers for Medicare & Medicaid Services (CMS) and other insurers consider future implementation of PROs, surgeons will increasingly need comparative data by which to self-monitor their practice outcomes.

  8. Durability of building joint sealants

    Treesearch

    Christopher C. White; Kar Tean Tan; Donald L. Hunston; R. Sam Williams

    2009-01-01

    Predicting the service life of building joint sealants exposed to service environments in less than real time has been a need of the sealant community for many decades. Despite extensive research efforts to design laboratory accelerated tests to duplicate the failure modes occurring in field exposures, little success has been achieved using conventional durability...

  9. The Joint European Compound Library: boosting precompetitive research.

    PubMed

    Besnard, Jérémy; Jones, Philip S; Hopkins, Andrew L; Pannifer, Andrew D

    2015-02-01

    The Joint European Compound Library (JECL) is a new high-throughput screening collection aimed at driving precompetitive drug discovery and target validation. The JECL has been established with a core of over 321,000 compounds from the proprietary collections of seven pharmaceutical companies and will expand to around 500,000 compounds. Here, we analyse the physicochemical profile and chemical diversity of the core collection, showing that the collection is diverse and has a broad spectrum of predicted biological activity. We also describe a model for sharing compound information from multiple proprietary collections, enabling diversity and quality analysis without disclosing structures. The JECL is available for screening at no cost to European academic laboratories and SMEs through the IMI European Lead Factory (http://www.europeanleadfactory.eu/). Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  11. Pelvic joint fusion in patients with severe pelvic girdle pain – a prospective single-subject research design study

    PubMed Central

    2014-01-01

    Background The fusion of the pelvic joints in patients with severe pelvic girdle pain (PGP) is a controversial and insufficiently studied procedure. The aims of this study were to evaluate physical function and pain after sacroiliac joint (SIJ) fusion. Methods A single-subject research design study with repeated measurements was conducted; pre-operatively and at 3, 6 and 12 months post-operatively. The outcome measures considered were the Oswestry disability index (ODI), visual analogue scale (VAS), and SF-36. Eight patients with severe PGP received open-accessed unilateral anterior SIJ fusion and fusion of the pubic symphysis. Results Seven patients reported positive results from the surgery. At 1 year post-operation, significant (p < 0.001) reductions in ODI (54 to 37) and VAS (82 to 57) were reported. The physical functioning, bodily pain, and social functioning scores in the SF-36 were also improved. Conclusion Positive and significant changes in disability and pain at 1 year after SIJ fusion were observed. Despite these positive results, open accessed anterior fusion of the SIJ was associated with adverse events and complications such as infection and nerve damage. PMID:24629145

  12. Development of Bonded Joint Technology for a Rigidizable-Inflatable Deployable Truss

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III

    2006-01-01

    Microwave and Synthetic Aperture Radar antenna systems have been developed as instrument systems using truss structures as their primary support and deployment mechanism for over a decade. NASA Langley Research Center has been investigating fabrication, modular assembly, and deployment methods of lightweight rigidizable/inflatable linear truss structures during that time for large spacecraft systems. The primary goal of the research at Langley Research Center is to advance these existing state-of-the-art joining and deployment concepts to achieve prototype system performance in a relevant space environment. During 2005, the development, fabrication, and testing of a 6.7 meter multi-bay, deployable linear truss was conducted at Langley Research Center to demonstrate functional and precision metrics of a rigidizable/inflatable truss structure. The present paper is intended to summarize aspects of bonded joint technology developed for the 6.7 meter deployable linear truss structure while providing a brief overview of the entire truss fabrication, assembly, and deployment methodology. A description of the basic joint design, surface preparation investigations, and experimental joint testing of component joint test articles will be described. Specifically, the performance of two room temperature adhesives were investigated to obtain qualitative data related to tube folding testing and quantitative data related to tensile shear strength testing. It was determined from the testing that a polyurethane-based adhesive best met the rigidizable/inflatable truss project requirements.

  13. MP Joint Arthritis

    MedlinePlus

    ... is extensive and severe, joint replacement or joint fusion are effective surgical options. Learn more about joint ... the tabs at the top (Video, Articles/WEB, Images, JHS, Products/Vendors), or the filters on the ...

  14. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage.

    PubMed

    Stephenson, Makeda K; Farris, Ashley L; Grayson, Warren L

    2017-08-01

    While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.

  15. SUMMARY OF JOINT DOD, EPA RESEARCH TO CONTROL VOC AND TOXIC EMISSIONS

    EPA Science Inventory

    The paper summarizes the results of joint projects conducted during last 6 years by the Department of Defense and EPA to control volatile organic compounds (VOCs) and toxic emissions. ajor emphasis has been on product coating and metal finishing: (1) paint stripping using plastic...

  16. Computer simulation of solder joint failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchett, S.N.; Frear, D.R.; Rashid, M.M.

    The thermomechanical fatigue failure of solder joints is increasingly becoming an important reliability issue for electronic packages. The purpose of this Laboratory Directed Research and Development (LDRD) project was to develop computational tools for simulating the behavior of solder joints under strain and temperature cycling, taking into account the microstructural heterogeneities that exist in as-solidified near eutectic Sn-Pb joints, as well as subsequent microstructural evolution. The authors present two computational constitutive models, a two-phase model and a single-phase model, that were developed to predict the behavior of near eutectic Sn-Pb solder joints under fatigue conditions. Unique metallurgical tests provide themore » fundamental input for the constitutive relations. The two-phase model mathematically predicts the heterogeneous coarsening behavior of near eutectic Sn-Pb solder. The finite element simulations with this model agree qualitatively with experimental thermomechanical fatigue tests. The simulations show that the presence of an initial heterogeneity in the solder microstructure could significantly degrade the fatigue lifetime. The single-phase model was developed to predict solder joint behavior using materials data for constitutive relation constants that could be determined through straightforward metallurgical experiments. Special thermomechanical fatigue tests were developed to give fundamental materials input to the models, and an in situ SEM thermomechanical fatigue test system was developed to characterize microstructural evolution and the mechanical behavior of solder joints during the test. A shear/torsion test sample was developed to impose strain in two different orientations. Materials constants were derived from these tests. The simulation results from the two-phase model showed good fit to the experimental test results.« less

  17. Thermal Barriers Developed for Solid Rocket Motor Nozzle Joints

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dunlap, Patrick H., Jr.

    2000-01-01

    Space shuttle solid rocket motor case assembly joints are sealed with conventional O-ring seals that are shielded from 5500 F combustion gases by thick layers of insulation and by special joint-fill compounds that fill assembly splitlines in the insulation. On a number of occasions, NASA has observed hot gas penetration through defects in the joint-fill compound of several of the rocket nozzle assembly joints. In the current nozzle-to-case joint, NASA has observed penetration of hot combustion gases through the joint-fill compound to the inboard wiper O-ring in one out of seven motors. Although this condition does not threaten motor safety, evidence of hot gas penetration to the wiper O-ring results in extensive reviews before resuming flight. The solid rocket motor manufacturer (Thiokol) approached the NASA Glenn Research Center at Lewis Field about the possibility of applying Glenn's braided fiber preform seal as a thermal barrier to protect the O-ring seals. Glenn and Thiokol are working to improve the nozzle-to-case joint design by implementing a more reliable J-leg design and by using a braided carbon fiber thermal barrier that would resist any hot gases that the J-leg does not block.

  18. Volmer–Weber InAs quantum dot formation on InP (113)B substrates under the surfactant effect of Sb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yu, E-mail: yu.zhao@insa-rennes.fr; Bertru, Nicolas; Folliot, Hervé

    We report on Sb surfactant growth of InAs nanostructures on GaAs{sub 0.51}Sb{sub 0.49} layers deposited on InP (001) and on (113)B oriented substrates. On the (001) orientation, the presence of Sb significantly favors the two-dimensional growth regime. Even after the deposition of 5 mono-layers of InAs, the epitaxial film remains flat and InAs/GaAs{sub 0.51}Sb{sub 0.49} type-II quantum wells are achieved. On (113)B substrates, same growth runs resulted in formation of high density InAs islands. Microscopic studies show that wetting layer is missing on (113)B substrates, and thus, a Volmer-Weber growth mode is concluded. These different behaviors are attributed to themore » surface energy changes induced by Sb atoms on surface.« less

  19. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain

    NASA Astrophysics Data System (ADS)

    Hongfei, Yao; Yuxiong, Cao; Danyu, Wu; Xiaoxi, Ning; Yongbo, Su; Zhi, Jin

    2013-07-01

    A two-stage MMIC power amplifier has been realized by use of a 1-μm InP double heterojunction bipolar transistor (DHBT). The cascode structure, low-loss matching networks, and low-parasite cell units enhance the power gain. The optimum load impedance is determined from load-pull simulation. A coplanar waveguide transmission line is adopted for its ease of fabrication. The chip size is 1.5 × 1.7 mm2 with the emitter area of 16 × 1 μm × 15 μm in the output stage. Measurements show that small signal gain is more than 20 dB over 75.5-84.5 GHz and the saturated power is 16.9 dBm @ 79 GHz with gain of 15.2 dB. The high power gain makes it very suitable for medium power amplification.

  20. Thermal imaging in screening of joint inflammation and rheumatoid arthritis in children.

    PubMed

    Lasanen, R; Piippo-Savolainen, E; Remes-Pakarinen, T; Kröger, L; Heikkilä, A; Julkunen, P; Karhu, J; Töyräs, J

    2015-02-01

    Potential of modern thermal imaging for screening and differentiation of joint inflammation has not been assessed in child and juvenile patient populations, typically demanding groups in diagnostics of musculoskeletal disorders. We hypothesize that thermal imaging can detect joint inflammation in patients with juvenile idiopathic arthritis or autoimmune disease with arthritis such as systemic lupus erythematosus. To evaluate the hypothesis, we studied 58 children exhibiting symptoms of joint inflammation. First, the patients' joints were examined along clinical procedure supplemented with ultrasound imaging when deemed necessary by the clinician. Second, thermal images were acquired from patients' knees and ankles. Results of thermal imaging were compared to clinical evaluations in knee and ankle. The temperatures were significantly (pmax = 0.044, pmean < 0.001) higher in inflamed ankle joints, but not in inflamed knee joints. No significant difference was found between the skin surface temperatures of medial and lateral aspects of ankle joints. In knee joints the mean temperatures of medial and lateral aspect differed significantly (p = 0.004). We have demonstrated that thermal imaging may have potential for detecting joint inflammation in ankle joints of children. For knee joints our results are inconclusive and further research is warranted.