Science.gov

Sample records for kaeri

  1. Beam characterization at the KAERI UED beamline

    NASA Astrophysics Data System (ADS)

    Setiniyaz, Sadiq; Kim, Hyun Woo; Baek, In-Hyung; Nam, Jinhee; Chae, MoonSik; Han, Byung-Heon; Gudkov, Boris; Jang, Kyu Ha; Park, Sunjeong; Jeong, Young Uk; Miginsky, Sergey; Vinokurov, Nikolay

    2016-09-01

    The UED (ultrafast electron diffraction) beamline of the KAERI's (the Korea Atomic Energy Research Institute's) WCI (World Class Institute) Center has been successfully commissioned. We have measured the beam emittance by using the quadrupole scan technique and the charge by using a novel measurement system we have developed. In the quadrupole scan, a larger drift distance between the quadrupole and the screen is preferred because it gives a better thin-lens approximation. A high bunch-charge beam, however, will undergo emittance growth in the long drift caused by the space-charge force. We present a method that mitigates this growth by introducing a quadrupole scan with a short drift and without using the thin-lens approximation. The quadrupole in this method is treated as a thick lens, and the emittance is extracted by using the thick-lens equations. Apart from being precise, our method can be readily applied without making any change to the beamline and has no need for a big drift space. For charge measurement, we have developed a system consisting of an in-air Faraday cup (FC) and a preamplifier. Tests performed utilizing 3.3-MeV electrons show that the system was able to measure bunches with pulse durations of tens of femtoseconds at 10 fC sensitivity.

  2. Development of tritium technologies at KAERI

    SciTech Connect

    Chung, H.; Koo, D.; Lee, J.; Park, J.; Yim, S.P.; Yoon, C.; Lim, J.; Choi, W.; Ahn, H.; Kang, H.; Kim, I.; Paek, S.; Yunn, S.H.; Jung, K.J.

    2015-03-15

    Korea has been operating a CANDU nuclear power plant since 1983. Tritium generated in the heavy water of the plant is removed by the Wolsong TRF (Tritium Removal Facility) and measurement campaigns of tritium near the power plant have shown the efficiency of the TRF system. The HANARO reactor uses heavy water as both reflector and moderator. In HANARO the tritiated water removal system consists of compressors, condensers, and adsorption beds. A tritium behavior analysis code (TRIBAC) for a Very High Temperature Gas-Cooled Reactor (VHTR) is under development at KAERI. The TRIBAC computer software has been equipped with models for tritium production, purification, and leakage, as well as chemisorption and tritium behavior, in the hydrogen production system. Korea takes part into the ITER program and is responsible for the supply of an SDS (Tritium Storage and Delivery System). Within this program Korea has launched an experimental program to study the physico-chemical properties of metal and their hydrides in which hydrogen isotope gases can be stored and removed safely.

  3. Radioecological studies in Korea atomic energy research institute, KAERI.

    PubMed

    Choi, Yong-Ho; Lim, Kwang-Muk; Jun, In; Keum, Dong-Kwon; Han, Moon-Hee

    2011-07-01

    Regarding the assessment of the terrestrial food chain dose to man, radioecology may be the field that is focused on the transfer of radionuclides from environmental media to food crops. In Korea, the environmental transfer of radionuclides to staple food crops have been investigated at Korea Atomic Energy Research Institute (KAERI) for the last 25 y mainly through radiotracer experiments in greenhouses. As a result, several hundreds of parameter values for the prediction of the radionuclide transfer have been produced. Many of them appear in two recent publications of International Atomic Energy Agency. This paper outlines the KAERI's past radioecological work and introduces the ongoing research and future plans. PMID:21525043

  4. Spectroscopic measurements and AMO data center in KAERI

    NASA Astrophysics Data System (ADS)

    Rhee, Yongjoo; Kim, S. K.; Park, H. M.; Lee, Jongmin

    2000-11-01

    An introduction to the AMO (Atomic, Molecular, and Optical) database system in KAERI is given with some experimental aspects related to the AMO data production. Data sources, constructing concepts and current status of the database are described. An example of measured data which have been compiled internally is given. .

  5. Development of a neutron guide tube production technique at KAERI

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Jin; Seung, Baek-Soek; Lee, Chang-Hee; Kim, Hark-Rho

    2006-11-01

    In this paper, we present KAERI's technical development status for a neutron guide tube fabrication. To achieve a high uniformity, very low roughness and perfect interface during the layer growth process, a sputtering machine was developed whereby various deposition parameters can be controlled. The Ni mirrors fabricated with this coating equipment show a neutron reflectivity of 97% at the critical angle and the Ni/Ti-supermirrors show ( M=2) 84%. For a substrate alignment and assembly for the guide elements, a non-contact measurement apparatus equipped with optical microscopes was developed instead of using a 3-axis measuring machine. By employing this optical equipment, it was possible to assemble a neutron guide with an accuracy in the lateral direction of 0.005 mm and in the vertical direction of 0.01 mm.

  6. Arc plasma simulation of the KAERI large ion sourcea)

    NASA Astrophysics Data System (ADS)

    In, S. R.; Jeong, S. H.; Kim, T. S.

    2008-02-01

    The KAERI large ion source, developed for the KSTAR NBI system, recently produced ion beams of 100keV, 50A levels in the first half campaign of 2007. These results seem to be the best performance of the present ion source at a maximum available input power of 145kW. A slight improvement in the ion source is certainly necessary to attain the final goal of an 8MW ion beam. Firstly, the experimental results were analyzed to differentiate the cause and effect for the insufficient beam currents. Secondly, a zero dimensional simulation was carried out on the ion source plasma to identify which factors control the arc plasma and to find out what improvements can be expected.

  7. Performance Analysis and Test on the KAERI Devised Spacer Grids for PWRs

    NASA Astrophysics Data System (ADS)

    Song, Kee-Nam; Lee, Soo-Bum

    Spacer grid which is one of the most important structural components in a pressurized light water reactor fuel assembly supports the fuel rods laterally and vertically. Based on design experiences and by scrutinizing the design features of advanced nuclear fuels and the international patents of spacer grids, KAERI has devised its own spacer grid shapes and acquired patents. In this study, a performance evaluation on two new spacer grid shapes devised by KAERI was carried out from mechanical/structural and thermohydraulic view points. And also a performance evaluation on two commercial spacer grid shapes was carried out for the sake of a comparison. The comparisons included the spring characteristics, fuel rod vibration characteristics, fretting wear resistance, impact strength characteristics, CHF enhancement, and pressure drop level of the spacer grid shapes. The comparison results have shown that the performances of the new spacer grid shapes are better or at least not worse than those of the commercial spacer grid shapes.

  8. A Compton X-ray source based on a SC linac at KAERI

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. V.; Han, Y. H.; Jeong, Y. U.; Lee, B. C.; Miginsky, S. V.; Park, S. H.

    2007-05-01

    A quasi-monochromatic X-ray source based on a KAERI SC linac system has been designed and is being manufactured now. 10 MeV 10 mA electron beam together with 20 W 1.06 μm laser beam will be used for 1.8 keV Compton X-ray generation with a few percentage of energy spread and 10 7 photons /s flux. A simple straight beamline was designed to deliver the electron beam with no degradation of its emittance and energy spread and to focus it to a proper size to produce the desired X-rays. We expect the first demonstration of 1.8 keV Compton X-ray generation in autumn 2006.

  9. A neutron guide installation status and its first performance test result at KAERI

    NASA Astrophysics Data System (ADS)

    Cho, S. J.; Cho, Y. G.; Lee, C. H.; Lee, K. H.; Kim, K. P.

    2011-04-01

    A neutron guide system that includes neutron guides, a main shutter, and a vacuum system was successfully installed at the HANARO research reactor of the Korea Atomic Energy Research Institute (KAERI) last year, and is now operating with 5 cold neutron instruments. The neutron flux and spectrum were measured by using gold wire and a disc chopper. The total measured neutron fluxes for various position are about 10-25% lower than the calculated fluxes, which is probably caused by neutron guide misalignment, larger gap between neutron guides, low reflectivity, imperfect cold neutron source data, and so on. But the measured neutron fluxes of the neutron guides are very high. The status of the neutron guide installation and its first performance test result is described in this paper.

  10. Construction of the 1 kJ Nd: glass laser facility at KAERI

    NASA Astrophysics Data System (ADS)

    Lim, C.; Hong, S.-K.; Ko, K.; Jin, J.-T.; Kim, M.; Yun, D.-H.; Li, L.-J.; Lee, D.-W.; Lee, K.-T.; Kim, C.-J.

    2008-05-01

    We report on the design and present status of a 1 kJ Nd:Glass laser facility for basic research on quantum engineering at KAERI (Korea Atomic Energy Research Institute). By applying a newly designed spatial filter with a serrated aperture, we improved the diffracted Gaussian spatial profile of an oscillator into a flat-top one. The laser system consists of 4 beam lines, each with the energies of more than 200 J at the nano-second regime. We measured the gain and spatial profiles of each amplification stage. A spectral shaping by a two-stage OPCPA (Optical Parametric Chirped Amplifier) for a pico-second front end was studied to compensate for gain narrowing in multi-stage amplifier chains.

  11. Mapping Fractures in KAERI Underground Research Tunnel using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Ho; Kim, Seung-Sep; Kwon, Jang-Soon

    2016-04-01

    The proportion of nuclear power in the Republic of Korea occupies about 40 percent of the entire electricity production. Processing or disposing nuclear wastes, however, remains one of biggest social issues. Although low- and intermediate-level nuclear wastes are stored temporarily inside nuclear power plants, these temporary storages can last only up to 2020. Among various proposed methods for nuclear waste disposal, a long-term storage using geologic disposal facilities appears to be most highly feasible. Geological disposal of nuclear wastes requires a nuclear waste repository situated deep within a stable geologic environment. However, the presence of small-scale fractures in bedrocks can cause serious damage to durability of such disposal facilities because fractures can become efficient pathways for underground waters and radioactive wastes. Thus, it is important to find and characterize multi-scale fractures in bedrocks hosting geologic disposal facilities. In this study, we aim to map small-scale fractures inside the KAERI Underground Research Tunnel (KURT) using ground penetrating radar (GPR). The KURT is situated in the Korea Atomic Energy Research Institute (KAERI). The survey target is a section of wall cut by a diamond grinder, which preserves diverse geologic features such as dykes. We conducted grid surveys on the wall using 500 MHz and 1000 MHz pulseEKKO PRO sensors. The observed GPR signals in both frequencies show strong reflections, which are consistent to form sloping planes. We interpret such planar features as fractures present in the wall. Such fractures were also mapped visually during the development of the KURT. We confirmed their continuity into the wall from the 3D GPR images. In addition, the spatial distribution and connectivity of these fractures are identified from 3D subsurface images. Thus, we can utilize GPR to detect multi-scale fractures in bedrocks, during and after developing underground disposal facilities. This study was

  12. The Treatment Procedure for a Volume Reduction of the Spent HEPA Filters in KAERI

    SciTech Connect

    Ji, Y.Y.; Hong, D.S.; Kang, I.S.; Shon, J.S.

    2008-07-01

    Spent filter wastes of about 2,200 units have been stored in the radioactive waste storage facility of the Korea Atomic Energy Research Institute since its operation. Among these spent filter wastes, a HEPA filter account for about 95 %. All these HEPA filter wastes generated at KAERI have been stored inside a poly bag in accordance with the original form without any treatment of them. Therefore, in order to secure a space in a radioactive waste storage facility approaching its saturation, it is necessary to treat them by a compaction in view of a radioactive waste treatment and storage, and finally to repack the compacted spent filters into a regular drum for sending them to a final disposal site. To do that, the spent HEPA filter wastes were classified according to their generation facility, their generation date and their surface dose rate by investigating the inventory of them. And also, a nuclide assessment of them was conducted by taking a representative sample at the spot of a high dose rate at the intake surface and the outlet surface of a spent HEPA filter without a dismantlement, before compacting them. At present, for the spent HEPA filter wastes after a radionuclide assessment, a compaction treatment of them is now being conducted by using the shaping and compacting equipment developed at KAERI. Thus, to put a HEPA filter with a hexahedral form of a 610(W) x 610(H) x 305(T) mm into a regular drum (DOT-17H) with an inner diameter of about 572 mm, a columnar shaping with a capacity of 15 tons was conducted. From this shaping, a shaped HEPA filter waste with a diameter of about 500 mm was directly put into a regular drum. And then, the compaction treatment of a shaped HEPA filter with a capacity of about 60 tons was conducted by vertically compacting it. As a result, a volume reduction rate of a spent HEPA filter waste by a shaping and compacting of it accounted for about 1/8 when compared to its original form. (authors)

  13. First lasing of the KAERI millimeter-wave free electron laser

    SciTech Connect

    Lee, B.C.; Jeong, Y.U.; Cho, S.O.

    1995-12-31

    The millimeter-wave FEL program at KAERI aims at the generation of high-power CW laser beam with high efficiency at the wavelength of 3{approximately}10 mm for the application in plasma heating and in power beaming. In the first oscillation experiment, the FEL has lased at the wavelength of 10 mm with the pulsewidth of 10{approximately}30 {mu}s. The peak power is about 1 kW The FEL is driven by a recirculating electrostatic accelerator having tandem geometry. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The FEL resonator is located in the high-voltage terminal and is composed of a helical undulator, two mesh mirrors, and a cylindrical waveguide. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. At present, with no axial guiding magnetic field only 15 % of the injected beam pass through the undulator. Transport ratio of the electron beam through the undulator is very sensitive to the injection parameters such as the diameter and the divergence of the electron beam Simulations show that, with unproved injection condition, the FEL can generate more than 50 kW of average power in CW operation. Details of the experiments, including the spectrum measurement and the recirculation of electron beam, are presented.

  14. Surface Decontamination of System Components in Uranium Conversion Plant at KAERI

    SciTech Connect

    Choi, W. K.; Kim, K. N.; Won, H. J.; Jung, C. H.; Oh, W. Z.

    2003-02-25

    A chemical decontamination process using nitric acid solution was selected as in-situ technology for recycle or release with authorization of a large amount of metallic waste including process system components such as tanks, piping, etc., which is generated by dismantling a retired uranium conversion plant at Korea Atomic Energy Research Institute (KAERI). The applicability of nitric acid solution for surface decontamination of metallic wastes contaminated with uranium compounds was evaluated through the basic research on the dissolution of UO2 and ammonium uranyl carbonate (AUC) powder. Decontamination performance was verified by using the specimens contaminated with such uranium compounds as UO2 and AUC taken from the uranium conversion plant. Dissolution rate of UO2 powder is notably enhanced by the addition of H2O2 as an oxidant even in the condition of a low concentration of nitric acid and low temperature compared with those in a nitric acid solution without H2O2. AUC powders dissolve easily in nitric acid solutions until the solution pH attains about 2.5 {approx} 3. Above that solution pH, however, the uranium concentration in the solution is lowered drastically by precipitation as a form of U3(NH3)4O9 . 5H2O. Decontamination performance tests for the specimens contaminated with UO2 and AUC were quite successful with the application of decontamination conditions obtained through the basic studies on the dissolution of UO2 and AUC powders.

  15. Design study of the KAERI Compton X-ray source depending on the laser intensity in the linear or non-linear regime

    NASA Astrophysics Data System (ADS)

    Park, Seong Hee; Lee, Ji Young; Lee, Kitae; Jeong, Young Uk; Lee, Byung Cheol; Miginsky, Sergei; Bondarenko, A. V.

    2007-05-01

    Quasi-monochromatic X-rays can be generated via Compton backscattering at the KAERI superconducting (SC) radio-frequency (RF) Linac system. The KAERI SC RF Linac with one 352 MHz cryomodule is now operating at 10 MeV. For a few keV Compton X-rays, an electron beamline is designed at the straight section, just after the SC linac, while an optical beamline is designed and fabricated based on the fiber laser delivery. Both will be installed in fall, 2006. In this paper, we estimate the parameters of Compton X-rays at a given system using three different commercial lasers and suggest the scheme to generate higher harmonics using an intense ultra-short laser.

  16. First lasing of the KAERI compact far-infrared free-electron laser driven by a magnetron-based microtron

    NASA Astrophysics Data System (ADS)

    Jeong, Young U.; Lee, Byung Cheol; Kim, Sun Kook; Cho, Sung Oh; Cha, Byung Heon; Lee, Jongmin; Kazakevitch, Grigori M.; Vobly, Pavel D.; Gavrilov, Nicolai G.; Kubarev, Vitaly V.; Kulipanov, Gennady N.

    2001-12-01

    The KAERI compact far-infrared (FIR) free-electron laser (FEL) has been operated successfully in the wavelength range of 97-150 μm. It is the first demonstration of FEL lasing by using a magnetron-based classical microtron. We developed a high precision undulator consisting of 80 periods, with each period being 25 mm. The field strength of the undulator can be changed from 4.5 to 6.8 kG with an amplitude deviation of only 0.05% in r.m.s value. The kinetic energy of the electron beam is 6.5 MeV. The average current and pulse duration of the electron beam macropulses are 45 mA and 5.5 μs, respectively. The measured power of the FEL with the electron beam parameters was more than 50 W for a FIR macropulse having a duration of 4 μs. The spectral width of the FEL was measured to be 0.5% of the central wavelength. The FEL system, aside from the racks for the controlling units, is compact enough to be located inside an area of 3×4 m 2.

  17. Status of the atomized uranium silicide fuel development at KAERI

    SciTech Connect

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H.

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  18. Electron optics of a future SC ERL at KAERI

    NASA Astrophysics Data System (ADS)

    Bondarenko, A. V.; Han, Y. H.; Jeong, Y. U.; Lee, B. C.; Miginsky, S. V.; Park, S. H.

    2007-05-01

    A project of a high-power FEL at Korea Atomic Energy Research Institute is described. The FEL is driven by a superconducting energy recovery linac. The future ERL will be connected to the existing machine without any modification. It consists of two 180° bents and two straight sections: one is for the FEL, another for a Compton X-ray source. One can choose the regime controlling the lenses. The total ERL is isochronous to avoid any problem with longitudinal beam instability. The total relative emittance degradation through the whole machine is ≈1.5. The FEL will be based on a 2 m helical in-vacuum undulator made of permanent magnets. One mirror of the optical cavity is blind and made of copper, the other one, the outcoupler, is semi-transparent and made of CVD diamond. The expected average power is a few kW, the tuning range 35-70 μm.

  19. AMO Database in KAERI and Atomic Structure Studies

    NASA Astrophysics Data System (ADS)

    Rhee, Yongjoo; Park, H. M.; Kwon, D. H.

    2005-05-01

    Atomic spectroscopy studies carried out at the Laboratory for Quantum Optics in Korea Atomic Energy Research Institute are introduced together with the AMO (Atomic, Molecular, and Optical) database established based upon those studies.

  20. High Power Proton Accelerator Development at KAERI and its Vacuum System

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  1. New generation polyphase resonant converter-modulators for the Korean atomic energy research institute

    SciTech Connect

    Reass, William A; Baca, David M; Gribble, Robert F

    2009-01-01

    This paper will present operational data and performance parameters of the newest generation polyphase resonant high voltage converter modulator (HVCM) as developed and delivered to the KAERI 100 MeV ''PEFP'' accelerator [1]. The KAERI design realizes improvements from the SNS and SLAC designs [2]. To improve the IGBT switching performance at 20 kHz for the KAERI system, the HVCM utilizes the typical zero-voltage-switching (ZVS) at turn on and as well as artificial zero-current-switching (ZCS) at turn-off. The new technique of artificial ZCS technique should result in a 6 fold reduction of IGBT switching losses (3). This improves the HCVM conversion efficiency to better than 95% at full average power, which is 500 kW for the KAERI two klystron 105 kV, 50 A application. The artificial ZCS is accomplished by placing a resonant RLC circuit across the input busswork to the resonant boost transformer. This secondary resonant circuit provides a damped ''kick-back'' to assist in IGBT commutation. As the transformer input busswork is extremely low inductance (< 10 nH), the single RLC network acts like it is across each of the four IGBT collector-emitter terminals of the H-bridge switching network. We will review these topological improvements and the overall system as delivered to the KAERI accelerator and provide details of the operational results.

  2. A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants

    SciTech Connect

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

    2012-01-30

    The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

  3. Numerical investigation of the radiation characteristics of a variable-period helical undulator

    NASA Astrophysics Data System (ADS)

    Lee, Kitae; Mun, Jungho; Hee Park, Seong; Jang, Kyu-Ha; Uk Jeong, Young; Vinokurov, Nikolay A.

    2015-03-01

    A helical undulator with a variable-period capability has been developed at the Korea Atomic Energy Research Institute (KAERI) to generate high power radiation in the terahertz range. A simulation code for the spontaneous emission from an electron beam inside an undulator has been developed to characterize the performance of the undulator. In the case of the KAERI undulator, there is a non-negligible high-order harmonics in the longitudinal field distribution compared with a bifilar one.The axial velocity modulation by the high-order harmonics in the field distribution has been found to lead to small deviation of the spectrum of spontaneous emission from the KAERI undulator with respect to the bifilars one. The gain functions obtained from the spontaneous emission spectra according to the Madey theory, show similar shapes for both undulators.

  4. Thermal conductivity modeling of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Cho, Byoung Jin; Sohn, Dong-Seong; Park, Jong Man

    2015-11-01

    A dataset for the thermal conductivity of U-Mo/Al dispersion fuel made available by KAERI was reanalyzed. Using this dataset, an analytical model was obtained by expanding the Bruggeman model. The newly developed model incorporates thermal resistances at the interface between the U-Mo particles and the Al matrix and the defects within the Al matrix (grain boundaries, cracks, and dislocations). The interfacial resistances are expressed as functions of U-Mo particle size and Al grain size obtained empirically by fitting to measured data from KAERI. The model was then validated against an independently measured dataset from ANL.

  5. 78 FR 72072 - Proposed Subsequent Arrangement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Concerning Civil Uses of Atomic Energy and the Agreement for Cooperation in the Peaceful Uses of Nuclear.... KAERI originally obtained the material from the U.S. Department of Energy/National Nuclear Security... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF...

  6. Development of an ACP facility

    SciTech Connect

    Gil-Sung You; Won-Myung Choung; Jeong-Hoe Ku; il-Je Cho; Dong-Hak Kook; Kie-Chan Kwon; Eun-Pyo Lee; Ji-Sup Yoon; Seong-Won Park; Won-Kyung Lee

    2007-07-01

    KAERI has been developing an advanced spent fuel conditioning process (ACP). The ACP facility for a process demonstration consists of two air-sealed type hot cells. The safety analysis results showed that the facility was designed safely. The relevant integrated performance tests were also carried out successfully. (authors)

  7. Atomic and molecular databases in Japan and Asia

    NASA Astrophysics Data System (ADS)

    Murakami, Izumi; Kato, Takako

    2000-11-01

    Atomic and molecular data activities and databases in Japan and Asia are introduced. In China IAPCM has a database on windows95/NT. In Korea KAERI has A+M databases with original engines. In Japan JAERI shows evaluated data as graphs on WWW and NIFS offers numerical A+M databases on WWW. .

  8. Prompt gamma activation analysis of boron in reference materials using diffracted polychromatic neutron beam

    NASA Astrophysics Data System (ADS)

    Byun, S. H.; Sun, G. M.; Choi, H. D.

    2004-01-01

    Boron concentrations were analyzed for standard reference materials by prompt gamma activation analysis (PGAA). The measurements were performed at the SNU-KAERI PGAA facility installed at Hanaro, the research reactor of Korea Atomic Energy Research Institute (KAERI). The facility uses a diffracted polychromatic beam with a neutron flux of 7.9 × 10 7 n/cm 2 s. Elemental sensitivity for boron was calibrated from the prompt gamma-ray spectra of boric acid samples containing 2-45 μg boron. The sensitivity of 2131 cps/mg-B was obtained from the linearity of the boron peak count rate versus the boron mass. The detection limit for boron was estimated to be 67 ng from an empty sample bag spectrum for a counting time of 10,000 s. The measured boron concentrations for standard reference materials showed good consistency with the certified or information values.

  9. Seismic Fragility Analysis of a Condensate Storage Tank with Age-Related Degradations

    SciTech Connect

    Nie, J.; Braverman, J.; Hofmayer, C; Choun, Y-S; Kim, MK; Choi, I-K

    2011-04-01

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. This report describes the research effort performed by BNL for the Year 4 scope of work. This report was developed as an update to the Year 3 report by incorporating a major supplement to the Year 3 fragility analysis. In the Year 4 research scope, an additional study was carried out to consider an additional degradation scenario, in which the three basic degradation scenarios, i.e., degraded tank shell, degraded anchor bolts, and cracked anchorage concrete, are combined in a non-perfect correlation manner. A representative operational water level is used for this effort. Building on the same CDFM procedure implemented for the Year 3 Tasks, a simulation method was applied using optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. The results are summarized in Section 5

  10. The small angle neutron spectrometer at the HANARO reactor, Korea

    NASA Astrophysics Data System (ADS)

    Seong, B.-S.; Han, Y.-S.; Lee, C.-H.; Lee, J.-S.; Hong, K.-P.; Park, K.-N.; Kim, H.-J.

    A new small angle neutron spectrometer (SANS) has been installed on the CN beam tube at the 30 MW HANARO Research Reactor in the Korea Atomic Energy Research Institute (KAERI). The SANS is to be used for the study of microstructural inhomogeneities in materials in the 1 nm to 100 nm size range. In this paper, the design characteristics of the spectrometer are presented in detail, and several SANS results for standard samples are presented which illustrate its performance.

  11. Simulation of Shielding Effects on the Total Dose Observed in TDE of KISAT-1

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Joon; Shin, Young Hoon; Min, Kyoung Wook

    2001-06-01

    The threshold voltage shift observed in TDE (Total Dose Experiment) on board the KITSAT-1 is converted into dose (rad(SiO2)) usinsg the result of laboratory calibration with Co-60 gamma ray source in KAERI (Korea Atomic Energy Research Institute). Simulation using the NASA radiation model of geomagnetosphere verifies that the dose difference between RADFET1 and RADFET3 observed on KITSAT-1 comes from the difference in shielding thickness at the position of these RADFETs.

  12. Present status of residual stress instrument at the HANARO

    NASA Astrophysics Data System (ADS)

    Moon, Myung-Kook; Em, Vyacheslav; Lee, Chang-Hee; Cheon, Jong-Kyu; Choi, Young-Hyun; Nam, Uk-Won; Kong, Kyung-Nam

    2006-11-01

    The new residual stress instrument was installed recently at beam port ST-1 at the HANARO reactor in KAERI. The instrument is equipped with 200 mm high position-sensitive detector. The shielding drum for monochromator allows take-off angle in the range of 2 θM=0-60°. A horizontally focusing bent perfect crystal Si monochromator with (2 2 0) reflecting plane was found to be the most appropriate for the instrument.

  13. Experience and Lessons Learned from Conditioning of Spent Sealed Sources in Singapore - 13107

    SciTech Connect

    Hong, Dae-Seok; Kang, Il-Sik; Jang, Kyung-Duk; Jang, Won-Hyuk; Hoo, Wee-Teck

    2013-07-01

    In 2010, IAEA requested KAERI (Korea Atomic Energy Research Institute) to support Singapore for conditioning spent sealed sources. Those that had been used for a lightning conductor, check source, or smoke detector, various sealed sources had been collected and stored by the NEA (National Environment Agency) in Singapore. Based on experiences for the conditioning of Ra-226 sources in some Asian countries since 2000, KAERI sent an expert team to Singapore for the safe management of spent sealed sources in 2011. As a result of the conditioning, about 575.21 mCi of Am-241, Ra-226, Co-60, and Sr-90 were safely conditioned in 3 concrete lining drums with the cooperation of the KAERI expert team, the IAEA supervisor, the NEA staff and local laborers in Singapore. Some lessons were learned during the operation: (1) preparations by a local authority are very helpful for an efficient operation, (2) a preliminary inspection by an expert team is helpful for the operation, (3) brief reports before and after daily operation are useful for communication, and (4) a training opportunity is required for the sustainability of the expert team. (authors)

  14. Development of cold neutron depth profiling system at HANARO

    NASA Astrophysics Data System (ADS)

    Park, B. G.; Sun, G. M.; Choi, H. D.

    2014-07-01

    A neutron depth profiling (NDP) system has been designed and developed at HANARO, a 30 MW research reactor at the Korea Atomic Energy Research Institute (KAERI). The KAERI-NDP system utilizes cold neutrons that are transported along the CG1 neutron guide from the cold neutron source and it consists of a neutron beam collimator, a target chamber, a beam stopper, and charged particle detectors along with NIM-standard modules for charged particle pulse-height analysis. A 60 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The energy distribution of the cold neutron beam at the end of the neutron guide was calculated by using the Monte Carlo simulation code McStas, and a neutron flux of 1.8×108 n/cm2 s was determined by using the gold foil activation method at the sample position. The performance of the charged particle detection of the KAERI-NDP system was tested by using Standard Reference Materials. The energy loss spectra of alpha particles and Li ions emitted from 10B, which was irradiated by cold neutrons, were measured. The measured peak concentration and the areal density of 10B in the Standard Reference Material are consistent with the reference values within 1% and 3.4%, respectively.

  15. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    SciTech Connect

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are

  16. Preliminary calibration of the ACP safeguards neutron counter

    NASA Astrophysics Data System (ADS)

    Lee, T. H.; Kim, H. D.; Yoon, J. S.; Lee, S. Y.; Swinhoe, M.; Menlove, H. O.

    2007-10-01

    The Advanced Spent Fuel Conditioning Process (ACP), a kind of pyroprocess, has been developed at the Korea Atomic Energy Research Institute (KAERI). Since there is no IAEA safeguards criteria for this process, KAERI has developed a neutron coincidence counter to make it possible to perform a material control and accounting (MC&A) for its ACP materials for the purpose of a transparency in the peaceful uses of nuclear materials at KAERI. The test results of the ACP Safeguards Neutron Counter (ASNC) show a satisfactory performance for the Doubles count measurement with a low measurement error for its cylindrical sample cavity. The neutron detection efficiency is about 21% with an error of ±1.32% along the axial direction of the cavity. Using two 252Cf neutron sources, we obtained various parameters for the Singles and Doubles rates for the ASNC. The Singles, Doubles, and Triples rates for a 252Cf point source were obtained by using the MCNPX code and the results for the ft8 cap multiplicity tally option with the values of ɛ, fd, and ft measured with a strong source most closely match the measurement results to within a 1% error. A preliminary calibration curve for the ASNC was generated by using the point model equation relationship between 244Cm and 252Cf and the calibration coefficient for the non-multiplying sample is 2.78×10 5 (Doubles counts/s/g 244Cm). The preliminary calibration curves for the ACP samples were also obtained by using an MCNPX simulation. A neutron multiplication influence on an increase of the Doubles rate for a metal ingot and UO2 powder is clearly observed. These calibration curves will be modified and complemented, when hot calibration samples become available. To verify the validity of this calibration curve, a measurement of spent fuel standards for a known 244Cm mass will be performed in the near future.

  17. Major results from safety-related integral effect tests with VISTA-ITL for the SMART design

    SciTech Connect

    Park, H. S.; Min, B. Y.; Shin, Y. C.; Yi, S. J.

    2012-07-01

    A series of integral effect tests (IETs) was performed by the Korea Atomic Energy Research Inst. (KAERI) using the VISTA integral test loop (VISTA-ITL) as a small-scale IET program. Among them this paper presents major results acquired from the safety-related IETs with the VISTA-ITL facility for the SMART design. Three small-break loss-of-coolant accident (SBLOCA) tests of safety injection system (SIS) line break, shutdown cooling system (SCS) line break and pressurizer safety valve (PSV) line break were successfully performed and the transient characteristics of a complete loss of flowrate (CLOF) was simulated properly with the VISTA-ITL facility. (authors)

  18. KJRR-FAI Hydraulic Flow Testing Input Package

    SciTech Connect

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATR’s Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

  19. Identification and Assessment of Material Models for Age-Related Degradation of Structures and Passive Components in Nuclear Power Plants

    SciTech Connect

    Nie,J.; Braverman, J.; Hofmayer, C.; Kim, M. K.; Choi, I-K.

    2009-04-27

    When performing seismic safety assessments of nuclear power plants (NPPs), the potential effects of age-related degradation on structures, systems, and components (SSCs) should be considered. To address the issue of aging degradation, the Korea Atomic Energy Research Institute (KAERI) has embarked on a five-year research project to develop a realistic seismic risk evaluation system which will include the consideration of aging of structures and components in NPPs. Three specific areas that are included in the KAERI research project, related to seismic probabilistic risk assessment (PRA), are probabilistic seismic hazard analysis, seismic fragility analysis including the effects of aging, and a plant seismic risk analysis. To support the development of seismic capability evaluation technology for degraded structures and components, KAERI entered into a collaboration agreement with Brookhaven National Laboratory (BNL) in 2007. The collaborative research effort is intended to continue over a five year period with the goal of developing seismic fragility analysis methods that consider the potential effects of age-related degradation of SSCs, and using these results as input to seismic PRAs. In the Year 1 scope of work BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations that will be performed in the subsequent evaluations in the years that follow. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. This report

  20. Cold test results of a side-coupled standing-wave electron-accelerating structure

    NASA Astrophysics Data System (ADS)

    Song, Ki Baek; Li, Yonggui; Lee, Sanghyun; Lee, Byeong-No; Park, Hyung Dal; Cha, Sung-Su; Lee, Byung Cheol

    2013-07-01

    The radio-frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) is designed for a cargo inspection system (CIS) at the Korea Atomic Energy Research Institute (KAERI). The cold test results of the electron accelerator structure, which has a side-coupled standing-wave interlaced-pulse dual-energy mode, are described. The design concept, basic structure, microwave-tuning method, and cold-test procedure are described as well. The measured dispersion curve, spectrum characteristics, ρ-f relation of the power coupler, and axial field distribution of the accelerating gradient are provided.

  1. Prediction and suppression of beam breakup instability in multicell superconducting cavities

    NASA Astrophysics Data System (ADS)

    Volkov, V.

    2009-01-01

    Beam breakup instability in superconducting cavities is a serious problem. In this work, a four-cell LEP cavity installed in the KAERI linear accelerator is considered as an example. Dependence of the breakup instability threshold currents on the characteristics of a dipole mode was determined both analytically and numerically. An efficient technique to suppress breakup instability using rf beam focusing within a cavity is suggested. The technique involves applying TE-type monopole higher-order modes and is useful for multicell superconducting cavities with many trapped high-Q dipole modes.

  2. Coulomb explosions of deuterium clusters studied by compact design of Nomarski interferometer

    NASA Astrophysics Data System (ADS)

    Martinkova, Michaela; Kalal, Milan; Rhee, Yong Joo

    2010-08-01

    Interactions of high-intensity femtosecond lasers with deuterium clusters leading to Coulombic explosions and subsequent production of fusion neutrons attracted in recent years considerable attention. In order to maximize the neutron yield finding a dependence of clusters size and their spatial distribution on experimental conditions became very important. In this paper a possibility to measure the deuterium clusters spatial distributions experimentally was analyzed. In combination with experiments recently performed in the Laboratory of Quantum Optics at the Korea Atomic Energy Research Institute (KAERI) interferometry was identified as the diagnostics suitable for such measurements.

  3. Current and anticipated uses of thermal hydraulic codes in Korea

    SciTech Connect

    Kim, Kyung-Doo; Chang, Won-Pyo

    1997-07-01

    In Korea, the current uses of thermal hydraulic codes are categorized into 3 areas. The first application is in designing both nuclear fuel and NSSS. The codes have usually been introduced based on the technology transfer programs agreed between KAERI and the foreign vendors. Another area is in the supporting of the plant operations and licensing by the utility. The third category is research purposes. In this area assessments and some applications to the safety issue resolutions are major activities using the best estimate thermal hydraulic codes such as RELAP5/MOD3 and CATHARE2. Recently KEPCO plans to couple thermal hydraulic codes with a neutronics code for the design of the evolutionary type reactor by 2004. KAERI also plans to develop its own best estimate thermal hydraulic code, however, application range is different from KEPCO developing code. Considering these activities, it is anticipated that use of the best estimate hydraulic analysis code developed in Korea may be possible in the area of safety evaluation within 10 years.

  4. Microbiology and Biogeochemical Study of Underground Research Tunnel for the Geological Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Oh, J.; Seo, H.; Rhee, S.

    2007-12-01

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe- metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal- reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI.

  5. Fuel Safety Activities in Korea

    SciTech Connect

    Auh, Geun-Sun; Shin, A.D.; Lee, J.S.; Woo, S.W.; Ryu, Y.H.; Kim, Jun-Hwan; Kim, S.K.; Jeong, Y.H.

    2007-07-01

    The current regulatory requirements for fuel performance were based on earlier test data of fresh or low burnup Zircaloy fuels of less than 40 GWD/MTU. Most countries have not changed the current regulatory requirements even if they are actively investigating the high burnup and new cladding alloy effects. Korea agrees with commonly accepted international consensus that although there are technical issues requiring resolutions, these issues do not constitute immediate safety concerns. The high burnup fuel reactor performance experiences of Korea do not show any major problems even if there have been some burnup related fuel failures which are described in the paper. KINS has recommended the industry to have lower fuel failure rates than 1-2 per 50,000 fuel rods. A research project of High Burnup Fuel Safety Tests and Evaluations has started in 2002 under a joint cooperation of KAERI/KNFC/KEPRI and KINS to obtain performance results of high burnup fuel and to develop evaluation technologies of high burnup fuel safety issues. From 1998, KINS has closely monitored and actively participated in international activities such as OECD/NEA CABRI Water Loop Program to reflect on regulatory requirements if needed. KINS will closely monitor the high burnup fuel performances of Korea to strength the regulatory activities if needed. The research activities in Korea including of LOCA and RIA being performed at KAERI with active supports of the industry are summarized in the paper. (authors)

  6. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect

    M.F. Simpson; K.-R. Kim

    2010-12-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  7. Perform Tests and Document Results and Analysis of Oxide Layer Effects and Comparisons

    SciTech Connect

    Collins, E. D.; DelCul, G. D.; Spencer, B. B.; Hunt, R. D.; Ausmus, C.

    2014-08-30

    During the initial feasibility test using actual used nuclear fuel (UNF) cladding in FY 2012, an incubation period of 30–45 minutes was observed in the initial dry chlorination. The cladding hull used in the test had been previously oxidized in a dry air oxidation pretreatment prior to removal of the fuel. The cause of this incubation period was attributed to the resistance to chlorination of an oxide layer imparted by the dry oxidation pretreatment on the cladding. Subsequently in 2013, researchers at the Korea Atomic Energy Institute (KAERI) reported on their chlorination study [R1] on ~9-gram samples of unirradiated ZirloTM cladding tubes that had been previously oxidized in air at 500oC for various time periods to impart oxide layers of varying thickness. In early 2014, discussions with Indefinite Delivery, Indefinite Quantity (IDIQ) contracted technical consultants from Westinghouse described their previous development (and patents) [R2] on methods of chemical washing to remove some or all of the hydrous oxide layer imparted on UNF cladding during irradiation in light water reactors (LWRs) . Thus, the Oak Ridge National Laboratory (ORNL) study, described herein, was planned to extend the KAERI study on the effects of anhydrous oxide layers, but on larger ~100-gram samples of unirradiated zirconium alloy cladding tubes, and to investigate the effects of various methods of chemical pretreatment prior to chlorination with 100% chlorine on the average reaction rates and Cl2 usage efficiencies.

  8. A Study on the Tritium Behavior in the Rice Plant after a Short-Term Exposure of HTO

    SciTech Connect

    Yook, D-S.; Lee, K. J.; Choi, Y-H.

    2002-02-26

    In many Asian countries including Korea, rice is a very important food crop. Its grain is consumed by humans and its straw is used to feed animals. In Korea, there are four CANDU type reactors that release relatively large amounts of tritium into the environment. Since 1997, KAERI (Korea Atomic Energy Research Institute) has carried out the experimental studies to obtain domestic data on various parameters concerning the direct contamination of plant. In this study, the behavior of tritium in the rice plant is predicted and compared with the measurement performed at KAERI. Using the conceptual model of the soil-plant-atmosphere tritiated water transport system which was suggested by Charles E. Murphy, tritium concentrations in the soil and in leaves to time were derived. If the effect of tritium concentration in the soil is considered, the tritium concentration in leaves is described as a double exponential model. On the other hand if the tritium concentration in the soil is disregarded, the tritium concentration in leaves is described by a single exponential term as other models (e.g. Belot's or STAR-H3 model). Also concentration of organically bound tritium in the seed is predicted and compared with measurements. The results can be used to predict the tritium concentration in the rice plant at a field around the site and the ingestion dose following the release of tritium to the environment.

  9. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  10. Selective Trapping of Volatile Fission Products with an Off-Gas Treatment System

    SciTech Connect

    B.R. Westphal; J.J. Park; J.M. Shin; G.I. Park; K.J. Bateman; D.L. Wahlquist

    2008-07-01

    A head-end processing step, termed DEOX for its emphasis on decladding via oxidation, is being developed for the treatment of spent oxide fuel by pyroprocessing techniques. The head-end step employs high temperatures to oxidize UO2 to U3O8 resulting in the separation of fuel from cladding and the removal of volatile fission products. Development of the head-end step is being performed in collaboration with the Korean Atomic Energy Research Institute (KAERI) through an International Nuclear Energy Research Initiative. Following the initial experimentation for the removal of volatile fission products, an off-gas treatment system was designed in conjunction with KAERI to collect specific fission gases. The primary volatile species targeted for trapping were iodine, technetium, and cesium. Each species is intended to be collected in distinct zones of the off-gas system and within those zones, on individual filters. Separation of the volatile off-gases is achieved thermally as well as chemically given the composition of the filter media. A description of the filter media and a basis for its selection will be given along with the collection mechanisms and design considerations. In addition, results from testing with the off-gas treatment system will be presented.

  11. Growth and fabrication method of CdTe and its performance as a radiation detector

    NASA Astrophysics Data System (ADS)

    Choi, Hyojeong; Jeong, Manhee; Kim, Han Soo; Kim, Young Soo; Ha, Jang Ho; Chai, Jong-Seo

    2015-01-01

    A CdTe crystal ingot doped with 2000 ppm of Cl was grown by using the low-pressure Bridgman (LPB) method at the Korea Atomic Energy Research Institute (KAERI). A Semiconductor detector as a radiation detection sensor with a size of 7 (W) × 6.5 (D) × 2 (H) mm3 was fabricated from the CdTe ingot. In addition, the properties of the CdTe sample were observed through four kinds of experiments to analyze its performance. The resistivity was obtained as 1.41 × 1010 Ωcm by using a Keithley 6517A high-precision electrometer. The mobility-lifetime products for electrons and holes were 3.137 × 10-4 cm2/V and 4.868 × 10-5 cm2/V, respectively. Finally, we achieved a 16.8% energy resolution at 59.5 keV for the 241Am gamma-ray source. The CdTe semiconductor detector grown at KAERI has a performance good enough to detect low-energy gamma-rays.

  12. Evaluation of Water-Mineral Interaction Using Microfluidic Tests with Thin Sections

    NASA Astrophysics Data System (ADS)

    Oh, Y. S.; Ryu, J. H.; Koh, Y. K.; Jo, H. Y.

    2014-12-01

    For the geological disposal of radioactive wastes, geological settings and groundwater conditions are significantly important because of their effects on a radionuclide migration. One of the preferred host rocks for the radioactive waste disposal is crystalline rock. Fractures in crystalline rocks are main fluid pathways. Groundwater reacts with fracture filling minerals in fracture zones, resulting in physicochemical changes in the minerals and groundwater. In this study, fracture filling mineral-groundwater interactions were investigated by conducting microfluidic tests using thin sections at various conditions (i.e., fluid chemistry and flow rate). Groundwater and rock core samples collected from the KAERI Underground Research Tunnel (KURT) located in the Korea Atomic Energy Research Institute (KAERI) were used in this study. Dominant bedrock is two-mica granite, which contains both biotite and muscovite. Secondary minerals (e.g., chlorite, calcite and clay minerals) occur in fracture and alteration zones. In nature, water-mineral interactions generally take long time. Microfluidic tests were conducted to simulate water-mineral interactions in shorter time with smaller scale. Thin sections of fracture filling minerals, minerals from alteration zones, and natural and synthetic groundwater samples were used for the microfluidic tests. Results showed that water-mineral interactions at various conditions caused changes in groundwater chemistry, dissolution of minerals, precipitation of secondary minerals, and formation of colloids, which can affect radionuclide migration. In addition, the fluid chemistry and flow rate affected characteristics of water-rock interactions.

  13. Travel time simulation for radionuclide transport at the Korean underground research facility, KURT

    NASA Astrophysics Data System (ADS)

    Ko, N.; Hwang, Y.; Jeong, J.; Kim, K.

    2013-12-01

    For the research on the deep geological disposal of radioactive waste, it is necessary to understand the underground environment, including the geology and hydrogeology. In Korea, KURT (KAERI Underground Research Tunnel) was constructed in 2006 at KAERI (Korea Atomic Energy Research Institute). Geological and hydrogeological field data have been obtained from the facility, and the groundwater flow system was simulated. Based on the data observed and analyzed on a groundwater flow system, the transport of potential radionuclides, which were assumed to be released at the supposed position, was then calculated in order to prepare the fundamental data for a safety assessment of a hypothetical underground repository. Several pathways with highly water-conductive features were selected to evaluate the elapsed times of radionuclide transport. The transport times were calculated using a TDRW (Time-Domain Random Walk) method. The matrix diffusion and sorption mechanisms in the host rock, as well as the advection-dispersion processes, were considered under the KURT field conditions. To reflect the radioactive decay, some decay chains were selected. The simulation results indicate that the main factors for the shapes of the mass discharge of the radionuclides were the half-life and distribution coefficient. This shows that the long-lived radionuclides must be treated accurately at the steps of determining radioactive waste source term as well as considering the transport process, and intensified research is required for the sorption between radionuclides and host rocks for making the safety assessment process more reliable and less uncertain.

  14. Establishment of ANSI N13.11 X-ray radiation fields for personal dosimetry performance test by computation and experiment.

    PubMed Central

    Kim, J L; Kim, B H; Chang, S Y; Lee, J K

    1997-01-01

    This paper describes establishment by computational and experimental methods of the American National Standard Institute (ANSI) N13.11 X-ray radiation fields by the Korea Atomic Energy Research Institute (KAERI). These fields were used in the standard irradiations of various personal dosimeters for the personal dosimetry performance test program performed by the Ministry of Science and Technology of Korea in the autumn of 1995. Theoretical X-ray spectra produced from two KAERI X-ray generators were estimated using a modified Kramers' theory with target attenuation and backscatter correction and their spectral distributions experimentally measured by a high-purity germanium semiconductor detector through proper corrections for measured pulse height distributions with photopeak efficiency, Compton fraction, and K-escape fraction. The average energies and conversion coefficients obtained from the computation and experimental methods, when compared with ANSI N13.11 and the recently published National Institute of Standards and Technology X-ray beams, appeared to be in good agreement--(+/-)3% between corresponding values--and thus, could be satisfactorily applied in the performance test of personal dosimeters. PMID:9467054

  15. Development of a neutron measurement system in unified non-destructive assay for the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Park, Se-Hwan; Won, Byung-Hee; Ahn, Seong-Kyu; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Lee, Seung Kyu

    2013-12-01

    The Korea Atomic Energy Research Institute (KAERI) has made an effort to develop pyroprocessing technology to resolve an on-going problem in Korea, i.e., the management of spent nuclear fuels. To this end, a test-bed facility for pyroprocessing, called PRIDE (PyRoprocessing Integrated inactive DEmonstration facility), is being constructed at KAERI. The main objective of PRIDE is to evaluate the performance of the unit processes, remote operation, maintenance, and proliferation resistance. In addition, integrating all unit processes into a one-step process is also one of the main goals. PRIDE can also provide a good opportunity to test safeguards instrumentations for a pyroprocessing facility such as nuclear material accounting devices, surveillance systems, radiation monitoring systems, and process monitoring systems. In the present study, a non-destructive assay (NDA) system for the testing of nuclear material accountancy of PRIDE was designed by integrating three different NDA techniques, i.e., neutron, gamma-ray, and mass measurements. The developed neutron detection module consists of 56 3He tubes and 16 AMPTEK A111 signal processing circuits. The amplifiers were matched in terms of the gain and showed good uniformity after a gain-matching procedure (%RSD=0.37%). The axial and the radial efficiency distributions within the cavity were then measured using a 252Cf neutron source and were compared with the MCNPX calculation results. The measured efficiency distributions showed excellent agreement with the calculations, which confirmed the accuracy of the MCNPX model of the system.

  16. Gamma-ray generation using laser-accelerated electron beam

    NASA Astrophysics Data System (ADS)

    Park, Seong Hee; Lee, Ho-Hyung; Lee, Kitae; Cha, Yong-Ho; Lee, Ji-Young; Kim, Kyung-Nam; Jeong, Young Uk

    2011-06-01

    A compact gamma-ray source using laser-accelerated electron beam is being under development at KAERI for nuclear applications, such as, radiography, nuclear activation, photonuclear reaction, and so on. One of two different schemes, Bremsstrahlung radiation and Compton backscattering, may be selected depending on the required specification of photons and/or the energy of electron beams. Compton backscattered gamma-ray source is tunable and quasimonochromatic and requires electron beams with its energy of higher than 100 MeV to produced MeV photons. Bremsstrahlung radiation can generate high energy photons with 20 - 30 MeV electron beams, but its spectrum is continuous. As we know, laser accelerators are good for compact size due to localized shielding at the expense of low average flux, while linear RF accelerators are good for high average flux. We present the design issues for a compact gamma-ray source at KAERI, via either Bremsstrahlung radiation or Compton backscattering, using laser accelerated electron beams for the potential nuclear applications.

  17. SANS study of microstructural inhomogeneities on Al nano-powder compacts

    NASA Astrophysics Data System (ADS)

    Han, Young Soo; Seong, Baek Seok; Lee, Chang Hee; Lee, Geun Hee; Rhee, Chang Kyu; Kim, Whung Whoe; Wiedenmann, A.

    2004-07-01

    The nano-crystalline materials have excellent mechanical and electrical properties compared to conventional materials. These advantages mainly come from their nano-sized grain structure. Usually the nano-crystalline materials are fabricated using nano powder. The optimum consolidation process is essential to obtain a fully densified structure. The quantitative characterization of remaining pores is important to study the consolidation process. SANS is the best technique to characterize the nano sized inhomogeneities in bulk samples. Al nano powder was synthesized by pulsed wire evaporation (PWE) method and the nano-powder compacts were fabricated by magnetic pulse compaction (MPC) method. The Aluminum oxide was observed by transmission electron microscopy (TEM) at the surface of Al nano powder. The small angle neutron scattering experiments were performed both at the instrument V4 in HMI and at the SANS facility in Korea Atomic Energy Research Institute (KAERI). The SANS data measured in KAERI were compared with the SANS data measured in HMI. The scattering intensity at high Q region increases with decreasing relative density, while the intensity at low Q region increases with increasing relative density in the Al nano powder compacts. The scattering intensity depends on the content of residual pores and Al oxide particles. The volume fraction of Al oxide particle increases with relative density due to the fragmentation of Al oxide layer. The extra scattering at low Q region results from the presence of Al oxide particles.

  18. Design Studies on Gyrotron for ECRH in KSTAR^*

    NASA Astrophysics Data System (ADS)

    Ahn, Saeyoung; Huh, Jin Woo; Kim, Hyoung Suk; Lee, Myoung-Jae; Song, Ho Young

    1996-11-01

    Korean National Fusion Project has started to carry out tokamak physics experiment for the Korean Superconducting Tokamak Research (KSTAR). Its current plan is scheduled to build the superconducting research reactor by the year 2002. Initial design parameters are of the major radius between 1.6 and 2.0 m and the minor radius between 0.5 and 1.0 m with plasma current between 2.0 and 5.0 MA. The toroidal field at the plasma center is about 4 tesla. Institute for Advanced Engineering (IAE) will concentrate on design studies of ECRH and gyrotron component development. Some detail plans will be presented. * Work supported by KBSI and KAERI. On leave at Ajou Univ. from NRL.

  19. Nuclear Instrumentation and Control Cyber Testbed Considerations – Lessons Learned

    SciTech Connect

    Jonathan Gray; Robert Anderson; Julio G. Rodriguez; Cheol-Kwon Lee

    2014-08-01

    Abstract: Identifying and understanding digital instrumentation and control (I&C) cyber vulnerabilities within nuclear power plants and other nuclear facilities, is critical if nation states desire to operate nuclear facilities safely, reliably, and securely. In order to demonstrate objective evidence that cyber vulnerabilities have been adequately identified and mitigated, a testbed representing a facility’s critical nuclear equipment must be replicated. Idaho National Laboratory (INL) has built and operated similar testbeds for common critical infrastructure I&C for over ten years. This experience developing, operating, and maintaining an I&C testbed in support of research identifying cyber vulnerabilities has led the Korean Atomic Energy Research Institute of the Republic of Korea to solicit the experiences of INL to help mitigate problems early in the design, development, operation, and maintenance of a similar testbed. The following information will discuss I&C testbed lessons learned and the impact of these experiences to KAERI.

  20. Review of Recent Aging-Related Degradation Occurrences of Structures and Passive Components in U.S. Nuclear Power Plants

    SciTech Connect

    Nie,J.; Braverman, J.; Hofmayer, C.; Choun, Y.-S.; Kim, M.K.; Choi, I.-K.

    2009-04-02

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

  1. Influence of pressure change during hydraulic tests on fracture aperture.

    PubMed

    Ji, Sung-Hoon; Koh, Yong-Kwon; Kuhlman, Kristopher L; Lee, Moo Yul; Choi, Jong Won

    2013-03-01

    In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer.

  2. Advanced spent fuel conditioning process (ACP) progress with respect to remote operation and maintenance

    SciTech Connect

    Lee, Hyo Jik; Lee, Jong Kwang; Park, Byung Suk; Yoon, Ji Sup

    2007-07-01

    Korea Atomic Energy Research Institute (KAERI) has been developing an Advanced Spent Fuel Conditioning Process (ACP) to reduce the volume of spent fuel, and the construction of the ACP facility (ACPF) for a demonstration of its technical feasibility has been completed. In 2006 two inactive demonstrations were performed with simulated fuels in the ACPF. Accompanied by process equipment performance tests, its remote operability and maintainability were also tested during that time. Procedures for remote operation tasks are well addressed in this study and evaluated thoroughly. Also, remote maintenance and repair tasks are addressed regarding some important modules with a high priority order. The above remote handling test's results provided a lot of information such as items to be revised to improve the efficiency of the remote handling tasks. This paper deals with the current status of ACP and the progress of remote handling of ACPF. (authors)

  3. Sensitivity and Uncertainty Analysis of the keff for VHTR fuel

    NASA Astrophysics Data System (ADS)

    Han, Tae Young; Lee, Hyun Chul; Noh, Jae Man

    2014-06-01

    For the uncertainty and sensitivity analysis of PMR200 designed as a VHTR in KAERI, MUSAD was implemented based on the deterministic method in the connection with DeCART/CAPP code system. The sensitivity of the multiplication factor was derived using the classical perturbation theory and the sensitivity coefficients for the individual cross sections were obtained by the adjoint method within the framework of the transport equation. Then, the uncertainty of the multiplication factor was calculated from the product of the covariance matrix and the sensitivity. For the verification calculation of the implemented code, the uncertainty analysis on GODIVA benchmark and PMR200 pin cell problem were carried out and the results were compared with the reference codes, TSUNAMI and McCARD. As a result, they are in a good agreement except the uncertainty by the scattering cross section which was calculated using the different scattering moment.

  4. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  5. High Density Fuel Development for Research Reactors

    SciTech Connect

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  6. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    SciTech Connect

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    2005-05-24

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  7. Evaluation of the measurement geometries and data processing algorithms for industrial gamma tomography technology.

    PubMed

    Lee, N Y; Jung, S H; Kim, J B

    2009-01-01

    In this paper, we evaluated the measurement geometries and data processing algorithms for industrial gamma tomography technology. Several phantoms simulating industrial objects were tested in various conditions with the gamma-ray CT system developed in KAERI (Korea Atomic Energy Research Institute). Radiation was measured with lead shielded 24 1x1in Nal detectors. Regarding the parallel beam geometry, the EM algorithm showed the best resolution among the algebraic reconstruction technique (ART), simultaneous iterative reconstructive technique (SIRT) and expectation maximization (EM). However, the fan beam scanning was more time efficient than the parallel projection for the similar quality of reconstructed image. Future developments of the industrial gamma ray CT will be focused on a large-scale application which is more practical for a diagnosis in the petrochemical industry. PMID:19376727

  8. Preparation of conducting silver paste with Ag nanoparticles prepared by e-beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Jong Hwa; Pham, Long Quoc; Kang, Hyun Suk; Park, Ji Hyun; Lee, Byung Cheol; Kang, Young Soo

    2010-11-01

    Conducting silver paste was prepared by using Ag nanoparticles which were synthesized by e-beam irradiation method (from KAERI); its conductivity was comparatively determined with Ag nanoparticles which were prepared by thermolysis method (commercial). The silver nanoparticles with the diameter of approximately 150 nm size prepared by e-beam irradiation were mixed with glass frit and sintered for 1 h at 500 °C. It is presumably concluded that the wt% of silver nanoparticle, size distribution and homogenous dispersibility of Ag nanoparticles in the pastes are the critical factors for the high conductivity of the paste. Among the various wt% of silver nanoparticle in the conducting silver pastes, silver paste with 90 wt% of silver nanoparticle has the highest conductivity as 1.6×10 4 S cm -1. This conductivity value is 1.6 times higher than the Ag pastes which were prepared with silver nanoparticles obtained by thermolysis method.

  9. The HANARO neutron reflectometer with horizontal sample geometry. Relocation and upgrade plans of the BNL H9-A reflectometer

    NASA Astrophysics Data System (ADS)

    Lee, Chong Oh; Shin, Kwanwoo; Lee, Jeong Soo; Lee, Chang-Hee; Cho, Sang Jin; Hong, Kwang Pyo

    2006-11-01

    A new neutron reflectometer with horizontal sample geometry is under construction at a thermal neutron port at HANARO, the 30 MW research reactor at KAERI. It was originally designed and operated at the H9-A beam port at Brookhaven National Laboratory (BNL), and was relocated to HANARO in 2004. It will be initially installed at the ST3 thermal-neutron port without any significant modification, and significant improvements in structure and performance are planned when the new cold source is installed in 2008. If successfully installed, it will be the first reflectometer in Korea for the study of free surfaces, which is currently lacking. For the thermal source, the feasible wavelength of incident neutron beam is 2.5 Å and this would permits the q ranges up to 0.21 Å -1.

  10. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    NASA Astrophysics Data System (ADS)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  11. Dosimetric characteristics of LiF:Mg,Cu,Si thermoluminescent materials

    NASA Astrophysics Data System (ADS)

    Lee, J. I.; Yang, J. S.; Kim, J. L.; Pradhan, A. S.; Lee, J. D.; Chung, K. S.; Choe, H. S.

    2006-08-01

    Dosimetric characteristics of LiF:Mg,Cu,Si thermoluminescent (TL) material developed at KAERI have been investigated and compared with those of commercially available LiF:Mg,Cu,P (GR-200A). LiF:Mg,Cu,Si thermoluminescence dosimeter (TLD) can be heated up to 573K without any loss of TL sensitivity or any change in the glow curve structure. High-temperature glow peak in LiF:Mg,Cu,Si is significantly lower than that in GR-200A, consequently the residual signal is only 0.025%, which is about 35 times less than that of GR-200A. The TL sensitivity of the LiF:Mg,Cu,Si TLD is about 55 and 1.1 times higher than those of the LiF:Mg,Ti (TLD-100) and GR-200A, respectively.

  12. Recent Development of a 36 meter Small-Angle Neutron Scattering BATAN Spectrometer (SMARTer) in Serpong Indonesia

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Bharoto; Seong, Baek Seok

    2010-10-01

    The 36 meter small-angle neutron scattering (SANS) spectrometer BATAN (SMARTer) in Serpong, Indonesia has been revitalised for several years. The work on replacing, upgrading and improving the control system and the experimental method were conducted in order to setup the spectrometer back in operation. Two main personal computers, one for handling and controlling the mechanical system and another one for acquiring neutron data were employed at the spectrometer. The standard and established SANS data reduction and analysis programs, such as GRASP and NIST Igor have been implemented to subtract the raw scattered neutron data with the backgrounds and then analyse the corrected data. The scattering data of ferrofluids samples, Fe3O4 and MnZnFe2O4 have been obtained using SANS spectrometers in BATAN Serpong, Indonesia and HANARO-KAERI, Republic of Korea for inter-laboratory comparison and investigation of proposed research interest. The results were comparable from both scattering data analysis.

  13. Corrosion behavior of Fe-Ni-Cr alloys in the molten salt of LiCl-Li 2O at high temperature

    NASA Astrophysics Data System (ADS)

    Cho, S. H.; Zhang, J. S.; Shin, Y. J.; Park, S. W.; Park, H. S.

    2004-02-01

    At Korea Atomic Energy Research Institute (KAERI), we investigated the corrosion behavior of a series of Fe-Cr-Ni alloys with different chromium contents in molten LiCl and molten LiCl-25wt%Li 2O mixture at temperatures ranging from 923 to 1123 K. In molten LiCl, dense protective scale of LiCrO 2 grows outwardly while corrosion is accelerated by addition of Li 2O to LiCl. The basic fluxing of Cr 2O 3 by Li 2O would be the cause of accelerated corrosion. Because of low oxygen solubility and very high Li 2O activity in the molten LiCl-Li 2O mixture, Cr is preferentially corroded while Ni remains stable and thus, corrosion rate of the alloys in molten LiCl-Li 2O mixture increases with an increase in Cr content.

  14. Developmental Status of Beam Position and Phase Monitor for PEFP Proton Linac

    NASA Astrophysics Data System (ADS)

    Park, Sungju; Park, Jangho; Yu, Inha; Kim, Dotae; Hwang, Jung-Yun; Nam, Sanghoon

    2004-11-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current. (Pulse width and max. repetition rate of 1 ms and 120 Hz respectively.) We have developed the Beam Position and Phase Monitor (BPPM) for the machine that features the button-type PU, the full-analog processing electronics, and the EPICS-based control system. The beam responses of the button-type PU have been obtained using the MAGIC (Particle-In-Cell) code. The processing electronics has been developed in collaboration with Bergoz Instrumentation. In this article, we report the present status of the system developments except the control system.

  15. Measurement of polarization of 3He with mobile polarized 3He neutron spin filter

    NASA Astrophysics Data System (ADS)

    Ino, T.; Kim, G. N.; Lee, M. W.; Lee, S. M.; Kim, J. Y.; Lee, S. W.; Skoy, V. R.

    2014-03-01

    A mobile polarized 3He neutron spin filter was developed for both optical pumping and transportation, and the polarization of 3He was measured with cold neutrons of HANARO in KAERI. The progress of polarization build-up during the optical pumping of the 3He cell was observed by adiabatic fast-passage NMR system. The 3He cell was made of an alumino-silicate glass GE-180 with a cylindrical shape of 40 mm in diameter and 60 mm in length from KEK. A cell contained 5.74 barṡcm of 3He gas. The whole installation after 8 h pumping was transported to the general-purpose test station of the HANARO research reactor and the polarization of 3He was measured with cold neutrons. The measured polarization of 3He was 0.18 ± 0.01 by measuring the neutron transmission through the 3He cell.

  16. Variable-energy microtron-injector for a compact wide-band FIR free electron laser

    NASA Astrophysics Data System (ADS)

    Kazakevitch, Grigori M.; Jeong, Young Uk; Lee, Byung Cheol; Gavrilov, Nikolay G.; Kondaurov, Mikhail N.

    2003-07-01

    A microtron-injector (Proceedings of the 2001 Particle Accelerator Conference, USA, 2001, 2739) for the KAERI compact far infrared free electron laser (FIR FEL) facility has been upgraded to provide tuning of the FEL wavelength from 100 μm to more than 300 μm. The wide-band tunability of the radiation has been achieved by changing the kinetic energy of the accelerated electrons from 6.5 to 4.9 MeV. To do so, the position of an RF cavity inside the microtron is movable within the range of ˜170 mm, and it changes the maximum orbit number of the electrons from 12 to 8. Dependence of the electron beam parameters on the orbit number has been investigated to choose acceptable operating conditions of the microtron for stable operation of the wide-band FIR FEL. Measured parameters of the electron beam and corresponding lasing results of the FIR FEL are presented and discussed.

  17. Bunching properties of a classical microtron-injector for a far infrared free electron laser

    NASA Astrophysics Data System (ADS)

    Kazakevitch, Grigori M.; Serednyakov, Stanislav S.; Vinokurov, Nikolai A.; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jongmin

    2001-12-01

    Longitudinal bunching properties of a classical microtron have been investigated by the numerical simulation of the longitudinal motion of accelerated electrons. The simulations were performed for the 12-turn microtron that has been used as an injector for the KAERI far infrared free electron laser. Based on the bunching properties of the electron beam, the temporal distribution of the coherent undulator radiation power during a macro pulse from the free electron laser was calculated. In the calculations, we took into account the dispersion properties of the accelerating cavity and deviations of the bunch repetition rate that were measured by the heterodyne method in real operating conditions of the microtron. The calculation results are compared with the experimental data.

  18. Group Constants Generation of the Pseudo Fission Products for Fast Reactor Burnup Calculations

    NASA Astrophysics Data System (ADS)

    Gil, Choong-Sup; Kim, Do Heon; Chang, Jonghwa

    2005-05-01

    The pseudo fission products for the burnup calculations of the liquid metal fast reactor were generated. The cross-section data and fission product yield data of ENDF/B-VI were used for the pseudo fission product data of U-235, U-238, Pu-239, Pu-240, Pu-241, and Pu-242. The pseudo fission product data can be used with the KAFAX-F22 or -E66, which are the MATXS-format libraries for analyses of the liquid metal fast reactor at KAERI and were distributed through the OECD/NEA. The 80-group MATXS-format libraries of the 172 fission products were generated and the burnup chains for generation of the pseudo fission products were prepared.

  19. Irradiation performance of U-Mo-Ti and U-Mo-Zr dispersion fuels in Al-Si matrixes

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Hofman, G. L.; Robinson, A. B.; Wachs, D. M.; Ryu, H. J.; Park, J. M.; Yang, J. H.

    2012-08-01

    Performance of U-7 wt.%Mo with 1 wt.%Ti, 1 wt.%Zr or 2 wt.%Zr, dispersed in an Al-5 wt.%Si alloy matrix, was investigated through irradiation tests in the ATR at INL and HANARO at KAERI. Post-irradiation metallographic features show that the addition of Ti or Zr suppresses interaction layer growth between the U-Mo and the Al-5 wt.%Si matrix. However, higher fission gas swelling was observed in the fuel with Zr addition, while no discernable effect was found in the fuel with Ti addition as compared to U-Mo without the addition. Known to have a destabilizing effect on the γ-phase U-Mo, Zr, either as alloy addition or fission product, is ascribed for the disadvantageous result. Considering its benign effect on fuel swelling, with slight disadvantage from neutron economy point of view, Ti may be a better choice for this purpose.

  20. Electrolytic Reduction of Spent Nuclear Oxide Fuel -- Effects of Fuel Form and Cathode Containment Materials on Bench-Scale Operations

    SciTech Connect

    S. D. Herrmann

    2007-09-01

    A collaborative effort between the Idaho National Laboratory (INL) and Korea Atomic Energy Research Institute (KAERI) is underway per an International Nuclear Energy Research Initiative to advance the development of a pyrochemical process for the treatment of spent nuclear oxide fuel. To assess the effects of specific process parameters that differ between oxide reduction operations at INL and KAERI, a series of 4 electrolytic reduction runs will be performed with a single salt loading of LiCl-Li2O at 650 °C using a test apparatus located inside of a hot cell at INL. The spent oxide fuel for the tests will be irradiated UO2 that has been subjected to a voloxidation process to form U3O8. The primary variables in the 4 electrolytic reduction runs will be fuel basket containment material and Li2O concentration in the LiCl salt. All 4 runs will be performed with comparable fuel loadings (approximately 50 g) and fuel compositions and will utilize a platinum anode and a Ni/NiO reference electrode. The first 2 runs will elucidate the effect of fuel form on the electrolytic reduction process by comparison of the above test results with U3O8 versus results from previous tests with UO2. The first 3 runs will investigate the impact that the cathode containment material has on the electrolytic reduction of spent oxide fuel. The 3rd and 4th runs will investigate the effect of Li2O concentration on the reduction process with a porous MgO cathode containment.

  1. SECOND GENERATION EXPERIMENTAL EQUIPMENT DESIGN TO SUPPORT VOLOXIDATION TESTING AT INL

    SciTech Connect

    Dennis L. Wahlquit; Kenneth J. Bateman; Brian R. Westphal

    2008-05-01

    Voloxidation is a potential head-end process used prior to aqueous or pyrochemical spent-oxide-fuel treatment. The spent oxide fuel is heated to an elevated temperature in oxygen or air to promote separation of the fuel from the cladding as well as volatize the fission products. The Idaho National Laboratory (INL) and the Korea Atomic Energy Research Institute (KAERI) have been collaborating on voloxidation research through a joint International Nuclear Energy Research Initiative (I-NERI). A new furnace and off-gas trapping system (OTS) with enhanced capability was necessary to perform further testing. The design criteria for the OTS were jointly agreed upon by INL and KAERI. First, the equipment must accommodate the use of spent nuclear fuel and be capable of operating in the Hot Fuel Examination Facility (HFEF) at the INL. This primarily means the furnace and OTS must be remotely operational and maintainable. The system requires special filters and distinctive temperature zones so that the fission products can be uniquely captured. The OTS must be sealed to maximize the amount of fission products captured. Finally, to accommodate the largest range of operating conditions, the OTS must be capable of handling high temperatures and various oxidizing environments. The constructed system utilizes a vertical split-tube furnace with four independently controlled zones. One zone is capable of reaching 1200°C to promote the release of volatile fission products. The three additional zones that capture fission products can be controlled to operate between 100-1100°C. A detailed description of the OTS will be presented as well as some initial background information on high temperature seal options.

  2. Assessment results of the South Korea TRIGA SNF to be shipped to INEEL

    SciTech Connect

    Cole, C.M.; Dirk, W.J.; Cottam, R.E.; Paik, S.T.

    1997-10-09

    This paper describes the Training, Research, Isotope, General Atomics (TRIGA) spent nuclear fuel (SNF) examination at the Seoul and the Taejon Research Reactor Facilities in South Korea. The examination was required before the SNF would be accepted for transportation and storage at the INEEL. The results of the aluminum and stainless steel clad TRIGA fuel examination have been summarized. A description of the examination team training, the examination work plan and examination equipment is also included. This paper also explains the technical basis for the examination and physical condition criteria used to determine what, if any, additional packaging would be required for transportation and for the receipt and storage of the fuel at the INEEL. This paper delineates the preparation activities prior to the fuel examinations and includes (1) collecting spent fuel data; (2) preparatory work by the Korean Atomic Energy Research Institute (KAERI) for fuel examination: (3) preparation of a radionuclide report, Radionuclide Mass Inventory, Activity, Decay Heat, and Dose Rate Parametric Data for TRIGA Spent Nuclear Fuels needed to provide input data for transportation and fuel acceptance at the Idaho National Engineering and Environmental Laboratory (INEEL); (4) gathering FRR Facility data; and (5) coordination between the INEEL and KAERI. Included, are the unanticipated conditions encountered in the unloading of fuel from the dry storage casks in Taejon in preparation for examination, a description of the damaged condition of the fuel removed from the casks, and the apparent cause of the damages. Lessons learned from all the activities are also addressed. A brief description of the preparatory work for the shipment of the spent fuel from Korea to INEEL is included.

  3. An approach to developing an integrated pyroprocessing simulator

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol; Kim, Sung Ki; Kim, In Tae; Lee, Han Soo

    2014-02-01

    Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggested a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.

  4. Radiation hardness characteristics of Si-PIN radiation detectors

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Jo, Woo Jin; Kim, Han Soo; Ha, Jang Ho

    2015-06-01

    The Korea Atomic Energy Research Institute (KAERI) has fabricated Si-PIN radiation detectors with low leakage current, high resistivity (>11 kΩ cm) and low capacitance for high-energy physics and X-ray spectroscopy. Floating-zone (FZ) 6-in. diameter N-type silicon wafers, with <1 1 1> crystal orientation and 675 μm thick, were used in the detector fabrication. The active areas are 3 mm×3 mm, 5 mm×5 mm and 10 mm×10 mm. We used a double deep-diffused structure at the edge of the active area for protection from the surface leakage path. We also compared the electrical performance of the Si-PIN detector with anti-reflective coating (ARC). For a detector with an active area of 3 mm×3 mm, the leakage current is about 1.9 nA and 7.4 nA at a 100 V reverse bias voltage, and 4.6 pF and 4.4 pF capacitance for the detector with and without an ARC, respectively. In addition, to compare the energy resolution in terms of radiation hardness, we measured the energy spectra with 57Co and 133Ba before the irradiation. Using developed preamplifiers (KAERI-PA1) that have ultra-low noise and high sensitivity, and a 3 mm×3 mm Si-PIN radiation detector, we obtained energy resolutions with 122 keV of 57Co and 81 keV of 133Ba of 0.221 keV and 0.261 keV, respectively. After 10, 100, 103, 104 and 105 Gy irradiation, we tested the characteristics of the radiation hardness on the Si-PIN radiation detectors in terms of electrical and energy spectra performance changes. The fabricated Si-PIN radiation detectors are working well under high dose irradiation conditions.

  5. Seismic Fragility Analysis of a Degraded Condensate Storage Tank

    SciTech Connect

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Kim, M.K.; Choi, I-K.

    2011-05-16

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory are conducting a collaborative research project to develop seismic capability evaluation technology for degraded structures and components in nuclear power plants (NPPs). One of the goals of this collaboration endeavor is to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The essential part of this collaboration is aimed at achieving a better understanding of the effects of aging on the performance of SSCs and ultimately on the safety of NPPs. A recent search of the degradation occurrences of structures and passive components (SPCs) showed that the rate of aging related degradation in NPPs was not significantly large but increasing, as the plants get older. The slow but increasing rate of degradation of SPCs can potentially affect the safety of the older plants and become an important factor in decision making in the current trend of extending the operating license period of the plants (e.g., in the U.S. from 40 years to 60 years, and even potentially to 80 years). The condition and performance of major aged NPP structures such as the containment contributes to the life span of a plant. A frequent misconception of such low degradation rate of SPCs is that such degradation may not pose significant risk to plant safety. However, under low probability high consequence initiating events, such as large earthquakes, SPCs that have slowly degraded over many years could potentially affect plant safety and these effects need to be better understood. As part of the KAERI-BNL collaboration, a condensate storage tank (CST) was analyzed to estimate its seismic fragility capacities under various postulated degradation scenarios. CSTs were shown to have a significant impact on the seismic core damage frequency of a nuclear power plant. The seismic fragility capacity of the CST was developed

  6. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.

    PubMed

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  7. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    NASA Astrophysics Data System (ADS)

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A.; won Jang, Si; Vinokurov, Nikolay A.; Jeong, Young UK; Hee Park, Seong; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  8. Radioactivity determination of sealed pure beta-sources by surface dose measurements and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Choi, Chang Heon; Jung, Seongmoon; Choi, Kanghyuk; Son, Kwang-Jae; Lee, Jun Sig; Ye, Sung-Joon

    2016-04-01

    This study aims to determine the activity of a sealed pure beta-source by measuring the surface dose rate using an extrapolation chamber. A conversion factor (cGy s-1 Bq-1), which was defined as the ratio of surface dose rate to activity, can be calculated by Monte Carlo simulations of the extrapolation chamber measurement. To validate this hypothesis the certified activities of two standard pure beta-sources of Sr/Y-90 and Si/P-32 were compared with those determined by this method. In addition, a sealed test source of Sr/Y-90 was manufactured by the HANARO reactor group of KAERI (Korea Atomic Energy Research Institute) and used to further validate this method. The measured surface dose rates of the Sr/Y-90 and Si/P-32 standard sources were 4.615×10-5 cGy s-1 and 2.259×10-5 cGy s-1, respectively. The calculated conversion factors of the two sources were 1.213×10-8 cGy s-1 Bq-1 and 1.071×10-8 cGy s-1 Bq-1, respectively. Therefore, the activity of the standard Sr/Y-90 source was determined to be 3.995 kBq, which was 2.0% less than the certified value (4.077 kBq). For Si/P-32 the determined activity was 2.102 kBq, which was 6.6% larger than the certified activity (1.971 kBq). The activity of the Sr/Y-90 test source was determined to be 4.166 kBq, while the apparent activity reported by KAERI was 5.803 kBq. This large difference might be due to evaporation and diffusion of the source liquid during preparation and uncertainty in the amount of weighed aliquot of source liquid. The overall uncertainty involved in this method was determined to be 7.3%. We demonstrated that the activity of a sealed pure beta-source could be conveniently determined by complementary combination of measuring the surface dose rate and Monte Carlo simulations.

  9. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels

    SciTech Connect

    S. Frank

    2009-09-01

    An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion

  10. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser

    SciTech Connect

    Noh, Seon Yeong; Kim, Eun-San Hwang, Ji-Gwang; Heo, A.; Won, Jang Si; Vinokurov, Nikolay A.; Jeong, Young UK Hee Park, Seong; Jang, Kyu-Ha

    2015-01-15

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was −39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device.

  11. Development of an S-band cavity-type beam position monitor for a high power THz free-electron laser.

    PubMed

    Noh, Seon Yeong; Kim, Eun-San; Hwang, Ji-Gwang; Heo, A; Jang, Si won; Vinokurov, Nikolay A; Jeong, Young U K; Park, Seong Hee; Jang, Kyu-Ha

    2015-01-01

    A cavity-type beam position monitor (BPM) has been developed for a compact terahertz (THz) free-electron laser (FEL) system and ultra-short pulsed electron Linac system at the Korea Atomic Energy Research Institute (KAERI). Compared with other types of BPMs, the cavity-type BPM has higher sensitivity and faster response time even at low charge levels. When electron beam passes through the cavity-type BPM, it excites the dipole mode of the cavity of which amplitude depends linearly on the beam offset from the center of the cavity. Signals from the BPM were measured as a function of the beam offset by using an oscilloscope. The microtron accelerator for the KAERI THz FEL produces the electron beam with an energy of 6.5 MeV and pulse length of 5 μs with a micropulse of 10-20 ps at the frequency of 2.801 GHz. The macropulse beam current is 40 mA. Because the microtron provides multi-bunch system, output signal would be the superposition of each single bunch. So high output signal can be obtained from superposition of each single bunch. The designed position resolution of the cavity-type BPM in multi-bunch is submicron. Our cavity-type BPM is made of aluminum and vacuum can be maintained by indium sealing without brazing process, resulting in easy modification and cost saving. The resonance frequency of the cavity-type BPM is 2.803 GHz and the cavity-type BPM dimensions are 200 × 220 mm (length × height) with a pipe diameter of 38 mm. The measured position sensitivity was 6.19 (mV/mm)/mA and the measured isolation between the X and Y axis was -39 dB. By measuring the thermal noise of system, position resolution of the cavity-type BPM was estimated to be less than 1 μm. In this article, we present the test results of the S-band cavity-type BPM and prove the feasibility of the beam position measurement with high resolution using this device. PMID:25638104

  12. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    SciTech Connect

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  13. Modeling in-situ transport of uranine and colloids in the fracture network in KURT.

    PubMed

    Kim, Jung-Woo; Lee, Jae-Kwang; Baik, Min-Hoon; Jeong, Jongtae

    2015-02-01

    An in-situ dipole migration experiment was conducted using the conservative tracer uranine and latex colloids in KAERI (Korea Atomic Energy Research Institute) Underground Research Tunnel (KURT). The location and dimensions of the fractures between the two boreholes were estimated using the results of a borehole image processing system (BIPS) investigation, and the connectivity of the fractures was evaluated by a packer test. To investigate the flow and transport of uranine and colloids through an in-situ fracture network, a fracture network transport model was newly developed. The model consists of a series of one-dimensional advection-dispersion-matrix diffusion equations for each channel of the fracture network. Using the fracture network transport model, the most probable representation and the hydrologic parameters of the fracture network can be estimated by fitting the breakthrough of uranine. While the fracture network might not be unique, the representation chosen was adequate to describe the breakthrough of uranine and it represents a reasonable approach to modeling transport in the fracture network. An additional evaluation showed that the colloid transport in this study was influenced by filtration on the fracture surface rather than the enhancement of the colloid velocity. Overall, the model can explain successfully the in-situ experimental results of uranine and colloid transports through the fracture network.

  14. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    SciTech Connect

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  15. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  16. On the multidimensional modeling of fluid flow and heat transfer in SCWRS

    SciTech Connect

    Gallaway, T.; Antal, S. P.; Podowski, M. Z.

    2012-07-01

    The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)

  17. CFD study of isothermal water flow in rod bundle with split-type spacer grid

    NASA Astrophysics Data System (ADS)

    Batta, A.; Class, A. G.

    2014-06-01

    The design of rod bundles in nuclear application nowadays is assessed by CFD (computational fluid dynamics). The accuracy of CFD models need validation. Within the OECD/NEA benchmark MATiS-H (Measurement and Analysis of Turbulent Mixing in Sub-channels - Horizontal) a single-phase water flow in a 5x5 rod bundle is studied. In the benchmark, two types of spacer grids are tested, the swirl type and the split type, where the current study focuses on the split type spacer grid. Comparison of CFD results obtained at Karlsruhe Institut of Technology (KIT) with experimental results of KAERI (Korea Atomic Energy Research Institute) are presented. In the benchmark velocities components along selected lines downstream of the spacer grid are measured and compared to CFD results. The CFD code STAR CCM+ with the Realized k-ɛ model is used. Comparisons with experimental results show quantitative and qualitative agreement for the averaged values of velocity components. Comparisons of results to other benchmark partners using different modeling show that the selected mesh size and models for the analysis of the current case gives relatively accurate results. However, the used turbulent model (Realized k-ɛ does not capture the turbulent intensity correctly. Computation shows that the flow has very high mixing due to the spacer grid, which does not decay within the measurements domain (z/ DH =0-10 downstream of spacer grid). The same conclusion can be drawn from experimental data.

  18. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    NASA Astrophysics Data System (ADS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  19. Response of six neutron survey meters in mixed fields of fast and thermal neutrons.

    PubMed

    Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S

    2013-10-01

    Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.

  20. Development of the IPRO-zone for fire PSA and its applications

    SciTech Connect

    Kang, D. I.; Han, S. H.

    2012-07-01

    A PSA analyst has been manually determining fire-induced component failure modes and modeling them into the PSA logics. These can be difficult and time-consuming tasks as they need much information and many events are to be modeled. KAERI has been developing the IPRO-ZONE (interface program for constructing zone effect table) to facilitate fire PSA works for identifying and modeling fire-induced component failure modes, and to construct a one top fire event PSA model. With the output of the IPRO-ZONE, the AIMS-PSA, and internal event one top PSA model, one top fire events PSA model is automatically constructed. The outputs of the IPRO-ZONE include information on fire zones/fire scenarios, fire propagation areas, equipment failure modes affected by a fire, internal PSA basic events corresponding to fire-induced equipment failure modes, and fire events to be modeled. This paper introduces the IPRO-ZONE, and its application results to fire PSA of Ulchin Unit 3 and SMART(System-integrated Modular Advanced Reactor). (authors)

  1. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    SciTech Connect

    Ku, J.H.; Choung, W.M.; You, G.S.; Moon, S.I.; Park, S.H.; Kim, H.D.

    2013-07-01

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluation plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.

  2. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    SciTech Connect

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan; Lee, Chan-Bock

    2013-07-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order to prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.

  3. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  4. Uranium and other trace elements' distribution in Korean granite: implications for the influence of iron oxides on uranium migration.

    PubMed

    Lee, Seung Yeop; Baik, Min Hoon

    2009-06-01

    To understand trace radionuclide (uranium) migration occurring in rocks, a granitic batholith located at the Korea Atomic Energy Research Institute (KAERI) site was selected and investigated. The rock samples obtained from this site were examined using mineralogical methods, including scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The changes in the distribution pattern of uranium (U) and small amounts of trace elements, and the mineralogical textures affected by weathering, were examined. Based on the element distribution analyses, it was found that Fe2+ released from fresh biotite is oxidized in short geological time, forming amorphous iron oxides, such as ferrihydrite, around silicate minerals. In that case, the amorphous ferrihydrite does not show distinct adsorption for U. However, as it gradually crystallizes to goethite or hematite, the most U-rich phases were found to be associated with the secondary iron oxides having granular forms. This evidence suggests that the geological subsurface environment is favorable for the crystallized iron oxides to keep their structures more stable for a long time as compared with the amorphous phases. There is a possibility that the long residence of U which is in contact with the stable crystalline phases of iron may finally lead to the partial sequestration of U in their structure. Consequently, it seems that Fe-oxide crystallization can be a dominating mechanism for U uptake and controls long-term U transport in granites with low U contents.

  5. The severe accident research programme PHEBUS F.P.: First results and future tests

    SciTech Connect

    Schwarz, M.; Hardt, P. von der

    1996-03-01

    PHEBUS FP is an international programme, managed by the French Institut de Protection et de Surete Nucleaire, Electricite de France and the European Commission in close collaboration with the USNRC (US), COG (Canada), NUPEC and JAERI (Japan) and KAERI (South Korea). Its objective is to investigate through a series of in-pile integral experiments, key phenomena involved in LWR severe accident such as the degradation of core materials up to molten pool, the subsequent release of fission products and of structural materials, their transport in the cooling system and their deposition in the containment with a special emphasis on the volatility of iodine. After a general programme description, the paper focuses on the status of analysis of the first test FPT-0, which involved trace irradiated fuel and which has shown some quite unexpected results regarding fuel degradation and iodine behaviour, and on the upcoming test FPT-1 which will use irradiated fuel. The status of the preparation of the remaining tests of the programme is also presented.

  6. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    SciTech Connect

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-07-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO{sub 2} was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  7. Comparisons of Neutron Cross Sections and Isotopic Composition Calculations for Fission-Product Evaluations

    NASA Astrophysics Data System (ADS)

    Kim, Do Heon; Gil, Choong-Sup; Chang, Jonghwa; Lee, Yong-Deok

    2005-05-01

    The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI (Korea Atomic Energy Research Institute)-BNL (Brookhaven National Laboratory) international collaboration have been compared with ENDF/B-VI.7. Also, the influence of the new evaluations on the isotopic composition calculations of the fission products has been estimated through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69-group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including the new evaluations in the resonance region covering the thermal region, and the expected ENDF/B-VII including those in the upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows a maximum difference of 5.02% compared to ENDF/B-VI.7. However, the isotopic compositions of all the fission products calculated with the expected ENDF/B-VII show no differences when compared to ENDF/B-VI.7 for the thermal reactor benchmark cases.

  8. Fission Product Separation from Pyrochemical Electrolyte by Cold Finger Melt Crystallization

    SciTech Connect

    Versey, Joshua R.

    2013-08-01

    This work contributes to the development of pyroprocessing technology as an economically viable means of separating used nuclear fuel from fission products and cladding materials. Electrolytic oxide reduction is used as a head-end step before electrorefining to reduce oxide fuel to metallic form. The electrolytic medium used in this technique is molten LiCl-Li2O. Groups I and II fission products, such as cesium (Cs) and strontium (Sr), have been shown to partition from the fuel into the molten LiCl-Li2O. Various approaches of separating these fission products from the salt have been investigated by different research groups. One promising approach is based on a layer crystallization method studied at the Korea Atomic Energy Research Institute (KAERI). Despite successful demonstration of this basic approach, there are questions that remain, especially concerning the development of economical and scalable operating parameters based on a comprehensive understanding of heat and mass transfer. This research explores these parameters through a series of experiments in which LiCl is purified, by concentrating CsCl in a liquid phase as purified LiCl is crystallized and removed via an argon-cooled cold finger.

  9. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    SciTech Connect

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  10. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  11. Modeling in-situ transport of uranine and colloids in the fracture network in KURT.

    PubMed

    Kim, Jung-Woo; Lee, Jae-Kwang; Baik, Min-Hoon; Jeong, Jongtae

    2015-02-01

    An in-situ dipole migration experiment was conducted using the conservative tracer uranine and latex colloids in KAERI (Korea Atomic Energy Research Institute) Underground Research Tunnel (KURT). The location and dimensions of the fractures between the two boreholes were estimated using the results of a borehole image processing system (BIPS) investigation, and the connectivity of the fractures was evaluated by a packer test. To investigate the flow and transport of uranine and colloids through an in-situ fracture network, a fracture network transport model was newly developed. The model consists of a series of one-dimensional advection-dispersion-matrix diffusion equations for each channel of the fracture network. Using the fracture network transport model, the most probable representation and the hydrologic parameters of the fracture network can be estimated by fitting the breakthrough of uranine. While the fracture network might not be unique, the representation chosen was adequate to describe the breakthrough of uranine and it represents a reasonable approach to modeling transport in the fracture network. An additional evaluation showed that the colloid transport in this study was influenced by filtration on the fracture surface rather than the enhancement of the colloid velocity. Overall, the model can explain successfully the in-situ experimental results of uranine and colloid transports through the fracture network. PMID:25543462

  12. Determination of the DFN modeling domain size based on ensemble variability of equivalent permeability

    NASA Astrophysics Data System (ADS)

    Ji, S. H.; Koh, Y. K.

    2015-12-01

    Conceptualization of the fracture network in a disposal site is important for the safety assessment of a subsurface repository for radioactive waste. To consider the uncertainty of the stochastically conceptualized discrete fracture networks (DFNs), the ensemble variability of equivalent permeability was evaluated by defining different network structures with various fracture densities and characterization levels, and analyzing the ensemble mean and variability of the equivalent permeability of the networks, where the characterization level was defined as the ratio of the number of deterministically conceptualized fractures to the total number of fractures in the domain. The results show that the hydraulic property of the generated fractures were similar among the ensembles when the fracture density was larger than the specific fracture density where the domain size was equal to the correlation length of a given fracture network. In a sparsely fracture network where the fracture density was smaller than the specific fracture density, the ensemble variability was too large to ensure the consistent property from the stochastic DFN modeling. Deterministic information for a portion of a fracture network could reduce the uncertainty of the hydraulic property only when the fracture density was larger than the specific fracture density. Based on these results, the DFN modeling domain size for KAERI's (Korea Atomic Energy Research Institute) URT (Underground Research Tunnel) site to guarantee a less variable hydraulic property of the fracture network was determined by calculating the correlation length, and verified by evaluating the ensemble variability of the equivalent permeability.

  13. Solenoid assembly with beam focusing and radiation shielding functions for the 9/6 MeV dual energy linac

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Ju, Jinsik; Joo, Youngwoo; Lee, Byeong-No; Lee, Soo Min; Kim, Jae Hyun; Buaphad, Pikad; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Song, Ki Beak; Lee, Seung Hyun; Kim, Heesoo

    2016-09-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing a Container Inspection System (CIS) by using a dual-energy (9/6 MeV) S-band (= 2856 MHz) electron linear accelerator. The key components of the CIS are the electron linear accelerator (including an electron gun, an accelerating structure, an RF power source, cooling chillers, vacuum pumps, magnet power supplies, and two solenoid magnets with beam focusing and shielding functions), a tungsten target for X-ray generation, an X-ray collimator, a detector array, and a container moving system. Generally, in accelerators, beam focusing is mainly done by solenoids operating in the region of a few MeV to keep the shape of transverse beam symmetrically round so as to reduce the loss of electrons, which increases the beam current and the beam power. In addition, a specially-designed component is needed to protect against the radiation due to the lost electrons. In this paper, we describe the design, fabrication, and optimization of two specially- designed solenoids with focusing and radiation shielding functions for a dual-energy S-band electron linear accelerator for a CIS.

  14. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe. PMID:24593580

  15. The precursor effect and mechanical properties in Pb_3(PO_4)_2

    NASA Astrophysics Data System (ADS)

    Cho, Y. C.; Jeong, S. Y.; Cho, C. R.; Choi, Y. N.

    2001-03-01

    In recent year, the existence of anomalous incommensurate satellite reflection above Tc was reported by the X-ray and neutron scattering experiments. This is explained to the coupling of a strain and order parameters at structural phase transition. This distinct feature was interpreted as the precursor effect which occurs in martensite transitions. In our study, it was revealed that the intermediate phase is limited in the range between 175^oC and 195^oC and high and low temperature phases coexist. This region also showed the strong bias-stress dependence and the abrupt jumpings of the thermal expansion coefficient. The additional small anomaly just above Tc was suggested to be by the pinning effect of the microdomains. The results of high resolution neutron diffraction(HANARO, KAERI) very effectively revealed the region of intermediate phase which was not clearly reported until now. From this result, we could confirm the precursor effect in nonmetallic material and obtain the insight into the mechanical response of the ferroelastic phase transitions.

  16. Identification of a nonlinear groundwater flow at a slug test in fractured rock and its influence on the test

    NASA Astrophysics Data System (ADS)

    Ji, S.; Koh, Y.

    2013-12-01

    Many laboratory and numerical studies reported that a groundwater flow through a fracture at sufficiently high Reynolds numbers does not obey the cubic law which assumes a linear relation between the hydraulic gradient and the flux. Most of them observed that the transitions from a linear to nonlinear flow arose at the Reynolds numbers greater than 10. A slug test is one of the common hydraulic tests, and used for estimation of the hydraulic properties of an aquifer by analyzing the recovery after a sudden change in hydraulic pressure. In this study, we conducted a series of slug tests with various initial head displacements at an experimental borehole at KAERI's (Korea Atomic Energy Research Institute) underground research tunnel whose host rock is Jurassic granite. The Reynolds number at a fracture during slug tests was calculated using the geophysical logging data and slug test results, and the nonlinear flow regime at slug tests was identified. From changes in the Reynolds number during the tests and estimates of the hydraulic properties from the tests, the influence of a nonlinear flow on a slug test was discussed. Our results indicate that the nonlinearity of groundwater flow at a slug test became more severe and the estimated hydraulic conductivity decreased as the initial head displacement increased.

  17. MEGAPIE target design and LiSoR experiment — Status report

    NASA Astrophysics Data System (ADS)

    Auger, T.; Aphecetche, L.; Cadiou, A.; Dai, Y.; Glasbrenner, H.; Gröschel, F.; Kirchner, T.

    2002-09-01

    MEGAPIE is an international project between PSI, CEA, CNRS, ENEA, FZK, JAERI, SCK/CEN, DOE and KAERI to design, build, operate and explore a liquid lead-bismuth spallation target for 1 MW of beam power, taking advantage of the existing spallation neutron facility SINQ at PSI. After a short overview on the MEGAPIE project this paper will concentrate on the material aspects related to the MEGAPIE liquid lead-bismuth target window. The candidate beam window material is a 9Cr-1MoVNb martensitic steel (T91). The LiSoR experiment, being carried out at PSI, simulates severe operating conditions foreseen for future liquid-metal targets such as MEGAPIE in order to validate the material selection relative to irradiation assisted liquid metal corrosion and embrittlement. T91 specimens under stress will be irradiated by 72 MeV protons in flowing liquid lead-bismuth. The experiment will be carried out at the PSI's proton cyclotron INJI. The major goal is to investigate whether corrosion and embrittlement could be enhanced or triggered under representative irradiation conditions.

  18. Simulation on a photocathode-based microtron using a 3D PIC code

    NASA Astrophysics Data System (ADS)

    Park, Sunjeong; Jeong, Young Uk; Park, Seong Hee; Jang, Kyu-Ha; Vinokurov, Nikolay A.; Kim, Eun-San

    2015-02-01

    The Korea Atomic Energy Research Institute (KAERI) has used a microtron accelerator based on a thermionic cathode for operating a compact terahertz (THz) FEL, where the electrons are emitted and accelerated automatically during the radio-frequency (RF) macro-pulse over threshold power for their emission. Usually a thermionic cathode is embedded inside the microtron cavity for electron-beam emission, and at the same time acceleration is due to the input RF source. In this case, the accelerator scheme is simple, but just a fraction of the emitted electrons are accelerated, and the electron bunch length is uncontrollable due to the RF phase condition for acceleration. In this paper, a photocathode-based microtron which is able to produce high peak (˜100 A) and ultrashort (˜1 ps) electron bunch is studied to adapt it for an electron injector of a THz generator. Especially, we analyzed the electron beam dynamics along the accelerating trajectory with a 3D PIC-code to find the optimized RF phase and laser input time.

  19. Smart measurement system for an environmental radiation monitoring

    NASA Astrophysics Data System (ADS)

    Lee, Wanno; Kim, Hee-Reyoung; Chung, Kun-Ho; Kim, Eun-Han; Cho, Young Hyun; Choi, Geun Sik; Lee, Chang Woo

    2007-08-01

    A smart measurement system for an on-line gamma monitoring has been developed to overcome the problems of a conventional system which cannot automatically restore the previous-lost data of several posts by a radio telemetry. It is similar to the conventional system except for a new electronic circuit board and an integrated operation program. The new electronic circuit board is able to store the radiation data with a time tag of 6 or more months if the recording interval time is 10 s. The operation program automatically sends the time correction command to the six monitoring posts for a daily synchronization between the monitoring posts and the central control computer as a Korean mean time. The previous-lost radiation data for 6 or more months could be restored by using two components with the functions of a time tag and a daily synchronization without any additional equipment. It was tested for more than 1 year, from which the test results, the data collection rate was dramatically improved without any tedious manual work, which was almost about 100% for 1 year. The smart measurement system has been applied for an effective gamma monitoring around the nuclear facilities at KAERI since it was developed and tested in 2003.

  20. Design of Ultra Small Angle Neutron Scattering (KIST-USANS) at HANARO Cold Neutron Guide, CG4B

    NASA Astrophysics Data System (ADS)

    Kim, Man-Ho

    2013-03-01

    The ultra small angle neutron scattering instrument can measure the lower limit of scattering vector to near Q ~ 2.0x10-5 Å-1 while the upper limit can reach to an intermediate scattering vector Q ~ 10-2 Å-1 of a typical small angle neutron scattering (SANS) depending on the contrast of sample. USANS is useful when measuring objects that are micron to submicron in size while SANS is useful when measuring objects that are micron to nano in size. When both USANS and SANS were used together, we could measure sizes from micron to nano scale, which is useful when studying the hierarchical structures in the wide scale of Q and total cross-section, d Σ/d Ω(Q). Recently, KIST has developed the USANS (so called KIST-USANS) at HANARO cold neutron guide hall of KAERI. We will present the instrument design, performance, future plan, and some examples of measurements that cover approximately 11 orders of magnitude in the d Σ/d Ω(Q) and 4 orders in the Q. This work was partially supported by the KIST (2v02632) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2012M2B2A4030220)

  1. Development of an automatic frequency measurement system for RF linear accelerator magnetrons

    NASA Astrophysics Data System (ADS)

    Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Joo, Youngwoo; Lee, Soo Min; Lee, Byung Cheol; Cha, Hyungki; Lee, Seung Hyun; Park, Hyung Dal; Song, Ki Beak

    2015-06-01

    An X-band [9300 MHz] magnetron frequency measurement system was developed for the electron linear accelerators at the Korean Atomic Energy Research Institute (KAERI). The measurement and the display of the RF frequency during the accelerator operation time is a crucial factor for continuous operation for two key reasons. Firstly, if the RF frequency of the magnetron is not known, then the amount of frequency tuning cannot be known, and the appropriate RF power cannot be supplied to the accelerating-structure. Second, values including the accelerating-structure's coolingwater temperature setting, the solenoid-magnet's cooling-water temperature setting, and the tuning of the source's (magnetron's) frequency can be undertaken because the RF frequency is used as the reference. A key component of the accelerator is the accelerating-structure. The volume of the accelerating-structure changes according to the environment's temperature; there, the resonance frequency of the accelerating-structure varies. When the resonance frequency of the accelerator is changed, the output becomes unstable, and a low beam energy is obtained. Accordingly, was developed a magnetron frequency-measuring device in order to stabilize the accelerator's operation. The results of the test demonstrate that the measurement's accurate up to 100 kHz, which enables the provision of an accurate RF power to the accelerating -structure. In this paper, we discuss the RF frequency measurement system for the magnetron to enable a more stable accelerator operation in a linac.

  2. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute

    NASA Astrophysics Data System (ADS)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C4+ beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C4+ was almost 14 μA at 15 kV extraction voltage. To get higher current of the C4+ beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10-7 mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C4+ beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed.

  3. Effect of a metal electrode on the radiation tolerance of a SiC neutron detector

    NASA Astrophysics Data System (ADS)

    Park, Junesic; Shin, Hee-Sung; Kim, Ho-Dong; Kim, Han Soo; Park, Se Hwan; Lee, Cheol Ho; Kim, Yong Kyun

    2012-08-01

    The Korea Atomic Energy Research Institute (KAERI) has developed a silicon carbide (SiC) diode as a neutron detector that can be used in harsh environments such as nuclear reactor cores and spent fuel. The radiation tolerance of the SiC detector was studied in the present work. Especially, the effect of a metal electrode on the radiation tolerance of the SiC detector was studied. Four different types of SiC detectors were fabricated, and the operation properties of the detectors were measured and compared before and after neutron irradiations of 2.16 × 1015 n/cm2 and 5.40 × 1017 n/cm2. From the comparison, the detector with a Ti/Au electrode structure showed the highest radiation tolerance among detectors. A detector assembly was fabricated using two types of SiC p-i-n diode detectors: one containing 6LiF and the other without it. Signals from the detectors were measured in the current mode to minimize the noise of the detector. Signal currents from detectors were measured for neutron fluxes ranging from 5.54 × 106 n/cm2 s to 2.86 × 108 n/cm2 s and gamma doses up to 100 Gy/h.

  4. Performance of a New Ion Source for KSTAR Tokamak Plasma Heating

    NASA Astrophysics Data System (ADS)

    Tae-Seong, Kim; Seung, Ho Jeong; Doo, Hee Chang; Kwang, Won Lee; Sang-Ryul, In

    2014-06-01

    In the experimental campaign of 2010 and 2011 on KSTAR, the NBI-1 system was equipped with one prototype ion source and operated successfully, providing a neutral beam power of 0.7-1.6 MW to the tokamak plasma. The new ion source planned for the 2012 KSTAR campaign had a much more advanced performance compared with the previous one. The target performance of the new ion source was to provide a neutral deuterium beam of 2 MW to the tokamak plasma. The ion source was newly designed, fabricated, and assembled in 2011. The new ion source was then conditioned up to 64 A/100 keV over a 2-hour beam extraction and performance tested at the NB test stand (NBTS) at the Korea Atomic Energy Research Institute (KAERI) in 2012. The measured optimum perveance at which the beam divergence is a minimum was about 2.5 μP, and the minimum beam divergent angle was under 1.0° at 60 keV. These results indicate that the 2.0 MW neutral beam power at 100 keV required for the heating of plasma in KSTAR can be delivered by the installation of the new ion source in the KSTAR NBI-1 system.

  5. Implementation of the k0-NAA method in the NAA#3 irradiation hole of the HANARO research reactor

    NASA Astrophysics Data System (ADS)

    Chung, Yong Sam; Dung, Ho Manh; Moon, Jong Hwa; Park, Kwang Won; Kim, Hark Rho

    2006-08-01

    The NAA#3 irradiation hole in the 30 MW HANARO research reactor of the Korea Atomic Energy Research Institute (KAERI), with a thermal neutron flux of 1.26×10 14 cm -2 s -1, has been regarded as suitable for the application of k0-based neutron activation analysis ( k0-NAA). The objectives of the present work were: (a) to characterize the NAA#3 irradiation hole via the determination of the neutron spectrum parameters required for the method, (b) to calibrate the HPGe gamma-ray spectrometer system via establishing the detection efficiency curves and (c) to assess the quality of the k0-NAA method by the analysis of six certified reference materials, three of which were of biological nature and three of environmental origin. The results obtained indicated that, by using the k0-NAA method, approximately 25 or 35 elements could be quantitatively determined in the biological and environmental samples, respectively. The deviations between the experimental and the certified values for the determined elements were generally within 12% with u-scores mostly below 2. The results prove that the k0-NAA method, implemented in the HANARO research reactor, is applicable for multi-element analysis in biological and environmental samples with a rather high analytical performance and that the method is available for further practical applications.

  6. Reduced interaction layer growth of U-Mo dispersion in Al-Si

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Park, Jong Man; Ryu, Ho Jin; Jung, Yang Hong; Hofman, G. L.

    2012-11-01

    Development of high U-density U-Mo fuel particle dispersion in Al is needed to convert high power research and test reactors from HEU to LEU. Interaction layer growth between U-Mo and Al poses a challenge to this goal. The KOMO-4 test was designed at KAERI and irradiated in the HANARO reactor to ˜50% burnup of initial 19.75% U-235 enrichment at ˜200 °C. The main objective of the test was to examine the effect of the Si content in the matrix up to 8 wt.%. U-Mo/Al-Si dispersion samples with a Si addition in the range 0-8 wt.% in the matrix were tested. A sample with pre-irradiation Si-containing interaction layers (ILs) was also tested. As the Si content in the matrix increases, the IL growth was progressively reduced. Contrary to the thermodynamics prediction and out-of-pile observations, however, Si accumulation in the ILs occurred near the IL-matrix interface with only a slight increase in concentration. The effect of the pre-formed ILs was insignificant in reducing IL growth.

  7. 10 MeV Electron Beam Test Using Gas Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Hahn, C. H.; Kim, I. G.; Park, S. T.; Kim, W. J.; Yoo, D. S.; Moon, B. S.; Ha, S. Y.; Ahn, B. J.; Ha, Y. J.; Jung, C. Y.; Jung, S. H.; Cho, B. H.; Lee, B. C.; Han, Y. H.; Chung, C. E.; Li, J.; White, A. P.; Yu, J.

    2006-10-01

    10 MeV electron beam has been tested using a single channel double gas electron multiplier (GEM) detector constructed by Changwon National University and a multi-channel double GEM chamber by the University of Texas at Arlington. It has been demonstrated that both detectors are able to detect signals generated by high energy electrons as well as x-rays. By analyzing the chamber output signals captured by oscilloscope, it is believed that the x-ray was produced by bremsstrahlung while electrons were decelerating in a 2 mm lead plate. The time profile of the KAERI's 10 MeV electron beam bunches was determined based on the calculated angular distribution of electrons by multiple scattering in the lead plate. Furthermore, the spatial electron density distribution has been extrapolated by using the time profile. The effective gain of the GEM chamber has been estimated by analyzing the measured output currents of the chamber. It is important that the time and spatial profiles of the high energy electron beam could be determined using GEM detectors, which suggests that GEM might have an application as a calorimeter for a large scale accelerator. Details of experimental procedure will be discussed.

  8. Polarity effect of the thimble-type ionization chamber at a low dose rate

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Kyun; Park, Se-Hwan; Kim, Han-Soo; Kang, Sang-Mook; Ha, Jang-Ho; Chung, Chong-Eun; Cho, Seung-Yeon; Kim, J. K.

    2005-11-01

    It is known that the current collected from an ionization chamber exposed to a constant radiation intensity changes in magnitude when the polarity of the collecting potential is reversed. It is called the polarity effect of the ionization chamber. There are many possible causes that induce the polarity effect and one of them can be a field distortion due to a potential difference between the guard electrode and the collector. We studied how much the polarity effect depends on the design of the electrodes in the thimble-type ionization chamber. Two thimble-type ionization chambers, which had different electrode structures, were designed and fabricated at KAERI. We calculated the field distortions due to the potential difference between the guard electrode and the collector for the two ionization chambers. MAXWELL and Garfield were employed to calculate the electron drift lines inside the chamber. The polarity effects of the two ionization chambers were measured, and they were consistent with the field calculation. We could conclude that the polarity effect is mostly induced from the field distortion due to the potential difference between the guard electrode and the collector in our experiment and it depends significantly on the design of the electrodes.

  9. High-resolution and high-intensity neutron diffractometer with linear position-sensitive detector

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hee; Moon, Myung-Kook; Em, V. T.; Choi, Young-Nam; Oh, Hwa-Suk; Nam, Uk-Won

    2003-08-01

    The characteristics of a neutron diffractometer using a 3He one-dimensional position-sensitive detector (PSD) with delay line readout, a 200 (length) × 100 (height) mm 2 active window and 2.5 mm spatial resolution have been studied and compared with those of the High-Resolution Powder Diffractometer (HRPD) of KAERI with 32 3He conventional tube (∅50 mm) detectors and Soller collimators (10') before detectors. For the sample to PSD distance R=1200 mm, the PSD subtends 8° angle of 2 θ and provides the resolution and the peak-to-background ratio close to that for HRPD. Time for scanning (with the same statistics) of a 0-160° interval is about 1.6 times longer and the multi-PSD system providing efficiency about 10 times higher than HRPD is proposed. Because of the small angle subtended by the PSD, the parasitic peaks from the sample environment are eliminated and operation without an oscillating radial collimator is possible. Additionally, the proposed diffractometer has an advantage for small samples.

  10. Application of a wide-band compact FEL on THz imaging

    NASA Astrophysics Data System (ADS)

    Jeong, Young Uk; Kazakevitch, Grigori M.; Cha, Hyuk Jin; Park, Seong Hee; Lee, Byung Cheol

    2005-05-01

    We have developed a laboratory-scale users facility with a compact terahertz (THz) free-electron laser (FEL). The FEL operates in the wavelength range of 100-1200 μm, which corresponds to 0.3-3 THz. THz radiation from the FEL shows well-collimated Gaussian spatial distribution and narrow spectral width of Δ λ/λ˜0.003, which is Fourier transform limited by the estimated pulse duration of 20 ps. The THz FEL beam shows good performance in pulse-energy stability, polarization, spectrum and spatial distribution. The main application of the FEL is in THz imaging for bio-medical researches. We are developing THz imaging techniques by two-dimensional (2D) scanning, single pulse capturing with the electro-optic method, and 3D holography. We could get the 2D imaging of various materials with the THz FEL beam. High power, coherent, and pulsed feature of the FEL radiation is expected to show much better performance in advanced THz imaging of 3D tomography. In this paper, we will show and discuss the main results of THz imaging with the different methods by using the KAERI compact FEL.

  11. Measurements of Thermal Neutron Capture Cross Sections of 136Ce, 156Dy, and 168Yb

    NASA Astrophysics Data System (ADS)

    Lee, J. Y.; Kim, Y. D.; Sun, G. M.

    2014-05-01

    For several low abundance stable nuclei, the thermal neutron capture cross sections are not well measured, while the cross sections for isotopes with high abundances are already well measured. Our experiments, different from the commonly used method of using gold foil as reference, are performed using natural foils for which we know the relative abundances of all isotopes and thermal neutron capture cross sections. Therefore, we can obtain the cross sections of low abundance isotopes, which are not known well, by comparing the yields of gammas from the neutron captures by various isotopes in the foils. The advantage of this method is the cancellation of potential systematic errors from thermal neutron flux, flux profile, foil thickness, foil size, and irradiation time. We have measured the thermal capture cross sections of 136Ce, 156Dy, and 168Yb isotopes, using the high thermal neutron flux from the reactor HANARO at KAERI, and have obtained new cross section values of 7.64±0.63 barn for 136Ce, 14.8±2.0 barn for 156Dy, and 1335±43 barn for 168Yb.

  12. Modeling in-situ transport of uranine and colloids in the fracture network in KURT

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Woo; Lee, Jae-Kwang; Baik, Min-Hoon; Jeong, Jongtae

    2015-02-01

    An in-situ dipole migration experiment was conducted using the conservative tracer uranine and latex colloids in KAERI (Korea Atomic Energy Research Institute) Underground Research Tunnel (KURT). The location and dimensions of the fractures between the two boreholes were estimated using the results of a borehole image processing system (BIPS) investigation, and the connectivity of the fractures was evaluated by a packer test. To investigate the flow and transport of uranine and colloids through an in-situ fracture network, a fracture network transport model was newly developed. The model consists of a series of one-dimensional advection-dispersion-matrix diffusion equations for each channel of the fracture network. Using the fracture network transport model, the most probable representation and the hydrologic parameters of the fracture network can be estimated by fitting the breakthrough of uranine. While the fracture network might not be unique, the representation chosen was adequate to describe the breakthrough of uranine and it represents a reasonable approach to modeling transport in the fracture network. An additional evaluation showed that the colloid transport in this study was influenced by filtration on the fracture surface rather than the enhancement of the colloid velocity. Overall, the model can explain successfully the in-situ experimental results of uranine and colloid transports through the fracture network.

  13. Influence of the pressure on a fracture aperture controlling a fracture transmissivity

    NASA Astrophysics Data System (ADS)

    Ji, S.; Lee, M.; Koh, Y.; Choi, J.

    2011-12-01

    Groundwater flow through fractures is one of major pathways for radioactive contaminants from a subsurface repository to the biosphere. The cubic law introduces that a small change of the aperture can make a big change in the flow rate thus the transmissivity of a fracture. It is known that a sufficiently large water pressure during hydrofracturing makes a change in a fracture aperture thus a fracture transmissivity, and a small change in water pressure during the hydrogeologic characterization works maybe also affect a fracture aperture. In this study, we evaluate the influence of the water pressure on the fracture aperture with a series of field experiments. For the experiments, a borehole is installed in the KAERI underground research tunnel (KURT), and the test interval is determined through the analyses of borehole logging and hydraulic tests. Then, a double packer system, which is able to directly observe the change of an aperture, is developed and installed in the test borehole. Using the double packer system, the aperture of a fracture in the test interval and the flow rate are observed under various water pressures, and the relation between the water pressure and the aperture is quantified.

  14. Analysis of experimental measurements of PWR fresh and spent fuel assemblies using Self-Interrogation Neutron Resonance Densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Menlove, Howard O.

    2015-05-01

    Self-Interrogation Neutron Resonance Densitometry (SINRD) is a new NDA technique that was developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for LWR fuel assemblies. The SINRD detector consists of four fission chambers (FCs) wrapped with different absorber filters to isolate different parts of the neutron energy spectrum and one ion chamber (IC) to measure the gross gamma rate. As a result, two different techniques can be utilized using the same SINRD detector unit and hardware. These techniques are the Passive Neutron Multiplication Counter (PNMC) method and the SINRD method. The focus of the work described in this paper is the analysis of experimental measurements of fresh and spent PWR fuel assemblies that were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using the SINRD detector. The purpose of these experiments was to assess the following capabilities of the SINRD detector: 1) reproducibility of measurements to quantify systematic errors, 2) sensitivity to water gap between detector and fuel assembly, 3) sensitivity and penetrability to the removal of fuel rods from the assembly, and 4) use of PNMC/SINRD ratios to quantify neutron multiplication and/or fissile content. The results from these simulations and measurements provide valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies.

  15. The residual stress instrument with optimized Si(2 2 0) monochromator and position-sensitive detector at HANARO

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hee; Moon, Myung-Kook; Em, Vyacheslav T.; Choi, Young-Hyun; Cheon, Jong-Kyu; Nam, Uk-Won; Kong, Kyung-Nam

    2005-06-01

    An upgraded residual stress instrument at the HANARO reactor of the KAERI is described. A horizontally focusing bent perfect crystal Si(2 2 0) monochromator (instead of a mosaic vertical focusing Ge monochromator) is installed in a drum with a tunable (2 θM=0-60°) take-off angle/wavelength. A specially designed position-sensitive detector (60% efficiency for λ=1.8 A) with 200 mm (instead of 100 mm) high-active area is used. There are no Soller type collimators in the instrument. The minimum possible monochromator to sample distance, L=2 m, and sample to detector distance, L=1.2 m, were found to be optimal. The new PSD and bent Si(2 2 0) monochromator combined with the possibility of selecting an appropriate wavelength resulted in about a ten-fold gain in data collection rate. The optimal reflections of austenitic and ferritic steels, aluminum and nickel for stress measurements with a Si(2 2 0) monochromator were chosen experimentally. The ability of the instrument to make strain measurements deep inside the austenitic and ferritic steels has been tested. For the chosen reflections and wavelengths, no shift of peak position (apparent strain) was observed up to 56 mm length of path.

  16. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute.

    PubMed

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed. PMID:24593482

  17. Development of a Compton camera for safeguards applications in a pyroprocessing facility

    NASA Astrophysics Data System (ADS)

    Park, Jin Hyung; Kim, Young Su; Kim, Chan Hyeong; Seo, Hee; Park, Se-Hwan; Kim, Ho-Dong

    2014-11-01

    The Compton camera has a potential to be used for localizing nuclear materials in a large pyroprocessing facility due to its unique Compton kinematics-based electronic collimation method. Our R&D group, KAERI, and Hanyang University have made an effort to develop a scintillation-detector-based large-area Compton camera for safeguards applications. In the present study, a series of Monte Carlo simulations was performed with Geant4 in order to examine the effect of the detector parameters and the feasibility of using a Compton camera to obtain an image of the nuclear material distribution. Based on the simulation study, experimental studies were performed to assess the possibility of Compton imaging in accordance with the type of the crystal. Two different types of Compton cameras were fabricated and tested with a pixelated type of LYSO (Ce) and a monolithic type of NaI(Tl). The conclusions of this study as a design rule for a large-area Compton camera can be summarized as follows: 1) The energy resolution, rather than position resolution, of the component detector was the limiting factor for the imaging resolution, 2) the Compton imaging system needs to be placed as close as possible to the source location, and 3) both pixelated and monolithic types of crystals can be utilized; however, the monolithic types, require a stochastic-method-based position-estimating algorithm for improving the position resolution.

  18. Characteristics of fabricated si PIN-type radiation detectors on cooling temperature

    NASA Astrophysics Data System (ADS)

    Kim, Han Soo; Jeong, Manhee; Kim, Young Soo; Lee, Dong Hun; Cho, Seung Yeon; Ha, Jang Ho

    2015-06-01

    Si PIN photodiode radiation detectors with three different active areas (3×3 mm2, 5×5 mm2, and 10×10 mm2) were designed and fabricated at the Korea Atomic Energy Research Institute (KAERI) for low energy X- and gamma-ray detection. In Si-based semiconductor radiation detectors, one of the noise sources is thermal noise, which degrades their energy resolution performance. In this study, the temperature effects on the energy resolution were investigated using a 3×3 mm2 active area PIN photodiode radiation detector using a Thermoelectric Module (TEM) from room temperature to -23 °C. Energy resolutions from 25 keV auger electrons to 81 keV gamma-ray from a Ba-133 calibration source were measured and compared at every 10 °C interval. At -23 °C, energy resolutions were improved by 15.6% at 25 keV, 4.0% at 31 keV, and 1.2% at 81 keV in comparison with resolutions at room temperature. CsI(Tl)/PIN photodiode radiation detectors were also fabricated for relatively high energy gamma-ray detection. Energy resolutions for Cs-137, Co-60, and Na-22 sources were measured and compared with the spectral responsivity.

  19. Characteristics of a Frisch collar grid CdZnTe radiation detector grown by low-pressure Bridgman method

    NASA Astrophysics Data System (ADS)

    Jeong, Manhee; Jo, Woo Jin; Kim, Han Soo; Ha, Jang Ho

    2015-06-01

    A single-polarity charge-sensing method was studied by using a CdZnTe Frisch collar grid detector grown by using a low-pressure Bridgeman furnace at the Korea Atomic Energy Research Institute (KAERI). The Frisch collar grid CdZnTe detector has an active volume of 5 × 5 × 10 mm3, and was fabricated from a single crystal, Teflon tape and copper tape used as a Frisch collar grid. A room-temperature energy resolution of 6% full width at half maximum (FWHM) was obtained for the 662keV peak of Cs-137 without any additional electrical corrections. The detector's fabrication process is described, and its characteristics are discussed. Finally, the charge transport properties and gamma-ray energy resolution of the fabricated Frisch collar grid detector are compared with those of two other Frisch collar detectors grown by using different crystal growth methods and purchased from eV-products and Redlen technology.

  20. Irradiation Induced Defect Characterization in Reactor Pressure Vessel Steel by Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Han, Yougn-Soo; Shin, Eun-Joo; Lee, Chang-Hee; Park, Duck-Gun

    The degradation of the mechanical properties of the RPV (Reactor Pressure Vessel) steel during an irradiation in a nuclear power plant is closely related to the irradiation induced defects. The size of these defects is known to be a few nanometer, and the small angle neutron scattering technique is regarded as the best non destructive technique to characterize the nano sized inhomogeneities in bulk samples. The investigated the RPV steel has been used in YeongKwang nuclear power plant at Korea and the Cu content of the RPV steel is 0.06 wt%. The RPV steel was irradiated in the HANARO reactor at KAERI. The small angle neutron scattering experiments were performed by the SANS instrument in the HANARO reactor. The nano sized irradiation induced defects were quantitatively analyzed by SANS and the type of the irradiation induced defects was discussed in detail. The relation between irradiation induced defects and the yield strength was investigated. The characteristics of irradiation induced defects in low Cu containing RPV steel were discussed.

  1. Material analysis of the CZT crystal grown for a radiation detector

    NASA Astrophysics Data System (ADS)

    Kim, Han Soo; Jeong, Manhee; Kim, Young Soo; Kim, Dong Jin; Choi, Hyo Jeong

    2015-01-01

    Room-temperature semiconductor radiation detectors, such as CdZnTe (CZT) and CdTe detectors, are being developed and grown worldwide owing to their high performances as a gamma-ray detector. A 2″ CZT ingot was grown using a 6-zone low-pressure (LP) Bridgman furnace at the Korea Atomic Energy Research Institute (KAERI). To increase the resistivity, indium (In) was doped at 5 ppm and 7 ppm, respectively. Material analysis results obtained by using inductively coupled plasma mass spectrometry (ICP-MS), X-ray diffractometry (XRD), and an infrared (IR) scope system were compared with the I-V results with respect to the location on the grown ingots and doping concentration. A (1,1,1) orientation and 1.41 × 1011 Ω·cm resistivity were measured in the middle part of the ingot. In addition, Te inclusions were also homogeneously shown. The variation in the I-V characteristics with respect to the preparation conditions of the crystals was also addressed.

  2. Optimization of detection geometry for industrial SPECT by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Park, J. G.; Kim, C. H.; Han, M. C.; Jung, S. H.; Kim, J. B.; Moon, J.

    2013-04-01

    The Korea Atomic Energy Research Institute (KAERI) has developed an industrial SPECT to investigate the fluid flow and mixing patterns in columns. It has been found that the industrial SPECT is indeed a very powerful tool to study the hydrodynamics in multiphase reactors. One of the practical issues in the development of industrial SPECTs is to achieve a required imaging resolution of an industrial SPECT with a minimum number of component detectors, the number of which is frequently limited by both the size of the detectors and the total cost of the imaging system. In the present study, a set of different geometries of industrial SPECTs were evaluated by Monte Carlo simulation using MCNPX to determine the minimum number of detectors that will provide a spatial resolution that corresponds to 10% of the cylindrical column diameter. Our results show that 11 and 12 detectors will satisfy the 10% resolution requirement for the 40 cm and 60 cm diameter columns, respectively, for the industrial SPECT and radioisotopes considered in the present study. The conclusion of this result is valid only for the case considered in the present study, but we believe that the same procedure can be applied to other industrial SPECTs for this kind of optimization.

  3. Development of a gadolinium-loaded liquid scintillator for the Hanaro short baseline prototype detector

    NASA Astrophysics Data System (ADS)

    Yeo, In Sung; Joo, Kyung Kwang; So, Sun Heang; Song, Sook Hyung; Kim, Hong Joo; So, Jung Ho; Park, Kang Soon; Ma, Kyung Ju; Jeon, Eun Ju; Kim, Jin Yu; Kim, Young Duk; Lee, Jason; Lee, Jeong-Yeon; Sun, Gwang-Min

    2014-02-01

    We propose a new experiment on the site of the Korea Atomic Energy Research Institute (KAERI) located at Daejeon, Korea. The Hanaro short baseline (SBL) nuclear reactor with a thermal power output 30 MW is used to investigate a reactor neutrino anomaly. A Hanaro SBL prototype detector having a 60- l volume has been constructed ˜6 m away from the reactor core. A gadolinium (Gd)-loaded liquid scintillator (LS) is used as an active material to trigger events. The selection of the LS is guided by physical and technical requirements, as well as safety considerations. A linear alkyl benzene (LAB) is used as a base solvent of the Hanaro SBL prototype detector. Three g/ l of PPO and 30 mg/ l of bis-MSB are dissolved to formulate the LAB-based LS. Then, a 0.5% gadolinium (Gd) complex with carboxylic acid is loaded into the LAB-based LS by using the liquidliquid extraction method. In this paper, we will summarize all the characteristics of the Gd-loaded LAB-based LS for the Hanaro prototype detector.

  4. Final report-passive safety optimization in liquid sodium-cooled reactors.

    SciTech Connect

    Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

    2007-08-13

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  5. Zone Freezing Study for Pyrochemical Process Waste Minimization

    SciTech Connect

    Ammon Williams

    2012-05-01

    Pyroprocessing technology is a non-aqueous separation process for treatment of used nuclear fuel. At the heart of pyroprocessing lies the electrorefiner, which electrochemically dissolves uranium from the used fuel at the anode and deposits it onto a cathode. During this operation, sodium, transuranics, and fission product chlorides accumulate in the electrolyte salt (LiCl-KCl). These contaminates change the characteristics of the salt overtime and as a result, large volumes of contaminated salt are being removed, reprocessed and stored as radioactive waste. To reduce the storage volumes and improve recycling process for cost minimization, a salt purification method called zone freezing has been proposed at Korea Atomic Energy Research Institute (KAERI). Zone freezing is melt crystallization process similar to the vertical Bridgeman method. In this process, the eutectic salt is slowly cooled axially from top to bottom. As solidification occurs, the fission products are rejected from the solid interface and forced into the liquid phase. The resulting product is a grown crystal with the bulk of the fission products near the bottom of the salt ingot, where they can be easily be sectioned and removed. Despite successful feasibility report from KAERI on this process, there were many unexplored parameters to help understanding and improving its operational routines. Thus, this becomes the main motivation of this proposed study. The majority of this work has been focused on the CsCl-LiCl-KCl ternary salt. CeCl3-LiCl-KCl was also investigated to check whether or not this process is feasible for the trivalent species—surrogate for rare-earths and transuranics. For the main part of the work, several parameters were varied, they are: (1) the retort advancement rate—1.8, 3.2, and 5.0 mm/hr, (2) the crucible lid configurations—lid versus no-lid, (3) the amount or size of mixture—50 and 400 g, (4) the composition of CsCl in the salt—1, 3, and 5 wt%, and (5) the

  6. Analysis of Phenix end-of-life natural convection test with the MARS-LMR code

    SciTech Connect

    Jeong, H. Y.; Ha, K. S.; Lee, K. L.; Chang, W. P.; Kim, Y. I.

    2012-07-01

    The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditions provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)

  7. NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION

    SciTech Connect

    OH,S.Y.; CHANG,J.; MUGHABGHAB,S.

    2000-05-11

    Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.

  8. STAR: The Secure Transportable Autonomous Reactor System - Encapsulated Fission Heat Source

    SciTech Connect

    Ehud Greenspan

    2003-10-31

    OAK-B135 The Encapsulated Nuclear Heat Source (ENHS) is a novel 125 MWth fast spectrum reactor concept that was selected by the 1999 DOE NERI program as a candidate ''Generation-IV'' reactor. It uses Pb-Bi or other liquid-metal coolant and is intended to be factory manufactured in large numbers to be economically competitive. It is anticipated to be most useful to developing countries. The US team studying the feasibility of the ENHS reactor concept consisted of the University of California, Berkeley, Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL) and Westinghouse. Collaborating with the US team were three Korean organizations: Korean Atomic Energy Research Institute (KAERI), Korean Advanced Institute for Science and Technology (KAIST) and the University of Seoul, as well as the Central Research Institute of the Electrical Power Industry (CRIEPI) of Japan. Unique features of the ENHS include at least 20 years of operation without refueling; no fuel handling in the host country; no pumps and valves; excess reactivity does not exceed 1$; fully passive removal of the decay heat; very small probability of core damaging accidents; autonomous operation and capability of load-following over a wide range; very long plant life. In addition it offers a close match between demand and supply, large tolerance to human errors, is likely to get public acceptance via demonstration of superb safety, lack of need for offsite response, and very good proliferation resistance. The ENHS reactor is designed to meet the requirements of Generation IV reactors including sustainable energy supply, low waste, high level of proliferation resistance, high level of safety and reliability, acceptable risk to capital and, hopefully, also competitive busbar cost of electricity.

  9. Steady-state operation of a large-area high-power RF ion source for the neutral beam injector

    NASA Astrophysics Data System (ADS)

    Chang, Doo-Hee; Park, Min; Jeong, Seung Ho; Kim, Tae-Seong; Lee, Kwang Won; In, Sang Ryul

    2014-10-01

    A large-area high-power RF-driven ion source is being developed in Germany for the heating and current drive (H&CD) of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion devices such as an the ITER and the DEMO. The first and the second long-pulse ion sources (LPIS-1 and LPIS-2) have been successfully developed with a magnetic-bucket plasma generator, including a filament heating structure for the first NBI (NBI-1) system of the KSTAR tokamak. A development plan exists for a large-area high-power RF ion source for steady-state operation (more than 300 seconds) at the Korea Atomic Energy Research Institute (KAERI) to extract positive ions, which can be used for the NBI heating and current drive systems, and to extract negative ions for future fusion devices such as a Fusion Neutron Source and Korea — DEMO. The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region (magnetic bucket of the prototype LPIS-1). RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for stable and steady-state operation of the RF discharge. The uniformities of the plasma parameters are measured at the lowest area of the expansion bucket by using two RF-compensated electrostatic probes along the directions of the short and the long dimensions of the expansion region.

  10. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    NASA Astrophysics Data System (ADS)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  11. First neutral beam injection experiments on KSTAR tokamaka)

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Chang, D. H.; Kim, T. S.; In, S. R.; Lee, K. W.; Jin, J. T.; Chang, D. S.; Oh, B. H.; Bae, Y. S.; Kim, J. S.; Park, H. T.; Watanabe, K.; Inoue, T.; Kashiwagi, M.; Dairaku, M.; Tobari, H.; Hanada, M.

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1/3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D+:D2+:D3+ = 75:20:5 at beam current density of 85 mA/cm2. The arc efficiency is more than 1.0 A/kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the Ti and Te profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  12. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    SciTech Connect

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan; Lim, ChaeYoung

    2004-07-01

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. The total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)

  13. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  14. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    SciTech Connect

    S.M. Frank

    2011-09-01

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomic Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project

  15. Forced and mixed convection heat transfer to supercritical CO{sub 2} vertically flowing in a uniformly-heated circular tube

    SciTech Connect

    Bae, Yoon-Yeong; Kim, Hwan-Yeol; Kang, Deog-Ji

    2010-11-15

    An experiment of heat transfer to CO{sub 2}, which flows upward and downward in a circular tube with an inner diameter of 6.32 mm, was carried out with mass flux of 285-1200 kg/m{sup 2} s and heat flux of 30-170 kW/m{sup 2} at pressures of 7.75 and 8.12 MPa, respectively. The corresponding Reynolds number at the tube test section inlet ranges from 1.8 x 10{sup 4} to 3.8 x 10{sup 5}. The tube inner diameter corresponds to the equivalent hydraulic diameter of the fuel assembly sub-channel, which is being studied at KAERI. Among the tested correlations, the Bishop correlation predicted the experimental data most accurately, but only 66.9% of normal heat transfer data were predicted within {+-}30% error range. The Watts and Chou correlation, which is claimed to be valid for both the normal and deteriorated heat transfer regime, showed unsatisfactory performance. A significant decrease in Nusselt number was observed in the range of 10{sup -6}

  16. Margin for In-Vessel Retention in the APR1400 - VESTA and SCDAP/RELAP5-3D Analyses

    SciTech Connect

    Joy Rempe; D. Knudson

    2004-12-01

    If cooling is inadequate during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the lower head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with such plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe pressurized water reactor (PWR) (AP600), which relied upon external reactor vessel cooling (ERVC) for in-vessel retention (IVR), resulted in the U.S. Nuclear Regulatory Commission (USNRC) approving the design without requiring certain conventional features common to existing light water reactors (LWRs). IVR of core melt is therefore a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced LWRs. However, it is not clear that currently proposed ERVC without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a three-year, United States (U.S.) -Korean International Nuclear Energy Research Initiative (INERI) project was initiated in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korean Atomic Energy Research Institute (KAERI) explored options, such as enhanced ERVC performance and an enhanced in-vessel core catcher (IVCC), that have the potential to ensure that IVR is feasible for higher power reactors.

  17. First neutral beam injection experiments on KSTAR tokamak.

    PubMed

    Jeong, S H; Chang, D H; Kim, T S; In, S R; Lee, K W; Jin, J T; Chang, D S; Oh, B H; Bae, Y S; Kim, J S; Park, H T; Watanabe, K; Inoue, T; Kashiwagi, M; Dairaku, M; Tobari, H; Hanada, M

    2012-02-01

    The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.

  18. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect

    Carbajo, Juan; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Schmidt, Rodney Cannon; Thomas, Justin; Wei, Tom; Sofu, Tanju; Ludewig, Hans; Tobita, Yoshiharu; Ohshima, Hiroyuki; Serre, Frederic

    2011-06-01

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the

  19. Incorporation of a Helical Tube Heat Transfer Model in the MARS Thermal Hydraulic Systems Analysis Code for the T/H Analyses of the SMART Reactor

    SciTech Connect

    Young Jin Lee; Bub Dong Chung; Jong Chull Jo; Hho Jung Kim; Un Chul Lee

    2004-07-01

    SMART is a medium sized integral type advanced pressurized water reactor currently under development at KAERI. The steam generators of SMART are designed with helically coiled tubes and these are designed to produce superheated steam. The helical shape of the tubes can induce strong centrifugal effect on the secondary coolant as it flows inside the tubes. The presence of centrifugal effect is expected to enhance the formation of cross-sectional circulation flows within the tubes that will increase the overall heat transfer. Furthermore, the centrifugal effect is expected to enhance the moisture separation and thus make it easier to produce superheated steam. MARS is a best-estimate thermal-hydraulic systems analysis code with multi-phase, multi-dimensional analysis capability. The MARS code was produced by restructuring and merging the RELAP5 and the COBRA-TF codes. However, MARS as well as most other best-estimate systems analysis codes in current use lack the detailed models needed to describe the thermal hydraulics of helically coiled tubes. In this study, the heat transfer characteristics and relevant correlations for both the tube and shell sides of helical tubes have been investigated, and the appropriate models have been incorporated into the MARS code. The newly incorporated helical tube heat transfer package is available to the MARS users via selection of the appropriate option in the input. A performance analysis on the steam generator of SMART under full power operation was carried out using the modified MARS code. The results of the analysis indicate that there is a significant improvement in the code predictability. (authors)

  20. Relative biological efficiency for the induction of various gene mutations in normal and enriched with 10B Tradescantia cells by neutrons from 252Cf source.

    PubMed

    Cebulska-Wasilewska, A; Schneider, K; Kim, J K

    2001-03-01

    The effectiveness of neutrons from a Californium-252 source in the induction of various abnormalities in the Tradescantia clone 4430 stamen hair cells (Trad-SH assay) were studied. A special attention was paid to check whether any enhancement in effects is visible in the cells enriched with boron ions. Inflorescences, normal or pretreated with chemicals containing boron, were irradiated in the air with neutrons from a 252Cf source at KAERI, Taejon, Korea. To estimate the relative biological effectiveness (RBE) of the beam under the study, numbers of Tradescantia inflorescence without chemical pretreatment were irradiated with various doses of X-rays. The ranges of radiation doses used for neutrons were 0-1.0Gy and for X-rays 0-0.5Gy. Following the culturing according to standard procedures screening of gene and lethal mutations in somatic cells of stamen hairs was done in the extended period, between days 7 and 19 after exposures. Maximal RBE values for the induction of pink, colorless and lethal mutations were evaluated from comparison of the slopes in linear parts of the dose response curves obtained after irradiation with X-rays and californium source. The RBE(max) value or the induction of gene mutation was estimated as 7.2 comparing the value 5.6 in the studies reported earlier. The comparison of dose-response curves and its alteration, due to changes in the cells and plants environment during and after irradiation, explains the observed differences. Inflorescence pretreated with borax responded to neutrons differently depending on the biological end points. Although, for the induction of pink mutations no significant difference was observed, though, in the case of cell lethality, pretreated with boron ion plants have shoved a statistically significant increase of the RBE value from 5.5 to 34.7, and in the case of colorless mutations from 1.6 to 5.6.

  1. Use and imaging performance of CMOS flat panel imager with LiF/ZnS(Ag) and Gadox scintillation screens for neutron radiography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; kim, J. Y.; Kim, T. J.; Sim, C.; Cho, G.; Lee, D. H.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2011-01-01

    In digital neutron radiography system, a thermal neutron imaging detector based on neutron-sensitive scintillating screens with CMOS(complementary metal oxide semiconductor) flat panel imager is introduced for non-destructive testing (NDT) application. Recently, large area CMOS APS (active-pixel sensor) in conjunction with scintillation films has been widely used in many digital X-ray imaging applications. Instead of typical imaging detectors such as image plates, cooled-CCD cameras and amorphous silicon flat panel detectors in combination with scintillation screens, we tried to apply a scintillator-based CMOS APS to neutron imaging detection systems for high resolution neutron radiography. In this work, two major Gd2O2S:Tb and 6LiF/ZnS:Ag scintillation screens with various thickness were fabricated by a screen printing method. These neutron converter screens consist of a dispersion of Gd2O2S:Tb and 6LiF/ZnS:Ag scintillating particles in acrylic binder. These scintillating screens coupled-CMOS flat panel imager with 25x50mm2 active area and 48μm pixel pitch was used for neutron radiography. Thermal neutron flux with 6x106n/cm2/s was utilized at the NRF facility of HANARO in KAERI. The neutron imaging characterization of the used detector was investigated in terms of relative light output, linearity and spatial resolution in detail. The experimental results of scintillating screen-based CMOS flat panel detectors demonstrate possibility of high sensitive and high spatial resolution imaging in neutron radiography system.

  2. Release of boron and cesium or uranium from simulated borosilicate waste glasses through a compacted Ca-bentonite layer

    NASA Astrophysics Data System (ADS)

    Chun, K. S.; Kim, S. S.; Kang, C. H.

    2001-09-01

    The long-term release behavior of some elements from simulated borosilicate waste glasses (S-, K- and A-glass) in contact with a domestic compacted Ca-bentonite block and synthetic granitic groundwater at 80°C under argon atmosphere has been studied by dynamic leach tests since 1997 at KAERI. S- and K-glass differ mainly in their aluminum content, and A-glass contains 19.35 wt% UO 2 instead of fission product elements. Up to the present, the mass loss is almost the same as the normalized boron loss. This means that boron is an indicator on the dissolution of borosilicate waste glass. The leach rates of boron from K- and S-glasses after 861 days were approximately 3.1×10 -2 and 3.0×10 -2 g/ m2 day, respectively. However, the release rates of cesium through the bentonite block from K- and S-glasses were about 1/10th of the release rate of boron, which were almost the same around 2.5×10 -3 g/ m2 day. This may be due to their adsorption on the bentonite. The leach rate of boron from the A-glass was about 5.4×10 -2, but the leach rate of uranium from the A-glass specimen was quite low, below 4×10 -7 g/ m2 day. The low concentration of uranium in the leachates suggests that it hardly moves in a compacted bentonite block. By the EPMA, a yellowish uranium compound was deposited on the surface of the bentonite in contact with the A-glass specimen. The species of this phase should be identified to understand the release mechanism of uranium.

  3. SINQ layout, operation, applications and R&D to high power

    NASA Astrophysics Data System (ADS)

    Bauer, G. S.; Dai, Y.; Wagner, W.

    2002-09-01

    Since 1997, the Paul Scherrer Institut (PSI) is operating a 1 MW class research spallation neutron source, named SINQ. SINQ is driven by a cascade of three accelerators, the final stage being a 590 MeV isochronous ring cyclotron which delivers a beam current of 1.8 mA at an rf-frequency of 51 MHz. Since for neutron production this is essentially a dc-device, SINQ is a continuous neutron source and is optimized in its design for high time average neutron flux. This makes the facility similar to a research reactor in terms of utilization, but, in terms of beam power, it is, by a large margin, the most powerful spallation neutron source currently in operation world wide. As a consequence, target load levels prevail in SINQ which are beyond the realm of existing experience, demanding a careful approach to the design and operation of a high power target. While the best neutronic performance of the source is expected for a liquid lead-bismuth eutectic target, no experience with such systems exists. For this reason a staged approach has been embarked upon, starting with a heavy water cooled rod target of Zircaloy-2 and proceeding via steel clad lead rods towards the final goal of a target optimised in both, neutronic performance and service life time. Experience currently accruing with a test target containing sample rods with different materials specimens will help to select the proper structural material and make dependable life time estimates accounting for the real operating conditions that prevail in the facility. In parallel, both theoretical and experimental work is going on within the MEGAPIE (MEGAwatt Pilot Experiment) project, a joint initiative by six European research institutions and JAERI (Japan), DOE (USA) and KAERI (Korea), to design, build, operate and explore a liquid lead-bismuth spallation target for 1MW of beam power, taking advantage of the existing spallation neutron facility SINQ.

  4. Development of the ACP safeguards neutron counter for PWR spent fuel rods

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Menlove, Howard O.; Lee, Sang-Yoon; Kim, Ho-Dong

    2008-04-01

    An advanced neutron multiplicity counter has been developed for measuring spent fuel in the Advanced spent fuel Conditioning Process (ACP) at the Korea Atomic Energy Research Institute (KAERI). The counter uses passive neutron multiplicity counting to measure the 244Cm content in spent fuel. The input to the ACP process is spent fuel from pressurized water reactors (PWRs), and the high intensity of the gamma-ray exposure from spent fuel requires a careful design of the counter to measure the neutrons without gamma-ray interference. The nuclear safeguards for the ACP facility requires the measurement of the spent fuel input to the process and the Cm/Pu ratio for the plutonium mass accounting. This paper describes the first neutron counter that has been used to measure the neutron multiplicity distribution from spent fuel rods. Using multiple samples of PWR spent fuel rod-cuts, the singles (S), doubles (D), and triples (T) rates of the neutron distribution for the 244Cm nuclide were measured and calibration curves were produced. MCNPX code simulations were also performed to obtain the three counting rates and to compare them with the measurement results. The neutron source term was evaluated by using the ORIGEN-ARP code. The results showed systematic difference of 21-24% in the calibration graphs between the measured and simulation results. A possible source of the difference is that the burnup codes have a 244Cm uncertainty greater than ±15% and it would be systematic for all of the calibration samples. The S/D and D/T ratios are almost constant with an increment of the 244Cm mass, and this indicates that the bias is in the 244Cm neutron source calculation using the ORIGEN-ARP source code. The graphs of S/D and D/T ratios show excellent agreement between measurement and MCNPX simulation results.

  5. In-situ tracer tests and models developed to understand flow paths in a shear zone at the Grimsel Test Site, Switzerland

    NASA Astrophysics Data System (ADS)

    Blechschmidt, I.; Martin, A. J.

    2012-12-01

    how the results have been used to test and modify the hydraulic and conceptual models. *CFM partners are: BMWi / FZK-INE, Germany; JAEA, Japan; SKB / KTH, Sweden; KAERI, Korea; POSIVA, Finland; CRIEPI, Japan; NAGRA, Switzerland

  6. An Integration of the Restructured Melcor for the Midas Computer Code

    SciTech Connect

    Sunhee Park; Dong Ha Kim; Ko-Ryu Kim; Song-Won Cho

    2006-07-01

    The developmental need for a localized severe accident analysis code is on the rise. KAERI is developing a severe accident code called MIDAS, which is based on MELCOR. In order to develop the localized code (MIDAS) which simulates a severe accident in a nuclear power plant, the existing data structure is reconstructed for all the packages in MELCOR, which uses pointer variables for data transfer between the packages. During this process, new features in FORTRAN90 such as a dynamic allocation are used for an improved data saving and transferring method. Hence the readability, maintainability and portability of the MIDAS code have been enhanced. After the package-wise restructuring, the newly converted packages are integrated together. Depending on the data usage in the package, two types of packages can be defined: some use their own data within the package (let's call them independent packages) and the others share their data with other packages (dependent packages). For the independent packages, the integration process is simple to link the already converted packages together. That is, the package-wise structuring does not require further conversion of variables for the integration process. For the dependent packages, extra conversion is necessary to link them together. As the package-wise restructuring converts only the corresponding package's variables, other variables defined from other packages are not touched and remain as it is. These variables are to be converted into the new types of variables simultaneously as well as the main variables in the corresponding package. Then these dependent packages are ready for integration. In order to check whether the integration process is working well, the results from the integrated version are verified against the package-wise restructured results. Steady state runs and station blackout sequences are tested and the major variables are found to be the same each other. In order to verify the results, the integrated

  7. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    SciTech Connect

    S. Frank

    2010-09-01

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of in the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were

  8. Modeling of flow and heat transfer for fluids at supercritical conditions

    NASA Astrophysics Data System (ADS)

    Gallaway, Tara

    2011-12-01

    The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. At supercritical pressures, the working fluid does not undergo phase change as it is heated, but rather the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and uid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer as well as stability limits for future SCWRs. The goal of this work is to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core and to predict the potential onset of dynamic instabilities. CO2 at supercritical conditions is included in the current study due in some part to its use as a viable simulant fluid in place of water for experimental studies. The use of CO2 at supercritical conditions as a reactor coolant has also gained popularity in recent years. Spline-type property models have been developed for both water and CO2 at supercritical pressures in order to include the property variations into a numerical solver. Turbulence and heat transfer models for fluids at supercritical conditions have been developed and implemented into the NPHASE-CMFD computer code. The results of predictions using the proposed models have been compared to experimental data from the Korea Atomic Energy Research Institute (KAERI) for various heat transfer regimes. While no model is without some deficiency, the Chien Low-Reynolds k -- epsilon model performs best at predicting the experimental data. A stability model has been developed and is presented in this dissertation as well. This model utilizes three different solution methods and tests the effects of inlet temperature, mass flow rate, local loss

  9. PROLIFERATION RESISTANCE OF ADVANCED SPENT FUEL CONDITIONING PROCESS

    SciTech Connect

    MARLOW, JOHNNA B.; LEE, SANG Y.; THOMAS, KENNETH E.; MILLER, MICHAEL C.; KIM, H.D.

    2007-02-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyro-metallurgical spent fuel conditioning technology that is under development by the Korea Atomic Energy Research Institute (KAERI). KAERl has been developing this technology to resolve the high-level waste (HLW) disposition problem since 1997 and is planning to perform a lab-scale demonstration in 2008. The proposed concept is an electrometallurgical treatment technique that converts spent nuclear fuels into a single set of disposal metal forms to reduce the volume and simplify the qualification process. The goal of the project is to recover more than 99% of the actinides in metallic form from oxide spent fuel in a proliferation-resistant manner. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, decreasing the burden of the final disposal in terms of size, safety, and cost. The success of the ACP will depend on a number of factors. One key factor is 'proliferation resistance,' and it should be judged by the manner in which it addresses issues of proliferation concern. In this paper, the proliferation resistance of the ACP technology has been analyzed. The intrinsic and extrinsic proliferation resistance features of the ACP technology were examined for the pilot-scale ACP facility based on the Nuclear Energy Research Advisory Committee's TOPS (Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power System) metrics. It was found that the ACP system was more proliferation-resistant than aqueous technologies. The ACP as envisioned in current process flow is not capable of separating plutonium, and significant additional steps would be required to create a pathway to produce plutonium. However, like other processes, it could be modified to directly obtain weapon-usable materials. In this paper, several options are suggested for modification of the process or facility design in order to reduce the

  10. Computational Fluid Dynamic simulations of pipe elbow flow.

    SciTech Connect

    Homicz, Gregory Francis

    2004-08-01

    One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and mesh were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation

  11. Progress of the RERTR program in 2001.

    SciTech Connect

    Travelli, A.

    2002-03-07

    This paper describes the 2001 progress achieved by the Reduced Enrichment for Research and Test Reactors (RERTR) Program in collaboration with its many international partners. Postirradiation examinations of microplates have continued to reveal excellent irradiation behavior of U-Mo dispersion fuels in a variety of compositions and irradiating conditions. Irradiation of two new batches of miniplates of greater sizes was completed in the ATR to investigate the swelling behavior of these fuels under prototypic conditions. These materials hold the promise of achieving the program goal of developing LEU research reactor fuels with uranium densities in the 8-9 g/cm{sup 3} range. Qualification of the U-Mo dispersion fuels has been delayed by a patent issue involving KAERI. Test fuel elements with uranium density of 6 g/cm{sup 3} are being fabricated by BWXT and are expected to begin undergoing irradiation in the HFR-Petten reactor around March 2003, with a goal of qualifying this fuel by mid-2005. U-Mo fuel with uranium density of 8-9 g/cm{sup 3} is expected to be qualified by mid-2007. Final irradiation tests of LEU {sup 99}Mo targets in the RAS-GAS reactor at BATAN, in Indonesia, had to be postponed because of the 9/11 attacks, but the results collected to date indicate that these targets will soon be ready for commercial production. Excellent cooperation is also in progress with the CNEA in Argentina, MDSN/AECL in Canada, and ANSTO in Australia. Irradiation testing of five WWR-M2 tube-type fuel assemblies fabricated by the NZChK and containing LEU UO{sub 2} dispersion fuel was successfully completed within the Russian RERTR program. A new LEU U-Mo pin-type fuel that could be used to convert most Russian-designed research reactors has been developed by VNIINM and is ready for testing. Four additional shipments containing 822 spent fuel assemblies from foreign research reactors were accepted by the U.S. by September 30, 2001. Altogether, 4,562 spent fuel assemblies from

  12. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    NASA Astrophysics Data System (ADS)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10‑7-10‑8 m/s and that of influx is about 10‑4-10‑1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  13. BIOPROTA: an international forum for environmental modelling in support of long-term radioactive waste management

    SciTech Connect

    Smith, K.L.; Smith, G.; Laciok, A.

    2007-07-01

    An international Forum, BIOPROTA, has been set up and maintained which allows common long-term environmental radiological assessment problems, such as post-closure modelling studies to be identified and then addressed. The focus of the Forum is to address key uncertainties in environmental modelling and related dose assessment with special reference to evaluation of the long-term impact of contaminant releases associated with radioactive waste management. The application of shared resources results in effective resource management and the development of common solutions to common problems. The Forum began in 2002 and has benefited from the knowledge and experience of organisations from Belgium (SCK.CEN), Czech Republic (NRI), Canada (OPG), Finland (Posiva), France (ANDRA, EdF), Japan (NUMO), Korea (KAERI), Norway (NRPA), Spain (ENRESA, CIEMAT), Sweden (SKB, SSI), Switzerland (Nagra), UK (Nirex, Nexia, UKAEA) and the USA (EPRI). These organisations include a mixture of operators, regulators and research institutes, and hence, including the participation of their technical support organizations, constitutes a very broad-based Forum. Enviros has acted as the technical secretariat to the Forum since its formation. Initially the Forum focused on three themes aimed at advancing knowledge and improving model predictions relating to performance and safety assessments: Theme 1 Development of a database to meet the key biosphere assessment information deficiencies. Theme 2 Implementation of a series of tasks to address key modelling issues, including uncertainties and inconsistencies in the modelling of inhalation, irrigation and soil contamination dose pathways; and approaches to the modelling the transfer of radionuclides across the geosphere-biosphere interface zone (GBIZ). Theme 3 Provision of guidance on site characterisation and experimental and monitoring protocols relevant to improving confidence in the biosphere component of the overall performance assessment

  14. FY2012 summary of tasks completed on PROTEUS-thermal work.

    SciTech Connect

    Lee, C.H.; Smith, M.A.

    2012-06-06

    resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes

  15. Preface

    NASA Astrophysics Data System (ADS)

    Gorse, D.; Boutard, J.-L.

    2002-09-01

    interest for the next generation of LM spallation targets in EU, U.S.A. and Japan. These proceedings contain manuscripts from 90% of the presented papers. The organizers would like to thank all their Colleagues who presented papers, contributed with manuscripts and attended the sessions at the symposium. For sake of clarity, this volume is divided into five sections: 1) general R& D for spallation targets, 2) irradiation effects in liquid metal spallation targets, 3) oxygen control: thermodynamics and monitoring, 4) resistance to liquid metal corrosion and embrittlement of structural materials for spallation targets and 5) basic studies of intergranular penetration and liquid metal embrittlement. Section 1 begins with a description of the spallation neutron source facility SINQ and of ongoing R& D programs at PSI (Switzerland), including MEGAPIE, the joint initiative by six European research institutions and JAERI (Japan), DOE (USA) and KAERI (Korea) to design, build, operate and assess the performance of a liquid lead-bismuth spallation target for 1MW of beam power (G. Bauer et al.). The materials aspects related to the MEGAPIE target and to the LiSoR (Liquid Solid Reactions under irradiation) experiment are reviewed by T. Auger et al. The advantages and drawbacks of solid tungsten spallation targets, compared to liquid Pb-Bi eutectic spallation targets are examined by R. Enderlé et al., presenting the CEA point of view. Section 2 is dedicated to irradiation effects in Liquid Metal (LM) spallation targets structure, a crucial problem for the feasibility of ADS. P. Jung is pointing out the specificity of the irradiation conditions in LM targets by comparison with fast neutron fission and fusion reactors, and the metallurgical consequences like irradiation and helium-induced embrittlement. The author emphasizes the importance of spallation residues whose deleterious effects on in-service properties of target container and window are largely unknown. Until recently, say

  16. The feasibility study of hot cell decontamination by the PFC spray method

    SciTech Connect

    Hui-Jun Won; Chong-Hun Jung; Jei-Kwon Moon

    2008-01-15

    The characteristics of per-fluorocarbon compounds (PFC) are colorless, non-toxic, easily vaporized and nonflammable. Also, some of them are liquids of a high density, low surface tension, low latent heat and low specific heat. These particular chemical and physical properties of fluoro-organic compounds permit their use in very different fields such as electronics, medicine, tribology, nuclear and material science. The Sonatol process was developed under a contract with the DOE. The Sonatol process uses an ultrasonic agitation in a PFC solution that contains a fluorinated surfactant to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. They applied the Sonatol process to the decontamination of a heterogeneous legacy Pu-238 waste that exhibited an excessive hydrogen gas generation, which prevents a transportation of such a waste to a Waste Isolation Pilot Plant. Korea Atomic Energy Research Institute (KAERI) is developing dry decontamination technologies applicable to a decontamination of a highly radioactive area loosely contaminated with radioactive particles. This contamination has occurred as a result of an examination of a post-irradiated material or the development of the DUPIC process. The dry decontamination technologies developed are the carbon dioxide pellet spray method and the PFC spray method. As a part of the project, PFC ultrasonic decontamination technology was developed in 2004. The PFC spray decontamination method which is based on the test results of the PFC ultrasonic method has been under development since 2005. The developed PFC spray decontamination equipment consists of four modules (spray, collection, filtration and distillation). Vacuum cup of the collection module gathers the contaminated PFC solution, then the solution is moved to the filtration module and it is recycled. After a multiple recycling of the spent PFC solution, it is purified in the distillation

  17. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    spatial instrumental scales, understanding experimental results involves extensive and difficult data analysis based on liquid theory and condensed matter physics. Therefore, a model that successfully describes the inter- and intra-dendrimer correlations is crucial in obtaining and delivering reliable information. On the other hand, making meaningful comparisons between molecular dynamics and neutron scattering is a fundamental challenge to link simulations and experiments at the nano-scale. This challenge stems from our approach to utilize MD simulation to explain the underlying mechanism of experimental observation. The SANS measurements were conducted on a series of SANS spectrometers including the Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) and the General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) at the Oak Ridge National Laboratory (ORNL), and NG7 Small Angle Neutron Scattering Spectrometer at National Institute of Standards (NIST) and Technology in U.S.A., large dynamic range small-angle diffractometer D22 at Institut Laue-Langevin (ILL) in France, and 40m-SANS Spectrometer at Korea Atomic Energy Research Institute (KAERI) in Korea. On the other hand, the Amber molecular dynamics simulation package is utilized to carry out the computational study. In this dissertation, the following observations have been revealed. The previously developed theoretical model for polyelectrolyte dendrimers are adopted to analyze SANS measurements and superb model fitting quality is found. Coupling with advanced contrast variation small angle neutron scattering (CVSANS) data analysis scheme reported recently, the intra-dendrimer hydration and hydrocarbon components distributions are revealed experimentally. The results indeed indicate that the maximum density is located in the molecular center rather than periphery, which is consistent to previous SANS studies and the back-folding picture of PAMAM dendrimers. According to this picture

  18. SCC analysis of Alloy 600 tubes from a retired steam generator

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2013-09-01

    Steam generators (SG) equipped with Alloy 600 tubes of a Korean nuclear power plants were replaced with a new one having Alloy 690 tubes in 1998 after 20 years of operation. To set up a guide line for an examination of the other SG tubes, a metallographic examination of the defected tubes was carried out. A destructive analysis on 71 tubes was addressed, and a relation among the stress corrosion crack (SCC) defect location, defect depth, and location of the sludge pile was obtained. Tubes extracted from the retired SG were transferred to a hot laboratory. Detailed nondestructive analysis examinations were taken again at the laboratory, and the tubes were then destructively examined. The types and sizes of the cracks were characterized. The location and depth of the SCC were evaluated in terms of the location and height of the sludge. Most axial cracks were in the sludge pile, whereas the circumferential ones were around the top of the tube sheet (TTS) or below the TTS. Average defect depth of the axial cracks was deeper than that of the circumferential ones. Axial cracks at tube support plate (TSP) seem to be related with corrosion/sludge in crevice like at the TTS region. Circumferential cracks at TSP seem to be caused by tube denting at the upper part of the TSP. Tubes not having clear ECT signals for quantifying an ECT data-base. Tubes having no ECT signal. Tubes with a large ECT signal. Tubes with various types and sizes of flaws (primary water stress corrosion cracking (PWSCC), outside diameter stress corrosion cracking (ODSCC), Pit). Tubes with distinct PWSCC or ODSCC. Tubes were extracted from the RSG based on the field ECT with the criteria, and transferred to a hot laboratory at the Korea Atomic Energy Research Institute (KAERI) for destructive examination. A comprehensive ECT inspection was performed again at the hot laboratory to confirm the location of the cracks obtained from a field inspection. These exact locations of the defects were marked on the

  19. Preface

    NASA Astrophysics Data System (ADS)

    Gorse, D.; Boutard, J.-L.

    2002-09-01

    interest for the next generation of LM spallation targets in EU, U.S.A. and Japan. These proceedings contain manuscripts from 90% of the presented papers. The organizers would like to thank all their Colleagues who presented papers, contributed with manuscripts and attended the sessions at the symposium. For sake of clarity, this volume is divided into five sections: 1) general R& D for spallation targets, 2) irradiation effects in liquid metal spallation targets, 3) oxygen control: thermodynamics and monitoring, 4) resistance to liquid metal corrosion and embrittlement of structural materials for spallation targets and 5) basic studies of intergranular penetration and liquid metal embrittlement. Section 1 begins with a description of the spallation neutron source facility SINQ and of ongoing R& D programs at PSI (Switzerland), including MEGAPIE, the joint initiative by six European research institutions and JAERI (Japan), DOE (USA) and KAERI (Korea) to design, build, operate and assess the performance of a liquid lead-bismuth spallation target for 1MW of beam power (G. Bauer et al.). The materials aspects related to the MEGAPIE target and to the LiSoR (Liquid Solid Reactions under irradiation) experiment are reviewed by T. Auger et al. The advantages and drawbacks of solid tungsten spallation targets, compared to liquid Pb-Bi eutectic spallation targets are examined by R. Enderlé et al., presenting the CEA point of view. Section 2 is dedicated to irradiation effects in Liquid Metal (LM) spallation targets structure, a crucial problem for the feasibility of ADS. P. Jung is pointing out the specificity of the irradiation conditions in LM targets by comparison with fast neutron fission and fusion reactors, and the metallurgical consequences like irradiation and helium-induced embrittlement. The author emphasizes the importance of spallation residues whose deleterious effects on in-service properties of target container and window are largely unknown. Until recently, say