Sample records for kaihatsu daisan bunsatsu

  1. Construction of a high-tech operating room for image-guided surgery using VR.

    PubMed

    Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Otake, Yoshito; Hayashibe, Mitsuhiro; Kobayashi, Susumu; Nezu, Takehiko; Sakai, Haruo; Umezawa, Yuji

    2005-01-01

    This project aimed to construct an operating room to implement high dimensional (3D, 4D) medical imaging and medical virtual reality techniques that would enable clinical tests for new surgical procedures. We designed and constructed such an operating room at Dai-san Hospital, the Jikei Univ. School of Medicine, Tokyo, Japan. The room was equipped with various facilities for image-guided, robot and tele- surgery. In this report, we describe an outline of our "high-tech operating room" and future plans.

  2. [Dr. Michiharu Matsuoka, founder of the Department of Orthopaedic Surgery, Kyoto University, and his achievements. (Part 7: The academic carrier of Dr. Michiharu Matsuoka--from elementary school to the graduate school, Imperial University of Tokyo)].

    PubMed

    Hirotani, Hayato

    2011-12-01

    The background of the higher education of Dr. Michiharu Matsuoka shown on the official resume was disclosed by Dr. Kazuo Naito in 1986, but the courses of the elementary and secondary schools were not described in it. In regard to his lower educational courses, the author referred to the laws and regulations issued by the Ministry of Education of the Japan Government and the Yamaguchi Prefectural Office. Those were often revised with times. The author presumed the elementary school (Murozumi Primary School [the first established primary school at the birthplace; Murozumi, Hikari-City, Yamaguchi Prefecture]) and middle schools (Prefectural Yamaguchi Middle School and Yamaguchi High School) to which he had been admitted. These presumptions were made to explain his whole educational course without unreasonableness. After finishing the first school year of the Yamaguchi High School, he was transferred to the Preparatory Course of the Yamaguchi Higher School (Yamaguchi Kotô Chugakkô, Yoka), because of the amendment of the educational system. Then he was transferred to the Preparatory Course of the Daisan Higher School (Daisan Kotô Chugakkô, Yoka), and to the Preparatory Course of Daiichi Higher School (Daiichi Kotô Chugakkô, Yoka). After his graduation from the Regular Course of the Daiichi Higher School (Daiichi Kotô Chugakkô, Honka), he was admitted to the Medical College of the Imperial University from which he graduated in 1897. In addition, he was a medical student of the Graduate School of the Imperial University of Tokyo just before he left Japan for studying abroad. The whole academic carrier of Dr. Matsuoka is not only clearly clarified, but it is also indicated that he was one of the successful examples of the educational system proposed by Yamaguchi Prefecture in Meiji era which articulated the local primary and middle schools with the Imperial University of Tokyo.

  3. The geochemical characteristics of basaltic and acidic volcanics around the Myojin depression in the Izu arc, Japan

    NASA Astrophysics Data System (ADS)

    Haraguchi, S.; Tamaki, K.; Kato, Y.; Machida, S.

    2012-12-01

    Around the Myojin Depression, westside of the Myojin-sho caldera in the Izu arc, seamounts are circular distributed and hydrothermal activity with sulfide deposition are found from the Baiyonneise Caldera, one of seamounts at the northern side. Some knoll chains distribute in the eastside of the Myojin Depression, and connect between these knolls. This circulator distribution of seamounts and connected knoll chains considered to the dykes are similar to the geographical features of the Kuroko Depositions in the Hokuroku Region, Northwest Japan (Tanahashi et al., 2008). Hydrothermal activities are also found from the other rifts (Urabe and Kusakabe 1990). Based on these observations, the cruise KT09-12 by R/V Tansei-Maru, Ocean Research Institute (ORI), University of Tokyo, investigated in the Myojin Rift. During the cruise, basaltic to dacitic volcanic rocks and some acidic plutonic rocks were recovered by dredge system. Herein, we present petrographical and chemical analyses of these rock samples with sample dredged by the cruise MW9507 by R/V MOANA WAVE, and consider the association with hydrothermal activities and depositions. Dredges during the cruise KT09-12 were obtained at the Daini-Beiyonneise Knoll at the northern side, Daisan-Beiyonneise Knoll at the southern side, and the Dragonborn Hill, small knoll chains, at the southeastern side of the depression. Many volcanic rocks are basalt, and recovered mainly from the Dragonborn Hill. Andesite and dacite was recovered from the Daini- and the Daini-Bayonneise Knoll. Tonalites were recovered from the Daisan-Bayonneise Knoll. Basalts from the Dragonborn Hill show less than 50% of SiO2 and more than 6 wt% and 0.88 wt% of MgO and TiO2 content. Basalts from the rift zone show depleted in the volcanic front (VF) side and enriched in the reararc (RA) side. The Dragonborn Hill is distributed near the VF, and basalts show depleted geochemical characteristics. However, these characteristics are different from the basalts

  4. The Gondou hydrothermal field in the Ryukyu Arc: A huge hydrothermal system on the flank of a caldera volcano

    NASA Astrophysics Data System (ADS)

    Minami, H.; Ohara, Y.

    2017-09-01

    High-resolution geophysical mapping was conducted from an autonomous underwater vehicle on the flank of Daisan-Kume Knoll in the Ryukyu Arc, southwest of Japan. 1 m resolution bathymetry identified 264 spires, 173 large mounds and 268 small mounds within a depression that is up to 1600 m wide and up to 60 m deep, at water depths between 1330 and 1470 m. Hydrothermal venting is strongly inferred from the observation of plumes in sidescan sonar imagery and positive temperature anomalies over the spires and mounds. This field, named the Gondou Field, has a giant mound G1 with a diameter of 280 m and a height of 80 m. Mound G1 has distinctive summit ridges composed of multiple spires where acoustic plumes with temperature anomalies up to 1.12°C are observed, indicative of high-temperature venting. Other than mound G1, a number of active large mounds more than 30 m wide and spires over 10-22 m tall are common and they concentrate in the central and southern areas of the field, suggesting that these areas are the center of present hydrothermal activity. Acoustic plumes imaged by side-scan sonar at the Gondou Field are different in character from bubble plumes imaged in other hydrothermal fields in the Ryukyu Arc. The plumes are diffused and deflected as they rise through the water column and have a shape consistent with black smokers.

  5. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    NASA Astrophysics Data System (ADS)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki

    2015-08-01

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.