Sample records for kainic acid ka-induced

  1. Decursin attenuates kainic acid-induced seizures in mice.

    PubMed

    Lee, Jong-Keun; Jeong, Ji Woon; Jang, Taeik; Lee, Go-Woon; Han, Hogyu; Kang, Jae-Seon; Kim, Ik-Hwan

    2014-11-12

    Epilepsy is a neurological disorder with recurrent unprovoked seizures as the main symptom. Of the coumarin derivatives in Angelica gigas, decursin, a major coumarin component, was reported to exhibit significant protective activity against glutamate-induced neurotoxicity when added to primary cultures of rat cortical cells. This study served to investigate the effects of decursin on a kainic acid (KA)-induced status epilepticus model. Thirty minutes after intraperitoneal injections of decursin (20 mg/kg) in male 7-week-old C57BL/6 mice, the animals were treated with KA (30 mg/kg, intraperitoneally) and then examined for behavioral seizure score, electroencephalogram, seizure-related expressed protein levels, neuronal cell loss, neurodegeneration, and astrogliosis. KA injections significantly enhanced neurodegenerative conditions but treatment with decursin 30 min before KA injection reduced the detrimental effects of KA in mice. The decursin-treated KA-injected group showed significantly decreased behavioral seizure activity and remarkably attenuated intense and high-frequency seizure discharges in the parietal cortex for 2 h compared with the group treated only with KA. Furthermore, in-vivo results indicated that decursin strongly inhibits selective neuronal death, astrogliosis, and oxidative stress induced by KA administration. Therefore decursin is able to attenuate KA-induced seizures and could have potential as an antiepileptic drug.

  2. Levetiracetam protects against kainic acid-induced toxicity.

    PubMed

    Marini, Herbert; Costa, Cinzia; Passaniti, Maria; Esposito, Maria; Campo, Giuseppe M; Ientile, Riccardo; Adamo, Elena Bianca; Marini, Rolando; Calabresi, Paolo; Altavilla, Domenica; Minutoli, Letteria; Pisani, Francesco; Squadrito, Francesco

    2004-01-23

    We investigated the Levetiracetam (LVT) ability to protect the brain against kainic acid (KA) induced neurotoxicity. Brain injury was induced by intraperitoneal administration of KA (10 mg/kg). Sham brain injury rats were used as controls. Animals were randomized to receive either LVT (50 mg/kg) or its vehicle (1 ml/kg) 30 min. before KA administration. Animals were sacrificed 6 hours after KA injection to measure brain malonildialdehyde (MDA), glutathione levels (GSH) and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of LVT decreased significantly MDA in the cortex (KA + vehicle = 0.25 +/- 0.03 nmol/mg protein; KA + LVT = 0.13 +/- 0.01 nmol/mg protein; P < 0.005), and in the diencephalons (KA + vehicle = 1,01 +/- 0.2 nmol/mg protein; KA + LVT = 0,33 +/- 0,08 nmol/mg protein; P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 5 +/- 1 micromol/g protein; KA + LVT = 15 +/- 2 micromol/g protein; P < 0.005) and diencephalons (KA + vehicle = 9 +/- 0.8 micromol/g protein; KA + LVT = 13 +/- 0.3 micromol/g protein; P < 0.05), reduced brain IL-1beta mRNA and markedly controlled seizures. Histological analysis showed a reduction of cell damage in LVT treated samples. The present data indicate that LVT displays neuro-protective effects against KA induced brain toxicity and suggest that these effects are mediated, at least in part, by inhibition of lipid peroxidation.

  3. A dual inhibitor of cyclooxygenase and 5-lipoxygenase protects against kainic acid-induced brain injury.

    PubMed

    Minutoli, Letteria; Marini, Herbert; Rinaldi, Mariagrazia; Bitto, Alessandra; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Calò, Margherita; Adamo, Elena Bianca; Trichilo, Vincenzo; Interdonato, Monica; Galfo, Federica; Squadrito, Francesco; Altavilla, Domenica

    2015-06-01

    Systemic administration of kainic acid causes inflammation and apoptosis in the brain, resulting in neuronal loss. Dual cyclooxygenase/5-lipoxygenase (COX/5-LOX) inhibitors could represent a possible neuroprotective approach in preventing glutamate excitotoxicity. Consequently, we investigated the effects of a dual inhibitor of COX/5-LOX following intraperitoneal administration of kainic acid (KA, 10 mg/kg) in rats. Animals were randomized to receive either the dual inhibitor of COX/5-LOX (flavocoxid, 20 mg/kg i.p.) or its vehicle (1 ml/kg i.p.) 30 min after KA administration. Sham brain injury rats were used as controls. We evaluated protein expression of phosphorylated extracellular signal-regulated kinase (p-ERK1/2) and tumor necrosis factor alpha (TNF-α) as well as levels of malondialdehyde (MDA), prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) in the hippocampus. Animals were also observed for monitoring behavioral changes according to Racine Scale. Finally, histological analysis and brain edema evaluation were carried out. Treatment with the dual inhibitor of COX/5-LOX decreased protein expression of p-ERK1/2 and TNF-α in hippocampus, markedly reduced MDA, LTB4 and PGE2 hippocampal levels, and also ameliorated brain edema. Histological analysis showed a reduction in cell damage in rats treated with the dual inhibitor of COX/5-LOX, particularly in hippocampal subregion CA3c. Moreover, flavocoxid significantly improved behavioral signs following kainic acid administration. Our results suggest that dual inhibition of COX/5-LOX by flavocoxid has neuroprotective effects during kainic acid-induced excitotoxicity.

  4. Effects of oxcarbazepine on monoamines content in hippocampus and head and body shakes and sleep patterns in kainic acid-treated rats.

    PubMed

    Alfaro-Rodríguez, Alfonso; González-Piña, Rigoberto; Bueno-Nava, Antonio; Arch-Tirado, Emilio; Ávila-Luna, Alberto; Uribe-Escamilla, Rebeca; Vargas-Sánchez, Javier

    2011-09-01

    The aim of this work was to analyze the effect of oxcarbazepine (OXC) on sleep patterns, "head and body shakes" and monoamine neurotransmitters level in a model of kainic-induced seizures. Adult Wistar rats were administered kainic acid (KA), OXC or OXC + KA. A polysomnographic study showed that KA induced animals to stay awake for the whole initial 10 h. OXC administration 30 min prior to KA diminished the effect of KA on the sleep parameters. As a measure of the effects of the drug treatments on behavior, head and body shakes were visually recorded for 4 h after administration of KA, OXC + KA or saline. The presence of OXC diminished the shakes frequency. 4 h after drug application, the hippocampus was dissected out, and the content of monoamines was analyzed. The presence of OXC still more increased serotonin, 5-hidroxyindole acetic acid, dopamine, and homovanilic acid, induced by KA.

  5. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  6. Effects of kainic acid on rat body temperature: unmasking by dizocilpine.

    PubMed

    Ahlenius, S; Oprica, M; Eriksson, C; Winblad, B; Schultzberg, M

    2002-07-01

    The effects of intraperitoneal (i.p.) administration of kainic acid (KA) and dizocilpine, alone or in combination, on body temperature of freely moving rats were examined. Injection of saline or dizocilpine (3.0 or 5.0 mg/kg) was followed after an hour by injection of saline or KA (10 mg/kg) and the body temperature was measured at different time points during the first 5 h. KA alone produced an initial short-lasting hypothermia followed by a longer-lasting hyperthermic effect. Administration of dizocilpine alone produced an early increase in core temperature. Pretreatment of KA-injected rats with dizocilpine potentiated the KA-induced hypothermic effect at 30 min and dose-dependently reduced the temperature measured at 1 h after KA-injection without influencing the ensuing hyperthermia.These data suggest that the KA-induced changes in body temperature do not necessarily involve the activation of NMDA-receptors as opposed to KA-induced behavioural changes that are blocked by dizocilpine in a dose-dependent manner. It is unlikely, therefore, that the KA-induced hyperthermia is a result of the KA-induced seizure motor activity. Furthermore, our findings indicate that KA-induced changes in core temperature may be used as a criterion of drug-responsiveness when the behavioural changes are blocked, e.g. with dizocilpine.

  7. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model

    PubMed Central

    Kim, Chea-Ha

    2015-01-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level. PMID:25792867

  8. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    PubMed

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  9. Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats

    PubMed Central

    Tang, Nou-Ying; Ho, Tin-Yun; Chen, Chao-Hsiang

    2017-01-01

    Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p.) and subsequently investigated the effect of Uncaria rhynchophylla (UR) and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg). Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons. PMID:28386293

  10. Long-Term Intake of Uncaria rhynchophylla Reduces S100B and RAGE Protein Levels in Kainic Acid-Induced Epileptic Seizures Rats.

    PubMed

    Tang, Nou-Ying; Lin, Yi-Wen; Ho, Tin-Yun; Cheng, Chin-Yi; Chen, Chao-Hsiang; Hsieh, Ching-Liang

    2017-01-01

    Epileptic seizures are crucial clinical manifestations of recurrent neuronal discharges in the brain. An imbalance between the excitatory and inhibitory neuronal discharges causes brain damage and cell loss. Herbal medicines offer alternative treatment options for epilepsy because of their low cost and few side effects. We established a rat epilepsy model by injecting kainic acid (KA, 12 mg/kg, i.p.) and subsequently investigated the effect of Uncaria rhynchophylla (UR) and its underlying mechanisms. Electroencephalogram and epileptic behaviors revealed that the KA injection induced epileptic seizures. Following KA injection, S100B levels increased in the hippocampus. This phenomenon was attenuated by the oral administration of UR and valproic acid (VA, 250 mg/kg). Both drugs significantly reversed receptor potentiation for advanced glycation end product proteins. Rats with KA-induced epilepsy exhibited no increase in the expression of metabotropic glutamate receptor 3, monocyte chemoattractant protein 1, and chemokine receptor type 2, which play a role in inflammation. Our results provide novel and detailed mechanisms, explaining the role of UR in KA-induced epileptic seizures in hippocampal CA1 neurons.

  11. Uncaria rhynchophylla and rhynchophylline improved kainic acid-induced epileptic seizures via IL-1β and brain-derived neurotrophic factor.

    PubMed

    Ho, Tin-Yun; Tang, Nou-Ying; Hsiang, Chien-Yun; Hsieh, Ching-Liang

    2014-05-15

    Uncaria rhynchophylla (UR) has been used for the treatment of convulsions and epilepsy in traditional Chinese medicine. This study reported the major anti-convulsive signaling pathways and effective targets of UR and rhynchophylline (RP) using genomic and immunohistochemical studies. Epileptic seizure model was established by intraperitoneal injection of kainic acid (KA) in rats. Electroencephalogram and electromyogram recordings indicated that UR and RP improved KA-induced epileptic seizures. Toll-like receptor (TLR) and neurotrophin signaling pathways were regulated by UR in both cortex and hippocampus of KA-treated rats. KA upregulated the expression levels of interleukin-1β (IL-1β) and brain-derived neurotrophin factor (BDNF), which were involved in TLR and neurotrophin signaling pathways, respectively. However, UR and RP downregulated the KA-induced IL-1β and BDNF gene expressions. Our findings suggested that UR and RP exhibited anti-convulsive effects in KA-induced rats via the regulation of TLR and neurotrophin signaling pathways, and the subsequent inhibition of IL-1β and BDNF gene expressions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Kainic acid-induced albumin leak across the blood-brain barrier facilitates epileptiform hyperexcitability in limbic regions.

    PubMed

    Noé, Francesco M; Bellistri, Elisa; Colciaghi, Francesca; Cipelletti, Barbara; Battaglia, Giorgio; de Curtis, Marco; Librizzi, Laura

    2016-06-01

    Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  13. A tachykinin NK1 receptor antagonist, CP-122,721-1, attenuates kainic acid-induced seizure activity.

    PubMed

    Zachrisson, O; Lindefors, N; Brené, S

    1998-10-01

    Substance P (SP) can play an important role in neuronal survival. To analyze the role of SP in excitotoxicity, kainic acid (KA) was administered to rats and in situ hybridization was used to analyze the levels of the SP encoding preprotachykinin-A (PPT-A) mRNA in striatal and hippocampal subregions 1, 4, and 24 h and 7 days after KA. In striatum and piriform cortex, PPT-A mRNA peaked 4 h after KA while in hippocampus, levels peaked after 24 h. KA caused seizures and neuronal toxicity as indicated by a reduction of the number of neurons in the hippocampal CA1 subregion after 7 days. KA was later administered alone or following pretreatment with the tachykinin NK1 receptor antagonist CP-122,721-1 (0.3 mg/kg). The pretreatment decreased seizure activity and a negative correlation was found between seizure activity and survival of CA1 neurons. Conclusively, treatment with CP-122,721-1 has a seizure inhibiting property and may possibly counteract KA-induced nerve cell death in CA1. Copyright 1998 Elsevier Science B.V.

  14. Everolimus is better than rapamycin in attenuating neuroinflammation in kainic acid-induced seizures.

    PubMed

    Yang, Ming-Tao; Lin, Yi-Chin; Ho, Whae-Hong; Liu, Chao-Lin; Lee, Wang-Tso

    2017-01-21

    Microglia is responsible for neuroinflammation, which may aggravate brain injury in diseases like epilepsy. Mammalian target of rapamycin (mTOR) kinase is related to microglial activation with subsequent neuroinflammation. In the present study, rapamycin and everolimus, both as mTOR inhibitors, were investigated in models of kainic acid (KA)-induced seizure and lipopolysaccharide (LPS)-induced neuroinflammation. In vitro, we treated BV2 cells with KA and LPS. In vivo, KA was used to induce seizures on postnatal day 25 in B6.129P-Cx3cr1 tm1Litt /J mice. Rapamycin and everolimus were evaluated in their modulation of neuroinflammation detected by real-time PCR, Western blotting, and immunostaining. Everolimus was significantly more effective than rapamycin in inhibiting iNOS and mTOR signaling pathways in both models of neuroinflammation (LPS) and seizure (KA). Everolimus significantly attenuated the mRNA expression of iNOS by LPS and nitrite production by KA and LPS than that by rapamycin. Only everolimus attenuated the mRNA expression of mTOR by LPS and KA treatment. In the present study, we also found that the modulation of mTOR under LPS and KA treatment was not mediated by Akt pathway but was primarily mediated by ERK phosphorylation, which was more significantly attenuated by everolimus. This inhibition of ERK phosphorylation and microglial activation in the hippocampus by everolimus was also confirmed in KA-treated mice. Rapamycin and everolimus can block the activation of inflammation-related molecules and attenuated the microglial activation. Everolimus had better efficacy than rapamycin, possibly mediated by the inhibition of ERK phosphorylation. Taken together, mTOR inhibitor can be a potential pharmacological target of anti-inflammation and seizure treatment.

  15. Effect of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in mice.

    PubMed

    Yamamoto, Hiro-aki; Mohanan, Parayanthala V

    2003-07-20

    The effects of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA (mtDNA) damage and seizures induced by kainic acid were examined both in vivo and in vitro. An intraperitoneal (ip) injection of kainic acid (45 mg/kg) produced broad-spectrum limbic and severe sustained seizures in all of the treated mice. The seizures were abolished when alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg) was injected intraperitoneally in the animals 1 min before kainic acid administration. In addition, the administration of kainic acid caused damage to mtDNA in brain frontal and middle cortex of mice. These effects were completely abolished by the ip preinjection of alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg). In vitro exposure of kainic acid (0.25, 0.5 or 1.0 mM) to brain homogenate inflicted damage to mtDNA in a concentration-dependent manner. The damage of mtDNA induced by 1.0 mM kainic acid was attenuated by the co-treatment with alpha-ketoglutarate (2.5 or 5.0 mM) or oxaloacetate (0.75 or 1.0 mM). Furthermore, in vivo and in vitro exposure of kainic acid elicited an increase in lipid peroxidation. However, the increased lipid peroxidation was completely inhibited by cotreatment of alpha-ketoglutarate or oxaloacetate. These results suggest that alpha-keto acids such as alpha-ketoglutarate and oxaloacetate play a role in the inhibition of seizures and subsequent mtDNA damage induced by the excitotoxic/neurotoxic agent, kainic acid.

  16. Amino terminus of substance P potentiates kainic acid-induced activity in the mouse spinal cord.

    PubMed

    Larson, A A; Sun, X

    1992-12-01

    Sensitization to the behavioral effects produced by repeated injections of kainic acid (KA) into the mouse spinal cord area has been previously shown to be abolished by pretreatment with capsaicin, a neurotoxin of substance P (SP)-containing primary afferent C-fibers. While SP has a variety of well characterized biological actions that are mediated by interactions of its COOH terminus with neurokinin receptors, more recently we have characterized an amino-terminally directed SP binding site. The present studies were initiated to determine whether behavioral sensitization to repeated injections of intrathecally administered KA is mediated by the COOH or NH2 terminal of SP. In the present studies, pretreatment with SP(1-7), an NH2-terminal fragment of SP, but not SP(5-11), a COOH-terminal fragment, potentiated KA-induced behavioral activity in mice. Pretreatment with [D-Pro2,D-Phe7]SP(1-7), an inhibitor of SP NH2-terminal binding, blocked the potentiative effect of SP(1-7) as well as the sensitization to repeated injections of KA. In contrast, [D-Pro2,D-Trp7,9]SP, a neurokinin antagonist, had little effect on behavioral sensitization to KA. The present study suggests that SP has an important modulatory role on excitatory amino acid activity in the spinal cord that is mediated by an action of the NH2 terminal of SP at a non-neurokinin receptor.

  17. Neuroprotective and anti-inflammatory effects of lidocaine in kainic acid-injected rats.

    PubMed

    Chiu, Kuan Ming; Lu, Cheng Wei; Lee, Ming Yi; Wang, Ming Jiuh; Lin, Tzu Yu; Wang, Su Jane

    2016-05-04

    Lidocaine, the most commonly used local anesthetic, inhibits glutamate release from nerve terminals. Given the involvement of glutamate neurotoxicity in the pathogenesis of various neurological disorders, this study investigated the role of lidocaine in hippocampal neuronal death and inflammatory events induced by an i.p. injection of kainic acid (KA) (15 mg/kg), a glutamate analog. The results showed that KA significantly led to neuronal death in the CA3 pyramidal layers of the hippocampus and this effect was attenuated by the systemic administration of lidocaine (0.8 or 4 mg/kg, i.p.) 30 min before KA injection. Moreover, KA-induced microglia activation and gene expression of proinflammatory cytokines, namely, interleukin-1β, interleukin-6, and tumor necrosis factor-α, in the hippocampus were reduced by the lidocaine pretreatment. Altogether, the results suggest that lidocaine can effectively treat glutamate excitotoxicity-related brain disorders.

  18. Naringin Attenuates Autophagic Stress and Neuroinflammation in Kainic Acid-Treated Hippocampus In Vivo

    PubMed Central

    Jeong, Kyoung Hoon; Jung, Un Ju; Kim, Sang Ryong

    2015-01-01

    Kainic acid (KA) is well known as a chemical compound to study epileptic seizures and neuronal excitotoxicity. KA-induced excitotoxicity causes neuronal death by induction of autophagic stress and microglia-derived neuroinflammation, suggesting that the control of KA-induced effects may be important to inhibit epileptic seizures with neuroprotection. Naringin, a flavonoid in grapefruit and citrus fruits, has anti-inflammatory and antioxidative activities, resulting in neuroprotection in animal models from neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. In the present study, we examined its beneficial effects involved in antiautophagic stress and antineuroinflammation in the KA-treated hippocampus. Our results showed that naringin treatment delayed the onset of KA-induced seizures and decreased the occurrence of chronic spontaneous recurrent seizures (SRS) in KA-treated mice. Moreover, naringin treatment protected hippocampal CA1 neurons in the KA-treated hippocampus, ameliorated KA-induced autophagic stress, confirmed by the expression of microtubule-associated protein light chain 3 (LC3), and attenuated an increase in tumor necrosis factor-α (TNFα) in activated microglia. These results suggest that naringin may have beneficial effects of preventing epileptic events and neuronal death through antiautophagic stress and antineuroinflammation in the hippocampus in vivo. PMID:26124853

  19. Aromatase inhibition by letrozole attenuates kainic acid-induced seizures but not neurotoxicity in mice.

    PubMed

    Iqbal, Ramsha; Jain, Gaurav K; Siraj, Fouzia; Vohora, Divya

    2018-07-01

    Evidence shows neurosteroids play a key role in regulating epileptogenesis. Neurosteroids such as testosterone modulate seizure susceptibility through its transformation to metabolites which show proconvulsant and anticonvulsant effects, respectively. Reduction of testosterone by aromatase generates proconvulsant 17-β estradiol. Alternatively, testosterone is metabolized into 5α-dihydrotestosterone (5α-DHT) by 5α-reductase, which is then reduced by 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR) to form anticonvulsant metabolite 3α-androstanediol (3α-Diol), a potent GABA A receptor modulating neurosteroid. The present study evaluated whether inhibition of aromatase inhibitor letrozole protects against seizures and neuronal degeneration induced by kainic acid (KA) (10 mg/kg, i.p.) in Swiss albino mice. Letrozole (1 mg/kg, i.p.) administered one hour prior to KA significantly increased the onset time of seizures and reduced the% incidence of seizures. Pretreatment with finasteride, a selective inhibitor of 5α-reductase and indomethacin, a selective inhibitor of 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR), reversed the protective effects of letrozole in KA-induced seizures in mice. Microscopic examination using cresyl violet staining revealed that letrozole did not modify KA-induced neurotoxicity in the CA1, CA3 and DG region of the hippocampus. Letrozole treatment resulted in the reduced levels of 17-β estradiol and elevated the levels of 5α-dihydrotestosterone (DHT) and 3α-Diol in the hippocampus. Finasteride and indomethacin attenuated letrozole-induced elevations of 5α-DHT and 3α-Diol. Our results indicate the potential anticonvulsant effects of letrozole against KA-induced seizures in mice that might be mediated by inhibiting aromatization of testosterone to 17β-estradiol, a proconvulsant hormone and by redirecting the synthesis to anticonvulsant metabolites, 5α-DHT and 3α-Diol. Acute aromatase inhibition, thus, might be used as an

  20. Effect of pertussis and cholera toxins administered supraspinally on CA3 hippocampal neuronal cell death and the blood glucose level induced by kainic acid in mice.

    PubMed

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Sharma, Naveen; Kim, Sung-Su; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-12-01

    The effect of cholera toxin (CTX) or pertussis toxin (PTX) administered supraspinally on hippocampal neuronal cell death in CA3 region induced by kainic acid (KA) was examined in mice. After the pretreatment with either PTX or CTX intracerebroventricularly (i.c.v.), mice were administered i.c.v. with KA. The i.c.v. treatment with KA caused a neuronal cell death in CA3 region and PTX, but not CTX, attenuated the KA-induced neuronal cell death. In addition, i.c.v. treatment with KA caused an elevation of the blood glucose level. The i.c.v. PTX pretreatment alone caused a hypoglycemia and inhibited KA-induced hyperglycemic effect. However, i.c.v. pretreatment with CTX did not affect the basal blood glucose level and KA-induced hyperglycemic effect. Moreover, KA administered i.c.v. caused an elevation of corticosterone level and reduction of the blood insulin level. Whereas, i.c.v. pretreatment with PTX further enhanced KA-induced up-regulation of corticosterone level. Furthermore, i.c.v. administration of PTX alone increased the insulin level and KA-induced hypoinsulinemic effect was reversed. In addition, PTX pretreatment reduces the KA-induced seizure activity. Our results suggest that supraspinally administered PTX, exerts neuroprotective effect against KA-induced neuronal cells death in CA3 region and neuroprotective effect of PTX is mediated by the reduction of KA-induced blood glucose level. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  1. Anticonvulsant effect of Uncaria rhynchophylla (Miq) Jack. in rats with kainic acid-induced epileptic seizure.

    PubMed

    Hsieh, C L; Chen, M F; Li, T C; Li, S C; Tang, N Y; Hsieh, C T; Pon, C Z; Lin, J G

    1999-01-01

    This study investigated the anticonvulsant effect of Uncaria rhynchophylla (UR) and the physiological mechanisms of its action in rats. A total of 70 male Sprague-Dawley (SD) rats were selected for study. Thirty four of these rats were divided into 5 groups as follows: 1) CONTROL GROUP (n = 6): received intraperitoneal injection (i.p.) of kainic acid (KA, 12 mg/kg); 2) UR1000 group (n = 10), 3) UR500 group (n = 6) 4) UR250 group, received UR 1000, 500, 250 mg/kg i.p. 30 min prior to KA administration, respectively; 5) Contrast group: received carbamazepine 20 mg/kg i.p. 30 min prior to KA administration. Behavior and EEG were monitored from 15 min prior to drug administration to 3 hours after KA administration. The number of wet dog shakes were counted at 10 min intervals throughout the experimental course. The remaining 36 rats were used to measure the lipid peroxide level in the cerebral cortex one hour after KA administration. These rats were divided into 6 groups of 6 rats as follows: 1) Normal group: no treatment was given; 2) CONTROL GROUP: received KA (12 mg/kg) i.p.; 3) UR1000 group, 4) UR500 group, 5) UR250 group, received UR 1000, 500, 250 mg/kg i.p. 30 min prior to KA administration, respectively; 6) Contrast group: received carbamazepine 20 mg/kg i.p. 30 min prior to KA administration. Our results indicated that both UR 1000 and 500 mg/kg decreased the incidence of KA-induced wet dog shakes, no similar effect was observed in the UR 250 mg/kg and carbamazepine 20 mg/kg group. Treatment with UR 1000 mg/kg, 500 mg/kg, or 250 mg/kg and carbamazepine 20 mg/kg decreased KA-induced lipid peroxide level in the cerebral cortex and was dose-dependent. These findings suggest that the anticonvulsant effect of UR possibly results from its suppressive effect on lipid peroxidation in the brain.

  2. Neuroprotective Effects of the Absence of JNK1 or JNK3 Isoforms on Kainic Acid-Induced Temporal Lobe Epilepsy-Like Symptoms.

    PubMed

    de Lemos, Luisa; Junyent, Felix; Camins, Antoni; Castro-Torres, Rubén Darío; Folch, Jaume; Olloquequi, Jordi; Beas-Zarate, Carlos; Verdaguer, Ester; Auladell, Carme

    2018-05-01

    The activation of c-Jun-N-terminal kinases (JNK) pathway has been largely associated with the pathogenesis and the neuronal death that occur in neurodegenerative diseases. Altogether, this justifies why JNKs have become a focus of screens for new therapeutic strategies. The aim of the present study was to identify the role of the different JNK isoforms (JNK1, JNK2, and JNK3) in apoptosis and inflammation after induction of brain damage. To address this aim, we induced excitotoxicity in wild-type and JNK knockout mice (jnk1 -/- , jnk2 -/- , and jnk3 -/- ) via an intraperitoneal injection of kainic acid, an agonist of glutamic-kainate-receptors, that induce status epilepticus.Each group of animals was divided into two treatments: a single intraperitoneal dose of saline solution, used as a control, and a single intraperitoneal dose (30 mg/kg) of kainic acid. Our results reported a significant decrease in neuronal degeneration in the hippocampus of jnk1 -/- and jnk3 -/- mice after kainic acid treatment, together with reduced or unaltered expression of several apoptotic genes compared to WT treated mice. In addition, both jnk1 -/- and jnk3 -/- mice exhibited a reduction in glial reactivity, as shown by the lower expression of inflammatory genes and a reduction of JNK phosphorylation. In addition, in jnk3 -/- mice, the c-Jun phosphorylation was also diminished.Collectively, these findings provide compelling evidence that the absence of JNK1 or JNK3 isoforms confers neuroprotection against neuronal damage induced by KA and evidence, for the first time, the implication of JNK1 in excitotoxicity. Accordingly, JNK1 and/or JNK3 are promising targets for the prevention of cell death and inflammation during epileptogenesis.

  3. Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death.

    PubMed

    Pérez-Juárez, Angélica; Chamorro, Germán; Alva-Sánchez, Claudia; Paniagua-Castro, Norma; Pacheco-Rosado, Jorge

    2016-08-01

    Context Arthrospira (Spirulina) platensis (SP) is a cyanobacterium which has attracted attention because of its nutritional value and pharmacological properties. It was previously reported that SP reduces oxidative stress in the hippocampus and protects against damaging neurobehavioural effects of systemic kainic acid (KA). It is widely known that the systemic administration of KA induces neuronal damage, specifically in the CA3 hippocampal region. Objective The present study determines if the SP sub-chronic treatment has neuroprotective properties against KA. Materials and methods Male SW mice were treated with SP during 24 d, at doses of 0, 200, and 800 mg/kg, once daily, and with KA (35 mg/kg, ip) as a single dose on day 14. After the treatment, a histological analysis was performed and the number of atrophic neuronal cells in CA3 hippocampal region was quantified. Results Pretreatment with SP does not protect against seizures induced by KA. However, mortality in the SP 200 and the SP 800 groups was of 20%, while for the KA group, it was of 60%. A single KA ip administration produced a considerable neuronal damage, whereas both doses of SP sub-chronic treatment reduced the number of atrophic neurons in CA3 hippocampal region with respect to the KA group. Discussion The SP neurobehaviour improvement after KA systemic administration correlates with the capacity of SP to reduce KA-neuronal death in CA3 hippocampal cells. This neuroprotection may be related to the antioxidant properties of SP. Conclusion SP reduces KA-neuronal death in CA3 hippocampal cells.

  4. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression.

    PubMed

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Hsieh, Ching-Liang

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABA(A)) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus.

  5. Effects of nateglinide and repaglinide administered intracerebroventricularly on the CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice.

    PubMed

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-05-01

    Meglitinides (nateglinide and repaglinide) are widely used oral drugs for the treatment of type II diabetes mellitus. In the present study, the effects of meglinitides administered supraspinally on kainic acid (KA)-induced hippocampal neuronal cell death and hyperglycemia were studied in ICR mice. Mice were pretreated intracerebroventricularly (i.c.v.) with 30 μg of nateglinide and repaglinide for 10 min and then, mice were administered i.c.v. with KA (0.1 μg). The neuronal cell death in the CA3 region in the hippocampus was assessed 24h after KA administration and the blood glucose level was measured 30, 60, and 120 min after KA administration. We found that i.c.v. pretreatment with repaglinide attenuated the KA-induced neuronal cell death in CA3 region of the hippocampus and hyperglycemia. However, nateglinide pretreated i.c.v. did not affect the KA-induced neuronal cell death and hyperglycemia. In addition, KA administered i.c.v. caused an elevation of plasma corticosterone level and a reduction of the plasma insulin level. Furthermore, i.c.v. pretreatment with repaglinide attenuated KA-induced up-regulation of plasma corticosterone level. Furthermore, i.c.v. administration of repaglinide alone increased plasma insulin level and repaglinide pretreated i.c.v. caused a reversal of KA-induced hypoinsulinemic effect. Our results suggest that supraspinally administered repaglinide, but not nateglinide, exerts a protective effect against the KA-induced neuronal cells death in CA3 region of the hippocampus. The neuroprotective effect of repaglinide appears to be mediated by lowering the blood glucose level induced by KA. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Regulation of blood glucose level by kainic acid in mice: involvement of glucocorticoid system and non-NMDA receptors.

    PubMed

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Jung, Jun-Sub; Sharma, Naveen; Suh, Hong-Won

    2017-02-28

    Kainic acid (KA) is a well-known excitatory neurotoxic substance. In the present study, effects of KA-injected intraperitoneally (i.p.), intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on the blood glucose level were investigated in ICR mice. We found that KA administered intraperitoneally (i.p.), intracerebroventricularly (i.c.v.) or intrathecally (i.t.) increased the blood glucose and corticosterone levels, suggesting that KA-induced hyperglycemia appeared to be due to increased blood corticosterone level. In support of this finding, adrenalectomy causes a reduction of KA-induced hyperglycemia and neuronal cell death in CA3 regions of the hippocampus. In addition, pretreatment with i.c.v. or i.t. injection of CNQX (6-cyano-7-nitroquinoxaline-2, 3-dione; a non-NMDA receptor blocker) attenuated the i.p. and i.c.v. administered KA-induced hyperglycemia. KA administered i.c.v. caused an elevation of the blood corticosterone level whereas the plasma insulin level was reduced. Moreover, i.c.v. pretreatment with CNQX inhibited the decrease of plasma insulin level induced by KA i.c.v. injection, whereas the KA-induced plasma corticosterone level was further enhanced by CNQX pretreatment. Our results suggest that KA administered systemically or centrally produces hyperglycemia. A glucocorticoid system appears to be involved in KA-induced hyperglycemia. Furthermore, central non-N-methyl-D-aspartate receptors may be responsible for KA-induced hyperglycemia.

  7. Effect of tolbutamide, glyburide and glipizide administered supraspinally on CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice.

    PubMed

    Kim, Chea-Ha; Park, Soo-Hyun; Sim, Yun-Beom; Kim, Sung-Su; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-05-20

    Sulfonylureas are widely used oral drugs for the treatment of type II diabetes mellitus. In the present study, the effects of sulfonylureas administered supraspinally on kainic acid (KA)-induced hippocampal neuronal cell death and hyperglycemia were studied in ICR mice. Mice were pretreated intracerebroventricularly (i.c.v.) with 30μg of tolbutamide, glyburide or glipizide for 10min and then, mice were administered i.c.v. with KA (0.1μg). The neuronal cell death in the CA3 region in the hippocampus was assessed 24h after KA administration and the blood glucose level was measured 30, 60, and 120min after KA administration. We found that i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated the KA-induced neuronal cell death in CA3 region of the hippocampus and hyperglycemia. In addition, KA administered i.c.v. caused an elevation of plasma corticosterone level and a reduction of the plasma insulin level. The i.c.v. pretreatment with tolbutamide, glyburide or glipizide attenuated KA-induced increase of plasma corticosterone level. Furthermore, i.c.v. pretreatment with tolbutamide, glyburide or glipizide causes an elevation of plasma insulin level. Glipizide, but not tolbutamide or glyburide, pretreated i.c.v. caused a reversal of KA-induced hypoinsulinemic effect. Our results suggest that supraspinally administered tolbutamide, glyburide and glipizide exert a protective effect against KA-induced neuronal cells death in CA3 region of the hippocampus. The neuroprotective effect of tolbutamide, glyburide and glipizide appears to be mediated by lowering the blood glucose level induced by KA. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Neuroprotective Effect of Uncaria rhynchophylla in Kainic Acid-Induced Epileptic Seizures by Modulating Hippocampal Mossy Fiber Sprouting, Neuron Survival, Astrocyte Proliferation, and S100B Expression

    PubMed Central

    Liu, Chung-Hsiang; Lin, Yi-Wen; Tang, Nou-Ying; Liu, Hsu-Jan; Hsieh, Ching-Liang

    2012-01-01

    Uncaria rhynchophylla (UR), which is a traditional Chinese medicine, has anticonvulsive effect in our previous studies, and the cellular mechanisms behind this are still little known. Because of this, we wanted to determine the importance of the role of UR on kainic acid- (KA-) induced epilepsy. Oral UR for 6 weeks can successfully attenuate the onset of epileptic seizure in animal tests. Hippocampal mossy fiber sprouting dramatically decreased, while neuronal survival increased with UR treatment in hippocampal CA1 and CA3 areas. Furthermore, oral UR for 6 weeks significantly attenuated the overexpression of astrocyte proliferation and S100B proteins but not γ-aminobutyric acid A (GABAA) receptors. These results indicate that oral UR for 6 weeks can successfully attenuate mossy fiber sprouting, astrocyte proliferation, and S100B protein overexpression and increase neuronal survival in KA-induced epileptic rat hippocampus PMID:21837247

  9. Behavior-associated Neuronal Activation After Kainic Acid-induced Hippocampal Neurotoxicity is Modulated in Time.

    PubMed

    Aguilar-Arredondo, Andrea; López-Hernández, Fernanda; García-Velázquez, Lizbeth; Arias, Clorinda; Zepeda, Angélica

    2017-02-01

    Kainic acid-induced (KA) hippocampal damage leads to neuronal death and further synaptic plasticity. Formation of aberrant as well as of functional connections after such procedure has been documented. However, the impact of such structural plasticity on cell activation along time after damage and in face of a behavioral demand has not been explored. We evaluated if the mRNA and protein levels of plasticity-related protein synaptophysin (Syp and SYP, respectively) and activity-regulated cytoskeleton-associated protein mRNA and protein levels (Arc and Arc, respectively) in the dentate gyrus were differentially modulated in time in response to a spatial-exploratory task after KA-induced hippocampal damage. In addition, we analyzed Arc+/NeuN+ immunopositive cells in the different experimental conditions. We infused KA intrahippocampally to young-adult rats and 10 or 30 days post-lesion (dpl) animals performed a hippocampus-activating spatial-exploratory task. Our results show that Syp mRNA levels significantly increase at 10dpl and return to control levels after 30dpl, whereas SYP protein levels are diminished at 10dpl, but significantly increase at 30dpl, as compared to 10dpl. Arc mRNA and protein levels are both increased at 30dpl as compared to sham. Also the number of NeuN+/Arc+ cells significantly increases at 30dpl in the group with a spatial-exploratory demand. These results provide information on the long-term modifications associated to structural plasticity and neuronal activation in the dentate gyrus after excitotoxic damage and in face of a spatial-exploratory behavior. Anat Rec, 300:425-432, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. SYSTEMIC ADMINISTRATION OF KAINIC ACID INCREASES GABA LEVELS IN PERFUSATE FROM THE HIPPOCAMPUS OF RATS IN VIVO

    EPA Science Inventory

    The ventral hippocampi of male, Fischer-344 rats were implanted with microdialysis probes and the effects of systemically administered kainic acid (KA) (8 mg/kg, s.c.) on the in vivo release of amino acids were measured for four hours after administration. n order to measure GABA...

  11. Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration.

    PubMed

    Auladell, Carme; de Lemos, Luisa; Verdaguer, Ester; Ettcheto, Miren; Busquets, Oriol; Lazarowski, Alberto; Beas-Zarate, Carlos; Olloquequi, Jordi; Folch, Jaume; Camins, Antoni

    2017-01-01

    Chemoconvulsants that induce status epilepticus in rodents have been widely used over the past decades due to their capacity to reproduce with high similarity neuropathological and electroencephalographic features observed in patients with temporal lobe epilepsy (TLE). Kainic acid  is one of the most used chemoconvulsants in experimental models. KA administration mainly induces neuronal loss in the hippocampus. We focused the present review inthe c-Jun N-terminal kinase-signaling pathway (JNK), since it has been shown to play a key role in the process of neuronal death following KA activation. Among the three isoforms of JNK (JNK1, JNK2, JNK3), JNK3 is widely localized in the majority of areas of the hippocampus, whereas JNK1 levels are located exclusively in the CA3 and CA4 areas and in dentate gyrus. Disruption of the gene encoding JNK3 in mice renders neuroprotection to KA, since these animals showed a reduction in seizure activity and a diminution in hippocampal neuronal apoptosis. In light of this, JNK3 could be a promising subcellular target for future therapeutic interventions in epilepsy.

  12. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats.

    PubMed

    Lin, Yi-Wen; Hsieh, Ching-Liang

    2011-05-17

    Epilepsy is a common clinical syndrome with recurrent neuronal discharges in cerebral cortex and hippocampus. Here we aim to determine the protective role of Uncaria rhynchophylla (UR), an herbal drug belong to Traditional Chinese Medicine (TCM), on epileptic rats. To address this issue, we tested the effect of UR on kainic acid (KA)-induced epileptic seizures and further investigate the underlying mechanisms. Oral UR successfully decreased neuronal death and discharges in hippocampal CA1 pyramidal neurons. The population spikes (PSs) were decreased from 4.1 ± 0.4 mV to 2.1 ± 0.3 mV in KA-induced epileptic seizures and UR-treated groups, respectively. Oral UR protected animals from neuronal death induced by KA treatment (from 34 ± 4.6 to 191.7 ± 48.6 neurons/field) through attenuating glial cell proliferation and S100B protein expression but not GABAA and TRPV1 receptors. The above results provide detail mechanisms underlying the neuroprotective action of UR on KA-induced epileptic seizure in hippocampal CA1 neurons. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  13. PHARMACOLOGIC SUPPRESSION OF OXIDATIVE DAMAGE AND DENDRITIC DEGENERATION FOLLOWING KAINIC ACID-INDUCED EXCITOTOXICITY IN MOUSE CEREBRUM

    PubMed Central

    Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Aschner, Michael; Montine, Thomas J.; Milatovic, Dejan

    2008-01-01

    Intense seizure activity associated with status epilepticus and excitatory amino acid (EAA) imbalance initiates oxidative damage and neuronal injury in CA1 of the ventral hippocampus. We tested the hypothesis that dendritic degeneration of pyramidal neurons in the CA1 hippocampal area resulting from seizure-induced neurotoxicity is modulated by cerebral oxidative damage. Kainic acid (KA, 1 nmol/5 μl) was injected intracerebroventricularly to C57Bl/6 mice. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were used as surrogate measures of in vivo oxidative stress and biomarkers of lipid peroxidation. Nitric oxide synthase (NOS) activity was quantified by evaluating citrulline level and pyramidal neuron dendrites and spines were evaluated using rapid Golgi stains and a Neurolucida system. KA produced severe seizures in mice immediately after its administration and a significant (p<0.001) increase in F2-IsoPs, F4-NeuroPs and citrulline levels were seen 30 min following treatment. At the same time, hippocampal pyramidal neurons showed significant (p<0.001) reduction in dendritic length and spine density. In contrast, no significant change in neuronal dendrite and spine density or F2-IsoP, F4-NeuroPs and citrulline levels were found in mice pretreated with Vitamin E (α-tocopherol, 100 mg/kg, ip) for 3 days, or with N-tert-butyl-α-phenylnitrone (PBN, 200 mg/kg, ip) or ibuprofen (inhibitors of cyclooxygenase, COX, 14 μg/ml of drinking water) for 2 weeks prior to KA treatment. These findings indicate novel interactions among free radical-induced generation of F2-IsoPs and F4-NeuroPs, nitric oxide and dendritic degeneration, closely associate oxidative damage to neuronal membranes with degeneration of the dendritic system, and point to possible interventions to limit severe damage in acute neurological disorders. PMID:18556069

  14. Kainic Acid-Induced Post-Status Epilepticus Models of Temporal Lobe Epilepsy with Diverging Seizure Phenotype and Neuropathology

    PubMed Central

    Bertoglio, Daniele; Amhaoul, Halima; Van Eetveldt, Annemie; Houbrechts, Ruben; Van De Vijver, Sebastiaan; Ali, Idrish; Dedeurwaerdere, Stefanie

    2017-01-01

    The aim of epilepsy models is to investigate disease ontogenesis and therapeutic interventions in a consistent and prospective manner. The kainic acid-induced status epilepticus (KASE) rat model is a widely used, well-validated model for temporal lobe epilepsy (TLE). As we noted significant variability within the model between labs potentially related to the rat strain used, we aimed to describe two variants of this model with diverging seizure phenotype and neuropathology. In addition, we evaluated two different protocols to induce status epilepticus (SE). Wistar Han (Charles River, France) and Sprague-Dawley (Harlan, The Netherlands) rats were subjected to KASE using the Hellier kainic acid (KA) and a modified injection scheme. Duration of SE and latent phase were characterized by video-electroencephalography (vEEG) in a subgroup of animals, while animals were sacrificed 1 week (subacute phase) and 12 weeks (chronic phase) post-SE. In the 12 weeks post-SE groups, seizures were monitored with vEEG. Neuronal loss (neuronal nuclei), microglial activation (OX-42 and translocator protein), and neurodegeneration (Fluorojade C) were assessed. First, the Hellier protocol caused very high mortality in WH/CR rats compared to SD/H animals. The modified protocol resulted in a similar SE severity for WH/CR and SD/H rats, but effectively improved survival rates. The latent phase was significantly shorter (p < 0.0001) in SD/H (median 8.3 days) animals compared to WH/CR (median 15.4 days). During the chronic phase, SD/H rats had more seizures/day compared to WH/CR animals (p < 0.01). However, neuronal degeneration and cell loss were overall more extensive in WH/CR than in SD/H rats; microglia activation was similar between the two strains 1 week post-SE, but higher in WH/CR rats 12 weeks post-SE. These neuropathological differences may be more related to the distinct neurotoxic effects of KA in the two rat strains than being the outcome of seizure burden

  15. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs.

    PubMed

    Shubina, Liubov; Aliev, Rubin; Kitchigina, Valentina

    2017-04-15

    Changes in rhythmic activity can serve as early biomarkers of pathological alterations, but it remains unclear how different types of rhythmic activity are altered during neurodegenerative processes. Glutamatergic neurotoxicity, evoked by kainic acid (KA), causes hyperexcitation and acute seizures that result in delayed brain damage. We employed wide frequency range (0.1-300Hz) local field potential recordings in guinea pigs to study the oscillatory activity of the hippocampus, entorhinal cortex, medial septum, and amygdala in healthy animals for three months after KA introduction. To clarify whether the activation of endocannabinoid (eCB) system can influence toxic KA action, AM404, an eCB reuptake inhibitor, and URB597, an inhibitor of fatty acid amide hydrolase, were applied. The cannabinoid CB1 receptor antagonist AM251 was also tested. Coadministration of AM404 or URB597 with KA reduced acute behavioral seizures, but electrographic seizures were still registered. During the three months following KA injection, various trends in the oscillatory activities were observed, including an increase in activity power at all frequency bands in the hippocampus and a progressive long-term decrease in the medial septum. In the KA- and KA/AM251-treated animals, disturbances of the oscillatory activities were accompanied by cell loss in the dorsal hippocampus and mossy fiber sprouting in the dentate gyrus. Injections of AM404 or URB597 softened alterations in electrical activity of the brain and prevented hippocampal neuron loss and synaptic reorganization. Our results demonstrate the protective potential of the eCB system during excitotoxic influences. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Uncaria rhynchophylla upregulates the expression of MIF and cyclophilin A in kainic acid-induced epilepsy rats: A proteomic analysis.

    PubMed

    Lo, Wan-Yu; Tsai, Fuu-Jen; Liu, Chung-Hsiang; Tang, Nou-Ying; Su, Shan-Yu; Lin, Shinn-Zong; Chen, Chun-Chung; Shyu, Woei-Cherng; Hsieh, Ching-Liang

    2010-01-01

    Uncaria rhynchophylla (Miq) Jack (UR) is a traditional Chinese herb and is used for the treatment of convulsive disorders, including epilepsy. Our previous study has shown that UR, as well as its major component rhynchophylline (RH), has an anticonvulsive effect and this effect is closely related to its scavenging activities of oxygen free radicals. The purpose of the present study was to investigate the effect of (UR) on the expression of proteins using a proteomics analysis in Sprague-Dawley (SD) rats with kainic acid (KA)-induced epileptic seizures. We profiled the differentially expressed proteins on two-dimensional electrophoresis (2-DE) maps derived from the frontal cortex and hippocampus of rat brain tissue 24 hours after KA-induced epileptic seizures. The results indicated that macrophage migration inhibitory factor (MIF) and cyclophilin A were under expressed in frontal cortex by an average of 0.19- and 0.23-fold, respectively. In the frontal cortex, MIF and cyclophilin A were significantly decreased in the KA group and these decreases were confirmed by the Western blots. However, in the hippocampus, only cyclophilin A was significantly decreased in the KA group. In addition, in real-time quantitative PCR (Q-PCR), MIF and cyclophilin A gene expressions were also significantly under expressed in the frontal cortex, and only the cyclophilin A gene was also significantly under expressed in the hippocampus in the KA group. These under expressions of MIF and cyclophilin A could be overcome by the treatment of UR and RH. In conclusion, the under expressions of MIF and cyclophilin A in the frontal cortex and hippocampus in KA-treated rats, which were overcome by both UR and UH treatment, suggesting that both MIF and cyclophilin A at least partly participate in the anticonvulsive effect of UR.

  17. Tiagabine treatment in kainic acid induced cerebellar lesion of dystonia rat model

    PubMed Central

    Wang, Tsui-chin; Ngampramuan, Sukonthar; Kotchabhakdi, Naiphinich

    2016-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia. PMID:28337103

  18. Decrease in level of APG-2, a member of the heat shock protein 110 family, in murine brain following systemic administration of kainic acid.

    PubMed

    Ogita, K; Takagi, R; Oyama, N; Okuda, H; Ito, F; Okui, M; Shimizu, N; Yoneda, Y

    2001-09-01

    APG-2 belongs to the heat shock protein 110 family. Although kainic acid (KA)-induced seizures are known to elicit expression of inducible heat shock protein 70 (HSP70) in the brain, no investigation has been carried out on the APG-2 level after excitatory amino acid-induced seizures. By means of an immunoblot assay, we determined the levels of HSP70 and APG-2 in discrete brain structures of mice after a single intraperitoneal injection of KA or N-methyl-D-aspartic acid (NMDA). APG-2 level was significantly decreased in frontal cortex, hippocampus, and striatum three days after the administration of KA, while HSP70 level was increased in these regions following the administration. In any of these regions, APG-2 levels were returned to the control levels 10 days after the administration. However, no significant changes were observed in levels of both HSP70 and APG-2 in hypothalamus, midbrain, medulla-pons, and cerebellum of the mice. By contrast, NMDA administration did not significantly affect both levels in any of the regions examined. These findings indicate that the transient decrease in APG-2 expression is one of the intracellular events elicited by signals peculiar to KA, but not by those peculiar to NMDA, in telencephalon of murine brain.

  19. Uncaria rhynchophylla (miq) Jack plays a role in neuronal protection in kainic acid-treated rats.

    PubMed

    Tang, Nou-Ying; Liu, Chung-Hsiang; Su, Shan-Yu; Jan, Ya-Min; Hsieh, Ching-Tou; Cheng, Chin-Yi; Shyu, Woei-Cherng; Hsieh, Ching-Liang

    2010-01-01

    Uncaria rhynchophylla (Miq) Jack (UR) is one of many Chinese herbs. Our previous studies have shown that UR has both anticonvulsive and free radical-scavenging activities in kainic acid (KA)-treated rats. The aim of the present study was to use the effect of UR on activated microglia, nitric oxide synthase, and apoptotic cells to investigate its function in neuroproction in KA-treated rats. UR of 1.0 or 0.5 g/kg was orally administered for 3 days (first day, second day, and 30 min prior to KA administration on the third day), or 10 mg/kg (intraperitoneal injection, i.p.) N-nitro-L-arginine methyl ester (L-NAME) 30 min prior to KA (2 microg/2 microl) was injected into the right hippocampus region of Sprague-Dawly rats. ED1 (mouse anti rat CD68), neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) immunoreactive cells and apoptotic cells were observed in the hippocampus region. The results indicated that 1.0 g/kg, 0.5 g/kg of UR and 10 mg/kg of L-NAME reduced the counts of ED1, nNOS, iNOS immunoreactive cells and apoptotic cells in KA-treated rats. This study demonstrates that UR can reduce microglia activation, nNOS, iNOS and apoptosis, suggesting that UR plays a neuro-protective role against neuronal damage in KA-treated rats.

  20. Spatiotemporal characterization of mTOR kinase activity following kainic acid induced status epilepticus and analysis of rat brain response to chronic rapamycin treatment.

    PubMed

    Macias, Matylda; Blazejczyk, Magdalena; Kazmierska, Paulina; Caban, Bartosz; Skalecka, Agnieszka; Tarkowski, Bartosz; Rodo, Anna; Konopacki, Jan; Jaworski, Jacek

    2013-01-01

    Mammalian target of rapamycin (mTOR) is a protein kinase that senses nutrient availability, trophic factors support, cellular energy level, cellular stress, and neurotransmitters and adjusts cellular metabolism accordingly. Adequate mTOR activity is needed for development as well as proper physiology of mature neurons. Consequently, changes in mTOR activity are often observed in neuropathology. Recently, several groups reported that seizures increase mammalian target of rapamycin (mTOR) kinase activity, and such increased activity in genetic models can contribute to spontaneous seizures. However, the current knowledge about the spatiotemporal pattern of mTOR activation induced by proconvulsive agents is rather rudimentary. Also consequences of insufficient mTOR activity on a status epilepticus are poorly understood. Here, we systematically investigated these two issues. We showed that mTOR signaling was activated by kainic acid (KA)-induced status epilepticus through several brain areas, including the hippocampus and cortex as well as revealed two waves of mTOR activation: an early wave (2 h) that occurs in neurons and a late wave that predominantly occurs in astrocytes. Unexpectedly, we found that pretreatment with rapamycin, a potent mTOR inhibitor, gradually (i) sensitized animals to KA treatment and (ii) induced gross anatomical changes in the brain.

  1. Spatiotemporal Characterization of mTOR Kinase Activity Following Kainic Acid Induced Status Epilepticus and Analysis of Rat Brain Response to Chronic Rapamycin Treatment

    PubMed Central

    Macias, Matylda; Blazejczyk, Magdalena; Kazmierska, Paulina; Caban, Bartosz; Skalecka, Agnieszka; Tarkowski, Bartosz; Rodo, Anna; Konopacki, Jan; Jaworski, Jacek

    2013-01-01

    Mammalian target of rapamycin (mTOR) is a protein kinase that senses nutrient availability, trophic factors support, cellular energy level, cellular stress, and neurotransmitters and adjusts cellular metabolism accordingly. Adequate mTOR activity is needed for development as well as proper physiology of mature neurons. Consequently, changes in mTOR activity are often observed in neuropathology. Recently, several groups reported that seizures increase mammalian target of rapamycin (mTOR) kinase activity, and such increased activity in genetic models can contribute to spontaneous seizures. However, the current knowledge about the spatiotemporal pattern of mTOR activation induced by proconvulsive agents is rather rudimentary. Also consequences of insufficient mTOR activity on a status epilepticus are poorly understood. Here, we systematically investigated these two issues. We showed that mTOR signaling was activated by kainic acid (KA)-induced status epilepticus through several brain areas, including the hippocampus and cortex as well as revealed two waves of mTOR activation: an early wave (2 h) that occurs in neurons and a late wave that predominantly occurs in astrocytes. Unexpectedly, we found that pretreatment with rapamycin, a potent mTOR inhibitor, gradually (i) sensitized animals to KA treatment and (ii) induced gross anatomical changes in the brain. PMID:23724051

  2. Activation of AKT/GSK3β pathway by TDZD-8 attenuates kainic acid induced neurodegeneration but not seizures in mice.

    PubMed

    Bhowmik, Malay; Khanam, Razia; Saini, Neeru; Vohora, Divya

    2015-01-01

    Activation of glycogen synthase kinase3β (GSK3β), an enzyme that regulates a multitude of cellular signaling pathways, is implicated in neurodegenerative processes observed in an array of CNS diseases. We examined the hypothesis that the pathological changes in an acute kainic acid (KA) induced excitotoxicity model, relevant to human temporal lobe epilepsy (TLE), could be sensitive to inhibition of GSK3β by 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) treatment in Swiss albino mice. Immediate seizure responses due to KA were recorded. Neurodegenerative and morphogenic changes were examined by western blot analysis and light microscopy, respectively, 48 h after KA administration. Although tonic-clonic seizure episodes evoked by KA were unaffected, TDZD-8 pretreatment decreased KA mediated elevation in caspase-3 cleavage as well as increased Bcl2 and phospho-GSK3β (Ser9; pGSK3β(Ser9)) expression. Likewise, microscopic examination also revealed that pretreatment with TDZD-8 attenuated cell damage elicited by KA in the CA1, CA3 and DG regions. In all the above parameters, the combined effect of a sub-effective dose of sodium valproate (SVP) with TDZD-8 was higher than that of solitary TDZD-8 treatment. The findings suggest that activated GSK3β orchestrated neurodegenerative alterations following KA treatment and its inhibition by TDZD-8 affords a distinct neuroprotective profile by activating Akt/GSK3β pathway which might act upstream of Bax/Bcl2 and caspase-3 pathways. Compounds targeting GSK3β activity might represent a novel therapeutic option for exploration as an adjunct to conventional anti-epileptic drugs in preventing neurodegenerative processes in TLE. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration

    DTIC Science & Technology

    2004-01-01

    Hong, Dextromethorphan modulates the AP-1 DNA bind- Med. 14 (1993) 633-642. ing activity induced by kainic acid, Brain Res. 824 (1999) 125-132. [71 S.C...Hong, The effect of dextromethorphan on kainic acid-induced after kainic acid-induced seizures, Free Radical Biol. Med. 18 seizures in the rat...Bing, G., Bronstein, D., McMillian, M., Hong, J.-S. (1996) the effects of dextromethorphan on kainic acid-induced seizures in the rat. J. Neurotoxic

  4. Effects of JIP3 on epileptic seizures: Evidence from temporal lobe epilepsy patients, kainic-induced acute seizures and pentylenetetrazole-induced kindled seizures.

    PubMed

    Wang, Z; Chen, Y; Lü, Y; Chen, X; Cheng, L; Mi, X; Xu, X; Deng, W; Zhang, Y; Wang, N; Li, J; Li, Y; Wang, X

    2015-08-06

    JNK-interacting protein 3 (JIP3), also known as JNK stress-activated protein kinase-associated protein 1 (JSAP1), is a scaffold protein mainly involved in the regulation of the pro-apoptotic signaling cascade mediated by c-Jun N-terminal kinase (JNK). Overexpression of JIP3 in neurons in vitro has been reported to lead to accelerated activation of JNK and enhanced apoptosis response to cellular stress. However, the occurrence and the functional significance of stress-induced modulations of JIP3 levels in vivo remain elusive. In this study, we investigated the expression of JIP3 in temporal lobe epilepsy (TLE) and in a kainic acid (KA)-induced mouse model of epileptic seizures, and determined whether down-regulation of JIP3 can decrease susceptibility to seizures and neuron damage induced by KA. We found that JIP3 was markedly increased in TLE patients and a mouse model of epileptic seizures; mice underexpressing JIP3 through lentivirus bearing LV-Letm1-RNAi showed decreased susceptibility, delayed first seizure and decreased seizure duration response to the epileptogenic properties of KA. Subsequently, a decreased activation of JNK following seizure induction was observed in mice underexpressing JIP3, which also exhibited less neuronal apoptosis in the CA3 region of the hippocampus, as assessed three days after KA administration. We also found that mice underexpressing JIP3 exhibited a delayed pentylenetetrazole (PTZ)-induced kindling seizure process. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Resistance of neurofilaments to degradation, and lack of neuronal death and mossy fiber sprouting after kainic acid-induced status epilepticus in the developing rat hippocampus.

    PubMed

    Lopez-Picon, Francisco; Puustinen, Niina; Kukko-Lukjanov, Tiina-Kaisa; Holopainen, Irma E

    2004-12-01

    Neurofilament (NF) proteins, the major constituent of intermediate filaments in neurons, have an important role in cellular stability and plasticity. We have now studied the short-term (hours) and long-term (up to 1 week) effects of kainic acid (KA)-induced status epilepticus (SE) on the reactivity of NF proteins, and mossy fiber (MF) sprouting and neuronal death up to 4 weeks in 9-day-old rats. In Western blotting, the expression of the phosphorylation-independent epitopes of NF-L, NF-M, and NF-H rapidly but transiently increased after the treatment, whereas the phosphorylated NF-M remained elevated for 7 days. However, the treatment did not change the immunoreactivity of NF proteins, and no neuronal death or mossy fiber sprouting was detected at any time point. Our findings indicate seizure-induced reactivity of NF proteins but their resistance to degradation, which could be of importance in neuronal survival and may also prevent MF sprouting in the developing hippocampus.

  6. Propolis ameliorates tumor nerosis factor-α, nitric oxide levels, caspase-3 and nitric oxide synthase activities in kainic acid mediated excitotoxicity in rat brain.

    PubMed

    Swamy, Mummedy; Suhaili, Dian; Sirajudeen, K N S; Mustapha, Zulkarnain; Govindasamy, Chandran

    2014-01-01

    Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA). Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant. The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA. Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

  7. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats.

    PubMed

    Hsieh, Ching-Liang; Ho, Tin-Yun; Su, Shan-Yu; Lo, Wan-Yu; Liu, Chung-Hsiang; Tang, Nou-Ying

    2009-01-01

    Our previous studies have shown that Uncaria rhynchophylla (UR) can reduce epileptic seizures. We hypothesized that UR and its major component rhynchophylline (RH), reduce epileptic seizures in rats treated with kainic acid (KA) by inhibiting nuclear factor-kappaB (NF-kappaB) and activator-protein-1 (AP-1) activity, and by eliminating superoxide anions. Therefore, the level of superoxide anions and the DNA binding activities of NF-kappaB and AP-1 were measured. Sprague-Dawley (SD) rats were pre-treated with UR (1.0 g/kg, i.p.), RH (0.25 mg/kg, i.p.), or valproic acid (VA, 250 mg/kg, i.p.) for 3 days and then KA was administered intra-peritoneal (i.p.). The results indicated that UR, RH, and VA can reduce epileptic seizures and the level of superoxide anions in the blood. Furthermore, KA was demonstrated to induce the DNA binding activities of NF-kappaB and AP-1. However, these inductions were inhibited by pre-treatment with UR, RH, or VA for 3 days. Moreover, UR and RH were shown to be involved in the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. This study suggested that UR and RH have antiepileptic effects in KA-induced seizures and are associated with the regulation of the innate immune system via a reduction in the level of superoxide anions, JNK phosphorylation, and NF-kappaB activation.

  8. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    PubMed

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  9. Role of the NH2-terminus of substance P in the inhibition by capsaicin of behavioral sensitization to kainic acid-induced activity in the adult mouse.

    PubMed

    Larson, A A; Sun, X

    1994-01-01

    Activation of primary afferent C-fibers by repeated intrathecal injection of kainic acid (KA) in mice is inhibited after pretreatment with capsaicin. The increased behavioral response to multiple injections of KA is thought to be brought about by an action of the NH2-terminus of substance P (SP). In light of our recent observation that the antinociceptive effect of capsaicin may also involve an action of the NH2-terminus of SP, we tested the hypothesis that capsaicin inhibits behavioral sensitization to KA by a desensitization to the action of the NH2-terminus of SP. Using adult mice, pretreatment (24 hr) with either capsaicin (0.8 micrograms) or SP(1-7) (1 and 10 nmol) attenuated sensitization of the behavioral response to four injections of 25 pmol of KA at 2-min intervals. Pretreatment with 10 nmol of the COOH-terminal SP fragment, SP(5-11), had no effect. [D-Pro2,D-Phe7]-SP(1-7), a SP NH2-terminal antagonist, injected 5 min before capsaicin or SP(1-7), inhibited the effects of both capsaicin and SP(1-7) on KA sensitization whereas the COOH-terminal neurokinin antagonist, [D-Pro2,D-Trp7,9]-SP, did not. The similarities in behavioral responses after treatment with SP(1-7) or capsaicin, together with the sensitivity of these effects to D-SP(1-7), suggest that SP released in response to capsaicin may inhibit subsequent KA-induced activity 24 hr later. This action of SP appears to be brought about by its NH2-terminus and/or an accumulation of its NH2-terminal metabolites after capsaicin treatment.

  10. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins.

    PubMed

    Atanasova, Milena; Petkova, Zlatina; Pechlivanova, Daniela; Dragomirova, Petya; Blazhev, Alexander; Tchekalarova, Jana

    2013-10-01

    Oxidative stress is implicated in the pathogenesis of both hypertension and epileptogenesis, therefore it could be used as a tool for studying co-morbidity of hypertension and epilepsy. Clinical data suggest that melatonin is a potent antioxidant that is effective in the adjunctive therapy of hypertension and neurodegenerative diseases. The present study aimed to explore and compare the efficacy of chronic pretreatment with melatonin infused via subcutaneous osmotic mini-pumps for 14 days (10 mg/kg per day) on kainic acid (KA)-induced status epilepticus, oxidative stress and expression of heat shock protein (HSP) 72 in spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. SHRs showed higher lipid peroxidation (LP) in the frontal cortex and hippocampus and decreased cytosolic superoxide dismutase (SOD/CuZn) production in the frontal cortex compared to Wistar rats. Status epilepticus (SE) induced by KA (12 mg/kg, i.p.) was accompanied by increased LP and expression of HSP 72 in the hippocampus of the two strains and increased SOD/CuZn production in the frontal cortex of SHRs. Melatonin failed to suppress seizure incidence and intensity though the latency for seizure onset was significantly increased in SHRs. Melatonin attenuated the KA-induced increase in the level of LP in the hippocampus both in SHRs and Wistar rats. However, an increased activity in SOD/CuZn and mitochondrial SOD Mn as well as reduced expression of HSP 72 in the hippocampus was observed only in Wistar rats pretreated with melatonin. Taken together, the observed strain differences in the efficacy of chronic melatonin exposure before SE suggest a lack of a direct link between the seizure activity and the markers of oxidative stress and neurotoxicity. © 2013.

  11. Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis

    PubMed Central

    Kondratiuk, Ilona; Plucinska, Gabriela; Miszczuk, Diana; Wozniak, Grazyna; Szydlowska, Kinga; Kaczmarek, Leszek; Filipkowski, Robert K.; Lukasiuk, Katarzyna

    2015-01-01

    The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2 – 10 days) in wt mice and 8 days (range 2 – 16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1 – 3.4; cD2 KO: 0.57, range 0.1 – 2.0 seizures/day) or median seizure duration (wt: 51 s, range 23 – 103; cD2 KO: 51 s, range 23 – 103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state. PMID:26020770

  12. JNK1 inhibition by Licochalcone A leads to neuronal protection against excitotoxic insults derived of kainic acid.

    PubMed

    Busquets, Oriol; Ettcheto, Miren; Verdaguer, Ester; Castro-Torres, Ruben D; Auladell, Carme; Beas-Zarate, Carlos; Folch, Jaume; Camins, Antoni

    2018-03-15

    The mitogen-activated protein kinase family (MAPK) is an important group of enzymes involved in cellular responses to diverse external stimuli. One of the members of this family is the c-Jun-N-terminal kinase (JNK). The activation of the JNK pathway has been largely associated with the pathogenesis that occurs in epilepsy and neurodegeneration. Kainic acid (KA) administration in rodents is an experimental approach that induces status epilepticus (SE) and replicates many of the phenomenological features of human temporal lobe epilepsy (TLE). Recent studies in our group have evidenced that the absence of the JNK1 gene has neuroprotective effects against the damage induced by KA, as it occurs with the absence of JNK3. The aim of the present study was to analyse whether the pharmacological inhibition of JNK1 by Licochalcone A (Lic-A) had similar effects and if it may be considered as a new molecule for the treatment of SE. In order to achieve this objective, animals were pre-treated with Lic-A and posteriorly administered with KA as a model for TLE. In addition, a comparative study with KA was performed between wild type pre-treated with Lic-A and single knock-out transgenic mice for the Jnk1 -/- gene. Our results showed that JNK1 inhibition by Lic-A, previous to KA administration, caused a reduction in the convulsive pattern. Furthermore, it reduced phosphorylation levels of the JNK, as well as its activity. In addition, Lic-A prevented hippocampal neuronal degeneration, increased pro-survival anti-apoptotic mechanisms, reduced pro-apoptotic biomarkers, decreased cellular stress and neuroinflammatory processes. Thus, our results suggest that inhibition of the JNK1 by Lic-A has neuroprotective effects and that; it could be a new potential approach for the treatment of SE and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Kainic acid-mediated increase of preprotachykinin-A messenger RNA expression in the rat hippocampus and a region-selective attenuation by dexamethasone.

    PubMed

    Brené, S; Lindefors, N; Ballarin, M; Persson, H

    1992-10-01

    The hippocampus contains the highest number of glucocorticoid-sensitive neurons in the rat brain and excessive exposure to glucocorticoids can cause damage to hippocampal neurons and impair the capacity of the hippocampus to survive neuronal insults. In this study in situ hybridization combined with quantitative image analysis was used to study preprotachykinin-A mRNA levels after administration of a toxic dose of kainic acid in animals pretreated with glucocorticoids. Kainic acid was injected into dorsal hippocampus CA3 region in animals pretreated with the synthetic glucocorticoid receptor agonist dexamethasone and in control animals. Preprotachykinin-A mRNA was not detected in the hippocampus of untreated animals or in animals analysed 30 min after a kainic acid injection. However, 4 h after injection of kainic acid, the level of preprotachykinin-A mRNA increased to 20-times above the detection limit both in the dentate gyrus and the CA3 region of the hippocampus. Treatment of kainic acid-injected animals with dexamethasone 30 min before and 2 h after the injection attenuated the increase in the granule cells of the dentate gyrus by 50%. In contrast, dexamethasone pretreatment had no significant effect on the kainic acid-induced increase of preprotachykinin-A mRNA in pyramidal cells in regions CA3 or CA1. These results show that an excitatory stimulus within the hippocampus causes a substantial increase in the level of preprotachykinin-A mRNA in hippocampal granule and pyramidal cells and suggest that in granule cells of the dentate gyrus this increase can be modulated by glucocorticoids.

  14. Conformation of kainic acid in solution from molecular modelling and NMR spectra.

    PubMed

    Falk, M; Sidhu, P; Walter, J A

    1998-01-01

    Conformational behaviour of kainic acid in aqueous solution was elucidated by molecular mechanics and dynamics. The pucker of the five-membered ring in kainic acid was examined and compared with that of model compounds. In cyclopentane there is no barrier to pseudorotation, so that all puckered states coexist. In pyrrolidinium, the presence of a hetero-atom in the ring introduces a small barrier (about 0.6 kcal mol(-1)) to pseudorotation, separating two stable regions, A and B, which are equivalent by symmetry. In proline, the presence of the carboxylate group on C2 removes the symmetry but two stable conformational minima, A and B, remain. In kainic acid, the presence of side-chains on C3 and C4 introduces complications resulting in additional sub-minima in both regions, A and B. In solution, kainic acid is a complex mixture of conformers with comparable energies, because of the combination of several stable states of the pyrrolidinium ring with the torsional degrees of freedom arising from the two side-chains. The individual geometries, energies, and estimates of relative populations of these conformers were obtained from molecular dynamics simulations. The calculations were validated by a comparison of predicted inter-proton distances and vicinal proton coupling constants with the experimental quantities derived from NMR spectra.

  15. Subventricular Zone-Derived Neural Stem Cell Grafts Protect Against Hippocampal Degeneration and Restore Cognitive Function in the Mouse Following Intrahippocampal Kainic Acid Administration

    PubMed Central

    Miltiadous, Panagiota; Kouroupi, Georgia; Stamatakis, Antonios; Koutsoudaki, Paraskevi N.

    2013-01-01

    Temporal lobe epilepsy (TLE) is a major neurological disease, often associated with cognitive decline. Since approximately 30% of patients are resistant to antiepileptic drugs, TLE is being considered as a possible clinical target for alternative stem cell-based therapies. Given that insulin-like growth factor I (IGF-I) is neuroprotective following a number of experimental insults to the nervous system, we investigated the therapeutic potential of neural stem/precursor cells (NSCs) transduced, or not, with a lentiviral vector for overexpression of IGF-I after transplantation in a mouse model of kainic acid (KA)-induced hippocampal degeneration, which represents an animal model of TLE. Exposure of mice to the Morris water maze task revealed that unilateral intrahippocampal NSC transplantation significantly prevented the KA-induced cognitive decline. Moreover, NSC grafting protected against neurodegeneration at the cellular level, reduced astrogliosis, and maintained endogenous granule cell proliferation at normal levels. In some cases, as in the reduction of hippocampal cell loss and the reversal of the characteristic KA-induced granule cell dispersal, the beneficial effects of transplanted NSCs were manifested earlier and were more pronounced when these were transduced to express IGF-I. However, differences became less pronounced by 2 months postgrafting, since similar amounts of IGF-I were detected in the hippocampi of both groups of mice that received cell transplants. Grafted NSCs survived, migrated, and differentiated into neurons—including glutamatergic cells—and not glia, in the host hippocampus. Our results demonstrate that transplantation of IGF-I producing NSCs is neuroprotective and restores cognitive function following KA-induced hippocampal degeneration. PMID:23417642

  16. Anterior thalamic nuclei deep brain stimulation reduces disruption of the blood-brain barrier, albumin extravasation, inflammation and apoptosis in kainic acid-induced epileptic rats.

    PubMed

    Chen, Ying-Chuan; Zhu, Guan-Yu; Wang, Xiu; Shi, Lin; Du, Ting-Ting; Liu, De-Feng; Liu, Yu-Ye; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-12-01

    Objective The therapeutic efficacy of anterior thalamic nuclei deep brain stimulation (ATN-DBS) against seizures has been largely accepted; however, the effects of ATN-DBS on disruption of the blood-brain barrier (BBB), albumin extravasation, inflammation and apoptosis still remain unclear. Methods Rats were distributed into four treatment groups: physiological saline (PS, N = 12), kainic acid (KA, N = 12), KA-sham-DBS (N = 12) and KA-DBS (N = 12). Seizures were monitored using video-electroencephalogram (EEG). One day after surgery, all rats were sacrificed. Then, samples were prepared for quantitative real-time PCR (qPCR), western blot, immunofluorescence (IF) staining, and transmission electron microscopy to evaluate the disruption of the BBB, albumin extravasation, inflammation, and apoptosis. Result Because of the KA injection, the disruption of the BBB, albumin extravasation, inflammation and apoptosis were more severe in the KA and the KA-sham-DBS groups compared to the PS group (all Ps < 0.05 or < 0.01). The ideal outcomes were observed in the KA-DBS group. ATN-DBS produced a 46.3% reduction in seizure frequency and alleviated the disruption of the BBB, albumin extravasation, inflammatory reaction and apoptosis in comparison to the KA-sham-DBS group (all Ps < 0.05 or < 0.01). Conclusion (1) Seizures can be reduced using ATN-DBS in the epileptogenic stage. (2) ATN-DBS can reduce the disruption of the BBB and albumin extravasation. (3) ATN-DBS has an anti-inflammatory effect in epileptic models.

  17. The role of S-nitrosylation of kainate-type of ionotropic glutamate receptor 2 in epilepsy induced by kainic acid.

    PubMed

    Wang, Linxiao; Liu, Yanyan; Lu, Rulan; Dong, Guoying; Chen, Xia; Yun, Wenwei; Zhou, Xianju

    2018-02-01

    Epilepsy is a chronic brain disease affecting millions of individuals. Kainate receptors, especially kainate-type of ionotropic glutamate receptor 2 (GluK2), play an important role in epileptogenesis. Recent data showed that GluK2 could undergo post-translational modifications in terms of S-nitrosylation (SNO), and affect the signaling pathway of cell death in cerebral ischemia-reperfusion. However, it is unclear whether S-nitrosylation of GluK2 (SNO-GluK2) contributes to cell death induced by epilepsy. Here, we report that kainic acid-induced SNO-GluK2 is mediated by GluK2 itself, regulated by neuronal nitric oxide synthase (nNOS) and the level of cytoplasmic calcium in vivo and in vitro hippocampus neurons. The whole-cell patch clamp recordings showed the influence of SNO-GluK2 on ion channel characterization of GluK2-Kainate receptors. Moreover, immunohistochemistry staining results showed that inhibition of SNO-GluK2 by blocking nNOS or GluK2 or by reducing the level of cytoplasmic calcium-protected hippocampal neurons from kainic acid-induced injury. Finally, immunoprecipitation and western blotting data revealed the involvement of assembly of a GluK2-PSD95-nNOS signaling complex in epilepsy. Taken together, our results showed that the SNO-GluK2 plays an important role in neuronal injury of epileptic rats by forming GluK2-PSD95-nNOS signaling module in a cytoplasmic calcium-dependent way, suggesting a potential therapeutic target site for epilepsy. © 2017 International Society for Neurochemistry.

  18. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats

    PubMed Central

    Hsu, Hsin-Cheng; Tang, Nou-Ying; Liu, Chung-Hsiang

    2013-01-01

    Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period. PMID:24381640

  19. Antiepileptic Effect of Uncaria rhynchophylla and Rhynchophylline Involved in the Initiation of c-Jun N-Terminal Kinase Phosphorylation of MAPK Signal Pathways in Acute Seizures of Kainic Acid-Treated Rats.

    PubMed

    Hsu, Hsin-Cheng; Tang, Nou-Ying; Liu, Chung-Hsiang; Hsieh, Ching-Liang

    2013-01-01

    Seizures cause inflammation of the central nervous system. The extent of the inflammation is related to the severity and recurrence of the seizures. Cell surface receptors are stimulated by stimulators such as kainic acid (KA), which causes intracellular mitogen-activated protein kinase (MAPK) signal pathway transmission to coordinate a response. It is known that Uncaria rhynchophylla (UR) and rhynchophylline (RP) have anticonvulsive effects, although the mechanisms remain unclear. Therefore, the purpose of this study is to develop a novel strategy for treating epilepsy by investigating how UR and RP initiate their anticonvulsive mechanisms. Sprague-Dawley rats were administered KA (12 mg/kg, i.p.) to induce seizure before being sacrificed. The brain was removed 3 h after KA administration. The results indicate that pretreatment with UR (1.0 g/kg), RP (0.25 mg/kg), and valproic acid (VA, 250 mg/kg) for 3 d could reduce epileptic seizures and could also reduce the expression of c-Jun aminoterminal kinase phosphorylation (JNKp) of MAPK signal pathways in the cerebral cortex and hippocampus brain tissues. Proinflammatory cytokines interleukin (IL)-1 β , IL-6, and tumor necrosis factor- α remain unchanged, indicating that the anticonvulsive effect of UR and RP is initially involved in the JNKp MAPK signal pathway during the KA-induced acute seizure period.

  20. Comparative effects of kainic, quisqualic, and ibotenic acids on phenylethanolamine-N-methyltransferase-containing cells of rat retina.

    PubMed

    Cohen, J

    1989-02-01

    Phenylethanolamine-N-methyltransferase (PNMT) activity is located in a subpopulation of amacrine cells in the inner nuclear layer of the rat retina. Kainic, quisqualic, and ibotenic acids, all of which are analogues of glutamic acid, were injected intravitreally to the right and saline to the contralateral left eyes of adult male rats in order to determine the effect of these agents upon retinal PNMT activity. Animals were sacrificed 1 week later for tissue removal. The effect of these agents was measured by radiometric assay for PNMT. The fall in PNMT activity was used to measure the sensitivity of the PNMT-containing cells to these agents. Kainic acid was the most potent, producing the greatest reduction in PNMT activity in the smallest doses. Quisqualic acid was intermediate in potency to that of kainic and ibotenic acids. Ibotenic acid reduced PNMT activity only in extremely high doses. The PNMT-containing cells are sensitive to the toxic actions of kainic and quisqualic acids, but relatively insensitive to the actions of ibotenic acid.

  1. Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity

    PubMed Central

    Krajewska, Maryla; You, Zerong; Rong, Juan; Kress, Christina; Huang, Xianshu; Yang, Jinsheng; Kyoda, Tiffany; Leyva, Ricardo; Banares, Steven; Hu, Yue; Sze, Chia-Hung; Whalen, Michael J.; Salmena, Leonardo; Hakem, Razqallah; Head, Brian P.; Reed, John C.; Krajewski, Stan

    2011-01-01

    Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional

  2. Establishment of a rhesus monkey model of chronic temporal lobe epilepsy using repetitive unilateral intra-amygdala kainic acid injections.

    PubMed

    Chi, Yajie; Wu, Bolin; Guan, Jianwei; Xiao, Kuntai; Lu, Ziming; Li, Xiao; Xu, Yuting; Xue, Shan; Xu, Qiang; Rao, Junhua; Guo, Yanwu

    2017-09-01

    Temporal lobe epilepsy (TLE) is a common type of acquired epilepsy refractory to medical treatment. As such, establishing animal models of this disease is critical to developing new and effective treatment modalities. Because of their small head size, rodents are not suitable for comprehensive electroencephalography (EEG) evaluation via scalp or subdural electrodes. Therefore, a larger primate model that closely recapitulates signs of TLE is needed; here we describe a rhesus monkey model resembling chronic TLE. Eight monkeys were divided into two groups: kainic acid (KA) group (n=6) and saline control group (n=2). Intra-amygdala KA injections were performed biweekly via an Ommaya device until obvious epileptiform discharges were recorded. Video-EEG recording was conducted intermittently throughout the experiment using both scalp and subdural electrodes. Brains were then analyzed for Nissl and glial fibrillary acid protein (GFAP) immunostaining. After 2-4 injections of KA (approximately 1.2-2.4mg, 0.12-0.24mg/kg), interictal epileptiform discharges (IEDs) were recorded in all KA-treated animals. Spontaneous recurrent seizures (SRSs) accompanied by symptoms mimicking temporal lobe absence (undetectable without EEG recording), but few mild motor signs, were recorded in 66.7% (four of six) KA-treated animals. Both IEDs and seizures indicated a primary epileptic zone in the right temporal region and contralateral discharges were later detected. Segmental pyramidal cell loss and gliosis were detected in the brain of a KA-treated monkey. Through a modified protocol of unilateral repetitive intra-amygdala KA injections, a rhesus monkey model with similar behavioral and brain electrical features as TLE was developed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Prenatal choline deficiency does not enhance hippocampal vulnerability after kainic acid-induced seizures in adulthood

    PubMed Central

    Wong-Goodrich, Sarah J.E.; Tognoni, Christina M.; Mellott, Tiffany J.; Glenn, Melissa J.; Blusztajn, Jan K.; Williams, Christina L.

    2011-01-01

    Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12–17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury. PMID:21840511

  4. An electron spin resonance study for real-time detection of ascorbyl free radicals after addition of dimethyl sulfoxide in murine hippocampus or plasma during kainic acid-induced seizures.

    PubMed

    Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao

    2010-07-01

    Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.

  5. Prenatal choline deficiency does not enhance hippocampal vulnerability after kainic acid-induced seizures in adulthood.

    PubMed

    Wong-Goodrich, Sarah J E; Tognoni, Christina M; Mellott, Tiffany J; Glenn, Melissa J; Blusztajn, Jan K; Williams, Christina L

    2011-09-21

    Choline is a vital nutrient needed during early development for both humans and rodents. Severe dietary choline deficiency during pregnancy leads to birth defects, while more limited deficiency during mid- to late pregnancy causes deficits in hippocampal plasticity in adult rodent offspring that are accompanied by cognitive deficits only when task demands are high. Because prenatal choline supplementation confers neuroprotection of the adult hippocampus against a variety of neural insults and aids memory, we hypothesized that prenatal choline deficiency may enhance vulnerability to neural injury. To examine this, adult offspring of rat dams either fed a control diet (CON) or one deficient in choline (DEF) during embryonic days 12-17 were given multiple injections (i.p.) of saline (control) or kainic acid to induce seizures and were euthanized 16 days later. Perhaps somewhat surprisingly, DEF rats were not more susceptible to seizure induction and showed similar levels of seizure-induced hippocampal histopathology, GAD expression loss, upregulated hippocampal GFAP and growth factor expression, and increased dentate cell and neuronal proliferation as that seen in CON rats. Although prenatal choline deficiency compromises adult hippocampal plasticity in the intact brain, it does not appear to exacerbate the neuropathological response to seizures in the adult hippocampus at least shortly after excitotoxic injury. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Upregulation of GH, but not IGF1, in the hippocampus of the lactating dam after kainic acid injury

    PubMed Central

    Arellanes-Licea, Elvira C; Ávila-Mendoza, José; Ramírez-Martínez, Elizabeth C; Ramos, Eugenia; Uribe-González, Nancy; Arámburo, Carlos

    2018-01-01

    Lactation embodies a natural model of morphological, neurochemical, and functional brain plasticity. In this reproductive stage, the hippocampus of the female is less sensitive to excitotoxins in contrast to nulliparity. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are known to be neuroprotective in several experimental models of brain lesion. Here, activation of the GH–IGF1 pituitary–brain axis following kainic acid (7.5 mg/kg i.p. KA) lesion was studied in lactating and nulliparous rats. Serum concentrations of GH and IGF1 were uncoupled in lactation. Compared to virgin rats, the basal concentration of GH increased up to 40% but IGF1 decreased 58% in dams, and only GH increased further after KA treatment. In the hippocampus, basal expression of GH mRNA was higher (2.8-fold) in lactating rats than in virgin rats. GH mRNA expression in lactating rats increased further after KA administration in the hippocampus and in the hypothalamus, in parallel to GH protein concentration in the hippocampus of KA-treated lactating rats (43% vs lactating control), as detected by Western blot and immunofluorescence. Except for the significantly lower mRNA concentration in the liver of lactating rats, IGF1 expression was not altered by the reproductive condition or by KA treatment in the hippocampus and hypothalamus. Present results indicate upregulation of GH expression in the hippocampus after an excitotoxic lesion, suggesting paracrine/autocrine actions of GH as a factor underlying neuroprotection in the brain of the lactating dam. Since no induction of IGF1 was detected, present data suggest a direct action of GH. PMID:29321175

  7. Behavioral Consequences of Kainic Acid Lesions and Fetal Transplants of the Striatum

    DTIC Science & Technology

    1984-06-12

    Selected sections were also stained with cresyl violet in order to facilitate the visualization of neuronal cytology and morphology. All sections...tendency to mutism and depression with frequent suicidal ideation (Bruyn, 1973). The Westphal variant of HD, also called the rigid-hypokinetic...1978). In situ injections of kainic acid: A new method for selectively lesioning neuronal cell bodies while sparing axons of passage. Journal of

  8. Anticonvulsive and free radical scavenging actions of two herbs, Uncaria rhynchophylla (MIQ) Jack and Gastrodia elata Bl., in kainic acid-treated rats.

    PubMed

    Hsieh, C L; Tang, N Y; Chiang, S Y; Hsieh, C T; Lin, J G

    1999-01-01

    Uncaria rhynchophylla (Miq.) Jack (UR) and Gastrodia elata BI. (GE) are traditional Chinese herbs that are usually used in combination to treat convulsive disorders, such as epilepsy, in China. The aim of this study was to compare the anticonvulsive and free radical scavenging activities of UR alone and UR in combination with GE in rats. For the in vitro studies, brain tissues from 6 male Sprague-Dawley (SD) rats were treated with 120 microg/ml kainic acid (KA), with or without varied concentrations of UR or UR plus GE. For the in vivo studies, male SD rats (6 per group) received intraperitoneal (i.p.) injection of KA 12 mg/kg to induce epileptic seizures and generation of free radicals, with or without oral administration of UR 1 g/kg alone or UR 1 g/kg plus GE 1 g/kg. Epileptic seizures were verified by behavioral observations, and electroencephalography (EEG) and electromyography (EMG) recordings. These results showed that UR alone decreased KA-induced lipid peroxide levels in vitro, whereas UR plus GE did not produce a greater effect than UR alone. UR significantly reduced counts of wet dog shakes (WDS), paw tremor (PT) and facial myoclonia (FM) in KA-treated rats and significantly delayed the onset time of WDS, from 27 min in the control group to 40 min in the UR group. UR plus GE did not inhibit seizures more effectively than UR alone, but did further prolong the onset time of WDS to 63 min (P < 0.05 vs. UR alone). UR alone reduced the levels of free radicals in vivo, as measured by lipid peroxidation in the brain and luminol-chemiluminescence (CL) counts and lucigenin-CL counts in the peripheral whole blood, but the combination of GE and UR did not reduce free radical levels more markedly than UR alone. In conclusion, our results indicate that UR has anticonvulsive and free radical scavenging activities, and UR combined with GE exhibit greater inhibition on the onset time of WDS than UR alone. These findings suggest that the anticonvulsive effects of UR and

  9. Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated by mGluR-induced release of Ca++ from intracellular stores and is prevented by estradiol

    PubMed Central

    Hilton, Genell D.; Nunez, Joseph L.; Bambrick, Linda; Thompson, Scott M.; McCarthy, Margaret M.

    2008-01-01

    Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate. PMID:17156362

  10. Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures

    PubMed Central

    Drexel, M.; Preidt, A.P.; Kirchmair, E.; Sperk, G.

    2011-01-01

    The subiculum is the major output area of the hippocampus. It is closely interconnected with the entorhinal cortex and other parahippocampal areas. In animal models of temporal lobe epilepsy (TLE) and in TLE patients it exerts increased network excitability and may crucially contribute to the propagation of limbic seizures. Using immunohistochemistry and in situ-hybridization we now investigated neuropathological changes affecting parvalbumin and calretinin containing neurons in the subiculum and other parahippocampal areas after kainic acid-induced status epilepticus. We observed prominent losses in parvalbumin containing interneurons in the subiculum and entorhinal cortex, and in the principal cell layers of the pre- and parasubiculum. Degeneration of parvalbumin-positive neurons was associated with significant precipitation of parvalbumin-immunoreactive debris 24 h after kainic acid injection. In the subiculum the superficial portion of the pyramidal cell layer was more severely affected than its deep part. In the entorhinal cortex, the deep layers were more severely affected than the superficial ones. The decrease in number of parvalbumin-positive neurons in the subiculum and entorhinal cortex correlated with the number of spontaneous seizures subsequently experienced by the rats. The loss of parvalbumin neurons thus may contribute to the development of spontaneous seizures. On the other hand, surviving parvalbumin neurons revealed markedly increased expression of parvalbumin mRNA notably in the pyramidal cell layer of the subiculum and in all layers of the entorhinal cortex. This indicates increased activity of these neurons aiming to compensate for the partial loss of this functionally important neuron population. Furthermore, calretinin-positive fibers terminating in the molecular layer of the subiculum, in sector CA1 of the hippocampus proper and in the entorhinal cortex degenerated together with their presumed perikarya in the thalamic nucleus reuniens. In

  11. Calcitonin gene-related peptide enhances substance P-induced behaviors via metabolic inhibition: in vivo evidence for a new mechanism of neuromodulation.

    PubMed

    Mao, J; Coghill, R C; Kellstein, D E; Frenk, H; Mayer, D J

    1992-03-06

    The present study examined the effects of intrathecal (i.t.) injection of calcitonin gene-related peptide (CGRP) on caudally directed biting and scratching induced by i.t. substance P (SP), bombesin (BBS), strychnine (STR), and kainic acid (KA). CGRP alone (5.25, 10.5 and 21 nmol) had no effect on these behaviors, but CGRP pretreatment produced a dose-related enhancement of behaviors induced by SP or BBS, but not by KA or STR. 2-Amino-5-phosphonovaleric acid (APV, 25 nmol), a selective N-methyl-D-aspartate (NMDA) receptor antagonist, did not block the CGRP potentiation of SP and BBS induced behaviors. CGRP, however, failed to enhance scratching and biting induced by a SP analogue [pGlu5-Mephe8-MeGly9]SP(5-11) (Dime-C7) that is resistant to enzymatic degradation by SP endopeptidase. These findings demonstrate that CGRP potentiates SP induced behavioral responses via inhibition of neuropeptide degradation and that this mechanism may serve as a physiological mechanism of SP modulation.

  12. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    PubMed

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  13. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer's disease.

    PubMed

    Vu, Hang Thi; Akatsu, Hiroyasu; Hashizume, Yoshio; Setou, Mitsutoshi; Ikegami, Koji

    2017-01-09

    Neurodegeneration includes acute changes and slow-developing alterations, both of which partly involve common cellular machinery. During neurodegeneration, neuronal processes are impaired along with dysregulated post-translational modifications (PTMs) of cytoskeletal proteins. In neuronal processes, tubulin undergoes unique PTMs including a branched form of modification called glutamylation and loss of the C-terminal tyrosine residue and the penultimate glutamic acid residue forming Δ2-tubulin. Here, we investigated the state of two PTMs, glutamylation and Δ2 form, in both acute and slow-developing neurodegenerations, using a newly generated monoclonal antibody, DTE41, which had 2-fold higher affinity to glutamylated Δ2-tubulin, than to unmodified Δ2-tubulin. DTE41 recognised glutamylated Δ2-tubulin preferentially in immunostaining than in enzyme-linked immunosorbent assay and immunoblotting. In normal mouse brain, DTE41 stained molecular layer of the cerebellum as well as synapse-rich regions in pyramidal neurons of the cerebral cortex. In kainic acid-induced epileptic seizure, DTE41-labelled signals were increased in the hippocampal CA3 region, especially in the stratum lucidum. In the hippocampi of post-mortem patients with Alzheimer's disease, intensities of DTE41 staining were increased in mossy fibres in the CA3 region as well as in apical dendrites of the pyramidal neurons. Our findings indicate that glutamylation on Δ2-tubulin is increased in both acute and slow-developing neurodegeneration.

  14. Strain-dependent effects of sub-chronically infused losartan against kainic acid-induced seizures, oxidative stress, and heat shock protein 72 expression.

    PubMed

    Tchekalarova, Jane; Ivanova, Natasha; Pechlivanova, Daniela; Ilieva, Kalina; Atanasova, Milena

    2014-01-01

    We studied the involvement of angiotensin (Ang) II AT1 receptors in the pathophysiology of kainate (KA)-induced neurotoxicity, focusing on the regulation of the oxidative stress state and expression of HSP 72 in the frontal cortex and hippocampus in two strains, spontaneously hypertensive rats (SHRs) and normotensive Wistar rats. The KA injection was executed after the rats were infused subcutaneously via osmotic mini-pumps with losartan (10 mg/kg day) for 14 days. Losartan delayed the onset of KA-induced seizures in SHRs but not in Wistar rats without affecting the seizure intensity score. This selective AT1 receptor antagonist decreased the lipid peroxidation only in naive SHRs. However, it attenuated the KA-induced increase in lipid peroxidation in both SHRs and Wistar rats. The adaptive enhancement of cytosolic superoxide dismutase (SOD) activity in KA-treated SHRs was recovered to control level after sub-chronic losartan infusion while no change in mitochondrial SOD activity was detected in the two strains. Both losartan and KA produced a higher expression of HSP 72 in the hippocampus of the two strains compared to naive rats infused with vehicle. Taken together, our findings demonstrate that the efficacy of a sub-chronic systemic losartan infusion in preventing the KA-induced seizure activity and neurotoxicity is more pronounced in SHRs, considered as a model of essential hypertension, than in normotenisve Wistar rats. The results suggest that the blockade of AT1 receptors, commonly used as a strategy for prevention of high blood pressure, may be useful as an adjunctive treatment in status epilepticus to reduce oxidative stress and neurotoxicity.

  15. Regulatory impairments following selective kainic acid lesions of the neostriatum.

    PubMed

    Dunnett, S B; Iversen, S D

    1980-12-01

    Kainic acid lesions were made to the anteromedial (AMC) or ventrolateral (VLC) caudate nucleus and the projection areas of medial and sulcal prefrontal cortex (PFC), respectively. By the second day following lesion, all control and AMC rats had recovered normal food and water intake. By contrast, VLC lesions resulted in severe aphagia and adipsia lasting 3-15 days, accompanied by a rapid loss in weight. Animals were kept alive by palatable food supplement and force-feeding as required. Once all animals had recovered normal food and water intake (3-5 weeks) drinking to various physiological challenges--5% hypertonic saline s.c., food deprivation, quinine adulteration of water and 40% polyethylene glycol--were found to be normal in both lesion groups. By 3 months after lesion the groups did not differ in weight. Acute aphagia and adipsia had been reported following ablation of the sulcal but not the medial PFC in rats. The present experiment obtains parallel results in the PFC projection areas within the neostriatum.

  16. Chemokine CCL2–CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus

    PubMed Central

    Tian, Dai-Shi; Feng, Li-Jie; Liu, Jun-Li

    2017-01-01

    Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2–CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2–CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2–CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy. SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2–CCR2 signaling is

  17. Neuronal activity-induced regulation of Lingo-1.

    PubMed

    Trifunovski, Alexandra; Josephson, Anna; Ringman, Andreas; Brené, Stefan; Spenger, Christian; Olson, Lars

    2004-10-25

    Axonal regeneration after injury can be limited in the adult CNS by the presence of inhibitory proteins such as Nogo. Nogo binds to a receptor complex that consists of Nogo receptor (NgR), p75NTR, and Lingo-1. Nogo binding activates RhoA, which inhibits axonal outgrowth. Here we assessed Lingo-1 and NgR mRNA levels after delivery of BDNF into the rat hippocampal formation, Lingo-1 mRNA levels in rats subjected to kainic acid (KA) and running in running wheels. Lingo-1 mRNA was not changed by running. However, we found that Lingo-1 mRNA was strongly up-regulated while NgR mRNA was down-regulated in the dentate gyrus in both the BDNF and the KA experiments. Our data demonstrate inverse regulation of NgR and Lingo-1 in these situations, suggesting that Lingo-1 up-regulation is one characteristic of activity-induced neural plasticity responses.

  18. Prenatal ethanol exposure decreases hippocampal /sup 3/H-vinylidene kainic acid binding in 45-day-old rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, K.L.; Montano, C.Y.; Paxton, L.L.

    1988-11-01

    The effect of prenatal ethanol exposure on the kainate-sensitive subtype of glutamate receptor binding sites was studied using in vitro /sup 3/H-vinylidene kainic acid (VKA) autoradiography. Pregnant Sprague-Dawley rats were fed a liquid diet containing either 3.35% or 6.7% ethanol throughout gestation. Pair-fed dams received isocalorically matched liquid diets and a lab chow ad lib group served as control for paired feeding. At 45 days of age, the offspring were sacrificed and their brains analyzed for specific /sup 3/H-VKA binding. Compared to pair-fed controls, specific /sup 3/H-VKA binding was reduced by 13% to 32% in dorsal and ventral hippocampal CA3more » stratum lucidum, entorhinal cortex and cerebellum of 45-day-old rats whose mothers consumed either 3.35% or 6.7% ethanol diets. The binding site reductions were statistically significant only in the ventral hippocampal formation and entorhinal cortex of the 3.35% ethanol diet group rats. Saturation of binding studies in the ventral hippocampal formation of 3.35% ethanol rats indicated that the decrease in specific /sup 3/H-VKA binding was due to a decrease in the total number of binding sites. Given the excitatory effect of kainic acid on the spontaneous firing rate of hippocampal CA3 pyramidal neurons, the reduction of kainate-sensitive glutamate binding in this region is consistent with the electrophysiological observation of decreased spontaneous activity of CA3 pyramidal neurons in fetal alcohol rats.« less

  19. Substance P in the dorsal vagal complex inhibits medullary TRH-induced gastric acid secretion in rats.

    PubMed

    Yang, H; Taché, Y

    1997-05-01

    Neurons that contain substance P (SP) and thyrotropin-releasing hormone (TRH) in medullary midline raphe nuclei project to the dorsal vagal complex (DVC). The modulatory role of SP on basal gastric acid secretion (GAS) and TRH on DVC-induced stimulation of GAS was studied in urethan-anesthetized rats. The stable SP agonist, DiMe-C7 ([pGlu5, MePhe8, MeGly9]SP5-11, 50 and 100 pmol), injected unilaterally into the DVC reduced the GAS response (47 +/- 12 mumol/60 min) to coinjected TRH analog, RX 77368 (25 pmol), by 53% and 85%, respectively, whereas DiMe-C7 (100 pmol) alone had no effect on basal and pentagastrin-stimulated GAS. DiMe-C7 (100 pmol/site) inhibited the GAS response to kainic acid injected into the raphe pallidus (Rpa) when it was injected bilaterally into the DVC but not the hypoglossal nuclei. The SP nourokinin-1-receptor antagonist, CP-96,345, injected bilaterally into the DVC (1 nmol/ site) increased basal GAS (33 +/- 8 mumol/90 min) and potentiated the GAS response to kainic acid injected into the Rpa by 40%. These results suggest that SP acts on neurokinin-1 receptors in the DVC to reduce medullary TRH-induced stimulation of GAS in rats.

  20. AV3V lesions attenuate the cardiovascular responses produced by blood-borne excitatory amino acid analogs

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Beltz, T. G.; Lewis, S. J.; Johnson, A. K.

    1999-01-01

    Systemic injections of the excitatory amino acid (EAA) analogs, kainic acid (KA) and N-methyl-D-aspartate (NMDA), produce a pressor response in conscious rats that is caused by a centrally mediated activation of sympathetic drive and the release of arginine vasopressin (AVP). This study tested the hypothesis that the tissue surrounding the anteroventral part of the third ventricle (AV3V) plays a role in the expression of the pressor responses produced by systemically injected EAA analogs. Specifically, we examined whether prior electrolytic ablation of the AV3V region would affect the pressor responses to KA and NMDA (1 mg/kg iv) in conscious rats. The KA-induced pressor response was smaller in AV3V-lesioned than in sham-lesioned rats (11 +/- 2 vs. 29 +/- 2 mmHg; P < 0.05). After ganglion blockade, KA produced a pressor response in sham-lesioned but not AV3V-lesioned rats (+27 +/- 3 vs. +1 +/- 2 mmHg; P < 0.05). The KA-induced pressor response in ganglion-blocked sham-lesioned rats was abolished by a vasopressin V1-receptor antagonist. Similar results were obtained with NMDA. The pressor response to AVP (10 ng/kg iv) was slightly smaller in AV3V-lesioned than in sham-lesioned ganglion-blocked rats (45 +/- 3 vs. 57 +/- 4 mmHg; P < 0.05). This study demonstrates that the pressor responses to systemically injected EAA analogs are smaller in AV3V-lesioned rats. The EAA analogs may produce pressor responses by stimulation of EAA receptors in the AV3V region, or the AV3V region may play an important role in the expression of these responses.

  1. Targeting of microRNA-21-5p protects against seizure damage in a kainic acid-induced status epilepticus model via PTEN-mTOR.

    PubMed

    Tang, Chongyang; Gu, Yunhe; Wang, Haiyang; Wu, Hongmei; Wang, Yu; Meng, Yao; Han, Zhibin; Gu, Yifei; Ma, Wei; Jiang, Zhenfeng; Song, Yuanyuan; Na, Meng; Lu, Dunyue; Lin, Zhiguo

    2018-05-04

    Studies have shown that microRNAs play a role in the development of epilepsy by regulating downstream target messenger (m)RNA. The present study aims to determine the changes associated with microRNA-21-5p (miR-21-5p) during epileptogenesis in a kainic acid rat model, and to assess whether the PTEN-mTOR pathway is a target of miR-21-5p. Reverse transcription polymerase chain reaction (RT-PCR) was used to examine the quantitative expressions of miR-21-5p and PTEN, and Western blotting was used to test the activity of mTOR in the acute, latent, and chronic stages of epileptogenesis. The antagomir of miR-21-5p was injected into the intracerebroventricular space using a microsyringe. Neuronal death and epilepsy discharge were assessed by Nissl staining and electroencephalography (EEG), respectively. The Morris water maze (MWM) was used to assess the cognitive impairment in rats after status epilepticus (SE). Both miR-21-5p and mTOR were upregulated and PTEN was downregulated in rats during acute, latent, and chronic stages of epileptogenesis when compared with those of the control. After using antagomir miR-21-5p in vivo, miR-21-5p and mTOR decreased and the expression of PTEN increased compared with that in the SE model. The silencing of miR-21-5p diminished the number of abnormal spikes on EEG and decreased the number of neuron deletions on Nissl staining. The cognitive and memory impairment caused by epilepsy could also be improved after miR-21-5p knockdown in vivo. The results of the present study demonstrate that PTEN-mTOR is the target of miR-21-5p in a kainic acid model of epilepsy. The knockout of miR-21-5p decreases the neuronal damage in stages of epileptogenesis. The miR-21-5p/PTEN/mTOR axis may be a potential target for preventing and treating seizures and epileptic damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Neural Progenitor Cells Rptor Ablation Impairs Development but Benefits to Seizure-Induced Behavioral Abnormalities.

    PubMed

    Chen, Ling-Lin; Wu, Mei-Ling; Zhu, Feng; Kai, Jie-Jing; Dong, Jing-Yin; Wu, Xi-Mei; Zeng, Ling-Hui

    2016-12-01

    Previous study suggests that mTOR signaling pathway may play an important role in epileptogenesis. The present work was designed to explore the contribution of raptor protein to the development of epilepsy and comorbidities. Mice with conditional knockout of raptor protein were generated by cross-bred Rptor flox/flox mice with nestin-CRE mice. The expression of raptor protein was analyzed by Western blotting in brain tissue samples. Neuronal death and mossy fiber sprouting were detected by FJB staining and Timm staining, respectively. Spontaneous seizures were recorded by EEG-video system. Morris water maze, open field test, and excitability test were used to study the behaviors of Rptor CKO mice. As the consequence of deleting Rptor, downstream proteins of raptor in mTORC1 signaling were partly blocked. Rptor CKO mice exhibited decrease in body and brain weight under 7 weeks old and accordingly, cortical layer thickness. After kainic acid (KA)-induced status epilepticus, overactivation of mTORC1 signaling was markedly reversed in Rptor CKO mice. Although low frequency of spontaneous seizure and seldom neuronal cell death were observed in both Rptor CKO and control littermates, KA seizure-induced mossy fiber spouting were attenuated in Rptor CKO mice. Additionally, cognitive-deficit and anxiety-like behavior after KA-induced seizures were partly reversed in Rptor CKO mice. Loss of the Rptor gene in mice neural progenitor cells affects normal development in young age and may contribute to alleviate KA seizure-induced behavioral abnormalities, suggesting that raptor protein plays an important role in seizure comorbidities. © 2016 John Wiley & Sons Ltd.

  3. Anticonvulsant and neuroprotective effects of oligosaccharides from Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Higher Basidiomycetes).

    PubMed

    Tello, Isaac; Campos-Pena, Victoria; Montiel, Elizur; Rodriguez, Veronica; Aguirre-Moreno, Alma; Leon-Rivera, Ismael; Del Rio-Portilla, Federico; Herrera-Ruiz, Maribel; Villeda-Hernandez, Juana

    2013-01-01

    An oligosaccharide fraction isolated from the mycelium of the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (GLOS) was separated by size-exclusion chromatography. The chemical structure of GLOS consists of a disaccharide repeating unit [-4-β-1-Galf(1-6)-O-(β-Glcp)-1-]n (n=3,4). In addition, this study was undertaken to determine the possible anticonvulsant and neuroprotective effects of GLOS (10-80 mg/kg) on kainic acid (KA)-induced seizures. The behavioral alterations and histopathology of hippocampal neurons were studied. Our results show that GLOS inhibited convulsions in rats from KA-induced seizures, reduced the degeneration pattern in the CA3 region of rats, decreased astrocytic reactivity, and reduced the expression of IL-1β and TNF-α induced by KA. These results indicate a potential anticonvulsant and neuroprotective effects of GLOS.

  4. Neuroprotective effect against axonal damage-induced retinal ganglion cell death in apolipoprotein E-deficient mice through the suppression of kainate receptor signaling.

    PubMed

    Omodaka, Kazuko; Nishiguchi, Koji M; Yasuda, Masayuki; Tanaka, Yuji; Sato, Kota; Nakamura, Orie; Maruyama, Kazuichi; Nakazawa, Toru

    2014-10-24

    Apolipoprotein E (ApoE) plays important roles in the body, including a carrier of cholesterols, an anti-oxidant, and a ligand for the low-density lipoprotein receptors. In the nervous system, the presence of ApoE4 isoforms is associated with Alzheimer's disease. ApoE gene polymorphisms are also associated with glaucoma, but the function of ApoE in the retina remains unclear. In this study, we investigated the role of ApoE in axonal damage-induced RGC death. ApoE was detected in the astrocytes and Müller cells in the wild-type (WT) retina. RGC damage was induced in adult ApoE-deficient mice (male, 10-12 weeks old) through ocular hypertension (OH), optic nerve crush (NC), or by administering kainic acid (KA) intravitreally. The WT mice were treated with a glutamate receptor antagonist (MK801 or CNQX) 30 min before performing NC or left untreated. Seven days later, the retinas were flat mounted and Fluorogold-labeled RGCs were counted. We found that the RGCs in the ApoE-deficient mice were resistant to OH-induced RGC death and optic nerve degeneration 4 weeks after induction. In WT mice, NC effectively induced RGC death (control: 4085±331 cells/mm(2), NC: 1728±170 cells/mm(2)). CNQX, an inhibitor of KA receptors, suppressed this RGC death (3031±246 cells/mm(2)), but MK801, an inhibitor of NMDA receptors, did not (1769±212 cells/mm(2)). This indicated the involvement of KA receptor signaling in NC-induced RGC death. We found that NC- or KA-induced RGC death was significantly less in the ApoE-deficient mice than in the WT mice. These data suggest that the ApoE deficiency had a neuroprotective effect against axonal damage-induced RGC death by suppressing the KA receptor signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Predicting the pKa and stability of organic acids and bases at an oil-water interface.

    PubMed

    Andersson, M P; Olsson, M H M; Stipp, S L S

    2014-06-10

    We have used density functional theory and the implicit solvent model, COSMO-RS, to investigate how the acidity constant, pKa, of organic acids and bases adsorbed at the organic compound-aqueous solution interface changes, compared to its value in the aqueous phase. The pKa determine the surface charge density of the molecules that accumulate at the fluid-fluid interface. We have estimated the pKa by comparing the stability of the protonated and unprotonated forms of a series of molecules in the bulk aqueous solution and at an interface where parts of each molecule reside in the hydrophobic phase and the rest remains in the hydrophilic phase. We found that the pKa for acids is shifted by ∼1 pH unit to higher values compared to the bulk water pKa, whereas they are shifted to lower values by a similar amount for bases. Because this pKa shift is similar in magnitude for each of the molecules studied, we propose that the pKa for molecules at a water-organic compound interface can easily be predicted by adding a small shift to the aqueous pKa. This shift is general and correlates with the functional group. We also found that the relative composition of molecules at the fluid-fluid interface is not the same as in the bulk. For example, species such as carboxylic acids are enriched at the interface, where they can dominate surface properties, even when they are a modest component in the bulk fluid. For high surface concentrations of carboxylic acid groups at an interface, such as a self-assembled monolayer, we have demonstrated that the pKa depends on the degree of deprotonation through direct hydrogen bonding between protonated and deprotonated acidic headgroups.

  6. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    PubMed

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  7. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats.

    PubMed

    Tchekalarova, Jana; Loyens, Ellen; Smolders, Ilse

    2015-05-01

    In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Domoic acid excretion in dungeness crabs, razor clams and mussels.

    PubMed

    Schultz, Irvin R; Skillman, Ann; Woodruff, Dana

    2008-07-01

    Domoic acid (DA) is a neurotoxic amino acid produced by several marine algal species of the Pseudo-nitzschia (PN) genus. We studied the elimination of DA from hemolymph after intravascular (IV) injection in razor clams (Siliqua patula), mussels (Mytilus edulis) and Dungeness crabs (Cancer magister). Crabs were also injected with two other organic acids, dichloroacetic acid (DCAA) and kainic acid (KA). For IV dosing, hemolymph was repetitively sampled and DA concentrations measured by HPLC-UV. Toxicokinetic analysis of DA in crabs suggested most of the injected dose remained within hemolymph compartment with little extravascular distribution. This observation is in sharp contrast to results obtained from clams and mussels which exhibited similarly large apparent volumes of distribution despite large differences in overall clearance. These findings suggest fundamentally different storage and elimination processes are occurring for DA between bivalves and crabs.

  9. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    NASA Technical Reports Server (NTRS)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  10. pKa Modulation in rhodamine based probes for colorimetric detection of picric acid.

    PubMed

    Nagarajan, V; Bag, Bamaprasad

    2014-12-21

    Tuning the pKa in acid sensitive rhodamine spirolactam derivatives as a function of the solvent medium resulted in the selective detection of picric acid from its lower nitro phenolic analogues and a few other carboxylic acids.

  11. Discovery of a new class of ionotropic glutamate receptor antagonists by the rational design of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid.

    PubMed

    Larsen, Ann M; Venskutonytė, Raminta; Valadés, Elena Antón; Nielsen, Birgitte; Pickering, Darryl S; Bunch, Lennart

    2011-02-16

    The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1-5. In this article, we present the discovery of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid (1) based on a rational design process. Target compound 1 was synthesized by a stereoselective strategy in 10 steps from commercially available starting materials. Binding affinities of 1 at native ionotropic Glu receptors were determined to be in the micromolar range (AMPA, 51 μM; KA, 22 μM; NMDA 6 μM), with the highest affinity for cloned homomeric KA receptor subtypes GluK1,3 (3.0 and 8.1 μM, respectively). Functional characterization of 1 by two electrode voltage clamp (TEVC) electrophysiology at a nondesensitizing mutant of GluK1 showed full competitive antagonistic behavior with a K(b) of 11.4 μM.

  12. Excitotoxicity-induced prostaglandin D2 production induces sustained microglial activation and delayed neuronal death.

    PubMed

    Iwasa, Kensuke; Yamamoto, Shinji; Yagishita, Sosuke; Maruyama, Kei; Yoshikawa, Keisuke

    2017-04-01

    Excitotoxicity is the pivotal mechanism of neuronal death. Prostaglandins (PGs) produced during excitotoxicity play important roles in neurodegenerative conditions. Previously, we demonstrated that initial burst productions of PGD 2 , PGE 2 , and PGF 2α are produced by cyclooxygenase-2 (COX-2) in the hippocampus following a single systemic kainic acid (KA) administration. In addition, we showed that blocking of all PG productions ameliorated hippocampal delayed neuronal death at 30 days after KA administration. To investigate the role of individual PGs in the delayed neuronal death, we performed intracerebroventricular injection of PGD 2 , PGE 2 , or PGF 2α in rats whose hippocampal PG productions were entirely blocked by pretreatment of NS398, a COX-2 selective inhibitor. Administration of PGD 2 and PGF 2α had a latent contribution to the delayed neuronal death, sustained over 30 days after a single KA treatment. Furthermore, PGD 2 enhanced microglial activation, which may be involved in the delayed neuronal death in the hippocampus. These findings suggest that excitotoxic delayed neuronal death is mediated through microglia activated by PGD 2 . Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34.

    PubMed

    Yu, Haibo; Griffiths, Thomas M

    2014-03-28

    Glycoside hydrolase families 33 and 34 catalyse the hydrolysis of terminal sialic acid residues from sialyl oligosaccharides and glycoconjugates with a net retention of the stereochemistry at the anomeric centre. It is generally believed that the conserved aspartic acid in the active site functions as a general acid to protonate the hydroxyl group of the departing aglycone during glycosylation, and then as a general base to facilitate the nucleophilic attack of the water molecule on the intermediate state during the deglycosylation reaction. The dual role of the general acid/base places specific demands upon its protonation state, and thus pKa values. However, it is not fully understood how this catalytic residue can achieve such pKa cycling during catalysis. We present both MM and combined QM/MM simulations to characterise the pKa values of the proposed catalytic general acid/base in the glycoside hydrolase families 33 and 34. Collectively, our study suggests that the binding of anionic substrates and the local solvation properties along with the neutralisation of the nearby glutamic acid upon glycosylation modulate the electrostatic environment around the general acid/base to achieve its proper protonation states.

  14. Weak acid-concentration Atot and dissociation constant Ka of plasma proteins in racehorses.

    PubMed

    Stampfli, H R; Misiaszek, S; Lumsden, J H; Carlson, G P; Heigenhauser, G J

    1999-07-01

    The plasma proteins are a significant contributor to the total weak acid concentration as a net anionic charge. Due to potential species difference, species-specific values must be confirmed for the weak acid anionic concentrations of proteins (Atot) and the effective dissociation constant for plasma weak acids (Ka). We studied the net anion load Atot of equine plasma protein in 10 clinically healthy mature Standardbred horses. A multi-step titration procedure, using a tonometer covering a titration range of PCO2 from 25 to 145 mmHg at 37 degrees C, was applied on the plasma of these 10 horses. Blood gases (pH, PCO2) and electrolytes required to calculate the strong ion difference ([SID] = [(Na(+) + K(+) + Ca(2+) + Mg(2+))-(Cl(-) + Lac(-) + PO4(2-))]) were simultaneously measured over a physiological pH range from 6.90-7.55. A nonlinear regression iteration to determine Atot and Ka was performed using polygonal regression curve fitting applied to the electrical neutrality equation of the physico-chemical system. The average anion-load Atot for plasma protein of 10 Standardbred horses was 14.89 +/- 0.8 mEq/l plasma and Ka was 2.11 +/- 0.50 x 10(-7) Eq/l (pKa = 6.67). The derived conversion factor (iterated Atot concentration/average plasma protein concentration) for calculation of Atot in plasma is 0.21 mEq/g protein (protein-unit: g/l). This value compares closely with the 0.24 mEq/g protein determined by titration of Van Slyke et al. (1928) and 0.22 mEq/g protein recently published by Constable (1997) for horse plasma. The Ka value compares closely with the value experimentally determined by Constable in 1997 (2.22 x 10(7) Eq/l). Linear regression of a set of experimental data from 5 Thoroughbred horses on a treadmill exercise test, showed excellent correlation with the regression lines not different from identity for the calculated and measured variables pH, HCO3 and SID. Knowledge of Atot and Ka for the horse is useful especially in exercise studies and in

  15. Protective Effect of Resveratrol on the Brain in a Rat Model of Epilepsy.

    PubMed

    Li, Zhen; You, Zhuyan; Li, Min; Pang, Liang; Cheng, Juan; Wang, Liecheng

    2017-06-01

    Accumulating evidence has suggested resveratrol as a promising drug candidate for the treatment of epilepsy. To validate this, we tested the protective effect of resveratrol on a kainic acid (KA)-induced epilepsy model in rats and investigated the underlying mechanism. We found that acute resveratrol application partially inhibited evoked epileptiform discharges in the hippocampal CA1 region. During acute, silent and chronic phases of epilepsy, the expression of hippocampal kainate glutamate receptor (GluK2) and the GABA A receptor alpha1 subunit (GABA A R-alpha1) was up-regulated and down-regulated, respectively. Resveratrol reversed these effects and induced an antiepileptic effect. Furthermore, in the chronic phase, resveratrol treatment inhibited the KA-induced increased glutamate/GABA ratio in the hippocampus. The antiepileptic effects of resveratrol may be partially attributed to the reduction of glutamate-induced excitotoxicity and the enhancement in GABAergic inhibition.

  16. Effects of glutamic acid analogues on identifiable giant neurones, sensitive to beta-hydroxy-L-glutamic acid, of an African giant snail (Achatina fulica Férussac).

    PubMed Central

    Nakajima, T.; Nomoto, K.; Ohfune, Y.; Shiratori, Y.; Takemoto, T.; Takeuchi, H.; Watanabe, K.

    1985-01-01

    The effects of the seven glutamic acid analogues, alpha-kainic acid, alpha-allo-kainic acid, domoic acid, erythro-L-tricholomic acid, DL-ibotenic acid, L-quisqualic acid and allo-gamma-hydroxy-L-glutamic acid were examined on six identifiable giant neurones of an African giant snail (Achatina fulica Férussac). The neurones studied were: PON (periodically oscillating neurone), d-RPLN (dorsal-right parietal large neurone), VIN (visceral intermittently firing neurone), RAPN (right anterior pallial neurone), FAN (frequently autoactive neurone) and v-RCDN (ventral-right cerebral distinct neurone). Of these, d-RPLN and RAPN were excited by the two isomers (erythro- and threo-) of beta-hydroxy-L-glutamic acid (L-BHGA), whereas PON, VIN, FAN and v-RCDN were inhibited. L-Glutamic acid (L-Glu) had virtually no effect on these neurones. alpha-Kainic acid and domoic acid showed marked excitatory effects, similar to those of L-BHGA, on d-RPLN and RAPN. Their effective potency quotients (EPQs), relative to the more effective isomer of L-BHGA were: 0.3 for both substances on d-RPLN, and 1 for alpha-kainic acid and 3-1 for domoic acid on RAPN. alpha-Kainic acid also had excitatory effects on FAN and v-RCDN (EPQ for both: 0.3), which were inhibited by L-BHGA but excited by gamma-aminobutyric acid (GABA). Erythro-L-tricholomic acid showed marked effects, similar to those of L-BHGA, on VIN (EPQ: 0.3) and RAPN (EPQ: 3-1), but produced weaker effects on PON and d-RPLN (EPQ: 0.1). DL-Ibotenic acid produced marked effects, similar to those of L-BHGA, on PON, VIN (EPQ for both: 1) and RAPN (EPQ: 1-0.3), but had weak effects on d-RPLN (EPQ: less than 0.1) and FAN (EPQ: 0.1). It had excitatory effects on v-RCDN (EPQ: 0.1). This neurone was inhibited by L-BHGA but excited by GABA. L-Quisqualic acid showed the same effects as L-BHGA on all of the neurones examined (EPQ range 30-0.1). It was the most potent of the compounds tested on RAPN (EPQ: 30-10), FAN (EPQ: 30) and v-RCDN (EPQ: 3). alpha-Allo-kainic

  17. Chemically Induced Damage to the Hippocampal Formation,

    DTIC Science & Technology

    1986-05-01

    Ottersen, 0 P and Meldrum , B S (1980): The role of epileptic activity in hippocanpal and "remote" cerebral lesions induced by kainic acid , Brain Res...Toxicology (in press). PAPFR III: (manuscript) Naalsund, L U and Fonnum, F, 1986, Pifferences in anionic dependence of the synaptic efflux of D-aspartic acid ...and y-amino butyric acid , J Neurochem (in press). PAPER IV: (manuscript) Naalsund, L U, 1986, Hippocampal EEC in rats after chronic toluene inhalation

  18. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, R.F.; Lear, J.L.

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less

  19. pKa of fentanyl varies with temperature: implications for acid-base management during extremes of body temperature.

    PubMed

    Thurlkill, Richard L; Cross, David A; Scholtz, J Martin; Pace, C Nick

    2005-12-01

    The pKa of fentanyl has not been measured previously at varying extremes of body temperature. The goal of this laboratory investigation was to test the hypothesis that the pKa of fentanyl changes with temperature. The investigation involved measuring the pKa values of aqueous fentanyl at varying temperatures. The investigation was conducted in a controlled laboratory environment. No human or animal subjects were involved. Because no live subjects were involved in the investigation, no interventions were necessary. This paper reports the effect of temperature on the pKa of fentanyl. The pKa of aqueous fentanyl was measured at 15 degrees C, 25 degrees C, 37 degrees C, 42 degrees C, and 47.5 degrees C by potentiometric titration in 0.01 mmol/L of potassium chloride after extensive degassing. Data were analyzed using the least squares method with an appropriately fitting equation. The pKa of fentanyl was found to change in a similar manner to the neutral point of water at varying temperatures. This finding has implications for the bioavailability of fentanyl at extremes of body temperature in association with the clinical acid-base management of the patient. Clinical implications for differing methods of intraoperative acid-base management at varying temperatures are discussed.

  20. Determination of pKa values of alendronate sodium in aqueous solution by piecewise linear regression based on acid-base potentiometric titration.

    PubMed

    Ke, Jing; Dou, Hanfei; Zhang, Ximin; Uhagaze, Dushimabararezi Serge; Ding, Xiali; Dong, Yuming

    2016-12-01

    As a mono-sodium salt form of alendronic acid, alendronate sodium presents multi-level ionization for the dissociation of its four hydroxyl groups. The dissociation constants of alendronate sodium were determined in this work by studying the piecewise linear relationship between volume of titrant and pH value based on acid-base potentiometric titration reaction. The distribution curves of alendronate sodium were drawn according to the determined pKa values. There were 4 dissociation constants (pKa 1 =2.43, pKa 2 =7.55, pKa 3 =10.80, pKa 4 =11.99, respectively) of alendronate sodium, and 12 existing forms, of which 4 could be ignored, existing in different pH environments.

  1. Low brain ascorbic acid increases susceptibility to seizures in mouse models of decreased brain ascorbic acid transport and Alzheimer's disease.

    PubMed

    Warner, Timothy A; Kang, Jing-Qiong; Kennard, John A; Harrison, Fiona E

    2015-02-01

    Seizures are a known co-occurring symptom of Alzheimer's disease, and they can accelerate cognitive and neuropathological dysfunction. Sub-optimal vitamin C (ascorbic acid) deficiency, that is low levels that do not lead the sufferer to present with clinical signs of scurvy (e.g. lethargy, hemorrhage, hyperkeratosis), are easily obtainable with insufficient dietary intake, and may contribute to the oxidative stress environment of both Alzheimer's disease and epilepsy. The purpose of this study was to test whether mice that have diminished brain ascorbic acid in addition to carrying human Alzheimer's disease mutations in the amyloid precursor protein (APP) and presenilin 1 (PSEN1) genes, had altered electrical activity in the brain (electroencephalography; EEG), and were more susceptible to pharmacologically induced seizures. Brain ascorbic acid was decreased in APP/PSEN1 mice by crossing them with sodium vitamin C transporter 2 (SVCT2) heterozygous knockout mice. These mice have an approximately 30% decrease in brain ascorbic acid due to lower levels of SVCT2 that supplies the brain with ASC. SVCT2+/-APP/PSEN1 mice had decreased ascorbic acid and increased oxidative stress in brain, increased mortality, faster seizure onset latency following treatment with kainic acid (10 mg/kg i.p.), and more ictal events following pentylenetetrazol (50 mg/kg i.p.) treatment. Furthermore, we report the entirely novel phenomenon that ascorbic acid deficiency alone increased the severity of kainic acid- and pentylenetetrazol-induced seizures. These data suggest that avoiding ascorbic acid deficiency may be particularly important in populations at increased risk for epilepsy and seizures, such as Alzheimer's disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy.

    PubMed

    Gano, Lindsey B; Liang, Li-Ping; Ryan, Kristen; Michel, Cole R; Gomez, Joe; Vassilopoulos, Athanassios; Reisdorph, Nichole; Fritz, Kristofer S; Patel, Manisha

    2018-08-01

    Impaired bioenergetics and oxidative damage in the mitochondria are implicated in the etiology of temporal lobe epilepsy, and hyperacetylation of mitochondrial proteins has recently emerged as a critical negative regulator of mitochondrial functions. However, the roles of mitochondrial acetylation and activity of the primary mitochondrial deacetylase, SIRT3, have not been explored in acquired epilepsy. We investigated changes in mitochondrial acetylation and SIRT3 activity in the development of chronic epilepsy in the kainic acid rat model of TLE. Hippocampal measurements were made at 48 h, 1 week and 12 weeks corresponding to the acute, latent and chronic stages of epileptogenesis. Assessment of hippocampal bioenergetics demonstrated a ≥ 27% decrease in the ATP/ADP ratio at all phases of epileptogenesis (p < 0.05), whereas cellular NAD+ levels were decreased by ≥ 41% in the acute and latent time points (p < 0.05), but not in chronically epileptic rats. In spontaneously epileptic rats, we found decreased protein expression of SIRT3 and a 60% increase in global mitochondrial acetylation, as well as enhanced acetylation of the known SIRT3 substrates MnSOD, Ndufa9 of Complex I and IDH2 (all p < 0.05), suggesting SIRT3 dysfunction in chronic epilepsy. Mass spectrometry-based acetylomics investigation of hippocampal mitochondria demonstrated a 79% increase in unique acetylated proteins from rats in the chronic phase vs. controls. Pathway analysis identified numerous mitochondrial bioenergetic pathways affected by mitochondrial acetylation. These results suggest SIRT3 dysfunction and aberrant protein acetylation may contribute to mitochondrial dysfunction in chronic epilepsy. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Naringin attenuates granule cell dispersion in the dentate gyrus in a mouse model of temporal lobe epilepsy.

    PubMed

    Jang, Hannah; Jeong, Kyoung Hoon; Kim, Sang Ryong

    2016-07-01

    Morphological abnormalities of the dentate gyrus (DG) are an important phenotype in the hippocampus of patients with temporal lobe epilepsy. We recently reported that naringin, a bioflavonoid in grapefruit and citrus fruits, exerts beneficial effects in the kainic acid (KA) mouse model of epilepsy. We found that naringin treatment reduced seizure activities and decreased autophagic stress and neuroinflammation in the hippocampus following in vivo lesion with KA. However, it remains unclear whether naringin may also attenuate seizure-induced morphological changes in the DG, collectively known as granule cell dispersion (GCD). To clarify whether naringin treatment reduces GCD, we evaluated the effects of intraperitoneal injection of naringin on GCD and activation of mammalian target of rapamycin complex 1 (mTORC1), an important regulator of GCD, following intrahippocampal injection of KA. Our results showed that naringin treatment significantly reduced KA-induced GCD and mTORC1 activation, which was confirmed by assessing the phosphorylated form of the mTORC1 substrate, 4E-BP1, in the hippocampus. These results suggest that naringin treatment may help prevent epilepsy-induced hippocampal injury by inhibiting mTORC1 activation and thereby reducing GCD in the hippocampus in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Retigabine, a Kv7.2/Kv7.3-Channel Opener, Attenuates Drug-Induced Seizures in Knock-In Mice Harboring Kcnq2 Mutations.

    PubMed

    Ihara, Yukiko; Tomonoh, Yuko; Deshimaru, Masanobu; Zhang, Bo; Uchida, Taku; Ishii, Atsushi; Hirose, Shinichi

    2016-01-01

    The hetero-tetrameric voltage-gated potassium channel Kv7.2/Kv7.3, which is encoded by KCNQ2 and KCNQ3, plays an important role in limiting network excitability in the neonatal brain. Kv7.2/Kv7.3 dysfunction resulting from KCNQ2 mutations predominantly causes self-limited or benign epilepsy in neonates, but also causes early onset epileptic encephalopathy. Retigabine (RTG), a Kv7.2/ Kv7.3-channel opener, seems to be a rational antiepileptic drug for epilepsies caused by KCNQ2 mutations. We therefore evaluated the effects of RTG on seizures in two strains of knock-in mice harboring different Kcnq2 mutations, in comparison to the effects of phenobarbital (PB), which is the first-line antiepileptic drug for seizures in neonates. The subjects were heterozygous knock-in mice (Kcnq2Y284C/+ and Kcnq2A306T/+) bearing the Y284C or A306T Kcnq2 mutation, respectively, and their wild-type (WT) littermates, at 63-100 days of age. Seizures induced by intraperitoneal injection of kainic acid (KA, 12mg/kg) were recorded using a video-electroencephalography (EEG) monitoring system. Effects of RTG on KA-induced seizures of both strains of knock-in mice were assessed using seizure scores from a modified Racine's scale and compared with those of PB. The number and total duration of spike bursts on EEG and behaviors monitored by video recording were also used to evaluate the effects of RTG and PB. Both Kcnq2Y284C/+ and Kcnq2A306T/+ mice showed significantly more KA-induced seizures than WT mice. RTG significantly attenuated KA-induced seizure activities in both Kcnq2Y284C/+ and Kcnq2A306T/+ mice, and more markedly than PB. This is the first reported evidence of RTG ameliorating KA-induced seizures in knock-in mice bearing mutations of Kcnq2, with more marked effects than those observed with PB. RTG or other Kv7.2-channel openers may be considered as first-line antiepileptic treatments for epilepsies resulting from KCNQ2 mutations.

  5. A role for synaptic and network plasticity in controlling epileptiform activity in CA1 in the kainic acid-lesioned rat hippocampus in vitro.

    PubMed Central

    Bernard, C; Wheal, H V

    1996-01-01

    1. Stimulation of the surviving afferents in the stratum radiatum of the CA1 area in kainic acid-lesioned hippocampal slices produced graded epileptiform activity, part of which (> 20%) involved the activation of N-methyl-D-aspartate (NMDA) receptors. There was also a failure of synaptic inhibition in this region. In this preparation, we have tested the effects of low-frequency stimulation (LFS; 1 Hz for 15 min) on synaptic responses and epileptiform activity. 2. LFS resulted in long-term depression (LTD) of excitatory synaptic potentials (EPSPs), long-term decrease of population spike amplitudes (PSAs) and EPSP-spike (E-S) potentiation. Evoked epileptiform activity was reduced but neurons had a higher probability of discharge. LTD could be reversed by subsequent tetanic stimulation whereas E-S dissociation remained unchanged. Synaptic and network responses could be saturated towards either potentiation or depression. However, E-S potentiation was maximal following the first conditioning stimulus. 3. NMDA receptor-mediated responses were pharmacologically isolated. LFS resulted in LTD of synaptic responses, long-term decrease of PSAs and E-S depression. These depressions could not be reversed by subsequent tetanic stimulation. alpha-Amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and NMDA receptor-mediated responses were then measured in isolation before and following conditioning stimuli. LFS was shown to simultaneously produce LTD of AMPA and NMDA receptor-mediated responses. E-S potentiation of the AMPA component and E-S depression of the NMDA component occurred coincidentally. 4. LTD of AMPA and NMDA receptor-mediated responses were shown to be NMDA dependent. In contrast, E-S potentiation and depression occurred even when NMDA receptors were pharmacologically blocked. 5. These findings indicate that synaptic responses could be modified bidirectionally in the CA1 area of kainic acid-lesioned rat hippocampus in an NMDA receptor-dependent manner. However

  6. Differential regulation of preprotachykinin-A mRNA expression in striatum by excitation of hippocampal neurons.

    PubMed

    Brené, S; Lindefors, N; Herrera-Marschitz, M; Persson, H

    1993-07-01

    In this report we have studied the influence of hippocampal neurons on neuropeptide mRNA expression in both dorsal and ventral striatum in the rat. Intrahippocampal unilateral kainic acid injections were performed in control animals and in animals with a unilateral 6-hydroxydopamine-induced dopamine deafferentation of the striatum. In situ hybridization combined with quantitative image analysis was used to study the expression of preprotachykinin A mRNA encoding the neuropeptides substance P and neurokinin A. The 6-hydroxydopamine-induced lesion caused a decrease of preprotachykinin A mRNA levels in the ipsilateral dorsal striatum and in both sides of the ventral striatum. In normal rats, the intrahippocampal kainic acid injection caused a twofold increase in preprotachykinin A mRNA in the limbic parts of the striatum, which are innervated by the hippocampus. No effect of the kainic acid injection was seen in the lateral parts of the dorsal striatum, a region which does not appear to be innervated by the hippocampus. Animals with a 6-hydroxydopamine lesion showed a similar kainic acid-mediated increase in preprotachykinin A mRNA in parts of the ventral striatum. In the dopamine-lesioned dorsal striatum and ventral striatum the decreased preprotachykinin A mRNA levels were normalized by the intrahippocampal kainic acid injection. These results show that kainic acid-mediated excitation of hippocampal neurons causes a dopamine-independent induction of preprotachykinin A mRNA expression in parts of the ventral striatum, and reverses the dopamine deafferentation-induced decrease of preprotachykinin A mRNA in both dorsal and ventral striatum. Combined, our results suggest that hippocampal neurons can regulate preprotachykinin A mRNA expression in both the ventral and the dorsal striatum.

  7. E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate

    PubMed Central

    Kim, So Ra; Sung, Sang Hyun; Jang, Young Pyo; Markelonis, George J; Oh, Tae H; Kim, Young Choong

    2002-01-01

    We previously reported that four new phenylpropanoid glycosides and six known cinnamate derivatives isolated from roots of Scrophularia buergeriana Miquel (Scrophulariaceae) protected cultured cortical neurons from neurotoxicity induced by glutamate. Here, we have investigated the structure-activity relationships in the phenylpropanoids using our primary culture system. The α,β-unsaturated ester moiety and the para-methoxy group in the phenylpropanoids appeared to play a vital role in neuroprotective activity. This suggested that E-p-methoxycinnamic acid (E-p-MCA) might be a crucial component for their neuroprotective activity within the phenylpropanoid compounds. E-p-MCA significantly attenuated glutamate-induced neurotoxicity when added prior to an excitotoxic glutamate challenge. The neuroprotective activity of E-p-MCA appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than from that induced by kainic acid. E-p-MCA inhibited the binding of [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine to their respective binding sites on rat cortical membranes. However, even high concentrations of E-p-MCA failed to inhibit completely [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine binding. Indeed, E-p-MCA diminished the calcium influx that routinely accompanies glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of nitric oxide and cellular peroxide in glutamate-injured neurons. Thus, our results suggest that E-p-MCA exerts significant protective effects against neurodegeneration induced by glutamate in primary cultures of cortical neurons by an action suggestive of partial glutamatergic antagonism. PMID:11877337

  8. Serotonin depletion increases seizure susceptibility and worsens neuropathological outcomes in kainate model of epilepsy.

    PubMed

    Maia, Gisela H; Brazete, Cátia S; Soares, Joana I; Luz, Liliana L; Lukoyanov, Nikolai V

    2017-09-01

    Serotonin is implicated in the regulation of seizures, but whether or not it can potentiate the effects of epileptogenic factors is not fully established. Using the kainic acid model of epilepsy in rats, we tested the effects of serotonin depletion on (1) susceptibility to acute seizures, (2) development of spontaneous recurrent seizures and (3) behavioral and neuroanatomical sequelae of kainic acid treatment. Serotonin was depleted by pretreating rats with p-chlorophenylalanine. In different groups, kainic acid was injected at 3 different doses: 6.5mg/kg, 9.0mg/kg or 12.5mg/kg. A single dose of 6.5mg/kg of kainic acid reliably induced status epilepticus in p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats. The neuroexcitatory effects of kainic acid in the p-chlorophenylalanine-pretreated rats, but not in saline-pretreated rats, were associated with the presence of tonic-clonic convulsions and high lethality. Compared to controls, a greater portion of serotonin-depleted rats showed spontaneous recurrent seizures after kainic acid injections. Loss of hippocampal neurons and spatial memory deficits associated with kainic acid treatment were exacerbated by prior depletion of serotonin. The present findings are of particular importance because they suggest that low serotonin activity may represent one of the major risk factors for epilepsy and, thus, offer potentially relevant targets for prevention of epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus

    PubMed Central

    2012-01-01

    Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression

  10. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    PubMed

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  11. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases

    NASA Astrophysics Data System (ADS)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  12. Transient Delivery of Adenosine as a Novel Therapy to Prevent Epileptogenesis

    DTIC Science & Technology

    2013-08-01

    rats characterized by the development of SRS triggered by systemic kainic acid–induced (KA-induced) status epilepticus (SE) (Figure 3A). Using...to modulate DNA methylation status , have not been studied to date. Based on ADO’s role as an obligatory end product of DNA methylation, we...1E). Together, these findings show that modulating ADO tone either directly or via modulation of ADK expression can affect DNA methylation status in

  13. Accurate pKa calculation of the conjugate acids of alkanolamines, alkaloids and nucleotide bases by quantum chemical methods.

    PubMed

    Gangarapu, Satesh; Marcelis, Antonius T M; Zuilhof, Han

    2013-04-02

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS-MP2 and M11-L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen-containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low-cost SM8/M11-L density functional approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Protection against Acetylcholinesterase Inhibitor Toxicity by Alpha- Adrenergic Agonists

    DTIC Science & Technology

    1992-10-28

    acetvlthiocholine iodide (substrate). and 6.9 mM Dithiosnitrobenzoic acid . The absorbance at 412 nm was recorded for 2 rain. 1~1 RESULTS PART I...however, the drug has been shown to be quite effective in limiting seizure production in the audiogenic 1261 and kainic acid [31 animal models of...acetyicholinesterase inhibitor soman. Neurosci.Ltt. 78: 107-112. 3. Baran, H., Hortnagi, H. and Homykiewicz, 0. (1989). Kainic acid -induced seizures

  15. Activating mitochondrial function and haemoglobin expression with EH-201, an inducer of erythropoietin in neuronal cells, reverses memory impairment.

    PubMed

    Horng, Lin-Yea; Hsu, Pei-Lun; Chen, Li-Wen; Tseng, Wang-Zou; Hsu, Kai-Tin; Wu, Chia-Ling; Wu, Rong-Tsun

    2015-10-01

    Memory impairment can be progressive in neurodegenerative diseases, and physiological ageing or brain injury, mitochondrial dysfunction and oxidative stress are critical components of these issues. An early clinical study has demonstrated cognitive improvement during erythropoietin treatment in patients with chronic renal failure. As erythropoietin cannot freely cross the blood-brain barrier, we tested EH-201 (2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside, also known as TSG), a low MW inducer of erythropoietin, for its therapeutic effects on memory impairment in models of neurodegenerative diseases, physiological ageing or brain injury. The effects of EH-201 were investigated in astrocytes and PC12 neuronal-like cells. In vivo, we used sleep-deprived (SD) mice as a stress model, amyloid-β (Aβ)-injected mice as a physiological ageing model and kainic acid (KA)-injected mice as a brain damage model to assess the therapeutic effects of EH-201. EH-201 induced expression of erythropoietin, PPAR-γ coactivator 1α (PGC-1α) and haemoglobin in astrocytes and PC12 neuronal-like cells. In vivo, EH-201 treatment restored memory impairment, as assessed by the passive avoidance test, in SD, Aβ and KA mouse models. In the hippocampus of mice given EH-201 in their diet, levels of erythropoietin, PGC-1α and haemoglobin were increased The induction of endogenous erythropoietin in neuronal cells by inducers such as EH-201 might be a therapeutic strategy for memory impairment in neurodegenerative disease, physiological ageing or traumatic brain injury. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  16. Acute inhibition of neurosteroid estrogen synthesis suppresses status epilepticus in an animal model

    PubMed Central

    Sato, Satoru M; Woolley, Catherine S

    2016-01-01

    Status epilepticus (SE) is a common neurological emergency for which new treatments are needed. In vitro studies suggest a novel approach to controlling seizures in SE: acute inhibition of estrogen synthesis in the brain. Here, we show in rats that systemic administration of an aromatase (estrogen synthase) inhibitor after seizure onset strongly suppresses both electrographic and behavioral seizures induced by kainic acid (KA). We found that KA-induced SE stimulates synthesis of estradiol (E2) in the hippocampus, a brain region commonly involved in seizures and where E2 is known to acutely promote neural activity. Hippocampal E2 levels were higher in rats experiencing more severe seizures. Consistent with a seizure-promoting effect of hippocampal estrogen synthesis, intra-hippocampal aromatase inhibition also suppressed seizures. These results reveal neurosteroid estrogen synthesis as a previously unknown factor in the escalation of seizures and suggest that acute administration of aromatase inhibitors may be an effective treatment for SE. DOI: http://dx.doi.org/10.7554/eLife.12917.001 PMID:27083045

  17. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity.

    PubMed

    Kang, So Young; Kim, Young Choong

    2007-06-01

    We previously reported six neuroprotective decursinol derivatives, coumarins from Angelica gigas (Umbelliferae) roots. To elucidate the action patterns of decursinol derivatives, we investigated the neuroprotective effects of decursinol and decursin, which showed highly significant activity and were major constituents of A. gigas, using primary cultures of rat cortical cells in-vitro. At concentrations of 0.1-10.0 microM, both decursinol and decursin exerted a significant neuroprotective activity pretreatment and throughout treatment. In addition, decursin had a neuroprotective impact in the post-treatment paradigm implying that decursin might possess different action mechanisms from that of decursinol in the protection of neurons against glutamate injury. Both decursinol and decursin effectively reduced the glutamate-induced increased intracellular calcium ([Ca(2+)](i)) in cortical cells, suggesting that these two coumarins may exert neuroprotection by reducing calcium influx by overactivation of glutamate receptors. This suggestion was supported by the result that decursinol and decursin protected neurons against kainic acid (KA)-induced neurotoxicity better than against that induced by N-methyl-D-aspartate (NMDA). Moreover, both decursinol and decursin significantly prevented glutamate-induced decreases in glutathione, a cellular antioxidant, and glutathione peroxidase activity. In addition, both compounds efficiently reduced the overproduction of cellular peroxide in glutamate-injured cortical cells. These results suggested that both decursinol and decursin protected primary cultured rat cortical cells against glutamate-induced oxidative stress by both reducing calcium influx and acting on the cellular antioxidative defence system. Moreover, decursin is considered to probably have a different action mechanism from that of decursinol in protecting cortical cells against glutamate injury.

  18. Content and traffic of taurine in hippocampal reactive astrocytes.

    PubMed

    Junyent, Fèlix; De Lemos, Luisa; Utrera, Juana; Paco, Sonia; Aguado, Fernando; Camins, Antoni; Pallàs, Mercè; Romero, Rafael; Auladell, Carme

    2011-02-01

    Taurine is one of the most abundant free amino acids in the mammalian central nervous system, where it is crucial to proper development. Moreover, taurine acts as a neuroprotectant in various diseases; in epilepsy, for example, it has the capacity to reduce or abolish seizures. In the present study, taurine levels has been determine in mice treated with Kainic Acid (KA) and results showed an increase of this amino acid in hippocampus but not in whole brain after 3 and 7 days of KA treatment. This increase occurs when gliosis was observed. Moreover, taurine transporter (TAUT) was found in astrocytes 3 and 7 days after KA treatment, together with an increase in cysteine sulfinic acid decarboxylase (csd) mRNA, that codifies for the rate-limiting enzyme of taurine synthesis, in the hippocampus at the same times after KA treatment. Glial cultures enriched in astrocytes were developed to demonstrate that these cells are responsible for changes in taurine levels after an injury to the brain. The cultures were treated with proinflammatory cytokines to reproduce gliosis. In this experimental model, an increase in the immunoreactivity of GFAP was observed, together with an increase in CSD and taurine levels. Moreover, an alteration in the taurine uptake-release kinetics was detected in glial cells treated with cytokine. All data obtained indicate that astrocytes could play a key role in taurine level changes induced by neuronal damage. More studies are, therefore, needed to clarify the role taurine has in relation to neuronal death and repair. Copyright © 2009 Wiley-Liss, Inc.

  19. Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital.

    PubMed

    Akman, Ozlem; Moshé, Solomon L; Galanopoulou, Aristea S

    2015-02-01

    Neonatal status epilepticus (SE) is often associated with adverse cognitive and epilepsy outcomes. We investigate the effects of three episodes of kainic acid-induced SE (3KA-SE) and maternal separation in immature rats on subsequent learning, seizure susceptibility, and consequences, and the anticonvulsant effects of phenobarbital, according to sex, type, and age at early life (EL) event. 3KA-SE or maternal separation was induced on postnatal days (PN) 4-6 or 14-16. Rats were tested on Barnes maze (PN16-19), or lithium-pilocarpine SE (PN19) or flurothyl seizures (PN32). The anticonvulsant effects of phenobarbital (20 or 40 mg/kg/rat, intraperitoneally) pretreatment were tested on flurothyl seizures. FluoroJadeB staining assessed hippocampal injury. 3KA-SE or separation on PN4-6 caused more transient learning delays in males and did not alter lithium-pilocarpine SE latencies, but aggravated its outcomes in females. Anticonvulsant effects of phenobarbital were preserved and potentiated in specific groups depending on sex, type, and age at EL event. Early life 3KA-SE and maternal separation cause more but transient cognitive deficits in males but aggravate the consequences of subsequent lithium-pilocarpine SE in females. In contrast, on flurothyl seizures, EL events showed either beneficial or no effect, depending on gender, type, and age at EL events. © 2014 John Wiley & Sons Ltd.

  20. Human iPSC-Derived GABA Ergic Precursor Cell Therapy for Chronic Epilepsy

    DTIC Science & Technology

    2015-10-01

    1) Induction of status epilepticus (SE) in young rats through kainic acid injections to generate rats exhibiting chronic TLE typified by SRS. (2...of status epilepticus (SE) via graded kainic acid injections, termination of acute seizures 2 hours after SE onset via diazepam injections and...injections to these rats to induce acute seizures or status epilepticus (SE) in 11 separate experimental sessions (n=8-12/session). These experiments

  1. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    PubMed

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    PubMed Central

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  3. The characterization of lactic acid bacteria isolated during the traditional production of Užička sausage

    NASA Astrophysics Data System (ADS)

    Borović, B.; Velebit, B.; Vesković, S.; Lakićević, B.; Baltić, T.

    2017-09-01

    Užička sausage is a traditionally fermented dry sausage that is produced in western Serbia. It is made of beef and pork with the addition of solid fat and natural spices. The whole manufacturing process lasted for 21 days. The goal of this study was to create a collection of lactic acid bacteria isolated during the ripening and identify them using molecular methods. A total of 50 isolates from different stages of ripening (fermentation and drying) were identified by molecular methods. Leuconococcus mesenteroides, Lactobacillus brevis, and Lactobacillus sakei were the predominant microorganisms in Užička sausage.

  4. Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines.

    PubMed

    Miguel, Elizabeth L M; Silva, Poliana L; Pliego, Josefredo R

    2014-05-29

    Methanol is a widely used solvent for chemical reactions and has solvation properties similar to those of water. However, the performance of continuum solvation models in this solvent has not been tested yet. In this report, we have investigated the performance of the SM8 and SMD models for pKa prediction of 26 carboxylic acids, 24 phenols, and 23 amines in methanol. The gas phase contribution was included at the X3LYP/TZVPP+diff//X3LYP/DZV+P(d) level. Using the proton exchange reaction with acetic acid, phenol, and ammonia as reference species leads to RMS error in the range of 1.4 to 3.6 pKa units. This finding suggests that the performance of the continuum models for methanol is similar to that found for aqueous solvent. Application of simple empirical correction through a linear equation leads to accurate pKa prediction, with uncertainty less than 0.8 units with the SM8 method. Testing with the less expensive PBE1PBE/6-311+G** method results in a slight improvement in the results.

  5. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors.

    PubMed

    Jiang, L; Kang, D; Kang, J

    2015-07-09

    Presynaptic kainate-type glutamate ionotropic receptors (KARs) that mediate either the depression or the facilitation of GABA release have been intensively studied. Little attention has been given to the modulation of GABAA receptors (GABAARs) by postsynaptic KARs. Recent studies suggest that two GABAAR populations, synaptic (sGABAAR) and extrasynaptic (eGABAAR) GABAARs, mediate phasic and tonic forms of inhibition, respectively. Tonic inhibition plays an important role in the excitability of neuronal circuits and the occurrence of epileptic seizures. For this study, we are the first to report that the activation of postsynaptic KARs by the KAR agonist, Kainic acid (KA, 5 μM), enhanced tonic inhibition by potentiating eGABAARs. KA enhanced THIP-induced eGABAAR currents and prolonged the rise and decay time of muscimol-induced sGABAAR/eGABAAR currents, but also depressed the amplitude of evoked inhibitory postsynaptic currents (IPSCs), unitary IPSCs (uIPSCs), and muscimol-induced sGABAAR/eGABAAR currents. The PKC inhibitor, staurosporine (1 μM), in the patch pipette solution fully blocked the KA-induced potentiation of tonic inhibition, suggesting the involvement of an intracellular PKC pathway. Our study suggests that the activation of postsynaptic KARs potentiates eGABAARs but depresses sGABAARs. By activating postsynaptic KARs, synaptically released glutamate depresses phasic inhibition to facilitate neuronal plasticity, but potentiates tonic inhibition to protect neurons from over-excitation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Antiepileptic effects of levetiracetam in a rodent neonatal seizure model.

    PubMed

    Talos, Delia M; Chang, Meayoung; Kosaras, Bela; Fitzgerald, Erin; Murphy, Andrew; Folkerth, Rebecca Dunn; Jensen, Frances E

    2013-01-01

    Neonatal seizures can result in chronic epilepsy and long-term behavioral and cognitive deficits. Levetiracetam (LEV), an antiepileptic drug that binds to the synaptic vesicle protein 2A (SV2A), has been increasingly used off-label for the therapy of neonatal seizures. Preclinical data regarding the acute or long-term efficacy of LEV are lacking. We tested the anticonvulsant efficacy of LEV in a rat model of hypoxia-induced neonatal seizures. In addition, we evaluated the protective effects of postnatal day (P)10 LEV treatment on later-life kainic acid (KA)-induced seizure susceptibility and seizure-induced neuronal injury. Western blot and immunohistochemistry were used to assess the developmental regulation of SV2A in the rat and human brain. LEV pretreatment at P10 significantly decreased the cumulative duration of behavioral and electrographic seizures at both 25 and 50 mg/kg. At P40, KA-induced seizures and neuronal loss were significantly diminished in rats previously treated with LEV. LEV target SV2A is present in both neonatal rat and human brain and increases steadily to adulthood. LEV suppressed acute seizures induced by perinatal hypoxia and diminished later-life seizure susceptibility and seizure-induced neuronal injury, providing evidence for disease modification. These results support consideration of a clinical trial of LEV in neonatal seizures.

  7. Neuroprotective actions of the synthetic estrogen 17alpha-ethynylestradiol in the hippocampus.

    PubMed

    Picazo, Ofir; Becerril-Montes, Adriana; Huidobro-Perez, Delia; Garcia-Segura, Luis M

    2010-07-01

    17alpha-ethynylestradiol (EE2), a major constituent of many oral contraceptives, is similar in structure to 17beta-estradiol, which has neuroprotective properties in several animal models. This study explored the potential neuroprotective actions of EE2 against kainic and quinolinic acid toxicity in the hippocampus of adult ovariectomized Wistar rats. A decrease in the number of Nissl-stained neurons and the induction of vimentin immunoreactivity in astrocytes was observed in the hilus of the dentate gyrus of the hippocampus after the administration of either kainic acid or quinolinic acid. EE2 prevented the neuronal loss and the induction of vimentin immunoreactivity induced by kainic acid at low (1 microg/rat) and high (10-100 microg/rat) doses and exerted a protection against quinolinic acid toxicity at a low dose (1 microg/rat) only. These observations demonstrate that EE2 exerts neuroprotective actions against excitotoxic insults. This finding is relevant for the design of new neuroprotective estrogenic compounds.

  8. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Gideon; Zhang Chunyan; Zhuo Lang

    2007-05-15

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH{sub 3}-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acutemore » gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity.« less

  9. Arginine: Its pKa value revisited

    PubMed Central

    Fitch, Carolyn A; Platzer, Gerald; Okon, Mark; Garcia-Moreno E, Bertrand; McIntosh, Lawrence P

    2015-01-01

    Using complementary approaches of potentiometry and NMR spectroscopy, we have determined that the equilibrium acid dissociation constant (pKa value) of the arginine guanidinium group is 13.8 ± 0.1. This is substantially higher than that of ∼12 often used in structure-based electrostatics calculations and cited in biochemistry textbooks. The revised intrinsic pKa value helps explains why arginine side chains in proteins are always predominantly charged, even at pH values as great as 10. The high pKa value also reinforces the observation that arginine side chains are invariably protonated under physiological conditions of near neutral pH. This occurs even when the guanidinium moiety is buried in a hydrophobic micro-environment, such as that inside a protein or a lipid membrane, thought to be incompatible with the presence of a charged group. PMID:25808204

  10. Cytokine-dependent bidirectional connection between impaired social behavior and susceptibility to seizures associated with maternal immune activation in mice

    PubMed Central

    Washington, James; Kumar, Udaya; Medel-Matus, Jesus-Servando; Shin, Don; Sankar, Raman; Mazarati, Andrey

    2015-01-01

    Maternal immune activation (MIA) results in the development of autism in the offspring via hyperactivation of IL-6 signaling. Furthermore, experimental studies showed that the MIA-associated activation of interleukin-1β (IL-1β) concurrently with IL-6 increases the rate and the severity of hippocampal kindling in mice, thus offering an explanation for autism-epilepsy comorbidity. We examined whether epileptic phenotype triggered by prenatal exposure to IL-6 and IL-1β combination is restricted to kindling or whether it is reproducible in another model of epilepsy, whereby spontaneous seizures develop following kainic acid (KA)- induced status epilepticus. We also examined whether in mice prenatally exposed to IL-6 and IL-6+IL-1β, the presence of spontaneous seizures would exacerbate autism-like features. Between days 12 and 16 of pregnancy, C57bl/6j mice received daily injections of IL-6, IL-1β or IL-6+IL-1β combination. At postnatal day 40, male offspring was examined for the presence of social behavioral deficit and status epilepticus was induced by intrahippocampal KA injection. After six weeks of monitoring for spontaneous seizures, sociability was tested again. Both IL-6 and IL-6+IL-1β offspring presented with social behavioral deficit. Prenatal exposure to IL-6 alleviated, while such exposure to IL-6+IL-1β exacerbated the severity of KA-induced epilepsy. Increased severity of epilepsy in the IL-6+IL-1β mice correlated with the improvement of autism-like behavior. We conclude that complex and not necessarily agonistic relationships exist between epileptic and autism-like phenotypes in an animal model of MIA coupled with KA-induced epilepsy, and that the nature of these relationships depends on components of MIA involved. PMID:26103532

  11. Antiepileptogenic Effect of Subchronic Palmitoylethanolamide Treatment in a Mouse Model of Acute Epilepsy.

    PubMed

    Post, Julia M; Loch, Sebastian; Lerner, Raissa; Remmers, Floortje; Lomazzo, Ermelinda; Lutz, Beat; Bindila, Laura

    2018-01-01

    Research on the antiepileptic effects of (endo-)cannabinoids has remarkably progressed in the years following the discovery of fundamental role of the endocannabinoid (eCB) system in controlling neural excitability. Moreover, an increasing number of well-documented cases of epilepsy patients exhibiting multi-drug resistance report beneficial effects of cannabis use. Pre-clinical and clinical research has increasingly focused on the antiepileptic effectiveness of exogenous administration of cannabinoids and/or pharmacologically induced increase of eCBs such as anandamide (also known as arachidonoylethanolamide [AEA]). Concomitant research has uncovered the contribution of neuroinflammatory processes and peripheral immunity to the onset and progression of epilepsy. Accordingly, modulation of inflammatory pathways such as cyclooxygenase-2 (COX-2) was pursued as alternative therapeutic strategy for epilepsy. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide related to the centrally and peripherally present eCB AEA, and is a naturally occurring nutrient that has long been recognized for its analgesic and anti-inflammatory properties. Neuroprotective and anti-hyperalgesic properties of PEA were evidenced in neurodegenerative diseases, and antiepileptic effects in pentylenetetrazol (PTZ), maximal electroshock (MES) and amygdaloid kindling models of epileptic seizures. Moreover, numerous clinical trials in chronic pain revealed that PEA treatment is devoid of addiction potential, dose limiting side effects and psychoactive effects, rendering PEA an appealing candidate as antiepileptic compound or adjuvant. In the present study, we aimed at assessing antiepileptic properties of PEA in a mouse model of acute epileptic seizures induced by systemic administration of kainic acid (KA). KA-induced epilepsy in rodents is assumed to resemble to different extents human temporal lobe epilepsy (TLE) depending on the route of KA administration; intracerebral (i

  12. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage

    PubMed Central

    Louboutin, Jean-Pierre; Chekmasova, Alena; Marusich, Elena; Agrawal, Lokesh; Strayer, David S.

    2011-01-01

    Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration. Four months before KA injection, adult rats were given femoral intramarrow inoculations of SV (RNAiR5-RevM10.AU1), which carries an interfering RNA (RNAi) against CCR5, plus a marker epitope (AU1), or its monofunctional RNAi-carrying homologue, SV(RNAiR5). This treatment lowered expression of CCR5 in circulating cells. In control rats, seizures induced elevated expression of CCR5 ligands MIP-1α and RANTES in the microvasculature, increased BBB leakage and CCR5+ cells, as well as neuronal loss, inflammation, and gliosis in the hippocampi. Animals given either the bifunctional or the monofunctional vector were largely protected from KA-induced seizures, neuroinflammation, BBB damage, and neuron loss. Brain CCR5 mRNA was reduced. Rats receiving RNAiR5-bearing vectors showed far greater repair responses: increased neuronal proliferation, and decreased production of MIP-1α and RANTES. Controls received unrelated SV(BUGT) vectors. Decrease in CCR5 in circulating cells strongly protected from excitotoxin-induced seizures, BBB leakage, CNS injury, and inflammation, and facilitated neurogenic repair.—Louboutin, J.-P., Chekmasova, A., Marusich, E., Agrawal, L., Strayer, D. S. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. PMID:20940264

  13. Effect of the non-NMDA receptor antagonist GYKI 52466 on the microdialysate and tissue concentrations of amino acids following transient forebrain ischaemia.

    PubMed

    Arvin, B; Lekieffre, D; Graham, J L; Moncada, C; Chapman, A G; Meldrum, B S

    1994-04-01

    The effect of the non-N-methyl-D-aspartate (non-NMDA) receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI 52466) on ischaemia-induced changes in the microdialysate and tissue concentrations of glutamate, aspartate, and gamma-aminobutyric acid (GABA) was studied in rats. Twenty minutes of four-vessel occlusion resulted in a transient increase in microdialysate levels of glutamate, aspartate, and GABA in striatum, cortex, and hippocampus. Administration of GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min intravenously starting 20 min before onset of ischaemia) inhibited ischaemia-induced increases in microdialysate glutamate and GABA in striatum without affecting the increases in hippocampus or cortex. Twenty minutes of four-vessel occlusion resulted in immediate small decreases and larger delayed (72 h) decreases in tissue levels of glutamate and aspartate. Transient increases in tissue levels of GABA were shown in all three structures at the end of the ischaemic period. At 72 h, after the ischaemic period, significantly reduced GABA levels were observed in striatum and hippocampus. GYKI 52466, given under identical conditions as above, augmented the ischaemia-induced decrease in striatal tissue levels of glutamate and aspartate, without significantly affecting the decreases in hippocampus and cortex. Twenty minutes of ischaemia resulted in a large increase in microdialysate dopamine in striatum. GYKI 52466 failed to inhibit this increase. Kainic acid (500 microM infused through the probe for 20 min) caused increases in microdialysate glutamate and aspartate in the striatum. GYKI 52466 (10 mg/kg bolus + 10 mg/kg/60 min) completely inhibited the kainic acid-induced glutamate release. In conclusion, the action of the non-NMDA antagonist, GYKI 52466, in the striatum is different from that in the cortex and hippocampus. The inhibition by GYKI 52466 of ischaemia-induced and kainate-induced increases in microdialysate

  14. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn(II)(2)Cys(6) transcriptional activator and induced by kojic acid at the transcriptional level.

    PubMed

    Marui, Junichiro; Yamane, Noriko; Ohashi-Kunihiro, Sumiko; Ando, Tomohiro; Terabayashi, Yasunobu; Sano, Motoaki; Ohashi, Shinichi; Ohshima, Eiji; Tachibana, Kuniharu; Higa, Yoshitaka; Nishimura, Marie; Koike, Hideaki; Machida, Masayuki

    2011-07-01

    A gene encoding the Zn(II)(2)Cys(6) transcriptional factor is clustered with two genes involved in biosynthesis of a secondary metabolite, kojic acid (KA), in Aspergillus oryzae. We determined that the gene was essential for KA production and the transcriptional activation of KA biosynthetic genes, which were triggered by the addition of KA. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Development of Methods for the Determination of pKa Values

    PubMed Central

    Reijenga, Jetse; van Hoof, Arno; van Loon, Antonie; Teunissen, Bram

    2013-01-01

    The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field. PMID:23997574

  16. Polysaccharide Nanoparticles for Efficient siRNA Targeting in Cancer Cells by Supramolecular pKa Shift

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ming; Yang, Yang; Zhang, Yu-Hui; Liu, Yu

    2016-07-01

    Biomacromolecular pKa shifting is considered as one of the most ubiquitous processes in biochemical events, e.g., the enzyme-catalyzed reaction and protein conformational stabilization. In this paper, we report on the construction of biocompatible polysaccharide nanoparticle with targeting ability and lower toxicity by supramolecular pKa shift strategy. This was realized through a ternary assembly constructed by the dual host‒guest interactions of an adamantane-bis(diamine) conjugate (ADA) with cucurbit[6]uril (CB[6]) and a polysaccharide. The potential application of such biocompatible nanostructure was further implemented by the selective transportation of small interfering RNA (siRNA) in a controlled manner. It is demonstrated that the strong encapsulation of the ADA’s diammonium tail by CB[6] not only reduced the cytotoxicity of the nano-scaled vehicle but also dramatically enhanced cation density through an obvious positive macrocycle-induced pKa shift, which eventually facilitated the subsequent siRNA binding. With a targeted polysaccharide shell containing a cyclodextrin‒hyaluronic acid conjugate, macrocycle-incorporated siRNA polyplexes were specifically delivered into malignant human prostate PC-3 cells. The supramolecular polysaccharide nanoparticles, the formation of which was enabled and promoted by the complexation-assisted pKa shift, may be used as a versatile tool for controlled capture and release of biofunctional substrates.

  17. pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    PubMed Central

    Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc

    2012-01-01

    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst. PMID:22662155

  18. The effects of inferior olive lesion on strychnine seizure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H.

    1990-10-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable ({sup 3}H)AMPA ((RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding in cerebella from inferior olive-lesioned rats was observed, but no difference in ({sup 3}H)AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclo-hepten-5,10 imine) were tested asmore » anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the ({sup 3}H)AMPA binding data.« less

  19. Changes in /sup 3/H-substance P receptor binding in the rat brain after kainic acid lesion of the corpus striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, P.W.; Hunt, S.P.

    1986-06-01

    Previous studies have indicated that the substantia nigra contains the highest concentration of substance P-like immunoreactivity (SPLI) in the brain. Paradoxically, it also appears to contain one of the lowest concentrations of substance P receptors in the brain. One possibility is that the massive amount of SPLI blocks the binding of the radioligand to the substance P receptor and/or down-regulates the number of substance P receptors present in this structure. Since greater than 95% of the SPLI within the substantia nigra originates from the corpus striatum, we have lesioned this area and measured the changes in substance P receptor concentrationmore » in the substantia nigra and other corpus striatal projection areas. A semiquantitative autoradiographic technique for measuring the binding of /sup 3/H-substance P to substance P receptors was used in conjunction with tritium-sensitive film. 3H-substance P binding was measured in both the corpus striatum and its projection areas after kainic acid lesion of the corpus striatum. At either 4 or 21 d after the lesion there was approximately a 90% loss of substance P receptors in the rostral striatum, a 74% loss in the globus pallidus, a 57% increase in receptor number in lamina I and II of the ipsilateral somatosensory cortex, and no apparent change in the number of receptors in the substantia nigra pars reticulata, superior colliculus, and central gray. These findings suggest that the low concentration of substance P receptors found within the substantia nigra is not due the massive SPLI innervation, since removal of greater than 95% of the SPLI had no measurable effect on the concentration of substance P receptors.« less

  20. Computational chemical analysis of unconjugated bilirubin anions and insights into pKa values clarification

    NASA Astrophysics Data System (ADS)

    Vega-Hissi, Esteban G.; Estrada, Mario R.; Lavecchia, Martín J.; Pis Diez, Reinaldo

    2013-01-01

    The pKa, the negative logarithm of the acid dissociation equilibrium constant, of the carboxylic acid groups of unconjugated bilirubin in water is a discussed issue because there are quite different experimental values reported. Using quantum mechanical calculations we have studied the conformational behavior of unconjugated bilirubin species (in gas phase and in solution modeled implicitly and explicitly) to provide evidence that may clarify pKa values because of its pathophysiological relevance. Our results show that rotation of carboxylate group, which is not restricted, settles it in a suitable place to establish stronger interactions that stabilizes the monoanion and the dianion to be properly solvated, demonstrating that the rationalization used to justify the high pKa values of unconjugated bilirubin is inappropriate. Furthermore, low unconjugated bilirubin (UCB) pKa values were estimated from a linear regression analysis.

  1. Structure-mutagenicity relationship of kaurenoic acid from Xylopia sericeae (Annonaceae).

    PubMed

    Cavalcanti, B C; Ferreira, J R O; Moura, D J; Rosa, R M; Furtado, G V; Burbano, R R; Silveira, E R; Lima, M A S; Camara, C A G; Saffi, J; Henriques, J A P; Rao, V S N; Costa-Lotufo, L V; Moraes, M O; Pessoa, C

    2010-08-30

    Kaurane diterpenes are considered important compounds in the development of new highly effective anticancer chemotherapeutic agents. Genotoxic effects of anticancer drugs in non-tumour cells are of special significance due to the possibility that they induce secondary tumours in cancer patients. In this context, we evaluated the genotoxic and mutagenic potential of the natural diterpenoid kaurenoic acid (KA), i.e. (-)-kaur-16-en-19-oic acid, isolated from Xylopia sericeae St. Hill, using several standard in vitro and in vivo protocols (comet, chromosomal aberration, micronucleus and Saccharomyces cerevisiae assays). Also, an analysis of structure-activity relationships was performed with two natural diterpenoid compounds, 14-hydroxy-kaurane (1) and xylopic acid (2), isolated from X. sericeae, and three semi-synthetic derivatives of KA (3-5). In addition, considering the importance of the exocyclic double bond (C16) moiety as an active pharmacophore of KA cytotoxicity, we also evaluated the hydrogenated derivative of KA, (-)-kauran-19-oic acid (KAH), to determine the role of the exocyclic bond (C16) in the genotoxic activity of KA. In summary, the present study shows that KA is genotoxic and mutagenic in human peripheral blood leukocytes (PBLs), yeast (S. cerevisiae) and mice (bone marrow, liver and kidney) probably due to the generation of DNA double-strand breaks (DSB) and/or inhibition of topoisomerase I. Unlike KA, compounds 1-5 and KAH are completely devoid of genotoxic and mutagenic effects under the experimental conditions used in this study, suggesting that the exocyclic double bond (C16) moiety may be the active pharmacophore of the genetic toxicity of KA. 2010 Elsevier B.V. All rights reserved.

  2. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features

  3. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Delgar, Claudia G; Koch, Karina; Brown, Patricia M G E; Møller, Charlotte; Han, Liwei; Huynh, Tri H V; Hansen, Stinne W; Nielsen, Birgitte; Bowie, Derek; Pickering, Darryl S; Kastrup, Jette Sandholm; Frydenvang, Karla; Bunch, Lennart

    2017-01-12

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (K i = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC 50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.

  4. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    PubMed

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain.

    PubMed

    Matsu-ura, Toru; Konishi, Yoshiyuki; Aoki, Tsutomu; Naranjo, Jose R; Mikoshiba, Katsuhiko; Tamura, Taka-aki

    2002-12-30

    Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity.

  6. Ka Band Objects: Observation and Monitoring (KaBOOM)

    NASA Astrophysics Data System (ADS)

    Geldzahler, B.

    2012-09-01

    NASA has embarked on a path that will enable the implementation of a high power, high resolution X/Ka band radar system using widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. We shall demonstrate Ka band coherent uplink arraying with real-time atmospheric compensation using three 12m antennas at the Kennedy Space Center (KSC). Our proposed radar system can complement and supplement the activities of the Space Fence. The proposed radar array has the advantages of filling the gap between dusk and dawn and offers the possibility of high range resolution (4 cm) and high spatial resolution (?10 cm at GEO) when used in a VLBI mode. KSC was chosen because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka band friendly), and [c] the test satellites have a low elevation adding more attenuation and turbulence to the demonstration. If Ka band coherent uplink arraying can be made to work at KSC, it will work anywhere. We expect to rebaseline X-band in 2013, and demonstrate Ka band uplink arraying in 2014.

  7. Predicting p Ka values from EEM atomic charges

    PubMed Central

    2013-01-01

    The acid dissociation constant p Ka is a very important molecular property, and there is a strong interest in the development of reliable and fast methods for p Ka prediction. We have evaluated the p Ka prediction capabilities of QSPR models based on empirical atomic charges calculated by the Electronegativity Equalization Method (EEM). Specifically, we collected 18 EEM parameter sets created for 8 different quantum mechanical (QM) charge calculation schemes. Afterwards, we prepared a training set of 74 substituted phenols. Additionally, for each molecule we generated its dissociated form by removing the phenolic hydrogen. For all the molecules in the training set, we then calculated EEM charges using the 18 parameter sets, and the QM charges using the 8 above mentioned charge calculation schemes. For each type of QM and EEM charges, we created one QSPR model employing charges from the non-dissociated molecules (three descriptor QSPR models), and one QSPR model based on charges from both dissociated and non-dissociated molecules (QSPR models with five descriptors). Afterwards, we calculated the quality criteria and evaluated all the QSPR models obtained. We found that QSPR models employing the EEM charges proved as a good approach for the prediction of p Ka (63% of these models had R2 > 0.9, while the best had R2 = 0.924). As expected, QM QSPR models provided more accurate p Ka predictions than the EEM QSPR models but the differences were not significant. Furthermore, a big advantage of the EEM QSPR models is that their descriptors (i.e., EEM atomic charges) can be calculated markedly faster than the QM charge descriptors. Moreover, we found that the EEM QSPR models are not so strongly influenced by the selection of the charge calculation approach as the QM QSPR models. The robustness of the EEM QSPR models was subsequently confirmed by cross-validation. The applicability of EEM QSPR models for other chemical classes was illustrated by a case study focused on

  8. Determination of pKa and the corresponding structures of quinclorac using combined experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Song, Dean; Sun, Huiqing; Jiang, Xiaohua; Kong, Fanyu; Qiang, Zhimin; Zhang, Aiqian; Liu, Huijuan; Qu, Jiuhui

    2018-01-01

    As an emerging environmental contaminant, the herbicide quinclorac has attracted much attention in recent years. However, a very fundamental issue, the acid dissociation of quinclorac has not yet to be studied in detail. Herein, the pKa value and the corresponding structures of quinclorac were systematically investigated using combined experimental and theoretical approaches. The experimental pKa of quinclorac was determined by the spectrophotometric method to be 2.65 at 25 °C with ionic strength of 0.05 M, and was corrected to be 2.56 at ionic strength of zero. The molecular structures of quinclorac were then located by employing the DFT calculation. The anionic quinclorac was directly located with the carboxylic group perpendicular to the aromatic ring, while neutral quinclorac was found to be the equivalent twin structures. The result was further confirmed by analyzing the UV/Vis and MS-MS2 spectra from both experimental and theoretical viewpoints. By employing the QSPR approach, the theoretical pKa of QCR was determined to be 2.50, which is excellent agreement with the experimental result obtained herein. The protonation of QCR at the carboxylic group instead of the quinoline structure was attributed to the weak electronegative property of nitrogen atom induced by the electron-withdrawing groups. It is anticipated that this work could not only help in gaining a deep insight into the acid dissociation of quinclorac but also offering the key information on its reaction and interaction with others.

  9. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures.

    PubMed

    Hsieh, T F; Simler, S; Vergnes, M; Gass, P; Marescaux, C; Wiegand, S J; Zimmermann, M; Herdegen, T

    1998-01-01

    The expression of inducible transcription factors was studied following repetitive electroconvulsive seizures (ECS), c-Fos, c-Jun, JunB, and JunD immunoreactivities were investigated following a single (1 x ECS) or repetitive ECS evoked once per day for 4, 5, or 10 days (4 x ECS, 5 x ECS, or 10 x ECS). Animals were killed 3 or 12 h following the last ECS. Three hours after 1 x ECS, c-Fos was expressed throughout the cortex and hippocampus. After 5 x ECS and 10 x ECS, c-Fos was reexpressed in the CA4 area, but was completely absent in the other hippocampal areas and cortex. In these areas, c-Fos became only reinducible when the time lag between two ECS stimuli was 5 days. In contrast to c-Fos, intense JunB expression was inducible in the cortex and hippocampus, but not CA4 subfield, after 1 x ECS, 5 x ECS, and 10 x ECS. Repetitive ECS did not effect c-Jun and JunD expression. In a second model of systemic excitation of the brain, repetitive daily injection of kainic acid for 4 days completely failed to express c-Fos, c-Jun, and JunB after the last application whereas injection of kainic acid once per week did not alter the strong expressions compared to a single application of kainic acid. In order to study the maintenance of c-Fos expression during repetitive seizures, brain-derived neurotrophic factor (BDNF) was applied in parallel for 5 or 10 days via miniosmotic pumps and permanent cannula targeted at the hippocampus or the parietal cortex. Infusion of BDNF completely reinduced c-Fos expression during 5 x ECS or 10 x ECS in the cortex ipsilaterally to the cannula and, to a less extent, also increased the expression of c-Jun and JunB when compared to saline-treated controls. BDNF had no effect on the expression patterns in the hippocampus. ECS with or without BDNF infusion did not change the expression patterns of the constitutive transcription factors ATF-2, CREB, and SRF. These data demonstrate that various transcription factors substantially differ in their

  10. The pKa Cooperative: A Collaborative Effort to Advance Structure-Based Calculations of pKa values and Electrostatic Effects in Proteins

    PubMed Central

    Nielsen, Jens E.; Gunner, M. R.; Bertrand García-Moreno, E.

    2012-01-01

    The pKa Cooperative http://www.pkacoop.org was organized to advance development of accurate and useful computational methods for structure-based calculation of pKa values and electrostatic energy in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational and experimental studies of protein electrostatics. To improve structure-based energy calculations it is necessary to better understand the physical character and molecular determinants of electrostatic effects. The Cooperative thus intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pKa values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pKa values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pKa values in water. Many computational methods were tested in this 1st Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to assess objectively the performance of many computational methods tested on this one extensive dataset. This volume of PROTEINS: Structure, Function, and Bioinformatics introduces the pKa Cooperative, presents reports submitted by participants in the blind prediction challenge, and highlights some of the problems in structure-based calculations identified during this exercise. PMID:22002877

  11. The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)

    NASA Astrophysics Data System (ADS)

    Morabito, D.; Butman, S.; Shambayati, S.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA

  12. Activity-induced and developmental downregulation of the Nogo receptor.

    PubMed

    Josephson, Anna; Trifunovski, Alexandra; Schéele, Camilla; Widenfalk, Johan; Wahlestedt, Claes; Brené, Stefan; Olson, Lars; Spenger, Christian

    2003-03-01

    The three axon growth inhibitory proteins, myelin associated glycoprotein, oligodendrocyte-myelin glycoprotein and Nogo-A, can all bind to the Nogo-66 receptor (NgR). This receptor is expressed by neurons with high amounts in regions of high plasticity where Nogo expression is also high. We hypothesized that simultaneous presence of high levels of Nogo and its receptor in neurons confers a locked state to hippocampal and cortical microcircuitry and that one or both of these proteins must be effectively and temporarily downregulated to permit plastic structural changes underlying formation of long-term memory. Hence, we subjected rats to kainic acid treatment and exposed rats to running wheels and measured NgR mRNA levels by quantitative in situ hybridization at different time points. We also studied spinal cord injuries and quantified NgR mRNA levels in spinal cord and ganglia during a critical postnatal period using real-time PCR. Strikingly, kainic acid led to a strong transient downregulation of NgR mRNA levels in gyrus dentatus, hippocampus, and neocortex during a time when BDNF mRNA was upregulated instead. Animals exposed to running wheels for 3 and 7, but not 1 or 21, days showed a significant downregulation of NgR mRNA in cortex, hippocampus and the dentate gyrus. NgR mRNA levels decreased from high to low expression in spinal cord and ganglia during the first week of life. No robust regulation of NgR was observed in the spinal cord following spinal cord injury. Together, our data show that NgR levels in developing and adult neurons are regulated in vivo under different conditions. Strong, rapid and transient downregulation of NgR mRNA in response to kainic acid and after wheel running in cortex and hippocampus suggests a role for NgR and Nogo-A in plasticity, learning and memory.

  13. pKa values of hyodeoxycholic and cholic acids in the binary mixed micelles sodium-hyodeoxycholate-Tween 40 and sodium-cholate-Tween 40: Thermodynamic stability of the micelle and the cooperative hydrogen bond formation with the steroid skeleton.

    PubMed

    Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita

    2017-01-01

    Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary

  14. Water maze experience and prenatal choline supplementation differentially promote long-term hippocampal recovery from seizures in adulthood

    PubMed Central

    Wong-Goodrich, Sarah J.E.; Glenn, Melissa J.; Mellott, Tiffany J.; Liu, Yi B.; Blusztajn, Jan K.; Williams, Christina L.

    2010-01-01

    Status epilepticus (SE) in adulthood dramatically alters the hippocampus and produces spatial learning and memory deficits. Some factors, like environmental enrichment and exercise, may promote functional recovery from SE. Prenatal choline supplementation (SUP) also protects against spatial memory deficits observed shortly after SE in adulthood, and we have previously reported that SUP attenuates the neuropathological response to SE in the adult hippocampus just 16 days after SE. It is unknown whether SUP can ameliorate longer-term cognitive and neuropathological consequences of SE, whether repeatedly engaging the injured hippocampus in a cognitive task might facilitate recovery from SE, and whether our prophylactic prenatal dietary treatment would enable the injured hippocampus to more effectively benefit from cognitive rehabilitation. To address these issues, adult offspring from rat dams that received either a control (CON) or SUP diet on embryonic days 12–17 first received training on a place learning water maze task (WM) and were then administered saline or kainic acid (KA) to induce SE. Rats then either remained in their home cage, or received three additional WM sessions at 3, 6.5, and 10 weeks after SE to test spatial learning and memory retention. Eleven weeks after SE, the brains were analyzed for several hippocampal markers known to be altered by SE. SUP attenuated SE-induced spatial learning deficits and completely rescued spatial memory retention by 10 weeks post-SE. Repeated WM experience prevented SE-induced declines in glutamic acid decarboxylase (GAD) and dentate gyrus neurogenesis, and attenuated increased glial fibrilary acidic protein (GFAP) levels. Remarkably, SUP alone was similarly protective to an even greater extent, and SUP rats that were water maze trained after SE showed reduced hilar migration of newborn neurons. These findings suggest that prophylactic SUP is protective against the long-term cognitive and neuropathological effects of

  15. History of Larix decidua Mill. (European larch) since 130 ka

    NASA Astrophysics Data System (ADS)

    Wagner, Stefanie; Litt, Thomas; Sánchez-Goñi, Maria-Fernanda; Petit, Rémy J.

    2015-09-01

    Retrospective studies focussing on forest dynamics using fossil and genetic data can provide important keys to prepare forests for the future. In this study we analyse the impact of past climate and anthropogenic changes on Larix decidua Mill. (European larch) populations based on a new range-wide fossil compilation encompassing the last 130 ka and on recently produced genetic data (nuclear, mitochondrial). Results demonstrate that during the last 130 ka L. decidua persisted close to its current distribution range and colonized vast areas outside this range during the first two early Weichselian interstadials (c. 87-109 ka and c. 83-78 ka), reaching a distributional maxima in the north-central European lowlands. Some fossil sites point to notably rapid responses to some abrupt climate events (Dansgaard-Oeschger cycles and Heinrich Events). Combined fossil and genetic data identify at least six MIS 2 refuges and postglacial recolonization pathways. The establishment of extant L. decidua forests dates back to the first two millennia of the Holocene (c. 11.5-9.5 ka) and the onset of anthropogenic impact was inferred since the late Neolithic (c. 6 ka), with major changes occurring since the Bronze Age (c. 4 ka). During the last 300 years human-induced translocations resulted in recent admixture of populations originating from separate refuges. Altogether, the results of this study provide valuable clues for developing sustainable conservation and management strategies targeting ancient genetic lineages and for studying evolutionary issues.

  16. Immunomodulatory effect of Celecoxib on HMGB1/TLR4 pathway in a recurrent seizures model in immature rats.

    PubMed

    Morales-Sosa, Mariana; Orozco-Suárez, Sandra; Vega-García, Angélica; Caballero-Chacón, Sara; Feria-Romero, Iris A

    2018-07-01

    Epileptic seizures constitute an important problem in pediatric neurology during the developmental period. The frequency and nosological significance of seizures, as well as their association with epileptogenesis, may be related to underlying mechanisms such as neuroinflammation. Those mechanisms of response activate inflammatory molecules induced in the neurons, activated glial cells and endothelial cells via the key HMGB1/TLR4 pathway. In this study, the drug celecoxib (CCX) was used as a blocker of the cyclooxygenase 2 (COX-2) and HMGB1/TLR-4 pathways. The experimental model was implemented in 10-day-old neonatal Sprague Dawley rats to induce recurrent seizures with kainic acid (KA, 1.4 mg/kg). Data were evaluated at early (14 PND) and late (30 PND) time points. The results showed that the CCX and CCX + pentobarbital (PB) groups exhibited a protective effect by significantly increasing the time latency of seizures compared to the KA group at both early (p < 0.01) and late (p < 0.001) times. When the CCX group was compared to the KA group, there was also a significant decrease in the number of HMGB1 and TLR-4 transcripts (p < 0.05) and in COX-2 protein expression (p < 0.05) in the most important areas for seizure generation (the hippocampus and cortex) at both the early and late time points. These results demonstrated that CCX treatment after epileptic seizures has a neuroprotective effect due to the inhibition of proinflammatory proteins and associated signaling pathways and reduces seizure susceptibility. Additionally, the timely intervention of inflammatory pathways will reduce the risk of developing epilepsy in adulthood. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. 1,2,4-Benzothiadiazine-1,1-dioxide derivatives as ionotropic glutamate receptor ligands: synthesis and structure-activity relationships.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Colotta, Vittoria; Squarcialupi, Lucia; Matucci, Rosanna

    2014-11-01

    Ionotropic glutamate receptor (iGluR) modulators, specially AMPA receptor antagonists, are potential tools for numerous therapeutic applications in neurological disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, chronic pain, and neuropathology ensuing from cerebral ischemia or cardiac arrest. In this work, the synthesis and binding affinities at the Gly/NMDA, AMPA, and kainic acid (KA) receptors of a new series of 1,2,4-benzothiadiazine-1,1-dioxide derivatives are reported. The results show that 1,2,4-benzothiadiazine-1,1-dioxide is a new scaffold for obtaining iGluR ligands. Moreover, this work has led us to the 7-(3-formylpyrrol-1-yl)-6-trifluoromethyl substituted compound 7, which displays the highest AMPA receptor affinity and high selectivity versus the Gly/NMDA (90-fold) and KA (46-fold) receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. p Ka determinations of xanthene derivates in aqueous solutions by multivariate analysis applied to UV-Vis spectrophotometric data

    NASA Astrophysics Data System (ADS)

    Batistela, Vagner Roberto; Pellosi, Diogo Silva; de Souza, Franciane Dutra; da Costa, Willian Ferreira; de Oliveira Santin, Silvana Maria; de Souza, Vagner Roberto; Caetano, Wilker; de Oliveira, Hueder Paulo Moisés; Scarminio, Ieda Spacino; Hioka, Noboru

    2011-09-01

    Xanthenes form to an important class of dyes which are widely used. Most of them present three acid-base groups: two phenolic sites and one carboxylic site. Therefore, the p Ka determination and the attribution of each group to the corresponding p Ka value is a very important feature. Attempts to obtain reliable p Ka through the potentiometry titration and the electronic absorption spectrophotometry using the first and second orders derivative failed. Due to the close p Ka values allied to strong UV-Vis spectral overlap, multivariate analysis, a powerful chemometric method, is applied in this work. The determination was performed for eosin Y, erythrosin B, and bengal rose B, and also for other synthesized derivatives such as 2-(3,6-dihydroxy-9-acridinyl) benzoic acid, 2,4,5,7-tetranitrofluorescein, eosin methyl ester, and erythrosin methyl ester in water. These last two compounds (esters) permitted to attribute the p Ka of the phenolic group, which is not easily recognizable for some investigated dyes. Besides the p Ka determination, the chemometry allowed for estimating the electronic spectrum of some prevalent protolytic species and the substituents effects evaluation.

  19. Bayesian model aggregation for ensemble-based estimates of protein pKa values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosink, Luke J.; Hogan, Emilie A.; Pulsipher, Trenton C.

    2014-03-01

    This paper investigates an ensemble-based technique called Bayesian Model Averaging (BMA) to improve the performance of protein amino acid pmore » $$K_a$$ predictions. Structure-based p$$K_a$$ calculations play an important role in the mechanistic interpretation of protein structure and are also used to determine a wide range of protein properties. A diverse set of methods currently exist for p$$K_a$$ prediction, ranging from empirical statistical models to {\\it ab initio} quantum mechanical approaches. However, each of these methods are based on a set of assumptions that have inherent bias and sensitivities that can effect a model's accuracy and generalizability for p$$K_a$$ prediction in complicated biomolecular systems. We use BMA to combine eleven diverse prediction methods that each estimate pKa values of amino acids in staphylococcal nuclease. These methods are based on work conducted for the pKa Cooperative and the pKa measurements are based on experimental work conducted by the Garc{\\'i}a-Moreno lab. Our study demonstrates that the aggregated estimate obtained from BMA outperforms all individual prediction methods in our cross-validation study with improvements from 40-70\\% over other method classes. This work illustrates a new possible mechanism for improving the accuracy of p$$K_a$$ prediction and lays the foundation for future work on aggregate models that balance computational cost with prediction accuracy.« less

  20. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    PubMed

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Genetic deletion of the norepinephrine transporter decreases vulnerability to seizures

    PubMed Central

    Kaminski, Rafal M.; Shippenberg, Toni S.; Witkin, Jeffrey M.; Rocha, Beatriz A.

    2005-01-01

    Norepinephrine (NE) has been reported to modulate neuronal excitability and act as endogenous anticonvulsant. In the present study we used NE transporter knock-out mice (NET-KO), which are characterized by high levels of extracellular NE, to investigate the role of endogenous NE in seizure susceptibility. Seizure thresholds for cocaine (i.p.), pentylenetetrazol (i.v.) and kainic acid (i.v.) were compared in NET-KO, heterozygous (NET-HT) and wild type (NET-WT) female mice. The dose-response curve for cocaine-induced convulsions was significantly shifted to the right in NET-KO mice, indicating higher seizure thresholds. The threshold doses of pentylenetetrazol that induced clonic and tonic seizures were also significantly higher in NET-KO when compared to NET-WT mice. Similarly, NET-KO mice displayed higher resistance to convulsions engendered by kainic acid. For all drugs tested, the response of NET-HT mice was always intermediate. These data provide further support for a role of endogenous NE in the control of seizure susceptibility. PMID:15911120

  2. Aminocaproic Acid and Tranexamic Acid Fail to Reverse Dabigatran-Induced Coagulopathy.

    PubMed

    Levine, Michael; Huang, Margaret; Henderson, Sean O; Carmelli, Guy; Thomas, Stephen H

    In recent years, dabigatran has emerged as a popular alternative to warfarin for treatment of atrial fibrillation. If rapid reversal is required, however, no reversal agent has clearly been established. The primary purpose of this manuscript was to evaluate the efficacy of tranexamic acid and aminocaproic acid as agents to reverse dabigatran-induced coagulopathy. Rats were randomly assigned to 6 groups. Each rat received either dabigatran or oral placebo, followed by saline, tranexamic acid, or aminocaproic acid. An activated clotting test was used to measure the coagulopathy. Neither tranexamic acid nor aminocaproic acid successfully reversed dabigatran-induced coagulopathy. In this rodent model of dabigatran-induced coagulopathy, neither tranexamic acid nor aminocaproic acid were able to reverse the coagulopathy.

  3. [Pharmacology of glutamate sensitive synapses (I). Glutamate agonists (author's transl)].

    PubMed

    Shinozaki, H

    1982-04-01

    The actions of kainic acid, quisqualic acid, and ibotenic acid on the crayfish neuromuscular junction were described, and it was particularly interesting that the discrepancy between glutamate responses and EJPs was revealed by the use of kainic acid. On the other hand, there is increasing evidence showing that glutamate is an excitatory transmitter at the crayfish neuromuscular junction. At this stage, we are unable as yet to definitively support or reject glutamate's candidacy as the excitatory transmitter at the crayfish neuromuscular junction. The discrepancy revealed by the use of kainic acid may bring up some questions. Certainly, the differential action of kainic acid on the glutamate current and the excitatory synaptic current opens to doubt the transmitter role of glutamate. In the case of the study on a transmitter role for a substance of doubt status, the value of pharmacological studies seems to be greater in disproving than in asserting such the role. However, we have to consider the matter of the extra-junctional receptor postulated on the crayfish postsynaptic membrane as one of the major problems for pharmacological identification.

  4. Loss of Hippocampal Neurons after Kainate Treatment Correlates with Behavioral Deficits

    PubMed Central

    Maia, Gisela H.; Quesado, José L.; Soares, Joana I.; do Carmo, Joana M.; Andrade, Pedro A.; Andrade, José P.; Lukoyanov, Nikolai V.

    2014-01-01

    Treating rats with kainic acid induces status epilepticus (SE) and leads to the development of behavioral deficits and spontaneous recurrent seizures later in life. However, in a subset of rats, kainic acid treatment does not induce overt behaviorally obvious acute SE. The goal of this study was to compare the neuroanatomical and behavioral changes induced by kainate in rats that developed convulsive SE to those who did not. Adult male Wistar rats were treated with kainic acid and tested behaviorally 5 months later. Rats that had experienced convulsive SE showed impaired performance on the spatial water maze and passive avoidance tasks, and on the context and tone retention tests following fear conditioning. In addition, they exhibited less anxiety-like behaviors than controls on the open-field and elevated plus-maze tests. Histologically, convulsive SE was associated with marked neuron loss in the hippocampal CA3 and CA1 fields, and in the dentate hilus. Rats that had not experienced convulsive SE after kainate treatment showed less severe, but significant impairments on the spatial water maze and passive avoidance tasks. These rats had fewer neurons than control rats in the dentate hilus, but not in the hippocampal CA3 and CA1 fields. Correlational analyses revealed significant relationships between spatial memory indices of rats and neuronal numbers in the dentate hilus and CA3 pyramidal field. These results show that a part of the animals that do not display intense behavioral seizures (convulsive SE) immediately after an epileptogenic treatment, later in life, they may still have noticeable structural and functional changes in the brain. PMID:24409306

  5. The utility of ionotropic glutamate receptor antagonists in the treatment of nociception induced by epidural glutamate infusion in rats.

    PubMed

    Osgood, Doreen B; Harrington, William F; Kenney, Elizabeth V; Harrington, J Frederick

    2013-01-01

    The authors have previously demonstrated that human herniated disc material contains high concentrations of free glutamate. In an experimental model, elevated epidural glutamate concentrations in the lumbar spine can cause a focal hyperesthetic state. Rats underwent epidural glutamate infusion in the lumbar spine by a miniosmotic pump over a 72-hour period. Some rats underwent coinfusion with glutamate and ionotropic glutamate antagonists. Nociception was assessed by von Frey fibers and by assessment of glutamate receptor expression in the corresponding dorsal horn of the spinal cord. The kainic acid antagonist, UBP 301, decreased epidural glutamate-based hyperesthesia in a dose dependent manner. Concordant with these findings, there was significant decrease in kainate receptor expression in the dorsal horn. The N-Methyl-4-isoxazoleproionic acid (NMDA) antagonist Norketamine also significantly diminished hyperesthesia and decreased receptor expression in the dorsal horn. Both UBP 301, the kainic acid receptor antagonist and Norketamine, an NMDA receptor antagonist, dampened epidural glutamate-based nociception. Focal epidural injections of Kainate or NMDA receptor antagonists could be effective treatments for disc herniation-based lumbar radiculopathy.

  6. Classification of functional interactions from multi-electrodes data using conditional modularity analysis

    NASA Astrophysics Data System (ADS)

    Makhtar, Siti Noormiza; Senik, Mohd Harizal

    2018-02-01

    The availability of massive amount of neuronal signals are attracting widespread interest in functional connectivity analysis. Functional interactions estimated by multivariate partial coherence analysis in the frequency domain represent the connectivity strength in this study. Modularity is a network measure for the detection of community structure in network analysis. The discovery of community structure for the functional neuronal network was implemented on multi-electrode array (MEA) signals recorded from hippocampal regions in isoflurane-anaesthetized Lister-hooded rats. The analysis is expected to show modularity changes before and after local unilateral kainic acid (KA)-induced epileptiform activity. The result is presented using color-coded graphic of conditional modularity measure for 19 MEA nodes. This network is separated into four sub-regions to show the community detection within each sub-region. The results show that classification of neuronal signals into the inter- and intra-modular nodes is feasible using conditional modularity analysis. Estimation of segregation properties using conditional modularity analysis may provide further information about functional connectivity from MEA data.

  7. Neuroprotective Mechanisms Activated in Non-seizing Rats Exposed to Sarin

    DTIC Science & Technology

    2015-06-04

    after kainic acid-induced seizures. Brain Res. 1424, 1–8. Johnson, E.A., Kan, R.K., 2010. The acute phase response and soman-induced status epilepticus ...2011. Comparison of status epilepticus models induced by pilocarpine and nerve agents – a systematic review of the underlying aetiology and adopted...2007) Nqo2 Loss of Nqo1 and Nqo2 leads to altered intracellular redox status , decreased expression and activation of NF-κB, and altered

  8. Apoptosis-inducing factor (Aif1) mediates anacardic acid-induced apoptosis in Saccharomyces cerevisiae.

    PubMed

    Muzaffar, Suhail; Chattoo, Bharat B

    2017-03-01

    Anacardic acid is a medicinal phytochemical that inhibits proliferation of fungal as well as several types of cancer cells. It induces apoptotic cell death in various cell types, but very little is known about the mechanism involved in the process. Here, we used budding yeast Saccharomyces cerevisiae as a model to study the involvement of some key elements of apoptosis in the anacardic acid-induced cell death. Plasma membrane constriction, chromatin condensation, DNA degradation, and externalization of phosphatidylserine (PS) indicated that anacardic acid induces apoptotic cell death in S. cerevisiae. However, the exogenous addition of broad-spectrum caspase inhibitor Z-VAD-FMK or deletion of the yeast caspase Yca1 showed that the anacardic acid-induced cell death is caspase independent. Apoptosis-inducing factor (AIF1) deletion mutant was resistant to the anacardic acid-induced cell death, suggesting a key role of Aif1. Overexpression of Aif1 made cells highly susceptible to anacardic acid, further confirming that Aif1 mediates anacardic acid-induced apoptosis. Interestingly, instead of the increase in the intracellular reactive oxygen species (ROS) normally observed during apoptosis, anacardic acid caused a decrease in the intracellular ROS levels. Quantitative real-time PCR analysis showed downregulation of the BIR1 survivin mRNA expression during the anacardic acid-induced apoptosis.

  9. Kainate-induced network activity in the anterior cingulate cortex.

    PubMed

    Shinozaki, R; Hojo, Y; Mukai, H; Hashizume, M; Murakoshi, T

    2016-06-14

    Anterior cingulate cortex (ACC) plays a pivotal role in higher order processing of cognition, attention and emotion. The network oscillation is considered an essential means for integration of these CNS functions. The oscillation power and coherence among related areas are often dis-regulated in several psychiatric and pathological conditions with a hemispheric asymmetric manner. Here we describe the network-based activity of field potentials recorded from the superficial layer of the mouse ACC in vitro using submerged type recordings. A short activation by kainic acid administration to the preparation induced populational activities ranging over several frequency bands including theta (3-8Hz), alpha (8-12Hz), beta (13-30Hz), low gamma (30-50Hz) and high gamma (50-80Hz). These responses were repeatable and totally abolished by tetrodotoxin, and greatly diminished by inhibitors of ionotropic and metabotropic glutamate receptors, GABAA receptor or gap-junctions. These observations suggest that the kainate-induced network activity can be a useful model of the network oscillation in the ACC circuit. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Ka-band study: 1988

    NASA Technical Reports Server (NTRS)

    Layland, J. W.; Horttor, R. L.; Clauss, R. C.; Wilcher, J. H.; Wallace, R. J.; Mudgway, D. J.

    1989-01-01

    The Ka-band study team was chartered in late 1987 to bring together all the planning elements for establishing 32 GHz (Ka-band) as the primary downlink frequency for deep-space operation, and to provide a stable baseline from which to pursue that development. This article summarizes the results of that study at its conclusion in mid-1988, and corresponds to material presented to NASA's Office of Space Operations on July 14, 1988. For a variety of reasons, Ka-band is the right next major step in deep-space communications. It offers improved radio metric accuracy through reduced plasma sensitivity and increased bandwidth. Because of these improvements, it offers the opportunity to reduce costs in the flight radio system or in the DSN by allocating part of the overall benefits of Ka-band to this cost reduction. A mission scenario is being planned that can drive at least two and possibly all three of the DSN subnets to provide a Ka-band downlink capability by the turn of the century. The implementation scenario devised by the study team is believed to be feasible within reasonable resource expectations, and capable of providing the needed upgrade as a natural follow-on to the technology development which is already underway.

  11. The Ka'bah: House of God

    ERIC Educational Resources Information Center

    Social Education, 1978

    1978-01-01

    Describes the major Moslem edifice (the Ka'bah) in the holy city of Mecca and explains the importance of the Ka'bah in Muslim religious belief. Cultural and religious practices related to the Ka'bah are described. (Author/DB)

  12. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeuibogam and preliminary evaluation of its effects.

    PubMed

    Pak, Malk Eun; Kim, Yu Ri; Kim, Ha Neui; Ahn, Sung Min; Shin, Hwa Kyoung; Baek, Jin Ung; Choi, Byung Tae

    2016-02-17

    In literature on Korean medicine, Dongeuibogam (Treasured Mirror of Eastern Medicine), published in 1613, represents the overall results of the traditional medicines of North-East Asia based on prior medicinal literature of this region. We utilized this medicinal literature by text mining to establish a list of candidate herbs for cognitive enhancement in the elderly and then performed an evaluation of their effects. Text mining was performed for selection of candidate herbs. Cell viability was determined in HT22 hippocampal cells and immunohistochemistry and behavioral analysis was performed in a kainic acid (KA) mice model in order to observe alterations of hippocampal cells and cognition. Twenty four herbs for cognitive enhancement in the elderly were selected by text mining of Dongeuibogam. In HT22 cells, pretreatment with 3 candidate herbs resulted in significantly reduced glutamate-induced cell death. Panax ginseng was the most neuroprotective herb against glutamate-induced cell death. In the hippocampus of a KA mice model, pretreatment with 11 candidate herbs resulted in suppression of caspase-3 expression. Treatment with 7 candidate herbs resulted in significantly enhanced expression levels of phosphorylated cAMP response element binding protein. Number of proliferated cells indicated by BrdU labeling was increased by treatment with 10 candidate herbs. Schisandra chinensis was the most effective herb against cell death and proliferation of progenitor cells and Rehmannia glutinosa in neuroprotection in the hippocampus of a KA mice model. In a KA mice model, we confirmed improved spatial and short memory by treatment with the 3 most effective candidate herbs and these recovered functions were involved in a higher number of newly formed neurons from progenitor cells in the hippocampus. These established herbs and their combinations identified by text-mining technique and evaluation for effectiveness may have value in further experimental and clinical

  13. Neuroscience. Stout guards of the central nervous system.

    PubMed

    Mechoulam, R; Lichtman, A H

    2003-10-03

    Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy.

  14. Deep-Space Ka-Band Flight Experience

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.

    2017-11-01

    Lower frequency bands have become more congested in allocated bandwidth as there is increased competition between flight projects and other entities. Going to higher frequency bands offers significantly more bandwidth, allowing for the use of much higher data rates. However, Ka-band is more susceptible to weather effects than lower frequency bands currently used for most standard downlink telemetry operations. Future or prospective flight projects considering deep-space Ka-band (32-GHz) telemetry data links have expressed an interest in understanding past flight experience with received Ka-band downlink performance. Especially important to these flight projects is gaining a better understanding of weather effects from the experience of current or past missions that operated Ka-band radio systems. We will discuss the historical flight experience of several Ka-band missions starting from Mars Observer in 1993 up to present-day deep-space missions such as Kepler. The study of historical Ka-band flight experience allows one to recommend margin policy for future missions. Of particular interest, we will review previously reported-on flight experience with the Cassini spacecraft Ka-band radio system that has been used for radio science investigations as well as engineering studies from 2004 to 2015, when Cassini was in orbit around the planet Saturn. In this article, we will focus primarily on the Kepler spacecraft Ka-band link, which has been used for operational telemetry downlink from an Earth trailing orbit where the spacecraft resides. We analyzed the received Ka-band signal level data in order to characterize link performance over a wide range of weather conditions and as a function of elevation angle. Based on this analysis of Kepler and Cassini flight data, we found that a 4-dB margin with respect to adverse conditions ensures that we achieve at least a 95 percent data return.

  15. Seizure tests distinguish intermittent fasting from the ketogenic diet

    PubMed Central

    Hartman, Adam L.; Zheng, Xiangrong; Bergbower, Emily; Kennedy, Michiko; Hardwick, J. Marie

    2010-01-01

    Summary Purpose Calorie restriction can be anticonvulsant in animal models. The ketogenic diet was designed to mimic calorie restriction and has been assumed to work by the same mechanisms. We challenged this assumption by profiling the effects of these dietary regimens in mice subjected to a battery of acute seizure tests. Methods Juvenile male NIH Swiss mice received ketogenic diet or a normal diet fed in restricted quantities (continuously or intermittently) for ~ 12 days, starting at 3–4 weeks of age. Seizures were induced by the 6 Hz test, kainic acid, maximal electroshock, or pentylenetetrazol. Results The ketogenic and calorie-restricted diets often had opposite effects depending on the seizure test. The ketogenic diet protected from 6 Hz–induced seizures, whereas calorie restriction (daily and intermittent) increased seizure activity. Conversely, calorie restriction protected juvenile mice against seizures induced by kainic acid, whereas the ketogenic diet failed to protect. Intermittent caloric restriction worsened seizures induced by maximal electroshock but had no effect on those induced by pentylenetetrazol. Discussion In contrast to a longstanding hypothesis, calorie restriction and the ketogenic diet differ in their acute seizure test profiles, suggesting that they have different underlying anticonvulsant mechanisms. These findings highlight the importance of the 6 Hz test and its ability to reflect the benefits of ketosis and fat consumption. PMID:20477852

  16. Contribution of early Alzheimer's Disease-related Pathophysiology to the Development of Acquired epilepsy.

    PubMed

    Gschwind, Tilo; Lafourcade, Carlos; Gfeller, Tim; Zaichuk, Mariana; Rambousek, Lukas; Knuesel, Irene; Fritschy, Jean-Marc

    2018-06-04

    Aberrant epileptic activity is detectable at early disease stages in Alzheimer's disease (AD) patients and in AD mouse models. Here, we investigated in young ArcticAβ mice whether AD-like pathology renders neuronal networks more susceptible to development of acquired epilepsy induced by unilateral intrahippocampal injection of kainic acid (IHK). In this temporal lobe epilepsy model, IHK induces a status epilepticus followed after two weeks by spontaneous recurrent seizures (SRS). ArcticAβ mice exhibited more severe status epilepticus and early onset of SRS. This hyperexcitable phenotype was characterized in CA1 neurons by decreased synaptic strength, increased kainic acid-induced LTP, and reduced frequency of spontaneous inhibitory currents. However, no difference in neurodegeneration, neuroinflammation, axonal reorganization or adult neurogenesis was observed in ArcticAβ mice compared to wildtype littermates following IHK-induced epileptogenesis. Neuropeptide Y (NPY) expression was reduced at baseline and its IHK-induced elevation in mossy fibers and granule cells was attenuated. However, although this alteration might underlie premature seizure onset, neutralization of soluble Aβ species by intracerebroventricular Aβ-specific antibody application mitigated the hyperexcitable phenotype of ArcticAβ mice and prevented early SRS onset. Therefore, development of seizures at early stages of AD is mediated primarily by Aβ species causing widespread changes in synaptic function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Aspergillus oryzae nrtA affects kojic acid production.

    PubMed

    Sano, Motoaki

    2016-09-01

    We analyzed the role of the nitrate transporter-encoding gene (nrtA) of Aspergillus oryzae by gene disruption. Southern hybridization analysis indicated that homologous recombination occurred at the resident nrtA locus. Real-time PCR showed that the nrtA gene was strongly inducible by NaNO3. The nrtA disruptant did not exhibit normal growth when nitrate was available as the sole nitrogen source. These results indicate that NrtA is essential for nitrate uptake in A. oryzae. Kojic acid (KA) production was inhibited by the addition of a small amount of sodium nitrate. The nrtA-disrupted strain was deficient in the uptake of nitrate. As a result, KA production in this strain was not considerably affected by the presence of nitrate.

  18. Functional recovery of the dentate gyrus after a focal lesion is accompanied by structural reorganization in the adult rat.

    PubMed

    Zepeda, Angélica; Aguilar-Arredondo, Andrea; Michel, Gabriela; Ramos-Languren, Laura Elisa; Escobar, Martha L; Arias, Clorinda

    2013-03-01

    The adult brain is highly plastic and tends to undergo substantial reorganization after injury to compensate for the lesion effects. It has been shown that such reorganization mainly relies on anatomical and biochemical modifications of the remaining cells which give rise to a network rewiring without reinstating the original morphology of the damaged region. However, few studies have analyzed the neurorepair potential of a neurogenic structure. Thus, the aim of this work was to analyze if the DG could restore its original morphology after a lesion and to establish if the structural reorganization is accompanied by behavioral and electrophysiological recovery. Using a subepileptogenic injection of kainic acid (KA), we induced a focal lesion in the DG and assessed in time (1) the loss and recovery of dependent and non dependent DG cognitive functions, (2) the anatomical reorganization of the DG using a stereological probe and immunohistochemical markers for different neuronal maturation stages and, (3) synaptic plasticity as assessed through the induction of in vivo long-term potentiation (LTP) in the mossy fiber pathway (CA3-DG). Our results show that a DG focal lesion with KA leads to a well delimited region of neuronal loss, disorganization of the structure, the loss of associated mnemonic functions and the impairment to elicit LTP. However, behavioral and synaptic plasticity expression occurs in a time dependent fashion and occurs along the morphological restoration of the DG. These results provide novel information on neural plasticity events associated to functional reorganization after damage.

  19. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.

    PubMed Central

    MacGregor, D. G.; Miller, W. J.; Stone, T. W.

    1993-01-01

    1. Systemic injections of kainic acid, 10 mg kg-1, into adult rats resulted in lesions in the hippocampus, as assessed by peripheral benzodiazepine ligand binding. Co-administration of clonazepam at 1 mg kg-1 or 0.2 mg kg-1 prevented major seizures associated with kainate injections, but did not alter significantly the production of hippocampal damage. 2. The co-administration of the adenosine A1 agonist R-phenylisopropyladenosine (R-PIA, 25 micrograms kg-1, i.p.) abolished the lesions induced by kainic acid. 3. The presence of the selective A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (250 or 50 micrograms kg-1, i.p.) abolished the R-PIA neuroprotective action. 4. The A1/A2 antagonist, 8-(p-sulphophenyl)theophylline (20 mg kg-1, i.p.) which cannot cross the blood brain barrier, did not alter significantly the neuroprotective action of R-PIA, indicating that the neuroprotective action of the purine may be predominantly central. 5. The time course of the neuroprotection was also examined. R-PIA was effective when administered 2 h before or after kainate administration. 6. The results emphasise the potential utility of systemically active adenosine A1 receptor ligands in reducing CNS gliosis induced by the activation of excitatory amino acid receptors. PMID:8220909

  20. Fade Mitigation Techniques at Ka-Band

    NASA Technical Reports Server (NTRS)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  1. EFFECTIVE ACIDITY CONSTANT BEHAVIOR NEAR ZERO CHARGE CONDITIONS

    EPA Science Inventory

    Surface site (>SOH group) acidity reactions require expressions of the form: Ka = [>SOHn-1(z-1)]aH+EXP(-DG/RT)/[>SOHnz] (where all variables have their usual meaning). One can rearrange this expression to generate an effective acidity constant historically defined as: Qa = Ka...

  2. Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka

    NASA Astrophysics Data System (ADS)

    Sancho, Carlos; Arenas, Concha; Vázquez-Urbez, Marta; Pardo, Gonzalo; Lozano, María Victoria; Peña-Monné, José Luis; Hellstrom, John; Ortiz, José Eugenio; Osácar, María Cinta; Auqué, Luis; Torres, Trinidad

    2015-11-01

    The drainage area of the Iberian Ranges (NE Spain) houses one of the most extensive Quaternary fluvial tufaceous records in Europe. In this study, tufa deposits in the Añamaza, Mesa, Piedra and Ebrón river valleys were mapped, stratigraphically described and chronologically referenced from U/Th disequilibrium series, amino acid racemization and radiocarbon methods. Tufa deposits accumulated in cascades, barrage-cascades and related damming areas developed in stepped fluvial systems. The maximum frequency of tufa deposition was identified at 120 ka (Marine Oxygen Isotope Stage [MIS] 5e), 102 ka (MIS 5c), 85 ka ( MIS 5a) and 7 ka (MIS 1), probably under warmer and wetter conditions than today. Additional phases of tufa deposition appear at 353 ka ( end of MIS 11), 258-180 ka (MIS 7) and 171-154 ka (MIS 6). Although most tufa deposition episodes are clearly correlated with interstadial periods, the occurrence of tufa deposits during the penultimate glaciation (MIS 6) is remarkable, indicating that the onset of this stage was climatically favourable in the Iberian Peninsula. Biostatic conditions and the dynamics of karstic systems regulating tufa deposition seem to be sensitive to the precipitation regime, controlled by shifts in the position of North Atlantic atmospheric belts, and summer insolation, regulated by orbital forcing.

  3. pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa.

    PubMed

    Wang, Lin; Li, Lin; Alexov, Emil

    2015-12-01

    We developed a Poisson-Boltzmann based approach to calculate the pKa values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating pKa values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large pKa shifts of various single point mutations in staphylococcal nuclease (SNase) from pKa-cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa's. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves pKa predictions for buried carboxyl residues. Finally, the pKa calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules. © 2015 Wiley Periodicals, Inc.

  4. The Mars Observer Ka-band link experiment

    NASA Technical Reports Server (NTRS)

    Rebold, T. A.; Kwok, A.; Wood, G. E.; Butman, S.

    1994-01-01

    The Ka-Band Link Experiment was the first demonstration of a deep-space communications link in the 32- to 35-GHz band (Ka-band). It was carried out using the Mars Observer spacecraft while the spacecraft was in the cruise phase of its mission and using a 34-meter beam-waveguide research and development antenna at the Goldstone complex of the DSN. The DSN has been investigating the performance benefits of a shift from X-band (8.4 GHz) to Ka-band (32 GHz) for deep-space communications. The fourfold increase in frequency is expected to offer a factor of 3 to 10 improvement (5 to 10 dB) in signal strength for a given spacecraft transmitter power and antenna size. Until recently, the expected benefits were based on performance studies, with an eye to implementing such a link, but theory was transformed to reality when a 33.7-GHz Ka-band signal was received from the spacecraft by DSS 13. This article describes the design and implementation of the Ka-Band Link Experiment from the spacecraft to the DSS-13 system, as well as results from the Ka-band telemetry demonstration, ranging demonstration, and long-term tracking experiment. Finally, a preliminary analysis of comparative X- and Ka-band tracking results is included. These results show a 4- to 7-dB advantage for Ka-band using the system at DSS 13, assuming such obstacles as antenna pointing loss and power conversion loss are overcome.

  5. In Vitro Antioxidant-Activity Evaluation of Gallic-Acid-Grafted Chitosan Conjugate Synthesized by Free-Radical-Induced Grafting Method.

    PubMed

    Hu, Qiaobin; Wang, Taoran; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-07-27

    The major objective of this work was to develop a green and facile process to prepare gallic acid-chitosan conjugate and comprehensively evaluate the physicochemical properties and biological activities of an as-prepared water-soluble chitosan derivative. A free-radical-induced grafting approach using an ascorbic acid-hydrogen peroxide redox pair was adopted. The obtained conjugate was characterized by Fourier transform infrared spectroscopy, UV-vis, X-ray diffraction, and pKa analysis. The antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6)-sulphonic acid (ABTS), reducing power, and oxygen-radical antioxidant-capacity assays. The results showed that the mass ratio of gallic acid to chitosan played a vital role in determining the grafting degree and ζ potential of the conjugates, with the ratio of 0.5:1 being the optimal ratio that resulted in the highest grafting degree. The antioxidant assays demonstrated that conjugation significantly improved the antioxidant activities, being dramatically higher than that of free chitosan. It was notable that the DPPH- and ABTS-scavenging activities of conjugate at 0.4 mg/mL reached the same level as the free gallic acid at the equivalent concentration. Our study demonstrated a green and facile synthesis approach to preparing a novel water-soluble chitosan derivative that may have promising potentials in the food industry.

  6. pKa shifting in double-stranded RNA is highly dependent upon nearest neighbors and bulge positioning.

    PubMed

    Wilcox, Jennifer L; Bevilacqua, Philip C

    2013-10-22

    Shifting of pKa's in RNA is important for many biological processes; however, the driving forces responsible for shifting are not well understood. Herein, we determine how structural environments surrounding protonated bases affect pKa shifting in double-stranded RNA (dsRNA). Using (31)P NMR, we determined the pKa of the adenine in an A(+)·C base pair in various sequence and structural environments. We found a significant dependence of pKa on the base pairing strength of nearest neighbors and the location of a nearby bulge. Increasing nearest neighbor base pairing strength shifted the pKa of the adenine in an A(+)·C base pair higher by an additional 1.6 pKa units, from 6.5 to 8.1, which is well above neutrality. The addition of a bulge two base pairs away from a protonated A(+)·C base pair shifted the pKa by only ~0.5 units less than a perfectly base paired hairpin; however, positioning the bulge just one base pair away from the A(+)·C base pair prohibited formation of the protonated base pair as well as several flanking base pairs. Comparison of data collected at 25 °C and 100 mM KCl to biological temperature and Mg(2+) concentration revealed only slight pKa changes, suggesting that similar sequence contexts in biological systems have the potential to be protonated at biological pH. We present a general model to aid in the determination of the roles protonated bases may play in various dsRNA-mediated processes including ADAR editing, miRNA processing, programmed ribosomal frameshifting, and general acid-base catalysis in ribozymes.

  7. Enhancement of commercial antifungal agents by kojic acid

    USDA-ARS?s Scientific Manuscript database

    Kojic acid (KA), a natural by-product of fungal fermentation, is a commonly used food and cosmetic additive. We show that KA increases activity of amphotericin B and strobilurin, medical and agricultural antifungal agents, respectively, possibly targeting the fungal antioxidative system. KA shows pr...

  8. Acid mediates a prolonged antinociception via substance P signaling in acid-induced chronic widespread pain.

    PubMed

    Chen, Wei-Nan; Chen, Chih-Cheng

    2014-05-21

    Substance P is an important neuropeptide released from nociceptors to mediate pain signals. We recently revealed antinociceptive signaling by substance P in acid-sensing ion channel 3 (ASIC3)-expressing muscle nociceptors in a mouse model of acid-induced chronic widespread pain. However, methods to specifically trigger the substance P antinociception were still lacking. Here we show that acid could induce antinociceptive signaling via substance P release in muscle. We prevented the intramuscular acid-induced hyperalgesia by pharmacological inhibition of ASIC3 and transient receptor potential V1 (TRPV1). The antinociceptive effect of non-ASIC3, non-TRPV1 acid signaling lasted for 2 days. The non-ASIC3, non-TRPV1 acid antinociception was largely abolished in mice lacking substance P. Moreover, pretreatment with substance P in muscle mimicked the acid antinociceptive effect and prevented the hyperalgesia induced by next-day acid injection. Acid could mediate a prolonged antinociceptive signaling via the release of substance P from muscle afferent neurons in a non-ASIC3, non-TRPV1 manner.

  9. Palaeoenvironmental Transitions Between 22 ka and 8 ka in Monsoonally Influenced Namibia

    NASA Astrophysics Data System (ADS)

    Eitel, Bernhard; Blümel, Wolf Dieter; Hüser, Klaus

    The paper presents a preliminary reconstruction of the development of different palaeoenvironments between the Last Glacial Maximum (LGM; c. 22 - 18 ka) and the Holocene Altithermal (HA; c. 8 ka - 4 ka) in Namibia. The synopsis is based on 36 optical datations of dune sands and fine-grained, silty deposits (OSL and TL). Most of the data were published by different research groups during the last decade. The synoptic view of all available optical age determinations is necessary because palaeoclimatic interpretations for southwestern Africa are not possible using results based only on local studies and on partly unreliable datations (e. g. 14C ages of calcretes). The compilation of all available datations and a synoptical interpretation such as the one presented here, show that gradual transitions and not abrupt changes from arid to more humid conditions occurred. These transitions did not affect all regions of Namibia at the same time and intensity. Differentiations in time and space are necessary for arriving a consistent model of the palaeoenvironmental transitions between LGM and HA.

  10. Keto analogues and amino acids supplementation induces a decrease of white blood cell counts and a reduction of muscle damage during intense exercise under thermoneutral conditions.

    PubMed

    Lima, R C P; Camerino, S R A S; França, T C L; Rodrigues, D S A; Gouveia, M G S; Ximenes-da-Silva, A; Bassini, A; Prado, E S; Cameron, L C

    2017-04-19

    This study evaluated the acute effect of keto analogue and amino acid (AA-KAAA) supplementation on both white blood cell counts and the established biomarkers of muscle damage during exercise under thermoneutral conditions. Sixteen male cyclists received a ketogenic diet for two days and were divided into two equal groups: a group taking AA-KAAA (KA) or a control group (PL). The athletes performed a two hour cycling session followed by a maximum incremental test until voluntary exhaustion (VExh). Blood samples were obtained at rest and during exercise for further hematological and biochemical analyses. Exercise-induced ammonemia increased in the PL group at VExh (75%) but remained unchanged in the KA group. Both groups exhibited a significant increase in leukocyte and neutrophil counts of ∼85% (∼13 × 10 9 L -1 ), but the shape of the lymphocytes and the eosinophil counts suggest that AA-KAAA supplementation helps prevent lymphocytosis. AA-KAAA supplementation induced a decrease in creatine kinase and aspartate aminotransferase levels at VExh while showing a significant decrease in lactate dehydrogenase at 120 min. We found that AA-KAAA supplementation decreases both the lymphocyte count response in blood and the established biomarkers of muscle damage after intense exercise under a low heat stress environment.

  11. Salubrious effect of Kalpaamruthaa, a modified indigenous preparation in adjuvant-induced arthritis in rats--a biochemical approach.

    PubMed

    Mythilypriya, Rajendran; Shanthi, Palanivelu; Sachdanandam, Panchanadam

    2008-05-28

    Interactions between the phytochemicals and drugs and their combinations are capable of providing longer remissions and perhaps a complete cure for many diseases including rheumatoid arthritis (RA). In addition to articular manifestations in RA, extra-articular signs involving reticuloendothelial and hepatic systems are an indication of more severe disease and thus, have prognostic value. The present study was designed to illustrate the beneficial outcome of the drug Kalpaamruthaa (constituting Semecarpus anacardium nut milk extract, fresh dried powder of Emblica officinalis fruit and honey) in adjuvant-induced arthritic rat model with respect to the changes in extra-articular manifestation involving hematological and cellular constituents. Levels of hematological parameters, cellular constituents, activities of marker enzymes and the level of DNA damage were assessed in control, arthritis-induced, SA, KA and drug control treated rats. Significant decrease (p<0.005) in the levels of Hb, RBC, PCV, total protein, albumin, A/G ratio, plasma uric acid, urinary urea, uric acid, creatinine, FFA, HDL and significant increase (p<0.05) in the levels of WBC, platelet count, ESR, globulin, plasma creatinine, blood glucose, urea, AST, ALT, ALP, TC, FC, TG, PL, LDL and VLDL were observed in arthritic rats. No other significant change was observed in tissue DNA and RNA levels of control and experimental animals. On the contrary an increase in DNA damage was observed in arthritic rats when compared to control animals. The above said derangements were brought back to near normal levels upon SA and KA treatments and KA revealed a profound beneficial effect than SA. The enhanced effect of KA might be attributed to the combined effects of phytoconstituents such as flavonoids, tannins and other compounds such as vitamin C present in KA. Thus KA via this preliminary protective effect might contribute to the amelioration of the disease process.

  12. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 2. Major structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    Polycarboxylic acid structures that account for the strong-acid characteristics (pKa1 near 2.0) were examined for fulvic acid from the Suwannee River. Studies of model compounds demonstrated that pKa values near 2.0 occur only if the ??-ether or ??-ester groups were in cyclic structures with two to three additional electronegative functional groups (carboxyl, ester, ketone, aromatic groups) at adjacent positions on the ring. Ester linkage removal by alkaline hydrolysis and destruction of ether linkages through cleavage and reduction with hydriodic acid confirmed that the strong carboxyl acidity in fulvic acid was associated with polycarboxylic ??-ether and ??-ester structures. Studies of hypothetical structural models of fulvic acid indicated possible relation of these polycarboxylic structures with the amphiphilic and metal-binding properties of fulvic acid.

  13. Developing hybrid approaches to predict pKa values of ionizable groups

    PubMed Central

    Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei

    2011-01-01

    Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395

  14. Prenatal corticosteroid exposure alters early developmental seizures and behavior

    PubMed Central

    Velíšek, Libor

    2011-01-01

    In humans, corticosteroids are often administered prenatally to improve lung development in preterm neonates. Studies in exposed children as well as in children, whose mothers experienced significant stress during pregnancy indicate behavioral problems and possible increased occurrence of epileptic spasms. This study investigated whether prenatal corticosteroid exposure alters early postnatal seizure susceptibility and behaviors. On gestational day 15, pregnant rats were injected i.p. with hydrocortisone (2× 10 mg/kg), betamethasone (2× 0.4 mg/kg) or vehicle. On postnatal day (P)15, seizures were induced by flurothyl or kainic acid (3.5 or 5.0 mg/kg). Horizontal bar holding was determined prior to seizures and again on P17. Performance in the elevated plus maze was assessed on P20-22. Prenatal exposure to betamethasone decreased postnatal susceptibility to flurothyl-induced clonic seizures but not to kainic acid-induced seizures. Prenatal hydrocortisone decreased postnatal weight but did not affect seizure susceptibility. Hydrocortisone alone did not affect performance in behavioral tests except for improving horizontal bar holding on P17. A combination of prenatal hydrocortisone and postnatal seizures resulted in increased anxiety. Prenatal exposure to mineralocorticoid receptor blocker canrenoic acid did not attenuate, but surprisingly amplified the effects of hydrocortisone on body weight and significantly worsened horizontal bar performance. Thus, prenatal exposure to excess corticosteroids alters postnatal seizure susceptibility and behaviors. Specific effects may depend on corticosteroid species. PMID:21429712

  15. Potent anti-seizure effects of D-leucine

    PubMed Central

    Hartman, Adam L.; Santos, Polan; O’Riordan, Kenneth J.; Stafstrom, Carl E.; Hardwick, J. Marie

    2015-01-01

    There are no effective treatments for millions of patients with intractable epilepsy. High-fat ketogenic diets may provide significant clinical benefit but are challenging to implement. Low carbohydrate levels appear to be essential for the ketogenic diet to work, but the active ingredients in dietary interventions remain elusive, and a role for ketogenesis has been challenged. A potential antiseizure role of dietary protein or of individual amino acids in the ketogenic diet is understudied. We investigated the two exclusively ketogenic amino acids, L-leucine and L-lysine, and found that only L-leucine potently protects mice when administered prior to the onset of seizures induced by kainic acid injection, but not by inducing ketosis. Unexpectedly, the D-enantiomer of leucine, which is found in trace amounts in the brain, worked as well or better than L-leucine against both kainic acid and 6 Hz electroshock-induced seizures. However, unlike L-leucine, D-leucine potently terminated seizures even after the onset of seizure activity. Furthermore, D-leucine, but not L-leucine, reduced long-term potentiation but had no effect on basal synaptic transmission in vitro. In a screen of candidate neuronal receptors, D-leucine failed to compete for binding by cognate ligands, potentially suggesting a novel target. Even at low doses, D-leucine suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes. PMID:26054437

  16. A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration.

    PubMed

    Huang, Kaixuan; Xu, Yong; Lu, Wen; Yu, Shiyuan

    2017-12-01

    The thermodynamic dissociation constants of xylonic acid and gluconic acid were studied via potentiometric methods, and the results were verified using lactic acid, which has a known pKa value, as a model compound. Solutions of xylonic acid and gluconic acid were titrated with a standard solution of sodium hydroxide. The determined pKa data were processed via the method of derivative plots using computer software, and the accuracy was validated using the Gran method. The dissociation constants associated with the carboxylic acid group of xylonic and gluconic acids were determined to be pKa 1  = 3.56 ± 0.07 and pKa 1  = 3.74 ± 0.06, respectively. Further, the experimental data showed that the second deprotonation constants associated with a hydroxyl group of each of the two acids were pKa 2  = 8.58 ± 0.12 and pKa 2  = 7.06 ± 0.08, respectively. The deprotonation behavior of polyhydroxy carboxylic acids was altered using various ratios with Cu(II) to form complexes in solution, and this led to proposing a hypothesis for further study.

  17. Characterization of Human Hippocampal Neural Stem/Progenitor Cells and Their Application to Physiologically Relevant Assays for Multiple Ionotropic Glutamate Receptors.

    PubMed

    Fukushima, Kazuyuki; Tabata, Yoshikuni; Imaizumi, Yoichi; Kohmura, Naohiro; Sugawara, Michiko; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi

    2014-09-01

    The hippocampus is an important brain region that is involved in neurological disorders such as Alzheimer disease, schizophrenia, and epilepsy. Ionotropic glutamate receptors-namely,N-methyl-D-aspartate (NMDA) receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs), and kainic acid (KA) receptors (KARs)-are well known to be involved in these diseases by mediating long-term potentiation, excitotoxicity, or both. To predict the therapeutic efficacy and neuronal toxicity of drug candidates acting on these receptors, physiologically relevant systems for assaying brain region-specific human neural cells are necessary. Here, we characterized the functional differentiation of human fetal hippocampus-derived neural stem/progenitor cells-namely, HIP-009 cells. Calcium rise assay demonstrated that, after a 4-week differentiation, the cells responded to NMDA (EC50= 7.5 ± 0.4 µM; n= 4), AMPA (EC50= 2.5 ± 0.1 µM; n= 3), or KA (EC50= 33.5 ± 1.1 µM; n= 3) in a concentration-dependent manner. An AMPA-evoked calcium rise was observed in the absence of the desensitization inhibitor cyclothiazide. In addition, the calcium rise induced by these agonists was inhibited by antagonists for each receptor-namely, MK-801 for NMDA stimulation (IC50= 0.6 ± 0.1 µM; n= 4) and NBQX for AMPA and KA stimulation (IC50= 0.7 ± 0.1 and 0.7 ± 0.03 µM, respectively; n= 3). The gene expression profile of differentiated HIP-009 cells was distinct from that of undifferentiated cells and closely resembled that of the human adult hippocampus. Our results show that HIP-009 cells are a unique tool for obtaining human hippocampal neural cells and are applicable to systems for assay of ionotropic glutamate receptors as a physiologically relevant in vitro model. © 2014 Society for Laboratory Automation and Screening.

  18. Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Cao, Xianyong; Dallmeyer, Anne; Zhao, Yan; Ni, Jian; Herzschuh, Ulrike

    2017-01-01

    Temporal and spatial stability of the vegetation-climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (Pann) and mean temperature of the warmest month (Mtwa) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen-climate relationships. Our analyses suggest that the importance of Pann compared with Mtwa for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of Pann for Picea and Pinus increases and has become the main determinant. This change in the climate-tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation-climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen-climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation-climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.

  19. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5.

    PubMed

    Ganguly, Arpeeta; Joerger, Rolf D

    2017-08-01

    The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis Nal R and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.

  20. Antagonist effects of veratric acid against UVB-induced cell damages.

    PubMed

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  1. Uric acid ameliorates indomethacin-induced enteropathy in mice through its antioxidant activity.

    PubMed

    Yasutake, Yuichi; Tomita, Kengo; Higashiyama, Masaaki; Furuhashi, Hirotaka; Shirakabe, Kazuhiko; Takajo, Takeshi; Maruta, Koji; Sato, Hirokazu; Narimatsu, Kazuyuki; Yoshikawa, Kenichi; Okada, Yoshikiyo; Kurihara, Chie; Watanabe, Chikako; Komoto, Shunsuke; Nagao, Shigeaki; Matsuo, Hirotaka; Miura, Soichiro; Hokari, Ryota

    2017-11-01

    Uric acid is excreted from blood into the intestinal lumen, yet the roles of uric acid in intestinal diseases remain to be elucidated. The study aimed to determine whether uric acid could reduce end points associated with nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy. A mouse model of NSAID-induced enteropathy was generated by administering indomethacin intraperitoneally to 8-week-old male C57BL/6 mice, and then vehicle or uric acid was administered orally. A group of mice treated with indomethacin was also concurrently administered inosinic acid, a uric acid precursor, and potassium oxonate, an inhibitor of uric acid metabolism, intraperitoneally. For in vitro analysis, Caco-2 cells treated with indomethacin were incubated in the presence or absence of uric acid. Oral administration of uric acid ameliorated NSAID-induced enteropathy in mice even though serum uric acid levels did not increase. Intraperitoneal administration of inosinic acid and potassium oxonate significantly elevated serum uric acid levels and ameliorated NSAID-induced enteropathy in mice. Both oral uric acid treatment and intraperitoneal treatment with inosinic acid and potassium oxonate significantly decreased lipid peroxidation in the ileum of mice with NSAID-induced enteropathy. Treatment with uric acid protected Caco-2 cells from indomethacin-induced oxidative stress, lipid peroxidation, and cytotoxicity. Uric acid within the intestinal lumen and in serum had a protective effect against NSAID-induced enteropathy in mice, through its antioxidant activity. Uric acid could be a promising therapeutic target for NSAID-induced enteropathy. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  2. Automatized sspKa measurements of dihydrogen phosphate and Tris(hydroxymethyl) aminomethane in acetonitrile/water mixtures from 20 to 60°C.

    PubMed

    Acquaviva, A; Tascon, M; Padró, J M; Gagliardi, L G; Castells, C B

    2014-09-01

    We measured pKa values of Tris(hydroxymethyl)aminomethane and dihydrogen phosphate; both are commonly used to prepare buffers for reverse-phase liquid chromatography (RPLC), in acetonitrile/water mixtures from 0% to 70% (v/v) (64.6% (w/w)) acetonitrile and at 20, 30, 40, 50, and 60°C. The procedure is based on potentiometric measurements of pH of buffer solutions of variable solvent compositions using a glass electrode and a novel automated system. The method consists in the controlled additions of small volumes of a thermostated solution from an automatic buret into another isothermal solution containing exactly the same buffer-component concentrations, but a different solvent composition. The continuous changes in the solvent composition induce changes in the potentials. Thus, only two sequences of additions are needed: increasing the amount of acetonitrile from pure water and decreasing the content of acetonitrile from 70% (v/v) (64.6% (w/w)). In the procedure with homemade apparatus, times for additions, stirring, homogenization, and data acquisition are entirely controlled by software programmed for this specific routine. This rapid, fully automated method was applied to acquire more than 40 potential data covering the whole composition range (at each temperature) in about two hours and allowed a systematic study of the effect of temperature and acetonitrile composition on acid-base equilibria of two widely used substances to control pH close to 7. The experimental pKa results were fitted to empirical functions between pKa and temperature and acetonitrile composition. These equations allowed predictions of pKa to estimate the pH of mixtures at any composition and temperature, which would be very useful, for instance, during chromatographic method development. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The protection of glycyrrhetinic acid (GA) towards acetaminophen (APAP)-induced toxicity partially through fatty acids metabolic pathway.

    PubMed

    Yang, Hua; Jiang, Tingshu; Li, Ping; Mao, Qishan

    2015-09-01

    Acetaminophen (APAP)-induced liver toxicity remains the key factor limiting the clinical application of APAP, and herbs are the important sources for isolation of compounds preventing APAP-induced toxicity. To investigate the protection mechanism of glycyrrhetinic acid towards APAP-induced liver damage using metabolomics method. APAP-induced liver toxicity model was made through intraperitoneal injection (i.p.) of APAP (400 mg/kg). Glycyrrhetinic acid was dissolved in corn oil, and intraperitoneal injection (i.p.) of glycyrrhetinic acid (500 mg/kg body weight) was performed for 20 days before the injection of APAP. UPLC-ESI-QTOF MS was employed to analyze the metabolomic profile of serum samples. The pre-treatment of glycyrrhetinic acid significantly protected APAP-induced toxicity, indicated by the histology of liver, the activity of ALT and AST. Metabolomics showed that the level of palmtioylcarnitine and oleoylcarnitine significantly increased in serum of APAP-treated mice, and the pre-treatment with GA can prevent this elevation of these two fatty acid-carnitines. Reversing the metabolism pathway of fatty acid is an important mechanism for the protection of glycyrrhetinic acid towards acetaminophen-induced liver toxicity.

  4. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.

    PubMed Central

    D’Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J.; Pearce, Patrice; Fenton, Andre A.; MacLusky, Neil J.; Scharfman, Helen E.

    2015-01-01

    In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility. PMID:25864929

  5. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Food safety assessment of Cry8Ka5 mutant protein using Cry1Ac as a control Bt protein.

    PubMed

    Farias, Davi Felipe; Viana, Martônio Ponte; Oliveira, Gustavo Ramos; Santos, Vanessa Olinto; Pinto, Clidia Eduarda Moreira; Viana, Daniel Araújo; Vasconcelos, Ilka Maria; Grossi-de-Sa, Maria Fátima; Carvalho, Ana Fontenele Urano

    2015-07-01

    Cry8Ka5 is a mutant protein from Bacillus thuringiensis (Bt) that has been proposed for developing transgenic plants due to promising activity against coleopterans, like Anthonomus grandis (the major pest of Brazilian cotton culture). Thus, an early food safety assessment of Cry8Ka5 protein could provide valuable information to support its use as a harmless biotechnological tool. This study aimed to evaluate the food safety of Cry8Ka5 protein following the two-tiered approach, based on weights of evidence, proposed by ILSI. Cry1Ac protein was used as a control Bt protein. The history of safe use revealed no convincing hazard reports for Bt pesticides and three-domain Cry proteins. The bioinformatics analysis with the primary amino acids sequence of Cry8Ka5 showed no similarity to any known toxic, antinutritional or allergenic proteins. The mode of action of Cry proteins is well understood and their fine specificity is restricted to insects. Cry8Ka5 and Cry1Ac proteins were rapidly degraded in simulated gastric fluid, but were resistant to simulated intestinal fluid and heat treatment. The LD50 for Cry8Ka5 and Cry1Ac was >5000 mg/kg body weight when administered by gavage in mice. Thus, no expected relevant risks are associated with the consumption of Cry8Ka5 protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate

    PubMed Central

    Jiang, Wenge; Pacella, Michael S.; Athanasiadou, Dimitra; Nelea, Valentin; Vali, Hojatollah; Hazen, Robert M.; Gray, Jeffrey J.; McKee, Marc D.

    2017-01-01

    Chirality is ubiquitous in biology, including in biomineralization, where it is found in many hardened structures of invertebrate marine and terrestrial organisms (for example, spiralling gastropod shells). Here we show that chiral, hierarchically organized architectures for calcium carbonate (vaterite) can be controlled simply by adding chiral acidic amino acids (Asp and Glu). Chiral, vaterite toroidal suprastructure having a ‘right-handed' (counterclockwise) spiralling morphology is induced by L-enantiomers of Asp and Glu, whereas ‘left-handed' (clockwise) morphology is induced by D-enantiomers, and sequentially switching between amino-acid enantiomers causes a switch in chirality. Nanoparticle tilting after binding of chiral amino acids is proposed as a chiral growth mechanism, where a ‘mother' subunit nanoparticle spawns a slightly tilted, consequential ‘daughter' nanoparticle, which by amplification over various length scales creates oriented mineral platelets and chiral vaterite suprastructures. These findings suggest a molecular mechanism for how biomineralization-related enantiomers might exert hierarchical control to form extended chiral suprastructures. PMID:28406143

  8. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dong-mei; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province; Lu, Jun, E-mail: lu-jun75@163.com

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitivemore » deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.« less

  9. Gallic Acid Induces Apoptosis in Human Gastric Adenocarcinoma Cells.

    PubMed

    Tsai, Chung-Lin; Chiu, Ying-Ming; Ho, Tin-Yun; Hsieh, Chin-Tung; Shieh, Dong-Chen; Lee, Yi-Ju; Tsay, Gregory J; Wu, Yi-Ying

    2018-04-01

    Gastric cancer is one of the most common malignant cancers with a poor prognosis and high mortality rate worldwide. Current treatment of gastric cancer includes surgery and chemotherapy as the main modalities, but the potentially severe side-effects of chemotherapy present a considerable challenge. Gallic acid is a trihydroxybenzoic acid found to exert an anticancer effect against a variety of cancer cells. The purpose of this study was to determine the anti-cancer activity of Galla chinensis and its main component gallic acid on human gastric adenocarcinoma cells. MTT assay and cell death ELISA were used to determine the apoptotic effect of Gallic Chinensis and gallic acid on human gastric adenocarcinoma cells. To determine the pathway and relevant components by which gallic acid-induced apoptosis is mediated through, cells were transfected with siRNA (Fas, FasL, DR5, p53) using Lipofectamine 2000. Reults: Gallic Chinensis and gallic acid induced apoptosis of human gastric adenocarcinoma cells. Gallic acid induced up-regulation of Fas, FasL, and DR5 expression in AGS cells. Transfection of cells with Fas, FasL, or DR5 siRNA reduced gallic acid-induced cell death. In addition, p53 was shown to be involved in gallic acid-mediated Fas, FasL, and DR5 expression as well as cell apoptosis in AGS cells. These results suggest that gallic acid has a potential role in the treatment of gastric cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. New insights on water level variability for Lake Turkana for the past 15 ka and at 150 ka from relict beaches

    NASA Astrophysics Data System (ADS)

    Forman, S. L.; Wright, D.

    2015-12-01

    Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is

  11. Triglyceride accumulation protects against fatty acid-induced lipotoxicity

    PubMed Central

    Listenberger, Laura L.; Han, Xianlin; Lewis, Sarah E.; Cases, Sylvaine; Farese, Robert V.; Ory, Daniel S.; Schaffer, Jean E.

    2003-01-01

    Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic β-cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is well tolerated, whereas excess palmitic acid is poorly incorporated into triglyceride and causes apoptosis. Unsaturated fatty acids rescue palmitate-induced apoptosis by channeling palmitate into triglyceride pools and away from pathways leading to apoptosis. Moreover, in the setting of impaired triglyceride synthesis, oleate induces lipotoxicity. Our findings support a model of cellular lipid metabolism in which unsaturated fatty acids serve a protective function against lipotoxicity though promotion of triglyceride accumulation. PMID:12629214

  12. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    PubMed

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Glycyrrhizin and glycyrrhetinic acid inhibits alpha-naphthyl isothiocyanate-induced liver injury and bile acid cycle disruption.

    PubMed

    Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J

    2017-07-01

    Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.

  14. Ferulic acid prevents cerebral ischemic injury-induced reduction of hippocalcin expression.

    PubMed

    Koh, Phil-Ok

    2013-07-01

    Intracellular calcium overload is a critical pathophysiological factor in ischemic injury. Hippocalcin is a neuronal calcium sensor protein that buffers intracellular calcium levels and protects cells from apoptotic stimuli. Ferulic acid exerts a neuroprotective effect in cerebral ischemia through its anti-oxidant and anti-inflammation activity. This study investigated whether ferulic acid contributes to hippocalcin expression during cerebral ischemia and glutamate exposure-induced neuronal cell death. Rats were immediately treated with vehicle or ferulic acid (100 mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brain tissues were collected 24 h after MCAO and followed by assessment of cerebral infarct. Ferulic acid reduced MCAO-induced infarct regions. A proteomics approach elucidated a decrease in hippocalcin in MCAO-operated animals, ferulic acid attenuates the injury-induced decrease in hippocalcin expression. Reverse transcription-polymerase chain reaction and Western blot analyses confirmed that ferulic acid prevents the injury-induced decrease in hippocalcin. In cultured HT22 hippocampal cells, glutamate exposure increased the intracellular Ca(2+) levels, whereas ferulic acid attenuated this increase. Moreover, ferulic acid attenuated the glutamate toxicity-induced decrease in hippocalcin expression. These findings can suggest the possibility that ferulic acid exerts a neuroprotective effect through modulating hippocalcine expression and regulating intracellular calcium levels. Copyright © 2013 Wiley Periodicals, Inc.

  15. Thermodynamics of Nucleic Acid ‘Shape Readout’ by an Aminosugar†

    PubMed Central

    Xi, Hongjuan; Davis, Erik; Ranjan, Nihar; Xue, Liang; Hyde-Volpe, David; Arya, Dev P.

    2012-01-01

    Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized to play an equally important role in DNA recognition. Competition Dialysis, UV, Flourescent Intercalator displacement (FID), Computational Docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, these results suggest: (1) Neomycin binds three RNA structures (16S A site rRNA, poly(rA)•poly(rA), and poly(rA)•poly(rU)) with high affinities, Ka~107M−1. (2) The binding of neomycin to A-form GC-rich oligomer d(A2G15C15T2)2 has comparable affinity to RNA structures. (3) The binding of neomycin to DNA•RNA hybrids shows a three-fold variance attributable to their structural differences (poly(dA) •poly(rU), Ka=9.4×106M−1 and poly(rA)•poly(dT), Ka=3.1×106M−1). (4) The interaction of neomycin with DNA triplex poly(dA)•2poly(dT) yields a binding affinity of Ka=2.4×105M−1. (5) Poly(dA-dT)2 showed the lowest association constant for all nucleic acids studied (Ka=<105). (6) Neomycin binds to G-quadruplexes with Ka~104-105M−1. (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin’s affinity for various nucleic acid structures can be ranked as follows, RNAs and GC-rich d(A2G15C15T2)2 structures > poly(dA)•poly(rU) > poly(rA)•poly(dT) > T•A-T triplex , G-quadruplexes, B-form AT-rich or GC-rich DNA sequences. The results illustrate the first example of a small molecule based ‘shape readout’ of different nucleic acid conformations. PMID:21863895

  16. Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats

    PubMed Central

    Lavoie, Nathalie; Peralta, Modesto R; Chiasson, Marilou; Lafortune, Kathleen; Pellegrini, Luca; Seress, László; Tóth, Katalin

    2007-01-01

    In the nervous system, zinc can influence synaptic responses and at extreme concentrations contributes to epileptic and ischaemic neuronal injury. Zinc can originate from synaptic vesicles, the extracellular space and from intracellular stores. In this study, we aimed to determine which of these zinc pools is responsible for the increased hippocampal excitability observed in zinc-depleted animals or following zinc chelation. Also, we investigated the source of intracellularly accumulating zinc in vulnerable neurons. Our data show that membrane-permeable and membrane-impermeable zinc chelators had little or no effect on seizure activity in the CA3 region. Furthermore, extracellular zinc chelation could not prevent the accumulation of lethal concentrations of zinc in dying neurons following epileptic seizures. At the electron microscopic level, zinc staining significantly increased at the presynaptic membrane of mossy fibre terminals in kainic acid-treated animals. These data indicate that intracellular but not extracellular zinc chelators could influence neuronal excitability and seizure-induced zinc accumulation observed in the cytosol of vulnerable neurons. PMID:17095563

  17. Remarkable alterations of Nav1.6 in reactive astrogliosis during epileptogenesis.

    PubMed

    Zhu, Hongyan; Zhao, Yuxiao; Wu, Hao; Jiang, Nan; Wang, Ziyi; Lin, Weide; Jin, Jiahui; Ji, Yonghua

    2016-12-01

    Voltage-gated sodium channels (VGSCs) play a vital role in controlling neuronal excitability. Nav1.6 is the most abundantly expressed VGSCs subtype in the adult central nervous system and has been found to contribute to facilitate the hyperexcitability of neurons after electrical induction of status epilepticus (SE). To clarify the exact expression patterns of Nav1.6 during epileptogenesis, we examined the expression of Nav1.6 at protein and mRNA levels in two distinct animal models of temporal lobe epilepsy (TLE) including a post-SE model induced by kainic acid (KA) intrahippocampal injection and a kindling model evoked by pentylenetetrazole (PTZ). A prominent, seizure intensity-dependent increase of Nav1.6 expression in reactive astrocytes was observed in ipsilateral hippocampus of post-SE rats, reaching the peak at 21 days after SE, a time point during the latent stage of epileptogenesis. However, Nav1.6 with low expression level was selectively expressed in the hippocampal neurons rather than astrocytes in PTZ-kindled animals. This seizure-related increase of a VGSCs subtype in reactive astrocytes after SE may represent a new mechanism for signal communication between neuron and glia in the course of epileptogenesis, facilitating the neuronal hyperexcitability.

  18. Magnetic Mineral diagenesis in changing water environments in the Black Sea since ˜41.6 ka

    NASA Astrophysics Data System (ADS)

    Liu, Jiabo; Nowaczyk, Norbert; Frank, Ute; Arz, Helge

    2017-04-01

    Magnetic mineral diagenesis plays a key role in the global iron cycle. To understand the authigenic magnetic mineral formation by diagenesis is also fundamentally important for the interpretation of environmental magnetic as well as paleomagnetic signals. Core MSM33-55-1, recovered from the SW Black Sea, was subjected to rock-magnetic and SEM studies. The results demonstrate that four different magnetic mineral assemblages associated to specific water conditions can be observed. Between ˜41.6 ka and ˜19 ka, magnetite and greigite are alternatively in dominance in the sediment. Due to low organic matter input during the late MIS 3 and the last glacial maximum (LGM), oxygenated bottom water in the Black Sea was favourable for preserving detrital magnetite. Greigite in this interval have irregular shapes and assemble in spots, which were formed in a micro environment with limited sulfate availability. Between ˜19 ka and ˜16.5 ka, black layers were deposited as a result of organic matter accumulation induced by productivity blooming and riverine discharge soaring after the LGM. Hence less oxygenated bottom water conditions developed, and more fine grained greigite was formed. After melt-water pulse (MWP) events (˜16.5 ka), both primary productivity and the sea level were continuously rising until ˜8.3 ka, leading to the depletion of oxygen in bottom water. In addition to greigite, pyrite was also formed and gradually in dominance as approaching the Holocene. The influx of salt water masses from the Mediterranean Sea after ˜8.3 ka contributed to the establishment of the anoxic Black Sea, which resulted in the formation of ubiquitous frambiods of pyrite. Additionally, bacterial magnetic minerals are likely present in the sediment younger than ˜8.3 ka as indicated by rock magnetic results. In this paper, four different magnetic mineral assemblages, reflecting gradual changes from an oxic to an anoix Black Sea, were identified, yielding insights into the relation

  19. UV-induced solvent free synthesis of truxillic acid-bile acid conjugates

    NASA Astrophysics Data System (ADS)

    Koivukorpi, Juha; Kolehmainen, Erkki

    2009-07-01

    The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).

  20. Concentrating Solar Power Projects - KaXu Solar One | Concentrating Solar

    Science.gov Websites

    Power | NREL KaXu Solar One This page provides information on KaXu Solar One, a concentrating . Status Date: April 14, 2015 Project Overview Project Name: KaXu Solar One Country: South Africa Location

  1. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  2. NASA SCaN Overview and Ka-Band Actvities

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Midon, Marco Mario; Davarian, Faramaz; Geldzahler, Barry

    2014-01-01

    The Ka- and Broadband Communications Conference is an international forum attended by worldwide experts in the area of Ka-Band Propagation and satellite communications. Since its inception, NASA has taken the initiative of organizing and leading technical sections on RF Propagation and satellite communications, solidifying its worldwide leadership in the aforementioned areas. Consequently, participation in this conference through the contributions described below will maintain NASA leadership in Ka- and above RF Propagation as it relates to enhancing current and future satellite communication systems supporting space exploration.

  3. Intranigral transplants of a GABAergic cell line produce long-term alleviation of established motor seizures.

    PubMed

    Castillo, Claudia G; Mendoza-Trejo, Soledad; Aguilar, Manuel B; Freed, William J; Giordano, Magda

    2008-11-03

    We have previously shown that intranigral transplants of immortalized GABAergic cells decrease the number of kainic acid-induced seizures [Castillo CG, Mendoza S, Freed WJ, Giordano M. Intranigral transplants of immortalized GABAergic cells decrease the expression of kainic acid-induced seizures in the rat. Behav Brain Res 2006;171:109-15] in an animal model. In the present study, recurrent spontaneous behavioral seizures were established by repeated systemic injections of this excitotoxin into male Sprague-Dawley rats. After the seizures had been established, cells were transplanted into the substantia nigra. Animals with transplants of control cells (without hGAD67 expression) or with sham transplants showed a death rate of more than 40% over the 12 weeks of observation, whereas in animals with M213-2O CL-4 transplants, the death rate was reduced to less than 20%. The M213-2O CL-4 transplants significantly reduced the percentage of animals showing behavioral seizures; animals with these transplants also showed a lower occurrence of stage V seizures than animals in the other groups. In vivo and in vitro analyses provided evidence that the GABAergic cells show sustained expression of both GAD67 and hGAD67 cDNA, as well as increased gamma-aminobutyric acid (GABA) levels in the ventral mesencephalon of transplanted animals. Therefore, transplantation of GABA-producing cells can produce long-term alleviation of behavioral seizures in an animal model.

  4. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage

    PubMed Central

    Kumaran, Kandaswamy Senthil

    2010-01-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients. PMID:20376586

  5. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage.

    PubMed

    Kumaran, Kandaswamy Senthil; Prince, Ponnian Stanely Mainzen

    2010-11-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat's heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.

  6. Multi-Step Ka/Ka Dichroic Plate with Rounded Corners for NASA's 34m Beam Waveguide Antenna

    NASA Technical Reports Server (NTRS)

    Veruttipong, Watt; Khayatian, Behrouz; Hoppe, Daniel; Long, Ezra

    2013-01-01

    A multi-step Ka/Ka dichroic plate Frequency Selective Surface (FSS structure) is designed, manufactured and tested for use in NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antennas. The proposed design allows ease of manufacturing and ability to handle the increased transmit power (reflected off the FSS) of the DSN BWG antennas from 20kW to 100 kW. The dichroic is designed using HFSS and results agree well with measured data considering the manufacturing tolerances that could be achieved on the dichroic.

  7. Abrupt climate change around 4 ka BP: Role of the Thermohaline circulation as indicated by a GCM experiment

    NASA Astrophysics Data System (ADS)

    Wang, Shaowu; Zhou, Tianjun; Cai, Jingning; Zhu, Jinhong; Xie, Zhihui; Gong, Daoyi

    2004-04-01

    A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant temperature drop and an aridification occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support this dedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia has been attributed to climate-induced aridification. A widespread alternation of the ancient cultures was also found in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeoclimatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the cold phase in millennial scale climate oscillations, which may be related to the modulation of the Thermohaline Circulation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment of a GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop in temperature from North Europe, the northern middle East Asia, and northern East Asia and a significant reduction of precipitation in East Africa, the Middle East, the Indian Peninsula, and the Yellow River Valley. This seems to support the idea that coldness and aridification at ca. 4.0 ka BP was caused by the weakening of the THC.

  8. Effects of lipoic Acid on acrylamide induced testicular damage.

    PubMed

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-06-01

    Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Forty adult male rats were divided into four groups (10 rats each). Control group; acrylamide treated group administered acrylamide 0.05% (w/v) in drinking water for 21 days; alpha-lipoic acid group received basal diet supplemented with 1% alpha-lipoic acid and forth group was exposed to acrylamide and treated with alpha-lipoic acid at the same doses and treatment regimen mentioned before. The administration of acrylamide resulted in significant elevation in testicular and epididymal malondialdehyde level (MDA) and significant reduction in the level of reduced glutathione (GSH) and the activities of glutathione-S-transferase (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). Also, acrylamide significantly reduced serum total testosterone and progesterone but increased estradiol (E2) levels. Treatment with alpha-lipoic acid prior to acrylamide induced protective effects and attenuated these biochemical changes. Alpha-lipoic acid has been shown to possess antioxidant properties offering promising efficacy against oxidative stress induced by acrylamide administration.

  9. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  10. Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers.

    PubMed

    Fugistier, Patrick; Vallet, Philippe G; Leuba, Geneviève; Piotton, Françoise; Marin, Pascale; Bouras, Constantin; Savioz, Armand

    2014-02-01

    Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. EFFECTS OF METHYLMERCURY ON SPINAL CORD AFFERENTS AND EFFERENTS—A REVIEW

    PubMed Central

    Colón-Rodríguez, Alexandra; Hannon, Heidi E.; Atchison, William D.

    2017-01-01

    Methylmercury (MeHg) is an environmental neurotoxicant of public health concern. It readily accumulates in exposed humans, primarily in neuronal tissue. Exposure to MeHg, either acutely or chronically, causes severe neuronal dysfunction in the central nervous system and spinal neurons; dysfunction of susceptible neuronal populations results in neurodegeneration, at least in part through Ca2+-mediated pathways. Biochemical and morphologic changes in peripheral neurons precede those in central brain regions, despite the fact that MeHg readily crosses the blood-brain barrier. Consequently, it is suggested that unique characteristics of spinal cord afferents and efferents could heighten their susceptibility to MeHg toxicity. Transient receptor potential (TRP) ion channels are a class of Ca2+-permeable cation channels that are highly expressed in spinal afferents, among other sensory and visceral organs. These channels can be activated in numerous ways, including directly via chemical irritants or indirectly via Ca2+ release from intracellular storage organelles. Early studies demonstrated that MeHg interacts with heterologous TRPs, though definitive mechanisms of MeHg toxicity on sensory neurons may involve more complex interaction with, and among, differentially-expressed TRP populations. In spinal efferents, glutamate receptors of the N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and possibly kainic acid (KA) classes are thought to play a major role in MeHg-induced neurotoxicity. Specifically, the Ca2+-permeable AMPA receptors, which are abundant in motor neurons, have been identified as being involved in MeHg-induced neurotoxicity. In this review, we will describe the mechanisms that could contribute to MeHg-induced spinal cord afferent and efferent neuronal degeneration, including the possible mediators, such as uniquely expressed Ca2+-permeable ion channels. PMID:28041893

  12. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  13. Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions.

    PubMed

    Zheng, Yu; Zhang, Renkuan; Yin, Haisong; Bai, Xiaolei; Chang, Yangang; Xia, Menglei; Wang, Min

    2017-09-01

    Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was cultured in ethanol-free medium, and energy production was found to increase by 150% through glucose consumption induced by initial acetic acid. However, oxidation of ethanol, instead of glucose, became the main energy production pathway when upon culturing ethanol containing medium. Proteome assay was used to analyze the metabolism change induced by initial acetic acid, which provided insight into carbon metabolic and energy regulation of A. pasteurianus to adapt to acetic acid fermentation conditions. Results were further confirmed by quantitative real-time PCR. In summary, decreased intracellular ATP as a result of initial acetic acid inhibition improved the energy metabolism to produce more energy and thus adapt to the acetic acid fermentation conditions. A. pasteurianus upregulated the expression of enzymes related to TCA and ethanol oxidation to improve the energy metabolism pathway upon the addition of initial acetic acid. However, enzymes involved in the pentose phosphate pathway, the main pathway of glucose metabolism, were downregulated to induce a change in carbon metabolism. Additionally, the enhancement of alcohol dehydrogenase expression promoted ethanol oxidation and strengthened the acetification rate, thereby producing a strong proton motive force that was necessary for energy production and cell tolerance to acetic acid.

  14. Differential conserted activity induced regulation of Nogo receptors (1-3), LOTUS and Nogo mRNA in mouse brain.

    PubMed

    Karlsson, Tobias E; Koczy, Josefin; Brené, Stefan; Olson, Lars; Josephson, Anna

    2013-01-01

    Nogo Receptor 1 (NgR1) mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity.

  15. Mars Global Surveyor Ka-Band Frequency Data Analysis

    NASA Astrophysics Data System (ADS)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  16. Ku/Ka band observations over polar ice sheets

    NASA Astrophysics Data System (ADS)

    Thibaut, Pierre; Lasne, Yannick; Guillot, Amandine; Picot, Nicolas; Rémy, Frédérique

    2015-04-01

    For the first time, comparisons between Ku and Ka altimeter measurements are possible thanks to the new AltiKa instrument embarked onboard the Saral mission launched on February 25, 2013. This comparison is of particular interest when dealing with ice sheet observations because both frequencies have different penetration characteristics. We propose in this paper to revisit the estimation of the ice sheet topography (and other related parameters) with altimeter systems and to present illustrations of the differences observed in Ku and Ka bands using AltiKa, Envisat/RA-2 but also Cryosat-2 measurements. Working on AltiKa waveforms in the frame of the PEACHI project has allowed us to better understand the impact of the penetration depth on the echo shape, to improve the estimation algorithm and to compare its output with historical results obtained on Envisat and ERS missions. In particular, analyses at cross-overs of the Cryosat-2 and Saral data will be presented. Sentinel-3 mission should be launch during 2015. Operating in Ku band and in delay/doppler mode, it will be crucial to account for penetration effects in order to accurately derive the ice sheet heights and trends. The results of the work presented here, will benefit to the Sentinel-3 mission.

  17. Cloning and expression of an alpha-1,3-glucanase gene from Bacillus circulans KA-304: the enzyme participates in protoplast formation of Schizophyllum commune.

    PubMed

    Yano, Shigekazu; Wakayama, Mamoru; Tachiki, Takashi

    2006-07-01

    A culture filtrate of Bacillus circulans KA-304 grown on a cell-wall preparation of Schizophyllum commune has an activity to form protoplasts from S. commune mycelia, and a combination of alpha-1,3-glucanase and chitinase I, which were isolated from the filtrate, brings about the protoplast-forming activity. The gene of alpha-1,3-glucanase was cloned from B. circulans KA-304. It consists of 3,879 nucleotides, which encodes 1,293 amino acids including a putative signal peptide (31 amino acid residues), and the molecular weight of alpha-1,3-glucanase without the putative signal peptide was calculated to be 132,184. The deduced amino acid sequence of alpha-1,3-glucanase of B. circulans KA-304 showed approximately 80% similarity to that of mutanase (alpha-1,3-glucanase) of Bacillus sp. RM1, but no significant similarity to those of fungal mutanases. The recombinant alpha-1,3-glucanase was expressed in Escherichia coli Rosetta-gami B (DE 3), and significant alpha-1,3-glucanase activity was detected in the cell-free extract of the organism treated with isopropyl-beta-D-thiogalactopyranoside. The recombinant alpha-1,3-glucanase showed protoplast-forming activity when the enzyme was combined with chitinase I.

  18. Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa's of proteins as a function of pH. Test on a large set of proteins.

    PubMed

    Vorobjev, Yury N; Scheraga, Harold A; Vila, Jorge A

    2018-02-01

    A computational method, to predict the pKa values of the ionizable residues Asp, Glu, His, Tyr, and Lys of proteins, is presented here. Calculation of the electrostatic free-energy of the proteins is based on an efficient version of a continuum dielectric electrostatic model. The conformational flexibility of the protein is taken into account by carrying out molecular dynamics simulations of 10 ns in implicit water. The accuracy of the proposed method of calculation of pKa values is estimated from a test set of experimental pKa data for 297 ionizable residues from 34 proteins. The pKa-prediction test shows that, on average, 57, 86, and 95% of all predictions have an error lower than 0.5, 1.0, and 1.5 pKa units, respectively. This work contributes to our general understanding of the importance of protein flexibility for an accurate computation of pKa, providing critical insight about the significance of the multiple neutral states of acid and histidine residues for pKa-prediction, and may spur significant progress in our effort to develop a fast and accurate electrostatic-based method for pKa-predictions of proteins as a function of pH.

  19. The Role of Sirt1 in Epileptogenesis

    PubMed Central

    Brennan, Gary P.; Nguyen, Tiffany M.; Singh-Taylor, Akanksha; Mun, Hyun-Seung; Sargious, Mary J.

    2017-01-01

    Abstract The mechanisms by which brain insults lead to subsequent epilepsy remain unclear. Insults, including trauma, stroke, tumors, infections, and long seizures [status epilepticus (SE)], create a neuronal state of increased metabolic demand or decreased energy supply. Neurons express molecules that monitor their metabolic state, including sirtuins (Sirts). Sirtuins deacetylate cytoplasmic proteins and nuclear histones, and their epigenetic modulation of the chromatin governs the expression of many genes, influencing neuronal properties. Thus, sirtuins are poised to enduringly modulate neuronal properties following SE, potentially contributing to epileptogenesis, a hypothesis supported by the epilepsy-attenuating effects of blocking a downstream target of Sirt1, Neuron-Restrictive Silencer Factor (NRSF) also know as REST (RE1-Silencing Transcription factor). Here we used an adult male rat model of epileptogenesis provoked by kainic acid–induced SE (KA-SE). We assessed KA-SE-provoked Sirt1 activity, infused a Sirt1 inhibitor (EX-527) after KA-SE, and examined for epileptogenesis using continuous digital video–EEG. Sirt1 activity, measured using chromatin immunoprecipitation for Sirt1 binding at a target gene, increased rapidly after SE. Post hoc infusion of the Sirt1 inhibitor prevented Sirt1-mediated repression of a target gene. Blocking Sirt1 activity transiently after KA-SE did not significantly influence the time- course and all of the parameters of epilepsy development. Specifically, latency to first seizure and seizure number, duration, and severity (using the Racine scale and EEG measures) as well as the frequency and duration of interictal spike series, were all unchanged. KA-SE provoked a robust inflammatory response and modest cell loss, yet neither was altered by blocking Sirt1. In conclusion, blocking Sirt1 activity after KA-SE does not abrogate epilepsy development, suggesting that the mechanisms of such acquired epileptogenesis are independent

  20. Modulation of ATP-induced inward currents by docosahexaenoic acid and other fatty acids in rat nodose ganglion neurons.

    PubMed

    Eto, Kei; Arimura, Yukiko; Mizuguchi, Hiroko; Nishikawa, Masazumi; Noda, Mami; Ishibashi, Hitoshi

    2006-11-01

    The effects of docosahexaenoic acid (DHA) and other fatty acids on P2X-receptor-mediated inward currents in rat nodose ganglion neurons were studied using the nystatin perforated patch-clamp technique. DHA accelerated the desensitization rate of the ATP-induced current. DHA showed use-dependent inhibition of the peak ATP-induced current. Other polyunsaturated fatty acids, such as arachidonic acid and eicosapentaenoic acid, displayed a similar use-dependent inhibition. The inhibitory effects of saturated fatty acids including palmitic acid and arachidic acid were weaker than those of polyunsaturated fatty acids. The results suggest that fatty acids may modulate the P2X receptor-mediated response when the channel is in the open-state.

  1. Valproic acid induced hyperammonaemic encephalopathy.

    PubMed

    Amanat, Saima; Shahbaz, Naila; Hassan, Yasmin

    2013-01-01

    To observe clinical and laboratory features of valproic acid-induced hyperammonaemic encephalopathy in patients taking valproic acid. Observational study was conducted at the Neurology Department, Dow University of Health Sciences, Civil Hospital, Karachi, from February 26, 2010 to March 20, 2011. Ten patients on valproic acid therapy of any age group with idiopathic or secondary epilepsy, who presented with encephalopathic symptoms, were registered and followed up during the study. Serum ammonia level, serum valproic acid level, liver function test, cerebrospinal fluid examination, electroencephalogram and brain imaging of all the patients were done. Other causes of encephalopathy were excluded after clinical and appropriate laboratory investigations. Microsoft Excell 2007 was used for statistical analysis. Hyperammonaemia was found in all patients with encephalopathic symptoms. Rise in serum ammonia was independent of dose and serum level of valproic acid. Liver function was also found to be normal in 80% (n = 8) of the patients. Valproic acid was withdrawn in all patients. Three (30%) patients improved only after the withdrawal of valproic acid. Six (60%) patients improved after L-Carnitine replacement, one (10%) after sodium benzoate. On followup, serum ammonia had reduced to normal in five (50%) patients and to more than half of the baseline level in two (20%) patients. Three (30%) patients were lost to followup after complete clinical improvement. Within therapeutic dose and serum levels, valproic acid can cause symptomatic hyperammonaemia resulting in encephalopathy. All patients taking valproic acid presenting with encephalopathic symptoms must be monitored for the condition.

  2. Progress in the prediction of pKa values in proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexov, Emil; Mehler, Ernest L.; Baker, Nathan A.

    2011-12-15

    The pKa-cooperative aims to provide a forum for experimental and theoretical researchers interested in protein pKa values and protein electrostatics in general. The first round of the pKa -cooperative, which challenged computational labs to carry out blind predictions against pKas experimentally determined in the laboratory of Bertrand Garcia-Moreno, was completed and results discussed at the Telluride meeting (July 6-10, 2009). This paper serves as an introduction to the reports submitted by the blind prediction participants that will be published in a special issue of PROTEINS: Structure, Function and Bioinformatics. Here we briefly outline existing approaches for pKa calculations, emphasizing methodsmore » that were used by the participants in calculating the blind pKa values in the first round of the cooperative. We then point out some of the difficulties encountered by the participating groups in making their blind predictions, and finally try to provide some insights for future developments aimed at improving the accuracy of pKa calculations.« less

  3. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model.

    PubMed

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-28

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Bronsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa congruent with 1) as a model for excited-state HPTS( *) (pKa congruent with 1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  4. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    USDA-ARS?s Scientific Manuscript database

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  5. MicroRNA-34a upregulation during seizure-induced neuronal death

    PubMed Central

    Sano, T; Reynolds, J P; Jimenez-Mateos, E M; Matsushima, S; Taki, W; Henshall, D C

    2012-01-01

    MicroRNAs (miRNAs) are short, noncoding RNAs that function as posttranscriptional regulators of gene expression by controlling translation of mRNAs. A subset of miRNAs may be critical for the control of cell death, including the p53-regulated miRNA, miR-34a. Because seizures activate p53, and p53-deficient mice are reportedly resistant to damage caused by prolonged seizures, we investigated the role of miR-34a in seizure-induced neuronal death in vivo. Status epilepticus was induced by intra-amygdala microinjection of kainic acid in mice. This led to an early (2 h) multifold upregulation of miR-34a in the CA3 and CA1 hippocampal subfields and lower protein levels of mitogen-activated kinase kinase kinase 9, a validated miR-34a target. Immunoprecipitation of the RNA-induced silencing complex component, Argonaute-2, eluted significantly higher levels of miR-34a after seizures. Injection of mice with pifithrin-α, a putative p53 inhibitor, prevented miR-34a upregulation after seizures. Intracerebroventricular injection of antagomirs targeting miR-34a reduced hippocampal miR-34a levels and had a small modulatory effect on apoptosis-associated signaling, but did not prevent hippocampal neuronal death in models of either severe or moderate severity status epilepticus. Thus, prolonged seizures cause subfield-specific, temporally restricted upregulation of miR-34a, which may be p53 dependent, but miR-34a is probably not important for seizure-induced neuronal death in this model. PMID:22436728

  6. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    NASA Astrophysics Data System (ADS)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcá-Miró, C.; Gómez-González, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; López-Fernández, J. A.; Lovell, J.; Majid, W.; T; Natusch; Neidhardt, A.; Phillips, C.; Porcas, R.; Romero-Wolf, A.; Saldana, L.; Schreiber, U.; Sotuela, I.; Takeuchi, H.; Trinh, J.; Tzioumis, A.; de Vincente, P.; Zharov, V.

    2012-12-01

    Ka-band (32 GHz, 9 mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level (100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years.

  7. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; hide

    2012-01-01

    Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!

  8. Differential Conserted Activity Induced Regulation of Nogo Receptors (1–3), LOTUS and Nogo mRNA in Mouse Brain

    PubMed Central

    Karlsson, Tobias E.; Koczy, Josefin; Brené, Stefan; Olson, Lars; Josephson, Anna

    2013-01-01

    Nogo Receptor 1 (NgR1) mRNA is downregulated in hippocampal and cortical regions by increased neuronal activity such as a kainic acid challenge or by exposing rats to running wheels. Plastic changes in cerebral cortex in response to loss of specific sensory inputs caused by spinal cord injury are also associated with downregulation of NgR1 mRNA. Here we investigate the possible regulation by neuronal activity of the homologous receptors NgR2 and NgR3 as well as the endogenous NgR1 antagonist LOTUS and the ligand Nogo. The investigated genes respond to kainic acid by gene-specific, concerted alterations of transcript levels, suggesting a role in the regulation of synaptic plasticity, Downregulation of NgR1, coupled to upregulation of the NgR1 antagonist LOTUS, paired with upregulation of NgR2 and 3 in the dentate gyrus suggest a temporary decrease of Nogo/OMgp sensitivity while CSPG and MAG sensitivity could remain. It is suggested that these activity-synchronized temporary alterations may serve to allow structural alterations at the level of local synaptic circuitry in gray matter, while maintaining white matter pathways and that subsequent upregulation of Nogo-A and NgR1 transcript levels signals the end of such a temporarily opened window of plasticity. PMID:23593344

  9. d-Leucine: Evaluation in an epilepsy model.

    PubMed

    Holden, Kylie; Hartman, Adam L

    2018-01-01

    Current medicines do not provide sufficient seizure control for nearly one-third of patients with epilepsy. New options are needed to address this treatment gap. We recently found that the atypical amino acid d-leucine protected against acutely-induced seizures in mice, but its effect in chronic seizures has not been explored. We hypothesized that d-leucine would protect against spontaneous recurrent seizures. We also investigated whether mice lacking a previously-described d-leucine receptor (Tas1R2/R3) would be protected against acutely-induced seizures. Male FVB/NJ mice were subjected to kainic acid-induced status epilepticus and monitored by video-electroencephalography (EEG) (surgically implanted electrodes) for 4weeks before, during, and after treatment with d-leucine. Tas1R2/R3 knockout mice and controls underwent the maximal electroshock threshold (MES-T) and 6-Hz tests. There was no difference in number of calendar days with seizures or seizure frequency with d-leucine treatment. In an exploratory analysis, mice treated with d-leucine had a lower number of dark cycles with seizures. Tas1R2/R3 knockout mice had elevated seizure thresholds in the MES-T test but not the 6-Hz test. d-Leucine treatment was ineffective against chronic seizures after kainic acid-induced status epilepticus, but there was some efficacy during the dark cycle. Because d-leucine is highly concentrated in the pineal gland, these data suggest that d-leucine may be useful as a tool for studying circadian patterns in epilepsy. Deletion of the Tas1R2/R3 receptor protected against seizures in the MES-T test and, therefore, may be a novel target for treating seizures. Published by Elsevier Inc.

  10. Spatiotemporal and Long Lasting Modulation of 11 Key Nogo Signaling Genes in Response to Strong Neuroexcitation

    PubMed Central

    Karlsson, Tobias E.; Wellfelt, Katrin; Olson, Lars

    2017-01-01

    Inhibition of nerve growth and plasticity in the CNS is to a large part mediated by Nogo-like signaling, now encompassing a plethora of ligands, receptors, co-receptors and modulators. Here we describe the distribution and levels of mRNA encoding 11 key genes involved in Nogo-like signaling (Nogo-A, Oligodendrocyte-Myelin glycoprotein (OMgp), Nogo receptor 1 (NgR1), NgR2, NgR3, Lingo-1, TNF receptor orphan Y (Troy), Olfactomedin, Lateral olfactory tract usher substance (Lotus) and membrane-type matrix metalloproteinase-3 (MT3-MPP)), as well as BDNF and GAPDH. Expression was analyzed in nine different brain areas before, and at eight time points during the first 3 days after a strong neuroexcitatory stimulation, caused by one kainic acid injection. A temporo-spatial pattern of orderly transcriptional regulations emerges that strengthens the role of Nogo-signaling mechanisms for synaptic plasticity in synchrony with transcriptional increases of BDNF mRNA. For most Nogo-type signaling genes, the largest alterations of mRNA levels occur in the dentate gyrus, with marked alterations also in the CA1 region. Changes occurred somewhat later in several areas of the cerebral cortex. The detailed spatio-temporal pattern of mRNA presence and kainic acid-induced transcriptional response is gene-specific. We reveal that several different gene alterations combine to decrease (and later increase) Nogo-like signaling, as expected to allow structural plasticity responses. Other genes are altered in the opposite direction, suggesting that the system prepares in advance in order to rapidly restore balance. However, the fact that Lingo-1 shows a seemingly opposite, plasticity inhibiting response to kainic acid (strong increase of mRNA in the dentate gyrus), may instead suggest a plasticity-enhancing intracellular function of this presumed NgR1 co-receptor. PMID:28442990

  11. Relative paleointensity (RPI) in the latest Pleistocene (10-45 ka) and implications for the "mystery interval" in atmospheric radiocarbon production at 17 ka.

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.; Hodell, D. A.

    2017-12-01

    Relative paleointensity (RPI) proxies have been used to improve the resolution of Quaternary stratigraphies, and have been matched to oxygen isotope stratigraphies over the last 2 Myrs. The archeomagnetic archive has been important for the Holocene RPI record, and the older Quaternary record has come largely from ODP/IODP and MD (Marion Dufresne - Calypso) marine cores. Beyond the range of archeomagnetic data, published RPI stacks have poor consistency in the 10-30 ka (latest Pleistocene) interval, possibly due to poor quality of ODP/IODP and MD cores in the upper few meters of the sedimentary sections. We report RPI data from a suite of conventional piston cores and Kasten cores from the SW Iberian margin collected during cruise JC089 of the RSS James Cook in August 2013. The age models were acquired by correlation of Ca/Ti XRF core-scanning data to L* reflectance from the Cariaco Basin that is tied to the Greenland ice-core chronology. Mean sedimentation rates are in the 10-20 cm/kyr range. The Holocene RPI record from these marine cores can be broadly correlated to the archeomagnetic RPI compilations. The preceding RPI data are characterized by a short-lived minimum at 13-15 ka, a high in RPI at 17-20 ka, preceded by a discontinuous RPI decrease to 40 ka at the time of the well-documented Laschamp geomagnetic excursion. A stack of 12 RPI records from the SW Iberian margin for the 0-45 ka interval are compared with 11 records from elsewhere, including marine and lake records from the Pacific and South Atlantic realms, chosen on the basis of mean sedimentation rates (>20 cm/kyr) and superior age models. The resulting stacks are very different to previously published RPI stacks, particularly for the 10-30 ka interval, and imply a global (dipole-field) high at 17-20 ka that has implications for the 190 ‰ drop in atmospheric 14C during the so-called "mystery interval" (17.5-14.5 ka).

  12. Maslinic acid ameliorates NMDA receptor blockade-induced schizophrenia-like behaviors in mice.

    PubMed

    Jeon, Se Jin; Kim, Eunji; Lee, Jin Su; Oh, Hee Kyong; Zhang, Jiabao; Kwon, Yubeen; Jang, Dae Sik; Ryu, Jong Hoon

    2017-11-01

    Schizophrenia is a chronic psychotic disorder characterized by positive, negative, and cognitive symptoms. Primary treatments for schizophrenia relieve the positive symptoms but are less effective against the negative and cognitive symptoms. In the present study, we investigated whether maslinic acid, isolated from Syzygium aromaticum (clove), can ameliorate schizophrenia-like behaviors in mice induced by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. After maslinic acid treatment in the MK-801 model, we examined the behavioral alteration and signaling pathways in the prefrontal cortex. Mice were treated with maslinic acid (30 mg/kg), and their behaviors were evaluated through an array of behavioral tests. The effects of maslinic acid were also examined in the signaling pathways in the prefrontal cortex. A single administration of maslinic acid blocked the MK-801-induced hyperlocomotion and reversed the MK-801-induced sensorimotor gating deficit in the acoustic startle response test. In the social novelty preference test, maslinic acid ameliorated the social behavior deficits induced by MK-801. The MK-801-induced attention and recognition memory impairments were also alleviated by a single administration of maslinic acid. Furthermore, maslinic acid normalized the phosphorylation levels of Akt-GSK-3β and ERK-CREB in the prefrontal cortex. Overall, maslinic acid ameliorated the schizophrenia-like symptoms induced by MK-801, and these effects may be partly mediated through Akt-GSK-3β and ERK-CREB activation. These findings suggest that maslinic acid could be a candidate for the treatment of several symptoms of schizophrenia, including positive symptoms, sensorimotor gating disruption, social interaction deficits, and cognitive impairments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Trans-Fats Inhibit Autophagy Induced by Saturated Fatty Acids.

    PubMed

    Sauvat, Allan; Chen, Guo; Müller, Kevin; Tong, Mingming; Aprahamian, Fanny; Durand, Sylvère; Cerrato, Giulia; Bezu, Lucillia; Leduc, Marion; Franz, Joakim; Rockenfeller, Patrick; Sadoshima, Junichi; Madeo, Frank; Kepp, Oliver; Kroemer, Guido

    2018-04-01

    Depending on the length of their carbon backbone and their saturation status, natural fatty acids have rather distinct biological effects. Thus, longevity of model organisms is increased by extra supply of the most abundant natural cis-unsaturated fatty acid, oleic acid, but not by that of the most abundant saturated fatty acid, palmitic acid. Here, we systematically compared the capacity of different saturated, cis-unsaturated and alien (industrial or ruminant) trans-unsaturated fatty acids to provoke cellular stress in vitro, on cultured human cells expressing a battery of distinct biosensors that detect signs of autophagy, Golgi stress and the unfolded protein response. In contrast to cis-unsaturated fatty acids, trans-unsaturated fatty acids failed to stimulate signs of autophagy including the formation of GFP-LC3B-positive puncta, production of phosphatidylinositol-3-phosphate, and activation of the transcription factor TFEB. When combined effects were assessed, several trans-unsaturated fatty acids including elaidic acid (the trans-isomer of oleate), linoelaidic acid, trans-vaccenic acid and palmitelaidic acid, were highly efficient in suppressing autophagy and endoplasmic reticulum stress induced by palmitic, but not by oleic acid. Elaidic acid also inhibited autophagy induction by palmitic acid in vivo, in mouse livers and hearts. We conclude that the well-established, though mechanistically enigmatic toxicity of trans-unsaturated fatty acids may reside in their capacity to abolish cytoprotective stress responses induced by saturated fatty acids. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  14. Ka-band monopulse antenna-pointing systems analysis and simulation

    NASA Technical Reports Server (NTRS)

    Lo, V. Y.

    1996-01-01

    NASA 's Deep Space Network (DSN) has been using both 70-m and 34-m reflector antennas to communicate with spacecraft at S-band (2.3 GHz) and X-band (8.45 GHz). To improve the quality of telecommunication and to meet future mission requirements, JPL has been developing 34-m Ka-band (32-GHz) beam waveguide antennas. Presently, antenna pointing operates in either the open-loop mode with blind pointing using navigation predicts or the closed-loop mode with conical scan (conscan). Pointing accuracy under normal conscan operating conditions is in the neighborhood of 5 mdeg. This is acceptable at S- and X-bands, but not enough at Ka-band. Due to the narrow beamwidth at Ka-band, it is important to improve pointing accuracy significantly (approximately 2 mdeg). Monopulse antenna tracking is one scheme being developed to meet the stringent pointing-accuracy requirement at Ka-band. Other advantages of monopulse tracking include low sensitivity to signal amplitude fluctuations as well as single-pulse processing for acquisition and tracking. This article presents system modeling, signal processing, simulation, and implementation of Ka-band monopulse tracking feed for antennas in NASA/DSN ground stations.

  15. Docosahexaenoic acid, but not eicosapentaenoic acid, improves septic shock-induced arterial dysfunction in rats

    PubMed Central

    Clere-Jehl, Raphaël; Le Borgne, Pierrick; Merdji, Hamid; Auger, Cyril; Schini-Kerth, Valérie; Meziani, Ferhat

    2017-01-01

    Introduction Long chain n-3 fatty acid supplementation may modulate septic shock-induced host response to pathogen-induced sepsis. The composition of lipid emulsions for parenteral nutrition however remains a real challenge in intensive care, depending on their fatty acid content. Because they have not been assessed yet, we aimed at determining the respective effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) during septic shock-induced vascular dysfunction. Methods In a peritonitis-induced septic shock model, rats were infused with EPA, DHA, an EPA/DHA mixture or 5% dextrose (D5) during 22 hours. From H18, rats were resuscitated and monitored during 4 hours. At H22, plasma, aorta and mesenteric resistance arteries were collected to perform ex vivo experiments. Results We have shown that septic rats needed an active resuscitation with fluid challenge and norepinephrine treatment, while SHAM rats did not. In septic rats, norepinephrine requirements were significantly decreased in DHA and EPA/DHA groups (10.6±12.0 and 3.7±8.0 μg/kg/min respectively versus 17.4±19.3 μg/kg/min in D5 group, p<0.05) and DHA infusion significantly improved contractile response to phenylephrine through nitric oxide pathway inhibition. DHA moreover significantly reduced vascular oxidative stress and nitric oxide production, phosphorylated IκB expression and vasodilative prostaglandin production. DHA also significantly decreased polyunsaturated fatty acid pro-inflammatory mediators and significantly increased several anti-inflammatory metabolites. Conclusions DHA infusion in septic rats improved hemodynamic dysfunction through decreased vascular oxidative stress and inflammation, while EPA infusion did not have beneficial effects. PMID:29261735

  16. A 62 ka record from the WAIS Divide ice core with annual resolution to 30 ka (so far)

    NASA Astrophysics Data System (ADS)

    Fudge, T. J.; Taylor, K.; McGwire, K.; Brook, E.; Sowers, T.; Steig, E.; White, J.; Vaughn, B.; Bay, R.; McConnell, J.; Waddington, E.; Conway, H.; Clow, G.; Cuffey, K.; Cole-Dai, J.; Ferris, D.; Severinghaus, J.

    2012-04-01

    Drilling of the West Antarctic Ice Sheet (WAIS) Divide ice core has been completed to a depth of 3400 m, about 60 meters above the bed. We present an annually resolved time scale for the most recent 30ka (to 2800 m) based on electrical conductivity measurements, called "timescale WDC06A-5". Below 2800 m the ice is dated by matching isotopes, methane, and/or dust records to other ice cores. Optical borehole logging provides stratigraphic ties to other cores for the bottom-most 75 m that was drilled in December 2011, and indicates the bottom-most ice has an age of 62 ka. The relatively young ice at depth is likely the result of basal melting. The inferred annual layer thickness of the deep ice is >1 cm, suggesting that annual layer counting throughout the entire core may be possible with continuous flow analysis of the ice core chemistry; however, the annual signal in the electrical measurements fades at about 30 ka. We compare the WDC06A-5 timescale through the glacial-interglacial transition with the Greenland GICC05 and GISP2 timescales via rapid variations in methane. We calculate a preliminary delta-age with: 1) accumulation rate inferred from the annual layer thicknesses and thinning functions computed with a 1-D ice flow model, and 2) surface temperature inferred from the low resolution d18O record and a preliminary borehole temperature profile. The WDC06A-5 timescale agrees with the GICC05 and GISP2 timescales to within decades at the 8.2k event and the ACR termination (Younger Dryas/Preboreal transition, 11.7 ka). This is within the delta-age and correlation uncertainties. At the rapid methane drop at ~12.8 ka, the WDC06A-5 timescale is ~150 years older than GICC05 and ~90 older than GISP2; while at ~14.8 ka, the timescales once again agree within the delta-age and correlation uncertainties. The cause of the age discrepancy at 12.8 ka is unclear. We also compare the WDC06A-5 timescale at Dansgaard-Oeschger events 3 and 4 (~27.5 and 29 ka) to the

  17. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    PubMed

    Huang, Yijen A; Grant, Jeff; Roper, Stephen

    2012-01-01

    Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III) taste bud cells (∼50%) respond to 100 µM glutamate, NMDA, or kainic acid (KA) with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami) receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  18. Mars Reconnaissance Orbiter Ka-band (32 GHz) Demonstration: Cruise Phase Operations

    NASA Technical Reports Server (NTRS)

    Shambayati, Shervin; Morabito, David; Border, James S.; Davarian, Faramaz; Lee, Dennis; Mendoza, Ricardo; Britcliffe, Michael; Weinreb, Sander

    2006-01-01

    The X-band (8.41 GHz) frequency currently used for deep space telecommunications is too narrow (50 MHz) to support future high rate missions. Because of this NASA has decided to transition to Ka-band (32 GHz) frequencies. As weather effects cause much larger fluctuations on Ka-band than on X-band, the traditional method of using a few dBs of margin to cover these fluctuations is wasteful of power for Ka-band; therefore, a different operations concept is needed for Ka-band links. As part of the development of the operations concept for Ka-band, NASA has implemented a fully functioning Ka-band communications suite on its Mars Reconnaissance Orbiter (MRO). This suite will be used during the primary science phase to develop and refine the Ka-band operations concept for deep space missions. In order to test the functional readiness of the spacecraft and the Deep Space Network's (DSN) readiness to support the demonstration activities a series of passes over DSN 34-m Beam Waveguide (BWG) antennas were scheduled during the cruise phase of the mission. MRO was launched on August 12, 2005 from Kennedy Space Center, Cape Canaveral, Florida, USA and went into Mars Orbit on March 10, 2006. A total of ten telemetry demonstration and one high gain antenna (HGA) calibration passes were allocated to the Ka-band demonstration. Furthermore, a number of "shadow" passes were also scheduled where, during a regular MRO track over a Ka-band capable antenna, Ka-band was identically configured as the X-band and tracked by the station. In addition, nine Ka-band delta differential one way ranging ((delta)DOR) passes were scheduled. During these passes, the spacecraft and the ground system were put through their respective paces. Among the highlights of these was setting a single day record for data return from a deep space spacecraft (133 Gbits) achieved during one 10-hour pass; achieving the highest data rate ever from a planetary mission (6 Mbps) and successfully demonstrating Ka-band DDOR

  19. Bile-acid-induced cell injury and protection

    PubMed Central

    Perez, Maria J; Briz, Oscar

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties. PMID:19360911

  20. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    PubMed Central

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  1. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.

    PubMed

    Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin

    2007-05-18

    Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.

  2. L-Carnitine suppresses oleic acid-induced membrane permeability transition of mitochondria.

    PubMed

    Oyanagi, Eri; Yano, Hiromi; Kato, Yasuko; Fujita, Hirofumi; Utsumi, Kozo; Sasaki, Junzo

    2008-10-01

    Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation. Copyright (c) 2008 John Wiley & Sons, Ltd.

  3. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  4. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  5. Unsaturated fatty acids protect trophoblast cells from saturated fatty acid-induced autophagy defects.

    PubMed

    Hong, Ye-Ji; Ahn, Hyo-Ju; Shin, Jongdae; Lee, Joon H; Kim, Jin-Hoi; Park, Hwan-Woo; Lee, Sung Ki

    2018-02-01

    Dysregulated serum fatty acids are associated with a lipotoxic placental environment, which contributes to increased pregnancy complications via altered trophoblast invasion. However, the role of saturated and unsaturated fatty acids in trophoblastic autophagy has yet to be explored. Here, we demonstrated that prolonged exposure of saturated fatty acids interferes with the invasiveness of human extravillous trophoblasts. Saturated fatty acids (but not unsaturated fatty acids) inhibited the fusion of autophagosomes and lysosomes, resulting in the formation of intracellular protein aggregates. Furthermore, when the trophoblast cells were exposed to saturated fatty acids, unsaturated fatty acids counteracted the effects of saturated fatty acids by increasing degradation of autophagic vacuoles. Saturated fatty acids reduced the levels of the matrix metalloproteinases (MMP)-2 and MMP-9, while unsaturated fatty acids maintained their levels. In conclusion, saturated fatty acids induced decreased trophoblast invasion, of which autophagy dysfunction plays a major role. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36),more » an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) – extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. - Highlights: • VPA induced hepatic steatosis and modulated genes associated with lipid metabolism. • CD36-mediated fatty acid uptake contributed to VPA-induced lipid accumulation. • PA increased the

  7. Eicosapentaenoic acid and docosahexaenoic acid reduce UVB- and TNF-alpha-induced IL-8 secretion in keratinocytes and UVB-induced IL-8 in fibroblasts.

    PubMed

    Storey, Amy; McArdle, Frank; Friedmann, Peter S; Jackson, Malcolm J; Rhodes, Lesley E

    2005-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) inhibit ultraviolet B (UVB)-induced inflammation and other inflammatory states, in vivo. We examined whether this may be mediated by modulation of interleukin (IL)-8, a chemokine pivotal to skin inflammation induced by UVB, in epidermal and dermal cells. We also explored the ability of n-3 PUFA to protect against tumor necrosis factor (TNF)-alpha induction of IL-8, and assessed relative potencies of the principal dietary n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Pre-supplementation, both HaCaT keratinocyte and CCD922SK fibroblast cell lines showed dose-responses for UVB-induced IL-8 release (p<0.001), assessed 48 h post-irradiation. Cells were supplemented with > or =90% purified EPA, DHA, oleic acid (OA) or vehicle control, for 4.5 d. EPA and DHA supplements were bioavailable to keratinocytes and fibroblasts. In keratinocytes, EPA and DHA were shown to reduce basal secretion of IL-8 by 66% and 63%, respectively (p<0.05), and UVB-induced levels by 66% and 65% at 48 h after 100 mJ per cm2, respectively, (p<0.01). A similar pattern occurred in fibroblasts, whereas OA had no influence on IL-8 release in either cell line. In addition, TNF-alpha-induced IL-8 secretion by keratinocytes was reduced by 54% and 42%, respectively, by EPA and DHA (p<0.001). Hence both n-3 PUFA inhibit production of UVB- and TNF-alpha-induced IL-8 in skin cells; this may be important in the photoprotective and other anti-inflammatory effects conferred by these agents.

  8. Expression of mRNAs encoding dopamine receptors in striatal regions is differentially regulated by midbrain and hippocampal neurons.

    PubMed

    Brené, S; Herrera-Marschitz, M; Persson, H; Lindefors, N

    1994-02-01

    The glutamate analogue kainic acid was injected into the hippocampus of intact or 6-hydroxydopamine deafferented rats to investigate the influence of hippocampal neurons on the expression of dopamine D1 and D2 receptor mRNAs in subregions of the striatal complex and possible modulation by dopaminergic neurons. Quantitative in situ hybridization using 35S-labeled oligonucleotide probes specific for dopamine D1 and D2 receptor mRNAs, respectively, were used. It was found that an injection of kainic acid into the hippocampal formation had alone no significant effect on dopamine D1 or D2 receptor mRNA levels in any of the analyzed striatal subregions in animals analyzed 4 h after the injections. Kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion produced an increase in D1 receptor mRNA levels in the ipsilateral medial caudate-putamen, and a bilateral increase in core and shell of nucleus accumbens (ventral striatal limbic regions). A unilateral 6-hydroxydopamine lesion alone caused an increase in D2 receptor mRNA in the lateral caudate-putamen (dorsal striatal motor region) ipsilateral to the lesion and an increase in D1 receptor mRNA in the accumbens core ipsilateral to the lesion. However, in dopamine-lesioned animals, dopamine D1 receptor mRNA levels were increased bilaterally in nucleus accumbens core and shell and in the ipsilateral medial caudate-putamen following kainic acid stimulation in the hippocampus ipsilateral to the dopamine lesion. These results indicate a differential regulation of the expression of dopamine D1 and D2 receptor mRNAs by midbrain and hippocampal neurons.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Inhibition of glycogen synthase kinase 3 increased subventricular zone stem cells proliferation.

    PubMed

    Pachenari, Narges; Kiani, Sahar; Javan, Mohammad

    2017-09-01

    The effects of Wnt signaling modifiers on cell proliferation, seem to be cell specific. Enhancing the proliferation of subventricular zone (SVZ) progenitors has been in the focus of research in recent years. Here we investigate the effect of CHIR99021, a Glycogen Synthase Kinase 3 (GSk-3) inhibitor, on SVZ progenitor's proliferation both in vivo and in vitro. Neural stem cells were extracted from the adult C57bl/6 by mincing and trypsin treatment followed by culturing in specific medium. Sphere cells formed within about 7-10days and were characterized by immunostaining. Number of spheres and their size was assessed following exposure to different concentration of CHIR99021 or vehicle. For in vivo studies, animals received intracerebroventricular (i.c.v.) injection of CHIR99021 or vehicle for four days. A subgroup of animals, after 4days treatment with CHIR99021 received intranasal kainic acid to induce local neurodegeneration in CA3 area of hippocampus. Inhibition of GSk-3 by CHIR99021 increased neural progenitor proliferation and the effect of CHIR99021 was long lasting so that the treated cells showed higher proliferation even after CHIR99021 removal. In vivo administration of CHIR99021 increased the number of neural progenitors at the rims of lateral ventricles especially when the treatment was followed by kainic acid administration which induces neural insult. Results showed that direct administration of CHIR99021 into the culture medium or animal brain increased the number of SVZ progenitors, especially when a neural insult was induced in the hippocampus. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. The Geology of the Ka'u Desert, Hawaii as a Mars Analog

    NASA Astrophysics Data System (ADS)

    Craddock, R. A.; Irwin, R. P.; Williams, R.; Swanson, D.; Howard, A. D.; Quantin, C.; Kuzmin, R.; Zimbelman, J. R.

    2005-12-01

    The Ka'u Desert is located on the western flank of Kilauea volcano on the Big Island of Hawaii. It is a desert because it receives little annual rainfall (about 150 mm/yr) but also because it is subjected to constant outgassing from Kilauea, which creates a harsh, acidic environment. Near the summit of Kilauea the Ka'u Desert is characterized by the Keanakako'i tephra deposit, which is several meters deep thinning out to a discontinuous deposit 1.5 km (1 mile) towards the center of the desert. The deposit itself has been incised by a number of gullies that are flat-floored and terminate in a series of amphitheater-shaped plunge pools. Most of the interior desert contains undulating weathered lava flows, extensive deposits of sand, and several more recent lava flows and volcanic edifices. The southern portion of the desert is bounded by the Hilina Pali fault scarp, which is 500 m (1,500 ft) above the nearby Pacific Ocean and contains a complex series of outwash plains, alluvial fans, and debris flows. We will present a summary of the geology of the Ka'u Desert. Contrary to published interpretations, we will present evidence that the Keanakako'i was not emplaced by two separate catastrophic eruption events but rather by two distinct eruption episodes that included multiple eruption events often interrupted by long hiatuses. Despite the morphology of the gullies contained on the Keanakako'i we will present evidence that the gullies were formed exclusively by surface runoff and not groundwater sapping, including quantitative estimates about the large amounts of discharge that occur during extreme storms. We will also present analyses of the sand deposits and determine the likely provenance of these materials. For the first time, we will also describe alluvial fans and mass wasting features on Hilina Pali and show evidence that they are part of poorly integrated channel system that originates in the Keanakako'i tephra. The Ka'u Desert represents a good Mars analog

  11. Comparison of acid-induced cell wall loosening in Valonia ventricosa and in oat coleoptiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepfer, M.; Cleland, R.E.

    The acid-induced loosening of cell walls of Valonia ventricosa has been compared to that of frozen-thawed oat coleoptiles. The two acid extension responses are similar in regard to the shape of the pH response curve and the increase in plastic compliance induced by acid treatment. In both systems the acid response can be inhibited by Ca/sup 2 +/ and in both the removal of the protons leads to a rapid termination of wall loosening. The two responses differ in several significant ways, however. The acid-induced extension of Valonia walls is more rapid than that of coleoptile walls, but of smallermore » total magnitude. Acid-induced loosening can occur in Valonia without the wall being under tension, but not in coleoptiles. The acid-induced extension of Valonia walls is not inhibited by 8 molar urea, whereas the response in oat coleoptiles is completely inhibited by this treatment. Ethylenediaminetetraacetate (EDTA) can cause wall loosening in Valonia comparable to that produced by low pH, whereas in coleoptiles EDTA causes a much smaller response. These results with Valonia are consistent with a mechanism of acid-induced wall loosening in which a central role is played by the displacement of Ca/sup 2 +/ from the wall, while the larger part of acid-induced wall loosening in oat coleoptiles appears to be via a different mechanism.« less

  12. Mechanism of alpha-lipoic acid in attenuating kanamycin-induced ototoxicity☆

    PubMed Central

    Wang, Aimei; Hou, Ning; Bao, Dongyan; Liu, Shuangyue; Xu, Tao

    2012-01-01

    In view of the theory that alpha-lipoic acid effectively prevents cochlear cells from injury caused by various factors such as cisplatin and noise, this study examined whether alpha-lipoic acid can prevent kanamycin-induced ototoxicity. To this end, healthy BALB/c mice were injected subcutaneously with alpha-lipoic acid and kanamycin for 14 days. Auditory brainstem response test showed that increased auditory brainstem response threshold shifts caused by kanamycin were significantly inhibited. Immunohistochemical staining and western blot analysis showed that the expression of phosphorylated p38 mitogen-activated protein kinase and phosphorylated c-Jun N-terminal kinase in mouse cochlea was significantly decreased. The experimental findings suggest that phosphorylated p38 and phosphorylated c-Jun N-terminal kinase mediated kanamycin-induced ototoxic injury in BALB/c mice. Alpha-lipoic acid effectively attenuated kanamycin ototoxicity by inhibiting the kanamycin-induced high expression of phosphorylated p38 and phosphorylated c-Jun N-terminal kinase. PMID:25317129

  13. Hydrogen bonded binary molecular adducts derived from exobidentate N-donor ligand with dicarboxylic acids: Acid⋯imidazole hydrogen-bonding interactions in neutral and ionic heterosynthons

    NASA Astrophysics Data System (ADS)

    Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi

    2011-01-01

    Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.

  14. Global calibration/validation of 2 years of SARAL/AltiKa data

    NASA Astrophysics Data System (ADS)

    Scharroo, Remko; Lillibridge, John; Leuliette, Eric; Bonekamp, Hans

    2015-04-01

    The AltiKa altimeter flying onboard the French/Indian SARAL satellite provides the first opportunity to examine Ka-band measurements of sea surface height, significant wave height and ocean surface wind speed. In this presentation we provide the results from our global calibration/validation analysis of the AltiKa measurements, with an emphasis on near real-time applications of interest to both EUMETSAT and NOAA. Traditional along-track SSHA, and single as well as dual-satellite crossover assessments of the AltiKa performance are be provided. Unique aspects of the AltiKa mission such as improved along-track resolution, reduced ionospheric path delay corrections, mission-specific wind speed and sea state bias corrections, and sensitivity to liquid moisture and rain are also explored. In February 2014, a major update to the ground processing was introduced. "Patch-2" improved the way wind speed was derived from altimeter backscatter, as suggested by Lillibridge et al. (1). The backscatter attenuation is now derived from the radiometer measurements via neural network algorithms, which also determine the wet tropospheric correction. We emphasize these improvements in our analysis. After 2 years in flight, SARAL/AltiKa is already providing a significant contribution to the constellation of operational radar altimetry missions, demonstrating the large benefits of high-rate Ka-band altimetry. (1) Lillibridge, John, Remko Scharroo, Saleh Abdalla, Doug Vandemark, 2014: One- and Two-Dimensional Wind Speed Models for Ka-Band Altimetry. J. Atmos. Oceanic Technol., 31, 630-638. doi: http://dx.doi.org/10.1175/JTECH-D-13-00167.1

  15. Protective effect of boric acid against carbon tetrachloride-induced hepatotoxicity in mice.

    PubMed

    Ince, Sinan; Keles, Hikmet; Erdogan, Metin; Hazman, Omer; Kucukkurt, Ismail

    2012-07-01

    The protective effect of boric acid against liver damage was evaluated by its attenuation of carbon tetrachloride (CCl(4))-induced hepatotoxicity in mice. Male albino mice were treated intraperitoneally (i.p.) with boric acid (50, 100, and 200 mg/kg) or silymarin daily for 7 days and received 0.2% CCl(4) in olive oil (10 mL/kg, i.p.) on day 7. Results showed that administration of boric acid significantly reduced the elevation in serum levels of aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase, and the level of malondialdehyde in the liver that were induced by CCl(4) in mice. Boric acid treatment significantly increased glutathione content, as well as the activities of superoxide dismutase and catalase in the liver. Boric acid treatment improved the catalytic activity of cytochrome P450 2E1 and maintained activation of nuclear factor kappa light-chain enhancer of activated B cell gene expression, with no effect on inducible nitric oxide synthase gene expression in the livers of mice. Histopathologically, clear decreases in the severity of CCl(4)-induced lesions were observed, particularly at high boric acid concentrations. Results suggest that boric acid exhibits potent hepatoprotective effects on CCl(4)-induced liver damage in mice, likely the result of both the increase in antioxidant-defense system activity and the inhibition of lipid peroxidation.

  16. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting thatmore » fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity

  17. Protective effect of lipoic acid on cyclophosphamide-induced testicular toxicity.

    PubMed

    Selvakumar, Elangovan; Prahalathan, Chidambaram; Sudharsan, Periyasamy Thandavan; Varalakshmi, Palaninathan

    2006-05-01

    Cyclophosphamide (CP), a widely used anticancer and immunosuppressive drug causes severe testicular toxicity. We investigated the protective effect of lipoic acid in CP-induced testicular toxicity. Two groups of male Wistar rats (140+/-20 g) were administered CP (15 mg/kg body weight, oral gavage) once a week for 10 weeks to induce testicular toxicity; one of these groups received lipoic acid treatment (35 mg/kg body weight, i.p., 24 h prior to CP administration) once a week for 10 weeks. A vehicle treated control and a lipoic acid control groups were also included. The untreated CP exposed rats showed a significant increase in testicular reactive oxygen species (ROS) level, along with a significant decrease in cellular thiol levels. The activities of testicular marker enzymes such as gamma-glutamyl transferase, beta-glucuronidase, acid phosphatase and alkaline phosphatase were increased whereas the activities of sorbitol dehydrogenase and lactate dehydrogenase-X were decreased significantly in the animals treated with CP. In contrast, rats pretreated with lipoic acid showed normal marker enzymic patterns and normal levels of ROS and thiols. Testicular protection by lipoic acid is further substantiated by the normal histologic findings as against shrunken seminiferous tubules with impaired spermatogenesis in the CP administered rats. By the reversal of biochemical and morphological changes towards normalcy, the cytoprotective role of lipoic acid is illuminated in CP-induced testicular toxicity.

  18. Computing pKa Values in Different Solvents by Electrostatic Transformation.

    PubMed

    Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter

    2016-07-12

    We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.

  19. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    PubMed

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Inhibition of acid-induced lung injury by hyperosmolar sucrose in rats.

    PubMed

    Safdar, Zeenat; Yiming, Maimiti; Grunig, Gabriele; Bhattacharya, Jahar

    2005-10-15

    Acid aspiration causes acute lung injury (ALI). Recently, we showed that a brief intravascular infusion of hyperosmolar sucrose, given concurrently with airway acid instillation, effectively blocks the ensuing ALI. The objective of the present study was to determine the extent to which intravascular infusion of hyperosmolar sucrose might protect against acid-induced ALI when given either before or after acid instillation. Our studies were conducted in anesthetized rats and in isolated, blood-perfused rat lungs. We instilled HCl through the airway, and we quantified lung injury in terms of the extravascular lung water (EVLW) content, filtration coefficient (Kfc), and cell counts and protein concentration in the bronchoalveolar lavage. We infused hyperosmolar sucrose via the femoral vein. In anesthetized rats, airway HCl instillation induced ALI as indicated by a 52% increase of EVLW and a threefold increase in Kfc. However, a 15-min intravenous infusion of hyperosmolar sucrose given up to 1 h before or 30 min after acid instillation markedly blunted the increases in EVLW, as well as the increases in cell count, and in protein concentration in the bronchoalveolar lavage. Hyperosmolar pretreatment also blocked the acid-induced increase of Kfc. Studies in isolated perfused lungs indicated that the protective effect of hyperosmolar sucrose was leukocyte independent. We conclude that a brief period of vascular hyperosmolarity protects against acid-induced ALI when the infusion is administered shortly before, or shortly after, acid instillation in the airway. The potential applicability of hyperosmolar sucrose in therapy for ALI requires consideration.

  1. Inhibition of Acid-induced Lung Injury by Hyperosmolar Sucrose in Rats

    PubMed Central

    Safdar, Zeenat; Yiming, Maimiti; Grunig, Gabriele; Bhattacharya, Jahar

    2005-01-01

    Rationale: Acid aspiration causes acute lung injury (ALI). Recently, we showed that a brief intravascular infusion of hyperosmolar sucrose, given concurrently with airway acid instillation, effectively blocks the ensuing ALI. Objectives: The objective of the present study was to determine the extent to which intravascular infusion of hyperosmolar sucrose might protect against acid-induced ALI when given either before or after acid instillation. Methods: Our studies were conducted in anesthetized rats and in isolated, blood-perfused rat lungs. We instilled HCl through the airway, and we quantified lung injury in terms of the extravascular lung water (EVLW) content, filtration coefficient (Kfc), and cell counts and protein concentration in the bronchoalveolar lavage. We infused hyperosmolar sucrose via the femoral vein. Results: In anesthetized rats, airway HCl instillation induced ALI as indicated by a 52% increase of EVLW and a threefold increase in Kfc. However, a 15-min intravenous infusion of hyperosmolar sucrose given up to 1 h before or 30 min after acid instillation markedly blunted the increases in EVLW, as well as the increases in cell count, and in protein concentration in the bronchoalveolar lavage. Hyperosmolar pretreatment also blocked the acid-induced increase of Kfc. Studies in isolated perfused lungs indicated that the protective effect of hyperosmolar sucrose was leukocyte independent. Conclusions: We conclude that a brief period of vascular hyperosmolarity protects against acid-induced ALI when the infusion is administered shortly before, or shortly after, acid instillation in the airway. The potential applicability of hyperosmolar sucrose in therapy for ALI requires consideration. PMID:16109982

  2. Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation.

    PubMed

    Moison, R M; Beijersbergen Van Henegouwen, G M

    2001-07-01

    Moison, R. M. W. and Beijersbergen van Henegouwen, G. M. J. Dietary Eicosapentaenoic Acid Prevents Systemic Immunosuppression in Mice Induced by UVB Radiation. Radiat. Res. 156, 36-44 (2001). Reactive oxygen species (ROS) contribute to the immunosuppression induced by UVB radiation. Omega-3 fatty acids in fish oil, e.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can modulate immunoresponsiveness, but because of their susceptibility to ROS-induced damage, they can also challenge the epidermal antioxidant defense system. The influence of dietary supplementation with different omega-3 fatty acids on systemic immunosuppression induced in mice by UVB radiation was studied using the contact hypersensitivity response to trinitrochlorobenzene. In an attempt to study the mechanisms involved, UVB-radiation-induced changes in epidermal antioxidant status were also studied. Mice received high-fat (25% w/w) diets enriched with either oleic acid (control diet), EPA, DHA, or EPA + DHA (MaxEPA). Immunosuppression induced by UVB radiation was 53% in mice fed the oleic acid diet and 69% in mice fed the DHA diet. In contrast, immunosuppression was only 4% and 24% in mice fed the EPA and MaxEPA diets, respectively. Increased lipid peroxidation and decreased vitamin E levels (P < 0.05) were found in unirradiated mice fed the MaxEPA and DHA diets. For all diets, exposure to UVB radiation increased lipid peroxidation (P < 0.05), but levels of glutathione (P < 0.05) and vitamin C (P > 0.05) decreased only in the mice given fish oil. UVB irradiation did not influence vitamin E levels. In conclusion, dietary EPA, but not DHA, protects against UVB-radiation-induced immunosuppression in mice. The degree of protection appears to be related to the amount of EPA incorporated and the ability of the epidermis to maintain an adequate antioxidant level after irradiation.

  3. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    PubMed

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  4. Nicotinic acid modulates Legionella pneumophila gene expression and induces virulence traits.

    PubMed

    Edwards, Rachel L; Bryan, Andrew; Jules, Matthieu; Harada, Kaoru; Buchrieser, Carmen; Swanson, Michele S

    2013-03-01

    In response to environmental fluctuations or stresses, bacteria can activate transcriptional and phenotypic programs to coordinate an adaptive response. The intracellular pathogen Legionella pneumophila converts from a noninfectious replicative form to an infectious transmissive form when the bacterium encounters alterations in either amino acid concentrations or fatty acid biosynthesis. Here, we report that L. pneumophila differentiation is also triggered by nicotinic acid, a precursor of the central metabolite NAD(+). In particular, when replicative L. pneumophila are treated with 5 mM nicotinic acid, the bacteria induce numerous transmissive-phase phenotypes, including motility, cytotoxicity toward macrophages, sodium sensitivity, and lysosome avoidance. Transcriptional profile analysis determined that nicotinic acid induces the expression of a panel of genes characteristic of transmissive-phase L. pneumophila. Moreover, an additional 213 genes specific to nicotinic acid treatment were altered. Although nearly 25% of these genes lack an assigned function, the gene most highly induced by nicotinic acid treatment encodes a putative major facilitator superfamily transporter, Lpg0273. Indeed, lpg0273 protects L. pneumophila from toxic concentrations of nicotinic acid as judged by analyzing the growth of the corresponding mutant. The broad utility of the nicotinic acid pathway to couple central metabolism and cell fate is underscored by this small metabolite's modulation of gene expression by diverse microbes, including Candida glabrata, Bordetella pertussis, Escherichia coli, and L. pneumophila.

  5. Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana.

    PubMed

    Huang, Tengfang; Jander, Georg

    2017-10-01

    Whereas proline accumulates through de novo biosynthesis in plants subjected to osmotic stress, leucine, isoleucine, and valine accumulation in drought-stressed Arabidopsis thaliana is caused by abscisic acid-regulated protein degradation. In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRANCHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of

  6. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    NASA Technical Reports Server (NTRS)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  7. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice.

    PubMed

    Basu Mallik, Sanchari; Mudgal, Jayesh; Nampoothiri, Madhavan; Hall, Susan; Dukie, Shailendra Anoopkumar-; Grant, Gary; Rao, C Mallikarjuna; Arora, Devinder

    2016-10-06

    Accumulating data links inflammation, oxidative stress and immune system in the pathophysiology of major depressive disorders. Sickness behaviour is a set of behavioural changes that develop during infection, eventually leading to decrease in mobility and depressed behaviour. Lipopolysaccharide (LPS) induces a depression-like state in animals that mimics sickness behaviour. Caffeic acid, a naturally occurring polyphenol, possesses antioxidant and anti-inflammatory properties. The present study was designed to explore the potential of caffeic acid against LPS-induced sickness behaviour in mice. Caffeic acid (30mg/kg) and imipramine (15mg/kg) were administered orally one hour prior to LPS (1.5mg/kg) challenge. Behavioural assessment was carried out between 1 and 2h and blood samples were collected at 3h post-LPS injection. Additionally, cytokines (brain and serum) and brain oxidative stress markers were estimated. LPS increased the systemic and brain cytokine levels, altered the anti-oxidant defence and produced key signs of sickness behaviour in animals. Caffeic acid treatment significantly reduced the LPS-induced changes, including reduced expression of inflammatory markers in serum and whole brain. Caffeic acid also exerted an anti-oxidant effect, which was evident from the decreased levels of oxidative stress markers in whole brain. Our data suggests that caffeic acid can prevent the neuroinflammation-induced acute and probably the long term neurodegenerative changes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.

    PubMed

    Udompijitkul, Pathima; Alnoman, Maryam; Banawas, Saeed; Paredes-Sabja, Daniel; Sarker, Mahfuzur R

    2014-12-01

    Clostridium perfringens spore germination plays a critical role in the pathogenesis of C. perfringens-associated food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases. Germination is initiated when bacterial spores sense specific nutrient germinants (such as amino acids) through germinant receptors (GRs). In this study, we aimed to identify and characterize amino acid germinants for spores of enterotoxigenic C. perfringens type A. The polar, uncharged amino acids at pH 6.0 efficiently induced germination of C. perfringens spores; L-asparagine, L-cysteine, L-serine, and L-threonine triggered germination of spores of most FP and NFB isolates; whereas, L-glutamine was a unique germinant for FP spores. For cysteine- or glutamine-induced germination, gerKC spores (spores of a gerKC mutant derivative of FP strain SM101) germinated to a significantly lower extent and released less DPA than wild type spores; however, a less defective germination phenotype was observed in gerAA or gerKB spores. The germination defects in gerKC spores were partially restored by complementing the gerKC mutant with a recombinant plasmid carrying wild-type gerKA-KC, indicating that GerKC is an essential GR protein. The gerKA, gerKC, and gerKB spores germinated significantly slower with L-serine and L-threonine than their parental strain, suggesting the requirement for these GR proteins for normal germination of C. perfringens spores. In summary, these results indicate that the polar, uncharged amino acids at pH 6.0 are effective germinants for spores of C. perfringens type A and that GerKC is the main GR protein for germination of spores of FP strain SM101 with L-cysteine, L-glutamine, and L-asparagine. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Urinary excretion ratio of xanthurenic acid/kynurenic acid as a functional biomarker of niacin nutritional status.

    PubMed

    Shibata, Katsumi; Yamazaki, Marika; Matsuyama, Yukiyo

    2016-07-18

    The present study was conducted to survey functional biomarkers for evaluation of niacin nutritional status. Over 500 enzymes require niacin as a coenzyme. Of these, we chose the tryptophan degradation pathway. To create niacin-deficient animals, quinolinic acid phosphoribosyltransferase-knock out mice were used in the present study because wild type mice can synthesize nicotinamide from tryptophan. When the mice were made niacin-deficient, the urinary excretion of xanthurenic acid (XA) was extremely low compared with control mice; however, it increased according to the recovery of niacin nutritional status. The urinary excretion of kynurenic acid (KA) was the reverse of XA. Kynurenine 3-monooxygenase, which needs NADPH, was thought to be suppressed by niacin deficiency. Thus, we calculated the urinary excretion ratio of XA:KA as a functional biomarker of niacin nutrition. The ratio increased according to recovering niacin nutritional status. Low values equate with low niacin nutritional status.

  10. A KCNQ channel opener for experimental neonatal seizures and status epilepticus

    PubMed Central

    Raol, YogendraSinh H.; Lapides, David A.; Keating, Jeffery; Brooks-Kayal, Amy R.; Cooper, Edward C.

    2009-01-01

    Objective Neonatal seizures occur frequently, are often refractory to anticonvulsants, and are associated with considerable morbidity and mortality. Genetic and electrophysiological evidence indicates that KCNQ voltage-gated potassium channels are critical regulators of neonatal brain excitability. This study tests the hypothesis that selective openers of KCNQ channels may be effective for treatment of neonatal seizures. Methods We induced seizures in postnatal day 10 rats with either kainic acid or flurothyl. We measured seizure activity using quantified behavioral rating and electrocorticography. We compared the efficacy of flupirtine, a selective KCNQ channel opener, with phenobarbital and diazepam, two drugs in current use for neonatal seizures. Results Unlike phenobarbital or diazepam, flupirtine prevented animals from developing status epilepticus (SE) when administered prior to kainate. In the flurothyl model, phenobarbital and diazepam increased latency to seizure onset, but flupirtine completely prevented seizures throughout the experiment. Flupirtine was also effective in arresting electrographic and behavioral seizures when administered after animals had developed continuous kainate-induced SE. Flupirtine caused dose-related sedation and suppressed EEG activity, but did not result in respiratory suppression or result in any mortality. Interpretation Flupirtine appears more effective than either of two commonly used anti-epileptic drugs, phenobarbital and diazepam, in preventing and suppressing seizures in both the kainic acid and flurothyl models of symptomatic neonatal seizures. KCNQ channel openers merit further study as potential treatments for seizures in infants and children. PMID:19334075

  11. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    NASA Astrophysics Data System (ADS)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  12. Lipoic acid attenuates Aroclor 1260-induced hepatotoxicity in adult rats.

    PubMed

    Aly, Hamdy A A; Mansour, Ahmed M; Hassan, Memy H; Abd-Ellah, Mohamed F

    2016-08-01

    The present study was aimed to investigate the mechanistic aspect of Aroclor 1260-induced hepatotoxicity and its protection by lipoic acid. The adult male Albino rats were divided into six groups. Group I served as control. Group II received lipoic acid (35 mg/kg/day). Aroclor 1260 was given to rats by oral gavage at doses 20, 40, or 60 mg/kg/day (Groups III, IV, and V, respectively). Group VI was pretreated with lipoic acid (35 mg/kg/day) 24 h before Aroclor 1260 (40 mg/kg/day). Treatment in all groups was continued for further 15 consecutive days. Serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities and total bilirubin, total cholesterol, and triglycerides were significantly increased while total protein, total albumin, and high-density lipoprotein were significantly decreased. Hydrogen peroxide production and lipid peroxidation were significantly increased while superoxide dismutase and catalase activities and reduced glutathione (GSH) content was significantly decreased in liver. Caspase-3 & -9 activities were significantly increased in liver. Lipoic acid pretreatment significantly reverted all these abnormalities toward their normal levels. In conclusion, Aroclor 1260 induced liver dysfunction, at least in part, by induction of oxidative stress. Apoptotic effect of hepatic cells is involved in Aroclor 1260-induced liver injury. Lipoic acid could protect rats against Aroclor 1260-induced hepatotoxicity. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 913-922, 2016. © 2014 Wiley Periodicals, Inc.

  13. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  14. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Reinhart, Richard C.; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Michael

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASA's Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  15. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.

    PubMed

    Bledsoe, C S

    1978-11-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.

  16. Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.

    PubMed

    Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R

    2013-11-01

    Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.

  17. Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity.

    PubMed

    Vauzour, David; Corona, Giulia; Spencer, Jeremy P E

    2010-09-01

    Parkinson's disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (-)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1muM (64.0+/-3.1%) than both (-)-epicatechin (46.0+/-4.1%, p<0.05) and (+)-catechin (13.1+/-3.0%, p<0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids. Copyright © 2010. Published by Elsevier Inc.

  18. LPJ-GUESS Simulated North America Vegetation for 21-0 ka Using the TraCE-21ka Climate Simulation

    NASA Astrophysics Data System (ADS)

    Shafer, S. L.; Bartlein, P. J.

    2016-12-01

    Transient climate simulations that span multiple millennia (e.g., TraCE-21ka) have become more common as computing power has increased, allowing climate models to complete long simulations in relatively short periods of time (i.e., months). These climate simulations provide information on the potential rate, variability, and spatial expression of past climate changes. They also can be used as input data for other environmental models to simulate transient changes for different components of paleoenvironmental systems, such as vegetation. Long, transient paleovegetation simulations can provide information on a range of ecological processes, describe the spatial and temporal patterns of changes in species distributions, and identify the potential locations of past species refugia. Paleovegetation simulations also can be used to fill in spatial and temporal gaps in observed paleovegetation data (e.g., pollen records from lake sediments) and to test hypotheses of past vegetation change. We used the TraCE-21ka transient climate simulation for 21-0 ka from CCSM3, a coupled atmosphere-ocean general circulation model. The TraCE-21ka simulated temperature, precipitation, and cloud data were regridded onto a 10-minute grid of North America. These regridded climate data, along with soil data and atmospheric carbon dioxide concentrations, were used as input to LPJ-GUESS, a general ecosystem model, to simulate North America vegetation from 21-0 ka. LPJ-GUESS simulates many of the processes controlling the distribution of vegetation (e.g., competition), although some important processes (e.g., dispersal) are not simulated. We evaluate the LPJ-GUESS-simulated vegetation (in the form of plant functional types and biomes) for key time periods and compare the simulated vegetation with observed paleovegetation data, such as data archived in the Neotoma Paleoecology Database. In general, vegetation simulated by LPJ-GUESS reproduces the major North America vegetation patterns (e

  19. Iso-α-acids, bitter components of beer, prevent obesity-induced cognitive decline.

    PubMed

    Ayabe, Tatsuhiro; Ohya, Rena; Kondo, Keiji; Ano, Yasuhisa

    2018-03-19

    Dementia and cognitive decline have become worldwide public health problems, and it was recently reported that life-style related diseases and obesity are key risk factors in dementia. Iso-α-acids, hop-derived bitter components of beer, have been reported to have various physiological functions via activation of peroxisome proliferator-activated receptor γ. In this report, we demonstrated that daily intake of iso-α-acids suppresses inflammations in the hippocampus and improves cognitive decline induced by high fat diet (HFD). Body weight, epididymal fat weight, and plasma triglyceride levels were increased in HFD-fed mice, and significantly decreased in iso-α-acids supplemented HFD-fed mice. HFD feeding enhances the production of inflammatory cytokines and chemokines, such as TNF-α, which was significantly suppressed by iso-α-acids administration. HFD-induced neuroinflammation caused lipid peroxidation, neuronal loss, and atrophy in hippocampus, and those were not observed in iso-α-acids-treated mice. Furthermore, iso-α-acids intake significantly improved cognitive decline induced by HFD-feeding. Iso-α-acids are food derived components that suppressing both lipid accumulation and brain inflammation, thus iso-α-acids might be beneficial for the risk of dementia increased by obesity and lifestyle-related diseases.

  20. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  1. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  2. Study on the interaction mechanism between aromatic amino acids and quercetin

    NASA Astrophysics Data System (ADS)

    Gou, Xingxing; Pu, Xiaohua; Li, Zongxiao

    2017-11-01

    In this paper, we selected quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) as the research objects to investigate the change rules in the reaction process. The thermodynamic functions (Ka, Δ G, and Δ S) of the interactions between quercetin and aromatic amino acids (tryptophan, tyrosine, phenylalanine) were measured by isothermal titration calorimetry. The values of binding constant (Ka) reached maximum at 25°C; the entropies and Gibbs free energies were both negative at different temperatures. The kinetic parameters of quercetin and amino acids in the interaction process was determined by microcalorimetry. The results inferred that the driving force of the reaction was hydrogen bond or van der Waals force.

  3. Influence of clove oil and eugenol on muscle contraction of silkworm (Bombyx mori).

    PubMed

    Kheawfu, Kantaporn; Pikulkaew, Surachai; Hamamoto, Hiroshi; Sekimizu, Kazuhisa; Okonogi, Siriporn

    2017-05-30

    Clove oil is used in fish anesthesia and expected to have a mechanism via glutamic receptor. The present study explores the activities of clove oil and its major compound, eugenol, in comparison with L-glutamic acid on glutamic receptor of silkworm muscle and fish anesthesia. It was found that clove oil and eugenol had similar effects to L-glutamic acid on inhibition of silkworm muscle contraction after treated with D-glutamic acid and kainic acid. Anesthetic activity of the test samples was investigated in goldfish. The results demonstrated that L-glutamic acid at 20 and 40 mM could induce the fish to stage 3 of anesthesia that the fish exhibited total loss of equilibrium and muscle tone, whereas clove oil and eugenol at 60 ppm could induce the fish to stage 4 of anesthesia that the reflex activity of the fish was lost. These results suggest that clove oil and eugenol have similar functional activities and mechanism to L-glutamic acid on muscle contraction and fish anesthesia.

  4. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia.

  5. The Cholangiocyte Glycocalyx Stabilizes the 'Biliary HCO3 Umbrella': An Integrated Line of Defense against Toxic Bile Acids.

    PubMed

    Maillette de Buy Wenniger, Lucas J; Hohenester, Simon; Maroni, Luca; van Vliet, Sandra J; Oude Elferink, Ronald P; Beuers, Ulrich

    2015-01-01

    Destruction of cholangiocytes is the hallmark of chronic cholangiopathies such as primary biliary cirrhosis. Under physiologic conditions, cholangiocytes display a striking resistance to the high, millimolar concentrations of toxic bile salts present in bile. We recently showed that a 'biliary HCO3(-) umbrella', i.e. apical cholangiocellular HCO3(-) secretion, prevents cholangiotoxicity of bile acids, and speculated on a role for extracellular membrane-bound glycans in the stabilization of this protective layer. This paper summarizes published and thus far unpublished evidence supporting the role of the glycocalyx in stabilizing the 'biliary HCO3(-) umbrella' and thus preventing cholangiotoxicity of bile acids. The apical glycocalyx of a human cholangiocyte cell line and mouse liver sections were visualized by electron microscopy. FACS analysis was used to characterize the surface glycan profile of cultured human cholangiocytes. Using enzymatic digestion with neuraminidase the cholangiocyte glycocalyx was desialylated to test its protective function. Using lectin assays, we demonstrated that the main N-glycans in human and mouse cholangiocytes were sialylated biantennary structures, accompanied by high expression of the H-antigen (α1-2 fucose). Apical neuraminidase treatment induced desialylation without affecting cell viability, but lowered cholangiocellular resistance to bile acid-induced toxicity: both glycochenodeoxycholate and chenodeoxycholate (pKa ≥4), but not taurochenodeoxycholate (pKa <2), displayed cholangiotoxic effects after desialylation. A 24-hour reconstitution period allowed cholangiocytes to recover to a pretreatment bile salt susceptibility pattern. Experimental evidence indicates that an apical cholangiocyte glycocalyx with glycosylated mucins and other glycan-bearing membrane glycoproteins stabilizes the 'biliary HCO3(-) umbrella', thus aiding in the protection of human cholangiocytes against bile acid toxicity. 2015 S. Karger AG, Basel.

  6. Butyric acid induces apoptosis via oxidative stress in Jurkat T-cells.

    PubMed

    Kurita-Ochiai, T; Ochiai, K

    2010-07-01

    Reactive oxygen species (ROS) are essential for the induction of T-cell apoptosis by butyric acid, an extracellular metabolite of periodontopathic bacteria. To determine the involvement of oxidative stress in apoptosis pathways, we investigated the contribution of ROS in mitochondrial signaling pathways, death-receptor-initiated signaling pathway, and endoplasmic reticulum stress in butyric-acid-induced T-cell apoptosis. N-acetyl-L-Cysteine (NAC) abrogated mitochondrial injury, cytochrome c, AIF, and Smac release, and Bcl-2 and Bcl-xL suppression and Bax and Bad activation induced by butyric acid. However, the decrease in cFLIP expression by butyric acid was not restored by treatment with NAC; increases in caspase-4 and -10 activities by butyric acid were completely abrogated by NAC. NAC also affected the elevation of GRP78 and CHOP/GADD153 expression by butyric acid. These results suggest that butyric acid is involved in mitochondrial-dysfunction- and endoplasmic reticulum stress-mediated apoptosis in human Jurkat T-cells via a ROS-dependent mechanism.

  7. Acid-induced aggregation propensity of nivolumab is dependent on the Fc.

    PubMed

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Xu, Lu; Zhang, Junjie; Guo, Qingcheng; Zhang, Dapeng; Qian, Weizhu; Li, Bohua; Dai, Jianxin; Hou, Sheng; Guo, Yajun; Wang, Hao

    2016-01-01

    Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone.

  8. Acid-induced aggregation propensity of nivolumab is dependent on the Fc

    PubMed Central

    Liu, Boning; Guo, Huaizu; Xu, Jin; Qin, Ting; Xu, Lu; Zhang, Junjie; Guo, Qingcheng; Zhang, Dapeng; Qian, Weizhu; Li, Bohua; Dai, Jianxin; Hou, Sheng; Guo, Yajun; Wang, Hao

    2016-01-01

    ABSTRACT Nivolumab, an anti-programmed death (PD)1 IgG4 antibody, has shown notable success as a cancer treatment. Here, we report that nivolumab was susceptible to aggregation during manufacturing, particularly in routine purification steps. Our experimental results showed that exposure to low pH caused aggregation of nivolumab, and the Fc was primarily responsible for an acid-induced unfolding phenomenon. To compare the intrinsic propensity of acid-induced aggregation for other IgGs subclasses, tocilizumab (IgG1), panitumumab (IgG2) and atezolizumab (aglyco-IgG1) were also investigated. The accurate pH threshold of acid-induced aggregation for individual IgG Fc subclasses was identified and ranked as: IgG1 < aglyco-IgG1 < IgG2 < IgG4. This result was cross-validated by thermostability and conformation analysis. We also assessed the effect of several protein stabilizers on nivolumab, and found mannitol ameliorated the acid-induced aggregation of the molecule. Our results provide valuable insight into downstream manufacturing process development, especially for immune checkpoint modulating molecules with a human IgG4 backbone. PMID:27310175

  9. Iron Release from Soybean Seed Ferritin Induced by Cinnamic Acid Derivatives.

    PubMed

    Sha, Xuejiao; Chen, Hai; Zhang, Jingsheng; Zhao, Guanghua

    2018-05-04

    Plant ferritin represents a novel class of iron supplement, which widely co-exists with phenolic acids in a plant diet. However, there are few reports on the effect of these phenolic acids on function of ferritin. In this study, we demonstrated that cinnamic acid derivatives, as widely occurring phenolic acids, can induce iron release from holo soybean seed ferritin (SSF) in a structure-dependent manner. The ability of the iron release from SSF by five cinnamic acids follows the sequence of Cinnamic acid > Chlorogenic acid > Ferulic acid > p -Coumaric acid > Trans -Cinnamic acid. Fluorescence titration in conjunction with dialysis results showed that all of these five compounds have a similar, weak ability to bind with protein, suggesting that their protein-binding ability is not related to their iron release activity. In contrast, both Fe 2+ -chelating activity and reducibility of these cinnamic acid derivatives are in good agreement with their ability to induce iron release from ferritin. These studies indicate that cinnamic acid and its derivatives could have a negative effect on iron stability of holo soybean seed ferritin in diet, and the Fe 2+ -chelating activity and reducibility of cinnamic acid and its derivatives have strong relations to the iron release of soybean seed ferritin.

  10. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Ameliorative Effect of Chronic Supplementation of Protocatechuic Acid Alone and in Combination with Ascorbic Acid in Aniline Hydrochloride Induced Spleen Toxicity in Rats.

    PubMed

    Khairnar, Upasana; Upaganlawar, Aman; Upasani, Chandrashekhar

    2016-01-01

    Background. Present study was designed to evaluate the protective effects of protocatechuic acid alone and in combination with ascorbic acid in aniline hydrochloride induced spleen toxicity in rats. Materials and Methods. Male Wistar rats of either sex (200-250 g) were used and divided into different groups. Spleen toxicity was induced by aniline hydrochloride (100 ppm) in drinking water for a period of 28 days. Treatment group received protocatechuic acid (40 mg/kg/day, p.o.), ascorbic acid (40 mg/kg/day, p.o.), and combination of protocatechuic acid (20 mg/kg/day, p.o.) and ascorbic acid (20 mg/kg/day, p.o.) followed by aniline hydrochloride. At the end of treatment period serum and tissue parameters were evaluated. Result. Rats supplemented with aniline hydrochloride showed a significant alteration in body weight, spleen weight, feed consumption, water intake, hematological parameters (haemoglobin content, red blood cells, white blood cells, and total iron content), tissue parameters (lipid peroxidation, reduced glutathione, and nitric oxide content), and membrane bound phosphatase (ATPase) compared to control group. Histopathology of aniline hydrochloride induced spleen showed significant damage compared to control rats. Treatment with protocatechuic acid along with ascorbic acid showed better protection as compared to protocatechuic acid or ascorbic acid alone in aniline hydrochloride induced spleen toxicity. Conclusion. Treatment with protocatechuic acid and ascorbic acid in combination showed significant protection in aniline hydrochloride induced splenic toxicity in rats.

  12. Abscisic-acid-induced cellular apoptosis and differentiation in glioma via the retinoid acid signaling pathway.

    PubMed

    Zhou, Nan; Yao, Yu; Ye, Hongxing; Zhu, Wei; Chen, Liang; Mao, Ying

    2016-04-15

    Retinoid acid (RA) plays critical roles in regulating differentiation and apoptosis in a variety of cancer cells. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share structural similarities. Here we proposed that ABA may also play a role in cellular differentiation and apoptosis by sharing a similar signaling pathway with RA that may be involved in glioma pathogenesis. We reported for the first time that the ABA levels were twofold higher in low-grade gliomas compared with high-grade gliomas. In glioma tissues, there was a positive correlation between the ABA levels and the transcription of cellular retinoic acid-binding protein 2 (CRABP2) and a negative correlation between the ABA levels and transcription of fatty acid-binding protein 5 (FABP5). ABA treatment induced a significant increase in the expression of CRABP2 and a decrease in the expression of peroxisome proliferator-activated receptor (PPAR) in glioblastoma cells. Remarkably, both cellular apoptosis and differentiation were increased in the glioblastoma cells after ABA treatment. ABA-induced cellular apoptosis and differentiation were significantly reduced by selectively silencing RAR-α, while RAR-α overexpression exaggerated the ABA-induced effects. These results suggest that ABA may play a role in the pathogenesis of glioma by promoting cellular apoptosis and differentiation through the RA signaling pathway. © 2015 UICC.

  13. A 20-ka reconstruction of a Sahelo-Sudanian paleoenvironment using multi-method dating on pedogenic carbonate

    NASA Astrophysics Data System (ADS)

    Diaz, Nathalie; Dietrich, Fabienne; King, Georgina E.; Valla, Pierre G.; Sebag, David; Herman, Frédéric; Verrecchia, Eric P.

    2016-04-01

    Soils can be precious environmental archives as they are open systems resulting from external persistent disturbance, or forcing (Jenny, 1941). Pedogenic carbonate nodules associated with clay-rich soils have been investigated in the Far North region of Cameroon in non-carbonate watersheds (Chad Basin). Nodule bearing soils have mima-like mound morphologies, within stream networks. Such settings raise questions on the processes leading to carbonate precipitation as well as landscape genesis. The mima-like mounds have been identified as degraded Vertisols, resulting from differential erosion induced by a former gilgai micro-relief (Diaz et al., 2016). Non-degraded Vertisols occur in waterlogged areas, located downstream from mima-like mound locations (Braband and Gavaud, 1985). Therefore during a former wetter period Vertisols may have been extended to the mima-like mound areas, followed by a shift toward drier conditions and erosion (Diaz et al., 2016). Consequently, mima-like mounds and associated carbonate nodules are inherited from climatic changes during the Late Pleistocene-Holocene period. The aim of this study is to validate the scenario above using the carbonate nodules collected in a mima-like mound as time archives. Optically stimulated luminescence (OSL) dating of K-feldspars trapped within the nodules is used to assess the deposition time of the soil parent material, composing the mima-like mounds. The carbonate and organic nodule parts have been radiocarbon dated with the aim of assessing the carbonate precipitation age and the age range of soil formation, respectively. Results show that the soil parent material was deposited between 18 ka and 12 ka BP and that the nodules precipitated between 7 ka and 5 ka BP. These results suggest that the deposition occurred during the arid climatic period of the Bossoumian (20 ka to 15 ka BP; Hervieu, 1970) and during the first drier part of the African Humid Period (14.8 ka to 11.5 ka BP; deMenocal et al., 2000

  14. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae

    PubMed Central

    Kawazoe, Nozomi; Kimata, Yukio; Izawa, Shingo

    2017-01-01

    Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH. PMID:28702017

  15. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.

    PubMed

    Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2016-01-01

    Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein.

  16. UV/vis, 1H, and 13C NMR spectroscopic studies to determine mangiferin p Ka values

    NASA Astrophysics Data System (ADS)

    Gómez-Zaleta, Berenice; Ramírez-Silva, María Teresa; Gutiérrez, Atilano; González-Vergara, Enrique; Güizado-Rodríguez, Marisol; Rojas-Hernández, Alberto

    2006-07-01

    The acid constants of mangiferin (a natural xanthonoid) in aqueous solution were determined through an UV/vis spectroscopic study employing the SQUAD program as a computational tool. A NMR study complements the p Ka values assignment and evidences a H-bridge presence on 1-C. The chemical model used was consistent with the experimental data obtained. The p Ka values determined with this procedure were as follows: H 4(MGF) = H 3(MGF) - + H +, pK(6-H) = 6.52 ± 0.06; H 3(MGF) - = H 2(MGF) 2- + H +, pK(3-H) = 7.97 ± 0.06; H 2(MGF) 2- = H(MGF) 3- + H +, pK(7-H) = 9.44 ± 0.04; H(MGF) 3- = (MGF) 4- + H +, pK(1-H) = 12.10 ± 0.01; where it has been considered mangiferin C 19H 18O 11 as H 4(MGF). Mangiferin UV/vis spectral behavior, stability study in aqueous solution as well as NMR spectroscopy studies: one-dimensional 1H, 13C, 2D correlated 1H/ 13C performed by (g)-HSQC and (g)-HMBC methods; are also presented. p Ka values determination of H 4(MGF) in aqueous solution is a necessary contribution to subsequent pharmacokinetic study, and a step towards the understanding of its biological effects.

  17. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  18. Identification of oxalic acid and tartaric acid as major persistent pain-inducing toxins in the stinging hairs of the nettle, Urtica thunbergiana.

    PubMed

    Fu, Han Yi; Chen, Shiang Jiuun; Chen, Ruei Feng; Ding, Wang Hsien; Kuo-Huang, Ling Long; Huang, Rong Nan

    2006-07-01

    Once human skin contacts stinging hairs of Urtica spp. (stinging nettles), the irritant is released and produces pain, wheals or a stinging sensation which may last for >12 h. However, the existence of pain-inducing toxins in the stinging hairs of Urtica thunbergiana has never been systematically demonstrated. Experiments were therefore conducted to identify the persistent pain-inducing agents in the stinging hairs of U. thunbergiana. The stinging hairs of U. thunbergiana were removed and immersed in deionized water. After centrifugation, the clear supernatants were then subjected to high-performance liquid chromatography (HPLC), enzymatic analysis and/or behavioural bioassays. The HPLC results showed that the major constituents in the stinging hairs of U. thunbergiana were histamine, oxalic acid and tartaric acid. However, the well-recognized pain-inducing agents, serotonin and formic acid, existed at a low concentration as estimated by HPLC and/or enzymatic analyses. The behavioural tests showed that 2% oxalic acid and 10% tartaric acid dramatically elicited persistent pain sensations in rats. In contrast, 10% formic acid and 2% serotonin only elicited moderate pain sensation in the first 10 min. Moreover, no significant pain-related behavioural response was observed after injecting 10% acetylcholine and histamine in rats. Oxalic acid and tartaric acid were identified, for the first time, as major long-lasting pain-inducing toxins in the stinging hairs of U. thunbergiana. The general view that formic acid, histamine and serotonin are the pain-inducing agents in the stinging hairs of U. dioica may require updating, since their concentrations in U. thunbergiana were too low to induce significant pain sensation in behavioural bioassays.

  19. Characterization and diagenesis of strong-acid carboxyl groups in humic substances

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Brown, G.K.; Reddy, M.M.

    2003-01-01

    A small fraction of carboxylic acid functional groups in humic substances are exceptionally acidic with pKa values as low as 0.5. A review of acid-group theory eliminated most models and explanations for these exceptionally acidic carboxyl groups. These acidic carboxyl groups in Suwannee River fulvic acid were enriched by a 2-stage fractionation process and the fractions were characterized by elemental, molecular-weight, and titrimetric analyses, and by infrared and 13C- and 1H-nuclear magnetic resonance spectrometry. An average structural model of the most acidic fraction derived from the characterization data indicated a high density of carboxyl groups clustered on oxygen-heterocycle alicyclic rings. Intramolecular H-bonding between adjacent carboxyl groups in these ring structures enhanced stabilization of the carboxylate anion which results in low pKa1 values. The standard, tetrahydrofuran tetracarboxylic acid, was shown to have similar acidity characteristics to the highly acidic fulvic acid fraction. The end products of 3 known diagenetic pathways for the formation of humic substances were shown to result in carboxyl groups clustered on oxygen-heterocycle alicyclic rings.

  20. Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.

  1. Comparison of histological effects of polydeoxyribonucleic acid and hyaluronic acid in experimentally induced osteoarthritis of the knee joints of rats

    PubMed Central

    Karahan, Nazım; Arslan, İlyas; Orak, Müfit; Midi, Ahmet; Yücel, İstemi

    2017-01-01

    Aim: The histological effects of intra-articular polydeoxyribonucleic acid and hyaluronic acid in experimentally induced osteoarthritis of the knee joints of rats were investigated. Methods: Thirty rats were divided into three groups, i.e. polydeoxyribonucleic acid group, hyaluronic acid group and saline group. Osteoarthritis of the knee joints of the rats were induced by acl- transection. The polydeoxyribonucleic group was injected with 100 µg (0.05 cc) polydeoxyribonucleic acid. The hyaluronic acid group was injected with 100 µg (0.05 cc) hyaluronic acid, and the saline group was injected with 50 µl (0.05 cc) of 0.9% sodium chloride solution. All of the rats were sacrificed on day 29 and the right knee joints were prepared, and evaluated histologically by Mankin classification. Findings: The differences in total Mankin scores between the three groups were statistically significant (P < 0.01). The differences in total Mankin scores between the polydeoxyribonucleic acid group and the hyaluronic acid group were statistically significant (P < 0.01). The differences in total Mankin scores between hyaluronic acid group and saline group were statistically significant (P < 0.01). Tidemark continuity in all the specimens of the polydeoxyribonucleic acid group was noteworthy. Conclusion: The present study shows that more chondroprotective effect and less degeneration was observed with intra-articularly delivered polydeoxyribonucleic acid compared to hyaluronic acid and saline solution in the experimentally induced osteoarthritis of the knee joints of rats.

  2. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice.

    PubMed

    Moon, Morgan L; Joesting, Jennifer J; Lawson, Marcus A; Chiu, Gabriel S; Blevins, Neil A; Kwakwa, Kristin A; Freund, Gregory G

    2014-09-01

    Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that last beyond an acute elevation in plasma FFAs. Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 h after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hours after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24h after palmitic acid treatment. Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  4. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum.

    PubMed

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H; Engel, Eli; Kaunitz, Jonathan D; Akiba, Yasutada

    2012-10-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal L-glutamate (L-Glu) and 5'-inosine monophosphate (IMP) synergistically increases duodenal HCO3- secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3- secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3- secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. L-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced L-Glu/IMP-induced HCO3- secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3- secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3- secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced L-Glu/IMP-induced HCO3- secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal L-Glu/IMP-induced and TGR5 agonist-induced HCO3- secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3- secretion.

  5. Bile acids induce arrhythmias in human atrial myocardium--implications for altered serum bile acid composition in patients with atrial fibrillation.

    PubMed

    Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk

    2013-11-01

    High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, p<0.01) while ursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.

  6. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Therapeutic efficacy of DL-alpha-lipoic acid on cyclosporine A induced renal alterations.

    PubMed

    Amudha, Ganapathy; Josephine, Anthony; Mythili, Yenjerla; Sundarapandiyan, Rajaguru; Varalakshmi, Palaninathan

    2007-10-01

    The present study was designed to evaluate the possible beneficial effect of lipoic acid in preventing the renal damage induced by cyclosporine A in rats. Male albino rats of Wistar strain were divided into four groups and treated as follows. Two groups received cyclosporine A by oral gavage (25 mg/kg/body weight) for 21 days to induce nephrotoxicity, one of which simultaneously received lipoic acid treatment (20 mg/kg body weight) for 21 days. A vehicle (olive oil) and a lipoic acid drug control were also included. Cyclosporine A induced renal damage was evident from the decreased activities of tissue marker enzymes (alkaline phosphatase, acid phosphatase, lactate dehydrogenase, aspartate transaminase and alanine transaminase) and decreased activities of ATPases (Na+, K+-ATPase, Ca2+-ATPase and Mg2+ ATPase). An apparent increase in the levels of serum constituents (urea, uric acid and creatinine) and urinary marker enzymes (N-acetyl-beta-D-glucosaminidase, beta-glucosidase, beta-galactosidase, cathepsin-D and gamma-glutamyl transpeptidase) along with significant decline in creatinine clearance were seen in the cyclosporine treated rats, which was reversed upon treatment with lipoic acid. Ultrastructural observations were also in agreement with the above abnormal changes. Lipoic acid effectively reverted these abnormal biochemical changes and minimized the morphological lesions in renal tissue. Hence, this study clearly exemplifies that lipoic acid might be an ideal choice against cyclosporine A induced cellular abnormalities.

  8. Intraluminal acid induces oesophageal shortening via capsaicin-sensitive neurokinin neurons.

    PubMed

    Paterson, William G; Miller, David V; Dilworth, Neil; Assini, Joseph B; Lourenssen, Sandra; Blennerhassett, Michael G

    2007-10-01

    Intraluminal acid evokes reflex contraction of oesophageal longitudinal smooth muscle (LSM) and consequent oesophageal shortening. This reflex may play a role in the pathophysiology of oesophageal pain syndromes and hiatus hernia formation. The aim of the current study was to elucidate further the mechanisms of acid-induced oesophageal shortening. Intraluminal acid perfusion of the intact opossum smooth muscle oesophagus was performed in vitro in the presence and absence of neural blockade and pharmacological antagonism of the neurokinin 2 receptor, while continuously recording changes in oesophageal axial length. In addition, the effect of these antagonists on the contractile response of LSM strips to the mast cell degranulating agent 48/80 was determined. Finally, immunohistochemistry was performed to look for evidence of LSM innervation by substance P/calcitonin gene-related peptide (CGRP)-containing axons. Intraluminal acid perfusion induced longitudinal axis shortening that was completely abolished by capsaicin desensitization, substance P desensitization, or the application of the neurokinin 2 receptor antagonist MEN10376. Compound 48/80 induced sustained contraction of LSM strips in a concentration-dependent fashion and this was associated with evidence of mast cell degranulation. The 48/80-induced LSM contraction was antagonized by capsaicin desensitization, substance P desensitization and MEN10376, but not tetrodotoxin. Immunohistochemistry revealed numerous substance P/CGRP-containing neurons innervating the LSM and within the mucosa. This study suggests that luminal acid activates a reflex pathway involving mast cell degranulation, activation of capsaicin-sensitive afferent neurons and the release of substance P or a related neurokinin, which evokes sustained contraction of the oesophageal LSM. This pathway may be a target for treatment of oesophageal pain syndromes.

  9. The rise and fall of Lake Bonneville between 45 and 10.5 ka

    USGS Publications Warehouse

    Benson, L.V.; Lund, S.P.; Smoot, J.P.; Rhode, D.E.; Spencer, R.J.; Verosub, K.L.; Louderback, L.A.; Johnson, C.A.; Rye, R.O.; Negrini, R.M.

    2011-01-01

    A sediment core taken from the western edge of the Bonneville Basin has provided high-resolution proxy records of relative lake-size change for the period 45.1-10.5 calendar ka (hereafter ka). Age control was provided by a paleomagnetic secular variation (PSV)-based age model for Blue Lake core BL04-4. Continuous records of ??18O and total inorganic carbon (TIC) generally match an earlier lake-level envelope based on outcrops and geomorphic features, but with differences in the timing of some hydrologic events/states. The Stansbury Oscillation was found to consist of two oscillations centered on 25 and 24 ka. Lake Bonneville appears to have reached its geomorphic highstand and began spilling at 18.5 ka. The fall from the highstand to the Provo level occurred at 17.0 ka and the lake intermittently overflowed at the Provo level until 15.2 ka, at which time the lake fell again, bottoming out at ~14.7 ka. The lake also fell briefly below the Provo level at ~15.9 ka. Carbonate and ??18O data indicate that between 14.7 and 13.1 ka the lake slowly rose to the Gilbert shoreline and remained at about that elevation until 11.6 ka, when it fell again. Chemical and sedimentological data indicate that a marsh formed in the Blue Lake area at 10.5 ka.Relatively dry periods in the BL04-4 records are associated with Heinrich events H1-H4, suggesting that either the warming that closely followed a Heinrich event increased the evaporation rate in the Bonneville Basin and (or) that the core of the polar jet stream (PJS) shifted north of the Bonneville Basin in response to massive losses of ice from the Laurentide Ice Sheet (LIS) during the Heinrich event. The second Stansbury Oscillation occurred during Heinrich event H2, and the Gilbert wet event occurred during the Younger Dryas cold interval. Several relatively wet events in BL04-4 occur during Dansgaard-Oeschger (DO) warm events.The growth of the Bear River glacier between 32 and 17 ka paralleled changes in the values of proxy

  10. Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death

    PubMed Central

    Rao, Mulpuri V.; Lee, Hyung-il; Creelman, Robert A.; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Recent studies suggest that cross-talk between salicylic acid (SA)–, jasmonic acid (JA)–, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O3) exposure activates a hypersensitive response (HR)–like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O3-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O3-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O3-induced H2O2 content and SA concentrations and completely abolished O3-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O3 exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O3 of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O3-induced HR-like cell death. PMID:11006337

  11. Neurohistochemical biomarkers of the marine neurotoxicant, domoic acid.

    PubMed

    Scallet, Andrew C; Schmued, Larry C; Johannessen, Jan N

    2005-01-01

    Domoic acid and its potent excitotoxic analogues glutamic acid and kainic acid, are synthesized by marine algae such as seaweed and phytoplankton. During an algal bloom, domoic acid may enter the food web through its consumption by a variety of marine organisms held in high regard as seafoods by both animals and humans. These seafoods include clams, mussels, oysters, anchovies, sardines, crabs, and scallops, among others. Animals, such as pelicans, cormorants, loons, grebes, sea otters, dolphins, and sea lions, which consume seafood contaminated with domoic acid, suffer disorientation and often death. Humans consuming contaminated seafood may suffer seizures, amnesia and also sometimes death. In addition to analytical measurement of domoic acid exposure levels in algae and/or seafood, it is useful to be able to identify the mode of toxicity through post-mortem evaluation of the intoxicated animal. In the present study, using the rat as an animal model of domoic acid intoxication, we compared histochemical staining of the limbic system and especially the hippocampus with degeneration-selective techniques (Fluoro-Jade and silver), a conventional Nissl stain for cytoplasm (Cresyl violet), a myelin-selective stain (Black-Gold), an astrocyte-specific stain (glial fibrillary acidic protein), early/immediate gene responses (c-Fos and c-Jun), as well as for heat shock protein (HSP-72) and blood-brain barrier integrity (rat IgG). The results demonstrate that the degeneration-selective stains are the biomarkers of domoic acid neurotoxicity that are the most useful and easy to discern when screening brain sections at low magnification. We also observed that an impairment of blood-brain barrier integrity within the piriform cortex accompanied the onset of domoic acid neurotoxicity.

  12. A behavioural analysis of spatial localization following electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat.

    PubMed

    Sutherland, R J; Whishaw, I Q; Kolb, B

    1983-02-01

    This experiment examines the notion that in the rat the hippocampal formation is an essential structure in the neurological representation of spatial abilities. Spatial localization by rats with different types of hippocampal damage, including bilateral electrolytic lesions, unilateral and bilateral kainic acid-induced CA3-CA4 lesions, and unilateral and bilateral colchicine-induced dentate gyrus lesions, was compared with vehicle-injected and normal control groups in the Morris water task. The task required the rats to escape from cold water by finding a submerged and hidden platform located at a fixed place within the room. The start point was varied randomly from trial to trial and there were no local cues available to indicate the position of the hidden platform. After training, the platform was moved. Escape latencies and the initial swimming headings revealed that all lesion groups, except the unilateral CA3-damaged group, were impaired at finding the platform: the dentate-damaged rats exhibited the greatest deficit. When the platform was moved the control rats swam mainly in the part of the pool that had previously contained the platform and, on finding it in the new location, they showed a marked dishabituation of rearing. None of the bilateral lesion groups showed these effects.

  13. Photometric method for determination of acidity constants through integral spectra analysis

    NASA Astrophysics Data System (ADS)

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-01

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature.

  14. Performance of a Ka-band transponder breadboard for deep-space applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.

    1995-01-01

    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.

  15. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1

    PubMed Central

    Bledsoe, Caroline S.; Ross, Cleon W.

    1978-01-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583

  16. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    PubMed Central

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  17. Amelioration of cyclophosphamide induced myelosuppression and oxidative stress by cinnamic acid.

    PubMed

    Patra, Kartick; Bose, Samadrita; Sarkar, Shehnaz; Rakshit, Jyotirmoy; Jana, Samarjit; Mukherjee, Avik; Roy, Abhishek; Mandal, Deba Prasad; Bhattacharjee, Shamee

    2012-02-05

    Cinnamic acid (C9H8O2), is a major constituent of the oriental Ayurvedic plant Cinnamomum cassia (Family: Lauraceae). This phenolic acid has been reported to possess various pharmacological properties of which its antioxidant activity is a prime one. Therefore it is rational to hypothesize that it may ameliorate myelosuppression and oxidative stress induced by cyclophosphamide, a widely used chemotherapeutic agent. Commercial cyclophosphamide, Endoxan, was administered intraperitoneally to Swiss albino mice (50mg/kg) pretreated with 15, 30 and 60mg/kg doses of cinnamic acid orally at alternate days for 15days. Cinnamic acid pre-treatment was found to reduce cyclophosphamide induced hypocellularity in the bone marrow and spleen. This recovery was also reflected in the peripheral blood count. Amelioration of hypocellularity could be correlated with the modulation of cell cycle phase distribution. Cinnamic acid pre-treatment reduced bone marrow and hepatic oxidative stress as evident by lipid peroxidation and activity assays of antioxidant enzymes such as superoxide dismutase, catalase and glutathione-S-transferase. The present study indicates that cinnamic acid pretreatment has protective influence on the myelosuppression and oxidative stress induced by cyclophosphamide. This investigation is an attempt and is the first of its kind to establish cinnamic acid as an agent whose consumption provides protection to normal cells from the toxic effects of a widely used anti-cancer drug. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Reovirus-induced Ribonucleic Acid Polymerase

    PubMed Central

    Watanabe, Y.; Gauntt, C. J.; Graham, A. F.

    1968-01-01

    A virus-induced ribonucleic acid (RNA) polymerase activity was found in L cells infected with type 3 reovirus. Most of the enzyme is associated with the “large particle” fraction of the infected cells. The enzyme first appeared at 3 to 5 hr after infection and increased in amount until 7 to 9 hr. All four ribonucleoside triphosphates are incorporated in vitro into an acid-insoluble form by the enzyme. The major part of the product formed in vitro is a double-stranded RNA indistinguishable from viral RNA by electrophoresis on polyacrylamide gel. Approximately 40% of the product is a single-stranded RNA of relatively small molecular weight. More than 95% of the nucleotides incorporated into double-stranded RNA by the enzyme are bound in internal 3′-5′-phosphodiester linkages extending back from both 3′- and 5′-termini of the RNA strands. PMID:5725319

  19. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  20. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis.

    PubMed

    Bai, Xupeng; Hong, Weipeng; Cai, Peiheng; Chen, Yibei; Xu, Chuncao; Cao, Di; Yu, Weibang; Zhao, Zhongxiang; Huang, Min; Jin, Jing

    2017-06-01

    Steatosis is the characteristic type of VPA-induced hepatotoxicity and may result in life-threatening hepatic lesion. Approximately 61% of patients treated with VPA have been diagnosed with hepatic steatosis through ultrasound examination. However, the mechanisms underlying VPA-induced intracellular fat accumulation are not yet fully understood. Here we demonstrated the involvement of fatty acid uptake and lipogenesis in VPA-induced hepatic steatosis in vitro and in vivo by using quantitative real-time PCR (qRT-PCR) analysis, western blotting analysis, fatty acid uptake assays, Nile Red staining assays, and Oil Red O staining assays. Specifically, we found that the expression of cluster of differentiation 36 (CD36), an important fatty acid transport, and diacylglycerol acyltransferase 2 (DGAT2) were significantly up-regulated in HepG2 cells and livers of C57B/6J mice after treatment with VPA. Furthermore, VPA treatment remarkably enhanced the efficiency of fatty acid uptake mediated by CD36, while this effect was abolished by the interference with CD36-specific siRNA. Also, VPA treatment significantly increased DGAT2 expression as a result of the inhibition of mitogen-activated protein kinase kinase (MEK) - extracellular regulated kinase (ERK) pathway; however, DGAT2 knockdown significantly alleviated VPA-induced intracellular lipid accumulation. Additionally, we also found that sterol regulatory element binding protein-1c (SREBP-1c)-mediated fatty acid synthesis may be not involved in VPA-induced hepatic steatosis. Overall, VPA-triggered over-regulation of CD36 and DGAT2 could be helpful for a better understanding of the mechanisms underlying VPA-induced hepatic steatosis and may offer novel therapeutic strategies to combat VPA-induced hepatotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  2. Orally administered phosphatidic acids and lysophosphatidic acids ameliorate aspirin-induced stomach mucosal injury in mice.

    PubMed

    Tanaka, Tamotsu; Morito, Katsuya; Kinoshita, Masafumi; Ohmoto, Mayumi; Urikura, Mai; Satouchi, Kiyoshi; Tokumura, Akira

    2013-04-01

    Recent investigations revealed that lysophosphatidic acid (LPA), a phospholipid with a growth factor-like activity, plays an important role in the integrity of the gastrointestinal tract epithelium. This paper attempts to clarify the effect of orally administered phosphatidic acid (PA) and LPA on aspirin-induced gastric lesions in mice. Phospholipids, a free fatty acid, a diacylglycerol and a triglyceride at 1 mM (5.7 μmol/kg body weight) or 0.1 mM were orally administered to mice 0.5 h before oral administration of aspirin (1.7 mmol/kg). The total length of lesions formed on the stomach wall was measured as a lesion index. Formation of LPA from PA in the mouse stomach was examined by in vitro (in stomach lavage fluid), ex vivo (in an isolated stomach) and in vivo (in the stomach of a living mouse) examinations of phospholipase activity. Palmitic acid, dioleoyl-glycerol, olive oil and lysophosphatidylcholine did not affect the aspirin-induced lesions. In contrast, phosphatidylcholine (1 mM), LPA (1 mM) and PA (0.1, 1 mM) significantly reduced the lesion index. Evidence for formation of LPA from PA in the stomach by gastric phospholipase A2 was obtained by in vitro, ex vivo and in vivo experiments. An LPA-specific receptor, LPA2, was found to be localized on the gastric surface-lining cells of mice. Pretreatment with PA-rich diets may prevent nonsteroidal anti-inflammatory drug-induced stomach ulcers.

  3. Standard Observing Bands: Is Now the Time to Replace S/X with X/Ka?

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Lanyi, G. E.; Naudet, C. J.

    2004-01-01

    In this paper we will argue that the VLBI community should be developing a road map to transition from S/X to simultaneous X and Ka-band (32 GHz) observations. There are both negative and positive reasons for planning such a transition. On the negative side, we will outline concerns that S-band observations may be headed toward obsolescence. On the positive side, we will refer to evidence that X/Ka has potential for providing a more stable reference frame than S/X. We will propose timetables for a transition to X/Ka observing starting from the current status of X/Ka and plans that are now taking shape. First X/Ka fringes were obtained in 2001 with the Deep Space Network. Future plans will be discussed including a proposed X/Ka-band upgrade to the VLBA. Lastly, we will consider the need for a period of overlap between S/X and X/Ka so that the long and rich history of astrometric and geodetic VLBI is not compromised.

  4. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  5. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    PubMed

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Structure--activity studies for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid receptors: acidic hydroxyphenylalanines.

    PubMed

    Hill, R A; Wallace, L J; Miller, D D; Weinstein, D M; Shams, G; Tai, H; Layer, R T; Willins, D; Uretsky, N J; Danthi, S N

    1997-09-26

    Antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 approximately equal to 25 microM) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 approximately equal to 5 microM). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 microM), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 microM) displayed AMPA > kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine.

  7. X/Ka Celestial Frame Improvements: Vision to Reality

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Bagri, D. S.; Britcliffe, M. J.; Clark, J. E.; Franco, M. M.; Garcia-Miro, C.; Goodhart, C. E.; Horiuchi, S.; Lowe, S. T.; Moll, V. E.; hide

    2010-01-01

    In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame.

  8. Abrupt hydroclimate disruption across the Australian arid zone 50 ka coincident with human colonization

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Fogel, M. L.; Magee, J. W.; Gagan, M. K.

    2016-12-01

    Although many studies focus on how climate change impacted ancient societies, in Australia a growing body of evidence indicates that activities of the earliest human colonizers in turn altered the Australian climate. We utilize the stable isotopes of carbon and oxygen preserved in near-continuous 100 ka time series of avian eggshell from five regions across the Australian arid zone to reconstruct ecosystem status (d13C) and effective moisture (d18O). Training sets of sub-modern samples provide the basis for the reconstructions. Together, d13C and d18O provide independent estimates of ecosystem status and climate over the past 100 ka from the same dated sample, reducing correlation uncertainties between proxies. Changes in eggshell d13C document a dramatic reduction of palatable summer-wet C4 grasses in all regions between 50 and 45 ka, that has persisted through to modern times. Continuous 100 ka records of effective moisture derived from eggshell d18O show moist conditions from 100 to 60 ka, with variable drying after 60 ka, but the strong shift toward greatest aridity is coincident with the onset of the last glacial maximum 30 ka ago, 15 ka after the observed ecosystem restructuring. Combining the d13C and d18O time-series shows that an abrupt and permanent restructuring of the moisture/ecosystem balance occurred between 50 and 45 ka. Additional studies show that most large monsoon-fed inland arid-zone lakes carried permanent water at least intermittently between 120 and 50 ka, but never experienced permanent deep-water status after 45 ka, despite a wide range of global climate states, including the early Holocene when most other monsoon systems were reinvigorated. The lack of exceptional climate shifts either locally or globally between 60 and 40 ka eliminates climate as the cause of the ecosystem restructuring and persistent lake desiccation. Collectively these data suggest the wave of human colonization across Australia in altered land surface characteristics

  9. A 130 ka reconstruction of rainfall on the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Placzek, C. J.; Quade, J.; Patchett, P. J.

    2013-02-01

    New efforts to link climate reconstructions from shoreline deposits and sediment cores yield an improved and more detailed lake history from the Bolivian Altiplano. On the Southern Altiplano, 10 lake oscillations have been identified from this new unified chronology, each coincident with North Atlantic cold events such as Heinrich Events H5, H2, H1, and the Younger Dryas. By coupling this new lake history to a hydrologic budget model we are able to evaluate precipitation variability on the Southern Bolivian Altiplano over the last 130 ka. These modeling efforts underscore the relative aridity of the Altiplano during the rare and small lake cycles occurring between 80 and 20 ka, when colder temperatures combined with little or no change in rainfall produced smaller paleolakes. Relative aridity between 80 and 20 ka contrasts with the immense Tauca lake cycle (18.1-14.1 ka), which was six times larger than modern Lake Titicaca and coincided with Heinrich Event 1. This improved paleolake record from the Southern Altiplano reveals a strong link between central Andean climate and Atlantic sea-surface temperature gradients during the late Pleistocene, even though today rainfall variability is driven mostly by Pacific sea-surface temperature anomalies associated with El Niño/Southern Oscillation. However, not all Heinrich Events appear to result in lake expansions, most conspicuously during the global cold interval between 80 and 20 ka when the Altiplano and Amazon Basin were relatively arid.

  10. Gallic acid attenuates calcium calmodulin-dependent kinase II-induced apoptosis in spontaneously hypertensive rats.

    PubMed

    Jin, Li; Piao, Zhe Hao; Liu, Chun Ping; Sun, Simei; Liu, Bin; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kee, Hae Jin; Jeong, Myung Ho

    2018-03-01

    Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition-induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti-cancer, anti-calcification and anti-oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase-3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ-induced apoptosis. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Increase of weakly acidic gas esophagopharyngeal reflux (EPR) and swallowing-induced acidic/weakly acidic EPR in patients with chronic cough responding to proton pump inhibitors.

    PubMed

    Kawamura, O; Shimoyama, Y; Hosaka, H; Kuribayashi, S; Maeda, M; Nagoshi, A; Zai, H; Kusano, M

    2011-05-01

    Gastro-esophageal reflux disease (GERD)-related chronic cough (CC) may have multifactorial causes. To clarify the characteristics of esophagopharyngeal reflux (EPR) events in CC patients whose cough was apparently influenced by gastro-esophageal reflux (GER), we studied patients with CC clearly responding to full-dose proton pump inhibitor (PPI) therapy (CC patients). Ten CC patients, 10 GERD patients, and 10 healthy controls underwent 24-h ambulatory pharyngo-esophageal impedance and pH monitoring. Weakly acidic reflux was defined as a decrease of pH by >1 unit with a nadir pH >4. In six CC patients, monitoring was repeated after 8 weeks of PPI therapy. The number of each EPR event and the symptom association probability (SAP) were calculated. Symptoms were evaluated by a validated GERD symptom questionnaire. Weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR only occurred in CC patients, and the numbers of such events was significantly higher in the CC group than in the other two groups (P < 0.05, respectively). Symptom association probability analysis revealed a positive association between GER and cough in three CC patients. Proton pump inhibitor therapy abolished swallowing-induced acidic/weakly acidic EPR, reduced weakly acidic gas EPR, and improved symptoms (all P < 0.05). Most patients with CC responding to PPI therapy had weakly acidic gas EPR and swallowing-induced acidic/weakly acidic EPR. A direct effect of acidic mist or liquid refluxing into the pharynx may contribute to chronic cough, while cough may also arise indirectly from reflux via a vago-vagal reflex in some patients. © 2011 Blackwell Publishing Ltd.

  12. Docosahexaenoic Acid Inhibits Cerulein-Induced Acute Pancreatitis in Rats

    PubMed Central

    Jeong, Yoo Kyung; Lee, Sle; Lim, Joo Weon

    2017-01-01

    Oxidative stress is an important regulator in the pathogenesis of acute pancreatitis (AP). Reactive oxygen species induce activation of inflammatory cascades, inflammatory cell recruitment, and tissue damage. NF-κB regulates inflammatory cytokine gene expression, which induces an acute, edematous form of pancreatitis. Protein kinase C δ (PKCδ) activates NF-κB as shown in a mouse model of cerulein-induced AP. Docosahexaenoic acid (DHA), an ω-3 fatty acid, exerts anti-inflammatory and antioxidant effects in various cells and tissues. This study investigated whether DHA inhibits cerulein-induced AP in rats by assessing pancreatic edema, myeloperoxidase activity, levels of lipid peroxide and IL-6, activation of NF-κB and PKCδ, and by histologic observation. AP was induced by intraperitoneal injection (i.p.) of cerulein (50 μg/kg) every hour for 7 h. DHA (13 mg/kg) was administered i.p. for three days before AP induction. Pretreatment with DHA reduced cerulein-induced activation of NF-κB, PKCδ, and IL-6 in pancreatic tissues of rats. DHA suppressed pancreatic edema and decreased the abundance of lipid peroxide, myeloperoxidase activity, and inflammatory cell infiltration into the pancreatic tissues of cerulein-stimulated rats. Therefore, DHA may help prevent the development of pancreatitis by suppressing the activation of NF-κB and PKCδ, expression of IL-6, and oxidative damage to the pancreas. PMID:28704954

  13. Mentha longifolia protects against acetic-acid induced colitis in rats.

    PubMed

    Murad, Hussam A S; Abdallah, Hossam M; Ali, Soad S

    2016-08-22

    Mentha longifolia L (Wild Mint or Habak) (ML) is used in traditional medicine in treatment of many gastrointestinal disorders. This study aimed to evaluate potential protecting effect of ML and its major constituent, eucalyptol, against acetic acid-induced colitis in rats, a model of human inflammatory bowel disease (IBD). Rats were divided into ten groups (n=8) given orally for three days (mg/kg/day) the following: normal control, acetic acid-induced colitis (un-treated, positive control), vehicle (DMSO), sulfasalazine (500), ML extract (100, 500, 1000), and eucalyptol (100, 200, 400). After 24h-fasting, two ML of acetic acid (3%) was administered intrarectally. On the fifth day, serum and colonic biochemical markers, and histopathological changes were evaluated. Colitis significantly increased colonic myeloperoxidase activity and malonaldehyde level, and serum tumor necrosis factor-α, interleukin-6, and malonaldehyde levels while significantly decreased colonic and serum glutathione levels. All treatments (except ML 100, ML 1000, and eucalyptol 100) significantly reversed these changes where eucalyptol (400) showed the highest activity in a dose-dependent manner. The colitis-induced histopathological changes were mild in sulfasalazine and eucalyptol 400 groups, moderate in ML 500 and eucalyptol 200 groups, and severe in ML 100, ML 1000, and eucalyptol 100 groups nearly similar to colitis-untreated rats. ML (in moderate doses) and eucalyptol (dose-dependently) exerted protective effects against acetic acid-induced colitis in rats possibly through antioxidant and antiinflammatory properties suggesting a potential benefit in treatments of IBD. To our knowledge this is the first report addressing this point. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid.

    PubMed

    Halim, Vincentius A; Altmann, Simone; Ellinger, Dorothea; Eschen-Lippold, Lennart; Miersch, Otto; Scheel, Dierk; Rosahl, Sabine

    2009-01-01

    To elucidate the molecular mechanisms underlying pathogen-associated molecular pattern (PAMP)-induced defense responses in potato (Solanum tuberosum), the role of the signaling compounds salicylic acid (SA) and jasmonic acid (JA) was analyzed. Pep-13, a PAMP from Phytophthora, induces the accumulation of SA, JA and hydrogen peroxide, as well as the activation of defense genes and hypersensitive-like cell death. We have previously shown that SA is required for Pep-13-induced defense responses. To assess the importance of JA, RNA interference constructs targeted at the JA biosynthetic genes, allene oxide cyclase and 12-oxophytodienoic acid reductase, were expressed in transgenic potato plants. In addition, expression of the F-box protein COI1 was reduced by RNA interference. Plants expressing the RNA interference constructs failed to accumulate the respective transcripts in response to wounding or Pep-13 treatment, neither did they contain significant amounts of JA after elicitation. In response to infiltration of Pep-13, the transgenic plants exhibited a highly reduced accumulation of reactive oxygen species as well as reduced hypersensitive cell death. The ability of the JA-deficient plants to accumulate SA suggests that SA accumulation is independent or upstream of JA accumulation. These data show that PAMP responses in potato require both SA and JA and that, in contrast to Arabidopsis, these compounds act in the same signal transduction pathway. Despite their inability to fully respond to PAMP treatment, the transgenic RNA interference plants are not altered in their basal defense against Phytophthora infestans.

  15. Dichroic Filter for Separating W-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.

    2012-01-01

    The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.

  16. KaBOB: ontology-based semantic integration of biomedical databases.

    PubMed

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for

  17. Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by radiation-induced crosslinking of homopolymers

    NASA Astrophysics Data System (ADS)

    Kadłubowski, Sławomir; Henke, Artur; Ulański, Piotr; Rosiak, Janusz M.

    2010-03-01

    pH-sensitive PVP-PAA hydrogels have been prepared by electron-beam-induced irradiation at pH close to pKa of carboxylic groups. Protonation of these groups promoted the formation of hydrogen bonds between the PAA and PVP segments within the crosslinked structure and caused interpolymer complex formation. To demonstrate possible future application of such gels, we tested them as simple chemical detectors. When loaded with glucose oxidase, the PAA-PVP gel's turbidity and shrinkage was triggered by the presence of glucose due to a drop in pH caused by the enzymatic reaction.

  18. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  19. Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells.

    PubMed

    Cheng, Yisen; Chen, Gaojian; Wang, Li; Kong, Jiamin; Pan, Ji; Xi, Yue; Shen, Feihai; Huang, Zhiying

    2018-08-01

    Triptolide is a major active ingredient of tripterygium glycosides, used for the therapy of immune and inflammatory diseases. However, its clinical applications are limited by severe male fertility toxicity associated with decreased sperm count, mobility and testicular injures. In this study, we determined that triptoide-induced mitochondrial dysfunction triggered reduction of lactate and dysregulation of fatty acid metabolism in mouse Sertoli cells. First, triptolide induced mitochondrial damage through the suppressing of proliferator-activated receptor coactivator-1 alpha (PGC-1α) activity and protein. Second, mitochondrial damage decreased lactate production and dysregulated fatty acid metabolism. Finally, mitochondrial dysfunction was initiated by the inhibition of sirtuin 1 (SIRT1) with the regulation of AMP-activated protein kinase (AMPK) in Sertoli cells after triptolide treatment. Meanwhile, triptolide induced mitochondrial fatty acid oxidation dysregulation by increasing AMPK phosphorylation. Taken together, we provide evidence that the mechanism of triptolide-induced testicular toxicity under mitochondrial injury may involve a metabolic change. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Fatty acid-amino acid conjugates are essential for systemic activation of salicylic acid-induced protein kinase and accumulation of jasmonic acid in Nicotiana attenuata.

    PubMed

    Hettenhausen, Christian; Heinrich, Maria; Baldwin, Ian T; Wu, Jianqiang

    2014-11-28

    Herbivory induces the activation of mitogen-activated protein kinases (MAPKs), the accumulation of jasmonates and defensive metabolites in damaged leaves and in distal undamaged leaves. Previous studies mainly focused on individual responses and a limited number of systemic leaves, and more research is needed for a better understanding of how different plant parts respond to herbivory. In the wild tobacco Nicotiana attenuata, FACs (fatty acid-amino acid conjugates) in Manduca sexta oral secretions (OS) are the major elicitors that induce herbivory-specific signaling but their role in systemic signaling is largely unknown. Here, we show that simulated herbivory (adding M. sexta OS to fresh wounds) dramatically increased SIPK (salicylic acid-induced protein kinase) activity and jasmonic acid (JA) levels in damaged leaves and in certain (but not all) undamaged systemic leaves, whereas wounding alone had no detectable systemic effects; importantly, FACs and wounding are both required for activating these systemic responses. In contrast to the activation of SIPK and elevation of JA in specific systemic leaves, increases in the activity of an important anti-herbivore defense, trypsin proteinase inhibitor (TPI), were observed in all systemic leaves after simulated herbivory, suggesting that systemic TPI induction does not require SIPK activation and JA increases. Leaf ablation experiments demonstrated that within 10 minutes after simulated herbivory, a signal (or signals) was produced and transported out of the treated leaves, and subsequently activated systemic responses. Our results reveal that N. attenuata specifically recognizes herbivore-derived FACs in damaged leaves and rapidly send out a long-distance signal to phylotactically connected leaves to activate MAPK and JA signaling, and we propose that FACs that penetrated into wounds rapidly induce the production of another long-distance signal(s) which travels to all systemic leaves and activates TPI defense.

  1. Effective amino acid composition of seaweeds inducing food preference behaviors in Aplysia kurodai.

    PubMed

    Nagahama, Tatsumi; Fujimoto, Kiyo; Takami, Shigemi; Kinugawa, Aiko; Narusuye, Kenji

    2009-07-01

    Aplysia kurodai feeds on Ulva but rejects Gelidium and Pachydictyon with distinct patterned jaw movements. We previously demonstrated that these movements are induced by taste alone. Thus some chemicals may contribute to induction of these responses. We explored the amino acids composition of Ulva, Gelidium and Pachydictyon extracts used during our taste-induced physiological experiments. These solutions contained many constituents. The concentrations of six amino acids (Asp, Asn, Glu, Gln, Phe, Tau) were obviously different in the three extract solutions. We explored patterned jaw movements following application of solutions containing a pure amino acid. We statistically compared the occurrence numbers of ingestion-like and rejection-like patterned jaw movements (positive and negative values, respectively) for each amino acid. Our results suggested that L-Asn tends to induce ingestion-like responses, likely resulting in a preference of Ulva. In contrast, L-Asp tends to induce rejection-like responses, likely resulting in aversion towards Pachydictyon. In addition, we demonstrated that L-Asn and L-Asp solutions were sufficient to induce muscle activity associated with ingestion-like or rejection-like responses in the jaw muscles of a semi-intact preparation.

  2. Photometric method for determination of acidity constants through integral spectra analysis.

    PubMed

    Zevatskiy, Yuriy Eduardovich; Ruzanov, Daniil Olegovich; Samoylov, Denis Vladimirovich

    2015-04-15

    An express method for determination of acidity constants of organic acids, based on the analysis of the integral transmittance vs. pH dependence is developed. The integral value is registered as a photocurrent of photometric device simultaneously with potentiometric titration. The proposed method allows to obtain pKa using only simple and low-cost instrumentation. The optical part of the experimental setup has been optimized through the exclusion of the monochromator device. Thus it only takes 10-15 min to obtain one pKa value with the absolute error of less than 0.15 pH units. Application limitations and reliability of the method have been tested for a series of organic acids of various nature. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Validation Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT

    DTIC Science & Technology

    2006-04-01

    Cavity TWT for 29-31 GHz Figure 3: Output power vs. input power at f=30.0 Communications Systems," I Ith Ka and Broadband GHz for the VTA-6430A1 Ka...Coupled-Cavity TWT DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: 2006 IEEE...Studies for CHRISTINE-CC Using a Ka-Band Coupled-Cavity TWT * D. Chernin, D. Dialetis, T. M. Antonsen, Jr.t, Science Applications International Corp McLean

  4. Effect of ascorbic acid on prevention of hypercholesterolemia induced atherosclerosis.

    PubMed

    Das, S; Ray, R; Snehlata; Das, N; Srivastava, L M

    2006-04-01

    The notion that oxidation of lipids and propagation of free radicals may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. To circumvent the damage caused by oxygen free radicals, antioxidants are needed which provide the much needed neutralization of free radical by allowing the pairing of electrons. In this study we have investigated the effect of ascorbic acid, a water soluble antioxidant on the development of hypercholesterolemia induced atherosclerosis in rabbits. Rabbits were made hypercholesterolemic and atherosclerotic by feeding 100 mg cholesterol/day. Different doses of ascorbic acid were administered to these rabbits. Low dose of ascorbic acid (0.5 mg/100 g body weight/day) did not have any significant effect on the percent of total area covered by atherosclerotic plaque. However, ascorbic acid when fed at a higher dose (15 mg/100 g body weight/day) was highly effective in reducing the atherogenecity. With this dose the percent of total surface area covered by atherosclerotic plaque was significantly less (p < 0.001). This suggests that use of ascorbic acid may have great promise in the prevention of hypercholesterolemia induced atherosclerosis.

  5. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats.

    PubMed

    Zimmerman, Gabriel; Njunting, Marleisje; Ivens, Sebastian; Tolner, Else A; Tolner, Elsa; Behrens, Christoph J; Gross, Miriam; Soreq, Hermona; Heinemann, Uwe; Friedman, Alon

    2008-02-01

    The entorhinal cortex (EC) plays an important role in temporal lobe epilepsy. Under normal conditions, the enriched cholinergic innervation of the EC modulates local synchronized oscillatory activity; however, its role in epilepsy is unknown. Enhanced neuronal activation has been shown to induce transcriptional changes of key cholinergic genes and thus alter cholinergic responses. To examine cholinergic modulations in epileptic tissue we studied molecular and electrophysiological cholinergic responses in the EC of chronically epileptic rats following exposure to pilocarpine or kainic acid. We confirmed that while the total activity of the acetylcholine (ACh)-hydrolysing enzyme, acetylcholinesterase (AChE) was not altered, epileptic rats showed alternative splicing of AChE pre-mRNA transcripts, accompanied by a shift from membrane-bound AChE tetramers to soluble monomers. This was associated with increased sensitivity to ACh application: thus, in control rats, ACh (10-100 microm) induced slow (< 1Hz), periodic events confined to the EC; however, in epileptic rats, ACh evoked seconds-long seizure-like events with initial appearance in the EC, and frequent propagation to neighbouring cortical regions. ACh-induced seizure-like events could be completely blocked by the non-specific muscarinic antagonist, atropine, and were partially blocked by the muscarinic-1 receptor antagonist, pirenzepine; but were not affected by the non-specific nicotinic antagonist, mecamylamine. Epileptic rats presented reduced transcript levels of muscarinic receptors with no evidence of mRNA editing or altered mRNA levels for nicotinic ACh receptors. Our findings suggest that altered cholinergic modulation may initiate seizure events in the epileptic temporal cortex.

  6. Satellite Ka-band propagation measurements in Florida

    NASA Technical Reports Server (NTRS)

    Helmken, Henry; Henning, Rudolf

    1995-01-01

    Commercial growth of interactive, high data rate communication systems is expected to focus on the use of the Ka-band (20/30 GHz) radio spectrum. The ability to form narrow spot beams and the attendant small diameter antennas are attractive features to designers of mobile aeronautical and ground based satellite communication systems. However, Ka-band is strongly affected by weather, particularly rain, and hence systems designs may require a significant link margin for reliable operations. Perhaps the most stressing area in North America, weatherwise, is the Florida sub-tropical climatic region. As part of the NASA Advanced Communications Technology Satellite (ACTS) propagation measurements program, beacon and radiometer data have been recorded since December 1993 at the University of South Florida (USF), Tampa, Florida.

  7. A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen

    2015-04-01

    Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.

  8. Butyric Acid-Induced T-Cell Apoptosis Is Mediated by Caspase-8 and -9 Activation in a Fas-Independent Manner

    PubMed Central

    Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu; Fukushima, Kazuo

    2001-01-01

    Our previous study demonstrated that butyric acid, an extracellular metabolite of periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat cells. In this study, we examined whether CD95 ligand-receptor interaction is involved in butyric acid-induced T-cell apoptosis. Flow cytometry analysis indicated that expression of Fas in Jurkat and T cells from peripheral blood mononuclear cells was not affected by butyric acid treatment. Furthermore, the expression of Fas and FasL protein in Western blotting was not affected by butyric acid treatment. Coincubation with blocking anti-Fas antibodies prevented Fas-induced apoptosis but not butyric acid-induced apoptosis. Anti-FasL antibodies also did not prevent butyric acid-induced apoptosis at any dose examined. Although cytotoxic anti-Fas antibody affected butyric acid-induced apoptosis, a synergistic effect was not seen. Time-dependent activation of caspase-8 and -9 was recognized in butyric acid- as well as Fas-mediated apoptosis. IETD-CHO and LEHD-CHO, specific inhibitors of caspase-8 and -9, respectively, completely blocked Fas-mediated apoptosis and partially prevented butyric acid-induced apoptosis. These results suggest that the Fas-FasL interaction is not involved in butyric acid-induced apoptosis and that caspase-8 and -9-dependent apoptosis plays an important role in butyric acid-induced apoptosis, as well as Fas-induced apoptosis. PMID:11238216

  9. Proton storage site in bacteriorhodopsin: new insights from QM/MM simulations of microscopic pKa and infrared spectra

    PubMed Central

    Goyal, Puja; Ghosh, Nilanjan; Phatak, Prasad; Clemens, Maike; Gaus, Michael; Elstner, Marcus; Cui, Qiang

    2011-01-01

    Identifying the group that acts as the proton storage/loading site is a challenging but important problem for understanding the mechanism of proton pumping in biomolecular proton pumps, such as bacteriorhodopsin (bR) and cytochrome c oxidase. Recent experimental studies of bR propelled the idea that the proton storage/release group (PRG) in bR is not an amino acid but a water cluster embedded in the protein. We argue that this idea is at odds with our knowledge of protein electrostatics, since invoking the water cluster as PRG would require the protein to raise the pKa of a hydronium by almost 11 pKa units, which is difficult considering known cases of pKa shifts in proteins. Our recent QM/MM simulations suggested an alternative “intermolecular proton bond” model in which the stored proton is shared between two conserved Glu residues (194 and 204). Here we show that this model leads to microscopic pKa values consistent with available experimental data and the functional requirement of a PRG. Extensive QM/MM simulations also show that, independent of a number of technical issues, such as the influence of QM region size, starting x-ray structure and nuclear quantum effects, the “intermolecular proton bond” model is qualitatively consistent with available spectroscopic data. Potential of mean force calculations show explicitly that the stored proton strongly prefers the pair of Glu residues over the water cluster. The results and analyses help highlight the importance of considering protein electrostatics and provide arguments for why the “intermolecular proton bond” model is likely applicable to PRG in biomolecular proton pumps in general. PMID:21761868

  10. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury.

    PubMed

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-02-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2'-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury.

  11. Magnolol, a Natural Polyphenol, Attenuates Dextran Sulfate Sodium-Induced Colitis in Mice.

    PubMed

    Zhao, Ling; Xiao, Hai-Tao; Mu, Huai-Xue; Huang, Tao; Lin, Ze-Si; Zhong, Linda L D; Zeng, Guang-Zhi; Fan, Bao-Min; Lin, Cheng-Yuan; Bian, Zhao-Xiang

    2017-07-20

    Magnolol is a lignan with anti-inflammatory activity identified in Magnolia officinalis . Ulcerative colitis (UC), one of the types of inflammatory bowel disease (IBD), is a disease that causes inflammation and ulcers in the colon. To investigate the effect of magnolol in dextran sulfate sodium (DSS)-induced experimental UC model, male C57 mice were treated with 2% DSS drinking water for 5 consecutive days followed by intragastric administration with magnolol (5, 10 and 15 mg/kg) daily for 7 days. The results showed that magnolol significantly attenuated disease activity index, inhibited colonic shortening, reduced colonic lesions and suppressed myeloperoxidase (MPO) activity. Moreover, colonic pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) induced by colitis were dramatically decreased by magnolol. To further unveil the metabolic signatures upon magnolol treatment, mass spectrometry-based metabolomic analysis of the small molecular metabolites in mice serum were performed. Compared with controls, abnormality of serum metabolic phenotypes in DSS-treated mice were effectively reversed by different doses of magnolol. In particular, magnolol treatment effectively elevated the serum levels of tryptophan metabolites including kynurenic acid (KA), 5-hydroxyindoleacetic acid, indoleacetic acid (IAA), indolelactic acid and indoxylsulfuric acid, which are potential aryl hydrocarbon receptor (AHR) ligands to impact colitis. These findings suggest that magnolol exerts anti-inflammatory effect on DSS-induced colitis and its underlying mechanisms are associated with the restoring of tryptophan metabolites that inhibit the colonic inflammation.

  12. A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer

    NASA Technical Reports Server (NTRS)

    Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.

    1987-01-01

    A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).

  13. α-Lipoic acid protects against cholecystokinin-induced acute pancreatitis in rats

    PubMed Central

    Park, Sung-Joo; Seo, Sang-Wan; Choi, Ok-Sun; Park, Cheung-Seog

    2005-01-01

    AIM: α-Lipoic acid (ALA) has been used as an antioxidant. The aim of this study was to investigate the effect of α-lipoic acid on cholecystokinin (CCK)-octapeptide induced acute pancreatitis in rats. METHODS: ALA at 1 mg/kg was intra-peritoneally injected, followed by 75 μg/kg CCK-octapeptide injected thrice subcutaneously after 1, 3, and 5 h. This whole procedure was repeated for 5 d. We checked the pancreatic weight/body weight ratio, the secretion of pro-inflammatory cytokines and the levels of lipase, amylase of serum. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally induced pancreatitis. RESULTS: ALA significantly decreased the pancreatic weight/body weight ratio and serum amylase and lipase in CCK octapeptide-induced acute pancreatitis. However, the secretion of IL-1β, IL-6, and TNF-α were comparable in CCK octapeptide-induced acute pancreatitis. CONCLUSION: ALA may have a protective effect against CCK octapeptide-induced acute pancreatitis. PMID:16097064

  14. Acid-induced exchange of the imino proton in G.C pairs.

    PubMed Central

    Nonin, S; Leroy, J L; Gueron, M

    1996-01-01

    Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine. PMID:8604298

  15. Acid-induced exchange of the imino proton in G.C pairs.

    PubMed

    Nonin, S; Leroy, J L; Gueron, M

    1996-02-15

    Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine.

  16. Paleomagnetic record for the past 80 ka from the Mahanadi basin, Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Usapkar, A.; Dewangan, P.; Mazumdar, A.; Krishna, K. S.; Ramprasad, T.; Badesab, F. K.; Patil, M.; Gaikwad, V. V.

    2018-01-01

    High resolution paleomagnetic investigations were performed on a 50.08 m long sediment core (MD161/20) from Mahanadi basin, Bay of Bengal. Core yielded reliable paleomagnetic results for top 20 m below seafloor (mbsf) which spans about 80 ka. Based on the analysis of rock magnetic data, the core is subdivided into five distinct Zones: Zone 1 and Zone 2 cover top 20 mbsf and do not show any abrupt change in magnetic mineralogy, concentration and grain size. Zones 3 and 5 show significant reduction in χLF, χARM and SIRM due to dissolution of magnetic minerals. Zone 4 shows moderate values of χLF and SIRM. The low value of χARM suggests that magnetic signal is mostly carried by magnetic grains in PSD/MD state. The paleomagnetic data for the top 20 mbsf show four prominent geomagnetic excursions at ∼9 mbsf, ∼13.5 to 15 mbsf, ∼16.3 mbsf and ∼18 to 18.2 mbsf. The age-depth relationship is established using stratigraphic correlation between well-dated sedimentary core NGHP-01-19B and the core MD161/20. The ages of the observed excursions correspond to ∼18 to 20 ka, ∼42 to 49 ka, ∼54 to 57 ka and ∼69 to 70 ka. The excursions at ∼42 to 49 ka, ∼54 to 57 ka, and ∼67 to 70 ka is similar to the known excursions the Laschamp and the split Norwegian-Greenland Sea events (NGS-I and NGS-II). The excursion at 18-20 ka is not observed globally and may be related to lithological/sedimentological changes occurring during last glacial maxima (LGM). The virtual geomagnetic path (VGP) of Laschamp excursion traces clockwise loop. All excursions identified in present study fall in the periods of relatively low paleointensity.

  17. Prevention of acetic acid-induced colitis by desferrithiocin analogs in a rat model.

    PubMed

    Bergeron, Raymond J; Wiegand, Jan; Weimar, William R; Nguyen, John Nhut; Sninsky, Charles A

    2003-02-01

    Iron contributes significantly to the formation of reactive oxygen species via the Fenton reaction. Therefore, we assessed whether a series of desferrithiocin analogs, both carboxylic acids and hydroxamates, could (1) either promote or diminish the iron-mediated oxidation of ascorbate, (2) quench a model radical species, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), and (3) when applied topically, prevent acetic acid-induced colitis in rats. Surprisingly, most of the desferrithiocin analogs inhibited the Fenton reaction to an approximately equivalent degree; however, substantial differences were observed in the capacity of the analogs to scavenge the model radical cation. Four carboxylic acid desferrithiocin analogs and their respective N-methylhydroxamates were tested along with desferrioxamine and Rowasa, a currently accepted topical therapeutic agent for inflammatory bowel disease (IBD), in a rodent model of acetic acid-induced colitis. The colonic damage was quantitated by two independent measurements. Although neither radical scavenging nor prevention of Fenton chemistry was a definitive predictor of in vivo efficacy, the overall trend is that desferrithiocin analogs substituted with an N-methylhydroxamate in the place of the carboxylic acid are both better free radical scavengers and more active against acetic acid-induced colitis. These results represent an intriguing alternative avenue to the development of improved IBD therapeutic agents.

  18. Aminomethylphosphonic Acid and Methoxyacetic Acid Induce Apoptosis in Prostate Cancer Cells

    PubMed Central

    Parajuli, Keshab R.; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-01-01

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer. PMID:26006246

  19. Aminomethylphosphonic acid and methoxyacetic acid induce apoptosis in prostate cancer cells.

    PubMed

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; You, Zongbing

    2015-05-22

    Aminomethylphosphonic acid (AMPA) and its parent compound herbicide glyphosate are analogs to glycine, which have been reported to inhibit proliferation and promote apoptosis of cancer cells, but not normal cells. Methoxyacetic acid (MAA) is the active metabolite of ester phthalates widely used in industry as gelling, viscosity and stabilizer; its exposure is associated with developmental and reproductive toxicities in both rodents and humans. MAA has been reported to suppress prostate cancer cell growth by inducing growth arrest and apoptosis. However, it is unknown whether AMPA and MAA can inhibit cancer cell growth. In this study, we found that AMPA and MAA inhibited cell growth in prostate cancer cell lines (LNCaP, C4-2B, PC-3 and DU-145) through induction of apoptosis and cell cycle arrest at the G1 phase. Importantly, the AMPA-induced apoptosis was potentiated with the addition of MAA, which was due to downregulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2), leading to activation of caspases 7 and 3. These results demonstrate that the combination of AMPA and MAA can promote the apoptosis of prostate cancer cells, suggesting that they can be used as potential therapeutic drugs in the treatment of prostate cancer.

  20. PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation.

    PubMed

    Nitti, Mariapaola; Furfaro, Anna Lisa; Cevasco, Claudia; Traverso, Nicola; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Domenicotti, Cinzia

    2010-05-01

    The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67(phox), one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67(phox) membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation. 2010 Elsevier Inc. All rights reserved.

  1. Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhong-Ze; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian

    Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showedmore » that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.« less

  2. Raw data of the effects of Chlorogenic acid in 3-Nitropropionic acid induced toxicity and genotoxicity.

    PubMed

    Norberto, Alarcón-Herrera; Saúl, Flores-Maya; Belén, Bellido; García-Bores Ana, M; Ernesto, Mendoza; Guillermo, Ávila-Acevedo; Elizabeth, Hernández-Echeagaray

    2017-10-01

    The raw data showed in this article comes from the published research article entitled "Protective effects of Chlorogenic acid in 3-Nitropropionic acid induced toxicity and genotoxicity" Food Chem Toxicol. 2017 May 3. pii: S0278-6915(17)30226-0. DOI:10.1016/j.fct.2017.04.048. [1]. Data illustrates antitoxic and antigenotoxic effects of Chlorogenic acid (CGA) on toxicity and genotoxicity produced by the in vivo treatment with mitochondria toxin 3-Nitropropionic acid (3-NP) in mice. Toxicity and genotoxicity was evaluated in erythrocytes of peripheral blood through the micronuclei assay. Data was share at the Elsevier repository under the reference number FCT9033.

  3. Effect of amiloride on experimental acid-induced heartburn in non-erosive reflux disease.

    PubMed

    Bulsiewicz, William J; Shaheen, Nicholas J; Hansen, Mark B; Pruitt, Amy; Orlando, Roy C

    2013-07-01

    Acid-sensing ion channels (ASICs) are esophageal nociceptors that are candidates to mediate heartburn in non-erosive reflux disease (NERD). Amiloride, a diuretic, is known to inhibit ASICs. For this reason, we sought a role for ASICs in mediating heartburn by determining whether amiloride could block heartburn in NERD induced by esophageal acid perfusion. In a randomized double-blind crossover study, we perfused the esophagus with amiloride or (saline) placebo prior to eliciting acid-induced heartburn in patients with a history of proton pump inhibitor-responsive NERD. Those with NERD and positive modified Bernstein test were randomized to perfusion with amiloride, 1 mmol/l, or placebo for 5 min, followed by repeat acid-perfusion. Heartburn severity and time to onset was measured and the process repeated following crossover to the alternative agent. 14 subjects completed the study. Amiloride did not reduce the frequency (100 vs. 100 %) or severity of acid-induced heartburn (Mean 2.50 ± SEM 0.33 vs. 2.64 ± 0.45), respectively. There was a trend towards longer time to onset of heartburn for amiloride versus placebo (Mean 2.93 ± SEM 0.3 vs. 2.36 ± 0.29 min, respectively), though these differences did not reach statistical significance (p > 0.05). Amiloride had no significant effect on acid-induced heartburn frequency or severity in NERD, although there was a trend towards prolonged time to onset of symptoms.

  4. Advances in Ka-Band Communication System for CubeSats and SmallSats

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  5. Overexpression of heart-type fatty acid binding protein enhances fatty acid-induced podocyte injury

    PubMed Central

    Gao, Qing; Sarkar, Alhossain; Chen, Yizhi; Xu, Bo; Zhu, Xiaojuan; Yuan, Yang; Guan, Tianjun

    2018-01-01

    Deregulated lipid metabolism is a characteristic of metabolic diseases including type 2 diabetes and obesity, and likely contributes to podocyte injury and end-stage kidney disease. Heart-type fatty acid binding protein (H-FABP) was reported to be associated with lipid metabolism. The present study investigated whether H-FABP contributes to podocyte homeostasis. Podocytes were transfected by lentiviral vector to construct a cell line which stably overexpressed H-FABP. Small interfering RNA capable of effectively silencing H-FABP was introduced into podocytes to construct a cell line with H-FABP knockdown. Certain groups were treated with palmitic acid (PA) and the fat metabolism, as well as inflammatory and oxidative stress markers were measured. PA accelerated lipid metabolism derangement, inflammatory reaction and oxidative stress in podocytes. Overexpression of H-FABP enhanced the PA-induced disequilibrium in podocytes. The mRNA and protein expression levels of acyl-coenzyme A oxidase 3 and monocyte chemotactic protein 1, and the protein expression levels of 8-hydroxy-2′-deoxyguanosine and 4-hydroxynonenal were upregulated in the H-FABP overexpression group, while the mRNA and protein expression of peroxisome proliferator activated receptor α was downregulated. Knockdown of H-FABP inhibited the PA-induced injury and lipid metabolism derangement, as well as the inflammatory reaction and oxidative stress in podocytes. These results indicated that overexpression of H-FABP enhances fatty acid-induced podocyte injury, while H-FABP inhibition may represent a potential therapeutic strategy for the prevention of lipid metabolism-associated podocyte injury. PMID:29434805

  6. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  7. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model

    PubMed Central

    Sharma, Ity; Kaminski, George A.

    2012-01-01

    We have computed pKa values for eleven substituted phenol compounds using the continuum Fuzzy-Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within ca. 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed-position grid points. Second, it employs either second- or first-order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of employing the first-order technique. This approximation places the presented methodology between the Generalized Born and Poisson-Boltzmann continuum solvation models with respect to their accuracy of reproducing the many-body effects in modeling a continuum solvent. PMID:22815192

  8. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.

    PubMed

    Yang, A S; Honig, B

    1994-04-15

    A recently developed approach to calculate the pH dependence of protein stability from three-dimensional structure information is applied to the analysis of acid denaturation of sperm whale apomyoglobin. The finite difference Poisson-Boltzmann method is used to calculate pKa values and these are used to obtain titration curves for the folded protein as well as for compact intermediates. The total electrostatic free energy change involved in apomyoglobin unfolding is then evaluated. Calculations are carried out of the unfolding free energy of the native (N) and the compact intermediate (I) of apomyoglobin relative to the unfolded state (U) over a range of pH at various ionic strengths. The contributions from key ionizable groups to the unfolding process are discussed. For the acid-induced partial unfolding of apomyoglobin near pH 5, the transition from N to I is found to be driven by three histidines that are exposed when the B, C, D and E helices unfold. Similarly, the unfolding of the compact intermediate I consisting of the A, G and H helices is driven primarily by a few carboxylic acids with low pKa values in the compact state. This picture is in contrast to the view which attributes acid denaturation to electrostatic repulsion resulting from the build up of positive charge. In fact, charge-charge interactions in myoglobin are found to be attractive at all pH values where the protein unfolds. pH-dependent changes in these interactions contribute to acid denaturation but other electrostatic effects, such as hydrogen bonding and solvation, are important as well. The effect of increasing ionic strength on unfolding is attributed to the decrease of attractive charge-charge interactions which destabilize the N state relative to I, but stabilize the I state relative to U by reducing the pKa shifts of a few critical carboxylic acids. The I state is found to be more stable than U at neutral pH thus accounting for its presence as an intermediate on the protein folding

  9. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  10. Sea-level records at ~80 ka from tectonically stable platforms: Florida and Bermuda

    USGS Publications Warehouse

    Ludwig, K. R.; Muhs, D.R.; Simmons, K.R.; Halley, R.B.; Shinn, E.A.

    1996-01-01

    Studies from technically active coasts on New Guinea and Barbados have suggested that sea level at ???80 ka was significantly lower than present, whereas data from the Atlantic and Pacific coasts of North America indicate an ???80 ka sea level close to that of the present. We determined ages of corals from a shallow submerged reef off the Florida Keys and an emergent marine deposit on Bermuda. Both localities are on tectonically stable platforms distant from plate boundaries. Uranium-series ages show that corals at both localities grew during the ???80 ka sea-level highstand, and geologic data show that sea level at that time was no lower than 7-9 m below present (Florida) and may have been 1-2 m above present (Bermuda). The ice-volume discrepancy of the 80 ka sea-level estimates is greater than the volume of the Greenland or West Antarctic ice sheets. Comparison of our ages with high-latitude insolation values indicates that the sea-level stand near the present at ???80 ka could have been orbitally forced.

  11. Effect of methylation on the side-chain pKa value of arginine.

    PubMed

    Evich, Marina; Stroeva, Ekaterina; Zheng, Yujun George; Germann, Markus W

    2016-02-01

    Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition. © 2015 The Protein Society.

  12. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp; Morita, Yoshihiro; Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growthmore » and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.« less

  13. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    NASA Astrophysics Data System (ADS)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  14. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).

    PubMed

    Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F

    2011-09-09

    The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  15. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis)

    PubMed Central

    2011-01-01

    Background The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis. PMID:21906288

  16. Gallic acid attenuates pulmonary fibrosis in a mouse model of transverse aortic contraction-induced heart failure.

    PubMed

    Jin, Li; Piao, Zhe Hao; Sun, Simei; Liu, Bin; Ryu, Yuhee; Choi, Sin Young; Kim, Gwi Ran; Kim, Hyung-Seok; Kee, Hae Jin; Jeong, Myung Ho

    2017-12-01

    Gallic acid, a trihydroxybenzoic acid found in tea and other plants, attenuates cardiac hypertrophy, fibrosis, and hypertension in animal models. However, the role of gallic acid in heart failure remains unknown. In this study, we show that gallic acid administration prevents heart failure-induced pulmonary fibrosis. Heart failure induced in mice, 8weeks after transverse aortic constriction (TAC) surgery, was confirmed by echocardiography. Treatment for 2weeks with gallic acid but not furosemide prevented cardiac dysfunction in mice. Gallic acid significantly inhibited TAC-induced pathological changes in the lungs, such as increased lung mass, pulmonary fibrosis, and damaged alveolar morphology. It also decreased the expression of fibrosis-related genes, including collagen types I and III, fibronectin, connective tissue growth factor (CTGF), and phosphorylated Smad3. Further, it inhibited the expression of epithelial-mesenchymal transition (EMT)-related genes, such as N-cadherin, vimentin, E-cadherin, SNAI1, and TWIST1. We suggest that gallic acid has therapeutic potential for the treatment of heart failure-induced pulmonary fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Strong-acid, carboxyl-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures

    USGS Publications Warehouse

    Leenheer, J.A.; Wershaw, R. L.; Reddy, M.M.

    1995-01-01

    An investigation of the strong-acid characteristics (pKa 3.0 or less) of fulvic acid from the Suwannee River, Georgia, was conducted. Quantitative determinations were made for amino acid and sulfur-containing acid structures, oxalate half-ester structures, malonic acid structures, keto acid structures, and aromatic carboxyl-group structures. These determinations were made by using a variety of spectrometric (13C-nuclear magnetic resonance, infrared, and ultraviolet spectrometry) and titrimetric characterizations on fulvic acid or fulvic acid samples that were chemically derivatized to indicate certain functional groups. Only keto acid and aromatic carboxyl-group structures contributed significantly to the strong-acid characteristics of the fulvic acid; these structures accounted for 43% of the strong-acid acidity. The remaining 57% of the strong acids are aliphatic carboxyl groups in unusual and/or complex configurations for which limited model compound data are available.

  18. The effect of amino acid infusion on anesthesia-induced hypothermia in muscle atrophy model rats.

    PubMed

    Kanazawa, Masahiro; Ando, Satoko; Tsuda, Michio; Suzuki, Toshiyasu

    2010-01-01

    An infusion of amino acids stimulates heat production in skeletal muscle and then attenuates the anesthesia-induced hypothermia. However, in a clinical setting, some patients have atrophic skeletal muscle caused by various factors. The present study was therefore conducted to investigate the effect of amino acids on the anesthesia-induced hypothermia in the state of muscle atrophy. As the muscle atrophy model, Sprague-Dawley rats were subjected to hindlimb immobilization for 2 wk. Normal rats and atrophy model rats were randomly assigned to one of the two treatment groups: saline or amino acids (n=8 for each group). Test solutions were administered intravenously to the rats under sevoflurane anesthesia for 180 min, and the rectal temperature was measured. Plasma samples were collected for measurement of insulin, blood glucose, and free amino acids. The rectal temperature was significantly higher in the normal-amino acid group than in the muscle atrophy-amino acid group from 75 to 180 min. The plasma insulin level was significantly higher in the rats given amino acids than in the rats given saline in both normal and model groups. In the rats given amino acids, plasma total free amino acid concentration was higher in the model group than in the normal group. These results indicate that skeletal muscle plays an important role in changes in body temperature during anesthesia and the effect of amino acids on anesthesia-induced hypothermia decreases in the muscle atrophy state. In addition, intravenous amino acids administration during anesthesia induces an increase in the plasma insulin level.

  19. EUReKA! A Conceptual Model of Emotion Understanding

    PubMed Central

    Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel

    2015-01-01

    The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904

  20. Metabolic effects of keto acid--amino acid supplementation in patients with chronic renal insufficiency receiving a low-protein diet and recombinant human erythropoietin--a randomized controlled trial.

    PubMed

    Teplan, V; Schück, O; Votruba, M; Poledne, R; Kazdová, L; Skibová, J; Malý, J

    2001-09-17

    Supplement with keto acids/amino acids (KA) and erythropoietin can independently improve the metabolic sequels of chronic renal insufficiency. Our study was designed to establish whether a supplementation with keto acids/amino acids (KA) exerts additional beneficial metabolic effects in patients with chronic renal insufficiency (CRF) treated with a low-protein diet (LPD) and recombinant human erythropoietin (EPO). In a prospective randomized controlled trial over a period of 12 months, we evaluated a total of 38 patients (20 M/18 F) aged 32-68 years with a creatinine clearance (CCr) of 20-36 ml/min. All patients were receiving EPO (40 U/kg twice a week s.c.) and a low-protein diet (0.6 g protein/kg/day and 145 kJ/kg/day). The diet of 20 patients (Group I) was supplemented with KA at a dosage of 100 mg/kg/day while 18 patients (Group II) received no supplementation. During the study period, the glomerular filtration rate slightly decreased (CCr from 28.2 +/- 3.4 to 26.4 +/- 4.1 ml/min and 29.6 +/- 4.8 to 23.4 +/- 4.4 ml/min in groups I and II, respectively and Cin); this however was more marked in Group II (Group I vs. Group II, p < 0.01). The serum levels of urea also declined (p < 0.01), more pronouncedly in Group I (p < 0.025). In Group I, there was a significant rise in the levels of leucine (p < 0.01), isoleucine (p < 0.01), valine (p < 0.02) and albumin (p < 0.01) and a decrease in protein-uria (p < 0.01). Analysis of the lipid spectrum revealed a mild yet significant decrease in total cholesterol and LDL-cholesterol (p < 0.02), more pronounced in Group I. In Group I, there was a decrease in plasma triglycerides (from 4.2 +/- 0.8 down to values a low as 2.2 +/- 0.6 mmol/L; p < 0.01) whereas HDL-cholesterol levels increased (from 0.9 +/- 0.1 to 1.2 +/- 0.1 mmol/L, p < 0.01). A further remarkable finding was a reduction in the serum concentration of free radicals (p < 0.01). We conclude that a KA supplementation in patients with CRF receiving LPD and EPO

  1. A causal role for uric acid in fructose-induced metabolic syndrome.

    PubMed

    Nakagawa, Takahiko; Hu, Hanbo; Zharikov, Sergey; Tuttle, Katherine R; Short, Robert A; Glushakova, Olena; Ouyang, Xiaosen; Feig, Daniel I; Block, Edward R; Herrera-Acosta, Jaime; Patel, Jawaharlal M; Johnson, Richard J

    2006-03-01

    The worldwide epidemic of metabolic syndrome correlates with an elevation in serum uric acid as well as a marked increase in total fructose intake (in the form of table sugar and high-fructose corn syrup). Fructose raises uric acid, and the latter inhibits nitric oxide bioavailability. Because insulin requires nitric oxide to stimulate glucose uptake, we hypothesized that fructose-induced hyperuricemia may have a pathogenic role in metabolic syndrome. Four sets of experiments were performed. First, pair-feeding studies showed that fructose, and not dextrose, induced features (hyperinsulinemia, hypertriglyceridemia, and hyperuricemia) of metabolic syndrome. Second, in rats receiving a high-fructose diet, the lowering of uric acid with either allopurinol (a xanthine oxidase inhibitor) or benzbromarone (a uricosuric agent) was able to prevent or reverse features of metabolic syndrome. In particular, the administration of allopurinol prophylactically prevented fructose-induced hyperinsulinemia (272.3 vs.160.8 pmol/l, P < 0.05), systolic hypertension (142 vs. 133 mmHg, P < 0.05), hypertriglyceridemia (233.7 vs. 65.4 mg/dl, P < 0.01), and weight gain (455 vs. 425 g, P < 0.05) at 8 wk. Neither allopurinol nor benzbromarone affected dietary intake of control diet in rats. Finally, uric acid dose dependently inhibited endothelial function as manifested by a reduced vasodilatory response of aortic artery rings to acetylcholine. These data provide the first evidence that uric acid may be a cause of metabolic syndrome, possibly due to its ability to inhibit endothelial function. Fructose may have a major role in the epidemic of metabolic syndrome and obesity due to its ability to raise uric acid.

  2. Multiple Nonconformities in Ice-Walled Lake Successions Indicate Periods with Cold Summers (24.4 - 22.5 ka, 21.1 - 19.2 ka, 18.5 - 18.1 ka) during the Last Deglaciation in Northeastern Illinois, USA

    NASA Astrophysics Data System (ADS)

    Curry, B. B.

    2014-12-01

    Unprecedented age control on many last glacial stratigraphic units and morainal ice-margin positions are interpreted from AMS radiocarbon ages of tundra plant macrofossils archived in low-relief ice-walled lake plain (IWLP) deposits the Lake Michigan Lobe (south-central Laurentide Ice Sheet). IWLPs are periglacial features that formed on morainal dead-ice permafrost. Lacustrine sediment, and the fossils contained therein, had physical and temporal proximity to the glacier which formed the underlying moraine. In modern ice-walled lakes, as the lake's ice cover begins to melt, moats form which allows access of sloughing tundra-mantled active layer sediment (soil) into the lakes. Multiple AMS ages from two sites with proglacial sediment buried by glacial max LIS diamicton, and IWLPs reveal evidence of episodic plant growth and sedimentation including ca. 24.0 to 24.4 ka (post Shelby Phase), 22.5 to 21.1 ka (post Livingston Phase), 18.1 to 17.4 ka (post Woodstock Phase). Although presently based on negative evidence, the associated nonconformities (listed in title) indicate periods when cold conditions did not promote development of the estival moat. Although the evidence does not preclude tundra growth during the cold summers, there was little landscape modification due to limited thawing of the active layer. At approximately the onset of the 19.2-18.5 "warm" period, at least two large deglacial discharge events flooded the Fox and Kankakee tributary valleys of the Illinois River. The latter, known as the Kankakee Torrent, occurred at 19.05 - 18.85 ka (σ1 range) at the Oswego channel complex. The temporal coincidence of the torrents and sedimentation in ice-walled lakes suggests that the post-Livingston Phase nonconformity (21.1 - 19.2 ka) was a period of lessened meltwater discharge through subglacial conduits (tunnel valleys) as the frozen toe promoted formation of subglacial lakes, buildup of pore-water pressures, and the release of subglacial water as "torrents

  3. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases.

    PubMed

    Ghaddar, Kassem; Merhi, Ahmad; Saliba, Elie; Krammer, Eva-Maria; Prévost, Martine; André, Bruno

    2014-12-01

    Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression.

    PubMed

    Sung, Jin-Hee; Gim, Sang-Ah; Koh, Phil-Ok

    2014-04-30

    Ferulic acid, a phenolic phytochemical compound found in various plants, has a neuroprotective effect through its anti-oxidant and anti-inflammation functions. Peroxiredoxin-2 and thioredoxin play a potent neuroprotective function against oxidative stress. We investigated whether ferulic acid regulates peroxiredoxin-2 and thioredoxin levels in cerebral ischemia. Sprague-Dawley rats (male, 210-230g) were treated with vehicle or ferulic acid (100mg/kg) after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24h after MCAO. Decreases in peroxiredoxin-2 and thioredoxin levels were elucidated in MCAO-operated animals using a proteomics approach. We found that ferulic acid treatment prevented the MCAO-induced decrease in the expression of peroxiredoxin-2 and thioredoxin. RT-PCR and Western blot analyses confirmed that ferulic acid treatment attenuated the MCAO-induced decrease in peroxiredoxin-2 and thioredoxin levels. Moreover, immunoprecipitation analysis showed that the interaction between thioredoxin and apoptosis signal-regulating kinase 1 (ASK1) decreased during MCAO, whereas ferulic acid prevented the MCAO-induced decrease in this interaction. Our findings suggest that ferulic acid plays a neuroprotective role by attenuating injury-induced decreases in peroxiredoxin-2 and thioredoxin levels in neuronal cell injury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Protective effects of chlorogenic acid in 3-nitropropionic acid induced toxicity and genotoxicity.

    PubMed

    Alarcón-Herrera, Norberto; Flores-Maya, Saúl; Bellido, Belén; García-Bores, Ana M; Mendoza, Ernesto; Ávila-Acevedo, Guillermo; Hernández-Echeagaray, Elizabeth

    2017-11-01

    Mitochondrial inhibition with the toxin 3-Nitropropionic acid (3-NP) has been used to study the underlying mechanisms in striatal neurodegeneration, but few experiments have evaluated its toxicity and genotoxicity of in vivo administration. Furthermore, different antioxidant molecules may prevent degeneration induced by the toxic effects of 3-NP. Therefore, the purpose of this study was to evaluate the toxicity and genotoxicity induced by 3-NP (15 mg/kg) in the micronuclei assay method; also, we assessed chlorogenic acid (CGA, 100 mg/kg) for its anti-toxic and anti-genotoxic effect in damage produced by in vivo treatment with 3-NP. 3-NP induced toxicity and genotoxicity. CGA administered as a co-treatment with 3-NP (3-NP + CA) reduced toxicity by 32.76%, as a pre-treatment for 5 days only, followed by 3-NP treatment (P/CA, 3-NP) inhibiting toxicity by 24.04%, or as a pre-treatment, plus a co-treatment with 3-NP (P/CA, 3-NP + CA) avoided any toxic effect. CGA alone did not exhibit any toxic effect. Only P/CGA, 3-NP + CGA group, avoided toxicity and genotoxicity, suggesting that CGA could be suitable to prevent, reduce or delay toxicity and cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats.

    PubMed

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Hydrogen peroxide (H 2 O 2 ) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H 2 O 2 -induced oxidative stress in male rats. After randomization, male Wistar rats were divided into four groups ( n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H 2 O 2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Administration of H 2 O 2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H 2 O 2 , geraniol, and geraniol+H 2 O 2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H 2 O 2 -treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H 2 O 2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H 2 O 2 and control groups. H 2 O 2 -induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H 2 O 2 -induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H 2 O 2 -induced alterations.

  7. Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during beta-adrenergic catecholamine induced cardiotoxicity in rats.

    PubMed

    Yogeeta, Surinder Kumar; Raghavendran, Hanumantha Rao Balaji; Gnanapragasam, Arunachalam; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-10-27

    Disruption of mitochondria and free radical mediated tissue injury have been reported during cardiotoxicity induced by isoproterenol (ISO), a beta-adrenergic catecholamine. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on the mitochondrial damage in ISO induced cardiotoxicity. Induction of rats with ISO (150 mg/kg b.wt., i.p.) for 2 days resulted in a significant decrease in the activities of respiratory chain enzymes (NADH dehydrogenase and cytochrome c-oxidase), tricarboxylic acid cycle enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, alpha-ketoglutarate dehydrogenase), mitochondrial antioxidants (GPx, GST, SOD, CAT, GSH), cytochromes (b, c, c1, aa3) and in the level of mitochondrial phospholipids. A marked elevation in mitochondrial lipid peroxidation, mitochondrial levels of cholesterol, triglycerides and free fatty acids were also observed in ISO intoxicated rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt.) and AA (80 mg/kg b.wt.) orally for 6 days significantly enhanced the attenuation of these functional abnormalities and restored normal mitochondrial function when compared to individual drug treated groups. Mitigation of ISO induced biochemical and morphological changes in mitochondria were more pronounced with a combination of FA and AA rather than the individual drug treated groups. Transmission electron microscopic observations also correlated with these biochemical parameters. Hence, these findings demonstrate the synergistic ameliorative potential of FA and AA on mitochondrial function during beta-adrenergic catecholamine induced cardiotoxicity and associated oxidative stress in rats.

  8. Chromium-induced membrane damage: protective role of ascorbic acid.

    PubMed

    Dey, S K; Nayak, P; Roy, S

    2001-07-01

    Importance of chromium as environmental toxicant is largely due to impact on the body to produce cellular toxicity. The impact of chromium and their supplementation with ascorbic acid was studied on plasma membrane of liver and kidney in male Wistar rats (80-100 g body weight). It has been observed that the intoxication with chromium (i.p.) at the dose of 0.8 mg/100 g body weight per day for a period of 28 days causes significant increase in the level of cholesterol and decrease in the level of phospholipid of both liver and kidney. The alkaline phosphatase, total ATPase and Na(+)-K(+)-ATPase activities were significantly decreased in both liver and kidney after chromium treatment, except total ATPase activity of kidney. It is suggested that chromium exposure at the present dose and duration induce for the alterations of structure and function of both liver and kidney plasma membrane. Ascorbic acid (i.p. at the dose of 0.5 mg/100 g body weight per day for period of 28 days) supplementation can reduce these structural changes in the plasma membrane of liver and kidney. But the functional changes can not be completely replenished by the ascorbic acid supplementation in response to chromium exposure. So it is also suggested that ascorbic acid (nutritional antioxidant) is useful free radical scavenger to restrain the chromium-induced membrane damage.

  9. Experiments for Ka-band mobile applications: The ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Estabrook, Polly; Dessouky, Khaled; Jedrey, Thomas

    1990-01-01

    To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed.

  10. Acidic fibroblast growth factor (FGF) but not basic FGF induces sleep and fever in rabbits.

    PubMed

    Knefati, M; Somogyi, C; Kapás, L; Bourcier, T; Krueger, J M

    1995-07-01

    Acidic fibroblast growth factor (FGF) and basic FGF belong to a growth factor family. Interleukin-1, another member of that family, is involved in sleep regulation. FGFs and interleukin-1 share structural and functional features. We therefore determined whether acidic FGF and basic FGF were somnogenic. Male New Zealand White rabbits were provided with electroencephalographic (EEG) electrodes, a brain thermistor, and a lateral intracerebroventricular (icv) cannula. The animals were injected icv with isotonic NaCl (control) and on separate days with one of three doses of acidic or basic FGF (0.01, 0.1, or 1.0 micrograms) or with heat-treated acidic FGF (1.0 micrograms). The EEG, brain temperature, and motor activity were recorded for 23 h. The biological activity of basic FGF was determined in vitro by its ability to induce DNA synthesis in rat aortic smooth muscle cells. Acidic FGF induced prolonged dose-related increases in non-rapid eye movement sleep beginning in the 1st postinjection h and continuing for 12-23 h after the treatment. Acidic FGF also induced fevers of approximately 1 degree C after the 1.0 micrograms dose. Both activities of acidic FGF were lost after heat treatment. In contrast, basic FGF lacked somnogenic and pyrogenic activity, although it did induce DNA synthesis. Current results suggest that acidic FGF is part of the complex cytokine network in brain involved in sleep regulation.

  11. Validation of SARAL/AltiKa data in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Santos da Silva, Joecila; Calmant, Stephane; Medeiros Moreira, Daniel; Oliveira, Robson; Conchy, Taina; Gennero, Marie-Claude; Seyler, Frederique

    2015-04-01

    SARAL/AltiKa is a link between past missions (since it flies on the ERS-ENVISAT orbit with Ku band nadir altimeters in LRM) and future missions such as SWOT's Ka band interferometry swaths. In the present study, we compare the capability of its altimeter AltiKa to that of previous missions working in the Ku band such as ENVISAT and Jason-2 in retrieving water levels over the Amazon basin. Same as for the aforementioned preceding missions, the best results were obtained with the ICE-1 retracking algorithm. We qualitatively analyze the impact of rainfalls in the loss of measurements. Since making long -multi mission- time series is of major importance either for hydro-climatic studies or for basin management, we also present an estimate of the altimeter bias in order that the SARAL series of water level can be appended to those of these previous missions.

  12. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    PubMed Central

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  13. Characteristics of weak base-induced vacuoles formed around individual acidic organelles.

    PubMed

    Hiruma, Hiromi; Kawakami, Tadashi

    2011-01-01

    We have previously found that the weak base 4-aminopyridine induces Brownian motion of acidic organelles around which vacuoles are formed, causing organelle traffic disorder in neurons. Our present study investigated the characteristics of vacuoles induced by weak bases (NH(4)Cl, aminopyridines, and chloroquine) using mouse cells. Individual vacuoles included acidic organelles identified by fluorescent protein expression. Mitochondria and actin filaments were extruded outside the vacuoles, composing the vacuole rim. Staining with amine-reactive fluorescence showed no protein/amino acid content in vacuoles. Thus, serous vacuolar contents are probably partitioned by viscous cytosol, other organelles, and cytoskeletons, but not membrane. The weak base (chloroquine) was immunochemically detected in intravacuolar organelles, but not in vacuoles. Early vacuolization was reversible, but long-term vacuolization caused cell death. The vacuolization and cell death were blocked by the vacuolar H(+)-ATPase inhibitor and Cl--free medium. Staining with LysoTracker or LysoSensor indicated that intravacuolar organelles were strongly acidic and vacuoles were slightly acidic. This suggests that vacuolization is caused by accumulation of weak base and H(+) in acidic organelles, driven by vacuolar H(+)-ATPase associated with Cl(-) entering, and probably by subsequent extrusion of H(+) and water from organelles to the surrounding cytoplasm.

  14. Risk Assessment of Mineral Groundwater Near Rogaška Slatina

    NASA Astrophysics Data System (ADS)

    Trcek, Branka; Leis, Albrecht

    2017-10-01

    Groundwater resources of mineral and thermo-mineral water are invaluable for planning a sustainable spatial and economic development of the Rogaška Slatina area, which requires a protection of this natural heritage. Numerous previous investigations of Rogaška groundwaters were subjects to balneology and to demands for larger exploitation quantities, that is why information are missing that are essential for definition of the Rogaška fractured aquifer system with mineral and thermo-mineral water and for its protection. The isotopic investigations of groundwaters stored in the Rogaška Slatina fractured aquifer system were performed aiming at answering open questions on the groundwater recharge and dynamics, on connections between different types of aquifers and on solute transport. Environmental isotopes 2H, 18O, 3H, 13C of dissolved inorganic carbon and 14C were analysed in mineral, thermo-mineral and spring waters. Results indicated the source and mechanism of groundwater recharge, its renewability, a transit time distribution, hydraulic interrelationships, the groundwater origin and its evolution due to effects of water-rock interaction. The mean residence time estimates of mineral and thermo- mineral water in the aquifer are between 3400 and 14000 years. On the other hand, the mixing processes between younger and older waters or mineral and spring waters are reflected as well as waters that infiltrated predominantly after the 1960s. These suggest the vulnerability of the research systems to man-made impacts. The presented results coupled with available information on a physical hydrogeology and water chemistry asses the optimal balance between the environmental protection and economic use of mineral water resources in the study area. They are essential for the protection strategy development of mineral and thermo-mineral water in the Rogaška Slatina area bringing together the state administration and local authorities and stakeholders.

  15. Costs and benefits of jasmonic acid induced responses in soybean.

    PubMed

    Accamando, A K; Cronin, J T

    2012-06-01

    In response to herbivory, plants have evolved defense strategies to reduce herbivore preference and performance. A strategy whereby defenses are induced only upon herbivory can mitigate costs of defense when herbivores are scarce. Although costs and benefits of induced responses are generally assumed, empirical evidence for many species is lacking. Soybean (Glycine max L. Merr.) has emerged as a model species with which to address questions about induced responses. To our knowledge, this is the first study to examine the fitness costs and benefits of jasmonic acid-induced responses by soybean in the absence and presence of soybean loopers (Chrysodeix includens Walker) (Lepidoptera: Noctuidae). In a greenhouse experiment we demonstrated that soybean induction was costly. Induced plants produced 10.1% fewer seeds that were 9.0% lighter, and had 19.2% lower germination rates than noninduced plants. However, induction provided only modest benefits to soybeans. In a choice experiment, soybean loopers significantly preferred leaves from noninduced plants, consuming 62% more tissue than from induced plants. Soybean loopers that fed on plants that were previously subjected to treatment with jasmonic acid matured at the same rate and to the same size as those that fed on control plants. However, at high conspecific density, soybean looper survivorship was reduced by 44% on previously induced relative to control plants. Reduced soybean looper preference and survivorship did not translate into fitness benefits for soybeans. Our findings support theoretical predictions of costly induced defenses and highlight the importance of considering the environmental context in studies of plant defense.

  16. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes.

    PubMed

    Chen, Hong-Jhang; Kang, Shih-Pei; Lee, I-Jung; Lin, Yun-Lian

    2014-01-22

    Tumor necrosis factor-alpha (TNF-α) is a crucial inflammatory cytokine when hepatocytes are damaged. Glycyrrhiza uralensis Fisch. (Chinese licorice) has been widely used in Chinese herbal prescriptions for the treatment of liver diseases and as a food additive. Nuclear factor-kappa B (NF-κB) reporter gene assay in TNF-α-induced HepG2 was used as a screening platform. IκBα phosphorylation and p65 translocation were measured by Western blotting, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression were further confirmed in rat primary hepatocytes. Results showed that TNF-α enhanced NF-κB activity was significantly attenuated by glycyrrhetinic acid in a concentration-dependent manner in the NF-κB reporter gene assay. Glycyrrhetinic acid decreased the gene expression of iNOS through inhibited IκBα phosphorylation and p65 translocation in protein level. Furthermore, NO production and iNOS expression were reduced by glycyrrhetinic acid in TNF-α-induced rat primary hepatocytes. These results suggest that glycyrrhetinic acid may provide hepatoprotection against chronic liver inflammation through attenuating NF-κB activation to alleviate the inflammation.

  17. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    PubMed

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  18. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    USDA-ARS?s Scientific Manuscript database

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  19. Ferulic Acid Attenuates the Injury-Induced Decrease of Protein Phosphatase 2A Subunit B in Ischemic Brain Injury

    PubMed Central

    Koh, Phil-Ok

    2013-01-01

    Background Ferulic acid provides a neuroprotective effect during cerebral ischemia through its anti-oxidant function. Protein phosphatase 2A (PP2A) is a serine and threonine phosphatase that contributes broadly to normal brain function. This study investigated whether ferulic acid regulates PP2A subunit B in a middle cerebral artery occlusion (MCAO) animal model and glutamate toxicity-induced neuronal cell death. Methodology/Principal Findings MCAO was surgically induced to yield permanent cerebral ischemic injury in rats. The rats were treated with either vehicle or ferulic acid (100 mg/kg, i.v.) immediately after MCAO, and cerebral cortex tissues were collected 24 h after MCAO. A proteomics approach, RT-PCR, and Western blot analyses performed to identification of PP2A subunit B expression levels. Ferulic acid significantly reduced the MCAO-induced infarct volume of the cerebral cortex. A proteomics approach elucidated the reduction of PP2A subunit B in MCAO-induced animals, and ferulic acid treatment prevented the injury-induced reduction in PP2A subunit B levels. RT-PCR and Western blot analyses also showed that ferulic acid treatment attenuates the injury-induced decrease in PP2A subunit B levels. Moreover, the number of PP2A subunit B-positive cells was reduced in MCAO-induced animals, and ferulic acid prevented these decreases. In cultured neuronal cells, ferulic acid treatment protected cells against glutamate toxicity and prevented the glutamate-induced decrease in PP2A subunit B. Conclusions/Significance These results suggest that the maintenance of PP2A subunit B by ferulic acid in ischemic brain injury plays an important role for the neuroprotective function of ferulic acid. PMID:23349830

  20. pKa values in proteins determined by electrostatics applied to molecular dynamics trajectories.

    PubMed

    Meyer, Tim; Knapp, Ernst-Walter

    2015-06-09

    For a benchmark set of 194 measured pKa values in 13 proteins, electrostatic energy computations are performed in which pKa values are computed by solving the Poisson-Boltzmann equation. In contrast to the previous approach of Karlsberg(+) (KB(+)) that essentially used protein crystal structures with variations in their side chain conformations, the present approach (KB2(+)MD) uses protein conformations from four molecular dynamics (MD) simulations of 10 ns each. These MD simulations are performed with different specific but fixed protonation patterns, selected to sample the conformational space for the different protonation patterns faithfully. The root-mean-square deviation between computed and measured pKa values (pKa RMSD) is shown to be reduced from 1.17 pH units using KB(+) to 0.96 pH units using KB2(+)MD. The pKa RMSD can be further reduced to 0.79 pH units, if each conformation is energy-minimized with a dielectric constant of εmin = 4 prior to calculating the electrostatic energy. The electrostatic energy expressions upon which the computations are based have been reformulated such that they do not involve terms that mix protein and solvent environment contributions and no thermodynamic cycle is needed. As a consequence, conformations of the titratable residues can be treated independently in the protein and solvent environments. In addition, the energy terms used here avoid the so-called intrinsic pKa and can therefore be interpreted without reference to arbitrary protonation states and conformations.

  1. A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes

    USGS Publications Warehouse

    Cronin, Thomas M.; Polyak, L.V.; Reed, D.; Kandiano, E. S.; Marzen, R. E.; Council, E. A.

    2013-01-01

    Arctic paleoceanography and sea-ice history were reconstructed from epipelagic and benthic ostracodes from a sediment core (HLY0503-06JPC, 800 m water depth) located on the Mendeleev Ridge, Western Arctic Ocean. The calcareous microfaunal record (ostracodes and foraminifers) covers several glacial/interglacial cycles back to estimated Marine Isotope Stage 13 (MIS 13, ∼500 ka) with an average sedimentation rate of ∼0.5 cm/ka for most of the stratigraphy (MIS 5–13). Results based on ostracode assemblages and an unusual planktic foraminiferal assemblage in MIS 11 dominated by a temperate-water species Turborotalita egelida show that extreme interglacial warmth, high surface ocean productivity, and possibly open ocean convection characterized MIS 11 and MIS 13 (∼400 and 500 ka, respectively). A major shift in western Arctic Ocean environments toward perennial sea ice occurred after MIS 11 based on the distribution of an ice-dwelling ostracode Acetabulastoma arcticum. Spectral analyses of the ostracode assemblages indicate sea ice and mid-depth ocean circulation in western Arctic Ocean varied primarily at precessional (∼22 ka) and obliquity (∼40 ka) frequencies.

  2. Test results of 12/18 kA ReBCO coated conductor current leads

    NASA Astrophysics Data System (ADS)

    Kovalev, I. A.; Surin, M. I.; Naumov, A. V.; Novikov, M. S.; Novikov, S. I.; Ilin, A. A.; Polyakov, A. V.; Scherbakov, V. I.; Shutova, D. I.

    2017-07-01

    A pair of hybrid current leads (brass + stacked & soldered ReBCO tapes) rated for 12 kA in steady state and for up to 18 kA at pulsed over current conditions was designed, developed and tested at NRC ;Kurchatov Institute; (NRC ;KI;). During the experiment at LN2 temperature, the current leads (CLs) were successfully charged with 18 kA at 100 A/s ramp rate. To date, as far as we know, this is the highest current capacity achieved for 2G HTS current leads. The feasibility of ;stack-and-soldering technique; for 10 kA+ class coated conductor CLs for accelerators and fusion was demonstrated. This paper gives an overview of the leads design and presents the preliminary test results. Detailed studies of magnetic properties and current sharing process for the stacked and staggered HTS joints are also reported.

  3. 100-kA vacuum current breaker of a modular design

    NASA Astrophysics Data System (ADS)

    Ivanov, V. P.; Vozdvijenskii, V. A.; Jagnov, V. A.; Solodovnikov, S. G.; Mazulin, A. V.; Ryjkov, V. M.

    1994-05-01

    Direct current breaker of a modular design is developed for the strong field tokamak power supply system. The power supply system comprises four 800 MW alternative current generators with 4 GJ flywheels, thyristor rectifiers providing inductive stores pumping by a current up to 100 kA for 1 - 4 sec. To form current pulses of various shapes in the tokamak windings current breakers are used with either pneumatic or explosive drive, at a current switching synchronously of not worse than 100 mks. Current breakers of these types require that the current conducting elements be replaced after each shot. For recent years vacuum arc quenching chambers with an axial magnetic field are successfully employed as repetitive performance current breakers, basically for currents up to 40 kA. In the report some results of researches of a vacuum switch modular are presented which we used as prototype switch for currents of the order of 100 kA.

  4. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs

    PubMed Central

    Lai, Y -L; Chiou, W -Y; Lu, F J; Chiang, L Y

    1999-01-01

    Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes+citric acid; hexa(sulphobutyl)fullerenes+phosphoramidon+citric acid; dimethylthiourea (DMTU)+citric acid; and DMTU+phosphoramidon+citric acid. Hexa(sulphobutyl)fullerenes and DMTU are scavengers of oxygen radicals while phosphoramidon is an inhibitor of the major degradation enzyme for tachykinins. Animals were anaesthetized, paralyzed, and artificially ventilated. Each animal was given 50 breaths of 4 ml saline or citric acid aerosol. We measured dynamic respiratory compliance (Crs), forced expiratory volume in 0.1 (FEV0.1), and maximal expiratory flow at 30% total lung capacity (V[dot above]max30) to evaluate the degree of airway constriction. Citric acid, but not saline, aerosol inhalation caused marked decreases in Crs, FEV0.1 and V[dot above]max30, indicating marked airway constriction. This constriction was significantly attenuated by either hexa(sulphobutyl)fullerenes or by DMTU. In addition, phosphoramidon significantly reversed the attenuating action of hexa(sulphobutyl)fullerenes, but not that of DMTU. Citric acid aerosol inhalation caused increases in both lucigenin- and t-butyl hydroperoxide-initiated chemiluminescence counts, indicating citric acid-induced increase in oxygen radicals and decrease in antioxidants in bronchoalveolar lavage fluid. These alterations were significantly suppressed by either hexa(sulphobutyl)fullerenes or DMTU. An elastase inhibitor eglin-c also significantly attenuated citric acid-induced airway constriction, indicating the contributing role of elastase in this type of constriction. We conclude that both oxygen radicals and elastase play an important role in tachykinin-mediated, citric acid-induced

  5. TRO40303 Ameliorates Alcohol-Induced Pancreatitis Through Reduction of Fatty Acid Ethyl Ester–Induced Mitochondrial Injury and Necrotic Cell Death

    PubMed Central

    Javed, Muhammad Ahsan; Wen, Li; Awais, Muhammad; Latawiec, Diane; Huang, Wei; Chvanov, Michael; Schaller, Sophie; Bordet, Thierry; Michaud, Magali; Pruss, Rebecca; Tepikin, Alexei; Criddle, David; Sutton, Robert

    2018-01-01

    Objectives Mitochondrial permeability transition pore inhibition is a promising approach to treat acute pancreatitis (AP). We sought to determine (i) the effects of the mitochondrial permeability transition pore inhibitor 3,5-seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) on murine and human pancreatic acinar cell (PAC) injury induced by fatty acid ethyl esters (FAEEs) or taurolithocholic acid-3-sulfate and (ii) TRO40303 pharmacokinetics and efficacy in experimental alcoholic AP (FAEE-AP). Methods Changes in mitochondrial membrane potential (Δψm), cytosolic Ca2+ ([Ca2+]c), and cell fate were examined in freshly isolated murine or human PACs by confocal microscopy. TRO40303 pharmacokinetics were assessed in cerulein-induced AP and therapeutic efficacy in FAEE-AP induced with palmitoleic acid and ethanol. Severity of AP was assessed by standard biomarkers and blinded histopathology. Results TRO40303 prevented loss of Δψm and necrosis induced by 100 μM palmitoleic acid ethyl ester or 500 μM taurolithocholic acid-3-sulfate in murine and human PACs. Pharmacokinetic analysis found TRO40303 accumulated in the pancreas. A single dose of 3 mg/kg TRO40303 significantly reduced serum amylase (P = 0.043), pancreatic trypsin (P = 0.018), and histopathology scores (P = 0.0058) in FAEE-AP. Conclusions TRO40303 protects mitochondria and prevents necrotic cell death pathway activation in murine and human PACs, ameliorates the severity of FAEE-AP, and is a candidate drug for human AP. PMID:29200128

  6. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H.

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations inmore » cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help

  7. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression

    PubMed Central

    Kang, Nam Joo; Lee, Ki Won; Shin, Bong Jik; Jung, Sung Keun; Hwang, Mun Kyung; Bode, Ann M.; Heo, Yong-Seok; Dong, Zigang

    2009-01-01

    Caffeic acid (3,4-dihydroxycinnamic acid) is a well-known phenolic phytochemical present in many foods, including coffee. Recent studies suggested that caffeic acid exerts anticarcinogenic effects, but little is known about the underlying molecular mechanisms and specific target proteins. In this study, we found that Fyn, one of the members of the non-receptor protein tyrosine kinase family, was required for ultraviolet (UV) B-induced cyclooxygenase-2 (COX-2) expression, and caffeic acid suppressed UVB-induced skin carcinogenesis by directly inhibiting Fyn kinase activity. Caffeic acid more effectively suppressed UVB-induced COX-2 expression and subsequent prostaglandin E2 production in JB6 P+ mouse skin epidermal (JB6 P+) cells compared with chlorogenic acid (5-O-caffeoylquinic acid), an ester of caffeic acid with quinic acid. Data also revealed that caffeic acid more effectively induced the downregulation of COX-2 expression at the transcriptional level mediated through the inhibition of activator protein-1 (AP-1) and nuclear factor-κB transcription activity compared with chlorogenic acid. Fyn kinase activity was suppressed more effectively by caffeic acid than by chlorogenic acid, and downstream mitogen-activated protein kinases (MAPKs) were subsequently blocked. Pharmacological Fyn kinase inhibitor (3-(4-chlorophenyl)1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine and leflunomide) data also revealed that Fyn is involved in UVB-induced COX-2 expression mediated through the phosphorylation of MAPKs in JB6 P+ cells. Pull-down assays revealed that caffeic acid directly bound with Fyn and non-competitively with adenosine triphosphate. In vivo data from mouse skin also supported the idea that caffeic acid suppressed UVB-induced COX-2 expression by blocking Fyn kinase activity. These results suggested that this compound could act as a potent chemopreventive agent against skin cancer. PMID:19073879

  8. Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer

    PubMed Central

    Slattery, Martha L.; Lundgreen, Abbie; Herrick, Jennifer S.; Wolff, Roger K.

    2010-01-01

    RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 are involved in several pathways central to the carcinogenic process, including regulation of cell growth, insulin, and inflammation. We evaluated genetic variation in their candidate genes to obtain a better understanding of their association with colon and rectal cancer. We used data from two population-based case-control studies of colon (n=1574 cases, 1940 controls) and rectal (n=791 cases, 999 controls) cancer. We observed genetic variation in RPS6KA1, RPS6KA2, and PRS6KB2 were associated with risk of developing colon cancer while only genetic variation in RPS6KA2 was associated with altering risk of rectal cancer. These genes also interacted significantly with other genes operating in similar mechanisms, including Akt1, FRAP1, NFκB1, and PIK3CA. Assessment of tumor markers indicated that these genes and this pathway may importantly contributed to CIMP+ tumors and tumors with KRAS2 mutations. Our findings implicate these candidate genes in the etiology of colon and rectal cancer and provide information on how these genes operate with other genes in the pathway. Our data further suggest that this pathway may lead to CIMP+ and KRAS2-mutated tumors. PMID:21035469

  9. Synthesis and physicochemical properties of the furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, an inhibitor of plasma protein binding in uraemia.

    PubMed

    Costigan, M G; Gilchrist, T L; Lindup, W E

    1996-06-01

    The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA) accumulates in the plasma of patients with chronic renal failure and is a major contributor to the drug binding defect of uraemic plasma. This acid has also been implicated in several other aspects of the uraemic syndrome: anaemia, irregularities of thyroid function, neurological symptoms and inhibition of active tubular secretion. The acid is not commercially available and its synthesis, starting with Meldrum's acid and methyl succinyl chloride, is described. The pKa values were measured by titration and values of 3.2 and 3.6 respectively were assigned to the carboxylic acid groups attached directly to the ring at position 3 and at position 2 (on the side-chain). The partition coefficient (log P) between hydrochloric acid and octanol was 1.2 and the distribution coefficient (log D; octanol-phosphate buffer pH 7.4) was -0.59. The pKa values and the degree of hydrophobic character of 5-propyl FPA are consistent with those of other protein-bound acids which undergo active tubular secretion by the kidney and this substance may serve as an endogenous marker for the effects of drugs and disease on this process.

  10. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  11. Gallic Acid Protects 6-OHDA Induced Neurotoxicity by Attenuating Oxidative Stress in Human Dopaminergic Cell Line.

    PubMed

    Chandrasekhar, Y; Phani Kumar, G; Ramya, E M; Anilakumar, K R

    2018-06-01

    Gallic acid is one of the most important polyphenolic compounds, which is considered an excellent free radical scavenger. 6-Hydroxydopamine (6-OHDA) is a neurotoxin, which has been implicated in mainly Parkinson's disease (PD). In this study, we investigated the molecular mechanism of the neuroprotective effects of gallic acid on 6-OHDA induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that 6-OHDA induced cytotoxicity in SH-SY5Y cells was suppressed by pre-treatment with gallic acid. The percentage of live cells (90%) was high in the pre-treatment of gallic acid when compared with 6-OHDA alone treated cell line. Moreover, gallic acid was very effective in attenuating the disruption of mitochondrial membrane potential, elevated levels of intracellular ROS and apoptotic cell death induced by 6-OHDA. Gallic acid also lowered the ratio of the pro-apoptotic Bax protein and the anti-apoptotic Bcl-2 protein in SH-SY5Y cells. 6-OHDA exposure was up-regulated caspase-3 and Keap-1 and, down-regulated Nrf2, BDNF and p-CREB, which were sufficiently reverted by gallic acid pre-treatment. These findings indicate that gallic acid is able to protect the neuronal cells against 6-OHDA induced injury and proved that gallic acid might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  12. Ascorbic acid glucoside reduces neurotoxicity and glutathione depletion in mouse brain induced by nitrotriazole radiosensitazer.

    PubMed

    Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V

    2013-01-01

    To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.

  13. NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft

    NASA Technical Reports Server (NTRS)

    McCarthy, Kevin; Stocklin, Frank; Geldzahler, Barry; Friedman, Daniel; Celeste, Peter

    2010-01-01

    This slide presentation reviews the exploration of NASA using a Ka-band system for spacecraft communications in Near-Earth orbits. The reasons for changing to Ka-band are the higher data rates, and the current (X-band spectrum) is becoming crowded. This will require some modification to the current ground station antennas systems. The results of a Request for Information (RFI) are discussed, and the recommended solution is reviewed.

  14. Rain Fade Compensation Alternatives for Ka Band Communication Satellites

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.

    1997-01-01

    Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate.

  15. Reverberation Mapping of the Kepler target KA1858+48

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi; Barth, A. J.; Malkan, M. A.; Cenko, S. B.; Clubb, K. I.; Filippenko, A. V.; Gates, E. L.; Horst, J.; Joner, M. D.; Leonard, D. C.; Sand, D. J.

    2013-01-01

    KA1858+48 is a Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies being monitored by the Kepler mission. We have carried out a reverberation mapping program designed to measure the broad-line region size and estimate the mass of the black hole in KA1858+48. We obtained spectroscopic data using the Kast Spectrograph at the Lick 3 m telescope during dark runs from late winter through fall of 2012, by requesting an observation on each night that the Kast Spectrograph was mounted on the telescope. We also obtained V-band images from the Nickel 1 m telescope at Lick Observatory, the 0.9 m telescope at Brigham Young University West Mountain Observatory, the Faulkes Telescope North at the Las Cumbres Observatory Global Telescope, the KAIT telescope at Lick Observatory, and the 1 m telescope at Mt. Laguna Observatory. The H-beta light curve shows a lag time of approximately 12 days with respect to the V-band continuum flux variations. We will present the continuum and emission-line light curves, cross-correlation lag measurements, and a preliminary estimate of the black hole mass in KA1858+48.

  16. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  17. Effects of hypoxia-induced neonatal seizures on acute hippocampal injury and later-life seizure susceptibility and anxiety-related behavior in mice.

    PubMed

    Rodriguez-Alvarez, Natalia; Jimenez-Mateos, Eva M; Dunleavy, Mark; Waddington, John L; Boylan, Geraldine B; Henshall, David C

    2015-11-01

    Seizures are common during the neonatal period, often due to hypoxic-ischemic encephalopathy and may contribute to acute brain injury and the subsequent development of cognitive deficits and childhood epilepsy. Here we explored short- and long-term consequences of neonatal hypoxia-induced seizures in 7 day old C57BL/6J mice. Seizure activity, molecular markers of hypoxia and histological injury were investigated acutely after hypoxia and response to chemoconvulsants and animal behaviour was explored at adulthood. Hypoxia was induced by exposing pups to 5% oxygen for 15 min (global hypoxia). Electrographically defined seizures with behavioral correlates occurred in 95% of these animals and seizures persisted for many minutes after restitution of normoxia. There was minimal morbidity or mortality. Pre- or post-hypoxia injection of phenobarbital (50mg/kg) had limited efficacy at suppressing seizures. The hippocampus from neonatal hypoxia-seizure mice displayed increased expression of vascular endothelial growth factor and the immediate early gene c-fos, minimal histological evidence of cell injury and activation of caspase-3 in scattered neurons. Behavioral analysis of mice five weeks after hypoxia-induced seizures detected novel anxiety-related and other behaviors, while performance in a spatial memory test was similar to controls. Seizure threshold tests with kainic acid at six weeks revealed that mice previously subject to neonatal hypoxia-induced seizures developed earlier, more frequent and longer-duration seizures. This study defines a set of electro-clinical, molecular, pharmacological and behavioral consequences of hypoxia-induced seizures that indicate short- and long-term deleterious outcomes and may be a useful model to investigate the pathophysiology and treatment of neonatal seizures in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. LIMB DEFECTS INDUCED BY RETINOIC ACID SIGNALING ANTAGONISM AND SYNTHESIS INHIBITION ARE CONSISTENT WITH ETHANOL-INDUCED LIMB DEFECTS

    EPA Science Inventory

    Limb defects induced by retinoic acid signaling antagonism and synthesis inhibition are consistent with ethanol-induced limb defects

    Johnson CS1, Sulik KK1,2, Hunter, ES III3
    1Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, NC....

  19. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughen, K; Baille, M; Bard, E

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals.more » The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.« less

  20. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells.

    PubMed

    Woo, Seon Min; Seo, Seung Un; Min, Kyoung-Jin; Im, Seung-Soon; Nam, Ju-Ock; Chang, Jong-Soo; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2018-04-27

    Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitor (necrostatin-1), or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO)). Furthermore, corosolic acid significantly induces reactive oxygen species (ROS) levels, but antioxidants ( N -acetyl-l-cysteine (NAC) and trolox) do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498), breast cancer (MDA-MB231), and hepatocellular carcinoma (SK-Hep1 and Huh7) cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  1. Modulation by glycyrrhetinic acid derivatives of TPA-induced mouse ear oedema.

    PubMed Central

    Inoue, H.; Mori, T.; Shibata, S.; Koshihara, Y.

    1989-01-01

    1. The anti-inflammatory effects of glycyrrhetinic acid and its derivatives on TPA (12-O-tetradecanoylphorbol-13-acetate)-induced mouse ear oedema were studied. The mechanisms of TPA-induced ear oedema were first investigated with respect to the chemical mediators. 2. The formation of ear oedema reached a maximum 5 h after TPA application (2 micrograms per ear) and the prostaglandin E2 (PGE2) production of mouse ear increased with the oedema formation. 3. TPA-induced ear oedema was prevented by actinomycin D and cycloheximide (0.1 mg per ear, respectively) when applied during 60 min after TPA treatment. 4. Of glycyrrhetinic acid derivatives examined, dihemiphthalate derivatives (IIe, IIe', IIIa, IIIa', IVa, IVa') most strongly inhibited ear oedema on both topical (ID50, 1.6 mg per ear for IIe, 2.0 mg per ear for IIIa and 1.6 mg per ear for IVa) and oral (ID50, 88 mg kg-1 for IIe', 130 mg kg-1 for IIIa' and 92 mg kg-1 for IVa') administration. 5. Glycyrrhetinic acid (Ia) and its derivatives applied 30 min before TPA treatment were much more effective in inhibiting oedema than when applied 30 min after TPA. A dihemiphthalate of triterpenoid compound IVa completely inhibited oedema, even when applied 3 h before TPA treatment. 6. Glycyrrhetinic acid (Ia) and deoxoglycyrrhetol (IIa), the parent compounds, produced little inhibition by oral administration at less than 200 mg kg-1. 7. These results suggest that the dihemiphthalate derivatives of triterpenes derived from glycyrrhetinic acid by chemical modification are useful for the treatment of skin inflammation by both topical and oral application. PMID:2924072

  2. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid.

    PubMed

    Yogeeta, Surinder Kumar; Hanumantra, Rao Balaji Raghavendran; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-05-01

    The present study aims at evaluating the effect of the combination of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism. The rats were divided into eight groups: Control, isoproterenol, ferulic acid alone, ascorbic acid alone, ferulic acid+ascorbic acid, ferulic acid+isoproterenol, ascorbic acid+isoproterenol and ferulic acid+ascorbic acid+isoproterenol. Ferulic acid (20 mg/kg b.w.t.) and ascorbic acid (80 mg/kg b.w.t.) both alone and in combination was administered orally for 6 days and on the fifth and the sixth day, isoproterenol (150 mg/kg b.w.t.) was injected intraperitoneally to induce myocardial injury to rats. Induction of rats with isoproterenol resulted in a significant increase in the levels of triglycerides, total cholesterol, free fatty acids, free and ester cholesterol in both serum and cardiac tissue. A rise in the levels of phospholipids, lipid peroxides, low density lipoprotein and very low density lipoprotein-cholesterol was also observed in the serum of isoproterenol-intoxicated rats. Further, a decrease in the level of high density lipoprotein in serum and in the phospholipid levels, in the heart of isoproterenol-intoxicated rats was observed, which was paralleled by abnormal activities of lipid metabolizing enzymes: total lipase, cholesterol ester synthase, lipoprotein lipase and lecithin: cholesterol acyl transferase. Pre-cotreatment with the combination of ferulic acid and ascorbic acid significantly attenuated these alterations and restored the levels to near normal when compared to individual treatment groups. Histopathological observations were also in correlation with the biochemical parameters. These findings indicate the synergistic protective effect of ferulic acid and ascorbic acid on isoproterenol-induced abnormalities in lipid metabolism.

  3. Design and Validation of High Date Rate Ka-Band Software Defined Radio for Small Satellite

    NASA Technical Reports Server (NTRS)

    Xia, Tian

    2016-01-01

    The Design and Validation of High Date Rate Ka- Band Software Defined Radio for Small Satellite project will develop a novel Ka-band software defined radio (SDR) that is capable of establishing high data rate inter-satellite links with a throughput of 500 megabits per second (Mb/s) and providing millimeter ranging precision. The system will be designed to operate with high performance and reliability that is robust against various interference effects and network anomalies. The Ka-band radio resulting from this work will improve upon state of the art Ka-band radios in terms of dimensional size, mass and power dissipation, which limit their use in small satellites.

  4. Feasibility of using near-infrared (NIR) spectroscopy for quantitative detection of Kojic Acid in wheat flour

    USDA-ARS?s Scientific Manuscript database

    The possibility of using NIR spectroscopy technology to detect kojic acid (KA) added in wheat flour was studied. Three common types of white flour samples, i.e. high-gluten flour, plain flour and low-gluten flour were added with different contents of KA (0.0%, 0.5%, 1.0%, 3.0%, 5.0%, and 10.0%) resp...

  5. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice.

    PubMed

    Jeon, Se Jin; Park, Ho Jae; Gao, Qingtao; Pena, Irene Joy Dela; Park, Se Jin; Lee, Hyung Eun; Woo, Hyun; Kim, Hee Jin; Cheong, Jae Hoon; Hong, Eunyoung; Ryu, Jong Hoon

    2015-09-05

    Prunella vulgaris is widely used as a herbal medicine for cancers, inflammatory diseases, and other infections. Although it has long been used, few studies have examined its effects on central nervous system function. Here, we first observed that ethanolic extracts of P. vulgaris (EEPV) prolonged pentobarbital-induced sleep duration in mice. It is known that EEPV consists of many active components including triterpenoid (ursolic acid and oleanolic acid), which have many biological activities. Therefore, we evaluated which EEPV components induced sleep extension in pentobarbital-mediated sleeping model in mice. Surprisingly, despite their structural similarity and other common functions such as anti-inflammation, anti-cancer, and tissue protection, only ursolic acid enhanced sleep duration in pentobarbital-treated mice. These results were attenuated by bicuculline treatment, which is a GABAA receptor antagonist. The present results suggest that ursolic acid from P. vulgaris enhances sleep duration through GABAA receptor activation and could be a therapeutic candidate for insomnia treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Spectrofluorimetric and Potentiometric Determination of Acidity Constants of 4-(4'-Acetyloxy-3'-Methoxybenzylidene)-5-Oxazolone Derivatives.

    PubMed

    Taskiran, Derya Topkaya; Urut, Gulsiye Ozturk; Ayata, Sevda; Alp, Serap

    2017-03-01

    4-(4'-acetyloxy-3'-methoxybenzylidene)-5-oxazolone fluorescent molecules bearing four different aryl groups attached to the 2-position of 5-oxazolone ring have been investigated by spectrophotometric and potentiometric techniques in solution media. The acidity constants (pKa) of the fluorescent molecules were precisely determined in acetone, acetonitrile, dimethylformamide and in 1:1 mixture of toluene-isopropanol. The studied derivatives were titrated with tetrabutylammonium hydroxide and non-aqueous perchloric acid by scanning the basic and acidic region of the pH scale. A computerizable derivative method was used in order to descript precisely the end point and pKa values. The molecules investigated performed well-shaped and stoichiometric potentiometric titration curves.

  7. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats.

    PubMed

    Abdel-Moneim, Adel; Yousef, Ahmed I; Abd El-Twab, Sanaa M; Abdel Reheim, Eman S; Ashour, Mohamed B

    2017-08-01

    The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.

  8. Intrarenal renin-angiotensin system mediates fatty acid-induced ER stress in the kidney

    PubMed Central

    Li, Chunling; Lin, Yu; Luo, Renfei; Chen, Shaoming; Zheng, Peili; Levi, Moshe; Yang, Tianxin; Wang, Weidong

    2015-01-01

    Obesity-related kidney disease is related to caloric excess promoting deleterious cellular responses. Accumulation of saturated free fatty acids in tubular cells produces lipotoxicity involving significant cellular dysfunction and injury. The objectives of this study were to elucidate the role of renin-angiotensin system (RAS) activation in saturated fatty acid-induced endoplasmic reticulum (ER) stress in cultured human proximal tubule epithelial cells (HK2) and in mice fed with a high-fat diet. Treatment with saturated fatty acid palmitic acid (PA; 0.8 mM) for 24 h induced ER stress in HK2, leading to an unfolded protein response as reflected by increased expressions of the ER chaperone binding immunoglobulin protein (BiP) and proapoptotic transcription factor C/EBP homologous protein (CHOP) protein as evaluated by immunoblotting. PA treatment also induced increased protein expression of inositol requiring protein 1α (IRE1α), phosphorylated eukaryotic initiation factor-α (eIF2α), and activating transcription factor 4 (ATF4) as well as activation of caspase-3. PA treatment was associated with increased angiotensin II levels in cultured medium. The angiotensin II type 1 receptor (AT1R) blocker valsartan or renin inhibitor aliskiren dramatically suppressed PA-induced upregulation of BiP, CHOP, IRE1α, p-eIF2α, and ATF4 in HK2 cells. In contrast, valsartan or aliskiren did not prevent ER stress induced by tunicamycin. C57BL/6 mice fed with a high-fat diet for 14 wk exhibited increased protein expressions of BiP and CHOP compared with control mice, which were significantly attenuated by the valsartan treatment. Increased angiotensin II levels in serum and urine were observed in mice fed with a high-fat diet when compared with controls. It is suggested that the intrarenal RAS activation may play an important role in diabetic kidney injury via mediating ER stress induced by saturated fatty acid. PMID:26672616

  9. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.

    PubMed Central

    Bell, E; Creelman, R A; Mullet, J E

    1995-01-01

    Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7567995

  10. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis.

    PubMed

    Bell, E; Creelman, R A; Mullet, J E

    1995-09-12

    Plant lipoxygenases are thought to be involved in the biosynthesis of lipid-derived signaling molecules. The potential involvement of a specific Arabidopsis thaliana lipoxygenase isozyme, LOX2, in the biosynthesis of the plant growth regulators jasmonic acid (JA) and abscisic acid was investigated. Our characterization of LOX2 indicates that the protein is targeted to chloroplasts. The physiological role of this chloroplast lipoxygenase was analyzed in transgenic plants where cosuppression reduced LOX2 accumulation. The reduction in LOX2 levels caused no obvious changes in plant growth or in the accumulation of abscisic acid. However, the wound-induced accumulation of JA observed in control plants was absent in leaves of transgenic plants that lacked LOX2. Thus, LOX2 is required for the wound-induced synthesis of the plant growth regulator JA in leaves. We also examined the expression of a wound- and JA-inducible Arabidopsis gene, vsp, in transgenic and control plants. Leaves of transgenic plants lacking LOX2 accumulated less vsp mRNA than did control leaves in response to wounding. This result suggests that wound-induced JA (or some other LOX2-requiring component of the wound response pathway) is involved in the wound-induced regulation of this gene.

  11. Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics.

    PubMed

    Pazos, Ileana M; Ahmed, Ismail A; Berríos, Mariana I León; Gai, Feng

    2015-08-15

    We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells

    PubMed Central

    Gao, B; Han, Y-H; Wang, L; Lin, Y-J; Sun, Z; Lu, W-G; Hu, Y-Q; Li, J-Q; Lin, X-S; Liu, B-H; Jie, Q; Yang, L; Luo, Z-J

    2016-01-01

    Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse. PMID:27228350

  13. Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis

    PubMed Central

    2012-01-01

    The aim of this study was to investigate the hepatoprotective effect of Matrine salvianolic acid B salt on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats. Salvianolic acid B and Matrine has long been used to treat liver fibrosis. Matrine salvianolic acid B salt is a new compound containing Salvianolic acid B and Matrine. Hepatic fibrosis induced by CCl4 was studied in animal models using Wistar rats. Organ coefficient, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hexadecenoic acid (HA), laminin (LN), hydroxyproline (Hyp), and glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) in liver tissues were measured, respectively. Histopathological changes in the livers were studied by hematoxylin-eosin (H&E) staining and Masson Trichrome (MT) examination. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) was observed by immunohistochemical analysis. A significant reduction in serum levels of AST, ALT, HA, LN and Hyp was observed in the Matrine salvianolic acid B salt treated groups, suggesting that the salt had hepatoprotective effects. The depletion of GSH and SOD, as well as MDA accumulation in liver tissues was suppressed by Matrine salvianolic acid B salt too. The expression of TGF-β1 and α-SMA measured by immunohistology was significantly reduced by Matrine salvianolic acid B salt in a dose-dependent manner. Matrine salvianolic acid B salt treatment attenuated the necro-inflammation and fibrogenesis induced by CCl4 injection, and thus it is promising as a therapeutic anti-fibrotic agent against hepatic fibrosis. PMID:22559721

  14. Hepatoprotective effect of Matrine salvianolic acid B salt on Carbon Tetrachloride-Induced Hepatic Fibrosis.

    PubMed

    Gao, Hong-Ying; Li, Guo-Yu; Lou, Meng-Meng; Li, Xiao-Yu; Wei, Xiu-Yan; Wang, Jin-Hui

    2012-05-04

    The aim of this study was to investigate the hepatoprotective effect of Matrine salvianolic acid B salt on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats. Salvianolic acid B and Matrine has long been used to treat liver fibrosis. Matrine salvianolic acid B salt is a new compound containing Salvianolic acid B and Matrine. Hepatic fibrosis induced by CCl4 was studied in animal models using Wistar rats. Organ coefficient, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hexadecenoic acid (HA), laminin (LN), hydroxyproline (Hyp), and glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) in liver tissues were measured, respectively. Histopathological changes in the livers were studied by hematoxylin-eosin (H&E) staining and Masson Trichrome (MT) examination. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) was observed by immunohistochemical analysis. A significant reduction in serum levels of AST, ALT, HA, LN and Hyp was observed in the Matrine salvianolic acid B salt treated groups, suggesting that the salt had hepatoprotective effects. The depletion of GSH and SOD, as well as MDA accumulation in liver tissues was suppressed by Matrine salvianolic acid B salt too. The expression of TGF-β1 and α-SMA measured by immunohistology was significantly reduced by Matrine salvianolic acid B salt in a dose-dependent manner. Matrine salvianolic acid B salt treatment attenuated the necro-inflammation and fibrogenesis induced by CCl4 injection, and thus it is promising as a therapeutic anti-fibrotic agent against hepatic fibrosis.

  15. NASA's K/Ka-Band Broadband Aeronautical Terminal for Duplex Satellite Video Communications

    NASA Technical Reports Server (NTRS)

    Densmore, A.; Agan, M.

    1994-01-01

    JPL has recently begun the development of a Broadband Aeronautical Terminal (BAT) for duplex video satellite communications on commercial or business class aircraft. The BAT is designed for use with NASA's K/Ka-band Advanced Communications Technology Satellite (ACTS). The BAT system will provide the systems and technology groundwork for an eventual commercial K/Ka-band aeronautical satellite communication system. With industry/government partnerships, three main goals will be addressed by the BAT task: 1) develop, characterize and demonstrate the performance of an ACTS based high data rate aeronautical communications system; 2) assess the performance of current video compression algorithms in an aeronautical satellite communication link; and 3) characterize the propagation effects of the K/Ka-band channel for aeronautical communications.

  16. Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid.

    PubMed

    Noh, A Long Sae Mi; Yim, Mijung

    2011-03-01

    Despite numerous reports of the synergistic effects of beta-glycerophosphate and ascorbic acid in inducing the differentiation of osteoblasts, little is known about their roles in osteoclastic differentiation. Therefore, we investigated the effect of beta-glycerophosphate on osteoclastogenesis in the presence of ascorbic acid using primary mouse bone marrow cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). Beta-Glycerophosphate dose-dependently increased RANKL-induced osteoclast formation in the presence of ascorbic acid. This stimulatory effect was apparent when beta-glycerophosphate and ascorbic acid were only added during the late stages of the culture period, indicating that they influence later events in osteoclastic differentiation. While the combination of beta-glycerophosphate and ascorbic acid inhibited RANKL-stimulated activation of ERK and p38, and degradation of IkappaB, it increased the induction of c-Fos and NFATc1. In addition, beta-glycerophosphate and ascorbic acid together enhanced the induction of COX-2 following RANKL stimulation. Taken together, our data suggest that beta-glycerophosphate and ascorbic acid have synergistic effects on osteoclast formation, increasing RANKL-mediated induction of c-Fos, NFATc1 and COX-2 in osteoclast precursors.

  17. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  18. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo.

    PubMed

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun; Park, Jeong-Sook; Myung, Chang-Seon

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the C max value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their T max values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders.

  19. Alleviation of ascorbic acid-induced gastric high acidity by calcium ascorbate in vitro and in vivo

    PubMed Central

    Lee, Joon-Kyung; Jung, Sang-Hyuk; Lee, Sang-Eun; Han, Joo-Hui; Jo, Eunji; Park, Hyun-Soo; Heo, Kyung-Sun; Kim, Deasun

    2018-01-01

    Ascorbic acid is one of the most well-known nutritional supplement and antioxidant found in fruits and vegetables. Calcium ascorbate has been developed to mitigate the gastric irritation caused by the acidity of ascorbic acid. The aim of this study was to compare calcium ascorbate and ascorbic acid, focusing on their antioxidant activity and effects on gastric juice pH, total acid output, and pepsin secretion in an in vivo rat model, as well as pharmacokinetic parameters. Calcium ascorbate and ascorbic acid had similar antioxidant activity. However, the gastric fluid pH was increased by calcium ascorbate, whereas total acid output was increased by ascorbic acid. In the rat pylorus ligation-induced ulcer model, calcium ascorbate increased the gastric fluid pH without changing the total acid output. Administration of calcium ascorbate to rats given a single oral dose of 100 mg/kg as ascorbic acid resulted in higher plasma concentrations than that from ascorbic acid alone. The area under the curve (AUC) values of calcium ascorbate were 1.5-fold higher than those of ascorbic acid, and the Cmax value of calcium ascorbate (91.0 ng/ml) was higher than that of ascorbic acid (74.8 ng/ml). However, their Tmax values were similar. Thus, although calcium ascorbate showed equivalent antioxidant activity to ascorbic acid, it could attenuate the gastric high acidity caused by ascorbic acid, making it suitable for consideration of use to improve the side effects of ascorbic acid. Furthermore, calcium ascorbate could be an appropriate antioxidant substrate, with increased oral bioavailability, for patients with gastrointestinal disorders. PMID:29302210

  20. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.

    PubMed

    Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine

    2004-01-01

    Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.

  1. Exocrine pancreas ER stress is differentially induced by different fatty acids.

    PubMed

    Danino, Hila; Ben-Dror, Karin; Birk, Ruth

    2015-12-10

    Exocrine pancreas acinar cells have a highly developed endoplasmic reticulum (ER), accommodating their high protein production rate. Overload of dietary fat (typical to obesity) is a recognized risk factor in pancreatitis and pancreatic cancer. Dietary fat, especially saturated fat, has been suggested by others and us to induce an acinar lipotoxic effect. The effect of different dietary fatty acids on the ER stress response is unknown. We studied the effect of acute (24h) challenge with different fatty acids (saturated, mono and poly-unsaturated) at different concentrations (between 200 and 500µM, typical to normal and obese states, respectively), testing fat accumulation, ER stress indicators, X-box binding protein 1 (Xbp1) splicing and nuclear translocation, as well as unfolded protein response (UPR) transcripts and protein levels using exocrine pancreas acinar AR42J and primary cells. Acute exposure of AR42J cells to different fatty acids caused increased accumulation of triglycerides, dependent on the type of fat. Different FAs had different effects on ER stress: most notably, saturated palmitic acid significantly affected the UPR response, as demonstrated by altered Xbp1 splicing, elevation in transcript levels of UPR (Xbp, CHOP, Bip) and immune factors (Tnfα, Tgfβ), and enhanced Xbp1 protein levels and Xbp1 time-dependent nuclear translocation. Poly-unsaturated FAs caused milder elevation of ER stress markers, while mono-unsaturated oleic acid attenuated the ER stress response. Thus, various fatty acids differentially affect acinar cell fat accumulation and, apart from oleic acid, induce ER stress. The differential effect of the various fatty acids could have potential nutritional and therapeutic implications. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats.

    PubMed

    Bami, Erliasa; Ozakpınar, Ozlem Bingol; Ozdemir-Kumral, Zarife Nigar; Köroglu, Kutay; Ercan, Feriha; Cirakli, Zeynep; Sekerler, Turgut; Izzettin, Fikret Vehbi; Sancar, Mesut; Okuyan, Betul

    2017-09-01

    This study aims to determine the potential protective effects of ferulic acid against cisplatin-induced nephrotoxicity and to compare its effect with curcumin, a well-known protective agent against cisplatin- induced toxicity in rats. Administration of cisplatin resulted in high BUN (Blood Urea Nitrogen), creatinine, MDA (Malondialdehyde), MPO (Myeloperoxidase), TOS (Total Oxidative Status), PtNT (Protein Nitrotyrosine) levels (p<0.05). Histological observations showed abnormal morphology of kidney; in addition with appearance of TUNEL positive cells indicating apoptosis in cisplatin administered group. HO-1 (Heme Oxygenase-1) levels measured by RT-PCR (Real Time Polymerase Chain Reaction), and TAS (Total Antioxidative Status) revealed antioxidant depletion due to cisplatin toxicity in animals (p<0.05). All parameters showed improvement in groups treated with ferulic acid (p<0.05). Ferulic acid treatment was found significant in preventing oxidative stress, increasing antioxidative status and regaining histological parameters to normal, indicating nephroprotective and antioxidant effects of this phenolic compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  4. Postconditioning and anticonditioning: possibilities to interfere to evoked apoptosis.

    PubMed

    Burda, Jozef; Danielisová, Viera; Némethová, Miroslava; Gottlieb, Miroslav; Kravcuková, Petra; Domoráková, Iveta; Mechírová, Eva; Burda, Rastislav

    2009-09-01

    The aim of this study was to validate the ability of postconditioning, used 2 days after kainate intoxication, to protect selectively vulnerable hippocampal CA1 neurons against delayed neuronal death. Kainic acid (8 mg/kg, i.p.) was used to induce neurodegeneration of pyramidal CA1 neurons in rat hippocampus. Fluoro Jade B, the specific marker of neurodegeneration, and NeuN, a specific neuronal marker were used for visualization of changes 7 days after intoxication without and with delayed postconditioning (norepinephrine, 3.1 mumol/kg i.p., 2 days after kainate administration) and anticonditioning (Extract of Ginkgo biloba, 40 mg/kg p.o used simultaneously with kainate). Morris water maze was used on 6th and 7th day after kainate to test learning and memory capabilities of animals. Our results confirm that postconditioning if used at right time and with optimal intensity is able to prevent delayed neuronal death initiated not only by ischemia but kainate intoxication, too. The protective effect of repeated stress-postconditioning was suppressed if extract of Ginkgo biloba (EGb 761, 40 mg/kg p.o.) has been administered together with kainic acid. It seems that combination of lethal stress and antioxidant treatment blocks the activation of endogenous protecting mechanism known as ischemic tolerance, aggravates neurodegeneration and, after repeated stress is able to cause cumulative damage. This observation could be very valuable in situation when the aim of treatment is elimination of unwanted cell population from the organism.

  5. Reversal of ethanol-induced hepatotoxicity by cinnamic and syringic acids in mice.

    PubMed

    Yan, Sheng-Lei; Wang, Zhi-Hong; Yen, Hsiu-Fang; Lee, Yi-Ju; Yin, Mei-Chin

    2016-12-01

    Ethanol was used to induce acute hepatotoxicity in mice. Effects of cinnamic acid (CA) and syringic acid (SA) post-intake for hepatic recovery from alcoholic injury was investigated. Ethanol treated mice were supplied by CA or SA at 40 or 80 mg/kg BW/day for 5 days. Results showed that ethanol stimulated protein expression of CYP2E1, p47 phox , gp91 phox , cyclooxygenase-2 and nuclear factor kappa B in liver. CA or SA post-intake restricted hepatic expression of these molecules. Ethanol suppressed nuclear factor erythroid 2-related factor (Nrf2) expression, and CA or SA enhanced Nrf2 expression in cytosolic and nuclear fractions. Ethanol increased the release of reactive oxygen species, oxidized glutathione, interleukin-6, tumor necrosis factor-alpha, nitric acid and prostaglandin E 2 . CA or SA lowered hepatic production of these oxidative and inflammatory factors. Histological data revealed that ethanol administration caused obvious foci of inflammatory cell infiltration, and CA or SA post-intake improved hepatic inflammatory infiltration. These findings support that cinnamic acid and syringic acid are potent nutraceutical agents for acute alcoholic liver disease therapy. However, potential additive or synergistic benefits of cinnamic and syringic acids against ethanol-induced hepatotoxicity need to be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Ka-band MMIC arrays for ACTS Aero Terminal Experiment

    NASA Technical Reports Server (NTRS)

    Raquet, C.; Zakrajsek, R.; Lee, R.; Turtle, J.

    1992-01-01

    An antenna system consisting of three experimental Ka-band active arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification is presented. The MMIC arrays are to be demonstrated in the ACTS Aeronautical Terminal Experiment, planned for early 1994. The experiment is outlined, with emphasis on a description of the antenna system. Attention is given to the way in which proof-of-concept MMIC arrays featuring three different state-of-the-art approaches to Ka-band MMIC insertion are being incorporated into an experimental aircraft terminal for the demonstration of an aircraft-to-satellite link, providing a basis for follow-on MMIC array development.

  7. Assessment of the Atmospheric Channel for Short (Ka-Band and Optical) Wavelengths

    NASA Technical Reports Server (NTRS)

    Piazzolla, Sabino

    2007-01-01

    Atmospheric turbulence under clear sky conditions is an impairment of the atmospheric channel that greatly affects propagation of optical signal in the troposphere. The turbulence manifests itself in a number of forms within the optical domain, from the twinkling of a star in a clear night, to resolution degradation in a large aperture telescope. Therefore, a body of analytical, numerical, and experimental tools has been developed in optics to study, simulate, and control effects of atmospheric turbulence on an optical signal. Incidentally, there has been an increasing demand for high data rate returns from NASA missions which has led to envision utilizing a carrier signal in the Ka-Band range. The impact of atmospheric turbulence effects must be evaluated and considered for this frequency domain. The purpose of this work is to show that when the turbulence strength from the optical case to the KaBand ease is properly scaled, one can apply the same mathematical simulation developed for optical to predict turbulence effects within the Ka-Band domain. As a demonstration of this principle, we present how the scintillations of a Ka-Band downlink return of a deep space signal was successfully reproduced through wave-optics simulation.

  8. Can valproic acid be an inducer of clozapine metabolism?

    PubMed Central

    Diaz, Francisco J.; Eap, Chin B.; Ansermot, Nicolas; Crettol, Severine; Spina, Edoardo; de Leon, Jose

    2014-01-01

    Introduction Prior clozapine studies indicated no effects, mild inhibition or induction of valproic acid (VPA) on clozapine metabolism. The hypotheses that 1) VPA is a net inducer of clozapine metabolism, and 2) smoking modifies this inductive effect were tested in a therapeutic drug monitoring study. Methods After excluding strong inhibitors and inducers, 353 steady-state total clozapine (clozapine plus norclozapine) concentrations provided by 151 patients were analyzed using a random intercept linear model. Results VPA appeared to be an inducer of clozapine metabolism since total plasma clozapine concentrations in subjects taking VPA were significantly lower (27% lower; 95% confidence interval, 14% to 39%) after controlling for confounding variables including smoking (35% lower, 28% to 56%). Discussion Prospective studies are needed to definitively establish that VPA may 1) be an inducer of clozapine metabolism when induction prevails over competitive inhibition, and 2) be an inducer even in smokers who are under the influence of smoking inductive effects on clozapine metabolism. PMID:24764199

  9. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in ...

    EPA Pesticide Factsheets

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPAR_). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that d

  10. EPR spectral investigation of radiation-induced radicals of gallic acid.

    PubMed

    Tuner, Hasan

    2017-11-01

    In the present work, spectroscopic features of the radiation-induced radicals of gallic acid compounds were investigated using electron paramagnetic resonance (EPR) spectroscopy. While un-irradiated samples presented no EPR signal, irradiated samples exhibited an EPR spectrum consisting of an intense resonance line at the center and weak lines on both sides. Detailed microwave saturation investigations were carried out to determine the origin of the experimental EPR lines. It is concluded that the two side lines of the triplet satellite originate from forbidden "spin-flip" transitions. The spectroscopic and structural features of the radiation-induced radicals were determined using EPR spectrum fittings. The experimental EPR spectra of the two gallic acid compounds were consistent with the calculated EPR spectroscopic features of the proposed radicals. It is concluded that the most probable radicals are the cyclohexadienyl-type, [Formula: see text] radicals for both compounds.

  11. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    NASA Technical Reports Server (NTRS)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  12. Restorative and synergistic efficacy of Kalpaamruthaa, a modified Siddha preparation, on an altered antioxidant status in adjuvant induced arthritic rat model.

    PubMed

    Mythilypriya, Rajendran; Shanthi, Palanivelu; Sachdanandam, Panchanatham

    2007-07-20

    Rheumatoid arthritis (RA) is a prevalent and debilitating disease that affects the joints. Infiltration of blood-derived cells in the affected joints upon activation generate reactive oxygen/nitrogen species, resulting in an oxidative stress. One approach to counteract this oxidative stress is the use of antioxidants as therapeutic agents. Kalpaamruthaa (KA), a modified indigenous Siddha preparation constituting Semecarpus anacardium nut milk extract (SA), Emblica officinalis (EO) and honey was evaluated for its synergistic antioxidant potential in adjuvant induced arthritic rats than sole SA treatment. Levels/activities of reactive oxygen species (ROS)/reactive nitrogen species (RNS), myeloperoxidase, lipid peroxide and enzymic and non-enzymic antioxidants were determined in control, arthritis induced, SA and KA treated (150 mg/kg b.wt.) animals. The levels/activities of ROS/RNS, myeloperoxidase and lipid peroxide were increased significantly (p<0.05) and the activities of enzymic and non-enzymic antioxidants were in turn decreased in arthritic rats, whereas these changes were reverted to near normal levels upon SA and KA treatment. KA showed an enhanced antioxidant potential than sole treatment of SA in adjuvant induced arthritic rats. KA via enhancing the antioxidant status in adjuvant induced arthritic rats than sole SA treatment proves to be an important therapeutic modality in the management of RA and thereby instituting the role of oxidative stress in the clinical manifestation of the disease RA. The profound antioxidant efficacy of KA than SA alone might be due to the synergistic action of the polyphenols such as flavonoids, tannins and other compounds such as vitamin C and hydroxycinnamates present in KA.

  13. Microvibrations in a 20 M Long Ka-Band SAR Interferometer

    NASA Astrophysics Data System (ADS)

    Rodriques, G.; Ludwig, M.; Santiago-Prowald, J.

    2014-06-01

    Interferometric SAR operating at Ka-band has the potential for offering high-resolution 3D images of the surface of the Earth taken from a single-platform.The stability of the mechanical baseline of such an instrument has been considered as a key critical area for the feasibility of the concept.This paper is devoted to the analysis of the micro- vibrations in a 20-m long Ka-band SAR interferometer arising during typical attitude changing manoeuvers and the mechanical noise transmitted from reaction wheels. It is preliminarily concluded that the expected microvibration levels are within the requirements of the instrument.

  14. Induced Thermoluminescence Dating of Volcanism on Hawaii

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.; Sears, H.; Hughes, S. S.; Sehlke, A.

    2016-12-01

    Last year we demonstrated that a suite of tholeiitic basalts that had erupted about 2.2 ka to nearly 500 ka ago in the east Snake River Plain (Idaho) showed a correlation between induced TL and age, although there was considerable scatter. This correlation is consistent with petrographic changes in the feldspar, the major TL-producing mineral in these rocks, such as crystallization of glassy or amorphous phases to produce feldspar or the diffusional loss of incompatible elements, such as Fe, that quench TL in feldspars. We have now measured 19 basalts from Hawaii. The Kohala alkali basalts (130-470 ka) have higher induced TL than the Kilauea tholeiitic basalts (<10ka) by a factor of 10-100. Benoit et al. (2001) showed that there is a strong relationship between induced TL and composition of feldspars. Applying the results of Benoit et al. (2001) to correct for compositional differences between the alkali and tholeiitic basalts, by normalizing them all to a tholeiitic feldspar composition, the correlation between induced TL and age for the Hawaii basalts is identical to the correlation observed for the Idaho basalts within our experimental uncertainties. These results suggest that there is an induced TL vs. age trend for basalts that is not specific to one location, and that there is the potential for a non-isotopic method of dating volcanism. The main challenge now is to identify and correct for causes of scatter in the data, other than composition, such as the amount of crystallization before, during, and immediately after emplacement of the lava (e.g., devitrification of the residual glasses within the basalts). If this can be done, the TL method, which is low-weight, low-power, low data-rate, would be suitable to spacecraft use. Part of FINESSE (PI Jennifer Heldmann) SSERVI node. We thank BASALT (PI Darlene Lim) for logistical support. [AS1]Any others you would consider?

  15. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  17. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with the ACTS satellite. The ACTS experiment's program proposed to validate Ka-band satellite and ground station technology. demonstrate future telecommunication services. demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals (Part 1) and the lessons learned throughout their six year operation including the inclined orbit phase of operations (Full Report). An overview of the Ka-band technology and components developed for the ACTS ground stations is presented. Next. the performance of the ground station technology and its evolution during the ACTS campaign are discussed to illustrate the technical tradeoffs made during the program and highlight technical advances by industry to support the ACTS experiments program and terminal operations. Finally. lessons learned during development and operation of the user terminals are discussed for consideration of commercial adoption into future Ka-band systems. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector based offset-fed antenna systems ranging in size from 0.35m to 3.4m antenna diameter. Gateway earth stations included two systems, referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET). The NGS provides tracking, telemetry, and control (TT&C) and Time Division Multiple Access (TDMA) network control functions. The LET supports technology verification and high data rate experiments. The ground

  18. X/X/Ka-band prime focus feed antenna for the Mars Observer beacon spacecraft

    NASA Technical Reports Server (NTRS)

    Stanton, P.; Reilly, H.; Esquivel, M.

    1988-01-01

    The results of an X/X/Ka-band feed design concept demonstration are presented. The purpose is to show the feasibility of adding a Ka-band beacon to the Mars Observer spacecraft. Scale model radiation patterns were made and analyzed.

  19. Temperature dependence of interfacial structures and acidity of clay edge surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Cheng, Jun; Sprik, Michiel; Wang, Rucheng

    2015-07-01

    In the pursuit of a microscopic understanding of the effects of temperature on the surface reactivity of clay minerals, we conducted first principles molecular dynamics (FPMD) simulations to study the interfacial structures and acidity of clay edge surfaces at elevated temperatures. The common edge surfaces ((0 1 0) and (1 1 0) types) of phyllosilicates were investigated at 348 K and 423 K, and the results were compared with those previously derived at ambient conditions. We found that the stable surface sites are the same as at ambient conditions, including tbnd Al(OH2)2 (6-fold Al), tbnd Al(OH2) (5-fold Al) and tbnd Si(OH) on the (0 1 0) facet, and tbnd Al(OH2), tbnd Al(OH)Sitbnd and tbnd Si(OH) on the (1 1 0) surface. The FPMD-based vertical energy gap technique was applied to compute the acidity constants of edge sites and the resulting pKa values show a decreasing trend with temperature. The results demonstrate that although changes in the point of zero charge of the entire material are insignificant up to 348 K, the decrease in surface pKa can be 3 pKa units, while it can be as large as 6 pKa units up to 423 K. The derived interface structures and pKa values can be used in future experimental and modeling research, e.g., in interpreting experiments and predicting the surface complexation of metal cations and organics. This study therefore provides a physical basis for investigating the interfacial processes of clay minerals in environments that experience elevated P-T conditions, such as sedimentary basins and geological nuclear waste repositories.

  20. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    PubMed

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  1. Glutamatergic modulation of separation distress: profound emotional effects of excitatory amino acids in chicks.

    PubMed

    Normansell, Larry; Panksepp, Jaak

    2011-10-01

    Pre-clinical models of brain affective circuits provide relevant evidence for understanding the brain systems that figure heavily in psychiatric disorders. Social isolation and the resulting separation distress contribute to the onset of depression. In this work, the effects of excitatory amino acids (EAA) on isolation-induced distress vocalization (DV) were assessed in young domestic chicks. Both glutamate and quisqualate (QA) produced dose-dependent reductions in DVs, while N-methyl-d-aspartate (NMDA) and kainate (KA) increased DVs. Such a differential pattern of responsiveness may indicate the presence of reciprocal or interacting EAA systems in the brain control of separation distress. Administration of either the NMDA receptor antagonist 2-amino-5-phosphonovalerate (APV) or the broad-spectrum antagonist gamma-d-glutamylglycine (DGG) greatly reduced DVs, as did the antagonist 2-amino-4-phosphonobutyrate (APB). APV did not attenuate the increase in vocalizations seen after NMDA or KA administration. DGG, however, was able to block the increase in calling produced by either of these agonists, suggesting a KA receptor mechanism. KA treatment inhibited the ability of other chicks, or auditory and somatosensory information, to suppress DVs. KA-treated animals exhibited a hyperemotional behavior pattern during which a variety of motivated behaviors were disrupted including reactions to novel objects, approaching the flock, and foraging. They could not sustain a coherent flock-like social cohesion, but exhibited strong fixed-action patterns of flight interspersed with hiding and crouching behaviors. The evident behavioral changes suggest that glutamatergic synapses directly influence sensory, motor and emotional processes in the brain and may be especially important in the integration of environmental stimuli with emotional central state processes of animals. Considering that unresolved social loss and grief have been deemed to be among the main precipitating causes

  2. ASCORBIC ACID IS DECREASED IN INDUCED SPUTUM OF MILD ASTHMATICS

    EPA Science Inventory

    Asthma is primarily an airways inflammatory disease, and the bronchial airways have been shown to be particularly susceptible to oxidant-induced tissue damage. The antioxidant ascorbic acid (AA) plays an essential role in defending against oxidant attack in the airways. Decreased...

  3. Geochemistry and mineralogy of the older (> 40 ka) ignimbrites in the Campanian Plain, southern Italy

    NASA Astrophysics Data System (ADS)

    Belkin, Harvey E.; Raia, Federica; Rolandi, Giuseppe; Jackson, John C.; de Vivo, Benedetto

    2010-05-01

    The Campanian Plain in southern Italy has been volcanically active during the last 600 ka. The largest and best known eruption at 39 ka formed the Campanian Ignimbrite (CI), which has the largest volume (~310 km3) and the greatest areal extent. However, significant, but scattered deposits of older ignimbrites underlie the CI and document a long history of trachytic eruptions. We examined the geochemistry and mineralogy of 11 older ignimbrite strata by optical petrography, electron microprobe, scanning electron microscope, X-ray diffraction, and various whole-rock geochemical techniques. Strata at Durazzano (116.1 ka), Moschiano (184.7 ka), Seiano Valley A (245.9 ka), Seiano Valley B (289.6 ka), Taurano 7 (205.6 and 210.4 ka), Taurano 9 (183.8 ka), and Taurano 14 (157.4 ka) have been previously dated by the 40Ar/39Ar technique (Rolandi et al., 2003, Min. & Pet., 79) on hand-picked sanidine. The older ignimbrites are trachytic, but are highly altered with LOI from 8 to 17 wt%. Whole-rock compositions reflect variable element mobility during weathering; TiO2, Al2O3, Fe-oxide, and CaO tend to be enriched relative to average CI composition, whereas Na2O and K2O are depleted. X-ray diffraction identified major chabazite, kaolinite, and illite-smectite alteration products in some samples. The phenocryst mineralogy in all of the strata is typical for trachyte magma and consists of plagioclase (~An80 to ~An40), potassium feldspar (~Or50 to ~Or80), biotite (TiO2 = ~4.6 wt%, BaO = ~0.70 wt%, F = ~0.65 wt%), diopside (~Ca47Mg48Fe5 to ~Ca48Mg34Fe18), titanomagnetite, and uncommon Ca-amphibole. Relatively immobile trace elements Zr, Hf, Nb, and Th display similar abundance, linear trends, and ratios as those measured in the Campanian Ignimbrite: Th/Hf = ~4, Zr/Hf = ~50, and Zr/Nb = ~6. The similarity of trace element systematics and phenocryst mineralogy among the Campanian Ignimbrite and the older ignimbrites suggests that the magmagenesis processes and parental source have

  4. Adipose Fatty Acid Binding Protein Promotes Saturated Fatty Acid-induced Macrophage Cell Death through Enhancing Ceramide Production

    PubMed Central

    Zhang, Yuwen; Rao, Enyu; Zeng, Jun; Hao, Jiaqing; Sun, Yanwen; Liu, Shujun; Sauter, Edward R.; Bernlohr, David A.; Cleary, Margot P.; Suttles, Jill; Li, Bing

    2016-01-01

    Macrophages play a critical role in obesity-associated chronic inflammation and disorders. However, the molecular mechanisms underlying the response of macrophages to elevated fatty acids (FAs) and their contribution to metabolic inflammation in obesity remain to be fully elucidated. Here, we report a new mechanism by which dietary FAs, in particular saturated FAs, are able to directly trigger macrophage cell death. We demonstrated that excess saturated FAs, but not unsaturated FAs, induced the production of cytotoxic ceramides in macrophage cell lines. Most importantly, expression of adipose fatty acid binding protein (A-FABP) in macrophages facilitated metabolism of excess saturated FAs for ceramide synthesis. Inhibition or deficiency of A-FABP in macrophage cell lines decreased saturated FA-induced ceramide production, thereby resulting in reduced cell death. Furthermore, we validated the role of A-FABP in promoting saturated FA-induced macrophage cell death with primary bone-marrow derived macrophages and high-fat diet-induced obese mice. Altogether, our data reveal that excess dietary saturated FAs may serve as direct triggers in induction of ceramide production and macrophage cell death through elevated expression of A-FABP, thus establishing A-FABP as a new molecular sensor in triggering macrophage-associated sterile inflammation in obesity. PMID:27920274

  5. Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.

    PubMed

    Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K

    2013-05-17

    Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.

  6. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression.

  7. Contribution of X/Ka VLBI to Multi-Wavelength Celestial Frame Studies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Sotuela, I.

    2011-01-01

    This paper is an update of Sotuela et al. (2011) which improves their simulated Gaia frame tie precision by approximately 10% by adding three additional VLBI observing sessions. Astrometry at X/Ka-band (8.4/32 GHz) using NASAs Deep Space Network has detected 466 quasars with accuracies of 200-300 micro-arc seconds. A program is underway to reduce errors by a factor of 2-3. From our sample, 245 sources have optical magnitudes V less than 20 and should also be detectable by Gaia. A covariance study using existing X/Ka data and simulated Gaia uncertainties for the 345 objects yields a frame tie precision of 10-15 micro-arc seconds (1 - sigma). The characterization of wavelength dependent systematic from extended source morphology and core shift should benefit greatly from adding X/Ka-band measurements to S/X-band (2.3/8.4 GHz) measurements thus helping to constrain astrophysical models of the wavelength dependence of positions.

  8. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  9. Ferulic acid attenuates focal cerebral ischemia-induced decreases in p70S6 kinase and S6 phosphorylation.

    PubMed

    Koh, Phil-Ok

    2013-10-25

    Ferulic acid exhibits neuroprotective effects against focal cerebral ischemia. PI3/K and Akt signaling pathways play an essential role in protecting against cerebral ischemia. Mammalian target of rapamycin (mTOR), a major downstream target of Akt, regulates p70S6 kinase and S6, both of which are involved in ribosomal biogenesis and protein synthesis. I investigated whether ferulic acid regulates mTOR, p70S6 kinase, and S6 phosphorylation during brain ischemic injury. Rats were treated immediately with vehicle or ferulic acid (100mg/kg, i.v.) after middle cerebral artery occlusion (MCAO). Brains tissues were removed at 24h after the onset of MCAO and the cerebral cortex regions were collected. Ferulic acid reduced the MCAO-induced infarct volume. I showed previously that ferulic acid prevents the MCAO injury-induced decrease of Akt phosphorylation. In this study, MCAO injury induced decreases in mTOR, p70S6 kinase, and S6 phosphorylation levels, while ferulic acid attenuated the injury-induced decreases. Immunohistochemical staining demonstrated that ferulic acid prevented the MCAO-induced reduction in the number of positive cells for phosphorylated p70S6 kinase and phosphorylated S6. These findings suggest that ferulic acid has a neuroprotective function against focal cerebral ischemia by modulating p70S6 kinase expression and S6 phosphorylation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Vasoconstriction Potency Induced by Aminoamide Local Anesthetics Correlates with Lipid Solubility

    PubMed Central

    Sung, Hui-Jin; Ok, Seong-Ho; Sohn, Jin-Young; Son, Yong Hyeok; Kim, Jun Kyu; Lee, Soo Hee; Han, Jeong Yeol; Lim, Dong Hoon; Shin, Il-Woo; Lee, Heon-Keun; Chung, Young-Kyun; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2012-01-01

    Aminoamide local anesthetics induce vasoconstriction in vivo and in vitro. The goals of this in vitro study were to investigate the potency of local anesthetic-induced vasoconstriction and to identify the physicochemical property (octanol/buffer partition coefficient, pKa, molecular weight, or potency) of local anesthetics that determines their potency in inducing isolated rat aortic ring contraction. Cumulative concentration-response curves to local anesthetics (levobupivacaine, ropivacaine, lidocaine, and mepivacaine) were obtained from isolated rat aorta. Regression analyses were performed to determine the relationship between the reported physicochemical properties of local anesthetics and the local anesthetic concentration that produced 50% (ED50) of the local anesthetic-induced maximum vasoconstriction. We determined the order of potency (ED50) of vasoconstriction among local anesthetics to be levobupivacaine > ropivacaine > lidocaine > mepivacaine. The relative importance of the independent variables that affect the vasoconstriction potency is octanol/buffer partition coefficient > potency > pKa > molecular weight. The ED50 in endothelium-denuded aorta negatively correlated with the octanol/buffer partition coefficient of local anesthetics (r2 = 0.9563; P < 0.001). The potency of the vasoconstriction in the endothelium-denuded aorta induced by local anesthetics is determined primarily by lipid solubility and, in part, by other physicochemical properties including potency and pKa. PMID:22778542

  11. Ex Vivo and In Situ Evaluation of 'Dispelling-Wind' Chinese Medicine Herb-Drugs on Intestinal Absorption of Chlorogenic Acid.

    PubMed

    Zhai, Lixiang; Shi, Jun; Xu, Weitong; Heinrich, Michael; Wang, Jianying; Deng, Wenji

    2015-12-01

    This study aims to investigate the additive or synergistic effects and mechanism of intestinal absorption of extracts from two commonly used 'dispelling-wind' TCM botanical drugs [roots of Angelica dahurica (Hoffm.) Benth. & Hook. f. ex Franch. & Sav. (RAD) and Saposhnikovia divaricata (Turcz.) Schischk. (RSD)] using chlorogenic acid as a marker substance. Ex vivo everted intestinal sac and in situ single pass perfusion methods using rats were employed to investigate the effects of two TCM botanical drugs extracts on the intestinal absorption of chlorogenic acid. Both the extracts of RAD and RSD showed synergistic properties on the intestinal absorption of chlorogenic acid. The verapamil (a P-gp inhibitor) and intestinal dysbacteriosis model induced by norfloxacin increased the P(app) and K(a) of intestinal absorption of chlorogenic acid. These synergistic effects on intestinal absorption in a rat model can be correlated with the inhibition of P-gp and regulation of gut microbiota. This experimental approach has helped to better understand changes in the absorption of chlorogenic acid under different conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  12. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells.

    PubMed

    Tran, Daniel; Kadono, Takashi; Molas, Maria Lia; Errakhi, Rafik; Briand, Joël; Biligui, Bernadette; Kawano, Tomonori; Bouteau, François

    2013-03-01

    Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death. © 2012 Blackwell Publishing Ltd.

  13. Stacking and determination of phenazine-1-carboxylic acid with low pKa in soil via moving reaction boundary formed by alkaline and double acidic buffers in capillary electrophoresis.

    PubMed

    Sun, Chong; Yang, Xiao-Di; Fan, Liu-Yin; Zhang, Wei; Xu, Yu-Quan; Cao, Cheng-Xi

    2011-04-01

    As shown herein, a normal moving reaction boundary (MRB) formed by an alkaline buffer and a single acidic buffer had poor stacking to the new important plant growth promoter of phenazine-1-carboxylic acid (PCA) in soil due to the leak induced by its low pK(a). To stack the PCA with low pK(a) efficiently, a novel stacking system of MRB was developed, which was formed by an alkaline buffer and double acidic buffers (viz., acidic sample and blank buffers). With the novel system, the PCA leaking into the blank buffer from the sample buffer could be well stacked by the prolonged MRB formed between the alkaline buffer and blank buffer. The relevant mechanism of stacking was discussed briefly. The stacking system, coupled with sample pretreatment, could achieve a 214-fold increase of PCA sensitivity under the optimal conditions (15 mM (pH 11.5) Gly-NaOH as the alkaline buffer, 15 mM (pH 3.0) Gly-HCl-acetonitrile (20%, v/v) as the acidic sample buffer, 15 mM (pH 3.0) Gly-HCl as the blank buffer, 3 min 13 mbar injection of double acidic buffers, benzoic acid as the internal standard, 75 μm i.d. × 53 cm (44 cm effective length) capillary, 25 kV and 248 nm). The limit of detection of PCA in soil was decreased to 17 ng/g, the intra-day and inter-day precision values (expressed as relative standard deviations) were 3.17-4.24% and 4.17-4.87%, respectively, and the recoveries of PCA at three concentration levels changed from 52.20% to 102.61%. The developed method could be used for the detection of PCA in soil at trace level.

  14. High folic acid diet enhances tumour growth in PyMT-induced breast cancer

    PubMed Central

    Hansen, Mariann Fagernæs; Jensen, Sarah Østrup; Füchtbauer, Ernst-Martin; Martensen, Pia M

    2017-01-01

    Background: The B-vitamin folate is among the most studied bioactive food compound, and a dietary intake meeting the daily requirements has been found to reduce the risk of cancer and cardiovascular diseases as well as preventing neural tube defects during fetal development. Several countries have therefore introduced dietary fortification with folic acid. However, clinical and animal studies suggest that folic acid has a dual role in cancer development. Methods: During the period of initial tumour progression, MMTV-PyMT (MMTV-polyoma virus middle T) transgenic mice were fed with normal diet and high folic acid diet. Results: We found that PyMT-induced breast tumours highly express the cancer-specific folate receptor (FR), a feature they share with several human epithelial cancers in which expression of FRα correlates with tumour grade. Mice receiving a high folic acid diet displayed a significantly increased tumour volume compared with mice receiving normal diet. In the largest tumours, only found in mice on high folic acid diet, STAT3 was activated. In primary cells from PyMT tumours, STAT3 was activated upon treatment with folic acid in culture. Conclusions: Our results offer a novel molecular explanation for folic acid-induced growth of existing tumours. PMID:28152548

  15. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    PubMed

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  16. Retinoic acid-induced lumbosacral neural tube defects: myeloschisis and hamartoma.

    PubMed

    Cai, WeiSong; Zhao, HongYu; Guo, JunBin; Li, Yong; Yuan, ZhengWei; Wang, WeiLin

    2007-05-01

    To observe the morphological features of the lumbosacral neural tube defects (NTDs) induced by all-trans retinoic acid (atRA) and to explore the pathogenesis of these defects. Rat embryos with lumbosacral NTDs were obtained by treating pregnant rats with administration of atRA. Rat embryos were obtained by cesarean. Fetuses were sectioned and stained with hematoxylin-eosin (H&E). Relevant structures including caudal neural tube were examined. In the atRA-treated rats, about 48% embryos showed lumbosacral NTDs. There appeared a dorsally and rostrally situated, neural-plate-like structure (myeloschisis) and a ventrally and caudally located cell mass containing multiple canals (hamartoma) in the lumbosacral NTDs induced by atRA. Retinoic acid could disturb the notochord and tail bud development in the process of primary and secondary neurulation in rat embryos, which cause lumbosacral NTDs including myeloschisis and hamartoma. The morphology is very similar to that happens in humans.

  17. Alpha-lipoic acid treatment of acetaminophen-induced rat liver damage.

    PubMed

    Mahmoud, Y I; Mahmoud, A A; Nassar, G

    2015-01-01

    Acetaminophen (paracetamol) is a well-tolerated analgesic and antipyretic drug when used at therapeutic doses. Overdoses, however, cause oxidative stress, which leads to acute liver failure. Alpha lipoic acid is an antioxidant that has proven effective for ameliorating many pathological conditions caused by oxidative stress. We evaluated the effect of alpha lipoic acid on the histological and histochemical alterations of liver caused by an acute overdose of acetaminophen in rats. Livers of acetaminophen-intoxicated rats were congested and showed centrilobular necrosis, vacuolar degeneration and inflammatory cell infiltration. Necrotic hepatocytes lost most of their carbohydrates, lipids and structural proteins. Liver sections from rats pre-treated with lipoic acid showed fewer pathological changes; the hepatocytes appeared moderately vacuolated with moderate staining of carbohydrates and proteins. Nevertheless, alpha lipoic acid at the dose we used did not protect the liver fully from acetaminophen-induced acute toxicity.

  18. The length of ankyl chain tuning the structure and properties of organic assemblies composed of triazole and organic acids

    NASA Astrophysics Data System (ADS)

    Li, Yao-Jia; Luo, Yang-Hui; Wang, Jing-Wen; Chen, Chen; Sun, Bai-Wang

    2018-02-01

    Three salts: 3-amino-1,2,4-triazolinium (1+) hydrogen oxalate (1), 3-amino-1,2, 4-triazolinium (1+) hydrogen malonate (2), 3-amino-1,2,4-triazolinium (1+) hydrogen succinate (3) and one co-crystal: 3-amino-1,2,4-triazole-adipic acid (4) have been prepared and characterized by differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), IR, Raman, and single-crystal X-ray diffraction. Wherein, supramolecular motif in salts 1, 3 and co-crystal 4 were dominant by triazole-acid and amino-acid heterosynthon, while salt 2 dominant by amino-triazole homosynthon in addition to triazole-acid heterosynthon, which attribute to the intermolecular hydrogen interactions within hydrogen malonate anion. These results have a close relationship with the ΔpKa between 3-ATZ and alkyl acids, we found that the ΔpKa is grate than 6.9, the formation of salt will be expected, while the formation of co-crystal usually with the ΔpKa less than 6.75. It is interesting that salts 2 and 3 show the phenomenon of proton transfer after melt, which lead to the stepwise sublimation of the two components. The differences between salts and co-crystal were also revealed by the solid-state vibrational spectroscopy (IR and Raman), Hirshfeld surface analysis and UV spectra.

  19. Inhibition of Autophagy Rescues Palmitic Acid-induced Necroptosis of Endothelial Cells*

    PubMed Central

    Khan, Muhammad Jadoon; Rizwan Alam, Muhammad; Waldeck-Weiermair, Markus; Karsten, Felix; Groschner, Lukas; Riederer, Monika; Hallström, Seth; Rockenfeller, Patrick; Konya, Viktoria; Heinemann, Akos; Madeo, Frank; Graier, Wolfgang F.; Malli, Roland

    2012-01-01

    Accumulation of palmitic acid (PA) in cells from nonadipose tissues is known to induce lipotoxicity resulting in cellular dysfunction and death. The exact molecular pathways of PA-induced cell death are still mysterious. Here, we show that PA triggers autophagy, which did not counteract but in contrast promoted endothelial cell death. The PA-induced cell death was predominantly necrotic as indicated by annexin V and propidium iodide (PI) staining, absence of caspase activity, low levels of DNA hypoploidy, and an early ATP depletion. In addition PA induced a strong elevation of mRNA levels of ubiquitin carboxyl-terminal hydrolase (CYLD), a known mediator of necroptosis. Moreover, siRNA-mediated knockdown of CYLD significantly antagonized PA-induced necrosis of endothelial cells. In contrast, inhibition and knockdown of receptor interacting protein kinase 1 (RIPK1) had no effect on PA-induced necrosis, indicating the induction of a CYLD-dependent but RIPK1-independent cell death pathway. PA was recognized as a strong and early inducer of autophagy. The inhibition of autophagy by both pharmacological inhibitors and genetic knockdown of the autophagy-specific genes, vacuolar protein sorting 34 (VPS34), and autophagy-related protein 7 (ATG7), could rescue the PA-induced death of endothelial cells. Moreover, the initiation of autophagy and cell death by PA was reduced in endothelial cells loaded with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-(acetoxymethyl) ester (BAPTA-AM), indicating that Ca2+ triggers the fatal signaling of PA. In summary, we introduce an unexpected mechanism of lipotoxicity in endothelial cells and provide several novel strategies to counteract the lipotoxic signaling of PA. PMID:22556413

  20. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor α (RARα) and oncogenic RARα fusion proteins

    PubMed Central

    Zhu, Jun; Gianni, Maurizio; Kopf, Eliezer; Honoré, Nicole; Chelbi-Alix, Mounira; Koken, Marcel; Quignon, Frédérique; Rochette-Egly, Cécile; de Thé, Hugues

    1999-01-01

    Analyzing the pathways by which retinoic acid (RA) induces promyelocytic leukemia/retinoic acid receptor α (PML/RARα) catabolism in acute promyelocytic leukemia (APL), we found that, in addition to caspase-mediated PML/RARα cleavage, RA triggers degradation of both PML/RARα and RARα. Similarly, in non-APL cells, RA directly targeted RARα and RARα fusions to the proteasome degradation pathway. Activation of either RARα or RXRα by specific agonists induced degradation of both proteins. Conversely, a mutation in RARα that abolishes heterodimer formation and DNA binding, blocked both RARα and RXRα degradation. Mutations in the RARα DNA-binding domain or AF-2 transcriptional activation region also impaired RARα catabolism. Hence, our results link transcriptional activation to receptor catabolism and suggest that transcriptional up-regulation of nuclear receptors by their ligands may be a feedback mechanism allowing sustained target-gene activation. PMID:10611294