Science.gov

Sample records for kaiparowits plateau utah

  1. Hydrologic reconnaissance of the Kolob, Alton, and Kaiparowits Plateau coal fields, south-central Utah

    USGS Publications Warehouse

    Plantz, Gerald G.

    1985-01-01

    The study area in south-central Utah (fig. 1) is noted for its large coal reserves in the Alton, Kolob, and Kaiparowits Plateau coal fields. The area also is noted for its scenic beauty and general scarcity of water. Although there has been very little development of the coal resources through 1983, there is a potential for large-scale development with both surface- and underground-mining methods. Mining of coal could have significant effects on the quantity and quality of the water resources. The purpose of this atlas is to define the surface- and ground-water resources of the area and to identify the potential effects on these resources by coal mining.

  2. Preliminary Investigations of the Distribution and Resources of Coal in the Kaiparowits Plateau, Southern Utah

    USGS Publications Warehouse

    Hettinger, Robert D.; Roberts, L.N.R.; Biewick, L.R.H.; Kirschbaum, M.A.

    1996-01-01

    EXECUTIVE SUMMARY This report on the coal resources of the Kaiparowits Plateau, Utah is a contribution to the U.S. Geological Survey's (USGS) 'National Coal Resource Assessment' (NCRA), a five year effort to identify and characterize the coal beds and coal zones that could potentially provide the fuel for the Nation's coal-derived energy during the first quarter of the twenty-first century. For purposes of the NCRA study, the Nation is divided into regions. Teams of geoscientists, knowledgeable about each region, are developing the data bases and assessing the coal within each region. The five major coal-producing regions of the United States under investigation are: (1) the Appalachian Basin; (2) the Illinois Basin; (3) the Gulf of Mexico Coastal Plain; (4) the Powder River Basin and the Northern Great Plains; and (5) the Rocky Mountains and the Colorado Plateau. Six areas containing coal deposits in the Rocky Mountain and Colorado Plateau Region have been designated as high priority because of their potential for development. This report on the coal resources of the Kaiparowits Plateau is the first of the six to be completed. The coal quantities reported in this study are entirely 'resources' and represent, as accurately as the data allow, all the coal in the ground in beds greater than one foot thick. These resources are qualified and subdivided by thickness of coal beds, depth to the coal, distance from known data points, and inclination (dip) of the beds. The USGS has not attempted to estimate coal 'reserves' for this region. Reserves are that subset of the resource that could be economically produced at the present time. The coal resources are differentiated into 'identified' and 'hypothetical' following the standard classification system of the USGS (Wood and others, 1983). Identified resources are those within three miles of a measured thickness value, and hypothetical resources are further than three miles from a data point. Coal beds in the Kaiparowits

  3. Ground-water conditions in the Kaiparowits Plateau area, Utah and Arizona, with emphasis on the Navajo Sandstone

    USGS Publications Warehouse

    Blanchard, Paul J.

    1986-01-01

    This report presents results of investigation of ground-water conditions in the Kaiparowits Plateau area of south-central Utah and north-central Arizona (fig. 1). The area is under investigation for development of its large quantities of energy resources, primarily coal. Production and transportation of those energy resources would require attendant development of water resources. The purpose of this study was to determine the availability and quality of ground water in major aquifers in the area - namely aquifers in the Entrada, Navajo, and Wingate Sandstones; emphasis was on the Navajo Sandstone. The study was made by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. Field work was done intermittently during July through October 1979, and October 1980 through October 1981.

  4. Tying rock properties from core to depositional processes and examining the relationship through forward seismic reflection modeling in the Kaiparowits Plateau, Utah

    NASA Astrophysics Data System (ADS)

    Dworsky, Karenth

    Nearshore fluvial to tidal transitional depositional systems are becoming increasingly important due to the large number of global hydrocarbon reserves held in such deposits. These deposits are inherently complex due to their heterolithic nature and therefore, interpreting facies and facies relationships in seismic reflection profiles is problematic. The fluvial and tidally influenced nearshore deposits of the late Cretaceous John Henry Member (JHM) of the Straight Cliffs Formation, located in the Kaiparowits Plateau of southern Utah, offers an excellent opportunity to improve our understanding of how the fluvial to tidal transition impacts subsurface petroleum reservoirs and their expression in seismic reflection profiles. The focus of the first chapter is to investigate the impact of heterogeneous depositional environments and their rock properties to model amplitude versus offset (AVO) using a single core. Core EP-25 exhibits lithofacies from a progradational succession, from shoreface through tidal to fluvial. In order to model the most likely lithofacies stacking patterns present in the core, Markov Chain analysis was conducted. Benchtop measurements performed on 1 inch core plugs obtained rock properties (Vp, Vs, density, permeability, and porosity) for each lithofacies. Average rock properties for each lithofacies were used to generate synthetic seismic reflection models of the different upward fining facies associations documented directly from the core, in order to model variations in amplitude versus offset responses as a function of variable tidal influence. The focus of the second chapter is to capture probable 3-dimensional geobody distributions with a particular focus on coal geobody distribution using previously studied cores and outcrops on the plateau. Three different seismic forward models were created ranging in complexity, using cores EP-25, EP-07, density logs, and the nearby outcrop study Left Hand Collet. The rock properties obtained from the

  5. Landform map of the Kaiparowits Coal-Basin area, Utah

    SciTech Connect

    Sargent, K.A.; Hansen, D.E.

    1980-01-01

    A 1:125,000 scale map of the Kaiparowits Coal-Basin area of Utah is presented. The map portrays the shape and erosional resistance of and features, and it is intended to be a modified slope-analysis map for use by planners in their identification of areas suitable for transportation routes and construction sites. Depositional landforms such as alluvial flats, stream courses, dune fields, and alluviated pediments are shown, and a stratigraphic section of the rocks in the area is provided. (JMT)

  6. Cretaceous sedimentation and tectonism in the southeastern Kaiparowits region, Utah

    USGS Publications Warehouse

    Peterson, Fred

    1969-01-01

    Upper Cretaceous strata in the southeastern Kaiparowits region of south-central Utah consist of approximately 3,500 feet of interfingering sandstone, mudstone, shale, and coal in the Dakota Formation (oldest), Tropic Shale, Straight Cliffs Formation, and Wahweap Formation (youngest). The formations consist of several depositional facies that can be recognized by characteristic lithologies bedding structures, and fossils; these are the alluvial plain, deltaic plain, lagoonal-paludal, barrier sandstone, and offshore marine facies. The distribution of facies clearly defines the paleogeography of the region during several cycles of marine transgression and regression. The nonmarine beds were deposited on a broad alluvial coastal plain that was bordered on the west and southwest by highlands and on the east and northeast by the Western Interior seaway. The marine beds were deposited whenever the seaway advanced into or across the region. The Dakota Formation and the lower part of the Tropic Shale were deposited in nonmarine and marine environments, while the shoreline advanced generally westward across the region. The middle and upper part of the Tropic Shale and the Tibbet Canyon and Smoky Hollow Members of the Straight Cliffs Formation were deposited in marine and nonmarine environments when the seaway had reached its greatest areal extent and began a gradual northeastward withdrawal. An unconformity at the top of the Smoky Hollow represents a period of erosion and possibly nondeposition before deposition of the John Henry Member of the Straight Cliffs. The John Henry Member grades from nonmarine in the southwest to predominantly marine in the northeast, and was deposited during two relatively minor cycles of transgression and regression. The Drip Tank Member at the top of the Straight Cliffs Formation is a widespread sandstone unit deposited mainly in fluvial environments. Some of the beds in the northeastern part of the region were probably deposited in marine

  7. Map showing general chemical quality of surface water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1979-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area, Utah Published sources of water-quality data used in the preparation of this map included Iorns, Hembree, Phoenix, and Oakland (1964), Goode (1966, 1969), U.S. Bureau of Land Management (1976), and U.S. Geological Survey (1961-75). Sources of unpublished data include the U.S. Bureau of Reclamation and the Southeastern Utah Association of Governments. Some of the unpublished data was provided by Vaughn Hansen Associates of Salt Lake City, Utah, whose assistance is gratefully acknowledged.

  8. Map showing general chemical quality of ground water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1977-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. Chemical analyses of water from about 40 widely scattered springs, 20 coal-exploration holes in the Kaiparowits Plateau, and 7 water wells in the vicinity of the communities of Escalante and Glen Canyon were used to compile this map. All the water samples were from depths of less than 1,000 feet (305 m). Water-quality data were also available from a number of petroleum wells and exploration holes more than 5,000 feet (1,524 m) deep; however, those data were used with considerable discretion because water produced by deep petroleum wells and exploration holes usually is more saline than water found at shallower depths at the drilling sites.Most of the chemical analyses used were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), and Goode (1966, 1969), and the Environmental Impact Statement of the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Little or no ground-water-quality data were available for large areas in the Kaiparowits coal basin. In those areas, the indicated ranged of dissolved-solids concentrations in water from springs and wells are inferred largely from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973). This is especially true for those areas where the designated ranges of dissolved-solids concentrations are 100-1,000 and 500-3,000 mg/l (milligrams per liter).El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided ground-water samples and specific water-quality data collected from their exploratory drill holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.

  9. Map showing general availability of ground water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1977-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. This map is based partly on records of water wells, springs, and coal and petroleum exploration holes, partly on unpublished reports of field evaluations of prospective stock-water well sites by personnel of the U.S. Geological Survey, and partly on a 6-day field reconnaissance by the writer in parts of the mapped area.Most of the data used to compile this map were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), Goode (1966, 1969), and the final environmental impact statement for the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Few data about the availability or depth of ground water could be obtained for large areas in the Kaiparowits coal basin. In those areas, expected yields of individual wells are inferred from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973), and depths of ground water in wells are inferred largely from the local topography.El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided specific information regarding the availability and depth of ground water in their exploratory holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.

  10. Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah

    NASA Astrophysics Data System (ADS)

    Roberts, Eric M.

    2007-04-01

    The Kaiparowits Formation is an unusually thick package of Upper Cretaceous (late Campanian) strata exposed in Grand Staircase-Escalante National Monument of southern Utah, USA. The formation was deposited within the rapidly subsiding Cordilleran foreland basin as part of a thick clastic wedge derived from sources in the Sevier orogenic belt, thrust sheets in southeastern Nevada and southern California, and the Mogollon slope in southwestern Arizona. Channel systems in the Kaiparowits Formation shifted from northeastward to southeastward flow over time, and for a short period of time, sea level rise in the Western Interior Seaway resulted in tidally influenced rivers and/or estuarine systems. Thick floodbasin pond deposits, large suspended-load channels, and poorly developed, hydromorphic paleosols dominate the sedimentary record, and all are suggestive of a relatively wet, subhumid alluvial system. This is supported by extremely rapid sediment accumulation rates (41 cm/ka), and high diversity and abundance of aquatic vertebrate and invertebrate fossils. Facies and architectural analysis was performed on the Kaiparowits Formation, resulting in the identification of nine distinct facies associations: 1) intraformational conglomerate, 2) mollusc-shell conglomerate, 3) major tabular sandstone, 4) major lenticular sandstone, 5) minor tabular and lenticular sandstone, 6) finely laminated, calcareous siltstone, 7) inclined heterolithic sandstone and mudstone, 8) sandy mudstone, and 9) carbonaceous mudstone. These facies associations are interpreted as: 1) channel lags, 2) rare channel-hosted storm beds, 3) meandering channels, 4) anastomosing channels, 5) crevasse splays and crevasse channels, 6) lakes, 7) tidally influenced fluvial and/or estuarine channels, 8) mud-dominated floodplains, and 9) swamps and oxbow lakes. Based on this analysis, the formation is subdivided into three informal units, representative of gross changes in alluvial architecture, including facies

  11. Crocodyliform Feeding Traces on Juvenile Ornithischian Dinosaurs from the Upper Cretaceous (Campanian) Kaiparowits Formation, Utah

    PubMed Central

    Boyd, Clint A.; Drumheller, Stephanie K.; Gates, Terry A.

    2013-01-01

    Crocodyliforms serve as important taphonomic agents, accumulating and modifying vertebrate remains. Previous discussions of Mesozoic crocodyliform feeding in terrestrial and riverine ecosystems have often focused on larger taxa and their interactions with equally large dinosaurian prey. However, recent evidence suggests that the impact of smaller crocodyliforms on their environments should not be discounted. Here we present direct evidence of feeding by a small crocodyliform on juvenile specimens of a ‘hypsilophodontid’ dinosaur from the Upper Cretaceous (Campanian) Kaiparowits Formation of southern Utah. Diagnostic crocodyliform bite marks present on a left scapula and a right femur, as well as a partial probable crocodyliform tooth crown (ovoid in cross-section) preserved within a puncture on the right femur, comprise the bulk of the feeding evidence. Computed tomography scans of the femoral puncture reveal impact damage to the surrounding bone and that the distal tip of the embedded tooth was missing prior to the biting event. This is only the second reported incidence of a fossil crocodyliform tooth being found embedded directly into prey bone. These bite marks provide insight into the trophic interactions of the ecosystem preserved in the Kaiparowits Formation. The high diversity of crocodyliforms within this formation may have led to accentuated niche partitioning, which seems to have included juvenile dinosaurian prey. PMID:23460882

  12. Selected hydrologic data, Kolob-Alton-Kaiparowits coal-fields area, south-central Utah

    USGS Publications Warehouse

    Plantz, Gerald G.

    1983-01-01

    The Kolob-Alton-Kaiparowits coal-field area (pi. 1) includes about 4,500 square miles in parts of the Colorado River Basin and the Great Basin. The area varies in altitude from less than 4,000 to more than 10,000 feet, and is comprised chiefly of plateaus, benches, and terraces that are dissected by deep, narrow canyons. Principal streams draining the area are the Virgin, Sevier, Escalante, and Paria Rivers, and Coal, Kanab, and Wahweap Creeks.Most of the data included in this report were collected by the U.S. Geological Survey from October 1980 to September 1982. They were collected as part of a hydrologic study in cooperation with the U.S. Bureau of Land Management to evaluate potential impacts of coal mining on the area's water resources. The results of that study are to be published in a separate report.Several earlier coal-related hydrologic studies have been made in the Alton and Kolob coal-fields area. Hydrologic data collected during those studies may be found in the following reports: Goode (1964, 1966), Sandberg (1979), and Cordova (1981). Data collected at the streamflow-gaging stations shown on plate 1 are published separately in annual reports of the U.S. Geological Survey. Information about the availability of these data is given in table 8.The writer extends thanks to Judy Steiger and Dave Darby (former employees of the U.S. Geological Survey) for their contribution to this report. Officials of the following companies and agencies also were helpful and cooperative in providing data: Utah Power & Light Co.; El Paso Natural Gas Co.; U.S. Bureau of Reclamation; and U.S. Bureau of Land Management.

  13. Map showing principal drainage basins, principal runoff-producing areas, and selected stream flow data in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1978-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. Streamflow records used to compile this map and the accompanying table were collected by the U.S. Geological Survey in cooperation with the Utah State Engineer and the Utah Department of Transportation. The principal runoff-producing areas were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Information about Lake Powell was furnished by the U.S. Bureau of Reclamation.

  14. Environmental geologic studies of the Kaiparowits coal-basin area, Utah

    SciTech Connect

    Sargent, K.A.

    1984-01-01

    The Kaiparowits coal-basin area may contain as much as 20 billion tons of coal; it is a major coal-resource area and a potentially important energy supply area for the southwestern United States. However, the economic development of this coal could constitute a possible threat to the great natural beauty of the area. The impact caused by an attendant increase in population would be great. The US Geological Survey in 1975 started a series of studies of the Kaiparowits coal-basin area. The results of these studies are now being published as a folio consisting of 12 earth-resource maps showing hydrology, bedrock and surficial geology, coal resources, landslides, landforms, and scenic features related to geology. These maps are designed to help land-use planners and land developers make intelligent decisions on the most desirable use of this rich and beautiful land. 50 refs., 23 figs.

  15. Pedimentation versus debris-flow origin of plateau-side desert terraces in southern Utah.

    USGS Publications Warehouse

    Williams, V.S.

    1984-01-01

    Plateau-side terraces in arid areas around the world are commonly described as pediment remnants, although, in many cases, they may have been formed by debris-flow deposition. Pediments do exist in the area of the Aquarius and Kaiparowits Plateaus of southern Utah; however, many alluvial terraces that were classified by previous workers as pediments are actually formed of thick deposits of sediment released into valleys by episodic landslide events. Although both pediment and debris-flow depositional terraces have smooth, alluvium-covered upper surfaces, the two can be distinguished by the shape of the underlying bedrock surface and the process of formation. The relation of younger terraces to landsliding is clear, because the terrace surfaces are graded to the toes of slide lobes, but the origin of older terraces is less obvious, because older lobes of slide debris have generally been removed by erosion. -from Author

  16. Hydrogeology of the Markagunt Plateau, Southwestern Utah

    USGS Publications Warehouse

    Spangler, Lawrence E.

    2010-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet and is capped primarily by Quaternary-age basalt that overlies Eocene-age freshwater limestone of the Claron Formation. Over large parts of the Markagunt Plateau, dissolution of the Claron limestone and subsequent collapse of the overlying basalt have produced a terrain characterized by sinkholes as much as 1,000 feet across and 100 feet deep. Numerous large springs discharge from the basalt and underlying limestone on the plateau, including Mammoth Spring, one of the largest springs in Utah, with a discharge that can exceed 300 cubic feet per second. Discharge from Mammoth Spring is from the Claron Formation; however, recharge to the spring largely takes place by both focused and diffuse infiltration through the basalt that caps the limestone. Results of dye tracing to Mammoth Spring indicate that recharge originates largely southwest of the spring outside of the Mammoth Creek watershed, as well as from losing reaches along Mammoth Creek. Maximum groundwater travel time to the spring from dye-tracer tests during the snowmelt runoff period was about 1 week. Specific conductance and water temperature data from the spring show an inverse relation to discharge during snowmelt runoff and rainfall events, also indicating short groundwater residence times. Results of major-ion analyses for samples collected from Mammoth and other springs on the plateau indicate calcium-bicarbonate type water containing low (less than 200 mg/L) dissolved-solids concentrations. Investigations in the Navajo Lake area along the southern margin of the plateau have shown that water losing to sinkholes bifurcates and discharges to both Cascade and Duck Creek Springs, which subsequently flow into the Virgin and Sevier River basins, respectively. Groundwater travel times to these springs, on the basis of dye tracing, were about 8.5 and 53 hours, respectively. Similarly, groundwater travel time from Duck Creek

  17. Geologic map of the Kanab 30' x 60' quadrangle, Utah and Arizona

    USGS Publications Warehouse

    Sable, E.G.; Hereford, Richard

    2004-01-01

    The 1:100,000-scale geologic map of the sparsely populated Kanab 30' x 60' quadrangle in southernmost Utah and a narrow strip in northernmost Arizona delineates 17 formations and numerous subdivisions of sedimentary rock units of Permian, Triassic, Jurassic, Cretaceous, and Tertiary ages; 12 Quaternary alluvial, eolian, and mass-wasting units; and Quaternary basaltic igneous rocks and vents.Units within the Straight Cliffs Formation are correlated with those of the Kaiparowits Plateau. Palynological edidence indicates that the Kaiparowits(?) Formation is older than the type formation in the Kaiparowits Plateau. Structures include parts of the Sevier, Kanab Creek, Johnson Canyon, and Paunsaugunt fault zones. Regional dip is generally northeast at very low angles. Coal beds are presentin the upper unit of the Straight Cliffs Formation, in the Tropic Shale, and in the Dakota Formation.

  18. Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (Late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits formation of Utah

    NASA Astrophysics Data System (ADS)

    Carr, Thomas D.; Williamson, Thomas E.; Britt, Brooks B.; Stadtman, Ken

    2011-03-01

    The fossil record of late Campanian tyrannosauroids of western North America has a geographic gap between the Northern Rocky Mountain Region (Montana, Alberta) and the Southwest (New Mexico, Utah). Until recently, diagnostic tyrannosauroids from the Southwest were unknown until the discovery of Bistahieversor sealeyi from the late Campanian of New Mexico. Here we describe an incomplete skull and postcranial skeleton of an unusual tyrannosaurid from the Kaiparowits Formation (Late Cretaceous) of Utah that represents a new genus and species, Teratophoneus curriei. Teratophoneus differs from other tyrannosauroids in having a short skull, as indicated by a short and steep maxilla, abrupt angle in the postorbital process of the jugal, laterally oriented paroccipital processes, short basicranium, and reduced number of teeth. Teratophoneus is the sister taxon of the Daspletosaurus + Tyrannosaurus clade and it is the most basal North American tyrannosaurine. The presence of Teratophoneus suggests that dinosaur faunas were regionally endemic in the west during the upper Campanian. The divergence in skull form seen in tyrannosaurines indicates that the skull in this clade had a wide range of adaptive morphotypes.

  19. Evidence for high taxonomic and morphologic tyrannosauroid diversity in the Late Cretaceous (late Campanian) of the American Southwest and a new short-skulled tyrannosaurid from the Kaiparowits Formation of Utah.

    PubMed

    Carr, Thomas D; Williamson, Thomas E; Britt, Brooks B; Stadtman, Ken

    2011-03-01

    The fossil record of late Campanian tyrannosauroids of western North America has a geographic gap between the Northern Rocky Mountain Region (Montana, Alberta) and the Southwest (New Mexico, Utah). Until recently, diagnostic tyrannosauroids from the Southwest were unknown until the discovery of Bistahieversor sealeyi from the late Campanian of New Mexico. Here we describe an incomplete skull and postcranial skeleton of an unusual tyrannosaurid from the Kaiparowits Formation (Late Cretaceous) of Utah that represents a new genus and species, Teratophoneus curriei. Teratophoneus differs from other tyrannosauroids in having a short skull, as indicated by a short and steep maxilla, abrupt angle in the postorbital process of the jugal, laterally oriented paroccipital processes, short basicranium, and reduced number of teeth. Teratophoneus is the sister taxon of the Daspletosaurus + Tyrannosaurus clade and it is the most basal North American tyrannosaurine. The presence of Teratophoneus suggests that dinosaur faunas were regionally endemic in the west during the upper Campanian. The divergence in skull form seen in tyrannosaurines indicates that the skull in this clade had a wide range of adaptive morphotypes.

  20. Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With its myriad of canyons, unusual rock formations and ancient lakebeds, Utah is a geologist's playground. This true-color image of Utah was acquired on June 20, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The dark aquamarine feature in the northern part of the state is the Great Salt Lake. Fourteen thousand years ago, the Great Salt Lake was part of Lake Bonneville, which covered much of northern and western Utah. The extent of the lakebed can be seen in light tan covering much of northern and western Utah and extending into Idaho. (Click for more details on the history of Lake Bonneville.) Other remnants of Lake Bonneville include the Great Salt Lake Desert (the white expanse to the left of the Great Salt Lake) and Lake Utah (the lake to the south of Salt Lake City). The white color of the Great Salt Lake Desert is due to the mineral deposits left by Lake Bonneville as it drained out into the Snake River and then proceeded to dry up. The dark bands running through the center and northeastern part of the state are the western edge of the Rockies. The dark color is likely due to the coniferous vegetation that grows along the range. The tallest mountains in the Utah Rockies are the Uinta Mountains, which can be seen in the northeastern corner of the state bordering Colorado and Wyoming. The white fishbone pattern in the center of the Uinta Mountains is snow that hadn't yet melted. To the southeast, one can see the reddish-orange rocks of the northernmost section of the Colorado Plateau. Utah's well-known desert attractions, including Arches National Park, Canyonlands National Park, and Glen Canyon, are located in this region. The long, narrow lake is Lake Powell, created after the construction of Glen Canyon Dam in the 1950s. Image courtesy NASA MODIS Science Team

  1. Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With its myriad of canyons, unusual rock formations and ancient lakebeds, Utah is a geologist's playground. This true-color image of Utah was acquired on June 20, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The dark aquamarine feature in the northern part of the state is the Great Salt Lake. Fourteen thousand years ago, the Great Salt Lake was part of Lake Bonneville, which covered much of northern and western Utah. The extent of the lakebed can be seen in light tan covering much of northern and western Utah and extending into Idaho. (Click for more details on the history of Lake Bonneville.) Other remnants of Lake Bonneville include the Great Salt Lake Desert (the white expanse to the left of the Great Salt Lake) and Lake Utah (the lake to the south of Salt Lake City). The white color of the Great Salt Lake Desert is due to the mineral deposits left by Lake Bonneville as it drained out into the Snake River and then proceeded to dry up. The dark bands running through the center and northeastern part of the state are the western edge of the Rockies. The dark color is likely due to the coniferous vegetation that grows along the range. The tallest mountains in the Utah Rockies are the Uinta Mountains, which can be seen in the northeastern corner of the state bordering Colorado and Wyoming. The white fishbone pattern in the center of the Uinta Mountains is snow that hadn't yet melted. To the southeast, one can see the reddish-orange rocks of the northernmost section of the Colorado Plateau. Utah's well-known desert attractions, including Arches National Park, Canyonlands National Park, and Glen Canyon, are located in this region. The long, narrow lake is Lake Powell, created after the construction of Glen Canyon Dam in the 1950s. Image courtesy NASA MODIS Science Team

  2. Selected coal-related ground-water data, Wasatch Plateau-Book Cliffs area, Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1979-01-01

    The Wasatch Plateau-Book Cliffs%area as used in this report consists of about 8,000 square miles in east-central Utah. The major geographic features included in the area are the Wasatch Plateau, Book Cliffs, San Rafael Swell, Price River basin, and a small part of the Green River basin (pl. 1). The area is defined by approximate drainage-divide boundaries in the Wasatch Plateau and Book Cliffs, by an arbitrary boundary on the south, and by the Utah-Colorado State line on the east.The Wasatch Plateau-Book Cliffs area includes all the operating coal mines in Utah in 1978. Annual coal production in the area is expected to increase from the current (1978) rate of about 8 million tons to as much as 30 million tons within the next 10 years (J. W. Moffitt, U.S. Geological Survey, oral commun., 1978). Ground water is an important source of water supply in the area. As mining increases and mining-related municipalities grow, many sources of ground-water supply may be subjected to increased demands and possibly degradation of chemical quality.Waddell, Vickers, Upton, and Contratto (1978) reported some ground- water data after a reconnaissance of part of the area. The purpose of this report, which was prepared in cooperation with the U.S. Bureau of Land Management, is to present a more detailed compilation of ground-water-related data that were collected and compiled during October 1976 to March 1978. The report is designed to make the data available in an orderly and usable form for local and regional water managers and other users of water data.

  3. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  4. Hydrologic reconnaissance of the Wasatch Plateau-Book Cliffs coal-fields area, Utah

    USGS Publications Warehouse

    Waddell, Kidd M.; Contratto, P. Kay; Sumsion, C.T.; Butler, John R.

    1981-01-01

    Data obtained during a hydrologic reconnaissance in 1975-77 in the Wasatch Plateau-Book Cliffs coal-fields area of Utah were correlated with existing long-term data. Maps were prepared showing average precipitation, average streamflow, stream temperature, ground- and surface-water quality, sediment yield, and geology. Recommendations were made for additional study and suggested approaches for continued monitoring in the coalfields areas.moDuring the 1931-75 water years, the minimum discharges for the five major streams that head in the area ranged from about 12,000 to 26,000 acre-feet per year, and the maximum discharges ranged from about 59,000 to 315,000 acre-feet per year. Correlations indicate that 3 years of low-flow records at stream sites in the Wasatch Plateau would allow the development of relationships with long-term sites that can be used to estimate future low-flow records within a standard error of about 20 percent.Most water-quality degradation in streams occurs along the flanks of the Wasatch Plateau and Book Cliffs. In the uplands, dissolved-solids concentrations generally ranged from less than 100 to about 250 milligrams per liter, and in the lowlands, the concentrations ranged from about 250 to more than 6,000 milligrams per liter.Most springs in the Wasatch Plateau and Book Cliffs discharge from the Star Point Sandstone or younger formations, and the water generally contains less than about 1,000 milligrams per liter of dissolved solids. The discharges of 65 springs ranged from about 0.2 to 200 gallons per minute. The Blackhawk Formation, which is the principal coal-bearing formation, produces water in many of the mines. The dissolved-solids concentration in water discharging from springs and mines in the Blackhawk ranged from about 60 to 800 milligrams per liter.In the lowland areas, the Ferron Sandstone Member of the Maneos Shale appears to have the most potential for subsurface development of water of suitable chemical quality for human

  5. A bimillennial-length tree-ring reconstruction of precipitation for the Tavaputs Plateau, Northeastern Utah

    NASA Astrophysics Data System (ADS)

    Knight, Troy A.; Meko, David M.; Baisan, Christopher H.

    2010-01-01

    Despite the extensive network of moisture-sensitive tree-ring chronologies in western North America, relatively few are long enough to document climatic variability before and during the Medieval Climate Anomaly (MCA) ca. AD 800-1300. We developed a 2300-yr tree-ring chronology extending to 323 BC utilizing live and remnant Douglas-fir ( Pseudotsuga menziesii) from the Tavaputs Plateau in northeastern Utah. A resulting regression model accounts for 70% of the variance of precipitation for the AD 1918-2005 calibration period. Extreme wet and dry periods without modern analogues were identified in the reconstruction. The MCA is marked by several prolonged droughts, especially prominent in the mid AD 1100s and late 1200s, and a lack of wet or dry single-year extremes. The frequency of extended droughts is not markedly different, however, than before or after the MCA. A drought in the early AD 500s surpasses in magnitude any other drought during the last 1800 yr. A set of four long high-resolution records suggests this drought decreased in severity toward the south in the western United States. The spatial pattern is consistent with the western dipole of moisture anomaly driven by El Niño and is also similar to the spatial footprint of the AD 1930s "Dust Bowl" drought.

  6. Niche Filtering of Bacteria in Soil and Rock Habitats of the Colorado Plateau Desert, Utah, USA

    PubMed Central

    Lee, Kevin C.; Archer, Stephen D. J.; Boyle, Rachel H.; Lacap-Bugler, Donnabella C.; Belnap, Jayne; Pointing, Stephen B.

    2016-01-01

    A common feature of microbial colonization in deserts is biological soil crusts (BSCs), and these comprise a complex community dominated by Cyanobacteria. Rock substrates, particularly sandstone, are also colonized by microbial communities. These are separated by bare sandy soil that also supports microbial colonization. Here we report a high-throughput sequencing study of BSC and cryptoendolith plus adjacent bare soil communities in the Colorado Plateau Desert, Utah, USA. Bare soils supported a community with low levels of recoverable DNA and high evenness, whilst BSC yielded relatively high recoverable DNA, and reduced evenness compared to bare soil due to specialized crust taxa. The cryptoendolithic community displayed the greatest evenness but the lowest diversity, reflecting the highly specialized nature of these communities. A strong substrate-dependent pattern of community assembly was observed, and in particular cyanobacterial taxa were distinct. Soils were virtually devoid of photoautotrophic signatures, BSC was dominated by a closely related group of Microcoleus/Phormidium taxa, whilst cryptoendolithic colonization in sandstone supported almost exclusively a single genus, Chroococcidiopsis. We interpret this as strong evidence for niche filtering of taxa in communities. Local inter-niche recruitment of photoautotrophs may therefore be limited and so communities likely depend significantly on cyanobacterial recruitment from distant sources of similar substrate. We discuss the implication of this finding in terms of conservation and management of desert microbiota. PMID:27725810

  7. Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA

    USGS Publications Warehouse

    White, S.P.; Allis, R.G.; Moore, J.; Chidsey, T.; Morgan, C.; Gwynn, W.; Adams, M.

    2005-01-01

    This paper investigates injection of CO2 into non-dome-shaped geological structures that do not provide the traps traditionally deemed necessary for the development of artificial CO2 reservoirs. We have developed a conceptual and two numerical models of the geology and groundwater along a cross-section lying approximately NW-SE and in the vicinity of the Hunter power station on the Colorado Plateau, Central Utah and identified a number of potential sequestration sites on this cross-section. Preliminary modeling identified the White Rim Sandstone as appearing to offer the properties required of a successful sequestration site. Detailed modeling of injection of CO2 into the White Rim Sandstone using the reactive chemical simulator ChemTOUGH found that 1000 years after the 30 year injection period began approximately 21% of the injected CO2 was permanently sequestered as a mineral, 52% was beneath the ground surface as a gas or dissolved in the groundwater and 17% had leaked to the surface and leakage to the surface was continuing. ?? 2005 Elsevier B.V. All rights reserved.

  8. Hydrology of coal-resource areas in the southern Wasatch Plateau, central Utah

    USGS Publications Warehouse

    Danielson, T.W.; Sylla, D.A.

    1982-01-01

    The study defines the surface and groundwater hydrology of coal-resources areas in the Southern Wasatch Plateau in Central Utah and, where possible, predicts the hydrologic impacts of underground mining. Discharge data at four streamflow gaging stations indicated that from 5 to 29% of the average annual precipitation on a drainage runs off streams, mainly during the snowmelt period (spring and summer). Most of the base flow of streams originates as spring discharge in the higher altitudes of drainages. Peak flows, average 7-day flood flows, and flood depths were related to basin characteristics in order to develop flood equations for ungaged sites. Chemical quality of surface water was suitable for most uses. Dissolved-solids concentrations ranged from 97 to 835 milligrams per liter in 61 samples collected throughout the area. Data from wells and coal-test holes, and a comprehensive spring inventory indicate that groundwater occurs in all geologic units exposed in the study area. The coal-bearing Blackhawk Formation and underlying Star Point Sandstone are saturated in most areas. Some future mining operations would require dewatering of the Star Point-Blackhawk aquifer. Most of the springs issue from the Flagstaff Limestone and North Horn Formation above the Star Point-Blackhawk aquifer. It is not known whether water in the Flagstaff and North Horn is perched. Dissolved-solids concentrations in groundwater ranged from 105 to 1,080 milligrams per liter in 87 analyzed samples. Water levels in wells, the discharge of springs, benthic invertebrates in streams, and quantity and quality of mine effluents all need to be monitored in order to detect changes in the hydrologic system caused by coal mining. (USGS)

  9. Land and federal mineral ownership coverage for the Uinta Basin, Wasatch Plateau and surrounding areas, northeastern Utah

    USGS Publications Warehouse

    Biewick, L.H.; Green, G.A.

    1999-01-01

    This Arc/Info coverage contains land status and Federal and State mineral ownership for approximately 25,900 square miles in northeastern Utah. The polygon coverage (which is also provided here as a shapefile) contains three attributes of ownership information for each polygon. One attribute indicates whether the surface is State owned, privately owned, consists of Tribal and Indian lands, or, if Federally owned, which Federal agency manages the land surface. Another attribute indicates where the Utah School and Institutional Trust Lands Administration (SITLA) maintains full or partial subsurface mineral rights. The third attribute indicates which energy minerals, if any, are owned by the Federal govenment. This coverage is based on land management status and Federal and State mineral ownership data compiled by the U.S. Geological Survey (USGS), the former U.S. Bureau of Mines (USBM), and the Utah School and Institutional Trust Lands Administration at a scale of 1:100,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.

  10. Formation of Potholes by Surficial and Endolithic Bacteria on the Colorado Plateau Near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Hughes, K.; Southam, G.

    2004-05-01

    The area of the Colorado Plateau near Moab, Utah is home to an ecosystem delicately balanced on a substrate of Triassic and Jurassic aeolian sandstones with little to no soil. Any surface feature in which the limited precipitation can be captured helps sustain the desert life in this semi-arid environment. Naturally occurring "potholes" fulfill this function in certain sandstone surfaces. Potholes range in size from shallow depressions to large swimming-pool sized features that can retain water throughout most of the year. In this study we focused on circular potholes that showed no indication of joint control, and held 5 to 9 gallons of water. Their formation is controlled by three types of bacterial growth: 1)black biofilms that line each pothole, 2)bacteria in the accumulated bottom sediments of the potholes and 3)the ubiquitous cryptoendolithic cyanobacterial communities found centimetres beneath the surface of the host sandstone. On-site and in-lab water testing were conducted during the dry season with de-ionized water to quantify the of ion concentrations extracted from the rock as an estimate of the overall bacterial activity and to determine what in the arenitic quartz sandstones is providing sustenance to these communities. ICP-MS showed elevated Ca++ (up to 14 mg/L) and Si++ (up to 2 mg/L) ion concentrations indicating that the calcite cement as well as the quartz grains are being dissolved. Daily fluctuations in phosphate levels were also observed which correlate with on-site water monitoring that showed pronounced diurnal cycling of pH values, between pH 8 and 10, indicating biological activity. Further exploration was conducted using SEM studies identified thick biofilms coating the sandstone surface as well as large fungal populations. The electron microprobe was used to determine distributions of ions in feldspar grains across the grain profile in areas exposed to the biofilms to determine if any local leaching had occurred. Our investigations show

  11. Utah lotus: North American legume for rangeland revegetation in southern Great Basin and Colorado Plateau

    USDA-ARS?s Scientific Manuscript database

    Utah lotus (Lotus utahensis Ottley) is a North American leguminous forb that may hold promise for rangeland revegetation in the western USA for diversifying planting mixtures, attracting pollinators, providing high quality forage, and expanding habitats for insects needed by sage grouse chicks. We ...

  12. Lithosequence of soils and associated vegetation on subalpine range of the Wasatch Plateau, Utah.

    Treesearch

    James O. Klemmedson; Arthur R. Tiedemann

    1998-01-01

    On degraded subalpine range in Utah, the authors examined the role of soil and parent material nutrients and organic carbon (Corg) in the development of soil and plants on a transect across six strata that formed visible concentric alternating bands of high and low productivity. Relations for soil and parent material phosphorus (P) and sulfur (S) were of particular...

  13. Geologic Assessment of Coal in the Colorado Plateau: Arizona, Colorado, New Mexico, and Utah

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Roberts, Lauara N.R.; Biewick, Laura R.H.

    2000-01-01

    This CD-ROM set contains a geologic assessment of coal deposits of the Colorado Plateau region and new resource estimates for selected assessment units within the Colorado Plateau. Original resource estimates (in-place resources before production) for the 12 priority assessment units of the Colorado Plateau exceed one half trillion short tons of coal in beds greater than 1 ft thick and under less than 6,000 ft of overburden. The coal is high quality and low sulfur, and a portion of these resources will provide future energy production for the Nation. Disc 1, in Portable Document Format, contains results of the assessment in summary and (or) technical reports for 12 priority coal assessment units in the Colorado Plateau and also contains an ArcView Data Publisher project, which is an interactive geographic information system of digital data collected during the assessment. Disc 2 contains stratigraphic data bases for seven of the priority coal assessment areas within the Colorado Plateau region and an ArcView project identical to the ArcView Data Publisher project on disc 1 except that it retains some of the functionality that is disabled in the ArcView Data Publisher program.

  14. Survey of literature relating to energy development in Utah's Colorado Plateau

    SciTech Connect

    Larsen, A.

    1980-06-01

    This study examines various energy resources in Utah including oil impregnated rocks (oil shale and oil sand deposits), geothermal, coal, uranium, oil and natural gas in terms of the following dimensions: resurce potential and location; resource technology, development and production status; resource development requirements; potential environmental and socio-economic impacts; and transportation tradeoffs. The advantages of minemouth power plants in comparison to combined cycle or hybrid power plants are also examined. Annotative bibliographies of the energy resources are presented in the appendices. Specific topics summarized in these annotative bibliographies include: economics, environmental impacts, water requirements, production technology, and siting requirements.

  15. Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA.

    PubMed

    Johnson, William P; Frederick, Logan E; Millington, Mallory R; Vala, David; Reese, Barbara K; Freedman, Dina R; Stenten, Christina J; Trauscht, Jacob S; Tingey, Christopher E; Kip Solomon, D; Fernandez, Diego P; Bowen, Gabriel J

    2015-11-01

    Similar to fracking, the development of tar sand mining in the U.S. has moved faster than understanding of potential water quality impacts. Potential water quality impacts of tar sand mining, processing, and disposal to springs in canyons incised approximately 200 m into the Tavaputs Plateau, at the Uinta Basin southern rim, Utah, USA, were evaluated by hydrogeochemical sampling to determine potential sources of recharge, and chemical thermodynamic estimations to determine potential changes in transfer of bitumen compounds to water. Because the ridgetops in an area of the Tavaputs Plateau named PR Spring are starting to be developed for their tar sand resource, there is concern for potential hydrologic connection between these ridgetops and perennial springs in adjacent canyons on which depend ranching families, livestock, wildlife and recreationalists. Samples were collected from perennial springs to examine possible progression with elevation of parameters such as temperature, specific conductance, pH, dissolved oxygen, isotopic tracers of phase change, water-rock interaction, and age since recharge. The groundwater age dates indicate that the springs are recharged locally. The progression of hydrogeochemical parameters with elevation, in combination with the relatively short groundwater residence times, indicate that the recharge zone for these springs includes the surrounding ridges, and thereby suggests a hydrologic connection between the mining, processing, disposal area and the springs. Estimations based on chemical thermodynamic approaches indicate that bitumen compounds will have greatly enhanced solubility in water that comes into contact with the residual bitumen-solvent mixture in disposed tailings relative to water that currently comes into contact with natural tar.

  16. Evaluation of undiscovered natural gas in the Upper Cretaceous Ferron Coal/Wasatch Plateau Total Petroleum System, Wasatch Plateau and Castle Valley, Utah

    USGS Publications Warehouse

    Henry, M.E.; Finn, T.M.

    2003-01-01

    The Total Petroleum System approach was used to estimate undiscovered gas potential of the Wasatch Plateau and Castle Valley, central Utah. The Ferron Coal/Wasatch Plateau Total Petroleum System was geologically defined and subdivided into seven assessment units, six of which were formally evaluated. Geologic data considered in defining the assessment unit boundaries included thermal maturity, coal presence and thickness, overburden thickness, and faulting intensity. Historical production data were also used to estimate volumes of gas from undrilled areas. The one conventional assessment unit includes almost the entire area of the petroleum system and is characterized by known accumulations that occur in structural or combination traps in sandstone reservoirs. The estimated undiscovered conventional producible gas that may be added to reserves of this unit ranges from a low (F95) of 14.8 billion cubic feet (BCFG) [419 million cubic meters (Mm3)] of gas to a high (F5) of 82 BCFG [2321 Mm3] and a mean value of 39.9 BCFG [1130 Mm3]. Continuous gas accumulations are those in which the entire assessment unit is considered to be gas-charged. Within these assessment units, there may be wells drilled that are not economic successes but all are expected to contain gas. Coalbed gas is in this continuous category. Mean estimates of undiscovered gas for the five continuous assessment units are: (1) Northern Coal Fairway/Drunkards Wash-752.3 BCFG [21,323 Mm3]; (2) Central Coal Fairway/Buzzard Bench-536.7 BCFG [15,194 Mm3]; (3) Southern Coal Fairway-152.6 BCFG [4320 Mm3]; (4) Deep (6000 feet plus) Coal and Sandstone-59.1 BCFG [1673 Mm3]; (5) Southern Coal Outcrop-10.6 BCFG [300 Mm3]; and Joes Valley and Musinia Grabens-not assessed.The mean estimate of undiscovered gas for the entire TPS is 1551.2 BCFG [43,914 Mm3]. There is a 95% chance that at least 855.7 BCFG [24,225 Mm3] and a 5% chance that at least 2504 BCFG [70,888 Mm3] of undiscovered producible gas remain in the TPS

  17. Lithospheric dismemberment and magmatic processes of the Great Basin-Colorado Plateau transition, Utah, implied from magnetotellurics

    NASA Astrophysics Data System (ADS)

    Wannamaker, Philip E.; Hasterok, Derrick P.; Johnston, Jeffery M.; Stodt, John A.; Hall, Darrell B.; Sodergren, Timothy L.; Pellerin, Louise; Maris, Virginie; Doerner, William M.; Groenewold, Kim A.; Unsworth, Martyn J.

    2008-05-01

    To illuminate rifting processes across the Transition Zone between the extensional Great Basin and stable Colorado Plateau interior, we collected an east-west profile of 117 wideband and 30 long-period magnetotelluric (MT) soundings along latitude 38.5°N from southeastern Nevada across Utah to the Colorado border. Regularized two-dimensional inversion shows a strong lower crustal conductor below the Great Basin and its Transition Zone in the 15-35 km depth range interpreted as reflecting modern basaltic underplating, hybridization, and hydrothermal fluid release. This structure explains most of the geomagnetic variation anomaly in the region first measured in the late 1960s. Hence, the Transition Zone, while historically included with the Colorado Plateau physiographically, possesses a deep thermal regime and tectonic activity like that of the Great Basin. The deep crustal conductor is consistent with a rheological profile of a brittle upper crust over a weak lower crust, in turn on a stronger upper mantle (jelly sandwich model). Under the incipiently faulted Transition Zone, the conductor implies a vertically nonuniform mode of extension resembling early stages of continental margin formation. Colorado Plateau lithosphere begins sharply below the western boundary of Capitol Reef National Park as a resistive keel in the deep crust and upper mantle, with only a thin and weak Moho-level crustal conductor near 45 km depth. Several narrow, steep conductors connect conductive lower crust with major surface faulting, some including modern geothermal systems, and in the context of other Great Basin MT surveying suggest connections between deep magma-sourced fluids and the upper crustal meteoric regime. The MT data also suggest anisotropically interconnected melt over a broad zone in the upper mantle of the eastern Great Basin which has supplied magma to the lower crust, consistent with extensional mantle melting models and local shear wave splitting observations. We

  18. Rock formations in the Colorado Plateau of Southeastern Utah and Northern Arizona

    USGS Publications Warehouse

    Longwell, C.R.; Miser, H.D.; Moore, R.C.; Bryan, Kirk; Paige, Sidney

    1925-01-01

    The field work of which this report is a record was done in the summer and fall of 1921 by members of the United States Geological Survey. A project to build a large storage dam at Lees Ferry, on Colorado River in northern Arizona, called for a detailed topographic survey of the area covered by the project, for the purpose of determining the capacity of the reservoir. This work was undertaken by the United States Geological Survey in cooperation with the Southern California Edison Co. Three surveying parties were sent to the field, each accompanied by a geologist, whose specific duty was to study and report on the rock formations within the area to be flooded. One topographic party, under A. T. Fowler, which started at Lees Ferry and worked up stream in Arizona, was accompanied by Kirk Bryan. Another party, under K. W. Trimble, which started near Bluff and worked down the San Juan and thence down the Colorado, was accompanied by H. D. Miser. The third party, under W. R. Chenoweth, worked from Fremont River to the Waterpocket Fold and then returned to Green River, Utah, and traversed Cataract Canyon during the period of low water. C. R. Longwell was with this party until September, when his place was taken by Sidney Paige. Mr. Paige, in company with the Kolb brothers, E. C. La Rue, and Henry Ranch, left the Chenoweth party after Cataract Canyon had been surveyed and rowed down the Colorado to the mouth of the San Juan, where they were joined by Mr. Miser. Then they took a hurried trip by boat down the Colorado to Lees Ferry, making a few short stops and visiting the famous Rainbow Bridge. Thus the geology of the canyons of Colorado and San Juan rivers and of the lower parts of tributary canyons was examined continuously, and reconnaissance work was done in the country back from the rivers. At the same time a fourth party, under R. C. Moore, was mapping parts of Kane, Garfield, and Wayne counties, Utah, to determine whether oil might be found there. The present paper

  19. Hydrogeology of the Mammoth Spring groundwater basin and vicinity, Markagunt Plateau, Garfield, Iron, and Kane Counties, Utah

    USGS Publications Warehouse

    Spangler, Lawrence E.

    2012-01-01

    The Markagunt Plateau, in southwestern Utah, lies at an altitude of about 9,500 feet, largely within Dixie National Forest. The plateau is capped primarily by Tertiary- and Quaternary-age volcanic rocks that overlie Paleocene- to Eocene-age limestone of the Claron Formation, which forms escarpments on the west and south sides of the plateau. In the southwestern part of the plateau, an extensive area of sinkholes has formed that resulted primarily from dissolution of the underlying limestone and subsequent subsidence and (or) collapse of the basalt, producing sinkholes as large as 1,000 feet across and 100 feet deep. Karst development in the Claron Formation likely has been enhanced by high infiltration rates through the basalt. Numerous large springs discharge from the volcanic rocks and underlying limestone on the Markagunt Plateau, including Mammoth Spring, one of the largest in Utah, with discharge that ranges from less than 5 to more than 300 cubic feet per second (ft3/s). In 2007, daily mean peak discharge of Mammoth Spring was bimodal, reaching 54 and 56 ft3/s, while daily mean peak discharge of the spring in 2008 and in 2009 was 199 ft3/s and 224 ft3/s, respectively. In both years, the rise from baseflow, about 6 ft3/s, to peak flow occurred over a 4- to 5-week period. Discharge from Mammoth Spring accounted for about 54 percent of the total peak streamflow in Mammoth Creek in 2007 and 2008, and about 46 percent in 2009, and accounted for most of the total streamflow during the remainder of the year. Results of major-ion analyses for water samples collected from Mammoth and other springs on the plateau during 2006 to 2009 indicated calcium-bicarbonate type water, which contained dissolved-solids concentrations that ranged from 91 to 229 milligrams per liter. Concentrations of major ions, trace elements, and nutrients did not exceed primary or secondary drinking-water standards; however, total and fecal coliform bacteria were present in water from Mammoth and

  20. Petrologic and isotopic data from the Cretaceous (Campanian) Blackhawk Formation and Star Point Sandstone (Mesaverde Group), Wasatch Plateau, Utah

    USGS Publications Warehouse

    Fishman, Neil S.; Turner, Christine E.; Peterson, Fred

    2013-01-01

    The presence of discrete minerals associated with coal—whether (1) detrital or authigenic constituents of the coals or in thin mudstone or siltstone units interbedded with coals, or (2) authigenic phases that formed along cleats—might influence its utilization as an energy resource. The build-up of sintered ash deposits on the surfaces of heat exchangers in coal-fired power plants, due to the alteration of minerals during combustion of the coal, can seriously affect the functioning of the boiler and enhance corrosion of combustion equipment. In particular, the presence of sodium in coals has been considered a key factor in the fouling of boilers; however, other elements (such as calcium or magnesium) and the amount of discrete minerals burned with coal can also play a significant role in the inefficiency of and damage to boilers. Previous studies of the quality of coals in the Cretaceous (Campanian) Blackhawk Formation of the Wasatch Plateau, Utah, revealed that the sodium content of the coals varied across the region. To better understand the origin and distribution of sodium in these coals, petrologic studies were undertaken within a sedimentological framework to evaluate the timing and geochemical constraints on the emplacement of sodium-bearing minerals, particularly analcime, which previously had been identified in coals in the Blackhawk Formation. Further, the study was broadened to include not just coals in the Blackhawk Formation from various localities across the Wasatch Plateau, but also sandstones interbedded with the coals as well as sandstones in the underlying Star Point Sandstone. The alteration history of the sandstones in both formations was considered a key component of this study because it records the nature and timing of fluids passing through them and the associated precipitation of sodium-bearing minerals; thus, the alteration history could place constraints on the distribution and timing of sodium mineralization in the interbedded or

  1. Fish Lake, Utah - a promising long core site straddling the Great Basin to Colorado Plateau transition zone

    NASA Astrophysics Data System (ADS)

    Marchetti, D. W.; Abbott, M. B.; Bailey, C.; Wenrich, E.; Stoner, J. S.; Larsen, D. J.; Finkenbinder, M. S.; Anderson, L.; Brunelle, A.; Carter, V.; Power, M. J.; Hatfield, R. G.; Reilly, B.; Harris, M. S.; Grimm, E. C.; Donovan, J.

    2015-12-01

    Fish Lake (~7x1.5 km and 2696 m asl) is located on the Fish Lake Plateau in central Utah. The Lake occupies a NE-striking tectonic graben; one of a suite of grabens on the Plateau that cut 21-26 Ma volcanic rocks. The lake outflows via Lake Creek to the NE where it joins Sevenmile Creek to become the Fremont River, a tributary to the Colorado River. A bathymetric survey reveals a mean depth of 27 m and a max depth of 37.2 m. The lake bottom slopes from NW to SE with the deepest part near the SE wall, matching the topographic expression of the graben. Nearby Fish Lake Hightop (3545 m) was glaciated with an ice field and outlet glaciers. Exposure ages indicate moraine deposition during Pinedale (15-23 ka) and Bull Lake (130-150 ka) times. One outlet glacier at Pelican Canyon deposited moraines and outwash into the lake but the main basin of the lake was never glaciated. Gravity measurements indicate that lake sediments thicken toward the SE side of the lake and the thickest sediment package is modeled to be between 210 and 240 m. In Feb 2014 we collected cores from Fish Lake using a 9-cm diameter UWITECH coring system in 30.5 m of water. A composite 11.2-m-long core was constructed from overlapping 2 m drives that were taken in triplicate to ensure total recovery and good preservation. Twelve 14C ages and 3 tephra layers of known age define the age model. The oldest 14C age of 32.3±4.2 cal ka BP was taken from 10.6 m. Core lithology, CT scans, and magnetic susceptibility (ms) reveal three sediment packages: an organic-rich, low ms Holocene to post-glacial section, a fine-grained, minerogenic glacial section with high ms, and a short section of inferred pre-LGM sediment with intermediate composition. Extrapolating the age model to the maximum estimated sediment thicknesses suggest sediments may be older than 500-700 ka. Thus Fish Lake is an ideal candidate for long core retrieval as it likely contains paleoclimatic records extending over multiple glacial cycles.

  2. Nevada and Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Roughly centered on the state of Utah, this MODIS true-color image shows the Great Salt Lake in Utah's northern panhandle. In the southern part of the state, the reddish rock of the Colorado Plateau extends southward into Arizona. To the west is Nevada.

  3. Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun; Han, Weon Shik; Watson, Z. T.; Graham, Jack P.; Kim, Kue-Young

    2014-10-01

    The study investigated a natural analogue for soil CO2 fluxes where CO2 has naturally leaked on the Colorado Plateau, East-Central Utah in order to identify various factors that control CO2 leakage and to understand regional-scale CO2 leakage processes in fault systems. The total 332 and 140 measurements of soil CO2 flux were made at 287 and 129 sites in the Little Grand Wash (LGW) and Salt Wash (SW) fault zones, respectively. Measurement sites for CO2 flux involved not only conspicuous CO2 degassing features (e.g., CO2-driven springs/geysers) but also linear features (e.g., joints/fractures and areas of diffusive leakage around a fault damage zone). CO2 flux anomalies were mostly observed along the fault traces. Specifically, CO2 flux anomalies were focused in the northern footwall of the both LGW and SW faults, supporting the existence of north-plunging anticlinal CO2 trap against south-dipping faults as well as higher probability of the north major fault traces as conduits. Anomalous CO2 fluxes also appeared in active travertines adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). These observations indicate that CO2 has escaped through those pathways and that CO2 leakage from these fault zones does not correspond to point source leakage. The magnitude of CO2 flux is progressively reduced from north (i.e. the LGW fault zone, ∼36,259 g m-2 d-1) to south (i.e. the SW fault zone, ∼1,428 g m-2 d-1) despite new inputs of CO2 and CO2-saturated brine to the northerly SW fault from depth. This discrepancy in CO2 flux is most likely resulting from the differences in fault zone architecture and associated permeability structure. CO2-rich fluids from the LGW fault zone may become depleted with respect to CO2 during lateral transport, resulting in an additional decrease in CO2 fluxes

  4. Quality of life on the Colorado Plateau: A report to camera-survey collaborators in southeast Utah

    USGS Publications Warehouse

    Taylor, Jonathan G.; Reis-Ruehrwein, Jessica B.; Sexton, Natalie R.; Blahna, Dale J.

    1999-01-01

    In recent years, the goal of the UTC has changed from simply encouraging tourism development to understanding the relationship between tourism and community quality of life. Elements of the new UTC mission include: “make Utah a better place to live by increasing the economic contribution of tourism,” and “protect base resources and maintain quality of life for residents and visitors alike” (Utah Division of Travel Development, 1997). The Social, Economic, and Institutional Analysis Section [SEIAS]/ Midcontinent Ecological Science Center/U.S. Geological Survey conducted this research in late spring through winter of 1997 in an effort to answer those questions posed by the collaboration. This report provides an overview of the research and presents summary results. 

  5. Stratigraphy and structure of the Sevier thrust belt and proximal foreland-basin system in central Utah: A transect from the Sevier Desert to the Wasatch Plateau

    USGS Publications Warehouse

    Lawton, T.F.; Sprinkel, D.A.; Decelles, P.G.; Mitra, G.; Sussman, A.J.; Weiss, M.P.

    1997-01-01

    The Sevier orogenic belt in central Utah comprises four north-northwest trending thrust plates and two structural culminations that record crustal shortening and uplift in late Mesozoic and early Tertiary time. Synorogenic clastic rocks, mostly conglomerate and sandstone, exposed within the thrust belt were deposited in wedge-top and foredeep depozones within the proximal part of the foreland-basin system. The geologic relations preserved between thrust structures and synorogenic deposits demonstrate a foreland-breaking sequence of thrust deformation that was modified by minor out-of-sequence thrust displacement. Structural culminations in the interior part of the thrust belt deformed and uplifted some of the thrust sheets following their emplacement. Strata in the foreland basin indicate that the thrust sheets of central Utah were emplaced between latest Jurassic and Eocene time. The oldest strata of the foredeep depozone (Cedar Mountain Formation) are Neocomian and were derived from the hanging wall of the Canyon Range thrust. The foredeep depozone subsided most rapidly during Albian through Santonian or early Campanian time and accumulated about 2.5 km of conglomeratic strata (Indianola Group). The overlying North Horn Formation accumulated in a wedge-top basin from the Campanian to the Eocene and records propagation of the Gunnison thrust beneath the former foredeep. The Canyon Range Conglomerate of the Canyon Mountains, equivalent to the Indianola Group and the North Horn Formation, was deposited exclusively in a wedge-top setting on the Canyon Range and Pavant thrust sheets. This field trip, a three day, west-to-east traverse of the Sevier orogenic belt in central Utah, visits localities where timing of thrust structures is demonstrated by geometry of cross-cutting relations, growth strata associated with faults and folds, or deformation of foredeep deposits. Stops in the Canyon Mountains emphasize geometry of late structural culminations and relationships of

  6. Aspects of the palynology of the Chinle Formation (Upper Triassic), Colorado Plateau, Arizona, Utah, and New Mexico

    USGS Publications Warehouse

    Scott, Richard A.

    1982-01-01

    This study deals with 16 palynological samples from Arizona, New Mexico, and Utah, that represent six members of the Chinle Formation of Late Triassic age. The samples, in ascending sequence, show a gradual change in the spore-bisaccate ratio from a preponderance of spores to numerical dominance of bisaccate pollen grains. This change is interpreted to indicate a climatic trend toward increasing aridity. The trend is thought to represent the decreasing energy phase of the oldest of three depositional cycles posited by Lupe (1977, 1979). The late Karnian age indicated for the Chinle Formation by pollen and spores is based on material from the lower part of the formation, leaving open the possibility that the upper part of the Chinle may be younger.

  7. 50,000 years of vegetation and climate history on the Colorado Plateau, Utah and Arizona, USA

    USGS Publications Warehouse

    Coats, Larry L.; Cole, Kenneth L.; Mead, Jim I.

    2008-01-01

    Sixty packrat middens were collected in Canyonlands and Grand Canyon National Parks, and these series include sites north of areas that produced previous detailed series from the Colorado Plateau. The exceptionally long time series obtained from each of three sites (> 48,000 14C yr BP to present) include some of the oldest middens yet discovered. Most middens contain a typical late-Wisconsinan glaciation mixture of mesic and xeric taxa, evidence that plant species responded to climate change by range adjustments of elevational distribution based on individual criteria. Differences in elevational range from today for trees and shrubs ranged from no apparent change to as much as 1200 m difference. The oldest middens from Canyonlands NP, however, differ in containing strictly xeric assemblages, including middens incorporating needles of Arizona single-leaf pinyon, far north of its current distribution. Similar-aged middens from the eastern end of Grand Canyon NP contain plants more typical of glacial climates, but also contain fossils of one-seed juniper near its current northern limit in Arizona. Holocene middens reveal the development of modern vegetation assemblages on the Colorado Plateau, recording departures of mesic taxa from low elevation sites, and the arrival of modern dominant components much later.

  8. 50,000 years of vegetation and climate history on the Colorado Plateau, Utah and Arizona, USA

    NASA Astrophysics Data System (ADS)

    Coats, Larry L.; Cole, Kenneth L.; Mead, Jim I.

    2008-09-01

    Sixty packrat middens were collected in Canyonlands and Grand Canyon National Parks, and these series include sites north of areas that produced previous detailed series from the Colorado Plateau. The exceptionally long time series obtained from each of three sites (> 48,000 14C yr BP to present) include some of the oldest middens yet discovered. Most middens contain a typical late-Wisconsinan glaciation mixture of mesic and xeric taxa, evidence that plant species responded to climate change by range adjustments of elevational distribution based on individual criteria. Differences in elevational range from today for trees and shrubs ranged from no apparent change to as much as 1200 m difference. The oldest middens from Canyonlands NP, however, differ in containing strictly xeric assemblages, including middens incorporating needles of Arizona single-leaf pinyon, far north of its current distribution. Similar-aged middens from the eastern end of Grand Canyon NP contain plants more typical of glacial climates, but also contain fossils of one-seed juniper near its current northern limit in Arizona. Holocene middens reveal the development of modern vegetation assemblages on the Colorado Plateau, recording departures of mesic taxa from low elevation sites, and the arrival of modern dominant components much later.

  9. Upper mantle diapers, lower crustal magmatic underplating, and lithospheric dismemberment of the Great Basin and Colorado Plateau regions, Nevada and Utah; implications from deep MT resistivity surveying

    NASA Astrophysics Data System (ADS)

    Wannamaker, P. E.; Doerner, W. M.; Hasterok, D. P.

    2005-12-01

    In the rifted Basin and Range province of the southwestern U.S., a common faulting model for extensional basins based e.g. on reflection seismology data shows dominant displacement along master faults roughly coincident with the main topographic scarp. On the other hand, complementary data such as drilling, earthquake focal mechanisms, volcanic occurrences, and trace indicators such as helium isotopes suggest that there are alternative geometries of crustal scale faulting and material transport from the deep crust and upper mantle in this province. Recent magnetotelluric (MT) profiling results reveal families of structures commonly dominated by high-angle conductors interpreted to reflect crustal scale fault zones. Based mainly on cross cutting relationships, these faults appear to be late Cenozoic in age and are of low resistivity due to fluids or alteration (including possible graphitization). In the Ruby Mtns area of north-central Nevada, high angle faults along the margins of the core complex connect from near surface to a regional lower crustal conductor interpreted to contain high-temperature fluids and perhaps melts. Such faults may exemplify the high angle normal faults upon which the major earthquakes of the Great Basin appear to nucleate. A larger-scale transect centered on Dixie Valley shows major conductive crustal-scale structures connecting to conductive lower crust below Dixie Valley, the Black Rock desert in NW Nevada, and in east-central Nevada in the Monitor-Diamond Valley area. In the Great Basin-Colorado Plateau transition of Utah, the main structures revealed are a series of nested low-angle detachment structures underlying the incipient development of several rift grabens. All these major fault zones appear to overlie regions of particularly conductive lower crust interpreted to be caused by recent basaltic underplating. In the GB-CP transition, long period data show two, low-resistivity upper mantle diapirs underlying the concentrated

  10. Review of Available Water-Quality Data for the Southern Colorado Plateau Network and Characterization of Water Quality in Five Selected Park Units in Arizona, Colorado, New Mexico, and Utah, 1925 to 2004

    USGS Publications Warehouse

    Brown, Juliane B.

    2008-01-01

    Historical water-quality data in the National Park Service Southern Colorado Plateau Network have been collected irregularly and with little followup interpretation, restricting the value of the data. To help address these issues, to inform future water-quality monitoring planning efforts, and to address relevant National Park Service Inventory and Monitoring Program objectives, the U.S. Geological Survey, in cooperation with the National Park Service, compiled, reviewed, and summarized available historical water-quality data for 19 park units in the Southern Colorado Plateau Network. The data are described in terms of availability by major water-quality classes, park unit, site type, and selected identified water sources. The report also describes the geology, water resources, water-quality issues, data gaps, and water-quality standard exceedances identified in five of the park units determined to be of high priority. The five park units are Bandelier National Monument in New Mexico, Canyon de Chelly National Monument in Arizona, Chaco Culture National Historical Park in New Mexico, Glen Canyon National Recreation Area in Arizona and Utah, and Mesa Verde National Park in Colorado. Statistical summaries of water-quality characteristics are presented and considerations for future water-quality monitoring are provided for these five park units.

  11. Rise and Demise of a Southern Laramide Hinterland Plateau, US-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Lawton, T. F.; Clinkscales, C. A.; Jennings, G. R.

    2011-12-01

    New U-Pb geochronology and stratigraphic data sets suggest that an elevated, altiplano-like plateau existed in the backarc region of what is now southern Arizona and southern New Mexico during Late Cretaceous through Paleogene (~28 Ma) time, and indicate that the Laramide province of the US was thus flanked on both its western and southern sides by hinterland plateaus. The Laramide stratigraphic record of southwestern New Mexico and southeastern Arizona formed during a short time period spanning 75-70 Ma, as indicated by numerous, newly-dated, interbedded tuff beds. The Laramide deposits (Fort Crittenden Formation of Arizona, Ringbone and Skunk Ranch Formations of Arizona, Cabullona Group of Sonora), which contain growth strata developed adjacent to steep thrust faults, accumulated in lake and lake-margin fan-delta and alluvial-fan settings on the northern margin of a volcanic arc whose main magmatic locus lay in northeastern Sonora and northwestern Chihuahua. By the end of basin development, the arc had migrated northward to occupy the former depocenters, such that intermediate volcanic rocks interfinger with and overlie the lacustrine deposits, and subvolcanic plutons, one with an age of 69 Ma, intrude and cross-cut thrust faults. Laramide strata unconformably overlie lowermost Upper Cretaceous (~97 Ma) strata and contractional structures are unconformably truncated beneath Oligocene (~33 Ma) volcaniclastic rocks. Detritus derived from the Cretaceous arc is abundant in Campanian fluvial strata (Kaiparowits Formation and Mesaverde Group) of the southern Colorado Plateau. East-west normal faults with as much as 3 km of displacement and a related array of conjugate NW- and NE-striking normal faults, many of these previously interpreted as reverse and transcurrent faults, are widespread in ranges of southern New Mexico and southeastern Arizona. These faults post-date Laramide contractional structures and are in turn cut by Neogene N-S normal faults. The east

  12. Major-element evidence for multiple magma batches in the evolution of Pleistocene and Holocene volcanic rocks of the Markagunt Plateau volcanic field, southwestern Utah

    SciTech Connect

    Nealey, L.D.; Maldonado, F. )

    1993-04-01

    Pearce element ratios (PER) provide an initial understanding of the evolution of Pleistocene and Holocene alkali basalt to trachyandesite magmas of the Markagunt Plateau. The magmas erupted from numerous cinder cones, shield-like centers, and dikes. Vent areas were controlled by structures (e.g., grabens) related to the tectonic evolution of the transition zone between the Basin and Range and Colorado Plateaus provinces. The cinder cone-fed basalt flows and a single dike-fed basalt flow are probably older than shield-fed basalt and trachyandesite flows. Chemically, cinder cone- and dike-fed basalt flows are more mafic than shield-fed basalt flows. Trachyandesite flows are latite and benmoreite (58.7--59.7 wt % SiO[sub 2]). PER analysis of flow chemistry indicates that the shield-fed flows represent at leas three cogenetic magma batches, that cinder cone-fed flows must be related to more than one magma batch, but that all andesite is genetically related to a common parent magma. The dike-fed basalt flow is not genetically related to any other magma type. Although several magma batches erupted, chemical variations in the magmatic series are consistent with the fractionation of the observed phenocryst phases: olivine, plagioclase, clinopyroxene, and spinel. This four-phase fractionation assemblage relates compositional differences within each basalt type better than it does the entire magmatic series. Fractionation of no single mineral phase can adequately explain chemical variations in the basaltic magmas of the Markagunt Plateau.

  13. Assessment of total nitrogen and total phosphorus in selected surface water of the National Park Service Northern Colorado Plateau Network, Colorado, Utah, and Wyoming, from 1972 through 2007

    USGS Publications Warehouse

    Brown, Juliane B.; Thoma, David P.

    2012-01-01

    Nutrients are a nationally recognized concern for water quality of streams, rivers, groundwater, and water bodies. Nutrient impairment is documented by the U.S. Environmental Protection Agency as a primary cause of degradation in lakes and reservoirs, and nutrients are related to organic enrichment and oxygen depletion, which is an important cause of degradation in streams. Recently (2011), an effort to develop State-based numeric nutrient criteria has resulted in renewed emphasis on nutrients in surface water throughout the Nation. In response to this renewed emphasis and to investigate nutrient water quality for Northern Colorado Plateau Network streams, the U.S. Geological Survey, in cooperation with the National Park Service, assessed total nitrogen and total phosphorus concentration data for 93 sites in or near 14 National Park units for the time period 1972 through 2007.

  14. Autocyclic progradation and allocyclic ravinement of a shoreface: Sedimentology and sequence stratigraphy of the Panther Sandstone Tongue (Upper Cretaceous, Campanian), Wasatch plateau, Utah, U. S. A

    SciTech Connect

    Krause, F.F.; Aitken, S.A.; Braunberger, W.F.; Chung, P.; Macrae, A.; Meyer, R.O.; Nunez-Betelu, L.; Williams, C.A.; Hol, H.M. )

    1993-04-01

    The Panther Sandstone Tongue of the Star Point Formation exposed in the vicinity of Helper, Utah reflects a coarse-grained, clastic wedge that penetrated the Mancos Shale basin in Early Campanian (Late Cretaceous) time. Panther Sandstone rocks may be grouped into six lithofacies: (1) thin-bedded, bioturbated and rippled, mudstone and very fine-grained sandstone; (2) thin- to medium-bedded, bioturbated, rippled and parallel laminated, mudstone and very fine-grained sandstone; (3) thick- to very thick-bedded HCS and parallel-laminated, mudstone and fine- to medium-grained sandstone; (4) medium- to thick-bedded, Ophiomorpha bioturbated, medium- to coarse-grained sandstone; (5) medium- to very-thick bedded, current bedded and hydroplasticly deformed sandstone, and (6) medium- to thick-bedded, trough cross-stratified and bundle-laminated, fine grained sandstone. Lithofacies are arranged in definable vertical and lateral successions. L. 1, 2 and 3 are upward coarsening and shoaling and are common in the Helper area. L. 5 and 6 are common to the west. L. 4 is a transgressive and ravinement lag that rests on all other lithofacies. Interpreted environments reflect a storm modified, microtidal, strandplain system. Rocks, except L. 4, are contained in a parasequence system that built into the basin during relative sea-level fall. This system prograded episodically suggesting varying sediment supply and event-controlled sediment reworking -- responses associated with autocyclic forcing. In contrast, ravinement decapitated the parasequence intersecting progressively shallower lithofacies. These responses suggest that ravinement was driven by allocyclic forcing, perhaps in response to tectonism in the foreland.

  15. Indians of the Lower Plateau.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Washington, DC.

    The history of the Lower Plateau Indians--those in the states of Nevada, Utah, and Colorado--is traced and briefly described from early tribes to the modern day Indian. The environmental transition undergone by these peoples and their cultural change, more pronounced when the United States acquired the West, are discussed. Emphasis is placed on…

  16. Fault-controlled advective, diffusive, and eruptive CO 2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah

    NASA Astrophysics Data System (ADS)

    Jung, Na-Hyun

    This study investigated a natural analogue for CO2 leakage near Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1 ) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined with similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m -2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (XCO2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only low-k fault prevents unconditional upright migration of CO2 and induces fault-parallel movement, feeding the northern aquifers with more CO2. Low-k fault also impedes lateral southward fluid flow from the northern aquifers, developing anticlinal CO2 traps at shallow depths (<300 m). The

  17. - to Late-Holocene Fire History, Vegetation, and Climate Change in the Grand Staircase Region of the Colorado Plateau, Southwest Utah

    NASA Astrophysics Data System (ADS)

    Riley, K. E.; Rittenour, T. M.; DeRose, R. J.

    2016-12-01

    Fire seasons have lengthened by 25% and the amount of burnable area on Earth has increased. Furthermore, more frequent droughts are predicted under elevated greenhouse gas concentrations. Summer drought is a first-order control on regional fire years. While fire is an increasingly expensive and destructive natural hazard, it also provides benefits to vegetation communities by influencing structure, reducing understory fuels, and promoting fire dependent species. In order to predict and mitigate future fire, it is important to understand how fire, climate, and vegetation are connected. Because climate exhibits a first-order control on wildfire, we must understand how centennial- to millennial-scale climatic change has influenced fire in the past. The Grand Staircase region of the Colorado Plateau spans high elevation sub-alpine forests and transitions to desert scrub at lower elevations. The majority of the vegetation in the region is pinyon-juniper woodlands. We reconstruct the timing of Mid- to Late-Holocene fire using charcoal collected from alluvial deposits located in four watersheds including Kanab Ck., Johnson Wash, Paria R., and the Escalante R. The fire reconstruction contains 200 dated fires that extend back 7.5 ka. Thirty-two regional fire periods were identified. Of the fires recorded, 78% occurred in the last 3 ka. There is a continuous record of fire starting 4.3 ka with few no-fire periods. Periods with regional fires increase in frequency 3000 years ago with 22 out of 32 periods occurring in the last 3 ka and 17 out of 32 regional fire periods occurring in the last 2 ka. Climate proxies from the SW US indicate increased precipitation 4 ka, and greater moisture than present day conditions between 3 - 1.7 ka. Results show that increases in fire activity correspond to increased moisture and vegetation expansion. This study supports the hypothesis that in fuel-limited systems, fire activity is promoted when moisture is available to increase vegetation

  18. Study of the Utah uranium-milling industry. Volume II. Utah energy resources: uranium

    SciTech Connect

    Millar, R.D.; Neilson, L.T.; Turley, R.E.

    1980-07-01

    This report is a general overview of the uranium mining and milling industry and its history and present status with particular reference to Utah. This volume serves two purposes: (1) it serves as a companion volume to Volume I, which is a policy analysis; and (2) it serves as one of a set of energy resource assessment studies previously performed by the authors. The following topics are covered: development of the uranium industry on the Colorado Plateau with emphasis on Utah; geology of uranium; uranium reserves; uranium exploration in Utah; uranium ore production and mining operation in Utah; uranium milling operations in Utah; utilization of uranium; uranium mill tailings; and future outlook. Appendices on pricing of uranium and incentives for production since World War II are also presented.

  19. Water-Quality Data for Selected National Park Units within the Southern Colorado Plateau Network, Arizona, Utah, Colorado, and New Mexico, Water Years 2005 and 2006

    USGS Publications Warehouse

    Macy, Jamie P.; Monroe, Stephen A.

    2006-01-01

    The National Park Service initiated a Level 1 Water-Quality Inventory program to provide water-quality data to park managers so informed natural resource management decisions could be made. Level 1 water-quality data were collected by the U.S. Geological Survey Arizona Water Science Center at 57 sites in 13 National Park units located in the Southern Colorado Plateau Inventory and Monitoring network in water years 2005 and 2006. These data describe the current water-quality at selected sites within the park units and provide information for monitoring future trends. Water samples were collected three times at each type of site including wells, springs, seeps, tinajas, rivers, a lake, and an irrigation ditch. Field measurements were taken at each site and they included pH, specific conductance, temperature, barometric pressure, dissolved oxygen, alkalinity, turbidity, and discharge rates where applicable. Water samples collected were sent to the U.S. Geological Survey National Water Quality Laboratory and analyzed for major ions, trace elements, and nutrients. The National Water Quality Laboratory also analyzed selected samples for mercury and petroleum hydrocarbons. Additional samples at selected sites were collected and analyzed for cyanide, radiochemistry, and suspended sediment by U.S. Geological Survey contract labs. Fecal-indicator bacteria (Escherichia coli) were sampled for at selected sites as another indicator of water quality. Quality control for this study was achieved through proper training of field personnel, use of standard U.S. Geological Survey field and laboratory protocols, collection of sample blanks and replicates, and a thorough review of the water-quality analyses. Measured field pH ranged from 6.0 to 8.8, within normal range for springs and rivers, at most sites. Concentrations of dissolved solids ranged from 48 to 8,680 mg/L and the majority of samples had concentrations of dissolved solids below 900 mg/L. Trace-element concentrations at

  20. Workforce: Utah

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    In the decade leading up to 2012, Utah will see the second highest rate of job growth in the U.S. and an increasing demand for well-educated employees. Technology-related professions will see their ranks swell by 43 percent, while healthcare will grow by 42 percent. Teachers' numbers will increase by 37 percent: nearly 24,000 new jobs for…

  1. 76 FR 69217 - Approval and Promulgation of State Implementation Plans; State of Utah; Smoke Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of State Implementation Plans; State of Utah; Smoke...-204 of the Utah Administrative Code (UAC). R307-204 contains smoke management requirements for land... Plateau area \\4\\. GCVTC recommendations included strategies for addressing smoke emissions from wildland...

  2. Geothermal Technologies Program: Utah

    SciTech Connect

    Not Available

    2005-06-01

    Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

  3. Zion National Park, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Though the Grand Canyon may receive all the attention due to its tremendous size, the smaller canyons of the Southwest are arguably more sublime. This true-color image of Zion Canyon in southwestern Utah was taken by the Enhanced Thematic Mapper plus aboard the Landsat 7 satellite on October 10, 2001. Zion Canyon is located in the lower half of the image amidst the crisscross pattern of rock formations. The canyon walls, made of red and white sandstone, rise 2,000-3,000 feet from the canyon floor and are peppered with hanging vegetation. Over a period of four million years, the Virgin River cut a path through the western edge of the Colorado Plateau to form the canyon. The river and its tributaries resemble branches across the gray-green landscape in the upper section of the image. They eventually join the canyon, often as spectacular slot canyons only a few feet wide, and exit at the bottom of the image on the way to the Colorado River. Image by Robert Simmon, based on data provided by the Landsat 7 Science Team and the Arizona Regional Image Archive

  4. Migrants in Utah.

    ERIC Educational Resources Information Center

    Nelson, Kerry D.

    Migration patterns, health standards, living conditions, and educational opportunities are the highlights of this report of migrant farm workers in Utah. A review of the migratory worker streams in the United States reveals that most migratory workers in Utah come from the Rio Grande valley area of southwest United States. Because most are Mexican…

  5. Quaternary geochronology and distribution of Mammuthus on the Colorado Plateau

    SciTech Connect

    Agenbroad, L.D.; Mead, J.I. )

    1989-09-01

    There are 41 known localities containing mammoth remains from the Colorado Plateau: 24 in Arizona, 12 in Utah, 3 in New Mexico, and 2 in Colorado. Of the 41 localities, 13 (32%; Arizona and Utah only) have yielded radiometric dates ({sup 14}C and U/Th); 10 (77%) of these have been the result of the authors' investigations. The four youngest radiocarbon dates produce a weighted average date of approximately 11,270 {plus minus}65 yr B.P., the youngest directly aged mammoth remains on the Colorado Plateau. Mammoth remains are recovered predominantly in alluvial regimes, in addition to alcove, cave, and spring deposits. No direct association of Mammuthus and the Clovis hunters has been reported from the Colorado Plateau. Dietary intake, recorded in dung remains, included predominantly graminoids, in addition to various woody shrubs and trees that currently grow at higher elevations on the Colorado Plateau.

  6. Technology Education in Utah.

    ERIC Educational Resources Information Center

    Balistreri, Jerry; Hammer, Douglas E.

    1988-01-01

    Describes Utah's efforts to improve their technology education program to help their students become technologically literate. Their new curricula are organized around the cluster areas of communication, manufacturing, construction, and energy/power/transportation. (JOW)

  7. Status of Utah Bats

    DTIC Science & Technology

    2009-01-27

    are tier II species of concern in the Utah comprehensive wildlife conservation strategy ( WAP ) (UDWR 2005). Apparent declines in bat species may be...we treat the Arizona myotis as an independent species. The WAP and the draft Utah Bat Conservation Plan identify specific threats to each tier II...CWCS ( WAP ) and DoD’s INRMPs. To meet the goals of the Legacy II proposal and UDWR, 6 objectives were created by synthesizing the goals of the 2

  8. Landslides and debris flows in Ephraim Canyon, central Utah

    SciTech Connect

    Baum, R.L.; Fleming, R.W.

    1989-01-01

    The geology of 36 km{sup 2} in Ephraim Canyon, on the west side of the Wasatch Plateau, central Utah, was mapped at a scale of 1:12,000 following the occurrence of numerous landslides in 1983. The geologic map shows the distribution of the landslides and debris flows of 1983-86, as well as older landslide deposits, other surficial deposits, and bedrock. Several of the recent landslides are described and illustrated by means of maps or photographs.

  9. Geologic map of Bryce Canyon National Park and vicinity, southwestern Utah

    USGS Publications Warehouse

    Bowers, William E.

    1991-01-01

    Bryce Canyon National Park is located along the eastern escarpment of the Paunsaugunt Plateau, which along with the Markagunt Plateau to the west, form the southernmost of the High Plateaus of Utah. The park’s unique scenery has been created by forces of differential erosion acting on colorful rocks exposed along and below the rim of the plateau. Park headquarters and major scenic viewpoints that lie on or near the rim of the plateau are accessible from Utah Highway 12 mi west of the park. More remote parts of the park are located in canyons beneath the rim and are accessible only by foot, along horse trails or from a few unimproved dirt roads that approach the park boundary from the east or south.

  10. Nonthermal springs of Utah

    USGS Publications Warehouse

    Mundorff, J.C.

    1971-01-01

    Data are presented for about 4,500 nonthermal springs that discharge in the State of Utah. Most major springs having discharge of several cubic feet per second or more are in or near mountain ranges or plateaus where precipitation is much greater than in other parts of the State. The largest instantaneous discharge observed at any spring was 314 cfs at Mammoth Spring in southwestern Utah.  Discharges exceeding 200 cfs have been observed at Swan Creek Spring in extreme northern Utah, and discharges of 200 cfs have been reported for Big Brush Creek Spring in northeastern Utah. Maximum discharges generally are during or within a few weeks after the main period of snowmelt, which is usually from late April to the middle of June.The largest springs generally discharge form or very near carbonate rocks in which solution channels and fractures are numerous or from areas of porous or fractured volcanic rocks. Most nonthermal springs in Utah probably are variable springs – that is, their variability of discharge exceeds 100 percent.Most of the major springs discharge water that contains less than 500 ppm (parts per million) of dissolved solids, and most of the water is of the calcium bicarbonate type. Water from springs is used for domestic, municipal, irrigation, livestock, mining, and industrial purposes.

  11. State summaries: Utah

    USGS Publications Warehouse

    Bon, R.L.; Krahulec, K.A.

    2006-01-01

    The value of Utah's mineral production in 2005 was estimated to be a record $3.58 billion. This was $1.26 billion higher than the revised value of $2.32 billion for 2004. All major industry segments gained in value in 2005. In the value of nonfuel mineral production, Utah ranked fourth. The outlook for 2006 is cautiously optimistic. The value of mineral production is projected to increase slightly in 2006 due to increased production of most base and precious metals, coal and most major industrial minerals.

  12. Maps showing distribution of barium in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    Located in west-central Utach, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale ingeous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau

  13. Maps showing distribution of bismuth in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    Located in west-central Utach, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale ingeous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau

  14. Maps showing distribution of Arsenic in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    Located in west-central Utach, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale ingeous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau

  15. Utah Paiute Tribal Restoration.

    ERIC Educational Resources Information Center

    Turner, Allen C.

    The Paiute Indian Tribe of Utah Restoration Act (1980) restored federal recognition of the tribe after a quarter century of ambiguous political status, and resulted in significant improvements of educational status of tribal members and intensification of the political presence of Southern Paiutes. Following the Paiute Indian Termination Act…

  16. Crew Earth Observations over Utah taken during Expedition 12

    NASA Image and Video Library

    2005-10-14

    ISS012-E-05172 (14 October 2005) --- Navajo Mountain, Utah is featured in this image photographed by an Expedition 12 crewmember on the international space station. According to scientists, the Colorado Plateau of Arizona, Colorado, New Mexico, and Utah is characterized by mostly flat-lying sedimentary layers that record paleoclimate extremes ranging from oceans to widespread deserts over the last 1.8 billion years. Navajo Mountain is formed by a dome-shaped body of igneous rock (called a laccolith by geologists), one of several in southeast Utah that intrude and uplift the surrounding sedimentary layers of the Plateau. This oblique image highlights Navajo Mountain in the center of the image, surrounded by light red-brown Navajo Sandstone (also visible in canyons at bottom of image). Scientists believe the peak of Navajo Mountain, at approximately 3148 meters (10,388 feet) elevation, is comprised of uplifted Dakota Sandstone deposited during the Cretaceous Period. The establishment of Rainbow Bridge National Monument (1910), and the filling of Glen Canyon by Lake Powell in 1963 (upper right), have facilitated tourism and aesthetic appreciation of this previously remote region. Access to Navajo Mountain is still regulated by the sovereign Navajo Nation, and the process of permitting is required to hike in the region.

  17. Libraries in Utah: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/utah.html Libraries in Utah To use the sharing features on ... please enable JavaScript. Provo Utah Valley Hospital Medical Library ILL 1134 North 500 West Provo, UT 84604- ...

  18. The Springdale, Utah, landslide: An extraordinary event

    USGS Publications Warehouse

    Jibson, R.W.; Harp, E.L.

    1996-01-01

    The most dramatic geologic effect of the M-5.7 St. George, Utah earthquake of 2 September 1992 was the triggering of the 14,000,000-m3 Springdale, Utah landslide. The roughly 10 m of landslide movement destroyed three houses, threatened several condominiums, disrupted utility lines, and temporarily closed the southwest entrance to Zion National Park. The seismic triggering of this landslide is puzzling because its distance from the earthquake epicenter, 44 km, is much greater than the farthest distance (18 km) at which similar landslides have been triggered in worldwide earthquakes of the same magnitude. Other Colorado Plateau earthquakes also have produced landslides far beyond worldwide distance limits, which suggests that regional variations in ground-shaking attenuation may require different landslide-triggering distance limits for different seismotectonic regions. Slope stability analysis and historical records of landslide movement suggest that the Springdale landslide was only slightly above limit-equilibrium conditions at the time of the earthquake. Dynamic stability analysis using Newmark's permanent-displacement method indicates coseismic landslide displacement of only 1-8 cm; this rather modest displacement probably induced enough deformation in the montmorillonitic clays along the failure surface to reduce shear strength and destabilize the slide, which continued to move for several hours after the earthquake.

  19. HCMM hydrological analysis in Utah. [Utah lake

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in analysis of Heat Capacity Mapping Mission (HCMM) infrared and visible observations of the hydrology of Utah Lake is reported. Correlation between HCMM intensities converted to temperature and ground truth temperatures was investigated, and a conversion offset value determined. Ground truth surface temperatures minus HCMM temperatures were plotted against several hydrological parameters. Relationships among visible data, thermal data, and algae concentrations were considered, and summer concentrations of predominant algae species determined. Investigations on the effects of varying algae concentrations on evaporation rates are reported. Efforts to develop a model for evaporation estimation are reported. The relationship between air and water surface temperatures was studied and the temperature distribution in different segments of the lake investigated. Indications of the existence of thermal springs are reported. Correlation of HCMM surface temperature data and depth to groundwater were investigated.

  20. Fluorspar deposits of Utah

    USGS Publications Warehouse

    Thurston, W.R.; Staatz, M.H.; Cox, D.C.

    1954-01-01

    The studies of fluorspar localities in Utah made by the U. S. Geological Survey during and since the recent war are summarized. The fluorspar at the Cougar Spar and Blue Bell mines in the Indian Peak Range of western Beaver County occurs as fissure veins in fault and breccia zones in volcanic and intrusive rocks. At the Monarch (Staats) claims in west-central Beaver County fluorspar was mined chiefly from a fault between limestone and rhyolite porphyry. The Thomas Range district in Juab County has yielded sizeable tonnages of fluorspar from pipes in faulted dolomite and rhyolite porphyry. From 1918 to 1924 the Silver Queen mine in Tooele County produced fluorspar from flssure veins in faulted limestone. The report describes the geology of producing mines and the various prospects examined. Production and reserves of fluorspar for Utah are summarized.

  1. The Manti, Utah, landslide

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, R.B.; Schuster, R.L.; Williams, G.P.

    1988-01-01

    PART A: The Manti landslide is in Manti Canyon on the west side of the Wasatch Plateau in central Utah. In early June 1974, coincident with the melting of a snowpack, a rock slump/debris flow occurred on the south rim of Manti Canyon. Part of the slumped material mixed with meltwater and mobilized into a series of debris flows that traveled down the slope a distance of as much as 1.2 km. Most of the flows were deposited either at the base of the steep rocks of the canyon rim or at the site of an old, silted reservoir. A small part of the debris flow deposit stopped on the head of the very large, relatively inactive Manti landslide. The upper part of the landslide began moving as cracks propagated downslope. A little more than a year later, August 1975, movement extended the full length of the old landslide, and about 19 million m 3 of debris about 3 km long and as much as 800 m wide threatened to block the canyon. The upper part of the landslide apparently had moved small amounts between 1939 and 1974. This part of the landslide, identifiable on pre-1974 aerial photographs, consisted of well-defined linears on the landslide flanks and two large internal toe bulges about 2 km downslope from the head. The abrupt reactivation in 1974 proceeded quickly after the debris flows had provided a surcharge in the head and crown area. Movement propagated downslope at 4-5 m/h for the first few days following reactivation. During 1974, the reactivation probably encompassed all the parts of the landslide that had moved small amounts between 1939 and 1974. Movement nearly or completely stopped during the winter of 1974-75, but began again in the spring of 1975. The landslide enlarged from the flanks of the internal toe bulges to Manti Creek at a rate of 2-3 m/h. Movement stopped again during the winter of 1975-76 and began again in the spring of 1976. Thereafter, the displacements have been small compared to earlier. The displacement rates for the landslide were variable depending

  2. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  3. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  4. 76 FR 18245 - West Tavaputs Plateau Road Restriction Order, Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ..., as follows: The public is prohibited from driving a motorized vehicle on Horse Bench, Jack Canyon... receive a reply during normal business hours. SUPPLEMENTARY INFORMATION: Four roads (Horse Bench, Jack... authorized use only. Horse Bench, Jack Canyon, Jack Ridge, and Cedar Ridge Roads in Carbon County,...

  5. New Horned Dinosaurs from Utah Provide Evidence for Intracontinental Dinosaur Endemism

    PubMed Central

    Sampson, Scott D.; Loewen, Mark A.; Farke, Andrew A.; Roberts, Eric M.; Forster, Catherine A.; Smith, Joshua A.; Titus, Alan L.

    2010-01-01

    Background During much of the Late Cretaceous, a shallow, epeiric sea divided North America into eastern and western landmasses. The western landmass, known as Laramidia, although diminutive in size, witnessed a major evolutionary radiation of dinosaurs. Other than hadrosaurs (duck-billed dinosaurs), the most common dinosaurs were ceratopsids (large-bodied horned dinosaurs), currently known only from Laramidia and Asia. Remarkably, previous studies have postulated the occurrence of latitudinally arrayed dinosaur “provinces,” or “biomes,” on Laramidia. Yet this hypothesis has been challenged on multiple fronts and has remained poorly tested. Methodology/Principal Findings Here we describe two new, co-occurring ceratopsids from the Upper Cretaceous Kaiparowits Formation of Utah that provide the strongest support to date for the dinosaur provincialism hypothesis. Both pertain to the clade of ceratopsids known as Chasmosaurinae, dramatically increasing representation of this group from the southern portion of the Western Interior Basin of North America. Utahceratops gettyi gen. et sp. nov.—characterized by short, rounded, laterally projecting supraorbital horncores and an elongate frill with a deep median embayment—is recovered as the sister taxon to Pentaceratops sternbergii from the late Campanian of New Mexico. Kosmoceratops richardsoni gen. et sp. nov.—characterized by elongate, laterally projecting supraorbital horncores and a short, broad frill adorned with ten well developed hooks—has the most ornate skull of any known dinosaur and is closely allied to Chasmosaurus irvinensis from the late Campanian of Alberta. Conclusions/Significance Considered in unison, the phylogenetic, stratigraphic, and biogeographic evidence documents distinct, co-occurring chasmosaurine taxa north and south on the diminutive landmass of Laramidia. The famous Triceratops and all other, more nested chasmosaurines are postulated as descendants of forms previously restricted

  6. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism.

    PubMed

    Sampson, Scott D; Loewen, Mark A; Farke, Andrew A; Roberts, Eric M; Forster, Catherine A; Smith, Joshua A; Titus, Alan L

    2010-09-22

    During much of the Late Cretaceous, a shallow, epeiric sea divided North America into eastern and western landmasses. The western landmass, known as Laramidia, although diminutive in size, witnessed a major evolutionary radiation of dinosaurs. Other than hadrosaurs (duck-billed dinosaurs), the most common dinosaurs were ceratopsids (large-bodied horned dinosaurs), currently known only from Laramidia and Asia. Remarkably, previous studies have postulated the occurrence of latitudinally arrayed dinosaur "provinces," or "biomes," on Laramidia. Yet this hypothesis has been challenged on multiple fronts and has remained poorly tested. Here we describe two new, co-occurring ceratopsids from the Upper Cretaceous Kaiparowits Formation of Utah that provide the strongest support to date for the dinosaur provincialism hypothesis. Both pertain to the clade of ceratopsids known as Chasmosaurinae, dramatically increasing representation of this group from the southern portion of the Western Interior Basin of North America. Utahceratops gettyi gen. et sp. nov.-characterized by short, rounded, laterally projecting supraorbital horncores and an elongate frill with a deep median embayment-is recovered as the sister taxon to Pentaceratops sternbergii from the late Campanian of New Mexico. Kosmoceratops richardsoni gen. et sp. nov.-characterized by elongate, laterally projecting supraorbital horncores and a short, broad frill adorned with ten well developed hooks-has the most ornate skull of any known dinosaur and is closely allied to Chasmosaurus irvinensis from the late Campanian of Alberta. Considered in unison, the phylogenetic, stratigraphic, and biogeographic evidence documents distinct, co-occurring chasmosaurine taxa north and south on the diminutive landmass of Laramidia. The famous Triceratops and all other, more nested chasmosaurines are postulated as descendants of forms previously restricted to the southern portion of Laramidia. Results further suggest the presence of

  7. Stratigraphic revision of Campanian (Upper Cretaceous) rocks in the Henry Basin, Utah

    SciTech Connect

    Eaton, J.G. )

    1990-01-01

    Upper Cretaceous strata in the Henry Basin of south-central Utah include a 1,575 ft thick sequence of marginal marine and continental rocks of Campanian age. Stratigraphic study of this sequence indicates the need for changes in nomenclature and boundary definitions. Paleontologic study of the same sequence provides a basis for improved interpretations of depositional environments and age. The Mancos Shale of the Henry Basin is here redefined to include only strata up to the top of the Blue Gate Shale Member. The overlying Muley Canyon Sandstone and Masuk member are here removed from the Mancos Shale and given separate formation status. The lower and upper boundaries of the Muley Canyon Sandstone are redefined. The lower boundary is defined at the first prominent sandstone above the Mancos Shale. The upper boundary is defined at the base of the coal deposits overlying the bioturbated sandstones. The Muley Canyon Sandstone was deposited along a wave-dominated coastline and marks the final regression of Cretaceous epeiric seas from the area in the earliest Campanian. A type section of the overlying Masuk Formation is here designated and the formation is divided into three informal members. Abundant nonmarine molluscs and vertebrates have been recovered throughout the Masuk Formation and indicate a coastal floodplain depositional environment with only minor brackish influence. The vertebrate fauna supports an early Campanian age for the formation. The overlying Tarantula Mesa Sandstone and the beds on Tarantula Mesa are entirely nonmarine in origin, and fossils recovered from the beds on Tarantula Mesa support correlation of the unit to the lower part of the Kaiparowits Formation.

  8. Utah's Educational Reform Programs, 1991-93.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    In November 1983, the Utah Education Reform Steering Committee issued the report "Education in Utah: A Call to Action." To meet Utah's double challenge of rapid growth and quality enhancement, the report stated that Utah needed to: (1) increase the allocation of financial resources to education; (2) demand reforms in many aspects of…

  9. Jurassic crustal deformation in west-central part of Colorado Plateau

    SciTech Connect

    Peterson, F.

    1985-05-01

    Although the Jurassic Period is commonly thought of as a time of tectonic quiescence, updated isopach maps and new sedimentologic information indicate that it was a time of notable crustal deformation on the Colorado Plateau. A significant change in structural style occurred in Middle Jurassic time, especially during the erosion interval that produced the J-3 unconformity. Prior to late Middle Jurassic time, the region had been tilted westward and structural troughs formed in the area of the present-day Circle Cliffs uplift and in the vicinity of the Circle Cliffs and Black Mesa regions were uplifted and the nearby Henry and Kaiparowits regions began to be downwarped as troughs or basins. It cannot be determined if or how the present-day monoclines flexed during the Jurassic. However, the direction of structural tilt across these areas changed from west side down to east side down during the late Middle and early Late Jurassic. The Monument region, the largest and most persistent structural element in the region, changed from a structural bench to a positive structure in the early Late Jurassic. In most cases the positive structures subsided more slowly than adjacent downwarps. Two exceptions during the Late Jurassic are the Black Mesa and Emery uplifts. These are the only uplifts that actually rose above the level of sediment accumulation. Jurassic rocks are not known to contain significant hydrocarbon resources in this region, but their tectonic history may offer clues to the structural history of underlying Paleozoic strata, which are the primary hydrocarbon exploration targets.

  10. Maps showing distribution of beryllium in heavy-mineral concentrates and stream sediments, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    Located in west-central Utach, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale ingeous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau

  11. New geothermal database for Utah

    USGS Publications Warehouse

    Blackett, Robert E.; ,

    1993-01-01

    The Utah Geological Survey complied a preliminary database consisting of over 800 records on thermal wells and springs in Utah with temperatures of 20??C or greater. Each record consists of 35 fields, including location of the well or spring, temperature, depth, flow-rate, and chemical analyses of water samples. Developed for applications on personal computers, the database will be useful for geochemical, statistical, and other geothermal related studies. A preliminary map of thermal wells and springs in Utah, which accompanies the database, could eventually incorporate heat-flow information, bottom-hole temperatures from oil and gas wells, traces of Quaternary faults, and locations of young volcanic centers.

  12. Calculation of coal resources using ARC/INFO and Earth Vision; methodology for the National Coal Resource Assessment

    USGS Publications Warehouse

    Roberts, L.N.; Biewick, L.R.

    1999-01-01

    This report documents a comparison of two methods of resource calculation that are being used in the National Coal Resource Assessment project of the U.S. Geological Survey (USGS). Tewalt (1998) discusses the history of using computer software packages such as GARNET (Graphic Analysis of Resources using Numerical Evaluation Techniques), GRASS (Geographic Resource Analysis Support System), and the vector-based geographic information system (GIS) ARC/INFO (ESRI, 1998) to calculate coal resources within the USGS. The study discussed here, compares resource calculations using ARC/INFO* (ESRI, 1998) and EarthVision (EV)* (Dynamic Graphics, Inc. 1997) for the coal-bearing John Henry Member of the Straight Cliffs Formation of Late Cretaceous age in the Kaiparowits Plateau of southern Utah. Coal resource estimates in the Kaiparowits Plateau using ARC/INFO are reported in Hettinger, and others, 1996.

  13. Salt Lake City, Utah

    NASA Image and Video Library

    2002-02-07

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03464

  14. Neonatal mortality in Utah.

    PubMed

    Woolley, F R; Schuman, K L; Lyon, J L

    1982-09-01

    A cohort study of neonatal mortality (N = 106) in white singleton births (N = 14,486) in Utah for January-June 1975 was conducted. Using membership and activity in the Church of Jesus Christ of Latter-day Saints (LDS or Mormon) as a proxy for parental health practices, i.e., tobacco and alcohol abstinence, differential neonatal mortality rates were calculated. The influence of potential confounding factors was evaluated. Low activity LDS members were found to have an excess risk of neonatal death five times greater than high activity LDS, with an upper bound of a two-sided 95% confidence interval of 7.9. The data consistently indicate a lower neonatal mortality rate for active LDS members. Non-LDS were found to have a lower rate than either medium or low activity LDS.

  15. HCMM hydrological analysis in Utah

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data reduction and preliminary comparisons and correlations of Heat Capacity Mapping Mission data to ground truth measurements were made. The data covered Utah Lake and the surrounding area. Output modes include a digital hard copy record of the intensity value for each pixel and color graphics. Analyses of non-diatom net plankton (algae), turbidity, nitrogen, phosphorus, and temperatures were made. In addition, infrared data for the agricultural area around Utah lake were also preliminarily examined and compared to depth to groundwater data.

  16. Annotated geothermal bibliography of Utah

    SciTech Connect

    Budding, K.E.; Bugden, M.H.

    1986-01-01

    The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

  17. Utah braces for the future

    USGS Publications Warehouse

    Machette, Michael N.; Brown, William M.

    1995-01-01

    Almost 75 percent of Utah's population lives near the Wasatch Fault. Earth scientists have shown that this fault has repeatedly experienced strong earthquakes of magnitude 7 or larger and will continue to do so in the future. Efforts to increase public awareness of earthquake hazards in Utah have resulted in residents and community leaders taking actions that will save lives and reduce damage in future earthquakes.

  18. Utah Heavy Oil Program

    SciTech Connect

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  19. Poisonous snakebite in Utah.

    PubMed Central

    Plowman, D M; Reynolds, T L; Joyce, S M

    1995-01-01

    A retrospective study was done of poisonous snakebite in Utah to determine the current epidemiology and scope of treatment, reviewing emergency department logs and other sources statewide for a 69-month period. Of 61 cases of poisonous snakebite identified, 13 occurred in snake hobbyists or venom laboratory personnel and were considered nonaccidental, and 48 were inflicted by native noncaptive snakes. These bites were considered accidental, and all were presumed to be from rattlesnakes. Nearly three fourths of the victims were male, ranging in age from 2 to 56 years (mean, 22 years). Most accidental bites occurred in areas of high human populations, during the summer months, in the afternoon or evening hours, and during recreational activities. Of the 48 bites, 11 (23%) were provoked. Two thirds of bites were on the upper extremities, and a third were on the lower extremities. More than half of the victims had no first-aid treatment recorded. Of those who did receive first aid, many were subjected to possibly harmful treatments, including tourniquets and ice application. The median time to a hospital was 68 minutes, with a range of 15 to 440 minutes. Swelling and discoloration were the most common signs and pain and paresthesia the most common symptoms. Half the bites resulted in minimal or no envenomation, 17 (35%) produced moderate envenomation, and 6 (12%) severe envenomation. Most patients with moderate or severe envenomation received antivenin, but the dosages given were usually less than recommended dosages. Five patients received surgical treatment based on clinical findings. One child died in a snake-handling incident. Long-term morbidity was unknown due to lack of follow-up. The Utah Poison Control Center was poorly utilized as a reporting and informational resource. Images Figure 1. PMID:8553638

  20. Dirhinus texanus (Hymenoptera: Chalcididae) from Utah

    USGS Publications Warehouse

    Pech, L.L.; Gates, M.W.; Graham, T.B.

    2011-01-01

    We collected a Dirhinus texanus (Hymenoptera: Chalcididae) in Salt Creek Canyon, Canyonlands National Park, San Juan County, Utah. This is the first record for D. texanus in Utah. Copyright ?? 2011 BioOne All rights reserved.

  1. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  2. Major thermal springs of Utah

    USGS Publications Warehouse

    Mundorff, J.C.

    1970-01-01

    As part of a study of the springs of Utah, reconnaissance data were obtained on the thermal, chemical, and geologic characteristics of the major thermal springs or Utah. Only three of the springs have temperatures near the boiling point of water; the maximum recorded temperatures of these springs range from 185° to 189° F. All three springs are in or near areas of late Tertiary or Quaternary volcanism.Temperatures of the thermal springs studied ranged from 68° to 189° F. Nearly all thermal springs in Utah are in or near fault zones. Very few of these springs issue from volcanic rocks, but several springs are close to areas of late Tertiary or Quaternary volcanic rocks.

  3. Prospects for Utah look good

    SciTech Connect

    Buchsbaum, L.

    2006-01-15

    Utah enjoys its first boom in over a generation. Recently Arch Coal, Andalex, CONSOl Energy and PacifiCorp ramped up their coal mining operations or re-opened closed facilities. Arch Coal's Skyline mine was able to mine over 200,0000 tons of coal throughout 2005 and its SUFCO mine produced 7.5 mt of coal during 2005. The article based largely on the recent 'Annual review and forecast of Utah coal', reports on developments in the state whose coal production could break records in 2006. 1 ref., 4 photos.

  4. Utah`s 1992 fuelwood harvest. Forest Service resource bulletin

    SciTech Connect

    McLain, W.H.

    1997-01-01

    Highlights the 1992 harvest of fuelwood in Utah by commercial fuelwood harvesters and those cutting for home consumption. Presents harvest volumes by species, county, and owner. Contains a list of commercial fuelwood harvesters and describes methods of data collection and compilation.

  5. Precipitation history of the Colorado Plateau region, 1900-2000

    USGS Publications Warehouse

    Hereford, Richard; Webb, Robert H.; Graham, Scott

    2002-01-01

    The Colorado Plateau covers 210,000 km 2 (130,000 mi 2) of Utah, Colorado, New Mexico, and Arizona. Management of this region?s resources requires an understanding of how its climate has varied in the past and may change in the near future. Recent studies by U.S. Geological Survey (USGS) and other scientists suggest that the region may become drier for the next 2 to 3 decades, in a pattern similar to the drought of 1942?1977. The region?s population has increased fourfold since the mid-1950s, creating the possibility of severe consequences if such a drought were repeated.

  6. Antidote: Civic Responsibility. Utah Law.

    ERIC Educational Resources Information Center

    Phi Alpha Delta Law Fraternity International, Washington, DC.

    Designed for middle school through high school students, this unit contains eight lesson plans that focus on Utah state law. The state lessons correspond to lessons in the volume, "Antidote: Civic Responsibility. Drug Avoidance Lessons for Middle School & High School Students. Developed to be presented by educators, law student, or…

  7. Remembering the University of Utah.

    ERIC Educational Resources Information Center

    Haglund, Elizabeth, Ed.

    Nineteen essays comprise this personal and historical look at the University of Utah and the relationship between the university, its people, and the community. Essays include: "One Cannot Live Long Enough to Outgrow a University" (Ramona Wilcox Cannon); "Ever in the Freshness of Its Youth" (G. Homer Durham); "The Final…

  8. Utah CloseUp, 1984.

    ERIC Educational Resources Information Center

    Harja, John A.

    This booklet is designed for students participating in the Utah CloseUp program. The goals of this program include teaching secondary students about the operation of state and local governments and the juvenile justice system; how laws and decisions are made and enforced in the legislative, executive, and judicial branches of state and local…

  9. Utah: Going against the Trends.

    ERIC Educational Resources Information Center

    Jarvik, Elaine

    1982-01-01

    While enrollment and demographic trends worry the higher education community in other states, Utah's higher education future is bright. Financial support from the Mormon Church, high birth rate, strong institutions (both public and private), a cohesive, conservative community, and large potential natural resources give optimism to the state. (MSE)

  10. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution

  11. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution

  12. Mantle structure beneath the western edge of the Colorado Plateau

    USGS Publications Warehouse

    Sine, C.R.; Wilson, D.; Gao, W.; Grand, S.P.; Aster, R.; Ni, J.; Baldridge, W.S.

    2008-01-01

    Teleseismic traveltime data are inverted for mantle Vp and Vs variations beneath a 1400 km long line of broadband seismometers extending from eastern New Mexico to western Utah. The model spans 600 km beneath the moho with resolution of ???50 km. Inversions show a sharp, large-magnitude velocity contrast across the Colorado Plateau-Great Basin transition extending ???200 km below the crust. Also imaged is a fast anomaly 300 to 600 km beneath the NW portion of the array. Very slow velocities beneath the Great Basin imply partial melting and/or anomalously wet mantle. We propose that the sharp contrast in mantle velocities across the western edge of the Plateau corresponds to differential lithospheric modification, during and following Farallon subduction, across a boundary defining the western extent of unmodified Proterozoic mantle lithosphere. The deep fast anomaly corresponds to thickened Farallon plate or detached continental lithosphere at transition zone depths. Copyright 2008 by the American Geophysical Union.

  13. Preliminary geologic section from Pahute Mesa, Nevada Test Site, to Enterprise, Utah

    USGS Publications Warehouse

    Barosh, P.J.

    1967-01-01

    The 154-mile long geologic cross section trends nearly perpendicular to the structural grain of the Basin-Range province in Nevada, and in Utah extends eastward into the transition zone between the Basin-Range and Colorado Plateau provinces. The structure is characterized by complex thrust: faults, involving uppermost Precambrian to lower Mesozoic sedimentary rocks, and normal faults which cut: the thick sequence of Tertiary volcanic rocks as well as older rocks. Some of the normal faults are the result of caldera collapse. The principal normal faults trend northerly west: of Delamar, Nev., and form north-trending basins and ranges. Farther east the principal faults trend northwesterly, and form a moderately rugged highland rather than distinct basins and ranges. The uppermost Precambrian-Paleozoic strata thin markedly eastward across the region. The pre-Pennsylvanian sedimentary rocks vary from 32,500 feet: in thickness at the Nevada Test: Site (Harley Barnes, E. N. Hinrichs, F. A. McKeown and P. P. Orkild, written commun., 1963) to 4,500 feet: in the Beaver Dam Mountains in western Utah (Cook, 1960). Thick Mesozoic deposits, similar to those of the Colorado Plateau, are present in western Utah, but are represented in eastern Nevada by only thin patches of Triassic rock.

  14. Underground water in Sanpete and central Sevier valleys, Utah

    USGS Publications Warehouse

    Richardson, George Burr

    1907-01-01

    Sanpete and central Sevier valleys are situated at the border of the Basin Range and Plateau provinces in south-central Utah. They are bounded on the east by the Wasatch and Sevier plateaus and on the west by the Gunnison Plateau and the Valley and Pavant ranges, and are drained by Sevier River, which empties into Sevier Lake in the Great Basin. (See fig. 1, p. 6.)These valleys rank with the richest parts of the State. They were occupied a few years after the Mormon pioneers founded Salt Lake City, in 1847, when settlements, which soon became thriving farming communities, were established where water for irrigation was most available. A variety of crops, especially wheat, are successfully grown, and the valleys are popularly known as the "granary of Utah." Sheep raising is also an important industry, the adjacent highlands being used for summer pastures. The climate is arid, and there is a striking contrast between those areas which in their natural state are covered with sagebrush and grease wood and the fruitful cultivated tracts. (See PI. I, A and B.) Trees are normally absent in the valleys, but they flourish to a limited extent on the adjacent highlands, where there are thin growths of quaking aspen, scrub oak, and stunted conifers. Irrigation is necessary for the production of crops. Canal systems are maintained by San Pitch Creek and Sevier River, and the mountain streams are tapped by ditches near the mouths of the canyons, but this supply is insufficient and attention is being turned to the subterranean store.This report is a preliminary statement of the general conditions of occurrence of underground water in Sanpete and central Sevier valleys. The field work was carried on in cooperation with Sanpete and Sevier counties through the State engineer, Mr. Caleb Tanner, who detailed Mr. C. S. Jarvis to collect the data embodied in the list of springs and wells on pages 51-60.

  15. The Newcastle geothermal system, Iron County, Utah

    SciTech Connect

    Blackett, R.E.; Shubat, M.A.; Bishop, C.E. ); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. . Dept. of Geology and Geophysics)

    1990-03-01

    Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

  16. Federally owned coal and federal lands in the Colorado Plateau region

    USGS Publications Warehouse

    ,

    1999-01-01

    Federally owned coal plays a major role in the energy supply of the United States. About 1.1 billion tons of coal were produced in the United States in 1997 (U.S. Department of Energy, 1998). About 30 percent of that total, or about 330 million tons, came from Federal lands. Almost all of the Federal coal production is from Wyoming, Montana, and three States in the Colorado Plateau Region—Utah, Colorado, and New Mexico.

  17. Western equine encephalitis surveillance in Utah.

    PubMed

    Wagstaff, K H; Dickson, S L; Bailey, A

    1986-06-01

    The history of WEE surveillance in Utah is reviewed, beginning with the 1933 outbreak involving 3,958 horses. The step by step formation of the Utah Mosquito Abatement Associations surveillance program from 1957 to the present is discussed. Results of an enlarged sentinel chicken flock surveillance program in Utah during 1983 (3 sero-conversions in September), 1984 and 1985 (no sero-conversion) show the lack of WEE activity in the surveillance area.

  18. Gene flow and genetic characterization of Northern Goshawks breeding in Utah

    USGS Publications Warehouse

    Sonsthagen, S.A.; Talbot, S.L.; White, C.M.

    2004-01-01

    Adult movement and natal dispersal data demonstrate that Northern Goshawks (Accipiter gentilis) are able to travel over long distances, suggesting a large functional population. However, these data are unable to determine whether these movements contribute to gene flow among adjacent breeding areas. We used eight microsatellite DNA loci and mitochondrial DNA control-region sequence data to assess population structure of Northern Goshawks breeding in Utah. Goshawks had moderate levels of genetic variation at microsatellite loci (observed heterozygosity = 50%), similar to levels found in other medium-sized, highly mobile birds. Overall estimates of interpopulation variance in microsatellite alleles (FST = 0.011) and mtDNA haplotypes (??ST = 0.126) were low and not significantly different from zero. Pairwise population comparisons using microsatellite markers revealed no differentiation among sampled sites, indicating that the functional population extends beyond Utah. However, pairwise population analyses of mtDNA uncovered a single case of differentiation between goshawks inhabiting Ashley National Forest, in northeastern Utah, and Dixie National Forest, in southwestern Utah. Low levels of population structuring observed in mtDNA between the two forests may be due to the smaller effective population size sampled by mtDNA, a cline of haplotypes across the West, or the presence of a contact zone between A. g. atricapillus and goshawks of southern Arizona and the Mexican Plateau.

  19. Ground water in Tooele Valley, Utah

    USGS Publications Warehouse

    Gates, J.S.; Keller, O.A.

    1970-01-01

    This short report was written by condensing parts of a technical report on the ground water in Tooele Valley, which was prepared as part of a cooperative program between the Utah Department of Natural Resources, Division of Water Rights, and the U. S. Geological Survey to study water in Utah. If you would like to read the more detailed technical report, write for a copy of the Utah State Engineer Technical Publication 12, “Reevaluation of the ground-water resources of Tooele Valley, Utah” by J. S. Gates. Copies can be obtained free of charge from the Division of Water Rights, State Capitol, Salt Lake City, Utah 84114.

  20. HCMM hydrological analysis in Utah

    NASA Technical Reports Server (NTRS)

    Miller, A. W. (Principal Investigator)

    1982-01-01

    The feasibility of applying a linear model to HCMM data in hopes of obtaining an accurate linear correlation was investigated. The relationship among HCMM sensed data surface temperature and red reflectivity on Utah Lake and water quality factors including algae concentrations, algae type, and nutrient and turbidity concentrations was established and evaluated. Correlation (composite) images of day infrared and reflectance imagery were assessed to determine if remote sensing offers the capability of using masses of accurate and comprehensive data in calculating evaporation. The effects of algae on temperature and evaporation were studied and the possibility of using satellite thermal data to locate areas within Utah Lake where significant thermal sources exist and areas of near surface groundwater was examined.

  1. Lead Levels in Utah Eagles

    NASA Astrophysics Data System (ADS)

    Arnold, Michelle

    2006-10-01

    Lead is a health hazard to most animals, causing adverse effects to the nervous and reproductive systems if in sufficient quantity. Found in most fishing jigs and sinkers, as well as some ammunition used in hunting, this metal can poison wildlife such as eagles. Eagles are raptors, or predatory birds, and their lead exposure would most likely comes from their food -- a fish which has swallowed a sinker or lead shot in carrion (dead animal matter). As part of an ongoing project to investigate the environment lead levels in Utah, the bone lead levels in the wing bones of eagles have been measured for eagle carcasses found throughout Utah. The noninvasive technique of x-ray fluorescence was used, consisting of a Cd-109 radioactive source to activate lead atoms and a HPGe detector with digital electronics to collect the gamma spectra. Preliminary results for the eagles measured to date will be presented.

  2. The Colorado Plateau IV: shaping conservation through science and management

    USGS Publications Warehouse

    Wakeling, Brian F.; Sisk, Thomas D.; van Riper, Charles

    2010-01-01

    Roughly centered on the Four Corners region of the southwestern United States, the Colorado Plateau covers some 130,000 square miles of sparsely vegetated plateaus, mesas, canyons, arches, and cliffs in Arizona, Utah, Colorado, and New Mexico. With elevations ranging from 3,000 to 14,000 feet, the natural systems found within the plateau are dramatically varied, from desert to alpine conditions. This book focuses on the integration of science and resource management issues in this unique and highly varied environment. Broken into three subsections, this volume addresses conservation biology, biophysical resources, and inventory and monitoring concerns. The chapters range in content, addressing conservation issues–past, present, and future–on the Colorado Plateau, measurement of human impacts on resources, grazing and wildland-urban interfaces, and tools and methods for monitoring habitats and species. An informative read for people interested in the conservation and natural history of the region, the book will also serve as a valuable reference for those people engaged in the management of cultural and biological resources of the Colorado Plateau, as well as scientists interested in methods and tools for land and resource management throughout the West.

  3. HIGH UINTAS PRIMITIVE AREA, UTAH.

    USGS Publications Warehouse

    Crittenden, Max D.; Sheridan, Michael J.

    1984-01-01

    Mineral surveys in the High Uintas Primitive Area, Utah and the additions subsequently proposed concluded that the area has little promise for mineral resources. Of the areas around the fringes, a strip along the north flank fault can be classed as having probable energy-resource potential for oil and gas. The oil and gas potential could be tested by additional seismic studies followed by drilling. Much of the necessary information probably could be obtained without drilling within the primitive area itself.

  4. Summary of oil and gas drilling activities in Utah, 1989-1990

    SciTech Connect

    Laine, M.D. ); Chidsey, T.C. )

    1991-06-01

    A total of 87 exploration and development wells were completed in Utah during 1989 and 76 wells during 1990. Some wildcats were drilled along established trends or structures, but many tested new plays or concepts. Most drilling activity occurred in the Paradox and Uinta basins, resulting in a number of significant wildcat discoveries and field extensions. In the Paradox basin, the search for Pennsylvanian algal mounds in the Desert Creek and Ismay zones continued to be the dominant play. Improved techniques were employed to locate mound facies and porosity zones. Eleven new fields were discovered in the basin during 1989 and 1990. Flow rates as high as 5,000 BOPD were reported from Chuska Energy Company's 1989 discovery, the 1 Sahgzie, in southern San Juan County. A continuing extensive and successful drilling program by that company has increased widespread interest in the region. In the Uinta basin, most exploration was concentrated adjacent to known fields. Other significant activity included (1) tests for Cretaceous coal bed methane; (2) reestablishment of Ferron Formation (Cretaceous) production in the Flat Canyon area, Wasatch plateau; and (3) carbon dioxide exploration, Aquarius plateau. Significant unsuccessful wildcats explored for (1) buried Paleozoic hills; Basin and Range; (2) Dakota Formation (Cretaceous) fluvial sands, southern Moxa arch; (3) Kaibab Formation (Permian) updip porosity pinch-outs and truncations, San Rafael swell; and (4) hydrodynamically trapped oil in the Paleozoic section of the Colorado plateau. A total of 113 development wells were completed in Utah during 1989 and 1990.

  5. CENTRAL PLATEAU REMEDIATION

    SciTech Connect

    ROMINE, L.D.

    2006-02-01

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  6. Extinct mountain goat ( Oreamnos harringtoni) in Southeastern Utah

    NASA Astrophysics Data System (ADS)

    Mead, Jim I.; Agenbroad, Larry D.; Phillips, Arthur M.; Middleton, Larry T.

    1987-05-01

    The extinct Harrington's mountain goat ( Oreamnos harringtoni Stock) is predominantly known from dry cave localities in the Grand Canyon, Arizona, in addition to two sites in the Great Basin, Nevada, and from San Josecito Cave, Nuevo Leon, Mexico. A dry shelter in Natural Bridges National Monument, on the central Colorado Plateau, southeastern Utah, preserves numerous remains of the extinct mountain goat in addition to pack rat middens. Remains from a 100-cm stratigraphic profile indicate that O. harringtoni lived on the plateau >39,800 yr B.P., the oldest directly dated find of extinct mountain goat. Plant macrofossils indicate that Engelmann's spruce ( Picea engelmannii), limber pine ( Pinus flexilis), rose ( Rosa cf. woodsii), and Douglas fir ( Pseudotsuga menziesii) grew during the late Pleistocene where a riparian and a pinyon-juniper ( Pinus edulis-Juniperus osteosperma) community now predominates; Douglas fir are found only in mesic, protected, north-facing areas. Limber pine, Douglas fir, bark, and grasses were the major dietary components in the dung. A springtime diet of birch ( Betula) is determined from pollen clumps in dung pellets.

  7. Paleogeographic and paleotectonic development of Laramide basins of SW Utah

    SciTech Connect

    Goldstrand, P.M. )

    1993-04-01

    Initial Laramide-style deformation in SW Utah began in latest Cretaceous (late Campanian or Maastrichtian) time during deposition of the conglomeratic Canaan Peak Formation (TKcp) which thins onto a broad arch located on the northern Paunsaugunt Plateau (Paunsaugunt upwarp). This NNE-SSW trending upward affected sediment dispersal patterns during the early Paleocene and was the southern basin margin for braided fluvial sediments of the Grand Castle Formation (Tgc). These sediments were shed SE, from the inactive Sevier highlands, as far east as the Table Cliff Plateau. Laramide deformation increased during the late( ) Paleocene, after deposition of the Tgc, with the formation of at least two closed basins. During the late( ) Paleocene, the Johns Valley and Upper Valley anticlines, and Circle Cliff Uplift developed with sediment being shed to the SE, E, and SW into the Pine Hollow basin. During initial development of the Pine Hollow basin, the underlying TKcp and Tgc were reworked into the basal Pine Hollow Formation. Small alluvial fans bounded the basin, grading laterally into low-energy fluvial, playa mudflat, and ephemeral lacustrine environments. The basal Claron Formation represents a broad, closed basin that initially developed during the later Paleocene to the SW of the Pine Hollow basin. The Claron basin was bordered by low relief uplands, fluvial floodplains, and calcrete paleosols to the north and moderate relief uplands to the west and east. Shallow lacustrine deposition occurred to the south. Lacustrine onlap of Laramide structures by middle Eocene suggests cessation of Laramide deformation by this time.

  8. Radiative plateau inflation

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Tamarit, Carlos

    2016-02-01

    We describe how monomial chaotic inflation becomes compatible with the latest CMB data thanks to radiative corrections producing a plateau. The interactions of the inflaton with other fields, required for reheating, can flatten the potential and moderate the production of primordial gravitational waves, keeping these below the current upper bound. We show that the appearance of a plateau requires that the inflaton couples to fermions and to another scalar or a gauge group. We give concrete examples of minimal particle physics models leading to plateaus for quadratic and quartic chaotic inflation. We also provide a three-parameter model-independent description of radiatively corrected inflation that is amenable to CMB analyses.

  9. Project PEER: Continuing Education in Utah.

    ERIC Educational Resources Information Center

    Hengesbaugh, Jean Houger

    A continuing education program to provide technical training or consultation for laboratory technologists practicing in rural and urban Utah has been established by the Centers for Disease Control and the Utah State Department of Health under the name Project PEER (Pursuing Excellence through Education Regionally). The core of the program is a…

  10. Utah Character Education Action Research Projects.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This booklet contains a synopsis of eight action research projects undertaken by educators from various Utah public schools presented at a series of workshops. Twenty-seven educators representing 19 schools, 9 school districts, and the Utah State Office of Education (USOE) attended the series of 4 full-day workshops held during October, February,…

  11. Migration and Life of Hispanics in Utah.

    ERIC Educational Resources Information Center

    Gallenstein, Nancy L.

    This paper presents a historical and cultural overview of the migration and life of Hispanics in Utah and identifies three themes: search for a better life, need for and acquisition of a sense of belonging, and substance of the Hispanic people. Over the past 4 centuries, Hispanics have migrated to Utah from New Mexico, Mexico, and Central and…

  12. Drug Use among Utah Students, 1994.

    ERIC Educational Resources Information Center

    Bahr, Stephen J.

    The prevalence of adolescent drug use in Utah is compared with drug use in the United States as a whole in this study. The data were obtained from a survey of 16,000 students in grades 7 through 12. Participants were drawn randomly from 38 of Utah's 40 school districts, with school personnel administering the anonymous questionnaire during school…

  13. Project PEER: Continuing Education in Utah.

    ERIC Educational Resources Information Center

    Hengesbaugh, Jean Houger

    A continuing education program to provide technical training or consultation for laboratory technologists practicing in rural and urban Utah has been established by the Centers for Disease Control and the Utah State Department of Health under the name Project PEER (Pursuing Excellence through Education Regionally). The core of the program is a…

  14. 40 CFR 81.430 - Utah.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Utah. 81.430 Section 81.430 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF... Visibility Is an Important Value § 81.430 Utah. Area name Acreage Public Law establishing Federal...

  15. The Utah Newspaper Project. Final Report.

    ERIC Educational Resources Information Center

    Holley, Robert P.

    As part of the United States Newspaper Program, the Marriott Library at the University of Utah undertook the Utah Newspaper Project, a major microfilming project funded by the National Endowment for the Humanities. This report reviews the background of the project, describes the grant application process, and discusses the activities of: (1) the…

  16. 2012 Utah State Literacy Improvement Report

    ERIC Educational Resources Information Center

    Utah State Office of Education, 2012

    2012-01-01

    Utah has successfully implemented a variety of endeavors to ensure literacy for all students. Proficiency rates in language arts in Utah have improved in all grade levels since 2005. Emphasis has been placed on grades K-3 and early intervention for students at risk. Resources available to these students include optional extended-day kindergarten,…

  17. Utah State Prison Geothermal System

    SciTech Connect

    Mink, L.R.

    1984-07-01

    A geothermal space heating project was recently completed at the Utah State Prison complex at Crystal Hot Springs located near Murray, Utah. The project was initiated in 1978 as a joint U.S. Department of Energy and State of Utah project. Geologic and geophysical investigations initiated in 1979 consist of surface geologic mapping and aeromagnetic and detailed gravity surveys. This exploration program along with several shallow thermal-gradient holes provided the structural details for a subsequent exploration drilling program. The exploration drilling program involved deepening an existing well (SF-1) to 500 ft (150 m) and drilling a new hole (USP/TH-1) to 1000 ft (300 m) to test the extent of the thermal anomaly. Well SF-1 intersected 175)2)F(79)2)C) temperatures in a low permeable quartzite, and well USP/TH-1 intersected highly fractured quartzite in the lower section of the well. A temperature reversal was noted in USP/TH-1 below 700 ft (213 m) with a maximum temperature of 175)2)F(79)2)C) occurring in the zone from 300 to 700 ft (90 to 215 m). Flow testing of USP/TH-1 indicated the well would flow at 1000 gpm with a sustained flow of 400 gpm at a 3.5 psi drawdown over the heating season. Testing also indicated interference with other nearby wells and thermal springs. Fluid production for space heating of the prison facilities took place during the winter of 1983-84. This production will give more data to refine the calculations of reservoir producibility and provide information on the economics of utilizing geothermal fluids for space heating.

  18. Avalanche safety practices in Utah.

    PubMed

    Silverton, Natalie A; McIntosh, Scott E; Kim, Han S

    2007-01-01

    Avalanche fatalities occur on a yearly basis in Utah. The purpose of this study was to assess avalanche safety practices of different backcountry users in Utah and to identify groups that can be targeted for avalanche safety education. We surveyed 353 winter backcountry users to determine the percentage of participants in each group who were traveling with one or more partners; the percentage who were carrying avalanche transceivers, shovels, probes, or AvaLungs; and the percentage who had taken an avalanche safety course. A measure of minimum safe practice was defined as 1) traveling with a partner, 2) carrying an avalanche transceiver, and 3) carrying a shovel. Participants in this study were backcountry skiers, snowboarders, snowshoers, snowmobilers, and out-of-bounds resort skiers/snowboarders traveling in the Wasatch and Uinta Mountains of Utah during the winter of 2005-06. The percentage of backcountry recreationists traveling with one or more partners was not significantly different (P=.0658) among backcountry skiers, snowboarders, snowshoers, snowmobilers, and out-of-bounds resort skiers/snowboarders. These groups did, however, differ in the percentage who carried avalanche transceivers (P<.0001), shovels (P<.0001), probes (P<.0001), and AvaLungs (P=.0020), as well as in the percentage who had taken an avalanche safety course (P<.0001) and the percentage who were carrying out minimum safe practices (P<.0001). Backcountry skiers showed the highest level of avalanche preparedness, with 98% carrying avalanche transceivers, 98% carrying shovels, 77% carrying probes, 86% having taken an avalanche safety course, and 88% carrying out minimum safe practices. Out of bounds snowboarders were the least prepared with 9% carrying avalanche transceivers, 9% carrying shovels, 7% carrying probes, 33% having taken an avalanche safety course, and 2% carrying out minimum safe practices. There are significant differences in the avalanche safety practices of the various groups

  19. Great Salt Lake, Utah, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  20. Great Salt Lake, Utah, USA

    NASA Image and Video Library

    1990-03-04

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  1. Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005

    USGS Publications Warehouse

    Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.

    2009-01-01

    The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and

  2. Groundwater conditions in Utah, spring of 2013

    USGS Publications Warehouse

    Burden, Carole B.; Birken, Adam S.; Derrick, V. Noah; Fisher, Martel J.; Holt, Christopher M.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2013-01-01

    This is the fiftieth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawals from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2012. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2013.pdf. Groundwater conditions in Utah for calendar year 2011 are reported in Burden and others (2012) and available online at http://ut.water.usgs.gov/ publications/GW2012.pdf

  3. The effect of pumping large-discharge wells on the ground-water reservoir in southern Utah Valley, Utah County, Utah

    USGS Publications Warehouse

    Cordova, R.M.; Mower, R.W.

    1967-01-01

    An extensive aquifer test in southern Utah Valley, Utah County, Utah, was made during January-March 1967 by the U.S. Geological Survey in cooperation with the Utah State Engineer. The purpose of the test was to obtain data about the hydraulic characteristics of the aquifer in the valley and to determine whether pumping large-diameter wells decreased artesian pressures and resulting flow from the numerous small-diameter flowing wells in the valley (fig. 1).

  4. UTAH VALLEY DUST AFFECTS HUMAN BAL LYMPHOCYTES

    EPA Science Inventory

    Increased morbidity and mortality have been associated with elevated levels of inhalable air particles. Causative constituents of PM and pathophysiological mechanisms involved have not been determined. A unique situation in the Utah Valley during a three yr period permitted ex...

  5. UTAH VALLEY DUST AFFECTS HUMAN BAL LYMPHOCYTES

    EPA Science Inventory

    Increased morbidity and mortality have been associated with elevated levels of inhalable air particles. Causative constituents of PM and pathophysiological mechanisms involved have not been determined. A unique situation in the Utah Valley during a three yr period permitted ex...

  6. Utah School Buildings 1967-1969.

    ERIC Educational Resources Information Center

    Bell, T. H.; And Others

    Photographs, architectural drawings, and floor plans are presented for 26 elementary, secondary, and vocational schools in Utah. Descriptions of salient design and structural features are included for each school. Both exterior and interior features are given consideration. (FS)

  7. Map showing 1983 landslides in Utah

    USGS Publications Warehouse

    Brabb, Earl E.; Wieczorek, Gerald F.; Harp, Edwin L.

    1989-01-01

    The State of Utah sustained direct damages from landslides and flooding in excess of $400 million during approximately three months in the spring of 1983.  These disastrous events were declared national disaster areas (Anderson and others, 1985).

  8. Floods, runoff, and snowpack in Utah, 1995

    USGS Publications Warehouse

    Allen, D.V.

    1996-01-01

    Utah, like other States in the western United States, has experienced several rapid and extreme changes between wet and dry precipitation cycles during recent years. During the 1995 water year (October 1994 to September 1995), most areas of Utah experienced greater-than-normal precipitation (1961-90), which was reflected in greater-than-average snowpack, moderate flooding, a landslide in southwestern Utah, and prolonged high runoff in northern and eastern Utah. Preliminary monthly streamflow data for January to June 1995 from 11 sites gaged by the U.S. Geological Survey were grouped into three regions of the State and compared with snow-water equivalent data from 6 selected SNOTEL (SNOwpack TELemetered) sites operated by the Natural Resources Conservation Service (fig. 1).

  9. Utah Science Activities, Update 2010

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS), a bureau of the U.S. Department of the Interior, serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS has become a world leader in the natural sciences thanks to our scientific excellence and responsiveness to society's needs. This newsletter describes some of the current and recently completed USGS earth-science activities in Utah. As an unbiased, multi-disciplinary science organization that focuses on biology, geography, geology, and water, we are dedicated to the timely, relevant, and impartial study of the landscape, our natural resources, and the natural hazards that threaten us. Learn more about our goals and priorities for the coming decade in the USGS Science Strategy at http://www.usgs.gov/science_strategy/ .

  10. An Examination of Avoided Costs in Utah

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan

    2005-01-07

    The Utah Wind Working Group (UWWG) believes there are currently opportunities to encourage wind power development in the state by seeking changes to the avoided cost tariff paid to qualifying facilities (QFs). These opportunities have arisen as a result of a recent renegotiation of Pacificorp's Schedule 37 tariff for wind QFs under 3 MW, as well as an ongoing examination of Pacificorp's Schedule 38 tariff for wind QFs larger than 3 MW. It is expected that decisions made regarding Schedule 38 will also impact Schedule 37. Through the Laboratory Technical Assistance Program (Lab TAP), the UWWG has requested (through the Utah Energy Office) that LBNL provide technical assistance in determining whether an alternative method of calculating avoided costs that has been officially adopted in Idaho would lead to higher QF payments in Utah, and to discuss the pros and cons of this method relative to the methodology recently adopted under Schedule 37 in Utah. To accomplish this scope of work, I begin by summarizing the current method of calculating avoided costs in Utah (per Schedule 37) and Idaho (the ''surrogate avoided resource'' or SAR method). I then compare the two methods both qualitatively and quantitatively. Next I present Pacificorp's four main objections to the use of the SAR method, and discuss the reasonableness of each objection. Finally, I conclude with a few other potential considerations that might add value to wind QFs in Utah.

  11. Selected hydrologic data for Cedar Valley, Iron County, southwestern Utah, 1930-2001

    USGS Publications Warehouse

    Howells, James H.; Mason, James L.; Slaugh, Bradley A.

    2001-01-01

    This report presents hydrologic data collected by the U. S. Geological Survey from 1930 to 2001 with emphasis on data collected from 1997 to 2001 as part of a study of ground-water resources in Cedar Valley, Iron County, southwestern Utah (fig. 1). Data collected prior to this study are also presented to show long-term trends. Data were collected during this study in cooperation with the Central Iron County Water Conservancy District; Utah Department of Natural Resources, Division of Water Resources; Utah Department of Environmental Quality, Division of Water Quality; Cedar City; and Enoch City; as part of a study to better understand the ground-water resources of Cedar Valley and to assess possible effects of increased ground-water withdrawal on water quality. Quality of ground water in Cedar Valley is variable and water suppliers need to know if additional water resources can be developed without drawing water of lower quality into public-supply wells. Cedar Valley is in central Iron County at the transitional boundary between the Basin and Range and Colorado Plateau physiographic provinces described by Hunt (1974) and covers about 570 mi2. Additional data from wells west of Cedar Valley and to the south in the vicinity of Kanarraville in the Virgin River drainage (Colorado River Basin) adjacent to the study area are included. Cedar Valley is bounded on the east by the Markagunt Plateau and Red Hills, on the southwest by the Harmony Mountains, on the west by a complex of low hills, and on the north by the Black Mountains. Altitudes in the study area range from about 5,300 ft in Mud Spring Canyon to about 10,400 ft at Blowhard Mountain to the east.

  12. Selected hydrologic data for Cedar Valley, Iron County, southwestern Utah, 1930-2001

    USGS Publications Warehouse

    Howells, James H.; Mason, James L.; Slaugh, Bradley A.

    2001-01-01

    This report presents hydrologic data collected by the U. S. Geological Survey from 1930 to 2001 with emphasis on data collected from 1997 to 2001 as part of a study of ground-water resources in Cedar Valley, Iron County, southwestern Utah (fig. 1). Data collected prior to this study are also presented to show long-term trends. Data were collected during this study in cooperation with the Central Iron County Water Conservancy District; Utah Department of Natural Resources, Division of Water Resources; Utah Department of Environmental Quality, Division of Water Quality; Cedar City; and Enoch City; as part of a study to better understand the ground-water resources of Cedar Valley and to assess possible effects of increased ground-water withdrawal on water quality. Quality of ground water in Cedar Valley is variable and water suppliers need to know if additional water resources can be developed without drawing water of lower quality into public-supply wells.Cedar Valley is in central Iron County at the transitional boundary between the Basin and Range and Colorado Plateau physiographic provinces described by Hunt (1974) and covers about 570 mi2. Additional data from wells west of Cedar Valley and to the south in the vicinity of Kanarraville in the Virgin River drainage (Colorado River Basin) adjacent to the study area are included. Cedar Valley is bounded on the east by the Markagunt Plateau and Red Hills, on the southwest by the Harmony Mountains, on the west by a complex of low hills, and on the north by the Black Mountains. Altitudes in the study area range from about 5,300 ft in Mud Spring Canyon to about 10,400 ft at Blowhard Mountain to the east.

  13. Practical Law in Utah. Utah Supplement to "Street Law." Fourth Edition.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City. Statewide Clearinghouse on Law-Related Education.

    This textbook for high school students on law in Utah supplements "Street Law: A Course in Practical Law," a program in law-related education in use across the United States. The introduction explains the meaning of law, how laws are made in Utah, and the functions of the state court system. Following chapters elucidate the branches of…

  14. The Colorado Plateau: cultural, biological, and physical research

    USGS Publications Warehouse

    Cole, Kenneth L.; van Riper, Charles

    2004-01-01

    Stretching from the four corners of Arizona, New Mexico, Colorado, and Utah, the Colorado Plateau is a natural laboratory for a wide range of studies. This volume presents 23 original articles drawn from more than 100 research projects presented at the Sixth Biennial Conference of Research on the Colorado Plateau. This scientific gathering revolved around research, inventory, and monitoring of lands in the region. The book's contents cover management techniques for cultural, biological, and physical resources, representing collaborative efforts among federal, university, and private sector scientists and land managers. Chapters on cultural concerns cover benchmarks of modern southwestern anthropological knowledge, models of past human activity and impact of modern visitation at newly established national monuments, challenges in implementing the 1964 Wilderness Act, and opportunities for increased federal research on Native American lands. The section on biological resources comprises sixteen chapters, with coverage that ranges from mammalian biogeography to responses of elk at the urban-wildland interface. Additional biological studies include the effects of fire and grazing on vegetation; research on bald eagles at Grand Canyon and tracking wild turkeys using radio collars; and management of palentological resources. Two final chapters on physical resources consider a proposed rerouting of the Rio de Flag River in urban Flagstaff, Arizona, and an examination of past climate patterns over the Plateau, using stream flow records and tree ring data. In light of similarities in habitat and climate across the Colorado Plateau, techniques useful to particular management units have been found to be applicable in many locations. This volume highlights an abundance of research that will prove useful for all of those working in the region, as well as for others seeking comparative studies that integrate research into land management actions.

  15. REACTIVE MULTIPHASE BEHAVIOR OF CO{sub 2} IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU

    SciTech Connect

    R.G. Allis; J. Moore; S. White

    2003-10-21

    Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. Efforts have focused on the Farnham Dome, located in central Utah, and the Springer-St. Johns field in Arizona and New Mexico. The Springer-St. Johns field is particularly significant because of the presence of extensive travertine deposits that document release of CO{sub 2} to the atmosphere. CO{sub 2} accumulations at both fields occur in sedimentary rocks typical of CO{sub 2} reservoirs occurring on the Colorado Plateau. The main achievements were: (1) to assess the possibility of CO{sub 2} leakage from the Farnham Dome of central Utah; and (2) prepare a paper for presentation at the 3rd Annual Conference on Carbon Sequestration.

  16. Groundwater conditions in Utah, spring of 2014

    USGS Publications Warehouse

    Burden, Carole B.; Birken, Adam S.; Gerner, Steven J.; Carricaburu, John P.; Derrick, V. Noah; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2014-01-01

    This is the fifty-first in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions.This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2013. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water. usgs.gov/publications/GW2014.pdf. Groundwater conditions in Utah for calendar year 2012 are reported in Burden and others (2013) and are available online at http://ut.water.usgs. gov/publications/GW2013.pdf

  17. Groundwater conditions in Utah, spring of 2012

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Holt, Christopher M.; Fisher, Martel J.; Downhour, Paul; Smith, Lincoln; Eacret, Robert J.; Gibson, Travis L.; Slaugh, Bradley A.; Whittier, Nickolas R.; Howells, James H.; Christiansen, Howard K.

    2012-01-01

    This is the forty-ninth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2011. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2012.pdf. Groundwater conditions in Utah for calendar year 2010 are reported in Burden and others (2011) and available online at http://ut.water.usgs.gov/ publications/GW2011.pdf.

  18. Groundwater conditions in Utah, spring of 2011

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Marston, Thomas M.; Fisher, Martel J.; Balling, Ted J.; Downhour, Paul; Guzman, Manuel; Eacret, Robert J.; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2011-01-01

    This is the forty-eighth in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas that are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2010. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http:// www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs. gov/publications/GW2011.pdf. Groundwater conditions in Utah for calendar year 2009 are reported in Burden and others (2010) and available online at http://ut.water.usgs.gov/ publications/GW2010.pdf.

  19. Groundwater conditions in Utah, spring of 2010

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Cederberg, Jay R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Enright, Michael; Eacret, Robert J.; Guzman, Manuel; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2010-01-01

    This is the forty-seventh in a series of annual reports that describe groundwater conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing groundwater conditions. This report, like the others in the series, contains information on well construction, groundwater withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of groundwater. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing groundwater conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of groundwater development in the State for calendar year 2009. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is also available online at http://www. waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/ publications/GW2010.pdf. Groundwater conditions in Utah for calendar year 2008 are reported in Burden and others (2009) and available online at http://ut.water.usgs.gov/publications/ GW2009.pdf.

  20. Genome Sequence of Escherichia coli Tailed Phage Utah

    PubMed Central

    Leavitt, Justin C.; Heitkamp, Alexandra J.; Bhattacharjee, Ananda S.; Gilcrease, Eddie B.

    2017-01-01

    ABSTRACT Escherichia coli bacteriophage Utah is a member of the chi-like tailed phage cluster in the Siphoviridae family. We report here the complete 59,024-bp sequence of the genome of phage Utah. PMID:28360173

  1. Salt Lake City, Utah 2002

    NASA Image and Video Library

    2017-09-27

    Salt Lake City, Utah, Winter 2001 The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands

  2. Geology of the central Mineral Mountains, Beaver County, Utah

    SciTech Connect

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  3. Lake Powell, Colorado River, Utah and Grand Canyon, Arizona

    NASA Image and Video Library

    1973-06-22

    SL2-04-018 (June 1973) --- A vertical view of the Arizona-Utah border area showing the Colorado River and Grand Canyon photographed from the Skylab 1/2 space station in Earth orbit. This picture was taken by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment in the Multiple Docking Adapter of the space station. Type S0-356 film was used. The row of white clouds extend north-south over the dark colored Kaibab Plateau. The junction of the Colorado and Little Colorado rivers is in the southwest corner of the picture. The body of water is Lake Powell on the Colorado River upstream from the Grand Canyon. The lone peak at the eastern edge of the photograph south of Colorado River is the 10,416-foot Navajo Mountain. The S190-A experiment is part of the Skylab Earth Resources Experiments Package(EREP). Photo credit: NASA

  4. Episodic incision of the Colorado River in Glen Canyon, Utah

    USGS Publications Warehouse

    Garvin, C.D.; Hanks, T.C.; Finkel, R.C.; Heimsath, A.M.

    2005-01-01

    Incision rates of the Colorado River are integral to understanding the development of the Colorado Plateau. Here we calculate episodic incision rates of the Colorado River based on absolute ages of two levels of Quaternary deposits adjacent to Glen Canyon, Utah, along the north flank of Navajo Mountain. Minimum surface ages are determined by a combination of cosmogenic radionuclide surface exposure ages, uranium series and soil-development formation times. Bedrock incision rates of the Colorado River between c. 500 ka and c. 250 ka, and c. 250 ka to present are c. 0??4 m ka-1 and c. 0??7 m ka-1, respectively. These rates are more than double the rates reported in the Grand Canyon, suggesting that the Colorado River above Lees Ferry is out of equilibrium with the lower section of the river. We also determine incision rates of two tributaries to the Colorado River. Oak Creek and Bridge Creek flow off Navajo Mountain into Glen Canyon from the southeast. Oak Creek and Bridge Creek both have incision rates of c. 0??6 m ka-1 over the past c. 100 ka at points about 9 km away from the main stem of the Colorado River. Copyright ?? 2005 John Wiley & Sons, Ltd.

  5. Radon-hazard potential of Utah

    SciTech Connect

    Black, B.D.; Solomon, B.J. )

    1993-04-01

    Radon is a naturally occurring radioactive gas formed by decay of uranium, and occurs in nearly all geologic materials. Although radon has been shown to be a significant cause of lung cancer in miners, the health hazard from accumulation of radon gas in buildings has only recently been recognized. Indoor-radon hazards depend on both geologic and non-geologic factors. Although non-geologic factors such as construction type, weather, and lifestyles are difficult to measure, geologic factors such as uranium concentration, soil permeability, and depth to ground water can be quantified. Uranium-enriched geologic materials, such as black shales, marine sandstones, and certain granitic, metamorphic, and volcanic rocks, are generally associated with a high radon-hazard potential. Impermeable soil or shallow ground water impedes radon movement and is generally associated with a low radon-hazard potential. A numerical rating system based on these geologic factors has been developed to map radon-hazard potential in Utah. A statewide map shows that the radon-hazard potential of Utah is generally moderate. Assessments of hazard potential from detailed field investigations correlate well with areas of this map. Central Utah has the highest radon-hazard potential, primarily due to uranium-enriched Tertiary volcanic rocks. The radon-hazard potential of eastern Utah is moderate to high, but is generally restricted by low uranium levels. Western Utah, where valley basins with impermeable soils and shallow ground water are common, has the lowest radon-hazard potential.

  6. Utah Article Delivery: A New Model for Consortial Resource Sharing.

    ERIC Educational Resources Information Center

    Kochan, Carol A.; Lee, Daniel R.

    1998-01-01

    Describes the UTAD (Utah Article Delivery) Pilot Project, an innovative resource-sharing service that provides journal articles to the Utah higher education community, developed by the Utah Academic Library Consortium (UALC) in partnership with EBSCO Document Services. Highlights include goals, options considered, challenges, and evaluation. The…

  7. 1. Photocopied from photo 25797, Engineering Dept., Utah Power and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopied from photo 25797, Engineering Dept., Utah Power and Light Co., Salt Lake City, Utah. 'WHEELON HYDRO-ELECTRIC PLANT (1725 KW) STATION, WEST PENSTOCK, 130 KV TRANSFORMERS AND SWITCHYARD AND EAST AND WEST CANALS. NOV 1914.' - Utah Sugar Company, Wheelon Hydoelectric Plant, Bear River, Fielding, Box Elder County, UT

  8. Utah Article Delivery: A New Model for Consortial Resource Sharing.

    ERIC Educational Resources Information Center

    Kochan, Carol A.; Lee, Daniel R.

    1998-01-01

    Describes the UTAD (Utah Article Delivery) Pilot Project, an innovative resource-sharing service that provides journal articles to the Utah higher education community, developed by the Utah Academic Library Consortium (UALC) in partnership with EBSCO Document Services. Highlights include goals, options considered, challenges, and evaluation. The…

  9. Utah Career Guide for Adults, 2000-2002.

    ERIC Educational Resources Information Center

    Blaine, Connie, Ed.

    This career guide provides Utah job seekers with information leading to job success. Section 1, Getting Started, provides suggestions for committing to a job search. Section 2, Utah Job Trends, identifies the fastest growing occupations or most openings; top 50 occupations; and new Utah jobs. Section 3, Self-Assessment, covers knowing oneself;…

  10. 75 FR 71726 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Central Utah Project Completion Act AGENCY: Department of the Interior, Office of the Assistant Secretary... required. ADDRESSES: Copies of the EA and FONSI are available for inspection at: Central Utah Water Conservancy District, 355 West University Parkway, Orem, Utah 84058-7303. Department of the Interior, Central...

  11. Utah's School Counseling Data Projects: A Statewide Initiative

    ERIC Educational Resources Information Center

    Bitner, Kathryn S.; Kay-Stevenson, Dawn; Burnham, Brent; Whitely, Adele; Whitaker, Annette B.; Sachse, Tom

    2009-01-01

    The statewide Utah Model for Comprehensive Counseling and Guidance: K-12 Programs (Utah State Office of Education, 2008) began implementation in 1988. Beginning with the 2004-2005 school year, data collection has been required for all schools collecting program funds. This article reviews research data from three Utah schools--one elementary…

  12. 76 FR 18244 - Notice of Utah's Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... Utah RAC will meet Tuesday, May 10, 2011, (8 a.m.-5 p.m.), in Salt Lake City, Utah. ADDRESSES: The Council will meet at the Peery Hotel (Broadway 110 meeting room), 110 West Broadway (300 South), Salt Lake... Office, Bureau of Land Management, P.O. Box 45155, Salt Lake City, Utah 84145-0155; phone (801)...

  13. Dendrochronology of Utah Juniper (Juniperus osteosperma (Torr.) Little)

    Treesearch

    R. Justin Derose; Matthew F. Bekker; Roger Kjelgren; Brendan M. Buckley; James H. Speer; Eric B. Allen

    2016-01-01

    Utah juniper was a foundational species for the discipline of dendrochronology, having been used in the early 20th Century investigations of Mesa Verde, but has been largely ignored by dendrochronologists since. Here we present dendrochronological investigations of Utah juniper core and cross-sectional samples from four sites in northern Utah. We demonstrate that,...

  14. Seepage water of northern Utah

    USGS Publications Warehouse

    Fortier, Samuel

    1897-01-01

    The term “seepage water” is used by the irrigators of the West to designate the water which reaches the lowest grounds or the stream channels, swelling the latter by imperceptible degrees and keeping up the flow long after the rains have ceased and the snow has melted. The word “seepage” is applied particularly to the water which begins to appear in spots below irrigation canals and cultivated fields, usually some months or even years after irrigation has been introduced, and which tends to convert the lowlands into marshes and gives rise to springs, which in turn may be employed in watering other fields.The importance of a thorough knowledge of the behavior of seepage water is obvious when consideration is given to the close relationship which exists between the available water supply and the material prosperity of the arid region where irrigation is practiced. This is particularly true of Utah, where every readily available source of supply has long since been utilized and where the rapidly increasing agricultural population necessitates the complete utilization of all fresh waters.

  15. Tibetan Plateau and beyond

    NASA Astrophysics Data System (ADS)

    Joswiak, Meri; Yao, Tandong; Joswiak, Daniel

    2012-03-01

    Third Annual Third Pole Environment Workshop; Reykjavík, Iceland, 29 August to 1 September 2011 Recognizing the necessity of multinational, interdisciplinary environmental research on the Tibetan Plateau and surrounding mountain ranges—dubbed the "Third Pole" for its considerable ice mass and high elevation— the Third Pole Environment (TPE) program accepted an invitation from the president of Iceland and the University of Iceland to hold its third annual TPE workshop in Iceland. In accordance with TPE's mission to evaluate climate and environmental changes at both local and global scales, participants from 15 countries converged for 3 days of intensive discussions and presentations related to TPE research. The Third Pole glaciers are undergoing considerable retreat, which will likely affect more than 1.5 billion people living in the region

  16. 76 FR 69296 - University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION University of Utah, University of Utah TRIGA Nuclear Reactor, Notice of Issuance of Renewed... University of Utah (UU, the licensee), which authorizes continued operation of the UU TRIGA Nuclear Reactor...

  17. Generalizing ecological site concepts of the Colorado Plateau for landscape-level applications

    USGS Publications Warehouse

    Duniway, Michael C.; Nauman, Travis; Johanson, Jamin K.; Green, Shane; Miller, Mark E.; Bestelmeyer, Brandon T.

    2016-01-01

    Numerous ecological site descriptions in the southern Utah portion of the Colorado Plateau can be difficult to navigate, so we held a workshop aimed at adding value and functionality to the current ecological site system.We created new groups of ecological sites and drafted state-and-transition models for these new groups.We were able to distill the current large number of ecological sites in the study area (ca. 150) into eight ecological site groups that capture important variability in ecosystem dynamics.Several inventory and monitoring programs and landscape scale planning actions will likely benefit from more generalized ecological site group concepts.

  18. Federally owned coal, federal lands, and coal quality in the Colorado Plateau Region

    USGS Publications Warehouse

    ,

    2001-01-01

    Federally owned coal plays a major role in the energy supply of the United States. About 1.1 billion tons of coal were produced in the United States in 1997 (U.S. Department of Energy, 1998). About 30 percent of that total, or about 330 million tons,1 came from Federal lands. (See USGS Fact Sheet FS-012-98.) Almost all of the Federal coal production is from Wyoming, Montana, and three States in the Colorado Plateau region—Utah, Colorado, and New Mexico2 (see table below). 

  19. Familial aggregation of Parkinson disease in Utah

    PubMed Central

    Savica, Rodolfo; Pulst, Stefan

    2016-01-01

    Objective: To describe clustering of death from Parkinson disease (PD) in relatives in a large US study. Methods: We analyzed the Utah Population Database resource, which includes genealogy data of more than 2.7 million individuals linked to 519,061 individuals with a Utah death certificate (DC). We identified individuals whose DC included PD as a cause of death using ICD coding. In those individuals whose Utah DC listed PD as a cause of death, the relative risk (RR) of death with PD was determined among close and distant relatives using sex-, birth year–, and birthplace-specific rates. Results: We identified 4,031 individuals whose DC indicated PD. Among 18,127 first-degree relatives of probands with a Utah DC, the RR of death with PD was significantly increased (RR = 1.82, 95% confidence interval [CI] 1.61–2.04). The RR of death with PD was also significantly increased among 40,546 second-degree relatives with a Utah DC (RR = 1.44, 95% CI 1.29–1.60) and among 93,398 third-degree relatives with a Utah DC (RR = 1.10, 95% CI 1.03–1.18). Conclusions: Significant evidence for excess familial clustering was observed for PD deaths. The excess familial clustering and the significantly elevated RRs for PD among close and distant relatives strongly support a genetic contribution to PD mortality. These results confirm and expand the results of previous studies of PD by quantifying the risk of PD death among more distant relatives. PMID:27123483

  20. Summary of maximum discharges in Utah streams

    USGS Publications Warehouse

    Whitaker, G.L.

    1969-01-01

    The purpose of this report is to summarize the mass of data pertaining to high rates of streamflow which has been assembled in Utah over a period of many decades. The pertinent data are presented in tables 1-4 and are summarized by graphs in figures 3 and 4. These data have been collected by the U. S. Geological Survey, usually in cooperation with the State of Utah or with other local or Federal agencies. Some uses for streamflow data are cited, and a few of the conclusions which may be drawn from this report are discussed.

  1. Anaglyph, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM

  2. Anaglyph, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM

  3. 1999 ESH&Q Liability Assessment Report of Envirocare of Utah, Inc. Clive, Utah

    SciTech Connect

    Trump, D. E.; Vilord, C. E.

    1999-07-01

    This report contains the results of an environment, safety, health, and quality (ESH&Q) assessment of the treatment technologies and treatment-related operations that was conducted of Envirocare of Utah, Inc. (EOU). EOU is a lowlevel radioactive and mixed Resource Conservation and Recovery Act (RCRA)- regulated haz.ardous low-level radioactive waste (mixed low-level waste) treatment/disposal facility located near Clive, Utah. An ESH&Q assessment of the EOU Clive, Utah facility treatment technologies and related treatment operations was conducted in mid-April 1999. The assessment was required as part of the technical evaluation of proposals received by Lockheed Martin Idaho Technologies Company (LMITCO) for modification of a mixed low-level radioactive waste disposal subcontract (No.K79-180572). The EOU Clive, Utah facility is proposed as a potential treatment/disposal facility for mixed low-level radioactive waste regulated under the RCRA and the Atomic Energy Act

  4. Arizona/New Mexico Plateau Ecoregion: Chapter 26 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Ruhlman, Jana; Gass, Leila; Middleton, Barry

    2012-01-01

    Situated between ecoregions of distinctly different topographies and climates, the Arizona/New Mexico Plateau Ecoregion represents a large area of approximately 192,869 km2 (74,467 mi2) that stretches across northern Arizona, central and northwestern New Mexico, and parts of southwestern Colorado; in addition, a small part extends into southeastern Nevada (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). Forested, mountainous terrain borders the ecoregion on the northeast (Southern Rockies Ecoregion) and southwest (Arizona/New Mexico Mountains Ecoregion). Warmer and drier climates exist to the south (Chihuahuan Deserts Ecoregion) and west (Mojave Basin and Range Ecoregion). The semiarid grasslands of the western Great Plains are to the east (Southwestern Tablelands Ecoregion), and the tablelands of the Colorado Plateau in Utah and western Colorado lie to the north (Colorado Plateaus Ecoregion). The Arizona/New Mexico Plateau Ecoregion occupies a significant portion of the southern half of the Colorado Plateau.

  5. Study of the Utah uranium milling industry. Volume II. Utah energy resources: uranium

    SciTech Connect

    Turley, R.E.

    1981-01-01

    Volume II provides an overview of Utah's uranium industry including its history and present status. Uranium production peaked in 1958, then declined until 1976. A second production boom has begun and ore production could reach more than 1.3 million tons by 1985. Utah's milling industry has the capacity to produce 1600 tons of yellow cake per year. Uranium ores are mined by both conventional surface and underground techniques. (DMC)

  6. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  7. Lichens as indicators of elevated levels of environmental lead in Utah Valley, Utah. [Rhizoplaca melanophthalma

    SciTech Connect

    St. Clair, L.L.; Rushforth, S.R.; Newberry, C.C. )

    1990-01-01

    Utah Valley, Utah is a high elevation mountain valley with a moderate population and a large aged integrated steel mill. Fine particulate pollution (PM{sub 10}) levels in the valley are among the highest din the US, particularly during winter inversion periods. Utah Valley also has high levels of carbon monoxide. The local bureau of air quality monitored ambient air lead in Utah Valley for several years through the 1980s. Values as high as 1.35 g/m{sup 3} were noted from this monitoring. Such levels are 90% of the federal ambient air standard of 1.5 g/m{sup 3}. Lichens have long been recognized as bioindicators for heavy metals. Reports of high concentrations of lead in lichen thalli were common prior to the development and use of unleaded fuels. Since that time, lead concentrations in lichen thalli have generally decreased. Recent studies indicate lichen lead levels from clean air areas in the western US range from 10 to 25 ppm. Studies of the umbilicate saxicolous lichen Rhizoplaca melanophthalma in Utah Valley indicate lead levels between 188 and 200 ppm. Excess lead in Utah Valley likely originates from the steel mill and from the high number of vehicles still using leaded fuels.

  8. Selected hydrologic data for southern Utah and Goshen Valleys, Utah, 1890-1992

    USGS Publications Warehouse

    Stolp, B.J.; Drumiler, M.J.; Brooks, L.E.

    1993-01-01

    This report contains hydrologic data collected in southern Utah and Goshen Valleys from 1890 to 1992. Southern Utah and Goshen Valleys are south of Salt Lake City in Utah County, north-central Utah. The area is bounded on the east and south by the Wasarch Range, on the south by Long Ridge, on the west by the East Tintic Mountains and the Mosida Hills, and on the north by a line through about the middle of T. 7 S. Southern Utah Valley and Goshen Valley are divided by the northern tip of Long Ridge, West Mountain, and Utah Lake. The area is in the Basin and Range physiographic province and includes about 390 square miles. Hydrologic data presented include records of over 400 wells. drillers' logs for selected wells, water-level data from wells, well discharge, and chemical analyses of water from about 90 wells. Discharge, water temperature, and specific conductance of water are given for about 15 selected springs and drains, and for streams and canals.

  9. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  10. Profiling Family Preservation Services in Utah.

    ERIC Educational Resources Information Center

    Callister, Jerry P.; And Others

    1986-01-01

    Describes the Family Prevention Services projects operating in the largest service areas in Utah, which maintains (85 percent of) the most difficult-to-serve children and adolescents from troubled families in their homes, thus preventing out-of-home placements. A case study is presented. (Author/BB)

  11. 77 FR 34892 - Utah Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 944 ; Docket ID ] Utah Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule... of Surface Mining Reclamation and Enforcement (OSM), are announcing receipt of a proposed amendment...

  12. Report of the Utah Project in Ethiopia.

    ERIC Educational Resources Information Center

    Utah Univ., Salt Lake City.

    Since June of 1962, the University of Utah, in cooperation with the United States Agency for International Development and the Ethiopian Government, has helped to build a faculty of education at the Haile Sellassie I University in Addis Ababa, Ethiopia. The assignment has included two projects. The first was for preparation of junior-secondary and…

  13. Utah's Pilot State Dissemination Program. Final Report.

    ERIC Educational Resources Information Center

    Lindsay, Kenneth P.

    The final report of the Utah project documents the completion of activities directed at filling the objectives listed in the continuation proposal for the 1972-73 year submitted to the National Institute of Education. (The interim report covering the period from July 1970 to June 1972 is ED 069 327.) Objective one was the establishment of an…

  14. In Utah, Kids Get Video Homework Help.

    ERIC Educational Resources Information Center

    Peterson, M. Larry; Green, David L.

    1986-01-01

    "Mathelps," produced by the Logan City (Utah) School District, is an hour-long interactive tutoring program aired on local cable television. Each broadcast features a mathematics concept followed by a brain-teaser contest, to which students phone in their solutions. (TE)

  15. Utah Work-Based Learning Manual.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This document presents materials to assist Utah school personnel who are initiating, implementing, or improving work-based learning opportunities for students. The document presents detailed guidelines for creating and maintaining work-based learning systems in schools and resource materials for improving existing work-based opportunities. Formal…

  16. Utah's forest resources, 2003-2012

    Treesearch

    Charles E. Werstak; John D. Shaw; Sara A. Goeking; Christopher Witt; James Menlove; Mike T. Thompson; R. Justin DeRose; Michael C. Amacher; Sarah Jovan; Todd A. Morgan; Colin B. Sorenson; Steven W. Hayes; Chelsea P. McIver

    2016-01-01

    This report presents a summary of the most recent inventory of Utah’s forests based on field data collected from 2003 through 2012. The report includes descriptive highlights and tables of area, numbers of trees, biomass, volume, growth, mortality, and removals. Most sections and tables are organized by forest type or forest-type group, species group, diameter class,...

  17. Comprehensive inventory of Utah's forest resources, 1993

    Treesearch

    Renee A. O' Brien

    1999-01-01

    This report presents the results of an inventory of Utah's forest lands, completed in 1995. It is the first of its kind for the Interior West States in that it includes all forested lands, regardless of ownership or administrative status. It also includes information on a multitude of forest ecosystem attributes.Included in this report are tables and...

  18. Utah's forest resources, 2000-2005

    Treesearch

    Larry T. DeBlander; John D. Shaw; Chris Witt; Jim Menlove; Michael T. Thompson; Todd A. Morgan; R. Justin DeRose; Michael C. Amacher

    2010-01-01

    FIA is responsible for periodic assessments of the status and trends of the renewable resources of America's forests. Fundamental to the accomplishment of these assessments are the State-by-State resource inventories, which are now conducted on an annual basis. This report summarizes the results, interpretations, and future significance of Utah's annual...

  19. 77 FR 7229 - Utah Disaster #UT-00011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... State of Utah (FEMA-4053- DR), dated 02/01/2012. Incident: Severe Storm. Incident Period: 11/30/2011 through 12/01/2011. Effective Date: 02/01/2012. Physical Loan Application Deadline Date: 04/02/2012. Economic Injury (EIDL) Loan Application Deadline Date: 11/01/2012. ADDRESSES: Submit completed...

  20. Increased Gonorrhea Cases - Utah, 2009-2014.

    PubMed

    Watson, Joanna; Carlile, Jerry; Dunn, Angela; Evans, Megan; Fratto, Erin; Hartsell, Joel; Meinor, Lynn; Mietchen, Matthew; Nakashima, Allyn

    2016-09-02

    Gonorrhea (caused by infection with Neisseria gonorrhoeae) is the second most commonly reported notifiable disease in the United States (1). Left untreated, gonorrhea is associated with serious long-term adverse health effects, including pelvic inflammatory disease, ectopic pregnancy, and infertility. Infection also facilitates transmission of human immunodeficiency virus (2,3). Effective gonorrhea control relies upon early detection and effective antimicrobial treatment. To assess gonorrhea rate trends in Utah, the Utah Department of Health (UDOH) analyzed Utah National Electronic Disease Surveillance System (UT-NEDSS) data for the state during 2009-2014. After declining during 2009-2011, the statewide gonorrhea rate increased fivefold to 49 cases per 100,000 population in 2014. During 2009-2014, the proportion of cases among women increased from 21% to 39% (decreasing among males from 79% to 61%). Among male patients, the proportion who identified as men who have sex with men (MSM) decreased from 67% to 42%. These demographic changes suggest that increased heterosexual transmission of gonorrhea in Utah might be occurring. Health departments need to work with providers to ensure populations at high risk are being screened and properly treated for gonorrhea. Clinicians need to be aware of increases in the risk for infection among women and non-MSM males when making screening and testing decisions and educate their patients regarding gonorrhea transmission and prevention practices.

  1. Utah's First Joint Effort in Vocational Health

    ERIC Educational Resources Information Center

    Sprague, Richard F.

    1976-01-01

    Describes a tri-district program (in Utah's Granite, Jordan, and Murray school districts) to expand the health career program, which involved 62 field trips scouring the area's hospitals and health care centers, and student work experience opportunities, to expose students from 13 high schools to occupations beyond the traditional doctor and…

  2. Biomass of singleleaf pinyon and Utah juniper

    Treesearch

    E. L. Miller; R. O. Meeuwig; J. D. Budy

    1981-01-01

    Biomass determinations in singleleaf pinyon (Pinus monophylla) - Utah juniper (Juniperus osteosperma) stands in Nevada indicate that stem diameter and average crown diameter are the tree measurements most highly correlated with ovendry weights. The equations and tables developed provide a means for estimating the total aboveground...

  3. Utah Youth Suicide Study: Psychological Autopsy

    ERIC Educational Resources Information Center

    Moskos, Michelle; Olson, Lenora; Halbern, Sarah; Keller, Trisha; Gray, Doug

    2005-01-01

    We conducted a psychological autopsy study to further understand youth suicide in Utah. While traditional psychological autopsy studies primarily focus on the administration of psychometric measures to identify any underlying diagnosis of mental illness for the suicide decedent, we focused our interviews to identify which contacts in the…

  4. In Utah, Kids Get Video Homework Help.

    ERIC Educational Resources Information Center

    Peterson, M. Larry; Green, David L.

    1986-01-01

    "Mathelps," produced by the Logan City (Utah) School District, is an hour-long interactive tutoring program aired on local cable television. Each broadcast features a mathematics concept followed by a brain-teaser contest, to which students phone in their solutions. (TE)

  5. Analysis of Utah Career Ladder Plans.

    ERIC Educational Resources Information Center

    Murphy, Michael J.; And Others

    This report analyzes the content and development of the 45 school district career ladder plans submitted in 1984 to the Utah State Office of Education. Descriptive commentary and data tables are used to examine (1) the structure and composition of planning committees; (2) teacher evaluation provisions, including changes in evaluation methods, the…

  6. Profiling Family Preservation Services in Utah.

    ERIC Educational Resources Information Center

    Callister, Jerry P.; And Others

    1986-01-01

    Describes the Family Prevention Services projects operating in the largest service areas in Utah, which maintains (85 percent of) the most difficult-to-serve children and adolescents from troubled families in their homes, thus preventing out-of-home placements. A case study is presented. (Author/BB)

  7. 40 CFR 81.345 - Utah.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... County Grand County Iron County Juab County Kane County Millard County Morgan County Piute County Rich... County Emery County Garfield County Grand County Iron County Juab County Kane County Millard County..., 2005 for all areas in Utah. The Salt Lake City area is a maintenance area for the 1-hour NAAQS for...

  8. 40 CFR 81.345 - Utah.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... County Grand County Iron County Juab County Kane County Millard County Morgan County Piute County Rich... County Emery County Garfield County Grand County Iron County Juab County Kane County Millard County..., 2005 for all areas in Utah. The Salt Lake City area is a maintenance area for the 1-hour NAAQS for...

  9. Utah Integrated Shop Program. Final Report.

    ERIC Educational Resources Information Center

    Loveless, Austin G.

    To evaluate the Utah State Board of Education's Integrated Shop Program (ISP) for small rural high schools, 7 ISP schools in their 2nd year (1970-71) of the ISP were compared on 3 measures to 2 selected control schools (small rural high schools that offered vocational agricultural mechanics and industrial arts but did not offer formal courses in…

  10. Utah Governor's Mansion Library--Bibliography.

    ERIC Educational Resources Information Center

    Reinwand, Louis, Comp.

    This document begins with a statement of purpose for the Utah Governor's Mansion Library. Acknowledgments of individual contributors, institutional contributors, and the Governor's Mansion Foundation Library Committee members are acknowledged. An extensive bibliography lists the Library's holdings; entries are divided into sections for nonfiction,…

  11. Bibliography of Utah radioactive occurrences. Volume II

    SciTech Connect

    Doelling, H.H.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  12. Bibliography of Utah radioactive occurrences. Volume I

    SciTech Connect

    Doelling, H.H.

    1983-07-01

    The references in this bibliography were assembled by reviewing published bibliographies of Utah geology, unpublished reports of the US Geological Survey and the Department of Energy, and various university theses. Each of the listings is cross-referenced by location and subject matter. This report is published in two volumes.

  13. Geology of the Cedar Mesa-Boundary Butte area, San Juan County, Utah

    USGS Publications Warehouse

    O'Sullivan, Robert B.

    1965-01-01

    The Cedar Mesa-Boundary Butte area lies within the Colorado Plateau and includes about 650 square miles in southern San Juan County, Utah. Altitudes ranges from 3,890 feet on the westward-flowing San Juan River, the major and only perennial stream, to more than 6,400 feet on Cedar Mesa in the northwest. Bare rocks, high mesas, sheer cliffs, and deep canyons characterize the area. Comb Ridge, a prominent hogback of eastward-dipping rocks, trends north through the middle part of the area and is the most conspicuous topographic feature. The only permanent settlements are Bluff in the east and Mexican Hat in the west, both on the San Juan River.

  14. Selected hydrologic data, Price River basin, Utah, water years 1979 and 1980

    USGS Publications Warehouse

    Waddell, K.M.; Dodge, J.E.; Darby, D.W.; Theobald, S.M.

    1982-01-01

    This report presents data collected in the coal fields of the Wasatch Plateau and Book Cliffs in the Price River basin, east-central Utah. Ground- and surface-water and climatologic data that were collected during October 1978 to September 1980 are included in the report. Ground-water data include water levels in wells, discharges to springs and chemical analyses of water from wells, springs, and mines. Surface-water data include measurements of daily stream discharges at selected sites and analyses of the chemical, physical, and biological characteristics of water in streams and in Scofield Reservoir. Climatologic data include records of daily precipitation and solar radiation. Also included in the report are mineralogic and particle-size analyses of streambed samples, analyses of benthic invertebrates at selected stream sites, and analyses of suspended stream runoff in Soldier Creek. (USGS)

  15. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Utah

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Utah. Moving to the 2015 IECC from the 2012 Utah State Code base code is cost-effective for residential buildings in all climate zones in Utah.

  16. Paleogeographic controls of coal accumulation, Cretaceous Blackhawk Formation and Star Point Sandstone, Wasatch Plateau, Utah.

    USGS Publications Warehouse

    Flores, R.M.; Blanchard, L.F.; Sanchez, J.D.; Marley, W.E.; Muldoon, W.J.

    1984-01-01

    Considers the paleogeographic controls affecting the accumulation of coals in delta-barrier-island complexes. Progradation, lateral shifting, and abandonment of these complexes created four major landward-thinning tongues.-from Authors

  17. Two areas of probable holocene deformation in southwestern Utah

    USGS Publications Warehouse

    Anderson, R.E.; Bucknam, R.C.

    1979-01-01

    Recent geologic studies in southwestern Utah indicate two areas of probable Holocene ground deformation. 1. (1)A narrow arm of Lake Bonneville is known to have extended southward into Escalante Valley as far as Lund, Utah. Remnants of weakly developed shoreline features, which we have recently found, suggest that Lake Bonnevile covered an area of about 800 km2 beyond its previously recognized limits near Lund. Shoreline elevations show a gradual increase from 1553 m near Lund to 1584 m at a point 50 km further southwest, representing a reversal of the pattern that would result from isostatic rebound. The conspicuously flat floor of Escalante Valley covers an additional 100 km2 southward toward Enterprise, where its elevation is greater than 1610 m, but no shoreline features are recognizable; therefore, the former presence of the lake is only suspected. The measured 31-m rise over 50 km and the suspected 57-m rise in elevation over 70 km apparently occurred after Lake Bonnevile abandoned this area. The abandonment could have occurred as recently as 13,000 years ago, in which case the uplift is mainly of Holocene age. It probably has a deep-seated tectonic origin because it is situated above an inferred 9-km upwarp of the mantle that has been reported beneath the southern part of Escalante Valley on the basis of teleseismic P-wave residuals. 2. (2)Numerous closed topographic basins, ranging from a few hundred square meters to 1 km2 in area, are found at various elevations along the west margin of the Colorado Plateau northeast of Cedar City. Geologic mapping in that area indicates that the basins are located over complex structural depressions in which the rocks are faulted and folded. Several of the depressions are perched along the walls of the West Fork of Braffits Creek, one of a few north-draining creeks that have incised deeply into the plateau margin. Extremely active modern erosion by the creek has produced a 6-km-long gorge along which excellent exposures

  18. Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah

    USGS Publications Warehouse

    Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.

    2002-01-01

    The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and

  19. Earth observation image of Lake Powell taken during STS-100.

    NASA Image and Video Library

    2001-04-30

    STS100-716-176 (19 April-1 May 2001) --- The deeply entrenched, meandering Colorado River is distinctively dark as the river winds its way across the arid terrain of southeast Utah in this 70mm frame photographed from the Earth-orbiting Space Shuttle Endeavour. While Glen Canyon Dam (bottom of image) is located in northern Arizona, the reservoir of Lake Powell is in Utah. The Escalante and San Juan Rivers, two major tributaries that flow into Lake Powell (from the northwest and east respectively) are also discernable. The darker-looking, elongated and elevated feature north of Lake Powell is the Kaiparowits Plateau. Navajo Mountain is the darker circular feature to the south (to the right) of the lake.

  20. Allogenic sedimentary components of Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Rosenbaum, J.G.; Dean, W.E.; Reynolds, R.L.; Reheis, M.C.

    2009-01-01

    Bear Lake is a long-lived lake filling a tectonic depression between the Bear River Range to the west and the Bear River Plateau to the east, and straddling the border between Utah and Idaho. Mineralogy, elemental geochemistry, and magnetic properties provide information about variations in provenance of allogenic lithic material in last-glacial-age, quartz-rich sediment in Bear Lake. Grain-size data from the siliciclastic fraction of late-glacial to Holocene carbonate-rich sediments provide information about variations in lake level. For the quartz-rich lower unit, which was deposited while the Bear River fl owed into and out of the lake, four source areas are recognized on the basis of modern fluvial samples with contrasting properties that reflect differences in bedrock geology and in magnetite content from dust. One of these areas is underlain by hematite-rich Uinta Mountain Group rocks in the headwaters of the Bear River. Although Uinta Mountain Group rocks make up a small fraction of the catchment, hematite-rich material from this area is an important component of the lower unit. This material is interpreted to be glacial fl our. Variations in the input of glacial flour are interpreted as having caused quasi-cyclical variations in mineralogical and elemental concentrations, and in magnetic properties within the lower unit. The carbonate-rich younger unit was deposited under conditions similar to those of the modern lake, with the Bear River largely bypassing the lake. For two cores taken in more than 30 m of water, median grain sizes in this unit range from ???6 ??m to more than 30 ??m, with the coarsest grain sizes associated with beach or shallow-water deposits. Similar grain-size variations are observed as a function of water depth in the modern lake and provide the basis for interpreting the core grain-size data in terms of lake level. Copyright ?? 2009 The Geological Society of America.

  1. Climatic and limnologic setting of Bear Lake, Utah and Idaho

    USGS Publications Warehouse

    Dean, W.E.; Wurtsbaugh, W.A.; Lamarra, V.A.

    2009-01-01

    Bear Lake is a large alkaline lake on a high plateau on the Utah-Idaho border. The Bear River was partly diverted into the lake in the early twentieth century so that Bear Lake could serve as a reservoir to supply water for hydropower and irrigation downstream, which continues today. The northern Rocky Mountain region is within the belt of the strongest of the westerly winds that transport moisture during the winter and spring over coastal mountain ranges and into the Great Basin and Rocky Mountains. As a result of this dominant winter precipitation pattern, most of the water entering the lake is from snowmelt, but with net evaporation. The dominant solutes in the lake water are Ca 2+, Mg2+, and HCO32-, derived from Paleozoic carbonate rocks in the Bear River Range west of the lake. The lake is saturated with calcite, aragonite, and dolomite at all depths, and produces vast amounts of carbonate minerals. The chemistry of the lake has changed considerably over the past 100 years as a result of the diversion of Bear River. The net effect of the diversion was to dilute the lake water, especially the Mg2+ concentration. Bear Lake is oligotrophic and coprecipitation of phosphate with CaCO3 helps to keep productivity low. However, algal growth is colimited by nitrogen availability. Phytoplankton densities are low, with a mean summer chlorophyll a concentration of 0.4 mg L-1. Phytoplankton are dominated by diatoms, but they have not been studied extensively (but see Moser and Kimball, this volume). Zooplankton densities usually are low (<10 L-1) and highly seasonal, dominated by calanoid copepods and cladocera. Benthic invertebrate densities are extremely low; chironomid larvae are dominant at depths <30 m, and are partially replaced with ostracodes and oligochaetes in deeper water. The ostracode species in water depths >10 m are all endemic. Bear Lake has 13 species of fi sh, four of which are endemic. Copyright ?? 2009 The Geological Society of America.

  2. Electromagnetic analysis of groundwater on the Arizona-Utah border

    NASA Astrophysics Data System (ADS)

    Vander Vis, T.; Porter, R. C.; Macy, J. P.

    2016-12-01

    Understanding subsurface structure and groundwater flow is an essential part of managing groundwater resources, especially in southwestern United States where supply is limited and demand is increasing. This study describes the preliminary results of a transient electromagnetic survey conducted on the Arizona-Utah border to better understand the groundwater system which supplies water to many wells and springs in the region. Electromagnetic surveys are ideal for groundwater investigations because they can locate and characterize areas of high conductivity, which often are indicative of groundwater. The study area is on the southwestern margin of the Colorado Plateau and consists of uplifted, flat-lying sedimentary units. Regionally, groundwater is located within the Navajo Sandstone and underlying Kayenta Formation as an unconfined aquifer that extends from Pipe Springs National Monument north to the East Fork of the Virgin River. This area is characterized by step-like structural blocks that accommodate small amounts of extension and are bounded by long north-south-trending normal faults. The Sevier Fault runs through the sedimentary units near the study area and has been shown to influence groundwater movement by offsetting permeable units west of the fault adjacent to impermeable units east of the fault. Electromagnetic measurements were recorded with a Zonge GDP-32 receiver at 30 receiver locations at 16 and 32 Hz with a 100mx100m transmitter loop. These data were used to create a subsurface conductivity model. Water levels from local wells and local geologic data were utilized to relate the geophysical data to the groundwater system. Preliminary results define the depth to water table and the location of the groundwater divide between the groundwater that flows north towards the springs that feed the East Fork of the Virgin River and the groundwater that flows south towards Pipe Springs National Monument.

  3. Environmental Assessment Proposed Demolition Plan Hill Air Force Base, Utah

    DTIC Science & Technology

    2010-04-01

    through a Memorandum of Agreement (MOA) with the Utah State Historic Preservation Office (SHPO). No long-term environmental impacts are expected from...Hill Air Force Base Consultation and Coordination with Utah SHPO, Memorandum of Agreement (2005), and Utah SHPO Concurrence Letters List of Figures...Paint LQG Large Quantity Generator MAMS Missile Assembly and Munitions Storage MOA Memorandum of Agreement msl Mean sea level NAAQS National

  4. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2003-01-01

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal drilling

  5. Utah's Mobile Earth Science Outreach Vehicle

    NASA Astrophysics Data System (ADS)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  6. Water resources data, Utah, water year 2005

    USGS Publications Warehouse

    Wilberg, D.E.; Tibbetts, J.R.; Enright, Michael; Burden, C.B.; Smith, Cynthia; Angeroth, C.E.

    2006-01-01

    Water-resources data for the 2005 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report contains discharge records for 165 gaging stations; stage and contents for 8 lakes and reservoirs; water quality for 22 hydrologic stations, and 57 wells; water levels for 65 observation wells; and precipitation for 3 stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  7. Parapneumonic Empyema Deaths during Past Century, Utah

    PubMed Central

    Ampofo, Krow; Sheng, Xiaoming; Pavia, Andrew T.; Cannon-Albright, Lisa; Byington, Carrie L.

    2009-01-01

    Bacterial pneumonia with empyema is a serious complication of influenza and commonly resulted in death during the 1918 influenza pandemic. We hypothesize that deaths caused by parapneumonic empyema are increasing in Utah once again despite advances in critical care and the availability of antimicrobial drugs and new vaccines. In this study, we analyzed the historical relationship between deaths caused by empyema and influenza pandemics by using 100 years of data from Utah. Deaths caused by empyema have indeed increased from 2000–2004 when compared with the historic low death rates of 1950–1975. Vaccine strategies and antimicrobial drug stockpiling to control empyema will be important as we prepare for the next influenza pandemic. PMID:19116048

  8. Water resources data, Utah, water year 2003

    USGS Publications Warehouse

    Tibbetts, J.R.; Enright, Michael; Wilberg, D.E.

    2004-01-01

    Water-resources data for the 2005 water year for Utah consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report contains discharge records for 165 gaging stations; stage and contents for 8 lakes and reservoirs; water quality for 22 hydrologic stations, and 57 wells; water levels for 65 observation wells; and precipitation for 3 stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Utah.

  9. Joint FCRC Utah-Nevada Missile System

    DTIC Science & Technology

    1981-01-02

    counties in Juab, Millard, Beaver, and Iron as well as "selected communities in Washington County. This will be utilized as the basic framework against...any community for it’s health, welfare and economic well being . The communities in White Pine County are generally in good condition, insofar as...Report Bob Hill Nevada Oversight Report Dale Carpenter Utah Policy Board Report White Pine County, NV Report 93 10 1 090 Be ~st Availlable. COPY YL1-9309:4

  10. BOX-DEATH HOLLOW ROADLESS AREA, UTAH.

    USGS Publications Warehouse

    Weir, Gordon W.; Lane, Michael

    1984-01-01

    Geologic mapping, geochemical sampling, and a search for prospects and mineralized rock in the Box-Death Hollow Roadless Area, Utah indicate that there is little promise for the occurrence of mineral or energy resources in the area. Additional exploratory drilling by industry seems warranted if wells elsewhere in the region find oil or gas in strata as yet untested in the Box-Death Hollow Roadless Area.

  11. Environmental Report Utah State Prison Geothermal Project

    SciTech Connect

    1980-03-01

    This environmental report assesses the potential impact of developing a geothermal resource for space heating at the Utah State Prison. Wells will be drilled on prison property for production and for injection to minimize reservoir depletion and provide for convenient disposal of cooled fluid. The most significant environmental concerns are the proper handling of drilling muds during well drilling and the disposal of produced water during well testing. These problems will be handled by following currently accepted practices to reduce the potential risks.

  12. Reconnaissance of the hydrothermal resources of Utah

    USGS Publications Warehouse

    Rush, F. Eugene

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intru­sive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilome­ters from them probably have the best potential for geothermal devel­opment for generation of electricity. Other areas with estimated res­ervoir temperatures greater than 150°C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150°C. Ad­ditional exploration is needed to define the potential in three ad­ditional areas in the Escalante Desert.

  13. Reconnaissance of the hydrothermal resources of Utah

    SciTech Connect

    Rush, F.E.

    1983-01-01

    Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

  14. Cloudburst floods in Utah, 1939-69

    USGS Publications Warehouse

    Butler, Elmer; Marsell, Ray E.

    1972-01-01

    During 1939-69, 836 cloudburst floods were reported in Utah. The largest number was in 1965, when 88 floods were reported; 63 floods were reported in 1968, and 56 were reported in 1961. The smallest number of floods reported was three in 1944. In 1942, 1948, and 1950, six floods were reported each year. The main source of data was newspaper reports.Cloudburst floods in Utah were experienced in the vicinity of 131 of 228 communities (incorporated communities and those unincorporated places of 1,000 or more population). Floods were also reported in the vicinity of 63 other inhabited places (1,000 or less population), for a total of 194 places that experienced floods. Twenty were reported to have experienced 10 or more cloudburst floods.Since July 1847, when permanent settlement began, Utah has experienced a total of 1,339 recorded cloudburst floods, of which 408 occurred along the Wasatch Front. These figures do not represent the total number o thunderstorms but only those violent enough to produce cloudburst floods. Many other floods that took place in sparsely settled areas have gone unrecorded.

  15. Maps showing distribution of tin in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  16. Maps showing distribution of zinc in heavy-mineral concentrates, Richfield 1° by 2° quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Coterminous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related instrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of zinc in two fractions of heavy-mineral concentrates of drainage sediments.

  17. Maps showing distribution of thorium in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  18. Maps showing distribution of lead in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  19. Maps showing distribution of tungsten in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  20. Maps showing distribution of copper in heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1985-01-01

    These maps are part of a folio of maps of the Richfield 1° x 2 ° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other publications in this folio are listed in the selected references. Located in west-central Utah, the Richfield quadrangle covers the eastern part of the Plioche-Marysvale igneous and mineral belt, which extends from the vicinity of Plioche in southeastern Nevada east-northeastward for 250 km (155 mi) into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range province and the eastern third is in the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in middle and late Cenozoic time. The regional sampling program was designed to define broad geochemical patterns and trends which can be utilized along with geologic and geophysical data to assess the mineral resource potential for this quadrangle. These maps of the Richfield 1° x 2° quadrangle show the regional distributions of copper in two fractions of heavy-mineral concentrates of drainage sediments.

  1. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Thomas C. Chidsey, Jr.

    2003-04-01

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the second quarter of the first project year (October 1 through December 31, 2002). This work included (1) gathering field and pipeline data to produce a digital oil and gas field and pipeline map, and (2) Uinta Basin well database compilation. The oil and gas field map will help to delineate the various oil plays to be described later in the project. The map will also identify CO{sub 2} resources, and will be useful in the planning and economic evaluation of best practices using CO{sub 2} to flood mature oil reservoirs. The play descriptions will be enhanced with the updated oil and gas pipeline map. It can be used to plan economic evaluation of exploration activities and field development, particularly if H

  2. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall

  3. The Colorado Plateau: High, Wide, and Windswept.

    ERIC Educational Resources Information Center

    Booth, Bibi; Brook, Richard; Fischman, Shelly; Jacobson, LouAnn; Smith, Shelley; Tisdale, Mary

    1999-01-01

    Explores the natural forces that created the Colorado Plateau, examines a few of the myriad plants and animals inhabiting the six life zones on the plateau, and provides an overview of the challenges faced by land managers seeking to care for the plateau's extraordinary life and land forms. Contains 17 references. (WRM)

  4. Will Career Plateauing Become a Bigger Problem?

    ERIC Educational Resources Information Center

    Dawson, Christopher M.

    1983-01-01

    Though career plateauing can be put off, it can seldom be entirely avoided. Distinction is made between plateauing of the job content type and plateauing of the structural or organizational type. Primary solutions involve job enrichment, performance goal adjustments, lateral transfers, or modified standards of appraisal. (SSH)

  5. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop

  6. Utah Youth Risk Behavior Survey Results, 1991, 1993 & 1995.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This report describes results from the 1995 Utah Youth Risk Behavior Survey of Utah's high school students and compares results to selected 1991 and 1993 results. The 76-item survey was identical to the national survey, though it omitted questions about sexual behavior. It examined unintentional and intentional injuries; tobacco, alcohol, and…

  7. Measures of Child Well-Being in Utah, 1996.

    ERIC Educational Resources Information Center

    Utah Children, Salt Lake City.

    This 1996 Kids Count report presents data and analysis for 20 indicators of children's well-being in Utah. The report's introductory section discusses the impact of social and economic trends, which may contribute to a polarization of "have's" and "have nots" in Utah. The bulk of the report provides statistics on the 20…

  8. Telepractice Services at Sound Beginnings at Utah State University

    ERIC Educational Resources Information Center

    Blaiser, Kristina M.; Edwards, Marge; Behl, Diane; Munoz, Karen F.

    2012-01-01

    The Utah State University Sound Beginnings program originated in 2007 as a laboratory school to serve children with hearing loss from birth to age 6 years old living in Northern Utah. Sound Beginnings offers an interdisciplinary listening and spoken language educational option for families through the following services: toddler and preschool…

  9. Twice Considered: Charter Schools and Student Achievement in Utah

    ERIC Educational Resources Information Center

    Ni, Yongmei; Rorrer, Andrea K.

    2012-01-01

    A relatively small state, Utah presents an interesting case to study charter schools given its friendly policy environment and its significant growth in charter school enrollment. Based on longitudinal student-level data from 2004 to 2009, this paper utilizes two approaches to evaluate the Utah charter school effectiveness: (a) hierarchical linear…

  10. Utah Prehistory: Social Studies & Talent Training, Seventh Grade.

    ERIC Educational Resources Information Center

    Zimmerman, Mary Ann

    This unit examines early life in Utah from about 10,500 BC until 1550 AD. Early human culture and changes in lifestyle during the Paleoindian, Archaic, and Formative periods are foci of the unit. The first period studied is the Paleoindian when humans first came to the North American continent and then to Utah and covers the period from 18,000 BC…

  11. Spatial Relative Risk Patterns of Autism Spectrum Disorders in Utah

    ERIC Educational Resources Information Center

    Bakian, Amanda V.; Bilder, Deborah A.; Coon, Hilary; McMahon, William M.

    2015-01-01

    Heightened areas of spatial relative risk for autism spectrum disorders (ASD), or ASD hotspots, in Utah were identified using adaptive kernel density functions. Children ages four, six, and eight with ASD from multiple birth cohorts were identified by the Utah Registry of Autism and Developmental Disabilities. Each ASD case was gender-matched to…

  12. Eastern Utah Career Center at Price: Educational Specifications.

    ERIC Educational Resources Information Center

    Capson, A. Maurice

    Administrators and staff members of the College of Eastern Utah and the Carbon County School District along with specialists of the Utah State Department of Education developed specifications for a proposed career center, which were based on guidelines and decisions established by a vocational planning policy committee. The resulting…

  13. 40 CFR 282.94 - Utah State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....94 Section 282.94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.94 Utah State-Administered Program. (a) The State of Utah is approved to administer and enforce an underground storage tank...

  14. Utah water use data: Public water supplies, 1981

    USGS Publications Warehouse

    Hooper, David; Schwarting, Richard

    1982-01-01

    This publication is the fourth in a series of continuing reports presenting water use data for Utah. The data are collected by the State of Utah, Division of Water Rights, for the National Water Use Information Program. This is a cooperative effort with the U.S. Geological Survey.  Most states contribute information in some form to the program.

  15. Utah water use data: Public water supplies, 1980

    USGS Publications Warehouse

    Hooper, David; Schwarting, Richard

    1982-01-01

    This publication is the third in a series of continuing reports presenting water use data for Utah. The data are collected by the State of Utah, Division of Water Rights, for the National Water Use Information Program. This is a cooperative effort with the U.S. Geological Survey.  Most states contribute information in some form to the program.

  16. 75 FR 12562 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... THE UTAH RECLAMATION MITIGATION AND CONSERVATION COMMISSION Central Utah Project Completion Act AGENCY... Environmental Impact Statement (EIS), with public involvement, for the Provo River Delta Restoration Project. The restoration project is a recovery action within the approved species recovery plan. DATES:...

  17. Telepractice Services at Sound Beginnings at Utah State University

    ERIC Educational Resources Information Center

    Blaiser, Kristina M.; Edwards, Marge; Behl, Diane; Munoz, Karen F.

    2012-01-01

    The Utah State University Sound Beginnings program originated in 2007 as a laboratory school to serve children with hearing loss from birth to age 6 years old living in Northern Utah. Sound Beginnings offers an interdisciplinary listening and spoken language educational option for families through the following services: toddler and preschool…

  18. Spatial Relative Risk Patterns of Autism Spectrum Disorders in Utah

    ERIC Educational Resources Information Center

    Bakian, Amanda V.; Bilder, Deborah A.; Coon, Hilary; McMahon, William M.

    2015-01-01

    Heightened areas of spatial relative risk for autism spectrum disorders (ASD), or ASD hotspots, in Utah were identified using adaptive kernel density functions. Children ages four, six, and eight with ASD from multiple birth cohorts were identified by the Utah Registry of Autism and Developmental Disabilities. Each ASD case was gender-matched to…

  19. The northern goshawk in Utah: Habitat assessment and management recommendations

    Treesearch

    Russell T. Graham; Ronald L. Rodriguez; Kathleen M. Paulin; Rodney L. Player; Arlene P. Heap; Richard Williams

    1999-01-01

    This assessment describes northern goshawk (Accipiter gentilis) habitat in the State of Utah. Because of fire exclusion, insect and disease epidemics, timber harvest, livestock grazing, or a combination of these factors the forests and woodlands of Utah have changed drastically since the early 1900's. Forests are now dominated by mid- and late...

  20. 76 FR 63951 - Notice of Competitive Coal Lease Sale, Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Utah AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that that certain coal resources in the Dry Canyon Coal Tract described below in Carbon County, Utah, will be offered...

  1. 78 FR 2424 - Notice of Competitive Coal Lease Sale, Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Utah AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that the United... certain coal resources described below as the Dry Canyon B Tract (UTU-89060) in Carbon County, Utah,...

  2. Environmental Assessment: Proposed Consolidated Warehouse, Hill Air Force Base, Utah

    DTIC Science & Technology

    2011-02-01

    Utah FA8201-09-D-0006 Klein, Randal Johnson, Sam Streamline Consulting, LLC 1713 N. Sweetwater Lane Farmington, Utah 84025 Hill Air Force Base 7274... Air Force Base (AFB) proposes to adequate warehouse facilities in which to store equipment for worldwide United States Air Force (USAF) operations

  3. 77 FR 6141 - Notice of Utah's Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... will meet Wednesday, March 28, 2012, (8:30 a.m.- 4:30 p.m.), in Salt Lake City, Utah. ADDRESSES: The Council will meet at the Little America Hotel (Wyoming meeting room), 500 South Main Street, Salt Lake... Office, Bureau of Land Management, P.O. Box 45155, Salt Lake City, Utah 84145-0155; phone (801)...

  4. 78 FR 35956 - Utah Resource Advisory Council Subgroup Conference Call

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... Bureau of Land Management Utah Resource Advisory Council Subgroup Conference Call AGENCY: Bureau of Land Management, Interior. ACTION: Conference Call. SUMMARY: In accordance with the Federal Land Policy and... Advisory Council (RAC) Subgroup will host a conference call. DATES: The Utah RAC Subgroup will host...

  5. The Colorado Plateau III: integrating research and resources management for effective conservation

    USGS Publications Warehouse

    Sogge, Mark K.; van Riper, Charles

    2008-01-01

    Roughly centered on the Four Corners region of the southwestern United States, the Colorado Plateau covers an area of 130,000 square miles. The relatively high semi-arid province boasts nine national parks, sixteen national monuments, many state parks, and dozens of wilderness areas. With the highest concentration of parklands in North America and unique geological and ecological features, the area is of particular interest to researchers. Derived from the Eighth Biennial Conference of Research on the Colorado Plateau, this third volume in a series of research on the Colorado Plateau expands upon the previous two books. This volume focuses on the integration of science into resource management issues, summarizes what criteria make a successful collaborative effort, outlines land management concerns about drought, provides summaries of current biological, sociological, and archaeological research, and highlights current environmental issues in the Four Corner States of Arizona, New Mexico, Colorado, and Utah. With broad coverage that touches on topics as diverse as historical aspects of pronghorn antelope movement patterns through calculating watershed prescriptions to the role of wind-blown sand in preserving archaeological sites on the Colorado River, this volume stands as a compendium of cuttingedge management-oriented research on the Colorado Plateau. The book also introduces, for the first time, tools that can be used to assist with collaboration efforts among landowners and managers who wish to work together toward preserving resources on the Colorado Plateau and offers a wealth of insights into land management questions for many readers, especially people interested in the natural history, biology, anthropology, wildlife, and cultural management issues of the region.

  6. Effectiveness of action to reduce exposure of free-ranging California condors in Arizona and Utah to lead from spent ammunition.

    PubMed

    Green, Rhys E; Hunt, W Grainger; Parish, Christopher N; Newton, Ian

    2008-01-01

    California condors (Gymnogyps californianus) released into the wild in Arizona ranged widely in Arizona and Utah. Previous studies have shown that the blood lead concentrations of many of the birds rise because of ingestion of spent lead ammunition. Condors were routinely recaptured and treated to reduce their lead levels as necessary but, even so, several died from lead poisoning. We used tracking data from VHF and satellite tags, together with the results of routine testing of blood lead concentrations, to estimate daily changes in blood lead level in relation to the location of each bird. The mean daily increment in blood lead concentration depended upon both the location of the bird and the time of year. Birds that spent time during the deer hunting season in two areas in which deer were shot with lead ammunition (Kaibab Plateau (Arizona) and Zion (Utah)) were especially likely to have high blood lead levels. The influence upon blood lead level of presence in a particular area declined with time elapsed since the bird was last there. We estimated the daily blood lead level for each bird and its influence upon daily mortality rate from lead poisoning. Condors with high blood lead over a protracted period were much more likely to die than birds with low blood lead or short-term elevation. We simulated the effect of ending the existing lead exposure reduction measures at Kaibab Plateau, which encourage the voluntary use of non-lead ammunition and removal of gut piles of deer and elk killed using lead ammunition. The estimated mortality rate due to lead in the absence of this program was sufficiently high that the condor population would be expected to decline rapidly. The extension of the existing lead reduction program to cover Zion (Utah), as well as the Kaibab plateau, would be expected to reduce mortality caused by lead substantially and allow the condor population to increase.

  7. Anisotropy-Based Inclination Correction for the Moenave Formation and Wingate Sandstone: Implications for Colorado Plateau Rotation

    NASA Astrophysics Data System (ADS)

    McCall, Andrea; Kodama, Kenneth

    2014-07-01

    The ~ 201 Ma paleopole for North America at the Triassic-Jurassic boundary is observed in two widely different locations; one paleopole is determined from the Mesozoic rift basins in eastern North America and the other from the Colorado Plateau in the southwestern United States. A large discrepancy in paleopole positions from these two localities has been attributed to large amounts of clockwise vertical axis rotation of the Colorado Plateau (>10º) combined with inclination shallowing of the paleomagnetism. The sedimentary inclinations of the eastern North American basins have been corrected for shallowing, but the Colorado Plateau inclinations have not. Simple vertical axis rotation of the Colorado Plateau is not enough to bring the two paleopoles into agreement. This study of the Moenave and Wingate Formations was conducted to correct Colorado Plateau inclinations using their high field isothermal remanent anisotropy. The Moenave Formation and laterally equivalent Wingate Sandstone, which span the Triassic-Jurassic boundary, were sampled in southern Utah and northern Arizona. Thermal demagnetization isolated a characteristic remanence carried by hematite from 20 sites. High field (5 T) isothermal remanent anisotropy indicated shallowing of the characteristic remanence with an average flattening factor of f=0.69. An inclination-corrected paleopole for the Moenave and Wingate Formations is located at 62.5˚N 69.9˚E (α95=5.5˚) and is shifted northward by 2.9˚ with respect to the uncorrected paleopole. When the inclination corrected paleopole is rotated counterclockwise 9.7º about an Euler pole local to the Colorado Plateau, it is statistically indistinguishable from the inclination-corrected paleopole from the eastern North American rift basins. Rotation of the uncorrected paleopole does not bring it into statistical agreement with rift basin paleopole, therefore an inclination shallowing correction is necessary to support rotation of the Colorado Plateau and

  8. Major Oil Plays in Utah and Vicinity

    SciTech Connect

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed

  9. Practical Law in Utah, Second Edition. Utah Supplement to Street Law.

    ERIC Educational Resources Information Center

    Astin, Katherine, Ed.; And Others

    This guide on law education is designed for high school students. Objectives are to give a fundamental understanding of Utah law in those areas that may be encountered personally, show how laws are made, and explain what to do if you become involved with the law. This volume is arranged in seven chapters. Topics include: (1) an introduction to…

  10. Child Care and Utah's Economy: Making the Connection. A Special Utah KIDS COUNT Report.

    ERIC Educational Resources Information Center

    Utah Children, Salt Lake City.

    Recent growth in high technology and substantial entrepreneurial activity in Utah has resulted in an economic boom in different regions of the state. This boom has led to economic prosperity for many, but also economic decline for others, and subsequent increasing economic inequality throughout the state. This special KIDS COUNT report presents an…

  11. Utah Guidance and Toolkit for Student Learning Objectives: Instructions and Materials. Utah SLOs. Updated

    ERIC Educational Resources Information Center

    Utah State Office of Education, 2014

    2014-01-01

    This document is intended to help teachers understand and create Student Learning Objectives (SLOs). This resource is a practical guide intended to provide clarity to a complex but worthwhile task. This resource may also be used by administrators for professional learning. As Utah moves toward providing a "Model for Measuring Educator…

  12. Practical Law in Utah, Second Edition. Utah Supplement to Street Law.

    ERIC Educational Resources Information Center

    Astin, Katherine, Ed.; And Others

    This guide on law education is designed for high school students. Objectives are to give a fundamental understanding of Utah law in those areas that may be encountered personally, show how laws are made, and explain what to do if you become involved with the law. This volume is arranged in seven chapters. Topics include: (1) an introduction to…

  13. Underground water in the valleys of Utah Lake and Jordan River, Utah

    USGS Publications Warehouse

    Richardson, George Burr

    1906-01-01

    The valleys of Utah Lake and Jordan River are situated in north-central Utah, in the extreme eastern part of the Great Basin. The lofty Wasatch Range (Pl. I), the westernmost of the Rocky Mountain system, limits the valleys on the east, and relatively low basin ranges - the Oquirrh, Lake, and East Tintic mountains - determine them on the west. The valleys trend north and south, and are almost separated by the low east-west Traverse Range, the slopes of which constitute a dam for Utah Lake, which drains through Jordan River to Great Salt Lake.The area under consideration is the most populous and flourishing part of the State, Salt Lake City and Provo, the first and third cities in the State, and many other thriving settlements are there located. At Bingham Junction and Murray a number of smelters treat the ores from near-by mines, but agriculture is the main industry. Water for irrigation is supplied by mountain streams, and intensive farming is successfully pursued. The practice of irrigation was begun by the Mormon pioneers in 1847, and has been discussed in several publications; little attention, however, has been given to the underground water resources, and, so far as the writer is aware, they have not before been described. The present paper outlines conditions of occurrence of the subterranean waters and describes their development in the valleys of Utah Lake and Jordan River.

  14. Utah System of Higher Education Data Book (Supplement to Operating Budget Request) 1998-99.

    ERIC Educational Resources Information Center

    Utah State Board of Higher Education, Salt Lake City.

    This report provides detailed statistical data on the Utah System of Higher Education (USHE), including institution-specific data on the system's four universities and five community colleges. The institutions include the University of Utah, Utah State University, Weber State University, Southern Utah University, Snow College, Dixie College,…

  15. Utah System of Higher Education Data Book (Supplement to Operating Budget Request) 1997-98.

    ERIC Educational Resources Information Center

    Utah State Board of Higher Education, Salt Lake City.

    This report provides detailed statistical data on the Utah System of Higher Education (USHE), including institution-specific data on the system's four universities and five community colleges. The institutions include the University of Utah, Utah State University, Weber State University, Southern Utah University, Snow College, Dixie College,…

  16. A History of Bookmobile Library Service in the State of Utah.

    ERIC Educational Resources Information Center

    Ball, Val L.

    There are four library systems in Utah which provide bookmobile library service; the Salt Lake County Library, Salt Lake City Library, San Juan County Library and Utah State Library Commission. This study is limited to bookmobile library service in Utah and to librarians who first began library service. The history of bookmobiles in Utah began in…

  17. The Colorado Plateau V: research, environmental planning, and management for collaborative conservation

    USGS Publications Warehouse

    Villarreal, Miguel L.; van Riper, Carena J.; Johnson, Matthew J.; van Riper, Charles

    2012-01-01

    Roughly centered on the Four Corners region of the southwestern United States, the Colorado Plateau covers some 130,000 square miles of sparsely vegetated plateaus, mesas, canyons, arches, and cliffs in Arizona, Utah, Colorado, and New Mexico. With elevations ranging from 3,000 to 14,000 feet, the natural systems found within the plateau are dramatically varied, from desert to alpine conditions. This volume, the fifth from the University of Arizona Press and the tenth overall, focuses on adaptation of resource management and conservation to climate change and water scarcity, protecting biodiversity through restructured energy policies, ensuring wildlife habitat connectivity across barriers, building effective conservation networks, and exploring new opportunities for education and leadership in conservation science. An informative read for people interested in the conservation and natural history of the region, the book will also serve as a valuable reference for those people engaged in the management of cultural and biological resources of the Colorado Plateau, as well as scientists interested in methods and tools for land and resource management throughout the West.

  18. The Colorado Plateau V: research, environmental planning, and management for collaborative conservation

    USGS Publications Warehouse

    Van Riper, Charles; Villarreal, Miguel; Van Riper, Carena J.; Johnson, Matthew J.

    2012-01-01

    Roughly centered on the Four Corners region of the southwestern United States, the Colorado Plateau covers some 130,000 square miles of sparsely vegetated plateaus, mesas, canyons, arches, and cliffs in Arizona, Utah, Colorado, and New Mexico. With elevations ranging from 3,000 to 14,000 feet, the natural systems found within the plateau are dramatically varied, from desert to alpine conditions.This volume, the fifth from the University of Arizona Press and the tenth overall, focuses on adaptation of resource management and conservation to climate change and water scarcity, protecting biodiversity through restructured energy policies, ensuring wildlife habitat connectivity across barriers, building effective conservation networks, and exploring new opportunities for education and leadership in conservation science.An informative read for people interested in the conservation and natural history of the region, the book will also serve as a valuable reference for those people engaged in the management of cultural and biological resources of the Colorado Plateau, as well as scientists interested in methods and tools for land and resource management throughout the West.

  19. Climate change and changes in sediment transport capacity in the Colorado Plateau, USA

    USGS Publications Warehouse

    Milhous, R.T.

    2005-01-01

    Information is presented on changes in the sediment transport capacity of streams of the Colorado Plateau region of the United States. The changes in transport capacity may be due to changes in climate. Changes in the ability of three rivers in the Colorado Plateau to transport sediment were investigated (Paria River at Lees Ferry, Arizona; Sevier River at Hatch, Utah; and Little Colorado at Woodruff, Arizona) using an index to sediment transport potential (or capacity) of the rivers. The index is called a Sediment Transport Capacity Index (STCI). The parameters in the index are calibrated to measured sediment concentrations. Other investigators have postulated that there have been three climate regimes in the Colorado Plateau during the 20th century: 1905-1941, 1942-1977 and 1978-1998. Time series analyses of the STCI showed reasonably clearly that there was a change in the climate about 1941 and a high probability of a change about 1923-1929. The STCI time series for the Sevier River had the expected pattern because the STCI increased in the years following 1997 nearly to the pre-1942 values from lower 1942-1977 values. The Little Colorado River showed a similar pattern, but not nearly to the magnitude suggested by the change in precipitation. The STCI for the Paria River essentially did not change. Changes in sediment transport also are investigated in the lower San Juan River where alterations in the sediment balance of the river may be due to variations in the character of summer precipitation.

  20. Water resources of Beaver Valley, Utah

    USGS Publications Warehouse

    Lee, Willis Thomas

    1908-01-01

    Location and extent of area examined. Beaver Valley is located in Beaver County, in southwestern Utah, about 175 miles south of Salt Lake. It lies between the Tushar Mountains on the east and the Beaver Mountains on the west. The principal town of the valley is Beaver, which is most conveniently reached from Milford, a station on the San Pedro, Los Angeles and Salt Lake Railroad. The valley, together with its neighboring highlands, occupies the eastern third of Beaver County, an area of about 1,200 square miles. A large part of this area, however, is rocky upland and unproductive desert, the tillable land comprising a comparatively small area in the immediate vicinity of the streams.Purpose and scope of work. The purpose of this paper is to present information concerning the waters of Beaver Valley and to point out ways and means of increasing their usefulness. The presence of a large amount of water in Beaver Valley results from local topograhic conditions, the water being supplied by precipitation in the highland to the east. Its conservation and distribution result from geologic conditions, the water being held in loose gravel and sand, which are more or less confined between ridges of consolidated rocks. The rock basins were formed partly by erosion and partly by faulting and surface deformation. In order to accomplish the purpose in view it is therefore necessary to describe the geographic and geologic conditions in Beaver Valley and neighboring regions.The investigation included the determination of the flow of streams and springs, of the manner of occurrence and quantity of the underground waters as shown by the geologic and geographic conditions of the region and by the distribution of springs and wells, and of the chemical character of the waters with reference to their adaptability to domestic use and to irrigation. The chemical data were obtained (a) by field assays, which are approximately correct and probably of sufficient accuracy to be of value in

  1. LONE PEAK WILDERNESS STUDY AREA, UTAH.

    USGS Publications Warehouse

    Bromfield, Calvin S.; Patten, Lowell L.

    1984-01-01

    On the basis of a mineral survey, three areas in the Lone Peak Wilderness study area, Utah are classed as having mineral-resource potential. These include the Silver Creek district, near the east boundary of the area, the Alpine district near the southwest boundary, and the White Pine Fork area in the northeast part of the area. The Silver Creek and Alpine districts have probable potential for small deposits of silver, lead, zinc and, in addition, the Silver Creek district has a probable potential for small tungsten deposits. Of more significance, the White Pine Fork area has a probable potential for porphyry-type molybdenum resources.

  2. MOUNT NAOMI ROADLESS AREA, UTAH AND IDAHO.

    USGS Publications Warehouse

    Dover, James H.; Bigsby, Philip R.

    1984-01-01

    Geologic, geophysical, and geochemical surveys, and an examination of mines and prospects were made in the Mount Naomi Roadless Area, Utah and Idaho. No significant precious-metal, base-metal, other trace-metal, or uranium anomalies are apparent in the geochemical data from the Mount Naomi Roadless Area, and no exploration targets were detected. However, a belt of probable resource potential for stratabound copper, lead, and zinc occurrences exists on the west side of the area in limestone and shale. The possibility that oil and gas concentration lie deeply buried beneath the roadless area cannot be evaluated from available data.

  3. The Utah education network: a collaborative model.

    PubMed Central

    Peay, W J; Hess, S H; Sharp, E M

    1994-01-01

    High-speed data communications networks are transforming the operations, services, and roles of libraries. While the installation of the physical network is often the focus of activity, the administrative and political issues are, in fact, fundamental. For libraries to participate in and influence the development of networks, building new partnerships has proven to be an effective strategy. This paper describes the use of this strategy in the development of the Utah Education Network. This participation is essential if libraries are to take full advantage of the technologies and to ensure that networks reflect the fundamental values of the profession. PMID:7841911

  4. Upper jurassic dinosaur egg from utah.

    PubMed

    Hirsch, K F; Stadtman, K L; Miller, W E; Madsen, J H

    1989-03-31

    The Upper Jurassic egg described here is the first known egg from the 100-million-year gap in the fossil record between Lower Jurassic (South Africa) and upper Lower Cretaceous (Utah). The discovery of the egg, which was found mixed in with thousands of dinosaur bones rather than in a nest, the pathological multilayering of the eggshell as found in modern and fossil reptilians, and the pliable condition of the eggshell at the time of burial indicate an oviducal retention of the egg at the time of burial.

  5. The Pajarito Plateau: a bibliography

    USGS Publications Warehouse

    Mathien, Frances Joan; Steen, Charlie R.; Allen, Craig D.

    1993-01-01

    This bibliography is the result of two initially independent projects. As the consulting archaeologist at Los Alamos National Laboratory (LANL), Charlie R. Steen collected entries at the suggestion of the staff of the Environmental Surveillance Group of the Health, Safety, and Environmental Division, HSE-8. The primary purpose was to aid the staff in evaluating cultural resources on LANL lands. In addition to works that related to the archaeology and history of the area, Steen included notations of a few books and articles in other fields such as geology and natural history. It was hoped that they also would be of value to other organizations and to students of past human activities on the Pajarito Plateau.At the same time, the National Park Service (NPS) was planning a major survey of Bandelier National Monument (BNM). As part of this plan, the author was asked to prepare a background document that described research previously carried out in the area, including an annotated bibliography. Although the survey would be limited to the park boundaries, the larger Pajarito Plateau is a more logical study area from physiographic, environmental, and cultural perspectives; hence the focus was on this larger region. Mathien (1986) also included some references to natural resources studies, particularly those initiated by NPS within Bandelier National Monument.Both bibliographies were made available to Colleen Olinger and Beverly Larson of the Health and Environmental Services Group at Los Alamos. They realized that while neither was complete, each included entries missing from the other. Larson suggested the two bibliographies be combined. (At this time, Craig Allen was studying the landscape of the Jemez Mountains [Allen 1984c, 1989]. His investigations included much detailed information on natural resource studies and were added in 1991 and 1992.)To limit the scope of their work, Steen and Mathien had chosen their parameter: the Pajarito Plateau. Geographically, the

  6. Plateau uplift and climatic change

    SciTech Connect

    Ruddiman, W.F. ); Kutzbach, J.E. )

    1991-03-01

    The earth of 40 million years ago was a warm, wet place. Forests abounded; grasslands and deserts were rare. Then the planet began to cool. Regional climate extremes developed. Many causes have been postulated, including continental drift and diminishing atmospheric carbon dioxide. The authors offer a new theory: continental uplift created huge plateaus that altered circulation of the atmosphere. The two largest masses of high, rocky terrain in the Northern Hemisphere today are the area encompassing the Tibetan Plateau and Himalaya Mountains and the broad region of the American West centered on the Colorado Plateau. Geologic evidence indicates that these regions rose substantially during the past 40 million years. The authors focused their research on these plateaus.

  7. Introduction to the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Storey, J. W. V.

    2006-10-01

    Over the past decade there has been remarkable progress in the exploration of the Antarctic plateau for astronomy. Already, major astronomical facilities are in operation at the Amundsen-Scott Station at South Pole, and even more ambitious telescopes are planned or under construction there. However, for a number of important reasons the high plateau sites of Dome A and Dome C appear to offer even more favorable conditions than South Pole for many kinds of astronomy. The success of the Chinese expedition to Dome A in January 2005, plus the opening of the French/Italian Concordia Station at Dome C for year-round operation in 2005, have now created exciting new opportunities for Antarctic astronomy.

  8. Introduction to the Antarctic Plateau

    NASA Astrophysics Data System (ADS)

    Storey, J. W. V.

    2007-01-01

    Over the past decade there has been remarkable progress in the exploration of the Antarctic plateau for astronomy. Already, major astronomical facilities are in operation at the Amundsen-Scott Station at South Pole, and even more ambitious telescopes are planned or under construction there. However, for a number of important reasons the high plateau sites of Dome A and Dome C appear to offer even more favourable conditions than South Pole for many kinds of astronomy. The success of the Chinese expedition to Dome A in January 2005, plus the opening of the French/Italian Concordia Station at Dome C for year-round operation in 2005, have now created exciting new opportunities for Antarctic astronomy.

  9. Three-dimensional numerical model of ground-water flow in northern Utah Valley, Utah County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2009-01-01

    A three-dimensional, finite-difference, numerical model was developed to simulate ground-water flow in northern Utah Valley, Utah. The model includes expanded areal boundaries as compared to a previous ground-water flow model of the valley and incorporates more than 20 years of additional hydrologic data. The model boundary was generally expanded to include the bedrock in the surrounding mountain block as far as the surface-water divide. New wells have been drilled in basin-fill deposits near the consolidated-rock boundary. Simulating the hydrologic conditions within the bedrock allows for improved simulation of the effect of withdrawal from these wells. The inclusion of bedrock also allowed for the use of a recharge model that provided an alternative method for spatially distributing areal recharge over the mountains.The model was calibrated to steady- and transient-state conditions. The steady-state simulation was developed and calibrated by using hydrologic data that represented average conditions for 1947. The transient-state simulation was developed and calibrated by using hydrologic data collected from 1947 to 2004. Areally, the model grid is 79 rows by 70 columns, with variable cell size. Cells throughout most of the model domain represent 0.3 mile on each side. The largest cells are rectangular with dimensions of about 0.3 by 0.6 mile. The largest cells represent the mountain block on the eastern edge of the model domain where the least hydrologic data are available. Vertically, the aquifer system is divided into 4 layers which incorporate 11 hydrogeologic units. The model simulates recharge to the ground-water flow system as (1) infiltration of precipitation over the mountain block, (2) infiltration of precipitation over the valley floor, (3) infiltration of unconsumed irrigation water from fields, lawns, and gardens, (4) seepage from streams and canals, and (5) subsurface inflow from Cedar Valley. Discharge of ground water is simulated by the model to (1

  10. Monuments of the Giza Plateau

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    The colossal pyramids of the pharaohs Khufu (Cheops), Khafre (Chephren), and Menkaure (Mycerinus) have attracted a huge amount of astronomical interest over the years, both scholarly and popular. Less attention is usually given to the broader context of structures on the Giza Plateau. One of the most notorious ideas connecting the Giza Plateau with astronomy is that the three large pyramids are laid out on the ground so as to reflect the appearance of the three stars of Orion's Belt in the sky. This idea is unsupportable for several reasons but has succeeded in generating huge public interest. Of much greater serious interest is the fact that the three main pyramids were oriented cardinally to extraordinary precision, which raises the questions of why this was important and how it was achieved. Another idea that has attracted serious attention but also some confusion is that the orientations of some narrow shafts within Khufu's pyramid might have been deliberately aligned upon particular stars. The overall layout of monuments on the plateau may certainly have been designed so as to emphasize certain solar phenomena, for symbolic and ideological reasons relating to a dominant sun cult. It is also possible that it formed part of a wider cosmological "master plan" extending to other pyramids and temples up to 20 km distant.

  11. Hydrologic and climatologic data, 1966, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1967-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11 and 12 contain data collected through 1965. This release contains climatologic and surface-water data for the 1966 water year (October 1965 to September 1966) and groundwater data collected during the 1966 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  12. Hydrologic and climatologic data, 1965, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District. contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Release No. 11 contains data collected through 1964. This release contains climatologic and surface-water data for the 1965 water year (October 1964 to September 1965) and ground-water data collected during the 1965 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  13. Hydrologic and climatologic data, 1967, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1968-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological Survey.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 contain data collected through 1966. This release contains climatologic and surfacewater data for the 1967 water year (October 1966 to September 1967) and ground-water data collected during the 1967 calendar year. A similar annual release will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  14. Hydrologic and climatologic data, 1968, Salt Lake County, Utah

    USGS Publications Warehouse

    1969-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological SurveyThe investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 and 15 contain data collected through 1967. This release contains climatologic and surface-water data for the 1968 water year (October 1967 to September 1968) and ground-water data collected during the 1968 calendar year. This is the final annual release of basic data for this investigation. Interpretive reports summarizing the results are in preparation. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  15. Ground-water conditions in Utah, spring of 2007

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  16. Cerebrovascular disease in Utah, 1968--1971.

    PubMed

    Lyon, J L; Bishop, C T; Nielsen, N S

    1981-01-01

    Utah mortality rates for cerebrovascular disease (ICD numbers 430--438) are 13% below U.S. rates. About 70% of Utahns are members of the Church of Jesus Christ of Latter-day Saints, commonly called Mormons of LDS, which proscribes use of tobacco and alcohol. Other studies on this group have found significantly lower occurrence of many cancers and ischemic heart disease. We tested the hypothesis that Utah's lower cerebrovascular disease (CBVD) mortality was contributed by the LDS population. We classified by religion all CBVD deaths (2,521) (except subarachnoid hemorrhage and cerebral embolism) occurring in the state in 1968--1971. No significant difference was found between LDS and non-LDS, but both groups had mortality rates below U.S. expectation. Although recent studies have reported smoking to be a risk factor for CBVD, we found no consistent difference between the LDS and non-LDS, even in the younger age groups. The results do not support the hypothesis that tobacco is an important etiologic agent in CBVD mortality.

  17. Map showing distribution of uranium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of uranium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  18. Map showing distribution of tin in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of tin in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  19. Map showing distribution of lead in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of lead in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  20. Map showing distribution of gold in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, W.R.; Motooka, J.M.; McHugh, J.B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of gold in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the Selected References of this report. The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  1. Map showing distribution of silver in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  2. Map showing distribution of zinc in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of zinc in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  3. Map showing distribution of molybdenum in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of molybdenum in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  4. Map showing distribution of thorium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of thorium in the less-than-0.180-mm (minus-80-mesh) fraction of stream-sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  5. PLATEAU IRIS SYNDROME--CASE SERIES.

    PubMed

    Feraru, Crenguta Ioana; Pantalon, Anca Delia; Chiselita, Dorin; Branisteanu, Daniel

    2015-01-01

    Plateau iris is characterized by closing the anterior chamber angle due to a large ciliary body or due to its anterior insertion that alters the position of iris periphery in respect to the trabecular meshwork. There are two aspects that need to be differentiated: plateau iris configuration and plateau iris syndrome. The first describes a situation when the iris root is flat and the anterior chamber is not shallow, the latter refers to a post laser iridotomy condition in which a patent iridotomy has removed the relative pupillary block, but goniscopically confirmed angle closure recurs without central shallowing of the anterior chamber. Isolated plateau iris syndrome is rare compared to plateau iris configuration. We hereby present two case reports of plateau iris syndrome in young patients who came to an ophthalmologic consult by chance.

  6. Ground water in Northern Utah Valley, Utah: A progress report for the period 1948-1963

    USGS Publications Warehouse

    Cordova, R.M.; Subitsky, Seymour

    1965-01-01

    Thomas (Hunt and others, 1953) compiled and evaluated a large amount of ground- and surface-water data for northern Utah Valley for the years prior to 1948. This report, which was prepared as part of the Statewide cooperative program between the Utah State Engineer and the U.S. Geological Survey, is designed to be a progress report which updates Thomas' work through 1963. Seymour Subitzky, assisted by N. J. Simmons, collected records of wells and springs and data on quality of water during the period 1956-59, and these data have been released separately (Subitzky, 1962). R. M. Cordova collected data on ground-water recharge and discharge in 1963. Most of these data applied to 1962, however, and that year has been used as the reference year for comparison with Thomas' work.

  7. 2006 Revision to the Utah Plan to Ensure High Quality Teachers for All Utah Students

    ERIC Educational Resources Information Center

    Utah State Office of Education, 2006

    2006-01-01

    In a letter dated June 1, 2006, Utah informed the U.S. Department of Education (ED) of its intention to carefully and thoughtfully revise its Highly Qualified Teacher (HQT) plan with the aim of achieving the goal set in the No Child Left Behind Act (NCLB) of having all teachers meet highly qualified (HQ) requirements by the end of the 2006-2007…

  8. Evaluating the Relationship Between Seismicity and Subsurface Well Activity in Utah

    NASA Astrophysics Data System (ADS)

    Lajoie, L. J.; Bennett, S. E. K.

    2014-12-01

    Understanding the relationship between seismicity and subsurface well activity is crucial to evaluating the seismic hazard of transient, non-tectonic seismicity. Several studies have demonstrated correlations between increased frequency of earthquake occurrence and the injection/production of fluids (e.g. oil, water) in nearby subsurface wells in intracontinental settings (e.g. Arkansas, Colorado, Ohio, Oklahoma, Texas). Here, we evaluate all earthquake magnitudes for the past 20-30 years across the diverse seismotectonic settings of Utah. We explore earthquakes within 5 km and subsequent to completion dates of oil and gas wells. We compare seismicity rates prior to well establishment with rates after well establishment in an attempt to discriminate between natural and anthropogenic earthquakes in areas of naturally high background seismicity. In a few central Utah locations, we find that the frequency of shallow (0-10 km) earthquakes increased subsequent to completion of gas wells within 5 km, and at depths broadly similar to bottom hole depths. However, these regions typically correspond to mining regions of the Wasatch Plateau, complicating our ability to distinguish between earthquakes related to either well activity or mining. We calculate earthquake density and well density and compare their ratio (earthquakes per area/wells per area) with several published metrics of seismotectonic setting. Areas with a higher earthquake-well ratio are located in relatively high strain regions (determined from GPS) associated with the Intermountain Seismic Belt, but cannot be attributed to any specific Quaternary-active fault. Additionally, higher ratio areas do not appear to coincide with anomalously high heat flow values, where rocks are typically thermally weakened. Incorporation of timing and volume data for well injection/production would allow for more robust temporal statistical analysis and hazard analysis.

  9. Lake Bonneville: Geology and hydrology of the Weber Delta district, including Ogden, Utah

    USGS Publications Warehouse

    Feth, John Henry Frederick; Barker, D.A.; Moore, L.G.; Brown, Randy J.; Veirs, C.E.

    1966-01-01

    A cooperative investigation to determine the geology of the Weber Delta district, with emphasis on the occurrence and chemical quality of ground water, was made by the U.S. Geological Survey and the U.S. Bureau of Reclamation with the later assistance of the Utah State Engineer in the final preparation of the report. The Weber Delta district covers an area of almost 400 square miles between the Wasatch Range and the east shore of Great Salt Lake in north-central Utah. The district, which is about 30 miles long and 3-20 miles wide, is dominated by the Wasatch Range on the east. West of the mountains is a generally narrow foothill area, from which flatlands, interrupted by a few low sand ridges, slope gently westward to the shore of Great Salt Lake. Breaching the foothills and the flatlands near the center of the district is the Weber Delta, which is the largest of the deltas built in the Pleistocene Epoch by Lake Bonneville on an open plain. The Weber Delta, the smaller delta of the Ogden River to the north, and the alluvial fans of several small streams, coalesce to form a belt of plateau-like high-lands from 2 to 7 miles wide and about 10 miles long from north to south. Ten miles north of the city of Ogden the Pleasant View salient projects westward from the front of the Wasatch Range, and about 15 miles west of the mountain front, Little Mountain rises 450 feet above the surface of the nearly level plain.

  10. A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah

    NASA Astrophysics Data System (ADS)

    Koebli, D. J.; Germa, A.; Connor, C.; Atlas, Z. D.

    2016-12-01

    A Geochemical Investigation of Volcanic Rocks from the San Rafael Volcanic Field, Utah Authors: Danielle Koebli, Dr. Aurelie Germa, Dr. Zackary Atlas, Dr. Charles Connor The San Rafael Volcanic Field (SRVF), Utah, is a 4Ma volcanic field located in the northwestern section of the Colorado Plateau. Alkaline magmas intruded into Jurassic sandstones , known as the Carmel, Entrada, Curtis and Summerville sandstone formations, and formed comagmatic dikes, sills and conduits that became uniquely well exposed as country rocks were eroded. The two rock types that formed from the melts are shonkinite (45.88 wt% SiO2) and syenite (50.84wt% SiO2); with dikes being predominantly shonkinite and sills exhibiting vertical alternation of shonkinite and syenite, a result of liquid immiscibility. The aim of this study is to determine magma temperatures, and mineral compositions which will be used for determining physical conditions for magma crystallization. Research is being conducted using an Electron Probe Micro Analyzer (EPMA) for single crystal analysis, and data were plotted using PINGU software through VHub cyberinfrastructure. EPMA data supports hydrated magma theories due to the large amounts of biotite and hornblende mixed in with olivine, feldspar and pyroxene. The data is also indicative of a calcium-rich magma which is further supported by the amount of pyroxene and plagioclase in the sample. Moreover, there are trace amounts orthoclase, quartz and k-feldspar due to sandstone inclusions from the magma intruding into the country rocks. The olivine crystals present in the samples are all chemically similar, having high Mg (Fo80-Fo90), which, coupled with a lower Fe content indicate a hotter magma. Comparison of mineral and whole-rock compositions using MELTs program will allow us to calculate magma viscosity and density so that the physical conditions for magma crystallization can be determined.

  11. Recruiting Quality Majors: New York High School Students Experience the Geology of Southern Utah

    NASA Astrophysics Data System (ADS)

    Colberg, M. R.; Eves, R. L.; Lohrengel, C. F.

    2003-12-01

    Southern Utah University (SUU), Division of Geosciences, is faced with seriously increased competition for students within its traditional recruiting area, the direct result of nearby two-year institutions expanding their missions to four-year roles. Because of this increased competition, it is obvious that students must be recruited from new source areas. Research indicates that New York State has one of the most outstanding high school Earth Science programs in the United States, and it became a target area for recruiting quality students to the SUU geoscience program. Located in the Colorado Plateau to Basin and Range transition zone, SUU is situated in one of the most spectacular and diverse geologic regions in the world. SUU is surrounded by classic southwestern geologic exposures and extensive public lands. In order to use this resource to its maximum advantage, a one-week field program was arranged that would accommodate a maximum of 30 students from New York high schools. The target audience is comprised of juniors and seniors who have participated in an Earth science course, and have expressed an interest in a geoscience career. The field program provides students with a positive learning experience, and stresses basic geologic concepts while utilizing the stunning regional geology of southern Utah as an outdoor classroom. Students receive transferable college credit for participation. To make contact with potential participants, a letter was sent to high school principals requesting the name(s) of the earth sciences teacher(s) in the school. The response was limited (apparently principals do not forward materials to faculty members). However, there was sufficient response to conduct a field experience during late July, 2003. This initial offering was extremely successful and received positive reviews from all participants. The final results of this pilot offering are not yet known, but we are convinced that enrollment of students into SUU's program will

  12. Flora of the Orange Cliffs of Utah

    SciTech Connect

    Shultz, L.M.; Neely, E.E.; Tuhy, J.S.

    1987-04-30

    The Orange Cliffs area, an area rich in oil sands deposits and defined here as part of the Colorado Plateau floristic province, harbors approximately 209 species in 123 genera and 49 families. Because of the potential of exploitation of the oil sands deposits in the area, a species checklist was made and a discussion of physical and floristic aspects of the region is given here. The flora is compared statistically to the San Rafael Swell flora, which is also a subset of the Colorado Plateau. They define six vegetation types and three edaphic communities; these are described and mapped. Of eleven endemic plant species in the Orange Cliffs, three are local and rare. Sites for Astragalus nidularius, A. moencoppensis, and Xylorhiza glabriuscula var. linearifolia are discussed and mapped. 24 references, 3 figures, 3 tables.

  13. Plug in to the Utah Library Network, Reach Out to the World. Utah Library Network and Internet Training Handbook [for DOS]. Information Forum Publication #7.

    ERIC Educational Resources Information Center

    Reinwand, Louis; And Others

    This manual is designed to assist public libraries in Utah in their use of the Internet. Many of the examples used were created specifically to explain the use of products that the Utah Library Network provides for public libraries in Utah. The introduction provides background history and general information about the Internet and general…

  14. Curiosity on the Naukluft Plateau

    NASA Image and Video Library

    2016-06-22

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows the Curiosity rover currently located on the Naukluft Plateau just north of the Bagnold Dune field. Its position was captured by HiRISE on 25 March 2016 (MSL Sol 1291. Views from the surface at this location are available here and here.) The rover is within sandstone outcrops informally named the "Stimson Formation." There are no obvious rover tracks in the HiRISE views indicating that this bedrock contains little dust that otherwise could be disturbed by the rover wheels as has been seen earlier in Curiosity's traverse. http://photojournal.jpl.nasa.gov/catalog/PIA20738

  15. Air pollution and gastrointestinal diseases in Utah

    NASA Astrophysics Data System (ADS)

    Maestas, Melissa May

    The valleys of northern Utah, where most of Utah's population resides, experience episodic air pollution events well in excess of the National Ambient Air Quality Standards. Most of the events are due to an accumulation of particulate matter during persistent cold air pools in winter from both direct emissions and secondary chemical reactions in the atmosphere. High wintertime ozone concentrations are occasionally observed in the Uintah Basin, in addition to particulate matter. At other times of the year, blowing dust, wildland fires, fireworks, and summertime ozone formation contribute to local air pollution. The objective of this dissertation is to investigate one facet of the health effects of Utah's air pollution on its residents: the acute impacts of air pollution on gastrointestinal (GI) disease. To study the health effects of these episodic pollution events, some measure of air pollution exposure must be matched to the health data. Time and place are used to link the health data for a person with the pollution data. This dissertation describes the method of kriging data from the sparse pollution monitoring network to estimate personal air pollution history based on the zip code of residence. This dissertation then describes the application of these exposure estimates to a health study on GI disease. The purpose of the GI study is to retrospectively look at two groups of patients during 2000-2014: those with autoimmune disease of the GI tract (inflammatory bowel disease, IBD) and those with allergic disease of the GI tract (eosinophilic esophagitis, EoE) to determine whether disease exacerbations occur more commonly during and following periods of poor air quality compared to periods of good air quality. The primary analysis method is case crossover design. In addition to using the kriged air pollution estimates, the analysis was repeated using simpler empirical estimation methods to assess whether the odds ratios are sensitive to the air pollution estimation

  16. 12. Historic American Buildings Survey, COPY, UTAH HERITAGE FOUNDATION (INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Historic American Buildings Survey, COPY, UTAH HERITAGE FOUNDATION (INTERIOR PHOTO LATE 1880'S). - Zion's Cooperative Mercantile Institution, 15 South Main Street, Salt Lake City, Salt Lake County, UT

  17. Region 8: Utah Adequate Letter (6/10/2005)

    EPA Pesticide Factsheets

    This letter from EPA to Utah Department of Environmental Quality determined Salt Lake Citys' and Ogdens' Carbon Monoxide (CO) maintenance plan for Motor Vehicle Emissions Budgets adequate for transportation conformity purposes.

  18. Flooding and streamflow in Utah during water year 2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Kenney, T.A.; McKinney, T.S.

    2006-01-01

    The 2004 and 2005 water years illustrate why water managers in Utah generally describe the water supply as 'feast or famine.' In September 2004, Utah was finishing its sixth year of drought. Most reservoirs were substantially drained and the soil was parched. In contrast, in September 2005 Utah was finishing a water year that set new records for peak discharge and total annual streamflow.The 2004 water year ended on September 30, 2004. The 2005 water year brought with it a significant change in the weather, beginning with intense rainfall in the Virgin River basin of southwestern Utah. Only minor flooding resulted from this storm; however, it provided soil moisture that would contribute to severe flooding during January 2005.

  19. Prioritizing High-Temperature Geothermal Resources in Utah

    USGS Publications Warehouse

    Blackett, R.E.; Brill, T.C.; Sowards, G.M.

    2002-01-01

    The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.

  20. Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring

    SciTech Connect

    Arabasz, W J; Pechmann, J C

    2001-03-01

    Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred

  1. US hydropower resource assessment for Utah

    SciTech Connect

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  2. Surveillance of traumatic brain injuries in Utah.

    PubMed Central

    Thurman, D J; Jeppson, L; Burnett, C L; Beaudoin, D E; Rheinberger, M M; Sniezek, J E

    1996-01-01

    From 1990 through 1992 we conducted surveillance of cases requiring hospital admission and of fatal cases of traumatic brain injury among residents of Utah and found an annual incidence rate of 108.8 per 100,000 population. The greatest number of injuries occurred among men and persons aged 15 to 24 years. Motor vehicles were the leading cause of injury, followed by falls and assaults. The incidence rate we found is substantially lower than previously published rates of traumatic brain injury. This may be the result of a decrease in the incidence of these injuries in the decade since earlier studies were done, as well as changing hospital admission criteria that serve to exclude less severe cases of injury. Despite the apparent decline in rates, our findings indicate the continued importance of traumatic brain injury as a public health problem and the need to develop more effective prevention strategies that will address the major causes of these injuries. PMID:8987423

  3. MAJOR PLAYS IN UTAH AND VICINITY

    SciTech Connect

    Craig D. Morgan; Thomas C. Chidsey

    2003-11-01

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land-use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the second project year (July 1 through September 30, 2003). This work included (1) describing the Conventional Southern Uinta Basin Play, subplays, and outcrop reservoir analogs of the Uinta Green River Conventional Oil and Gas Assessment Unit (Eocene Green River Formation), and (2) technology transfer activities. The Conventional Oil and Gas Assessment Unit can be divided into plays having a dominantly southern sediment source (Conventional Southern Uinta Basin Play) and plays having a dominantly northern sediment source (Conventional Northern Uinta Basin Play). The Conventional Southern Uinta Basin Play is divided into six subplays: (1) conventional Uteland Butte interval, (2) conventional

  4. Antinuclear antibodies in Utah coal miners

    SciTech Connect

    Rom, W.N.; Turner, W.G.; Kanner, R.E.; Renzetti, A.D. Jr.; Peebles, C.; Tan, E.; Olsen, D.M.

    1983-03-01

    Antinuclear antibodies (ANA) were detected using a mouse kidney substrate in 69 of 238 (29 percent) underground Utah coal miners at a titer of 1:16. At titers of 1:4 and higher, 52 percent were positive. The majority had a speckled pattern and were not directed against any previously characterized antigens. Fifteen of 28 with high titer ANA had reduced complement. The ANA was more apt to be present in those with coal workers' pneumoconiosis (CWP), and as ANA titer increased, the percentage with CWP increased. The ANA increased with both age and coal mine dust exposure. It is hypothesized that ANA and CWP both result from long-term dust exposure, but that there is insufficient evidence to implicate ANA in the pathogenesis of CWP.

  5. Infiltration of unconsumed irrigation water in Utah

    USGS Publications Warehouse

    Brothers, William C.; Thiros, Susan A.

    1991-01-01

    The ground-water hydrology of Panguitch Valley and adjacent areas, south-central Utah, was studied during 1988-90. One objective of the study was to measure ground-water recharge from infiltration of unconsumed irrigation water. Water-level and soil-moisture data were used to estimate travel times for water moving down through the soil profile, and to compare quantities of water reaching the water table after application of flood and sprinkler irrigation. During this study, estimates of travel times from land surface to the water table ranged from 11 days in June 1989 to 2 days in September 1989. Estimates of irrigation water recharging the ground-water system ranged from 25 to 75 percent of the water applied to the flood-irrigated field. Virtually no recharge was apparent for the sprinkler-irrigated field.

  6. Environmental assessment overview, Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 3 figs.

  7. Floods in Utah, magnitude and frequency

    USGS Publications Warehouse

    Berwick, Vernon K.

    1962-01-01

    This report presents a procedure for estimating the magnitude and frequency of floods, within the range of the base data, for any site, gaged or ungaged. From the relation of annual floods to the mean annual flood, a composite frequency curve was derived for recurrence intervals of 1.1 to 50 years. For regions of similar hydrologic characteristics, curves were developed by multiple correlation to express the relation of mean annual flood to drainage area and mean altitude. The records of gaging stations having 5 or more years of record were used as base data when the natural conditions of streamflow are not affected by works of man. For major rivers where the flow is affected by diversion or regulation, separate analyses were made for each stream. The results may be applied to any area in Utah, except the Great Salt Lake Desert and a small area of the State in the Snake River basin.

  8. Salt Lake City, Utah, Winter 2001

    NASA Image and Video Library

    2002-02-07

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03465

  9. Yellow Canary uranium deposits, Daggett County, Utah

    USGS Publications Warehouse

    Wilmarth, Verl Richard

    1953-01-01

    The Yellow Canary uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. Two claims have been developed by means of an adit, three opencuts, and several hundred feet of bulldozer trenches. No uranium ore has been produced from this deposit. The deposit is in the pre-Cambrian Red Creek quartzite. This formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by dioritic dikes. A thick unit of highly fractured white quartzite near the top of the formation contains tyuyamunite as coatings on fracture surfaces. The tyuyamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The uranium and vanadium minerals are probably alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.

  10. Irrigation drainage: Green River basin, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Waddell, Bruce; Miller, Jerry B.

    1988-01-01

    A reconnaissance of wildlife areas in the middle Green River basin of Utah during 1986-87 determined that concentrations of selenium in water and biological tissues were potentially harmful to wildlife at the Stewart Lake Waterfowl Management Area and in the Ouray National Wildlife Refuge. Concentations of selenium in irrigation drainage entering Stewart Lake ranged from 14 to 140 micrograms per liter; liver tissue from coots collected from the lake contained selenium concentrations of as much as 26 micrograms per gram and samples of tissue from carp contained as much as 31 micrograms per gram. Concentrations of selenium in a pond at the Ouray National Wildlife Refuge, which receives irrigation water and shallow ground water, were as much as 93 micrograms per liter. Liver tissue from coots collected from this pond contained selenium concentrations of as much as 43 micrograms per gram; eggs of water birds contained as much as 120 micrograms per gram.

  11. Assessment of geothermal resources at Newcastle, Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Shubat, Michael A.; Chapman, David S.; Forster, Craig B.; Schlinger, Charles M.

    1989-01-01

    Integrated geology, geophysics, and geochemistry studies in the Newcastle area of southwest Utah are used to develop a conceptual geologic model of a blind, moderate-temperature hydrothermal system. Studies using 12 existing and 12 new, thermal gradient test holes, in addition to geologic mapping, gravity surveys, and other investigations have helped define the thermal regime. Preliminary results indicate that the up-flow region is located near the west-facing escarpment of an adjacent mountain range, probably related to the bounding range-front fault. Chemical geothermometers suggest equilibration temperatures ranging from 140??C to 170??C. The highest temperature recorded in the system is 130??C from an exploration well drilled by the Unocal Corporation.

  12. Vertical tectonics of the High Plateau region, Manihiki Plateau, Western Pacific, from seismic stratigraphy

    NASA Astrophysics Data System (ADS)

    Ai, Huirong-Anita; Stock, Joann M.; Clayton, Robert; Luyendyk, Bruce

    2008-01-01

    The Manihiki Plateau is an elevated oceanic volcanic plateau that was formed mostly in Early Cretaceous time by hotspot activity. We analyze new seismic reflection data acquired on cruise KIWI 12 over the High Plateau region in the southeast of the plateau, to look for direct evidence of the location of the heat source and the timing of uplift, subsidence and faulting. These data are correlated with previous seismic reflection lines from cruise CATO 3, and with the results at DSDP Site 317 at the northern edge of the High Plateau. Seven key reflectors are identified from the seismic reflection profiles and the resulting isopach maps show local variations in thickness in the southeastern part of the High Plateau, suggesting a subsidence (cooling) event in this region during Late Cretaceous and up to Early Eocene time. We model this as a hotspot, active and centered on the High Plateau area during Early Cretaceous time in a near-ridge environment. The basement and Early Cretaceous volcaniclastic layers were formed by subaerial and shallow-water eruption due to the volcanic activity. After that, the plateau experienced erosion. The cessation of hotspot activity and subsequent heat loss by Late Cretaceous time caused the plateau to subside rapidly. The eastern and southern portions of the High Plateau were rifted away following the cessation of hot spot activity. As the southeastern portion of the High Plateau was originally higher and above the calcium carbonate compensation depth, it accumulated more sediments than the surrounding plateau regions. Apparently coeval with the rapid subsidence of the plateau are normal faults found at the SE edge of the plateau. Since Early Eocene time, the plateau subsided to its present depth without significant deformation.

  13. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Waddell, K.M.

    1968-01-01

    This report is the second in a series by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Skull Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understandingof the valley's water supply.

  14. Sand-calcite crystals from Garfield County, Utah

    USGS Publications Warehouse

    Sargent, Kenneth A.; Zeller, H.D.

    1984-01-01

    Sand-calcite crystals are found in the Morrison Formation of Jurassic age in south-central Garfield County, Utah. The outcrop area is less than 1 acre, yet the locality contains many fine specimens of single, double, and complex crystals in good hexagonal form. This is the first known occurrence of sand-calcite crystals in rocks of Jurassic age and is the first reported occurrence in Utah.

  15. Progress report on selected ground-water basins in Utah

    USGS Publications Warehouse

    Waite, H.A.; Nelson, W.B.; Lofgren, B.E.; Feth, John Henry Frederick

    1954-01-01

    This technical publication consists essentially of the interpretation of data collected in connection with a detailed inventory of ground-water pumpage and water-level trends in four irrigation districts in southern Utah. Much of this information was assembled in a preliminary report entitled "Inventory of ground-water pumpage in three irrigation districts in southern Utah," by H. A. Waite and others, and was used by the State Engineer in a court hearing in Parowan in February 1954.

  16. View of the Salt Lake City, Utah area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An oblique view of the Salt Lake City, Utah area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Approximately two-thirds of the Great Salt Lake is in view. The smaller body of water south of Salt Lake City is Utah Lake. The Wasatch Range is on the east side of the Great Salt Lake.

  17. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  18. Episodic Dust Events along Utah's Wasatch Front

    NASA Astrophysics Data System (ADS)

    Massey, J.; Steenburgh, W. J.; Painter, T. H.

    2011-12-01

    Episodic dust events contribute to hazardous air quality along Utah's Wasatch Front urban corridor and, through deposition onto the snowpack of the adjacent Wasatch Mountains, regional hydroclimate change. This study creates a climatology of these episodic dust events using surface-weather observations, GOES visible satellite imagery, and the North American Regional Analysis. In hourly weather observations from the Salt Lake International Airport (KSLC), a dust storm, blowing dust, and/or dust in suspension (i.e., dust haze) with a visibility 10 km (6 mi) or less occurs an average of ~4 days per water year (Oct-Sep), with considerable interannual variability during the 1930-2010 period of record. The monthly frequency of days with at least one dust report is strongly bimodal with primary and secondary maxima in Apr and Sep, respectively. Dust reports exhibit a strong diurnal modulation and are most common in the late afternoon and evening. Most recent (2001-2010) events observed at KSLC are produced by intermountain cyclones and/or cold-frontal troughs (i.e., cyclone/frontal), followed by outflow from airmass/monsoon convection. In the case of the former, dust is most frequently observed right around the time of cold frontal passage. GOES satellite imagery and backtrajectories of events at KSLC and in the surrounding region indicate that the primary dust emission sources are clustered in the deserts and dry lake beds of southern Utah as well as the burn area of the 2007 Milford Flat Fire and the Carson Sink of Nevada.

  19. Major Oil Plays In Utah And Vicinity

    SciTech Connect

    Thomas Chidsey

    2007-12-31

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the

  20. Ground-water conditions in Utah, spring of 2008

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  1. Ground-water conditions in Utah, spring of 2009

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  2. Assessment and use of drug information references in Utah pharmacies.

    PubMed

    Moorman, Krystal L; Macdonald, Elyse A; Trovato, Anthony; Tak, Casey R

    2017-01-01

    To determine which drug references Utah pharmacists use most frequently. To determine which types of drug information questions are most commonly asked, and whether Utah pharmacists have access to adequate references to respond to these questions. A 19-question survey was created using Qualtrics, LLC (Provo, Utah) software. An electronic survey link was sent to 1,431 pharmacists with a valid e-mail address listed in the Department of Professional Licensing database. Questions focused on available references in the participant's pharmacy, how current the references are, and the participant's use of the references. Surveys were analyzed for participants practicing in either community or hospital pharmacies in the state of Utah. A total of 147 responses were included in the analysis. Approximately 44% of respondents practiced in the community, and 56% practiced in a hospital setting. The most commonly used references by Utah pharmacists are Micromedex, Lexicomp, UpToDate, Clinical Pharmacology, and Drug Facts & Comparisons. Pharmacists in the community frequently receive questions related to adverse drug reactions, drug interactions, and over-the-counter medications. Pharmacists in the hospital frequently receive questions relating to dosage and administration, drug interactions, and adverse drug reactions. About 89% of community pharmacists and 96% of hospital pharmacists feel available references are adequate to answer the questions they receive. Utah pharmacists generally use large reference suites to answer drug information questions. The majority of pharmacists consider the references available to them to be adequate to answer the questions they receive.

  3. Stratigraphy of the Morrison and related formations, Colorado Plateau region, a preliminary report

    USGS Publications Warehouse

    Craig, Lawrence C.; ,

    1955-01-01

    Three subdivisions of the Jurassic rocks of the Colorado Plateau region are: the Glen Canyon group, mainly eolian and fluvial sedimentary rocks; the San Rafael group, marine and marginal marine sedimentary rocks; and the Morrison formation, fluvial and lacustrine sedimentary rocks. In central and eastern Colorado the Morrison formation has not been differ- entiated into members. In eastern Utah, northeastern Arizona, northwestern New Mexico, and in part of western Colorado, the Morrison may be divided into a lower part and an upper part; each part has two members which are di1Ierentiated on a lithologic basis. Where differentiated, the lower part of the Morrison consists either of the Salt Wash member or the Recapture member or both; these are equivalent in age and inter tongue and intergrade over a broad area in the vicinity of the Four Corners area of New Mexico, Colorado, Arizona, and Utah. The Salt Wash member is present in eastern Utah and parts of western Colorado, north- eastern Arizona, and northwestern New Mexico. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams diverging to the north and east from an apex in south-central Utah. The major source area of the Salt Wash was to the southwest of south-central Utah, probably in west-central Arizona and southeastern California. The member was derived mainly from sedimentary rocks. The Salt Wash deposits grade from predomi- nantly coarse texture at the apex of the 'fan' to predominantly flne texture at the margin of the 'fan'. The Salt Wash member has been arbitrarily divided into four facies: a con- glomera tic sandstone facies, a sandstone and mudstone facies, a claystone and lenticular sandstone facies, and a claystone and limestone facies. The Recapture member of the Morrison formation is present in northeastern Arizona, northwestern New Mexico, and small areas of southeastern Utah and southwestern Colorado near the Four Corners. It was formed as a large alluvial plain

  4. Prehistoric human settling on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Zhang, Dongju; Dong, Guanghui

    2017-04-01

    When and where did human first settle down on the Tibetan Plateau is under hot debate among archaeologist, anthropologists, geneticist and paleo-geographers. Based on systematic archaeological, chronological and archaeo-botanical studies of 53 sites in Northeastern Tibetan Plateau, we propose that agriculture facilitated human permanent settlement on the Tibetan Plateau initially since 5200 years ago below 2500 masl and since 3600 years ago up to around 4000 masl, possibly assisted by domesticated animals (Chen et al. 2015). By studying hand- and footprints in Chusang, Meyer et al. (2016) argue that hunter-gatherers permanently occupied central Tibetan Plateau in early Holocene without the help of agriculture. However, we think the limited hand- and footprints evidence found in Chusang could indicate no more than prehistoric hunter-gatherers presence on the remote central Tibetan Plateau in the early Holocene. In addition, by reviewing all the published archaeological data, we propose that human migrated to the Tibetan Plateau from the last Deglacial period to late Holocene mainly from North China via Yellow River valley and its tributary valleys in the Northeastern Tibetan Plateau (NETP). This migration is constituted of four stages (Upper Paleolithic, Epi-Paleolithic, Neolithic and Bronze Age) when human adapted to the high altitude environment and climate change with different strategies and techniques. Particularly, the prevail of microlithic technology in North China provoked hunter-gatherers' first visit to the NETP in relatively ameliorated last Deglacial period, and the the quick development of millet farming and subsequent mixed barley-wheat farming and sheep herding facilitated farmers and herders permanently settled in Tibetan Plateau, even above 3000 masl, during mid- and late Holocene. References: Chen et al., 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347: 248-250. Meyer et al., 2016

  5. University of Utah, Energy Commercialization Center

    SciTech Connect

    Thompson, James

    2014-01-17

    During the Energy Commercialization Center’s (ECC) three years in operation, the only thing constant was change. The world of commercialization and cleantech evolved significantly during the time the ECC was formed and operating, including: the availability of cleantech funding lessoned, the growth of incubators and accelerators skyrocketed, the State of Utah created an office dedicated to energy development, the University of Utah was both praised and criticized for its success in commercialization, and the Federal government temporarily shut down. During the three-year grant there were three principle investigators on the grant, as well as three directors for the University’s Commercialization Office. Change can be hard for an organization,but as we instruct the companies we support, “Fail fast and fail often, because it is the fastest path to success.” Although there were some unanticipated challenges along the way, the local ecosystem is stronger because of the ECC’s efforts. Perhaps the greatest lesson learned was the importance of aligned incentives between key stakeholders in the commercialization process and the need for resources at the company and individual entrepreneur levels. The universities have systems and incentives to commercialize technologies, but creating value and companies generally rest with the individuals and entrepreneurs. Unfortunately the ECC was unable to create a viable mechanism to transfer the commercialization process that successfully aligned incentives and achieve a more effective ecosystem within the Rocky Mountain West. However, the ECC was successful in adding value to the individual ecosystems, and connecting national resources to regional and local needs. Regarding the ECC’s effectiveness in developing a cleantech commercialization ecosystem, initial inroads and relationships were established with key stakeholders. However, incentives, perceived or real competition, differences in commercialization processes, and

  6. Hydrology of Alkali Creek and Castle Valley Ridge coal-lease tracts, central Utah, and potential effects of coal mining

    USGS Publications Warehouse

    Seiler, R.L.; Baskin, R.L.

    1988-01-01

    The Alkali Creek coal-lease tract includes about 2,150 acres in the Book Cliffs coal field in central Utah, and the Castle Valley Ridge coal-lease tract includes about 3,360 acres in the Wasatch Plateau coal field, also in central Utah. Both the Alkali Creek and Castle Valley Ridge coal-lease tracts are near areas where coal is currently (1987) mined by underground methods from the Cretaceous Blackhawk Formation. The Alkali Creek and Castle Valley Ridge areas have intermittent streams in which flow after snowmelt runoff is locally sustained into midsummer by springflow. The only perennial stream is South Fork Corner Canyon Creek in the Castle Valley Ridge area. Peak flow in both areas generally is from snowmelt runoff; however, peak flow from thunderstorm runoff in the Alkali Creek area can exceed that from snowmelt runoff. Estimated annual source-area sediment yield was 0.5 acre-ft/sq mi in the Alkali Creek lease tract and it was 0.3 acre-ft/sq mi in the Castle Valley Ridge lease tract. Groundwater in the Alkali Creek area occurs in perched aquifers in the Flagstaff Limestone and in other formations above the coal-bearing Blackhawk Formation. The principal source of recharge to the aquifers is snowmelt on outcrops. Faults may be major conduits and control the movement of groundwater. Groundwater discharges at formation contacts, between zones of differing permeability within a formation, near faults and into mines. Water sampled from 13 springs in the Alkali Creek area contained dissolved solids at concentrations ranging from 273 to 5,210 mg/L. Water sampled from 17 springs in the Castle Valley Ridge area contained dissolved solids at concentrations ranging from 208 to 579 mg/L. The composition of water from a recently abandoned part of an active mine the Wasatch Plateau closely resembles that of water discharging from a nearby mine that has been abandoned for more than 30 years. Mining of the Alkali Creek and Castle Valley Ridge coal-lease tracts likely will

  7. 30 CFR 944.15 - Approval of Utah regulatory program amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Utah Industrial Commission; UCA 40-2-14 through -16; Utah Industrial Commission's General Safety... “coal processing,” “coal processing plant”. February 17, 1987 March 28, 1988 SMC/UMC...

  8. 76 FR 28074 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Paiutes, Koosharem Band of Paiutes, Indian Peaks Band of Paiutes, and Shivwits Band of Paiutes); Skull...; Northwestern Band of Shoshoni Nation of Utah (Washakie); Paiute Indian Tribe of Utah; Skull Valley Band...

  9. 75 FR 57288 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... Paiutes, Indian Peaks Band of Paiutes, and Shivwits Band of Paiutes); Skull Valley Band of Goshute Indians...; Northwestern Band of Shoshoni Nation of Utah (Washakie); Paiute Indian Tribe of Utah; Skull Valley Band...

  10. 77 FR 24978 - Notice of Proposed Class II Reinstatement of Terminated Oil and Gas Leases, Utah.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... CONTACT: Kent Hoffman, Deputy State Director, Lands and Minerals, Utah State Office, Bureau of Land... to: Bureau of Land Management, Utah State Office, Attn: Kent Hoffman, P.O. Box 45155, Salt Lake...

  11. 75 FR 64741 - Notice of Utah's Resource Advisory Council (RAC) Subcommittee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... floor conference room. ADDRESSES: The UDAF is located at 350 North Redwood Road, Salt Lake City, Utah..., Bureau of Land Management, P.O. Box 45155, Salt Lake City, Utah 84145-0155; phone (801)...

  12. Floods of December 1966 in southwestern Utah

    USGS Publications Warehouse

    Butler, Elmer; Mundorff, J.C.

    1970-01-01

    Severe floods occurred in parts of southwestern Utah on December 5-6, 1966, as a result of precipitation of about 1 inch to more than 12 inches during December 3-6. The flood on the Virgin River was the greatest since the first settlers arrived in 1860. The peak discharge of the Virgin River at Virgin, Utah, was 22,830 cubic feet per second on December 6; this exceeded the previous maximum discharge of 13,500 cubic feet per second on March 3, 1938, and September 17, 1961, and probably has a recurrence interval of 100 years. At eight other gage sites in the flood area, the peak discharge in December 1966 was the highest of record; the recurrence intervals of some of the peak discharges may be 100 years. The flood peaks were generally of short duration and most streams receded to near base flow within 24 hours. The dissolved-solids content was significantly lower in the Virgin River at Virgin than at St. George, about 25 miles downstream; the water was of the calcium sulfate type at both sites. Data for the Santa Clara River above Winsor Dam and the Santa Clara River near Santa Clara show a significant increase in dissolved solids between the two sites. The water above Winsor Dam was of the calcium bicarbonate type, and the water near Santa Clara was of the calcium bicarbonate sulfate type. The suspended-sediment discharge, during the period December 5-8, 1966, at Santa Clara River above Winsor Dam, near Santa Clara was about foyer times greater than all the suspended-sediment discharge during the preceding 3 years ; the suspended-sediment discharge of the Virgin River at Virgin was greater during the 4-day period than during any one of the preceding 3 years. Nearly all the flood damage in the area occurred in the Virgin River basin. According to the Soil Conservation Service, total damage in the Dixie Soil Conservation District in Washington County was about $835,000; 60 percent of the damage was caused by floodwater and 40 percent by deposited sediment.

  13. Clastic pipe characteristics and distributions throughout the Colorado Plateau: Implications for paleoenvironment and paleoseismic controls

    NASA Astrophysics Data System (ADS)

    Wheatley, D. F.; Chan, M. A.; Sprinkel, D. A.

    2016-10-01

    Clastic pipes occur throughout much of the Phanerozoic strata of the Colorado Plateau and provide a unique opportunity to test the validly of various deformation and triggering mechanism hypotheses in the context of their tectono-stratigraphic and paleoenvironmental settings. Pipes dominantly occur in Jurassic strata and preferentially in eolian (especially interdune), sabkha, and fluvial deposits because these sediments contained interbedded fine-grained and water-saturated, high-porosity, coarse-grained facies. The greatest geographic concentrations of pipes occur in three trends: (1) a northeast trend from the Lake Powell to Moab areas of southern and southeastern Utah, (2) an east-west trend in northern Arizona within and north of the Grand Canyon, and (3) a west-northwest-east-southeast trend along Interstate 40 west of Albuquerque, New Mexico. Many pipes formed due to liquefaction and fluidization and were potentially triggered by seismic activity originating from basement-cored uplifts within the Colorado Plateau, although other trigger mechanisms cannot be completely eliminated. Some breccia pipes within northern Arizona that are rooted in karst are the exception to this interpretation. Pipes possess unique depositional and triggering requirements and thus provide an excellent opportunity to understand the interplay of sedimentology and tectonics within continental systems.

  14. Dispersal of large branchiopod cysts: Potential movement by wind from potholes on the Colorado Plateau

    USGS Publications Warehouse

    Graham, T.B.; Wirth, D.

    2008-01-01

    Wind is suspected to be a primary dispersal mechanism for large branchiopod cysts on the Colorado Plateau. We used a wind tunnel to investigate wind velocities capable of moving pothole sediment and cysts from intact and disturbed surfaces. Material moved in the wind tunnel was trapped in filters; cysts were separated from sediment and counted. Undisturbed sediment moved at velocities as low as 5.9 m s-1 (12.3 miles h-1). A single all-terrain vehicle (ATV) track increased the sediment mass collected 10-fold, with particles moving at a wind velocity of only 4.2 m s-1 (8.7 miles h-1). Cysts were recovered from every wind tunnel trial. Measured wind velocities are representative of low-wind speeds measured near Moab, Utah. Wind can move large numbers of cysts to and from potholes on the Colorado Plateau. Our results indicate that large branchiopod cysts move across pothole basins at low-wind speeds; additional work is needed to establish velocities at which cysts move between potholes. ?? 2007 Springer Science+Business Media B.V.

  15. Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants?

    NASA Astrophysics Data System (ADS)

    Beitler, Brenda; Chan, Marjorie A.; Parry, William T.

    2003-12-01

    Spectacular color variations in the Lower Jurassic Navajo Sandstone reflect stratigraphic and structural control on the spatial distribution of fluid-driven alteration. Field observations and supervised classification of Landsat 7 Enhanced Thematic Mapper (ETM+) satellite imagery show that the most extensive regional bleaching of the Navajo Sandstone occurs on eroded crests of Laramide uplifts on the Colorado Plateau in southern Utah. Alteration patterns suggest that the blind reverse faults that core the eastern monoclines associated with these uplifts were carriers for hydrocarbons and brought the buoyant fluids to the crests of monoclines and anticlines, where they bleached the sandstone in both structural and stratigraphic traps. The extent of bleaching indicates that the Navajo Sandstone (Navajo Sandstone, Aztec Sandstone, and Nugget Sandstone) may have been one of the largest hydrocarbon reservoirs known. Rapid incision and breaching of this reservoir during Tertiary uplift and erosion of the Colorado Plateau could have released enough carbon into the atmosphere to significantly contribute to global carbon fluxes and possibly influence climate.

  16. Map showing distribution of barium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of barium in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  17. Map showing distribution of copper in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of copper in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  18. Map showing distribution of bismuth and cadmium in stream-sediment samples, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle shows the regional distribution of bismuth and cadimum in the less-than-0.180-mm (minus-80-mesh) fraction of stream sediments. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  19. Plateau effects on diurnal circulation patterns

    SciTech Connect

    Reiter, E.R.; Tang, M.

    1984-04-01

    The diurnal variation of 850 mb heights, the detailed distribution of which could be assessed by the inclusion of surface data, and of resultant winds over, and in the vicinity of, the Great Basin reveals clearly a plateau-wind circulation during summer. This circulation reverses between day and night and appears to include the low-level jet stream over Texas and Oklahoma, as well as the time of occurrence of thunderstorms. This plateau circulation system interacts with local mountain-valley breeze systems. The thickness of the daytime inflow and nighttime outflow layer over the plateau is approximately 2 km. 19 references, 11 figures, 1 table.

  20. Compartment syndrome after tibial plateau fracture.

    PubMed

    Pitta, Guilherme Benjamin Brandão; Dos Santos, Thays Fernanda Avelino; Dos Santos, Fernanda Thaysa Avelino; da Costa Filho, Edelson Moreira

    2014-01-01

    Fractures of the tibial plateau are relatively rare, representing around 1.2% of all fractures. The tibia, due to its subcutaneous location and poor muscle coverage, is exposed and suffers large numbers of traumas, not only fractures, but also crush injuries and severe bruising, among others, which at any given moment, could lead compartment syndrome in the patient. The case is reported of a 58-year-old patient who, following a tibial plateau fracture, presented compartment syndrome of the leg and was submitted to decompressive fasciotomy of the four right compartments. After osteosynthesis with internal fixation of the tibial plateau using an L-plate, the patient again developed compartment syndrome.

  1. Plateau borders of smectic liquid crystalline films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; Aldred, Ruth; Stannarius, Ralf

    2011-06-01

    We investigate the geometrical properties of Plateau borders in an arrangement of connected smectic A free standing films. The geometry is chosen such that a circular Plateau border surrounds a planar smectic film and connects it with two smectic catenoids. It is demonstrated that, similar to soap films, the smectic film geometry can be described by a negative line tension of the circular contact region. Thus, the equilibrium angle between the films depends upon the liquid content in this region, and with increasing liquid content, deviations from Plateau's rule are observed. The experimental results are qualitatively comparable to soap films. A possible origin of slight quantitative differences is discussed.

  2. Active salt deformation and rapid, transient incision along the Colorado River near Moab, Utah

    NASA Astrophysics Data System (ADS)

    Jochems, Andrew P.; Pederson, Joel L.

    2015-04-01

    In certain settings, erosion is driven by and balanced with tectonic uplift, but the evolution of many landscapes is dominated by other factors such as geologic substrate, drainage history, and transient incision. The Colorado Plateau is an example where these controls are debated and where salt deformation is hypothesized to be locally active and driven by differential unloading, although this is unconfirmed and unquantified in most places. We use luminescence-dated Colorado River terraces upstream of Moab, Utah, to quantify rates of salt-driven subsidence and uplift at the local scale. Active deformation in the study area is also supported by patterns of concavity along tributary drainages crossing salt structures. Subsidence in Professor Valley at a time-averaged rate of 500 m/Myr (meters/million years) is superimposed upon rapid bedrock incision rates that increase from 600 to 900 m/Myr upstream through the study area. Such high rates are unexpected given the absence of sources of regional tectonic uplift here. Instead, the incision rate pattern across the greater area is consistent with a transient signal, perhaps still from ancient drainage integration through Grand Canyon far downstream, and then amplified by unloading at both the broad regional scale and at the local canyon scale.

  3. Origin and structural implications of upper Miocene rhyolites in Kingston Canyon, Piute County, Utah.

    USGS Publications Warehouse

    Rowley, P.D.; Steven, T.A.; Mehnert, H.H.

    1981-01-01

    Kingston Canyon is one of the deepest antecedent canyons in the High Plateaus subprovince of the Colorado Plateaus. Here the E Fork of the Sevier River flows westward transversely across the gently E tilted Sevier Plateau, which is developed on a basin-range fault block uplifted more than 1500m along the Sevier fault zone on the W. Upper Tertiary rhyolites, uncommon in SW Utah, occur both on the northern rim and in the bottom of Kingston Canyon. Those on the northern rim consist of lava flows and volcanic domes of the rhyolite of Forshea Mountain, dated by K/Ar methods at 7.6Ma old. Those in the bottom of Kingston Canyon, the rhyolite of Phonolite Hill, are especially well exposed and provide spectacular examples of a pyroclastic cone whose base is about at river level and a steep-sided volcanic dome emplaced into and through these deposits. The pyroclastic deposits, formerly 500 or more metres thick, consist of airfall, mudflow, and ash-flow(?) material of rhyolite and foreign lithic fragments especially olivine basalt. The dome consists of flow-banded, mostly devitrified rhyolite as much as 500m thick; it has been dated by K/Ar methods at 5.4Ma. In addition to the rhyolites, a dome and lava-flow complex, the rhyodacite of Dry Lake, occurs near the northern rim and is considered to postdate the rhyolite of Forshea Mountain and predate the rhyolite of Phonolite Hill. -from Authors

  4. Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA

    USGS Publications Warehouse

    Fernandez, D.P.; Neff, J.C.; Reynolds, R.L.

    2008-01-01

    Relatively few studies have examined the ecological and biogeochemical effects of livestock grazing in southeastern Utah. In this study, we evaluated how grazing has affected soil organic carbon and nitrogen to a depth of 50 cm in grasslands located in relict and actively-grazed sites in the Canyonlands physiographic section of the Colorado Plateau. We also evaluated differences in plant ground cover and the spatial distribution of soil resources. Results show that areas used by domestic livestock have 20% less plant cover and 100% less soil organic carbon and nitrogen compared to relict sites browsed by native ungulates. In actively grazed sites, domestic livestock grazing also appears to lead to clustered, rather than random, spatial distribution of soil resources. Magnetic susceptibility, a proxy for soil stability in this region, suggests that grazing increases soil erosion leading to an increase in the area of nutrient-depleted bare ground. Overall, these results, combined with previous studies in the region, suggest that livestock grazing affects both plant cover and soil fertility with potential long-term implications for the sustainability of grazing operations in this semi-arid landscape. ?? 2007 Elsevier Ltd. All rights reserved.

  5. Hydrologic monitoring in the coal fields of central Utah, August 1978-September 1979

    USGS Publications Warehouse

    Lines, G.C.; Plantz, G.G.

    1981-01-01

    Surface-water quantity and quality were monitored at 12 gaging stations down-stream from mine and lease areas in the Wasatch Plateau, Book Cliffs, and Emery coal fields in central Utah. Measurements of base flow were made at 52 other sites in the region. The report describes the hydrologic setting of this important coal region and summarizes the surface-water data collected at the monitoring sites from August 1978 through September 1979. Coal mining and lease activities in each of the monitored basins also are described. Where possible, hydrologic impacts of coal mining are evaluated. Impacts include increases in streamflow and degradation of surface-water quality due to water discharged from underground mines. Other impacts include removal of water from ground-water storage, changes in the natural ground-water flow system and possibly the diminution of spring flows. Adequacy of the monitoring network to detect hydrologic changes due to mining is evaluated. In order to fully assess and quantify the impacts, comprehensive studies and monitoring of the ground-water system and water produced in mines are needed. (USGS)

  6. Cosmogenic 3He exposure ages of Pleistocene debris flows and desert pavements in Capitol Reef National Park, Utah

    NASA Astrophysics Data System (ADS)

    Marchetti, David W.; Cerling, Thure E.

    2005-04-01

    The Quaternary history of the Capitol Reef area, Utah, is closely linked to the basaltic-andesite boulder deposits that cover much of the landscape. Understanding the age and mode of emplacement of these deposits is crucial to deciphering the Quaternary evolution of this part of the Colorado Plateau. Using cosmogenic 3He exposure age dating, we obtained apparent exposure ages for several key deposits in the Capitol Reef area. Coarse boulder diamicts capping the Johnson Mesa and Carcass Creek Terraces are not associated with the Bull Lake glaciation as previously thought, but were deposited 180±15 to 205±17 ka (minimum age) and are the result of debris flow deposition. Desert pavements on the Johnson Mesa surface give exposure ranging from 97±8 to 159±14 ka and are 34-96 kyears younger than the boulder exposure ages. The offset between the boulder and pavement exposure ages appears to be related to a delay in pavement formation until the penultimate glacial/interglacial transition or periodic burial and exposure of pavement clasts since debris flow deposition. Incision rates for the Capitol Reef reach of the Fremont River calculated from the boulder exposure ages range from 0.40 to 0.43 m kyear -1 (maximum rates) and are some of the highest on the Colorado Plateau.

  7. iUTAH Summer Research: Analyzing diel variations of MeHg in the Provo River, Utah

    NASA Astrophysics Data System (ADS)

    Hamilton, G. L.; Packer, B. N.; Carling, G. T.; Checketts, H. N.; Shepherd Barkdull, N.

    2016-12-01

    iUTAH is an interdisciplinary research program aimed at strengthening science for Utah's water future and funded by the National Science Foundation. iUTAH is comprised of three research areas with an overarching goal of understanding how Utah's water system operates as an integrated physical, chemical, biological, and social system. During the Summer of 2016, I participated in the iUTAH (Innovative Urban Transitions and Aridregion Hydro-sustainability) iFellows undergraduate research program. iUTAH provided the opportunity to conduct research at Brigham Young University with graduate students studying trace metal dynamics in the Provo River, Utah, USA. This report presents the chemical system evaluation of methylmercury (MeHg) during diurnal variations from snowmelt runoff. Water samples were collected during peak discharge from Soapstone Basin, a site along the Upper Provo River watershed, every hour over a 24-hour (diel) period. Sampling began at 1200 hours on June 1 and ended at 1100 hours on June 2, 2016. The results of the Provo River MeHg analysis showed dissolved MeHg had a concentration variance of 0.027 ng/L and particulate MeHg had a concentration variance of 0.056 ng/L. The variances during the diel cycle represent more than a two-fold change in concentration. The hourly MeHg concentration levels demonstrated an inverse relationship with gage height indicative of dilution. The purpose of the study is to develop a more thorough understanding of short-term variances over time and the potential affect on long-term interpretations of MeHg fluctuations in the river. The Provo River flows through Jordanelle Reservoir where there is a mercury advisory for two fish species. MeHg is a bioaccumulative neurotoxin that humans are primarily exposed to by the consumption of contaminated fish. The strong correlation between the levels of MeHg in water and fish make the river concentrations an important factor.

  8. [Hypoxic adaptation of the hearts of plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzoniae)].

    PubMed

    Qi, Xin-Zhang; Wang, Xiao-Jun; Zhu, Shi-Hai; Rao, Xin-Feng; Wei, Lian; Wei, Deng-Bang

    2008-06-25

    Plateau zokor (Myospalax baileyi) and plateau pika (Ochotona curzniae) are native to the Qinghai-Tibet plateau. To study their adaptive mechanisms, the ratios of heart weight to body weight (HW/BW) and right to left ventricular plus septum weights [RV/(LV+S)] were determined; the microvessel density (MVD) of cardiac muscle were measured by immunohistochemical staining; the numerical density on area (N(A)), volume density (V(V)), specific surface (δ), and surface density (S(V)) of mitochondria were obtained by microscopy and stereology; the contents of myoglobin (Mb) and lactic acid (LD), and the activity of lactate dehydrogenase (LDH) in cardiac muscle were analyzed by spectrophotometer. The results showed that the HW/BW of plateau zokor [(4.55±0.26)%] and plateau pika [(4.41±0.38)%] was significantly greater than that of Sprague-Dawley (SD) rat [(3.44±0.41)%] (P<0.05), but the RV/(LV+S) [(22.04±1.98)%, (25.53±3.41)%] was smaller than that of SD rats [(44.23±3.87)%] (P<0.05). The MVD and N(A) of cardiac muscle were 1688.631±250.253 and 0.768±0.123 in SD rat, 2002.888±367.466 and 0.868±0.159 in plateau pika and 2 990.643±389.888 and 1.012±0.133 in plateau zokor. The V(V) of mitochondria in plateau zokor (0.272±0.045) was significantly lower than that in plateau pika (0.343±0.039) and SD rat (0.321±0.048) (P<0.05), while the δ of mitochondria in plateau zokor (9.409±1.238) was higher than that in plateau pika (6.772±0.892) and SD rat (7.287±1.373) (P<0.05). The S(V) of mitochondria in plateau pika (2.322±0.347) was not obviously different from that in plateau zokor (2.468±0.380) and SD rat (2.227±0.377), but that in plateau zokor was significantly higher than that in SD rat (P<0.05). The contents of Mb in cardiac muscle of plateau zokor [(763.33±88.73) nmol/g] and plateau pika [(765.96±28.47) nmol/g] were significantly higher than that of SD rat [(492.38±72.14) nmol/g] (P<0.05), the content of LD in plateau zokor [(0.57±0.06) mmol/L] was

  9. Water-quality reconnaissance of surface inflow to Utah Lake

    USGS Publications Warehouse

    Mundorff, J.C.

    1974-01-01

    This report on the quality of the major surface-water inflow to Utah Lake was prepared by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. The purpose of the reconnaissance on which the report is based was to obtain information about (1) the general inorganic chemical characteristics of surface water throughout the drainage basins of the major streams that contribute to Utah Lake, (2) the effects of the natural environment and of present water use on the chemical characteristics, and (3) general characteristics of the sediment discharge of selected streams in the basin. This information will be useful in the operation of present water systems and in planning future water development and use.The reconnaissance of inflow to Utah Lake was limited in scope; it did not include intensive study of the effects of municipal sewage, irrigation, industry, or mining on water quality. The principal objective of the study was a general definition of water-quality characteristics throughout the major drainage areas tributary to Utah Lake. A secondary objective was the definition of specific problem areas or stream reaches in which deterioration in water quality was evident.

  10. Runoff conditions in Utah for water year 2011

    USGS Publications Warehouse

    Cordova, Jeffrey T.; Angeroth, Cory E.

    2012-01-01

    In May 2011, the snowpack conditions in the mountains of central and northern Utah had emergency planners and water managers preparing for levels of runoff similar to the record year of 1983. The SNOwpack TELemetry (SNOTEL) records from the Natural Resources Conservation Service (NRCS) reported that the amount of water contained in the snowpack in May 2011 was greater than it was in either May of 1983 or 2005.Despite the above average snowpack,which lasted into the summer of 2011, runoff from snowmelt in 2011 did not create the widespread damage observed in 1983 and 2005. Cooler than normal temperatures resulted in slower snowmelt rates, which produced a prolonged and elevated runoff. Annual streamflow for water year 2011 was well above average, but few records of peak streamflow were set. The increase in water-surface elevation of Great Salt Lake was also above average. Ten streamgages in central and northern Utah, with records spanning greater than 20 years, have been selected to highlight the runoff conditions in Utah during water year 2011. Streamflow on the Duchesne River near Randlett, Utah, and on the Bear River near Utah-Wyoming state line is affected by several upstream diversions. These two streamgages were included in the analysis because their streamflow records have shown responses to spring snowmelt. The annual streamflow in all 10 of these streamgages was greater than 150 percent of average, and 3 streamgages set new records for total annual streamflow in water year 2011. One streamgage set a new peak streamflow record.

  11. Inocybe section Rimosae in Utah: phylogenetic affinities and new species.

    PubMed

    Kropp, Bradley R; Matheny, P Brandon; Hutchison, Leonard J

    2013-01-01

    Results of a study on species of Inocybe section Rimosae sensu lato in Utah are presented. Eight species, seven from the Pseudosperma clade (section Rimosae sensu stricto) and one from the Inosperma clade (section Rimosae pro parte), are documented morphologically and phylogenetically. Five of the eight species, I. aestiva, I. breviterincarnata, I. cercocarpi, I. niveivelata and I. occidentalis-all members of the Pseudosperma clade-are described as new from Utah and other western states. Two European species, I. spuria and I. obsoleta, are confirmed from Utah. Inocybe aurora, originally described from Nova Scotia, is synonymized with I. obsoleta. The only member of the Inosperma clade recorded from Utah is I. lanatodisca, a widely distributed species for which three geographical clusters were detected. The phylogenetic analyses indicate that the Pseudosperma clade includes 53 clusters or species worldwide and that the Inosperma clade includes 47 such clusters. Many of these probably correspond to undescribed species. A key to species of section Rimosae sensu lato from Utah is provided together with illustrations of the eight species found in the state.

  12. 78 FR 2430 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... National Park Service Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT... February 11, 2013. ADDRESSES: Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt Lake... funerary objects should contact Duncan Metcalfe, Natural History Museum of Utah, 301 Wakara Way, Salt...

  13. 75 FR 8397 - Notice of Utah's Resource Advisory Council (RAC)/Recreation RAC Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Bureau of Land Management Notice of Utah's Resource Advisory Council (RAC)/Recreation RAC Meeting AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Utah's Resource Advisory Council (RAC)/Recreation... Management's (BLM) Utah Resource Advisory Council (RAC)/Recreation RAC will meet as indicated below....

  14. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Utah abandoned mine plan. 944.20 Section 944.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Utah abandoned mine plan. The Utah Abandoned Mine Plan, as submitted on February 9, 1983, and as...

  15. 30 CFR 944.25 - Approval of Utah abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Approval of Utah abandoned mine land reclamation plan amendments. 944.25 Section 944.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE UTAH § 944.25 Approval of Utah abandoned mine land reclamation plan amendments. The following is a...

  16. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Utah abandoned mine plan. 944.20 Section 944.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Utah abandoned mine plan. The Utah Abandoned Mine Plan, as submitted on February 9, 1983, and as...

  17. 30 CFR 944.25 - Approval of Utah abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Approval of Utah abandoned mine land reclamation plan amendments. 944.25 Section 944.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE UTAH § 944.25 Approval of Utah abandoned mine land reclamation plan amendments. The following is a...

  18. 30 CFR 944.25 - Approval of Utah abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Approval of Utah abandoned mine land reclamation plan amendments. 944.25 Section 944.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE UTAH § 944.25 Approval of Utah abandoned mine land reclamation plan amendments. The following is a...

  19. 30 CFR 944.20 - Approval of Utah abandoned mine plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Utah abandoned mine plan. 944.20 Section 944.20 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... Utah abandoned mine plan. The Utah Abandoned Mine Plan, as submitted on February 9, 1983, and as...

  20. 30 CFR 944.25 - Approval of Utah abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Approval of Utah abandoned mine land reclamation plan amendments. 944.25 Section 944.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE UTAH § 944.25 Approval of Utah abandoned mine land reclamation plan amendments. The following is a...

  1. 30 CFR 944.25 - Approval of Utah abandoned mine land reclamation plan amendments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Approval of Utah abandoned mine land reclamation plan amendments. 944.25 Section 944.25 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STATE UTAH § 944.25 Approval of Utah abandoned mine land reclamation plan amendments. The following is a...

  2. 76 FR 7845 - Public Water System Supervision Program Revision for the State of Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... AGENCY Public Water System Supervision Program Revision for the State of Utah AGENCY: Environmental... the State of Utah has revised its Public Water System Supervision (PWSS) Program by adopting Federal... with the SDWA and proposes to approve Utah's primacy revisions for the above stated Rules....

  3. 76 FR 74069 - Central Utah Project Completion Act; Finding of No Significant Impact Associated With the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Central Utah Project Completion Act; Finding of No Significant Impact Associated With the Environmental... , (801) 226-7146. FOR FURTHER INFORMATION CONTACT: Mr. Lynn Hansen, Central Utah Project Completion Act... action would: 1. Administratively convert up to 12,100 acre-feet of Central Utah Project Bonneville...

  4. Water use data for public water suppliers and self supplied industry in Utah: 1986, 1987

    USGS Publications Warehouse

    1989-01-01

    This is the seventh in a continuing series of reports presenting water use data for Utah. The report is a summary of data collected under the Utah Water Use program, a cooperative program between the Utah Division of Water Rights and the United States Geological Survey (USGS)

  5. 33 CFR 110.127a - Lake Powell, Utah-Arizona.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lake Powell, Utah-Arizona. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.127a Lake Powell, Utah-Arizona. (a) Castel Butte, Utah. That portion of Lake Powell inclosed by the shore and a line connecting the following...

  6. 33 CFR 110.127a - Lake Powell, Utah-Arizona.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lake Powell, Utah-Arizona. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.127a Lake Powell, Utah-Arizona. (a) Castel Butte, Utah. That portion of Lake Powell inclosed by the shore and a line connecting the following...

  7. 33 CFR 110.127a - Lake Powell, Utah-Arizona.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lake Powell, Utah-Arizona. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.127a Lake Powell, Utah-Arizona. (a) Castel Butte, Utah. That portion of Lake Powell inclosed by the shore and a line connecting the following...

  8. 33 CFR 110.127a - Lake Powell, Utah-Arizona.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lake Powell, Utah-Arizona. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.127a Lake Powell, Utah-Arizona. (a) Castel Butte, Utah. That portion of Lake Powell inclosed by the shore and a line connecting the following...

  9. 33 CFR 110.127a - Lake Powell, Utah-Arizona.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lake Powell, Utah-Arizona. 110... ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.127a Lake Powell, Utah-Arizona. (a) Castel Butte, Utah. That portion of Lake Powell inclosed by the shore and a line connecting the following...

  10. The Economic Impact of Utah Valley State College, 1996-1997.

    ERIC Educational Resources Information Center

    Hoyt, Jeff E.; Haas, Terry

    This report estimates the economic impact of Utah Valley State College (UVSC) on Utah County, Utah, in 1996-1997, using the Ryan-New Jersey model, a model that estimates economic impact on the local economy by summing the total expenditures of the college, employees, and students. UVSC is a state college composed of two interdependent divisions, a…

  11. The Economic Impact of Utah Valley State College, 1999-2000.

    ERIC Educational Resources Information Center

    Brown, Andrea; Hoyt, Jeff E.

    This report estimates the economic impact of Utah Valley State College (UVSC) on Utah County, Utah, in the 1999-2000 school year, using the Ryan-New Jersey model, a model that estimates economic impact on the local economy by summing the total expenditures of the college, employees, and students. UVSC is a state college composed of two…

  12. Statewide Evaluation of Utah's Productivity Project Studies Program. Executive Summary to the Final Report.

    ERIC Educational Resources Information Center

    Utah State Univ., Logan. Dept. of Psychology.

    In June 1989, the Utah State Office of Education contracted with the Research and Evaluation Methodology Program at Utah State University to conduct a statewide evaluation of Utah's Productivity Projects Studies Program. This executive summary of the results of the evaluation contains: (1) a description of the program; (2) an overview of the…

  13. 78 FR 5489 - Notice of Utah's Recreation Resource Advisory Council/Resource Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ... 200 South, Salt Lake City, Utah, in the Monument Conference Room on the fifth floor. FOR FURTHER..., 440 West 200 South, Salt Lake City, Utah 84101; phone (801) 539-4195; sfoot@blm.gov . SUPPLEMENTARY... County, Utah. An additional topic will cover updates on the St. George/Cedar City Resource...

  14. 78 FR 50442 - Notice of Filing of Plats of Survey; Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... file plats of survey of the lands described below in the BLM Utah State Office, Salt Lake City, Utah..., Bureau of Land Management, Branch of Geographic Sciences, 440 West 200 South, Suite 500, Salt Lake City... are: Salt Lake Meridian, Utah The plat representing T. 7 N., R. 2 W., dependent resurvey...

  15. 78 FR 43225 - Utah Resource Advisory Council Meeting/Conference Call

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Bureau of Land Management Utah Resource Advisory Council Meeting/Conference Call AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Meeting/Conference Call SUMMARY: In accordance with the Federal Land...) Utah Resource Advisory Council (RAC) will host a meeting/conference call. DATES: The Utah RAC will...

  16. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  17. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  18. Possible uranium mineralization, Mineral Mountains, Utah

    USGS Publications Warehouse

    Miller, W. Roger; McHugh, John B.; Ficklin, Walter H.

    1979-01-01

    The Mineral Mountains block in west-central Utah is a horst whose core stands structurally high relative to all nearby basin-and-range fault blocks. Rocks of the Mineral Mountains range from Precambrian to Quaternary in age, but mostly consist of Tertiary granitic rocks. The range lies with the Wah Wah-Tusher mineral belt. Lead, silver, gold, and tungsten have been mined commercially. During a geochemical survey conducted in the summer of 1978, 30 water samples and 29 stream-sediment samples were collected from the Mineral Mountains area. The interpretation of simple plots of uranium concentrations and the results of a Q-mode factor analysis indicate that potential exists for uranium mineral deposits within the Mineral Mountains. The most favorable areas are in the granitic pluton near its contacts with sedimentary and metamorphic rocks. The most likely source of the uranium anomalies is uraninite-bearing epigenic veins along faults and fractures within the pluton. Three hypothetical models are proposed to account for the uranium mineralization.

  19. Parental hesitation in immunizing children in Utah.

    PubMed

    Luthy, Karlen E; Beckstrand, Renea L; Callister, Lynn Clark

    2010-01-01

    To determine why parents in a Utah community hesitated in immunizing their children. Cross-sectional descriptive study. Data were collected from a convenience sample of 86 parents of under-immunized children in the county health department and local pediatric and family practice offices. Participants were asked to complete an immunization hesitancy survey including questions regarding why parents hesitated to immunize their children, parental concerns regarding immunizations, and what advice they would give to a friend or family member who had concerns about childhood vaccines. Parents could also write in any other comment, concern, or suggestion they had regarding childhood immunizations. 2 major themes were identified: concerns regarding immunization safety and lack of perceived need. The most commonly reported concerns regarding immunization safety included autism, immune system overload, and other adverse reactions. Many parents did not recognize the need for childhood immunizations, especially multiple immunizations given simultaneously on a strict timeline. The manner in which immunization information is shared with hesitant parents can be particularly important. There is a need for health care providers to assess and increase parental knowledge regarding immunizations.

  20. Natural vibration dynamics of Rainbow Bridge, Utah

    NASA Astrophysics Data System (ADS)

    Moore, J. R.; Thorne, M. S.; Wood, J. R.; Doyle, S.; Stanfield, E.; White, B.

    2015-12-01

    We measured resonant frequencies of Rainbow Bridge, Utah, one of the world's longest rock spans, during a field experiment recording ambient vibration data. Measurements were generated over 20 hours on March 23-24, 2015 using two broadband three-component seismometers placed on the bridge, and compared to concurrent data from nearby reference stations 20 and 220 m distant. We identified seven distinct modes of vibration for Rainbow Bridge between 1 and 6 Hz. Data for each resonant frequency was then analyzed to determine the frequency-dependent polarization vector in an attempt to clarify mode shapes; e.g. the fundamental mode represents out-of-plane horizontal flexure. We compared experimental data to results of 3D numerical modal analysis, using a new photogrammetric model of Rainbow Bridge generated in this study imported into COMSOL Multiphysics. Results compare well with measured data for seven of the first eight modeled modes, matching vibrational frequencies and polarization orientations generally within 10%. Only predicted mode 6 was not explicitly apparent in our experimental data. Large site-to-reference spectral ratios resolved from experimental data indicate high amplification on the bridge as compared to nearby bedrock.

  1. National Uranium Resource Evaluation: Richfield Quadrangle, Utah

    SciTech Connect

    Bromfield, C.S.; Grauch, R.I.; Otton, J.K.; Osmonson, L.M.; Robinson, K.; Reed, R.L.; Noah, R.J.

    1982-09-01

    The Richfield Quadrangle in west-central Utah was evaluated to identify areas favorable for the occurrence of uranium deposits known or likely to contain 100 tons of uranium with an average grade of not less than 100 ppM U/sub 3/O/sub 8/. Geologic reconnaissance was made of all known environments thought to be favorable for uranium deposits, and a representative selection of uranium occurrences reported in the literature was visited. Geochemical analyses from rock and limited water samples were used in the evaluation. Preliminary and incomplete aeroradiometric data and hydrogeochemical and stream-sediment analyses arrived too late in the program to be field-checked or to be adequately analyzed for this report. Two areas favorable for uranium deposits were delineated: (1) volcanogenic deposits (class 500 to 599) in association with Miocene Mount Belknap rhyolite, and acidic plutons in the Marysvale Volcanic Field in the Antelope Range and Tushar Mountains; and (2) volcanogenic (class 500 to 599) and/or magmatic hydrothermal deposits (class 330) associated with Miocene high-silica high-alkali rhyolite tuffs, flows, and hypabyssal intrusives in volcanic or subvolcanic environments in the southern Wah Wah Mountains.

  2. BIRDSEYE, NEPHI, AND SANTAQUIN ROADLESS AREAS, UTAH.

    USGS Publications Warehouse

    Sorensen, Martin L.; Korzeb, Stanley L.

    1984-01-01

    The results of a mineral-resource appraisal of the Birdseye, Nephi, And Santaquin Roadless Areas in Utah indicate several areas with probable or substantiated mineral-resource potential. The Eva mine in the Santaquin Roadless Area contains small, demonstrated resources of lead-zinc-silver ore. A probable resource potential for lead, zinc, and silver deposits exists in the area around the Eva mine, and elsewhere in the Birdseye, Nephi, and Santaquin Roadless Areas where Mississipian and Cambrian carbonate rocks occur. A substantiated potential for gypsum is recognized in the southwest corner of the Nephi Roadless Area and a probable resource potential in adjacent areas underlain by the Jurassic Arapien Shale. There are limestone resources for use in cement and smelter flux in the Nephi and Santaquin Roadless Areas, but similar limestone occurs abundantly outside the area. The potential for oil and gas resources cannot be assessed from available data. There are no indications of coal or geothermal resources in the roadless areas.

  3. Inherent agricultural constraints in Allegheny Plateau soils

    USDA-ARS?s Scientific Manuscript database

    World population increases demand increased agricultural production. This can be accomplished through improved cultivars and production techniques or increased use of previously marginal agricultural regions. In the Allegheny Plateau (AP) region of the Appalachian Mountains, acid soils with toxic ...

  4. Career Plateauing: Implications for Career Development Specialists.

    ERIC Educational Resources Information Center

    Weiner, Andrew; And Others

    1992-01-01

    Reaction to career plateaus depends on the employee's resources as well as the organization's response. Counseling, training and development, job enrichment, and other activities can minimize the stressful effects of involuntary plateauing. (SK)

  5. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  6. Geothermal assessment of a portion of the Escalante Valley, Utah

    SciTech Connect

    Klauk, R.H.; Gourley, C.

    1983-12-01

    In February 1981, the Utah geological and Mineral Survey (UGMS) contracted with the Department of Energy (DOE) to evaluate the geothermal potential of an area proposed for a possible Missile Experimental (MX) operations base in the Escalante Valley region of Utah. Exploration techniques employed included a temperature survey, chemical analysis of springs and wells, and temperature-depth measurements in holes of opportunity. The highest water temperatures recorded in the area, with the exceptions of a 60/sup 0/C (140/sup 0/F) geothermal exploration hole and Thermo Hot Springs (42 to 78/sup 0/C or 108 to 172/sup 0/F), were 27 and 28/sup 0/C (81 and 82/sup 0/F) at two wells located northwest of Zane, Utah.

  7. 75 FR 57055 - Endangered and Threatened Wildlife and Plants; Draft Revised Recovery Plan for Utah Prairie Dog

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... for Utah Prairie Dog AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of document... availability of a draft revised recovery plan for the Utah prairie dog (Cynomys parvidens). This species is.... The Utah prairie dog (Cynomys parvidens), found only in southwestern and central Utah, was listed as...

  8. 78 FR 6832 - Notice of Mailing Address Change for the Utah State Office, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ... Bureau of Land Management Notice of Mailing Address Change for the Utah State Office, Salt Lake City, UT... of Land Management (BLM), Utah State Office, in Salt Lake City, Utah, will be changing from P.O. Box 45155-0155 to 440 West 200 South, Suite 500, Salt Lake City, Utah 84101-1345. The proposed date will...

  9. Analysis of Neogene deformation between Beaver, Utah, and Barstow, California: suggestions for altering the extensional paradigm

    USGS Publications Warehouse

    Anderson, R. Ernest; Beard, L. Sue; Mankinen, Edward A.; Hillhouse, John W.

    2013-01-01

    For more than two decades, the paradigm of large-magnitude (~250 km), northwest-directed (~N70°W) Neogene extensional lengthening between the Colorado Plateau and Sierra Nevada at the approximate latitude of Las Vegas has remained largely unchallenged, as has the notion that the strain integrates with coeval strains in adjacent regions and with plate-boundary strain. The paradigm depends on poorly constrained interconnectedness of extreme-case lengthening estimated at scattered localities within the region. Here we evaluate the soundness of the inferred strain interconnectedness over an area reaching 600 km southwest from Beaver, Utah, to Barstow, California, and conclude that lengthening is overestimated in most areas and, even if the estimates are valid, lengthening is not interconnected in a way that allows for published versions of province-wide summations. We summarize Neogene strike slip in 13 areas distributed from central Utah to Lake Mead. In general, left-sense shear and associated structures define a broad zone of translation approximately parallel to the eastern boundary of the Basin and Range against the Colorado Plateau, a zone we refer to as the Hingeline shear zone. Areas of steep-axis rotation (ranging to 2500 km2) record N-S shortening rather than unevenly distributed lengthening. In most cases, the rotational shortening and extension-parallel folds and thrusts are coupled to, or absorb, strike slip, thus providing valuable insight into how the discontinuous strike-slip faults are simply parts of a broad zone of continuous strain. The discontinuous nature of strike slip and the complex mixture of extensional, contractional, and steep-axis rotational structures in the Hingeline shear zone are similar to those in the Walker Lane belt in the west part of the Basin and Range, and, together, the two record southward displacement of the central and northern Basin and Range relative to the adjacent Colorado Plateau. Understanding this province

  10. Analysis of Neogene deformation between Beaver, Utah and Barstow, California: Suggestions for altering the extensional paradigm

    USGS Publications Warehouse

    Anderson, R. Ernest; Beard, Sue; Mankinen, Edward A.; Hillhouse, John W.

    2013-01-01

    For more than two decades, the paradigm of large-magnitude (~250 km), northwest-directed (~N70°W) Neogene extensional lengthening between the Colorado Plateau and Sierra Nevada at the approximate latitude of Las Vegas has remained largely unchallenged, as has the notion that the strain integrates with coeval strains in adjacent regions and with plate-boundary strain. The paradigm depends on poorly constrained interconnectedness of extreme-case lengthening estimated at scattered localities within the region. Here we evaluate the soundness of the inferred strain interconnectedness over an area reaching 600 km southwest from Beaver, Utah, to Barstow, California, and conclude that lengthening is overestimated in most areas and, even if the estimates are valid, lengthening is not interconnected in a way that allows for published versions of province-wide summations.We summarize Neogene strike slip in 13 areas distributed from central Utah to Lake Mead. In general, left-sense shear and associated structures define a broad zone of translation approximately parallel to the eastern boundary of the Basin and Range against the Colorado Plateau, a zone we refer to as the Hingeline shear zone. Areas of steep-axis rotation (ranging to 2500 km2) record N-S shortening rather than unevenly distributed lengthening. In most cases, the rotational shortening and extension-parallel folds and thrusts are coupled to, or absorb, strike slip, thus providing valuable insight into how the discontinuous strike-slip faults are simply parts of a broad zone of continuous strain. The discontinuous nature of strike slip and the complex mixture of extensional, contractional, and steep-axis rotational structures in the Hingeline shear zone are similar to those in the Walker Lane belt in the west part of the Basin and Range, and, together, the two record southward displacement of the central and northern Basin and Range relative to the adjacent Colorado Plateau. Understanding this province

  11. Assessment and use of drug information references in Utah pharmacies

    PubMed Central

    2016-01-01

    Objective: To determine which drug references Utah pharmacists use most frequently. To determine which types of drug information questions are most commonly asked, and whether Utah pharmacists have access to adequate references to respond to these questions. Methods: A 19-question survey was created using Qualtrics, LLC (Provo, Utah) software. An electronic survey link was sent to 1,431 pharmacists with a valid e-mail address listed in the Department of Professional Licensing database. Questions focused on available references in the participant’s pharmacy, how current the references are, and the participant’s use of the references. Surveys were analyzed for participants practicing in either community or hospital pharmacies in the state of Utah. Results: A total of 147 responses were included in the analysis. Approximately 44% of respondents practiced in the community, and 56% practiced in a hospital setting. The most commonly used references by Utah pharmacists are Micromedex, Lexicomp, UpToDate, Clinical Pharmacology, and Drug Facts & Comparisons. Pharmacists in the community frequently receive questions related to adverse drug reactions, drug interactions, and over-the-counter medications. Pharmacists in the hospital frequently receive questions relating to dosage and administration, drug interactions, and adverse drug reactions. About 89% of community pharmacists and 96% of hospital pharmacists feel available references are adequate to answer the questions they receive. Conclusions: Utah pharmacists generally use large reference suites to answer drug information questions. The majority of pharmacists consider the references available to them to be adequate to answer the questions they receive. PMID:28503217

  12. Ground-water conditions in Utah, spring of 2006

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Wilberg, D.E.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2006-01-01

    This is the forty-third in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2005. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/techinfo/wwwpub/gw2006.pdf and http://ut.water.usgs. gov/publications/GW2006.pdf.

  13. Utah healthcare system watches over Olympians and spectators.

    PubMed

    Rees, Tom

    2002-01-01

    For the first time in Olympic history, a single organization was tapped to provide medical services when Intermountain Health Care (IHC), Salt Lake City, was named for the 2002 Olympic and Paralympic Games in Utah. IHC, a charitable, community owned, integrated, not-for-profit healthcare system serving patients in Utah and Idaho, spent four years developing and implementing a plan to deliver medical services to both Olympians and spectators. Nearly 350 IHC doctors, nurses, physical therapists and other professionals donated their services for the Olympics without compensation as part of their not-for-profit mission. In addition, about 1,000 IHC employees applied to be general volunteers during the games.

  14. Seismicity and earthquake hazards of the Wasatch Front, Utah

    USGS Publications Warehouse

    Spall, H.

    1974-01-01

    The impressive topographic break at the base of the Wasatch Range immediately east of Salt Lake City, Utah, marks the location where Mormon colonizer Brigham Young said in 1847. "This is the place" Actually, "the place" is termed the Wasatch Front because the Wasatch Range to the east, which rises to heights of 3,600 m, fronts the valleys to the west. The densely settled Wasatch Front area has about 900,000 people, 80 percent of Utah's total population. This population is centered around Salt Lake City, a rapidly growing industrial and tourist center. 

  15. Stereo Pair, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture

  16. Stereo Pair, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture

  17. The Use 0f AVIRIS Imagery To Assess Clay Mineralogy And Debris-Flow Potential In Cataract Canyon, Utah: A Preliminary Report

    NASA Technical Reports Server (NTRS)

    Rudd, Lawrence; Merenyi, Erzsebet

    2004-01-01

    Worldwide debris flows destroy property and take human lives every year (Costa, 1984). As a result of extensive property damage and loss of life there is a pressing need to go beyond just describing the nature and extent of debris flows as they occur. Most of the research into debris-flow initiation has centered on rainfall, slope angle, and existing debris-flow deposits (Costa and Wieczorek, 1987). The factor of source lithology has been recently addressed by studies in the sedimentary terranes of Grand Canyon (Webb et al., 1996; Griffiths et al., 1996) and on the Colorado Plateau as a whole.3 On the Colorado Plateau shales dominated by kaolinite and illite clays are significantly more likely to be recent producers of debris-flows than are shales in which smectite clays dominate.3 Establishing the location of shales and colluvial deposits containing kaolinite and illite clays in sedimentary terranes on the Colorado Plateau is essential to predicting where debris flows are likely to occur. AVIRIS imagery can be used to distinguish between types of clay minerals (Chabrillat et al., 2001), providing the basis for surface-materials maps. The ultimate product of this study will be a model that can be used to estimate the debris-flow hazard in Cataract Canyon, Utah. This model will be based on GIS overlay analysis of debris-flow initiation factor maps, including surface-materials maps derived from AVIRIS data.

  18. Environmental assessment: Davis Canyon site, Utah

    SciTech Connect

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  19. The Chuar Petroleum System, Arizona and Utah

    USGS Publications Warehouse

    Lillis, Paul G.

    2016-01-01

    The Neoproterozoic Chuar Group consists of marine mudstone, sandstone and dolomitic strata divided into the Galeros and Kwagunt Formations, and is exposed only in the eastern Grand Canyon, Arizona. Research by the U.S. Geological Survey (USGS) in the late 1980s identified strata within the group to be possible petroleum source rocks, and in particular the Walcott Member of the Kwagunt Formation. Industry interest in a Chuar oil play led to several exploratory wells drilled in the 1990s in southern Utah and northern Arizona to test the overlying Cambrian Tapeats Sandstone reservoir, and confirm the existence of the Chuar in subcrop. USGS geochemical analyses of Tapeats oil shows in two wells have been tentatively correlated to Chuar bitumen extracts. Distribution of the Chuar in the subsurface is poorly constrained with only five well penetrations, but recently published gravity/aeromagnetic interpretations provide further insight into the Chuar subcrop distribution. The Chuar petroleum system was reexamined as part of the USGS Paradox Basin resource assessment in 2011. A map was constructed to delineate the Chuar petroleum system that encompasses the projected Chuar source rock distribution and all oil shows in the Tapeats Sandstone, assuming that the Chuar is the most likely source for such oil shows. Two hypothetical plays were recognized but not assessed: (1) a conventional play with a Chuar source and Tapeats reservoir, and (2) an unconventional play with a Chuar source and reservoir. The conventional play has been discouraging because most surface structures have been tested by drilling with minimal petroleum shows, and there is some evidence that petroleum may have been flushed by CO2 from Tertiary volcanism. The unconventional play is untested and remains promising even though the subcrop distribution of source facies within the Chuar Group is largely unknown.

  20. Hydrology of the Price River basin, Utah, with emphasis on selected coal-field areas

    USGS Publications Warehouse

    Waddell, Kidd M.; Dodge, J.E.; Darby, D.W.; Theobald, S.M.

    1986-01-01

    Data obtained during a hydrologic study of the Price River basin, Utah, are used to describe seasonal variations of flow of springs, relation between ground water and surface water, hydraulic properties of the ground-water reservoir, ground-water recharge and discharge, flood characteristics of streams, mineralogic composition and depositional rates of sediments, nutrient and inorganic loading in streams and Scofield Reservoir, and water budgets for selected basins. Additional study and monitoring are needed to detect possible hydrologic changes caused by coal mining. Much of the ground-water discharge from the Star Point Sandstone in the Mesaverde Group in the Wasatch Plateau occurs along faults. In the Book Cliffs, where faulting is less extensive, most of the ground-water discharge is from the Flagstaff Limestone. The Flagstaff Limestone is greatly diffusive, has a small storage coefficient, and contains water which is perched. Springs issuing from the Star Point Sandstone in the Mud Creek drainage (Wasatch Plateau) had recession indexes greater than 365 days per log cycle. Springs issuing at higher altitudes from the Colton Formation and the Flagstaff Limestone in the Soldier Creek area (Book Cliffs) have great seasonal variability, with recession indexes ranging from 24 to 115 days per log cycle. Estimated transmissivities in the Soldier Creek area ranged from 0.003 foot squared per day in the lower part of the Castlegate Sandstone to 0.07 foot squared per day in the Price River Formation. Seepage from the Star Point Sandstone is the major contributor to base flow of the stream in Eccles Canyon (Wasatch Plateau). Gains of as much as 230 gallons per minute occurred near a fault zone which crosses Eccles Canyon at the junction with South Fork Canyon. The potentiometric surface of water in the Blackhawk Formation in the Wasatch Plateau (Mud Creek drainage) and the Book Cliffs (Soldier Creek area) generally is above the coal zones, and dewatering will be necessary

  1. A comparison of Uinta Basin, Utah crude oil and biodegraded products

    SciTech Connect

    Hatcher, H.J.; Barrett, K.B.; Taghizadeh, K.; Quigley, D.R.; Meuzelaar, H.L.C.

    1989-01-01

    Biodegradation of crude oil is described. Samples of oil shale were collected from Hell's Hole Canyon in Utah, The C-b Tract Mine in Colorado, and the Southman Canyon area in Utah. Tar sands were collected from Asphalt Ridge in Utah. Gilsonite was collected from the Bonanza area of Utah. Petroleum samples were collected from the Red Wash Oil Field and the Altamont-Bluebell Oil Field in Utah. Solid samples were placed in plastic bags and water samples in sterile plastic tubes. The samples were transported to the Idaho National Engineering Laboratory Research Center in Idaho Falls, Idaho for microbiological studies. Samples designated for pyrolysis gas chromatography/mass spectrometry studies were sent to the Center for Micro-Analysis and Reaction Chemistry, University of Utah, Salt Lake City, Utah. 4 refs., 5 figs., 2 tabs.

  2. Lithospheric structure across the northeastern margin of the Tibetan Plateau: Implications for the plateau's lateral growth

    NASA Astrophysics Data System (ADS)

    Shen, Xuzhang; Liu, Mian; Gao, Yuan; Wang, Weijun; Shi, Yutao; An, Meijian; Zhang, Yuansheng; Liu, Xuzhou

    2017-02-01

    Variations of lithospheric structure across the northeastern Tibetan Plateau and its bounding Asian blocks, the Alxa block to the north and the Ordos block to the east, are crucial for understanding the rise and lateral growth of the Tibetan Plateau. Using waveforms from high-density seismic arrays in northeastern Tibetan Plateau and the surrounding regions, we investigated the lithospheric structure with S- and P-wave receiver functions. The results show strong and relatively simple negative velocity gradients in the depth range of mantle lithosphere (∼70-150 km) under the Ordos and Alxa blocks, similar to those under typical stable continental lithosphere. In contrast, under northeastern Tibetan Plateau including its marginal regions, the velocity gradients are weak and diffusive for the mantle lithosphere, which may be explained by elevated temperature and presence of partial melts. The changes of lithospheric structures are sharp between the Tibetan Plateau and the bounding Ordos and Alxa blocks, suggesting that these two blocks have restricted the lateral growth of the Tibetan Plateau as rigid boundaries. However, across the northeastern corner of the Tibetan Plateau to the Yinchuan rift, the lithospheric mantle structures are similar, suggesting a lateral mantle flow from the Tibetan Plateau to the gap between the Ordos and the Alxa blocks. The crustal structures along this transition show evidence of lateral growth of the Tibetan Plateau. In particular, the edge of thickened crust and evidence of Moho superposition are found between the Haiyuan Fault and the Tianjin-shan Fault, which may have replaced the Haiyuan Fault as the front boundary of the laterally growing Tibetan Plateau in its northeastern corner.

  3. Map showing distribution of silver in the nonmagnetic fraction of heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of silver in the nonmagnetic fraction of heavy-mineral concentrates of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess

  4. Map showing distribution of cadmium and antimony in the nonmagnetic fraction of heavy-mineral concentrates, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    Miller, William R.; Motooka, Jerry M.; McHugh, John B.

    1990-01-01

    This map of the Richfield 1° x 2° quadrangle, Utah, shows the regional distribution of cadmium and antimony in the nonmagnetic fraction of drainage-sediment samples. It is part of a folio of maps of the Richfield 1° x 2° quadrangle, Utah, prepared under the Conterminuous United States Mineral Assessment Program. Other published geochemical maps in this folio are listed in the references (this publication). The Richfield quadrangle is located in west-central Utah and includes the eastern part of the Pioche-Marysvale igneous and mineral belt, which extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 155 miles into central Utah. The western two-thirds of the Richfield quadrangle is part of the Basin and Range province, whereas the eastern third is part of the High Plateaus of Utah, a subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of Late Proterozoic and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks located in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrain into a series of north-trending fault blocks; the uplifted mountain areas were eroded to various degrees and the resulting debris was deposited in adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed as a result of igneous activity in the middle and late Cenozoic time. A more complete description of the geology and a mineral-resource appraisal of the Richfield quadrangle appears in Steven and Morris (1984 and 1987). The regional sampling program was designed to define broad geochemical patterns and trends that can be utilized along with geological and geophysical data to assess the mineral

  5. Imaging at the Utah test and training range

    NASA Astrophysics Data System (ADS)

    McClenny, Donald D.

    1993-01-01

    The Utah Test and Training Range (UTTR) is a DoD test range in western Utah that contains 2,600 square miles of DoD withdrawn land and 17,000 square miles of usable airspace. The Range is managed by the 650 1st Range Squadron at Hill Air Force Base, Utah. The squadron's Range Operations Branch, located at Dugway Proving Grounds, Utah, provides photo-optic time-space position information (TSPI) on unmanned air vehicles, low flying missiles, on-board ordnance delivery systems, and other air targets using cine/videotheodolites. The Branch also provides videometric analysis recording, long-duration high-speed film recording, multiple camera coverage of explosive propagation tests, and video documentation services. The Range's capabilities are being used to support the Cruise Missile programs (ALCM/ACM), Tactical Weapons System Evaluation Program (TAC-WSEP), air and ground launched Medium Range Unmanned Air Vehicles, rocket motor and munitions shelf life testing, and explosive hazard classification studies. The purpose of this paper is to describe, in general terms, some of the imaging equipment and techniques used on the UTTR.

  6. Fire ecology of forests and woodlands in Utah

    Treesearch

    Anne F. Bradley; Nonan V. Noste; William C. Fischer

    1992-01-01

    Provides information on fire as an ecological factor in forest habitat types, and in pinyon-juniper woodland and oak-maple brushland communities occurring in Utah. Identifies Fire Groups based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  7. Lead Toxicity and Iron Deficiency in Utah Migrant Children.

    ERIC Educational Resources Information Center

    Ratcliffe, Stephen D.; And Others

    1989-01-01

    Determines the frequency of presumptive iron deficiency and lead toxicity in 198 Utah migrant children, aged 9-72 months. There were no confirmed cases of lead toxicity. Thirteen percent of all children tested, and 30 percent of those aged 9-23 months, were iron deficient. Hematocrit determination is an insensitive screen for iron deficiency.…

  8. Environmental Assessment: Proposed Fire Station Little Mountain Test Annex, Utah

    DTIC Science & Technology

    2010-03-19

    deficiencies are related to living areas, size of fire station bays and doors, disinfection facilities, and hazardous materials response capability. Scope...15 Figure 5: State of Utah Recommended Areas of Non-Attainment for Ozone ............................. 16 Figure 6...Protection Association NHPA National Historic Preservation Act NOx Oxides of Nitrogen O3 Ozone OSHA Occupational Safety and Health Administration

  9. 75 FR 18231 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... conversion of Central Utah Project water from irrigation to municipal and industrial use and possible... irrigation to municipal and industrial (M&I) use. The proposed water conversion could be implemented incrementally, and will involve up to 12,100 acre-feet of irrigation water that has been made available under...

  10. Pinyon-juniper woodlands in Zion National Park, Utah

    Treesearch

    Kimball T. Harper; Stewart C. Sanderson; E. Durant McArthur

    2003-01-01

    Juniperus osteosperma-Pinus monophylla or P. edulis (P-J) woodlands are the most widespread plant community in Zion National Park (ZNP), southwestern Utah. These woodlands dominate nearly half of the park's land area. Our study of this vegetational complex is based on a sample consisting of 115 macroplots (each 0.01 ha in area) objectively distributed across the...

  11. 75 FR 19338 - FM TABLE OF ALLOTMENTS, Milford, Utah

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... COMMISSION 47 CFR Part 73 FM TABLE OF ALLOTMENTS, Milford, Utah AGENCY: Federal Communications Commission... Group, LLC, authorized assignee of Station KCLS(FM), Channel 269C2, Pioche, Nevada, requesting the... highlight topics or organize text. See DDH, pages 1-12 and 1-13.] List of Subjects in 47 CFR Part 73...

  12. DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY

    EPA Science Inventory

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...

  13. BIOLOGICAL EFFECTS OF UTAH VALLEY PARTICLES: A REVIEW

    EPA Science Inventory

    The Utah Valley provided a unique opportunity to evaluate the health effects of particulate matter (PM) in humans. The area has had intermittently high particle levels with the principal point source being a steel mill. Due to a labor dispute, the mill was shut down. The closu...

  14. National Environmental/Energy Workforce Assessment for Utah.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    This report presents existing workforce levels, training programs and career potentials and develops staffing level projections (1976-1982) based on available information for the State of Utah. The study concerns itself with the environmental pollution control areas of air, noise, potable water, pesticides, radiation, solid waste, wastewater, and…

  15. A Utah Perspective on the National Education Goals.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    This report is issued to citizens of Utah to inform them on the progress being made in the state toward the national education goals, established in 1989. Because the goals are "cradle to grave" and cover the preschool years and the afterschool years, the information has been compiled by many state agencies. The report devotes a section…

  16. Mine-Induced Seismicity Likely Caused Utah Mine Event

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-08-01

    With six coal miners trapped in the Crandall Canyon Mine in east central Utah since 6 August, seismologists analyzing the estimated 3.9 magnitude event have indicated that it most likely was caused by an underground cavity collapse rather than by a tectonic earthquake.

  17. BIOLOGICAL EFFECTS OF UTAH VALLEY PARTICLES: A REVIEW

    EPA Science Inventory

    The Utah Valley provided a unique opportunity to evaluate the health effects of particulate matter (PM) in humans. The area has had intermittently high particle levels with the principal point source being a steel mill. Due to a labor dispute, the mill was shut down. The closu...

  18. Information Profiles of Indian Reservations in Arizona, Nevada, and Utah.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Phoenix, AZ.

    Based on information provided by Bureau of Indian Affairs (BIA) Agency Offices and by the Indian Health Service, this publication provides profiles of 46 Indian reservations located in Arizona, Nevada, and Utah. These profiles include data on reservations that are: (1) located partially or totally in the adjoining States of Oregon, California,…

  19. Impact of Student Fee Amendment on Rural Schools in Utah.

    ERIC Educational Resources Information Center

    Willardson, J. D.; Muse, Garrett; Koop, Kenneth

    1998-01-01

    The requirement imposed upon Utah parents in 1986 authorizing student fees in secondary schools for those who do not qualify for free lunch denies many students an equal education. Using school fees to supplement public funding of education has a greater negative impact on rural families. Advocates adequate state funding of schools. Contains 15…

  20. Profile of Rural Utah Teachers Leaving the Teaching Profession.

    ERIC Educational Resources Information Center

    Allred, Wallace E.; Smith, Ralph B.

    Profiles of teachers from 30 rural and 10 urban Utah school districts who left the teaching profession were gathered via school district superintendents who were asked to identify teachers who left the profession during the school year and those who left the profession following the close of school. For those who left during the school year, data…

  1. Lead Toxicity and Iron Deficiency in Utah Migrant Children.

    ERIC Educational Resources Information Center

    Ratcliffe, Stephen D.; And Others

    1989-01-01

    Determines the frequency of presumptive iron deficiency and lead toxicity in 198 Utah migrant children, aged 9-72 months. There were no confirmed cases of lead toxicity. Thirteen percent of all children tested, and 30 percent of those aged 9-23 months, were iron deficient. Hematocrit determination is an insensitive screen for iron deficiency.…

  2. Evaluation of the Utah State School for the Deaf.

    ERIC Educational Resources Information Center

    Keene, Richard G.

    The report presents an evaluation of the Utah State School for the Deaf. It is argued that the two programs provided by the school (Total Communication and Oral Communication) are not equally available to each student and that placement of students is not based on professional diagnosis of student needs. Evidence is presented that indicates that…

  3. Utah State Office of Education Fingertip Facts, 2015-16

    ERIC Educational Resources Information Center

    Utah State Office of Education, 2016

    2016-01-01

    Fingertip Facts is a compendium of some of the most frequently requested data sets from the Utah State Office of Education. This year's Fingertip Facts includes the following data sets: SAGE Testing, 2014-15; 2015 Public Education General Fund; 2014-15 Public School Enrollment Demographics; Public Schools by Grade Level, 2014-15; Number of…

  4. Utah State Office of Education Fingertip Facts, 2014-15

    ERIC Educational Resources Information Center

    Utah State Office of Education, 2015

    2015-01-01

    Fingertip Facts is a compendium of some of the most frequently requested data sets from the Utah State Office of Education. Data sets in this year's Fingertip Facts include: SAGE Testing, 2014; 2013 Public Education General Fund; 2014-15 Public School Enrollment Demographics; Public Schools by Grade Level, 2013-14; Number of Licensed Educators;…

  5. Coniferous forest habitat types of central and southern Utah

    Treesearch

    Andrew P. Youngblood; Ronald L. Mauk

    1985-01-01

    A land-classification system based upon potential natural vegetation is presented for the coniferous forests of central and southern Utah. It is based on reconnaissance sampling of about 720 stands. A hierarchical taxonomic classification of forest sites was developed using the habitat type concept. Seven climax series, 37 habitat types, and six additional phases of...

  6. Utah Public Library Service, 2001: An Annual Report.

    ERIC Educational Resources Information Center

    Long, Sandi

    This annual report of Utah public library services presents data useful for local library planning. This information is presented in two sections: core performance measures and general tables. Statewide summary data and breakouts by the populations of the library jurisdictions are provided for the following core performance measures: (1) visits…

  7. A Schoolmarm All My Life: Personal Narratives from Frontier Utah.

    ERIC Educational Resources Information Center

    Kinkead, Joyce, Ed.

    This book presents edited versions of the personal narratives of 24 Mormon women who taught school in frontier Utah. Drawn primarily from the archives of the Church of Jesus Christ of Latter-Day Saints, the accounts detail the women's lives as Mormons, as pioneers, and as teachers and have been edited to focus on the education of women,…

  8. The Science Laboratory Experiences of Utah's High School Students

    ERIC Educational Resources Information Center

    Campbell, Todd

    2007-01-01

    This research investigated the extent to which science laboratory experiences encountered by Utah high school students aligned with reform efforts outlined in national standards documents. Through both quantitative and qualitative methods the findings revealed that while there were instances of alignment found between science laboratory…

  9. Forest resources of northern Utah ecoregions. Forest Service resource bulletin

    SciTech Connect

    O`Brien, R.A.

    1996-09-01

    This report presents the condition and extent of the forest resources of northern Utah ecoregions. The report also summarizes average net annual growth, potential growth, mortality, number of standing dead trees, habitat type occurrence, fire evidence, ownership, and land use patterns by province.

  10. Geothermal studies at the University of Utah Research Institute

    SciTech Connect

    1988-07-01

    The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

  11. Deployment of a Pair of 3 M telescopes in Utah

    SciTech Connect

    Finnegan, G.; Adams, B.; Butler, K.; Cardoza, J.; Colin, P.; Hui, C. M.; Kieda, D.; Kirkwood, D.; Kress, D.; Kress, M.; LeBohec, S.; McGuire, C.; Newbold, M.; Nunez, P.; Pham, K.

    2008-12-24

    Two 3 m telescopes are being installed in Grantsville Utah. They are intended for the testing of various approaches to the implementation of intensity interferometry using Cherenkov Telescopes in large arrays as receivers as well as for the testing of novel technology cameras and electronics for ground based gamma-ray astronomy.

  12. Information Profiles of Indian Reservations in Arizona, Nevada, & Utah.

    ERIC Educational Resources Information Center

    Bureau of Indian Affairs (Dept. of Interior), Phoenix, AZ.

    Based on information provided by Bureau of Indian Affairs (BIA) Agency Offices and by the Indian Health Service, this publication provides profiles of 45 Indian reservations located in Arizona, Nevada, and Utah. These profiles include data on reservations located partially or totally in the adjoining states of Oregon, Idaho, California, and New…

  13. The Condition of College & Career Readiness 2016: Utah Key Findings

    ERIC Educational Resources Information Center

    ACT, Inc., 2016

    2016-01-01

    "The Condition of College and Career Readiness" looks at the progress of the 2016 ACT®-tested graduating class relative to college and career readiness. This state briefing begins with statistics in the following categories for Utah: performance, STEM, career readiness, impact, behaviors that impact access and opportunity, pipeline, and…

  14. 75 FR 30421 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... Central Utah Project Completion Act AGENCY: Department of the Interior, Office of the Assistant Secretary... with the Environmental Assessment for Wasatch County Water Efficiency Project Recycled Water Project... Environmental Assessment (EA) for the Wasatch County Water Efficiency Project Recycled Water Project....

  15. DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY

    EPA Science Inventory

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...

  16. Teacher Career Ladders in Utah: Perspectives on Early Stages.

    ERIC Educational Resources Information Center

    Peterson, Ken, Ed.; And Others

    The status of teacher career ladders in Utah is discussed from five different perspectives. Jim Wilson, representing the Legislative Research Analyst's Office and General Counsel of the Legislature, speaks about legislative intent from the past year and what legislators thought would happen and wanted to happen regarding career ladder bills which…

  17. A Schoolmarm All My Life: Personal Narratives from Frontier Utah.

    ERIC Educational Resources Information Center

    Kinkead, Joyce, Ed.

    This book presents edited versions of the personal narratives of 24 Mormon women who taught school in frontier Utah. Drawn primarily from the archives of the Church of Jesus Christ of Latter-Day Saints, the accounts detail the women's lives as Mormons, as pioneers, and as teachers and have been edited to focus on the education of women,…

  18. Status of Teacher Personnel in Utah, 1982-83.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    This report, one of a series of studies of the supply of teachers, the demand for teachers, and the status of currently active teachers provides information on the status of teacher personnel in Utah: (1) total number of professional personnel; (2) ethnic and racial background; (3) certification and training; (4) professional experience; (5) age…

  19. Status of Teacher Personnel in Utah, 1981-82.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    This monograph presents 1981-82 data on the supply of and demand for teachers and the status of currently active teachers in Utah. Statistics are presented in tabular form. Section I provides information on: (1) total number of professional personnel; (2) ethnic and racial background; (3) certification and training; (4) professional experience;…

  20. Parental Attitudes Regarding School-Based Sexuality Education in Utah

    ERIC Educational Resources Information Center

    Steadman, Mindy; Crookston, Benjamin; Page, Randy; Hall, Cougar

    2014-01-01

    Sexuality education programs can be broadly categorized as either risk-avoidance or risk-reduction approaches. Health educators in Utah public schools must teach a state mandated risk-avoidance curriculum which prohibits the advocacy or encouragement of contraception. Multiple national surveys indicate that parents prefer a risk-reduction approach…

  1. Parental Attitudes Regarding School-Based Sexuality Education in Utah

    ERIC Educational Resources Information Center

    Steadman, Mindy; Crookston, Benjamin; Page, Randy; Hall, Cougar

    2014-01-01

    Sexuality education programs can be broadly categorized as either risk-avoidance or risk-reduction approaches. Health educators in Utah public schools must teach a state mandated risk-avoidance curriculum which prohibits the advocacy or encouragement of contraception. Multiple national surveys indicate that parents prefer a risk-reduction approach…

  2. Automated Authority Control at the Genealogical Society of Utah.

    ERIC Educational Resources Information Center

    Clement, Charles R.

    This paper describes the development of an automated authority control system for the Genealogical Society of Utah, which has large holdings of microfilmed records from many nations, including civil registration, parish registers, local records, and census records. The key function of the library is the identification of people. From the…

  3. Education in Utah: A Call to Action. Addendum.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    Clarifications to recommendations made in the Utah Education Reform Committee report, "A Call to Action," are presented in this addendum. Earlier recommendations relating to teachers are revised and clarified and new ones relating to class size, teachers' duties, instructional materials, and the student-parent-school relationship are…

  4. Ground-water conditions in Utah, spring of 2005

    USGS Publications Warehouse

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Walzem, Vince; Cillessen, J.L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Fisher, M.J.

    2005-01-01

    This is the forty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable inter­ested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water with­drawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2004. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources. This report is available online at http://www.waterrights.utah.gov/techinfo/ wwwpub/gw2005.pdf and http://ut.water.usgs.gov/publications/GW2005.pdf.

  5. Riparian Bird Population Monitoring in Utah, 1992-2001

    Treesearch

    Russell E. Norvell; Frank P. Howe; Jimmie R. Parrish

    2005-01-01

    We report statewide linear and non-linear trends in density from 1992 to 2001 for six common bird species in the riparian areas of Utah. The six species examined here represent over 24 percent of all observations in the period. Four of the six species showed linear declines (Black-headed Grosbeak [Pheucticus melanocephalus], American Goldfinch [

  6. 75 FR 8393 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Central Utah Project Completion Act AGENCY: Department of the Interior, Office of the Assistant Secretary... with the Environmental Assessment for the East Juab Water Efficiency Project--Phase II, Juab County... the Final Environmental Assessment (EA) for the East Juab Water Efficiency Project--Phase II,...

  7. ACT Profile Report: State. Graduating Class 2016. Utah

    ERIC Educational Resources Information Center

    ACT, Inc., 2016

    2016-01-01

    This report provides information about the performance of Utah's 2016 graduating seniors who took the ACT as sophomores, juniors, or seniors; and self-reported at the time of testing that they were scheduled to graduate in 2016. Beginning with the Graduating Class of 2013, all students whose scores are college reportable, both standard and…

  8. Factors affecting Bromus tectorum seed bank carryover in western Utah

    Treesearch

    Duane C. Smith; Susan E. Meyer; V. J. Anderson

    2008-01-01

    Cheatgrass (Bromus tectorum L.) is a winter annual weed that presents a serious obstacle to rangeland restoration in the Intermountain West. The objective of this study was to evaluate factors regulating the size and persistence of cheatgrass carryover seed banks on semiarid sites in western Utah. We prevented current-year seed production in each of...

  9. Utah Adult Education Services. Adult Education Report 1968-69.

    ERIC Educational Resources Information Center

    Utah State Board of Education, Salt Lake City.

    Major purposes for the preparation of this report on public school adult education in Utah were: to provide the public with a description of achievements, trends, and needs, and with meaningful cost accounting information; to make comparisons and analyses of adult education by program, school district, and year; and to provide the adult education…

  10. Utah Assessment Participation and Accommodations Policy, 2007-08

    ERIC Educational Resources Information Center

    Utah State Office of Education, 2007

    2007-01-01

    The purpose of this document is to establish the statewide policy for the participation of students in the Utah Performance Assessment System for Students (U-PASS). The central elements of this policy are: (1) Rules for inclusion in the statewide assessment program (U-PASS); (2) Limited allowances for exempting or excusing students from…

  11. Selected hydrologic data, Uinta Basin area, Utah and Colorado

    USGS Publications Warehouse

    Hood, J.W.; Mundorff, J.C.; Price, Don

    1976-01-01

    The Uinta Basin area in northeastern Utah and northwestern Colorado covers an area of slightly more than 10,000 mi2 (25,900 km2). More than 95 percent of the basin is in Utah, thus most of the data in this report apply to Utah. Most of the water wells are concentrated in populated areas along the lower parts of the basin; records of only a representative number of these water sources are included in this report.This report presents consolidated listings of data selected for use in hydrologic studies in the Uinta Basin area through June 1974. The data are principally taken from three studies made during 1971-74 by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. Also incorporated in this report are data collected since 1935 by the Geological Survey and other organizations. This report is intended to make data conveniently available and to supplement interpretive reports that will be published separately. For some data sites, the volume of data is too great for complete inclusion here. For these sites, data summaries are provided, and for greater detail the reader is referred to the sources listed under Selected references.

  12. Utah Is Unlikely Fly in Bush's School Ointment

    ERIC Educational Resources Information Center

    Davis, Michelle R.

    2005-01-01

    Utah state Representative Margaret Dayton adored President Bush. Her conservative politics lined up with his. One of her favorite memories was being at an intimate gathering and hearing the president echo her top priorities, God, family, and country. However, Dayton had drove one of Bush's biggest education-relation headaches. Dayton led a…

  13. A Look at Early Language Learning in Utah

    ERIC Educational Resources Information Center

    Von Houton, Jacque Bott

    2013-01-01

    The state of Utah is leading the nation in a surge of new elementary language immersion programs. Their unprecedented growth of programs, over a four-year span, has been both intentional and systemic, taking advantage of a supportive base and promoting language learning as a way to increase economic benefits for the state. While math and science…

  14. DM-8 test firing at Wasatch Operations, Morton Thiokol, Utah

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Development Motor (DM) 8 successfully fired in the first full-scale, full-duration igniting of the new solid rocket motor (SRM) design at Wasatch Operations, Morton Thiokol, Utah. Three days of delays for various reasons preceded the successful firing.

  15. Tree ring records reconstruct streamflow variability in Utah

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-02-01

    People in northern Utah, including Salt Lake City, depend on water stored as winter snow and delivered by mountain streams to populated areas. Climate models predict that in the near future, warmer temperatures will lead to a decrease in winter snow and streamflow in mountain streams, possibly leading to water shortages for the region.

  16. Cluster growth modeling of plateau erosion

    NASA Technical Reports Server (NTRS)

    Stark, Colin P.

    1994-01-01

    The pattern of erosion of a plateau along an escarpment may be modeled usng cluster growth techniques, recently popularized in models of drainage network evolution. If erosion on the scarp takes place in discrete events at rates subject to local substrate strength, the whole range of behavior is described by a combination of three cluster growth mechanisms: invasion percolation, Eden growth and diffusion-limited aggregation (DLA). These model the relative importance of preexisting substrate strength, background weathering, and seepage weathering and erosion respectively. The rate of seepage processes is determined by the efflux of groundwater at the plateau margin, which in turn is determined by the pressure field in the plateau aquifer. If this process acted alone, it would produce erosion patterns in the form of Laplacian fractals, with groundwater recharge from a distant source, or Poissionian fractals, with groundwater recharge uniform over the plateau. DLA is used to mimic the Laplacian or Poissonian potential field and the corresponding seepage growth process. The scaling structure of clusters grown by pure DLA, invasion percolation, or Eden growth is well known; this study presents a model which combines all three growth mechanisms for the first time. Mixed growth processes create clusters with different scaling properties and morphologies over distinct length scale ranges, and this is demonstrable in natural examples of plateau erosion.

  17. Dung, diet, and the paleoenvironment of the extinct shrub-ox ( Euceratherium collinum) on the Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Kropf, Manny; Mead, Jim I.; Scott Anderson, R.

    2007-01-01

    Fossil remains of Euceratherium collinum (extinct shrub-ox) have been found throughout North America, including the Grand Canyon. Recent finds from the Escalante River Basin in southern Utah further extend the animal's range into the heart of the Colorado Plateau. E. collinum teeth and a metapodial condyle (foot bone) have been recovered in association with large distinctively shaped dung pellets, a morphology similar to a 'Hershey's Kiss' (HK), from a late Pleistocene dung layer in Bechan Cave. HK dung pellets have also been recovered from other alcoves in the Escalante River Basin including Willow and Fortymile canyons. Detailed analyses of the HK pellets confirmed them to be E. collinum and indicate a browser-type diet dominated (> 95%) by trees and shrubs: Artemisia tridentata (big sagebrush), Acacia sp. (acacia), Quercus (oak), and Chrysothamnus (rabbit brush). The retrieval of spring and fall pollen suggests E. collinum was a year-round resident in the Escalante River Basin.

  18. Salt Lake City, Utah, Winter 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal

  19. Salt Lake City, Utah, Winter 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal

  20. Compartment syndrome after tibial plateau fracture☆

    PubMed Central

    Pitta, Guilherme Benjamin Brandão; dos Santos, Thays Fernanda Avelino; dos Santos, Fernanda Thaysa Avelino; da Costa Filho, Edelson Moreira

    2014-01-01

    Fractures of the tibial plateau are relatively rare, representing around 1.2% of all fractures. The tibia, due to its subcutaneous location and poor muscle coverage, is exposed and suffers large numbers of traumas, not only fractures, but also crush injuries and severe bruising, among others, which at any given moment, could lead compartment syndrome in the patient. The case is reported of a 58-year-old patient who, following a tibial plateau fracture, presented compartment syndrome of the leg and was submitted to decompressive fasciotomy of the four right compartments. After osteosynthesis with internal fixation of the tibial plateau using an L-plate, the patient again developed compartment syndrome. PMID:26229779

  1. The Hikurangi Plateau: Tectonic Ricochet and Accretion

    NASA Astrophysics Data System (ADS)

    Willis, David; Moresi, Louis; Betts, Peter; Whittaker, Joanne

    2015-04-01

    80 million years between interactions with different subduction systems provided time for the Hikurangi Plateau and Pacific Ocean lithosphere to cool, densify and strengthen. Neogene subduction of the Hikurangi Plateau occurring orthogonal to its Cretaceous predecessor, provides a unique opportunity to explore how changes to the physical properties of oceanic lithosphere affect subduction dynamics. We used Underworld to build mechanically consistent collision models to understand the dynamics of the two Hikurangi collisions. The Hikurangi Plateau is a ~112 Ma, 15km thick oceanic plateau that has been entrained by subduction zones immediately preceding the final break-up of Eastern Gondwana and currently within the active Hikurangi Margin. We explore why attempted subduction of the plateau has resulted in vastly different dynamics on two separate occasions. Slab break-off occured during the collision with Gondwana, currently there is apparent subduction of the plateau underneath New Zealand. At ~100Ma the young, hot Hikurangi Plateau, positively buoyant with respect to the underlying mantle, impacted a Gondwana Margin under rapid extension after the subduction of an mid-ocean ridge 10-15Ma earlier. Modelling of plateaus within young oceanic crust indicates that subduction of the thickened crust was unlikely to occur. Frontal accretion of the plateau and accompanying slab break-off is expected to have occured rapidly after its arrival. The weak, young slab was susceptible to lateral propagation of the ~1500 km window opened by the collision, and break-off would have progressed along the subduction zone inhibiting the "step-back" of the trench seen in older plates. Slab break-off coincided with a world-wide reorganisation of plate velocites, and orogenic collapse along the Gondwana margin characterised by rapid extension and thinning of the over-riding continental plate from ~60 to 30km. Following extension, Zealandia migrated to the NW until the Miocene allowing the

  2. Vole-driven restoration of a parariparian meadow complex on the Colorado Plateau (south-central Utah)

    Treesearch

    Dennis M. Bramble; Jean C. Bramble

    2008-01-01

    Rapid and substantial reductions in the local density of invasive rubber rabbitbrush (Chrysothamnus nauseosus) have been achieved on a shrub-infested meadow complex solely by manipulating grazing so as to benefit the native meadow vole, Microtus montanus. The key adjustment has been a shift from spring-summer to late season grazing...

  3. Trend of mountain big Sagebrush crown cover and ground cover on burned sites, Uinta Mountains and West Tavaputs Plateau, Utah

    Treesearch

    Sherel Goodrich; Allen Huber; Brian Monroe

    2008-01-01

    Photography and notes on file at the Supervisors Office, Ashley National Forest make it possible to date many fires in mountain big sagebrush (Artemisia tridentata ssp. vaseyana) communities on this National Forest. Crown cover of mountain big sagebrush and other shrubs was measured in repeat visits to many burned sites. Burned...

  4. 76 FR 28068 - Notice of Inventory Completion: Utah State University/College of Eastern Utah Prehistoric Museum...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... not yet understood what the DNA evidence means with respect to ancestor-descendant relationships with... architectural features. There is increasing evidence from DNA studies supporting genetic relationships between... drives are found in eastern Utah. Interpretations of DNA extracted from Fremont remains--albeit...

  5. Measures of Child Well-Being in Utah, 2001. A Pledge to Our Children. Utah KIDS COUNT.

    ERIC Educational Resources Information Center

    Haven, Terry, Ed.

    This KIDS COUNT report details statewide trends in the well-being of Utah's children. The statistical portrait is based on 26 indicators of children's well-being: (1) prenatal care; (2) low birth weight infants; (3) infant mortality; (4) child injury deaths; (5) unintentional injuries; (6) untreated tooth decay; (7) immunization rates; (8) suicide…

  6. Measures of Child Well-Being in Utah, 2002: Counting the Kids Who Count on Us. Utah KIDS COUNT.

    ERIC Educational Resources Information Center

    Haven, Terry, Ed.

    This Kids Count report details statewide trends in the well-being of Utah's children. The statistical portrait is based on 29 indicators of children's well-being in five areas: (1) child health and safety (prenatal care, low birthweight, infant mortality, child injury deaths, injury-related hospital discharges, child abuse, childhood…

  7. Measures of Child Well-Being in Utah, 2003: Counting on a Better Future for Utah's Kids.

    ERIC Educational Resources Information Center

    Haven, Terry, Ed.

    This Kids Count report examines statewide trends in the well-being of Utah's children. The statistical portrait is based on 28 indicators of children's well-being in five areas: (1) child health (prenatal care, low birth-weight births, infant mortality, child injury deaths, injury-related hospital discharges, child abuse, childhood immunizations,…

  8. A Study of the Utah Public School Finance System: Findings and Recommendations of the Utah School Finance Task Force.

    ERIC Educational Resources Information Center

    Utah State Office of Education, Salt Lake City.

    Equity effects of program growth and diversification on the Utah public education finance system are examined. The degree to which student and taxpayer equity are achieved by district formulas of the Minimum School Program are assessed by analysis of school-related taxation and spending over time, current distribution patterns of state support,…

  9. Tectonomagmatic Associations on the Central Andean Plateau

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Viramonte, J. G.

    2012-12-01

    The Neogene evolution of the Central Andes is characterized by a strong association between plate convergence, mountain building and plateau formation, and magmatism. Plateau uplift by crustal shortening and thickening in the lower crust is broadly coincident with large scale silicic magmatism defined by the Neogene Central Andean ignimbrite province. Of particular interest here are the spatiotemporal correlations between silicic magmatism and tectonic evolution of the Altiplano-Puna plateau. Although magmatism is driven by the subduction-related flux from mantle to crust, the shift to "crustal" magmatism as indicated by elevated crustal isotopic indices after ~10Ma suggests a link between crustal thickening, plateau formation and silicic magmatism. In particular, elevated geotherms associated with crustal thickening and enhanced mantle flux associated with lithospheric delamination may have played a role in thermally preparing the Central Andean crust for enhanced silicic magma production during the extensive Neogene ignimbrite flare-up. Emplacement of these magmas in the upper crust throughout the Neogene may have fuelled a period of significant interaction between magmatism and tectonism on the plateau. With particular reference to the 21° to 24°S segment of the Central Andes, spatial and structural coincidence of calderas of the Altiplano Puna Volcanic Complex with the NW-SE striking Calama-Olacapata-El Toro fault zone suggests significant tectonomagmatic interaction. Location of calderas suggest that these regional faults focused magma intrusion and storage, while spatially and temporally correlated eruption pulses connote a tectonic control. Indeed, current thermomechanical models of magma chamber development and eruption triggering promote a role for external triggering of "perched" upper crustal magma chambers. This might have been achieved by melt-enhanced deformation, or alternatively, significant uplift (~1km) associated with the development of large

  10. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    SciTech Connect

    BERGMAN TB

    2011-01-14

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the {approx}200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by

  11. Peopling the Tibetan plateau: insights from archaeology.

    PubMed

    Aldenderfer, Mark

    2011-01-01

    Recent studies of the genome of modern Tibetans have revealed the existence of genes thought to provide an adaptive advantage for life at high elevation. Extrapolating from this discovery, some researchers now argue that a Tibetan-Han split occurred no more than 2750 yr ago. This date is implausible, and in this paper I review the archaeological data from the Tibetan plateau as one means by which to examine the veracity of this assertion. Following a review of the general state of knowledge of Tibetan prehistory, which is unfortunately only at its beginnings, I first examine the data that speak to the initial peopling of the plateau and assess the evidence that traces of their presence can be seen in modern Tibetans today. Although the data are sparse, both archaeology and genetics suggest that the plateau was occupied in the Late Pleistocene, perhaps as early as 30,000 yr ago, and that these early peoples have left a genetic signature in modern Tibetans. I then turn to the evidence for later migrations and focus on the question of the timing of the establishment of permanent settled villages on the plateau. Three areas of the plateau-northeastern Qinghai, extreme eastern Tibet, and the Yarlung Tsangpo valley-have evidence of permanent settlements dating from ca. 6500, 5900, and 3750 yr ago, respectively. These data are not consonant with the 2750 yr ago date for the split and suggest at a minimum that the plateau has been occupied substantially longer and, further, that multiple migrations at different times and from different places have created a complex mosaic of population history.

  12. Insufficiency fractures of the tibial plateau

    SciTech Connect

    Manco, L.G.; Schneider, R.; Pavlov, H.

    1983-06-01

    An insufficiency fracture of the tibial plateau may be the cause of knee pain in patients with osteoporosis. The diagnosis is usually not suspected until a bone scan is done, as initial radiographs are often negative or inconclusive and clinical findings are nonspecific and may simulate osteoarthritis or spontaneous osteonecrosis. In five of 165 patients referred for bone scans due to nontraumatic knee pain, a characteristic pattern of intense augmented uptake of radionuclide confined to the tibial plateau led to a presumptive diagnosis of insufficiency fracture, later confirmed on radiographs.

  13. Outcome of Posterior Tibial Plateau Fixation.

    PubMed

    Jiwanlal, Aneel; Jeray, Kyle James

    2016-01-01

    Isolated posterior tibial plateau fractures are rare injuries that encompass a wide variety of fracture patterns. Based on the variation in fracture pattern, the surgical approach varies, with both anterior and posterior approaches described for surgical fixation. Postoperative protocol also varies among studies. The aim of this article is to summarize the outcomes related to posterior column tibial plateau fractures. The papers reviewed, primarily small retrospective case series, showed functional knee range of motion is preserved, a low incidence of wound complications, and patient outcome scores comparable to other reported lower extremity injury outcome scores. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Maps showing distribution of pH, copper, zinc, fluoride, uranium, molybdenum, arsenic, and sulfate in water, Richfield 1 degree by 2 degrees Quadrangle, Utah

    USGS Publications Warehouse

    McHugh, J.B.; Miller, W.R.; Ficklin, W.H.

    1984-01-01

    These maps show the regional distribution of copper, zinc, arsenic, molybdenum, uranium, fluoride, sulfate, and pH in surface and ground water from the Richfield 1° x 2° quadrangle. This study supplements (Miller and others, 1984a-j) the regional drainage geochemical study done for the Richfield quadrangle under the U.S. Geological Survey’s Conterminuous United States Mineral Assessment Program (CUSMAP). Regional sampling was designed to define broad geochemical patterns and trends which can be used, along with geologic and geophysical data, to assess the mineral resource potential of the Richfield quadrangle. Analytical data used in compiling this report were published previously (McHugh and others, 1981). The Richfield quadrangle in west-central Utah covers the eastern part of the Pioche-Marysvale igneous and mineral belt that extends from the vicinity of Pioche in southeastern Nevada, east-northeastward for 250 km into central Utah. The western two-thirds of the Richfield quadrangle is in the Basin and Range Province, and the eastern third in the High Plateaus of Utah subprovince of the Colorado Plateau. Bedrock in the northern part of the Richfield quadrangle consists predominantly of latest Precambrian and Paleozoic sedimentary strata that were thrust eastward during the Sevier orogeny in Cretaceous time onto an autochthon of Mesozoic sedimentary rocks in the eastern part of the quadrangle. The southern part of the quadrangle is largely underlain by Oligocene and younger volcanic rocks and related intrusions. Extensional tectonism in late Cenozoic time broke the bedrock terrane into a series of north-trending fault blocks; the uplifted mountain areas were deeply eroded and the resulting debris deposited in the adjacent basins. Most of the mineral deposits in the Pioche-Marysvale mineral belt were formed during igneous activity in the middle and late Cenozoic time.

  15. Results of detailed mapping in the northern Paradox basin and southeastern Uinta basin energy and metal resource area, Grand and Uintah Counties, Utah

    SciTech Connect

    Willis, G.C.; Ross, M.L.; Doelling, H.H. )

    1993-08-01

    The Utah Geological Survey is conducting a concentrated, 1:24,000-scale geologic mapping program in the northern Paradox and southeastern Uinta basins of east-central Utah. The region is an important producer of energy and metal resources and exploration interest remains high. Eleven 7.5-min quadrangle geologic maps (650 mi[sup 2]) have been mapped and five more quadrangles are in progress. Major mapped features include the North Mountain laccolithic center of the LaSal Mountains; dissolution-collapsed, salt-cored anticlines in Moab-Spanish, Cache, Castle, and Fisher Valleys; crystalline basement-sedimentary cover relationships in the Westwater Canyon area; parts of the Sego coal field in the southern Book Cliffs, parts of the Bartlett Flat (Kanes Springs unit), Greater Cisco, Bryson Canyon, Westwater, Fence Canyon, and Middle Canyon oil and gas fields, and the PR Springs bituminous sandstone (tar sand) area. Major contributions include new constraints on the intrusive history of the laccoliths; refined correlations of subsurface and surface units; more detailed documentation of folding, faulting, and structural and stratigraphic thinning and thickening (some related to salt diapirism or dissolution); improved correlation of coal seams and bituminous sandstone beds; new dating and correlation of Quaternary deposits; and new dating and correlation of Quaternary deposits; and new constraints on the Quaternary history of this part of the Colorado Plateau.

  16. Utah Valley University Field Station at Capitol Reef National Park: A Venue for Improved Student Learning and Retention

    NASA Astrophysics Data System (ADS)

    Nielsen, K.; Schultz, M.; Williams, B.; Gay, J.; Johnson, S.; Dunn, P.

    2015-12-01

    The unique geo-environment offered in Capitol Reef National Park and its surrounding areas has a long-standing history of inspiring geological scientific exploration. The Capitol Reef Field Station was established in 2008 as part of collaboration between the National Park and Utah Valley University in order to support teaching and research of the natural environment found within the park and on the Colorado Plateau. The facility itself situated deep within the park, well off any public road system offers state of the art alternative energy and sustainable construction and makes extensive use of passive heating and cooling, in order to maintain its status of being "off-grid." The field station is a 6200 square foot complex of classrooms and dormitories supporting university level education and field studies of the Colorado Plateau. The complex includes a classroom and dining area, professional kitchen, and two separate dormitories, which can sleep up to 24 overnight visitors, while the daytime usage can accommodate up to 40 visitors. The vision of the facility is to support teaching and research toward responsible, respectful, and sustainable stewardship of the natural world - including Interdisciplinary learning between arts and sciences Student internships and service learning in collaboration with the National Park Service Field-based scientific research (as well as inventorying and assessing Park ecosystems changes) Field training in scientific research Collaboration between National Park Service scientists and local, regional, and national institutions The park is situated at 38°N 249°E at elevations greater than 2000 m in Southern Utah. In contrast to the more famous neighboring sister parks such as Zion and Bryce Canyon National Parks, which are in relatively close proximity to large road systems and cities, Capitol Reef offers what is believed to be the darkest night sky in the US. The culmination of features creates an ideal location for studies of the

  17. Hydrology and potential effects of mining in the Quitchupah and Pines coal-lease tracts, central Utah

    USGS Publications Warehouse

    Thiros, Susan A.; Cordy, G.E.

    1991-01-01

    Bydrologic data were collected for the proposed Quitchupah and Pines coal-lease tracts in Sevier and Bnery Counties, Utah, in order to describe the hydrology and potential effects of mining on the hydrologic system. The Quitchupah and Pines coal-lease tracts are near the Southern Utah Fuel Company coal mine in an area of the central Wasatch Plateau that is characterized by a relatively flat plateau deeply dissected by steep-sided canyons.Surface water in the Quitchupah and Pines study area drains to two perennial streams, Muddy Creek to the north and Quitchupah Creek to the south. Peak streamflow is usually in May and June in response to snowmelt runoff; however, thunderstorms can cause short-term high flows in late summer and fall. The specific conductance of surface water in and near the study area measured during the 1987 water year ranged from 440 (iS/cm to 860 (iS/cm. Suspended-sediment concentrations ranged from 17 to 10,900 mg/L in the Quitchupah Creek drainage and 34 to 312 mg/L in the Muddy Creek drainage.Stable-isotope studies indicate that recharge to aquifers in the study area is by seepage of snowmelt into rock outcrops. Discharge from the aquifers is at springs, seeps, mines, and zones of seepage in streambeds. The chemical quality of ground water is related to the mineralogy of the formations with which the water has contact. Water from the upper part of the Cast legate Sandstone has the smallest concentration of dissolved solids, 61 mg/L, and water from the North Horn Formation has the largest concentration, 1,080 mg/L.Observed effects of underground coal mining at the nearby active mine are considered indicative of the changes that can be expected in the Quitchupah and Pines coal-lease tracts. Subsidence above the mined area could cause dewatering of the Blackhawk Formation and the Star Point Sandstone, changes in the natural drainage patterns, and alteration of both surface- and ground-water quality. Additional studies are needed to gain a better

  18. Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah

    USGS Publications Warehouse

    Delaney, P.T.; Gartner, A.E.

    1997-01-01

    Some 200 shonkinite dikes, sills, and breccia bodies on the western Colorado Plateau of south-central Utah were intruded from approximately 3.7 to 4.6 Ma, contemporaneous with mafic volcanism along the nearby plateau margin. Thicknesses of dikes range to about 6 m; the log-normal mean thickness is 85 cm. Despite the excellent exposures of essentially all dikes in strata of the Jurassic San Rafael Group, their number is indeterminate from their outcrop and spacing because they are everywhere greatly segmented. By our grouping of almost 2000 dike segments, most dikes are less than 2 km in outcrop length; the longest is 9 km. Because the San Rafael magmas were primitive and probably ascended directly from the mantle, dike lengths in outcrop are much less than their heights. The present exposures probably lie along the irregular upper peripheries of dikes that lengthen and merge with depth. Orientations of steps on dike contacts record local directions of dike-fracture propagation; about half of the measurements plunge less than 30??, showing that lateral propagation at dike peripheries is as important as the vertical propagation ultimately responsible for ascent. The San Rafael dikes, now exposed after erosion of about 0.5-1.5 km, appear to thicken and shorten upward, probably because near-surface vesiculation enhanced magmatic driving pressures. Propagation likely ceased soon after the first dike segments began to feed nearby sills or vented to initiate small-volume eruptions. Most of the dikes are exposed in clastic strata of the Jurassic San Rafael Group. They probably acquired their strikes, however, while ascending along well-developed joints in massive sandstones of the underlying Glen Canyon Group. Rotation of far-field stresses during the emplacement interval cannot account for disparate strikes of the dikes, which vary through 110??, most lying between north and N25??W. Rather, the two regional horizontal principal stresses were probably nearly equal, and so

  19. Developing a state water plan: Ground-water conditions in Utah, spring of 1965

    USGS Publications Warehouse

    Arnow, Ted; Butler, R.G.; Mower, R.W.; Holman, N.B.; Cordova, R.M.; Carpenter, C.H.; Bjorklund, L.J.; Robinson, G.B. Jr.; Sandberg, G.W.

    1965-01-01

    This report is the second in a series of annual reports that describe ground-water conditions in Utah. It includes individual discussions of the most important areas of ground-water withdrawal in the State for the claendar year of 1964. Water-level fluctuations, however, are described for the period spring 1964 through spring 1965.The report was prepared cooperatively by the U.S. Geological Survey and the Utah Water and Power Board. Many of the data used in the preparation of the report were collected by the Geological Survey in cooperation with the Utah State Engineer. Some of the data for the number of wells constructed during 1964 were prepared by digital computer from the Utah Resources Information System data bank, University of Utah, using records that were compiled from the files of the Utah State Engineer.

  20. Central Tibetan Meso-Tethyan oceanic plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Jun; Xia, Bin; Zhang, Yu-Xiu; Liu, Wei-Liang; Zeng, Lu; Li, Jian-Feng; Xu, Li-Feng

    2014-12-01

    We report the occurrences of the remnants of a Meso-Tethyan oceanic plateau, encompassing an area of ~ 2 × 105 km2 in central Tibet. The plateau remnants include large volumes of pillow basalt formed largely by emergent to subaerial eruption, minor ultramafic intrusives and cumulates, exotic blocks of limestone, radiolarian chert, graywacke, and shale. Isotopic and paleontological dating suggest two major plateau eruptive events at 193-173 Ma and at 128-104 Ma, respectively. The basalts are characterized by enrichment of incompatible elements and a wide range of Sr-Nd isotope composition (initial εNd from -3.71 to + 7.9, initial 87Sr/86Sr from 0.703927 to 0.707618). The trace element and Sr-Nd isotopic data suggest that these basalts are of affinity with those from the Kerguelen and Tethyan plumes, indicative of a plume mantle upwelling origin with involvement of continental material. The wholesale obduction of the Meso-Tethyan oceanic plateau, along with the dismembered normal oceanic crustal fragments, over the Tibetan continental crust could have given rise to perhaps 2 km elevation of central Tibet during the Late Cretaceous.