Sample records for kakawaru choki shinario

  1. Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells

    PubMed Central

    Sanchez-Lopez, E; Zimmerman, T; Gomez del Pulgar, T; Moyer, M P; Lacal Sanjuan, J C; Cebrian, A

    2013-01-01

    Endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that regulates protein synthesis and maturation. Perturbation of ER functions leads to ER stress, which has been previously associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress has been involved in apoptosis induced by several cytotoxic agents. Choline kinase α (ChoKα), the first enzyme in the Kennedy pathway, is responsible for the generation of phosphorylcholine (PCho) that ultimately renders phosphatidylcholine. ChoKα overexpression and high PCho levels have been detected in several cancer types. Inhibition of ChoKα has demonstrated antiproliferative and antitumor properties; however, the mechanisms underlying these activities remain poorly understood. Here, we demonstrate that ChoKα inhibitors (ChoKIs), MN58b and RSM932A, induce cell death in cancer cells (T47D, MCF7, MDA-MB231, SW620 and H460), through the prolonged activation of ER stress response. Evidence of ChoKIs-induced ER stress includes enhanced production of glucose-regulated protein, 78 kDa (GRP78), protein disulfide isomerase, IRE1α, CHOP, CCAAT/enhancer-binding protein beta (C/EBPβ) and TRB3. Although partial reduction of ChoKα levels by small interfering RNA was not sufficient to increase the production of ER stress proteins, silencing of ChoKα levels also show a decrease in CHOP overproduction induced by ChoKIs, which suggests that ER stress induction is due to a change in ChoKα protein folding after binding to ChoKIs. Silencing of CHOP expression leads to a reduction in C/EBPβ, ATF3 and GRP78 protein levels and abrogates apoptosis in tumor cells after treatment with ChoKIs, suggesting that CHOP maintains ER stress responses and triggers the pro-apoptotic signal. Consistent with the differential effect of ChoKIs in cancer and primary cells previously described, ChoKIs only promoted a transient and moderated ER stress response in the non

  2. AFRRI Reports, Fourth Quarter 1991

    DTIC Science & Technology

    1992-01-01

    Gallin, E. K. Heat induces intracellular acidification in human A-431 cells : role of Na’-H’ exchange and metabolism. SR91-49: MacVittie, T. J., Monroy, R... induced release of DNA front agarose plugs treated with Not I restriction enzyme As above, wild-type and strain 112 cells were exposed to 2 kGy and...times. Ager and co-workers (1990) found that following irradiation of CHO-KI cells , replication forks showed reduced PFGE- induced migration out of the

  3. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Seishiro, E-mail: seishiro@nies.go.j; Fujitani, Yuji; Furuyama, Akiko

    Carbon nanotubes (CNT) are cytotoxic to several cell types. However, the mechanism of CNT toxicity has not been fully studied, and dosimetric analyses of CNT in the cell culture system are lacking. Here, we describe a novel, high throughput method to measure cellular uptake of CNT using turbimetry. BEAS-2B, a human bronchial epithelial cell line, was used to investigate cellular uptake, cytotoxicity, and inflammatory effects of multi-walled CNT (MWCNT). The cytotoxicity of MWCNT was higher than that of crocidolite asbestos in BEAS-2B cells. The IC{sub 50} of MWCNT was 12 {mu}g/ml, whereas that of asbestos (crocidolite) was 678 {mu}g/ml. Overmore » the course of 5 to 8 h, BEAS-2B cells took up 17-18% of the MWCNT when they were added to the culture medium at a concentration of 10 {mu}g/ml. BEAS-2B cells were exposed to 2, 5, or 10 {mu}g/ml of MWCNT, and total RNA was extracted for cytokine cDNA primer array assays. The culture supernatant was collected for cytokine antibody array assays. Cytokines IL-6 and IL-8 increased in a dose dependent manner at both the mRNA and protein levels. Migration inhibitory factor (MIF) also increased in the culture supernatant in response to MWCNT. A phosphokinase array study using lysates from BEAS-2B cells exposed to MWCNT indicated that phosphorylation of p38, ERK1, and HSP27 increased significantly in response to MWCNT. Results from a reporter gene assays using the NF-{kappa}B or AP-1 promoter linked to the luciferase gene in transiently transfected CHO-KI cells revealed that NF-{kappa}B was activated following MWCNT exposure, while AP-1 was not changed. Collectively, MWCNT activated NF-{kappa}B, enhanced phosphorylation of MAP kinase pathway components, and increased production of proinflammatory cytokines in human bronchial epithelial cells.« less