Sample records for kakitis imants plume

  1. Subduction disfigured mantle plumes: Plumes that are not plumes?

    NASA Astrophysics Data System (ADS)

    Druken, K. A.; Stegman, D. R.; Kincaid, C. R.; Griffiths, R. W.

    2012-12-01

    "Hotspot" volcanism is generally attributed to upwelling of anomalously warm mantle plumes, the intra-plate Hawaiian island chain and its simple age progression serving as an archetypal example. However, interactions of such plumes with plate margins, and in particular with subduction zones, is likely to have been a common occurrence and leads to more complicated geological records. Here we present results from a series of complementary, three-dimensional numerical and laboratory experiments that examine the dynamic interaction between negatively buoyant subducting slabs and positively buoyant mantle plumes. Slab-driven flow is shown to significantly influence the evolution and morphology of nearby plumes, which leads to a range of deformation regimes of the plume head and conduit. The success or failure of an ascending plume head to reach the lithosphere depends on the combination of plume buoyancy and position within the subduction system, where the mantle flow owing to downdip and rollback components of slab motion entrain plume material both vertically and laterally. Plumes rising within the sub-slab region tend to be suppressed by the surrounding flow field, while wedge-side plumes experience a slight enhancement before ultimately being entrained by subduction. Hotspot motion is more complex than that expected at intraplate settings and is primarily controlled by position alone. Regimes include severely deflected conduits as well as retrograde (corkscrew) motion from rollback-driven flow, often with weak and variable age-progression. The interaction styles and surface manifestations of plumes can be predicted from these models, and the results have important implications for potential hotspot evolution near convergent margins.

  2. Space Shuttle Plume and Plume Impingement Study

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Penny, M. M.

    1977-01-01

    The extent of the influence of the propulsion system exhaust plumes on the vehicle performance and control characteristics is a complex function of vehicle geometry, propulsion system geometry, engine operating conditions and vehicle flight trajectory were investigated. Analytical support of the plume technology test program was directed at the two latter problem areas: (1) definition of the full-scale exhaust plume characteristics, (2) application of appropriate similarity parameters; and (3) analysis of wind tunnel test data. Verification of the two-phase plume and plume impingement models was directed toward the definition of the full-scale exhaust plume characteristics and the separation motor impingement problem.

  3. Plume radiation

    NASA Astrophysics Data System (ADS)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  4. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    PubMed Central

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-01-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years. PMID:25907970

  5. Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan V.

    2015-04-01

    The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.

  6. Controls on Plume Spacing and Plume Population in 3-D High Rayleigh Number Thermal Convection

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2004-12-01

    Dynamics of mantle plumes are important for understanding intra-plate volcanism and heat transfer in the mantle. Using 3D numerical models and scaling analyses, we investigated the controls of convective vigor or Ra on the dynamics of thermal plumes in isoviscous and basal heating thermal convection. We examined Ra-dependence of plume population, plume spacing, plume vertical velocity, and plume radius. We found that plume population does not increase with Ra monotonically. At relatively small Ra (<106), plume population is insensitive to Ra. For 3x106plume population scales as Ra0.31 and plume spacing ˜ Ra-0.16 ˜ δ 1/2, where δ is the thermal boundary layer thickness. However, for larger Ra ( ˜ 108) plume population and plume spacing become insensitive to Ra again. This indicates that the box depth poses a limit on plume spacing and plume population. We demonstrated from both scaling analyses and numerical experiments that the scaling exponents for plume population, n, heat flux, β , and average velocity on the bottom boundary, v, satisfy n = 4β - 2v. Our scaling analyses also suggest that vertical velocity in upwelling plumes Vup ˜ Ra2(1-n+β /2)/3 and that plume radius Rup ˜ Ra2(β -1-n/2)/3, differing from the scalings for the bottom boundary velocity and boundary layer thickness.

  7. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  8. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  9. An evaluation of modeled plume injection height with satellite-derived observed plume height

    Treesearch

    Sean M. Raffuse; Kenneth J. Craig; Narasimhan K. Larkin; Tara T. Strand; Dana Coe Sullivan; Neil J.M. Wheeler; Robert Solomon

    2012-01-01

    Plume injection height influences plume transport characteristics, such as range and potential for dilution. We evaluated plume injection height from a predictive wildland fire smoke transport model over the contiguous United States (U.S.) from 2006 to 2008 using satellite-derived information, including plume top heights from the Multi-angle Imaging SpectroRadiometer (...

  10. Investigation of power-plant plume photochemistry using a reactive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Kim, H. S.; Song, C. H.

    2016-12-01

    Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.

  11. Tvashtar's Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This dramatic image of Io was taken by the Long Range Reconnaissance Imager (LORRI) on New Horizons at 11:04 Universal Time on February 28, 2007, just about 5 hours after the spacecraft's closest approach to Jupiter. The distance to Io was 2.5 million kilometers (1.5 million miles) and the image is centered at 85 degrees west longitude. At this distance, one LORRI pixel subtends 12 kilometers (7.4 miles) on Io.

    This processed image provides the best view yet of the enormous 290-kilometer (180-mile) high plume from the volcano Tvashtar, in the 11 o'clock direction near Io's north pole. The plume was first seen by the Hubble Space Telescope two weeks ago and then by New Horizons on February 26; this image is clearer than the February 26 image because Io was closer to the spacecraft, the plume was more backlit by the Sun, and a longer exposure time (75 milliseconds versus 20 milliseconds) was used. Io's dayside was deliberately overexposed in this picture to image the faint plumes, and the long exposure also provided an excellent view of Io's night side, illuminated by Jupiter. The remarkable filamentary structure in the Tvashtar plume is similar to details glimpsed faintly in 1979 Voyager images of a similar plume produced by Io's volcano Pele. However, no previous image by any spacecraft has shown these mysterious structures so clearly.

    The image also shows the much smaller symmetrical fountain of the plume, about 60 kilometers (or 40 miles) high, from the Prometheus volcano in the 9 o'clock direction. The top of a third volcanic plume, from the volcano Masubi, erupts high enough to catch the setting Sun on the night side near the bottom of the image, appearing as an irregular bright patch against Io's Jupiter-lit surface. Several Everest-sized mountains are highlighted by the setting Sun along the terminator, the line between day and night.

    This is the last of a handful of LORRI images that New Horizons is sending 'home' during its busy close

  12. Mantle plume capture, anchoring, and outflow during Galápagos plume-ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Geist, D. J.; Richards, M. A.

    2015-05-01

    Compositions of basalts erupted between the main zone of Galápagos plume upwelling and adjacent Galápagos Spreading Center (GSC) provide important constraints on dynamic processes involved in transfer of deep-mantle-sourced material to mid-ocean ridges. We examine recent basalts from central and northeast Galápagos including some that have less radiogenic Sr, Nd, and Pb isotopic compositions than plume-influenced basalts (E-MORB) from the nearby ridge. We show that the location of E-MORB, greatest crustal thickness, and elevated topography on the GSC correlates with a confined zone of low-velocity, high-temperature mantle connecting the plume stem and ridge at depths of ˜100 km. At this site on the ridge, plume-driven upwelling involving deep melting of partially dehydrated, recycled ancient oceanic crust, plus plate-limited shallow melting of anhydrous peridotite, generate E-MORB and larger amounts of melt than elsewhere on the GSC. The first-order control on plume stem to ridge flow is rheological rather than gravitational, and strongly influenced by flow regimes initiated when the plume was on axis (>5 Ma). During subsequent northeast ridge migration material upwelling in the plume stem appears to have remained "anchored" to a contact point on the GSC. This deep, confined NE plume stem-to-ridge flow occurs via a network of melt channels, embedded within the normal spreading and advection of plume material beneath the Nazca plate, and coincides with locations of historic volcanism. Our observations require a more dynamically complex model than proposed by most studies, which rely on radial solid-state outflow of heterogeneous plume material to the ridge.

  13. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  14. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  15. Thermal imaging of afterburning plumes

    NASA Astrophysics Data System (ADS)

    Ajdari, E.; Gutmark, E.; Parr, T. P.; Wilson, K. J.; Schadow, K. C.

    1989-01-01

    Afterburning and nonafterburning exhaust plumes were studied experimentally for underexpanded sonic and supersonic conical circular nozzles. The plume structure was visualized using thermal imaging camera and regular photography. IR emission by the plume is mainly dependent on the presence of afterburning. Temperature and reducing power of the exhaust gases, in addition to the nozzle configuration, determine the structure of the plume core, the location where the afterburning is initiated, its size and intensity. Comparison between single shot and average thermal images of the plume show that afterburning is a highly turbulent combustion process.

  16. Coastal river plumes: Collisions and coalescence

    USGS Publications Warehouse

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and

  17. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    USGS Publications Warehouse

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  18. Marine bird aggregations associated with the tidally-driven plume and plume fronts of the Columbia River

    NASA Astrophysics Data System (ADS)

    Zamon, Jeannette E.; Phillips, Elizabeth M.; Guy, Troy J.

    2014-09-01

    Freshwater discharge from large rivers into the coastal ocean creates tidally-driven frontal systems known to enhance mixing, primary production, and secondary production. Many authors suggest that tidal plume fronts increase energy flow to fish-eating predators by attracting planktivorous fishes to feed on plankton aggregated by the fronts. However, few studies of plume fronts directly examine piscivorous predator response to plume fronts. Our work examined densities of piscivorous seabirds relative to the plume region and plume fronts of the Columbia River, USA. Common murres (Uria aalge) and sooty shearwaters (Puffinus griseus) composed 83% of all birds detected on mesoscale surveys of the Washington and Oregon coasts (June 2003-2006), and 91.3% of all birds detected on fine scale surveys of the plume region less than 40 km from the river mouth (May 2003 and 2006). Mesoscale comparisons showed consistently more predators in the central plume area compared to the surrounding marine area (murres: 10.1-21.5 vs. 3.4-8.2 birds km-2; shearwaters: 24.2-75.1 vs. 11.8-25.9 birds km-2). Fine scale comparisons showed that murre density in 2003 and shearwater density in both 2003 and 2006 were significantly elevated in the tidal plume region composed of the most recently discharged river water. Murres tended to be more abundant on the north face of the plume. In May 2003, more murres and shearwaters were found within 3 km of the front on any given transect, although maximum bird density was not necessarily found in the same location as the front itself. Predator density on a given transect was not correlated with frontal strength in either year. The high bird densities we observed associated with the tidal plume demonstrate that the turbid Columbia River plume does not necessarily provide fish with refuge from visual predators. Bird predation in the plume region may therefore impact early marine survival of Pacific salmon (Oncorhynchus spp.), which must migrate through the

  19. Swirling plumes and spinning tops

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2017-11-01

    Motivated by potential effects of the Earth's rotation on the dynamics of the oil plume resulting from the Deepwater Horizon disaster in 2010, we conducted laboratory experiments on saltwater and bubble axisymmetric point plumes in a homogeneous rotating environment. The effect of rotation is conventionally characterized by a Rossby number, based on the source buoyancy flux, the rotation rate of the system and the total water depth and which ranged from 0.02 to 1.3 in our experiments. In the range of parameters studied, we report a striking new physical instability in the plume dynamics near the source. After approximately one rotation period, the plume axis tilts away laterally from the centreline and the plume starts to precess in the anticyclonic direction. We find that the mean precession frequency of the plume scales linearly with the rotation rate of the environment. Surprisingly, the precession frequency is found to be independent of the diameter of the plume nozzle, the source buoyancy flux, the water depth and the geometry of the domain. In this talk, we present our experimental results and develop simple theoretical toy models to explain the observed plume behaviour.

  20. Ridge jumps associated with plume-ridge interaction: Mantle plume-lithosphere interaction and hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E.; Ito, G.

    2007-12-01

    Interaction of mantle plumes and young lithosphere near mid-ocean ridges can lead to changes in spreading geometry by shifts of the ridge-axis toward the plume as seen at various hotspots, notably Iceland and the Galapagos. Previous work has shown that, with a sufficient magma flux, heating of the lithosphere by magmatism can significantly weaken the plate and, in some cases, could cause ridge jumps. Upwelling hot asthenosphere can also weaken the plate through thermal and mechanical thinning of the lithosphere. Using the finite element code CITCOM, we solve the equations of continuity, momentum and energy to examine deformation in near-ridge lithosphere associated with relatively hot upwelling asthenosphere and seafloor spreading. The mantle and lithosphere obey a non-Newtonian viscous rheology with plastic failure in the cold part of the lithosphere simulated by imposing an effective yield stress. Temperatures of the lithospheric thermal boundary region are initially given a square-root of age thermal profile while a hot patch is placed at the bottom to initiate a mantle-plume like upwelling. The effect of upwelling asthenosphere on ridge jumps is evaluated by varying three parameters: the plume excess temperature, the spreading rate and the distance of the plume from the ridge axis. Preliminary results show plume related thinning and weakening of the lithosphere over a wide area (100's of km's) with the rate of thinning increasing with the excess temperature of the plume. Initially, thinning occurs as the plume approaches the lithosphere and asthenospheric material is forced out of the way. As the plume material comes into contact with the lithosphere, thinning occurs through heating and mechanical removal of the thermal boundary layer. Thinning of the lithosphere is one of the primary factors in achieving a ridge jump. Another is large tensile stresses which can facilitate the initiation of rifting at this weakened location. Model stresses induced by the

  1. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  2. The 2016 Case for Mantle Plumes and a Plume-Fed Asthenosphere (Augustus Love Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.

    2016-04-01

    The process of science always returns to weighing evidence and arguments for and against a given hypothesis. As hypotheses can only be falsified, never universally proved, doubt and skepticism remain essential elements of the scientific method. In the past decade, even the hypothesis that mantle plumes exist as upwelling currents in the convecting mantle has been subject to intense scrutiny; from geochemists and geochronologists concerned that idealized plume models could not fit many details of their observations, and from seismologists concerned that mantle plumes can sometimes not be 'seen' in their increasingly high-resolution tomographic images of the mantle. In the place of mantle plumes, various locally specific and largely non-predictive hypotheses have been proposed to explain the origins of non-plate boundary volcanism at Hawaii, Samoa, etc. In my opinion, this debate has now passed from what was initially an extremely useful restorative from simply 'believing' in the idealized conventional mantle plume/hotspot scenario to becoming an active impediment to our community's ability to better understand the dynamics of the solid Earth. Having no working hypothesis at all is usually worse for making progress than having an imperfect and incomplete but partially correct one. There continues to be strong arguments and strong emerging evidence for deep mantle plumes. Furthermore, deep thermal plumes should exist in a mantle that is heated at its base, and the existence of Earth's (convective) geodynamo clearly indicates that heat flows from the core to heat the mantle's base. Here I review recent seismic evidence by French, Romanowicz, and coworkers that I feel lends strong new observational support for the existence of deep mantle plumes. I also review recent evidence consistent with the idea that secular core cooling replenishes half the mantle's heat loss through its top surface, e.g. that the present-day mantle is strongly bottom heated. Causes for

  3. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  4. Life Cycle of Mantle Plumes: A perspective from the Galapagos Plume (Invited)

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Herzberg, C. T.

    2009-12-01

    Hotspots are localized sources of heat and magmatism considered as modern-day evidence of mantle plumes. Some hotspots are related to massive magmatic production that generated Large Igneous Provinces (LIPS), an initial-peak phase of plume activity with a mantle source hotter and more magmatically productive than present-day hotspots. Geological mapping and geochronological studies have shown much lower eruption rates for OIB compared to lavas from Large Igneous Provinces LIPS such as oceanic plateaus and continental flood provinces. Our study is the first quantitative petrological comparison of mantle source temperatures and extent of melting for OIB and LIP sources. The wide range of primary magma compositions and inferred mantle potential temperatures for each LIP and OIB occurrence suggest that this rocks originated form a hotspot, a spatially localized source of heat and magmatism restricted in time. Extensive outcrops of basalt, picrite, and sometimes komatiite with circa 65-95 Ma ages occupy portions of the pacific shore of Central and South America included in the Caribbean Large Igneous Province (CLIP). There is general consensus of a Pacific-origin of CLIP and most studies suggest that it was produced by melting in the Galapagos mantle plume. The Galapagos connection is consistent with isotopic and geochemical similarities with lavas from the present-day Galapagos hotspot. A Galapagos link for rocks in South American oceanic complexes (eg. the island of Gorgona) is more controversial and requires future work. The MgO and FeO contents of lavas from the Galapagos related lavas and their primary magmas have decreased since the Cretaceous. From petrological modeling we infer that these changes reflect a cooling of the Galapagos mantle plume from a potential temperature of 1560-1620 C in the Cretaceous to 1500 C at the present time. These temperatures are higher than 1350 C for ambient mantle associated with oceanic ridges, and provide support for the mantle

  5. Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.

    PubMed

    Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C

    2018-05-30

    High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.

  6. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, P.; Kennedy, E. T.; School of Physical Sciences, Dublin City University

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profilesmore » of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.« less

  7. Scaling for turbulent viscosity of buoyant plumes in stratified fluids: PIV measurement with implications for submarine hydrothermal plume turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; He, Zhiguo; Jiang, Houshuo

    2017-11-01

    Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.

  8. Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Flethcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock- shear- layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  9. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  10. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be

  11. Mantle plumes and continental tectonics.

    PubMed

    Hill, R I; Campbell, I H; Davies, G F; Griffiths, R W

    1992-04-10

    Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

  12. Dynamics and Deposits of Coignimbrite Plumes

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto

    2014-05-01

    Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the

  13. Numerical Simulations of Europa Hydrothermal Plumes

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Lenferink, E.

    2009-12-01

    The liquid water interiors of Europa and other icy moons of the outer solar system are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MITGCM. We assume in this experiment that Europa's ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. A series of experiments was performed to explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 1 and 10 GW, and values of the Coriolis parameter f between 30% and 90% of the Europa average value. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 20-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1.5 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 30 and 160 microkelvin. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a "natural Rossby number" which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations. The time elapsed between startup of the source and the beginning of eddy-shedding is much less variable than predicted; also, the plume temperature varies with ocean depth H when our theory says it should not. Both of

  14. Inter-plume aerodynamics for gasoline spray collapse

    DOE PAGES

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...

    2017-11-10

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  15. Inter-plume aerodynamics for gasoline spray collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.

    The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less

  16. Mantle plumes in the vicinity of subduction zones

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.; Mériaux, A.-S.; Schellart, W. P.; Duarte, J. C.; Duarte, S. S.; Chen, Z.

    2016-11-01

    We present three-dimensional deep-mantle laboratory models of a compositional plume within the vicinity of a buoyancy-driven subducting plate with a fixed trailing edge. We modelled front plumes (in the mantle wedge), rear plumes (beneath the subducting plate) and side plumes with slab/plume systems of buoyancy flux ratio spanning a range from 2 to 100 that overlaps the ratios in nature of 0.2-100. This study shows that 1) rising side and front plumes can be dragged over thousands of kilometres into the mantle wedge, 2) flattening of rear plumes in the trench-normal direction can be initiated 700 km away from the trench, and a plume material layer of lesser density and viscosity can ultimately almost entirely underlay a retreating slab after slab/plume impact, 3) while side and rear plumes are not tilted until they reach ∼600 km depth, front plumes can be tilted at increasing depths as their plume buoyancy is lessened, and rise at a slower rate when subjected to a slab-induced downwelling, 4) rear plumes whose buoyancy flux is close to that of a slab, can retard subduction until the slab is 600 km long, and 5) slab-plume interaction can lead to a diversity of spatial plume material distributions into the mantle wedge. We discuss natural slab/plume systems of the Cascadia/Bowie-Cobb, and Nazca/San Felix-Juan Fernandez systems on the basis of our experiments and each geodynamic context and assess the influence of slab downwelling at depths for the starting plumes of Java, Coral Sea and East Solomon. Overall, this study shows how slab/plume interactions can result in a variety of geological, geophysical and geochemical signatures.

  17. MISR Aoba Volcano Plume

    Atmospheric Science Data Center

    2018-06-07

    ... in ongoing eruptions using parallax. View the MISR Active Aerosol Plume-Height (AAP) Project paper to see peak altitude and settling ... R. Kahn/NASA GSFC Access Project Paper: MISR Active Aerosol Plume-Height (AAP) Project Access and Order MISR Data and ...

  18. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  19. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  20. Plume Detection and Plume Top Height Estimation using SLSTR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodriguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2017-04-01

    We present preliminary results on ash and desert dust plume detection and plume top height estimates based on satellite data from the Sea and Land Surface Temperature Radiometer (SLSTR) aboard Sentinel-3, launched in 2016. The methods are based on the previously developed AATSR Correlation Method (ACM) height estimation algorithm, which utilized the data of the preceding similar instrument, Advanced Along Track Scanning Radiometer (AATSR). The height estimate is based on the stereo-viewing capability of SLSTR, which allows to determine the parallax between the satellite's 55° backward and nadir views, and thus the corresponding height. The ash plume detection is based on the brightness temperature difference between between thermal infrared (TIR) channels centered at 11 and 12 μm, which show characteristic signals for both desert dust and ash plumes. The SLSTR instrument provides a unique combination of dual-view capability and a wavelength range from visible to thermal infrared, rendering it an ideal instrument for this work. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with other volcanic ash and desert dust retrieval methods and dispersion models. The current work is being carried out as part of the H2020 project EUNADICS-AV ("European Natural Disaster Coordination and Information System for Aviation"), which started in October 2016.

  1. Comparison of jet plume shape predictions and plume influence on sonic boom signature

    NASA Technical Reports Server (NTRS)

    Barger, Raymond L.; Melson, N. Duane

    1992-01-01

    An Euler shock-fitting marching code yields good agreement with semiempirically determined plume shapes, although the agreement decreases somewhat with increasing nozzle angle and the attendant increase in the nonisentropic nature of the flow. Some calculations for the low boom configuration with a simple engine indicated that, for flight at altitudes above 60,000 feet, the plume effect is dominant. This negates the advantages of a low boom design. At lower altitudes, plume effects are significant, but of the order that can be incorporated into the low boom design process.

  2. Enceladus Plume Movie

    NASA Image and Video Library

    2005-12-06

    Jets of icy particles burst from Saturn’s moon Enceladus in this brief movie sequence of four images taken on Nov. 27, 2005. The sensational discovery of active eruptions on a third outer solar system body (Io and Triton are the others) is surely one of the great highlights of the Cassini mission. Imaging scientists, as reported in the journal Science on March 10, 2006, believe that the jets are geysers erupting from pressurized subsurface reservoirs of liquid water above 273 degrees Kelvin (0 degrees Celsius). Images taken in January 2005 appeared to show the plume emanating from the fractured south polar region of Enceladus, but the visible plume was only slightly brighter than the background noise in the image, because the lighting geometry was not suitable to reveal the true details of the feature. This potential sighting, in addition to the detection of the icy particles in the plume by other Cassini instruments, prompted imaging scientists to target Enceladus again with exposures designed to confirm the validity of the earlier plume sighting. The new views show individual jets, or plume sources, that contribute to the plume with much greater visibility than the earlier images. The full plume towers over the 505-kilometer-wide (314-mile) moon and is at least as tall as the moon's diameter. The four 10-second exposures were taken over the course of about 36 minutes at approximately 12 minute intervals. Enceladus rotates about 7.5 degrees in longitude over the course of the frames, and most of the observed changes in the appearances of the jets is likely attributable to changes in the viewing geometry. However, some of the changes may be due to actual variation in the flow from the jets on a time scale of tens of minutes. Additionally, the shift of the sources seen here should provide information about their location in front of and behind the visible limb (edge) of Enceladus. These images were obtained using the Cassini spacecraft narrow-angle camera at

  3. COMPARING AND LINKING PLUMES ACROSS MODELING APPROACHES

    EPA Science Inventory

    River plumes carry many pollutants, including microorganisms, into lakes and the coastal ocean. The physical scales of many stream and river plumes often lie between the scales for mixing zone plume models, such as the EPA Visual Plumes model, and larger-sized grid scales for re...

  4. Assessment of analytical techniques for predicting solid propellant exhaust plumes and plume impingement environments

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    An analysis of experimental nozzle, exhaust plume, and exhaust plume impingement data is presented. The data were obtained for subscale solid propellant motors with propellant Al loadings of 2, 10 and 15% exhausting to simulated altitudes of 50,000, 100,000 and 112,000 ft. Analytical predictions were made using a fully coupled two-phase method of characteristics numerical solution and a technique for defining thermal and pressure environments experienced by bodies immersed in two-phase exhaust plumes.

  5. MISR Observations of Etna Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.

    2012-01-01

    In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.

  6. Segregation of acid plume pixels from background water pixels, signatures of background water and dispersed acid plumes, and implications for calculation of iron concentration in dense plumes

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1978-01-01

    Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown.

  7. Liquid Booster Module (LBM) plume flowfield model

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1981-01-01

    A complete definition of the LBM plume is important for many Shuttle design criteria. The exhaust plume shape has a significant effect on the vehicle base pressure. The LBM definition is also important to the Shuttle base heating, aerodynamics and the influence of the exhaust plume on the launch stand and environment. For these reasons a knowledge of the LBM plume characteristics is necessary. A definition of the sea level LBM plume as well as at several points along the Shuttle trajectory to LBM, burnout is presented.

  8. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  9. Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?

    NASA Astrophysics Data System (ADS)

    Knapp, J.

    2003-04-01

    Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary

  10. Prometheus: Io's wandering plume.

    PubMed

    Kieffer, S W; Lopes-Gautier, R; McEwen, A; Smythe, W; Keszthelyi, L; Carlson, R

    2000-05-19

    Unlike any volcanic behavior ever observed on Earth, the plume from Prometheus on Io has wandered 75 to 95 kilometers west over the last 20 years since it was first discovered by Voyager and more recently observed by Galileo. Despite the source motion, the geometric and optical properties of the plume have remained constant. We propose that this can be explained by vaporization of a sulfur dioxide and/or sulfur "snowfield" over which a lava flow is moving. Eruption of a boundary-layer slurry through a rootless conduit with sonic conditions at the intake of the melted snow can account for the constancy of plume properties.

  11. The Alberta smoke plume observation study

    NASA Astrophysics Data System (ADS)

    Anderson, Kerry; Pankratz, Al; Mooney, Curtis; Fleetham, Kelly

    2018-02-01

    A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS). Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018) at http://cwfis.cfs.nrcan.gc.ca/datamart.

  12. Mt Agung (Bali) Eruption Plumes

    Atmospheric Science Data Center

    2018-05-23

    article title:  Mt Agung (Bali) Eruption Plumes     View larger image ... 2017 (left) and calculated plume heights (right)   Volcanic eruptions can generate a significant amount of atmospheric aerosols ...

  13. Understanding the plume dynamics of explosive super-eruptions.

    PubMed

    Costa, Antonio; J Suzuki, Yujiro; Koyaguchi, Takehiro

    2018-02-13

    Explosive super-eruptions can erupt up to thousands of km 3 of magma with extremely high mass flow rates (MFR). The plume dynamics of these super-eruptions are still poorly understood. To understand the processes operating in these plumes we used a fluid-dynamical model to simulate what happens at a range of MFR, from values generating intense Plinian columns, as did the 1991 Pinatubo eruption, to upper end-members resulting in co-ignimbrite plumes like Toba super-eruption. Here, we show that simple extrapolations of integral models for Plinian columns to those of super-eruption plumes are not valid and their dynamics diverge from current ideas of how volcanic plumes operate. The different regimes of air entrainment lead to different shaped plumes. For the upper end-members can generate local up-lifts above the main plume (over-plumes). These over-plumes can extend up to the mesosphere. Injecting volatiles into such heights would amplify their impact on Earth climate and ecosystems.

  14. Stable plume rise in a shear layer.

    PubMed

    Overcamp, Thomas J

    2007-03-01

    Solutions are given for plume rise assuming a power-law wind speed profile in a stably stratified layer for point and finite sources with initial vertical momentum and buoyancy. For a constant wind speed, these solutions simplify to the conventional plume rise equations in a stable atmosphere. In a shear layer, the point of maximum rise occurs further downwind and is slightly lower compared with the plume rise with a constant wind speed equal to the wind speed at the top of the stack. If the predictions with shear are compared with predictions for an equivalent average wind speed over the depth of the plume, the plume rise with shear is higher than plume rise with an equivalent average wind speed.

  15. Quantification of plume opacity by digital photography.

    PubMed

    Du, Ke; Rood, Mark J; Kim, Byung J; Kemme, Michael R; Franek, Bill; Mattison, Kevin

    2007-02-01

    The United States Environmental Protection Agency (USEPA) developed Method 9 to describe how plume opacity can be quantified by humans. However, use of observations by humans introduces subjectivity, and is expensive due to semiannual certification requirements of the observers. The Digital Opacity Method (DOM) was developed to quantify plume opacity at lower cost, with improved objectivity, and to provide a digital record. Photographs of plumes were taken with a calibrated digital camera under specified conditions. Pixel values from those photographs were then interpreted to quantify the plume's opacity using a contrast model and a transmission model. The contrast model determines plume opacity based on pixel values that are related to the change in contrast between two backgrounds that are located behind and next to the plume. The transmission model determines the plume's opacity based on pixel values that are related to radiances from the plume and its background. DOM was field tested with a smoke generator. The individual and average opacity errors of DOM were within the USEPA Method 9 acceptable error limits for both field campaigns. Such results are encouraging and support the use of DOM as an alternative to Method 9.

  16. Is the 'Fast Halo' around Hawaii as imaged in the PLUME experiment direct evidence for buoyant plume-fed asthenosphere?

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Shi, C.; Hasenclever, J.

    2010-12-01

    An intriguing spatial pattern of variations in shear-wave arrival times has been mapped in the PLUME ocean bottom experiment (Wolfe et al., 2009) around Hawaii. The pattern consists of a halo of fast travel times surrounding a disk of slow arrivals from waves traveling up though the plume. We think it is directly sensing the pattern of dynamic uplift of the base of a buoyant asthenosphere - the buoyancy of the plume conduit lifting a 'rim' of the cooler, denser mantle that the plume rises through. The PLUME analysis inverted for lateral shear velocity variations beneath the lithosphere, after removing the assumed 1-D model velocity structure IASP91. They found that a slow plume-conduit extends to at least 1200 km below the Hawaiian hotspot. In this inversion the slow plume conduit is — quite surprisingly - surrounded by a fast wavespeed halo. A fast halo is impossible to explain as a thermal halo around the plume; this should lead to a slow wavespeed halo, not a fast one. Plume-related shearwave anisotropy also cannot simply explain this pattern — simple vertical strain around the plume conduit would result in an anisotropic slow shear-wavespeed halo, not a fast one. (Note the PLUME experiment’s uniform ‘fast-halo’ structure from 50-400km is likely to have strong vertical streaking in the seismic image; Pacific Plate-driven shear across a low-viscosity asthenosphere would be expected to disrupt and distort any cold sheet of vertical downwelling structure between 50-400km depths so that it would no longer be vertical as it is in the 2009 PLUME image with its extremely poor vertical depth control.) If the asthenosphere is plume-fed, hence more buoyant than underlying mantle, then there can be a simple explanation for this pattern. The anomaly would be due to faster traveltimes resulting from dynamic relief at the asthenosphere-mesosphere interface; uplift of the denser mesosphere by the buoyancy of the rising plume increases the distance a wave travels

  17. Diagnostic budgets of analyzed and modelled tropical plumes

    NASA Technical Reports Server (NTRS)

    Mcguirk, James P.; Vest, Gerry W.

    1993-01-01

    Blackwell et al. successfully simulated tropical plumes in a global barotropic model valid at 200 mb. The plume evolved in response to strong equatorial convergence which simulated a surge in the Walker Circulation. The defining characteristics of simulated plumes are: a subtropical jet with southerlies emanating from the deep tropics; a tropical/mid-latitude trough to the west; a convergence/divergence dipole straddling the trough; and strong cross contour flow at the tropical base of the jet. Diagnostic budgets of vorticity, divergence, and kinetic energy are calculated to explain the evolution of the modelled plumes. Budgets describe the unforced (basic) state, forced plumes, forced cases with no plumes, and ECMWF analyzed plumes.

  18. Submarine Alkalic Lavas Around the Hawaiian Hotspot; Plume and Non-Plume Signatures Determined by Noble Gases

    NASA Astrophysics Data System (ADS)

    Hanyu, T.; Clague, D. A.; Kaneoka, I.; Dunai, T. J.; Davies, G. R.

    2004-12-01

    Noble gas isotopic ratios were determined for submarine alkalic volcanic rocks distributed around the Hawaiian islands to constrain the origin of such alkalic volcanism. Samples were collected by dredging or using submersibles from the Kauai Channel between Oahu and Kauai, north of Molokai, northwest of Niihau, Southwest Oahu, South Arch and North Arch volcanic fields. Sites located downstream from the center of the hotspot have 3He/4He ratios close to MORB at about 8 Ra, demonstrating that the magmas erupted at these sites had minimum contribution of volatiles from a mantle plume. In contrast, the South Arch, located upstream of the hotspot on the Hawaiian Arch, has 3He/4He ratios between 17 and 21 Ra, indicating a strong plume influence. Differences in noble gas isotopic characteristics between alkalic volcanism downstream and upstream of the hotspot imply that upstream volcanism contains incipient melts from an upwelling mantle plume, having primitive 3He/4He. In combination with lithophile element isotopic data, we conclude that the most likely source of the upstream magmatism is depleted asthenospheric mantle that has been metasomatised by incipient melt from a mantle plume. After major melt extraction from the mantle plume during production of magmas for the shield stage, the plume material is highly depleted in noble gases and moderately depleted in lithophile elements. Partial melting of the depleted mantle impregnated by melts derived from this volatile depleted plume source may explain the isotopic characteristics of the downstream alkalic magmatism.

  19. Modelling oil plumes from subsurface spills.

    PubMed

    Lardner, Robin; Zodiatis, George

    2017-11-15

    An oil plume model to simulate the behavior of oil from spills located at any given depth below the sea surface is presented, following major modifications to a plume model developed earlier by Malačič (2001) and drawing on ideas in a paper by Yapa and Zheng (1997). The paper presents improvements in those models and numerical testing of the various parameters in the plume model. The plume model described in this paper is one of the numerous modules of the well-established MEDSLIK oil spill model. The deep blowout scenario of the MEDEXPOL 2013 oil spill modelling exercise, organized by REMPEC, has been applied using the improved oil plume module of the MEDSLIK model and inter-comparison with results having the oil spill source at the sea surface are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Experiments on point plumes in a rotating environment

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Landel, Julien; Dalziel, Stuart; Linden, Paul

    2016-11-01

    Motivated by the Deepwater Horizon oil spill in the Gulf of Mexico we study the dynamics of point plumes in a stratified and homogeneous rotating environment. To this end, we conduct small-scale experiments in the laboratory on salt water and bubble plumes over a wide range of Rossby numbers. The rotation modifies the entrainment into the plume and also inhibits the lateral spreading of the plume fluid which leads to various instabilities in the flow. In particular, we focus on the plume behaviour in the near-source region (where the plume is dominated by the source conditions) and at intermediate water depths, e.g., lateral intrusions at the neutral buoyancy level in the stratified environment. One of the striking features in the rotating environment is the anticyclonic precession of the plume axis which leads to an enhanced dispersion of the plume fluid in the ambient and which is absent in the non-rotating system. In this talk, we present our experimental results and develop simple models to explain the observed plume dynamics.

  1. Geodynamic modelling of low-buoyancy thermo-chemical plumes

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Sobolev, Stephan

    2015-04-01

    The Earth's biggest magmatic events that form Large Igneous Provinces are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models of thermal mantle plumes predict a flattening of the plume head to a disk-like structure, a kilometer-scale surface uplift just before the initiation of LIPs and thin plume tails. However, there are seismic observations and paleo-topography data that are difficult to explain with this classical approach. Here, using numerical models, we show that the issue can be resolved if major mantle plumes are thermo-chemical rather than purely thermal. It has been suggested a long time ago that subducted oceanic crust could be recycled by mantle plumes; and based on geochemical data, they may contain up to 15-20% of this recycled material in the form of dense eclogite, which drastically decreases their buoyancy and makes it depth-dependent. We perform numerical experiments in a 3D spherical shell geometry to investigate the dynamics of the plume ascent, the interaction between plume- and plate-driven flow and the dynamics of melting in a plume head. For this purpose, we use the finite-element code ASPECT, which allows for complex temperature-, pressure- and composition-dependent material properties. Moreover, our models incorporate phase transitions (including melting) with the accompanying rheological and density changes, Clapeyron slopes and latent heat effects for both peridotite and eclogite, mantle compressibility and a strong temperature- and depth-dependent viscosity. We demonstrate that despite their low buoyancy, such plumes can rise through the whole mantle causing only negligible surface uplift. Conditions for this ascent are high plume volume and moderate lower mantle subadiabaticity. While high plume buoyancy results in plumes directly advancing to the base of the lithosphere, plumes with slightly lower buoyancy pond in a depth of 300-400 km

  2. Turbulent forces within river plumes affect spread

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  3. Active Volcanic Plumes on Io

    NASA Image and Video Library

    1998-03-26

    This color image, acquired during NASA Galileo ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon, erupting over a caldera volcanic depression named Pillan Patera.

  4. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-19

    This still image from an animation from NASA GSFC Solar Dynamics Observatory shows a single plume of plasma, many times taller than the diameter of Earth, spewing streams of particles for over two days Aug. 17-19, 2015 before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA19875

  5. Chesapeake Bay plume dynamics from LANDSAT

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  6. PLUME-MoM 1.0: A new integral model of volcanic plumes based on the method of moments

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-08-01

    In this paper a new integral mathematical model for volcanic plumes, named PLUME-MoM, is presented. The model describes the steady-state dynamics of a plume in a 3-D coordinate system, accounting for continuous variability in particle size distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. A proper description of such a multi-particle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows for a description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of parameters of the continuous size distribution of the particles. This is achieved by formulation of fundamental transport equations for the multi-particle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows for the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables the investigation of the response of four key output variables (mean and standard deviation of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and standard deviation) characterizing the

  7. Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland.

    PubMed

    Woodhouse, Mark J; Behnke, Sonja A

    Observations of volcanic lightning made using a lightning mapping array during the 2010 eruption of Eyjafjallajökull allow the trajectory and growth of the volcanic plume to be determined. The lightning observations are compared with predictions of an integral model of volcanic plumes that includes descriptions of the interaction with wind and the effects of moisture. We show that the trajectory predicted by the integral model closely matches the observational data and the model well describes the growth of the plume downwind of the vent. Analysis of the lightning signals reveals information on the dominant charge structure within the volcanic plume. During the Eyjafjallajökull eruption both monopole and dipole charge structures were observed in the plume. By using the integral plume model, we propose the varying charge structure is connected to the availability of condensed water and low temperatures at high altitudes in the plume, suggesting ice formation may have contributed to the generation of a dipole charge structure via thunderstorm-style ice-based charging mechanisms, though overall this charging mechanism is believed to have had only a weak influence on the production of lightning.

  8. Fossil plume head beneath the Arabian lithosphere?

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Hofmann, Albrecht W.

    1992-12-01

    Phanerozoic alkali basalts from Israel, which have erupted over the past 200 Ma, have isotopic compositions similar to PREMA ("prevalent mantle") with narrow ranges of initial ɛ Nd(T) = +3.9-+5.9; 87Sr/ 86Sr(T)= 0.70292-0.70334; 206Pb/ 204Pb(T)= 18.88-19.99; 207Pb/ 204Pb(T)= 15.58-15.70; and 208Pb/ 204Pb(T)= 38.42-39.57. Their Nb/U(43 ± 9) and Ce/Pb(26 ± 6) ratios are identical to those of normal oceanic basalts, demonstrating that the basalts are essentially free of crustal contamination. Overall, the basalts are chemically and isotopically indistinguishable from many ordinary plume basalts, but no plume track can be identified. We propose that these and other, similar, magmas from the Arabian plate originated from a "fossilized" head of a mantle plume, which was unable to penetrate the continental lithosphere and was therefore trapped and stored beneath it. The plume head was emplaced some time between the late Proterozoic crust formation and the initiation of the Phanerozoic magmatic cycles. Basalts from rift environments in other continental localities show similar geochemistry to that of the Arabian basalts and their sources may also represent fossil plume heads trapped below the continents. We suggest that plume heads are, in general, characterized by the PREMA isotopic mantle signature, because the original plume sources (which may have HIMU or EM-type composition) have been diluted by overlying mantle material, which has been entrained by the plume heads during ascent. On the Arabian plate, rifting and thinning of the lithosphere caused partial melting of the stored plume, which led to periodic volcanism. In the late Cenozoic, the lithosphere broke up and the Red Sea opened. N-MORB tholeiites are now erupting in the central trough of the Red Sea, where the lithosphere has moved apart and the fossil plume has been exhausted, whereas E-MORBs are erupting in the northern and southern troughs, still tapping the plume reservoir. Fossil plumes, which are

  9. Plume Characteristics of the Busek 600 W Hall Thruster

    DTIC Science & Technology

    2006-07-12

    that can then be applied to estimate the effect of the energetic plume on complex spacecraft geometries. Early measurement of plume properties, such...produced a measurable effect on ion current density and plume divergence, experimentally showing an increase or decrease of ±15-20%. Ionic energy...can then be applied to estimate the effect of the energetic plume on complex spacecraft geometries. Early measurement of plume properties, such as plume

  10. Plume Tracker: A New Toolkit for the Mapping of Volcanic Plumes with Multispectral Thermal Infrared Remote Sensing

    NASA Astrophysics Data System (ADS)

    Realmuto, V. J.; Baxter, S.; Webley, P. W.

    2011-12-01

    Plume Tracker is the next generation of interactive plume mapping tools pioneered by MAP_SO2. First developed in 1995, MAP_SO2 has been used to study plumes at a number of volcanoes worldwide with data acquired by both airborne and space-borne instruments. The foundation of these tools is a radiative transfer (RT) model, based on MODTRAN, which we use as the forward model for our estimation of ground temperature and sulfur dioxide concentration. Plume Tracker retains the main functions of MAP_SO2, providing interactive tools to input radiance measurements and ancillary data, such as profiles of atmospheric temperature and humidity, to the retrieval procedure, generating the retrievals, and visualizing the resulting retrievals. Plume Tracker improves upon MAP_SO2 in the following areas: (1) an RT model based on an updated version of MODTRAN, (2) a retrieval procedure based on maximizing the vector projection of model spectra onto observed spectra, rather than minimizing the least-squares misfit between the model and observed spectra, (3) an ability to input ozone profiles to the RT model, (4) increased control over the vertical distribution of the atmospheric gas species used in the model, (5) a standard programmatic interface to the RT model code, based on the Component Object Model (COM) interface, which will provide access to any programming language that conforms to the COM standard, and (6) a new binning algorithm that decreases running time by exploiting spatial redundancy in the radiance data. Based on our initial testing, the binning algorithm can reduce running time by an order of magnitude. The Plume Tracker project is a collaborative effort between the Jet Propulsion Laboratory and Geophysical Institute (GI) of the University of Alaska-Fairbanks. Plume Tracker is integrated into the GI's operational plume dispersion modeling system and will ingest temperature and humidity profiles generated by the Weather Research and Forecasting model, together with

  11. Dynamics of thermal plumes in three-dimensional isoviscous thermal convection

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie

    2005-07-01

    The dynamics of mantle plumes are important for understanding intraplate volcanism and heat transfer in the mantle. Using 3-D numerical models and scaling analyses, we investigated the controls of convective vigour or Ra (Rayleigh number) on the dynamics of thermal plumes in isoviscous and basal heating thermal convection. We examined the Ra dependence of plume number, plume spacing, plume vertical velocity and plume radius. We found that plume number does not increase monotonically with Ra. At relatively small Ra(<=106), plume number is insensitive to Ra. For 3 × 106<=Ra<= 3 × 107, plume number scales as Ra0.31 and plume spacing λ~Ra-0.16~δ1/2, where δ is the thickness of the thermal boundary layer. However, for larger Ra(~108) plume number and plume spacing again become insensitive to Ra. This indicates that the box depth poses a limit on plume spacing and plume number. We demonstrate from both scaling analyses and numerical experiments that the scaling exponents for plume number, n, heat flux, β, and average velocity on the bottom boundary, v, satisfy n= 4β- 2v. Our scaling analyses also suggest that vertical velocity in upwelling plumes Vup~Ra2(1-n+β/2)/3 and that plume radius Rup~Ra(β-1-n/2)/3, which differ from the scalings for the bottom boundary velocity and boundary layer thickness.

  12. Highly buoyant bent-over plumes in a boundary layer

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  13. PLUME and research sotware

    NASA Astrophysics Data System (ADS)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  14. Quantifying the North Pacific silica plume

    NASA Astrophysics Data System (ADS)

    Johnson, H. P.; Hautala, S. L.; Bjorklund, T. A.; Zarnetske, M. R.

    2006-05-01

    New hydrostations plus a comprehensive compilation of existing data have allowed us to characterize the dissolved silica plume located at midwater depths in the North Pacific. The North Pacific silica plume is a global-scale anomaly, extending from the North American continental margin in the east to beyond the Hawaii-Emperor seamount chain in the west. Inventory of the plume between 2000 and 3000 m depth indicates that it contains 164 Tmols (164 × 1012 mols) of anomalous dissolved silica and is maintained by a horizontal flux of approximately 1.5 Tmols/yr from the east. The source region of this plume has been previously suggested to be Cascadia Basin in the NE Pacific. Biochemical and geothermal processes within this small region can produce approximately one third of the required flux, but the majority of silica contained within the North Pacific plume may originate in crustal fluid venting from the warm upper basement aquifer that underlies the easternmost Pacific plate.

  15. Plume meander and dispersion in a stable boundary layer

    NASA Astrophysics Data System (ADS)

    Hiscox, April L.; Miller, David R.; Nappo, Carmen J.

    2010-11-01

    Continuous lidar measurements of elevated plume dispersion and corresponding micrometeorology data are analyzed to establish the relationship between plume behavior and nocturnal boundary layer dynamics. Contrasting nights of data from the JORNADA field campaign in the New Mexico desert are analyzed. The aerosol lidar measurements were used to separate the plume diffusion (plume spread) from plume meander (displacement). Mutiresolution decomposition was used to separate the turbulence scale (<90 s) from the submesoscale (>90 s). Durations of turbulent kinetic energy stationarity and the wind steadiness were used to characterize the local scale and submesoscale turbulence. Plume meander, driven by submesoscale wind motions, was responsible for most of the total horizontal plume dispersion in weak and variable winds and strong stability. This proportion was reduced in high winds (i.e., >4 m s-1), weakly stable conditions but remained the dominant dispersion mechanism. The remainder of the plume dispersion in all cases was accounted for by internal spread of the plume, which is a small eddy diffusion process driven by turbulence. Turbulence stationarity and the wind steadiness are demonstrated to be closely related to plume diffusion and plume meander, respectively.

  16. Ridge suction drives plume-ridge interactions

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hékinian, R.

    2003-04-01

    Deep-sourced mantle plumes, if existing, are genetically independent of plate tectonics. When the ascending plumes approach lithospheric plates, interactions between the two occur. Such interactions are most prominent near ocean ridges where the lithosphere is thin and the effect of plumes is best revealed. While ocean ridges are mostly passive features in terms of plate tectonics, they play an active role in the context of plume-ridge interactions. This active role is a ridge suction force that drives asthenospheric mantle flow towards ridges because of material needs to form the ocean crust at ridges and lithospheric mantle in the vicinity of ridges. This ridge suction force increases with increasing plate separation rate because of increased material demand per unit time. As the seismic low-velocity zone atop the asthenosphere has the lowest viscosity that increases rapidly with depth, the ridge-ward asthenospheric flow is largely horizontal beneath the lithosphere. Recognizing that plume materials have two components with easily-melted dikes/veins enriched in volatiles and incompatible elements dispersed in the more refractory and depleted peridotitic matrix, geochemistry of some seafloor volcanics well illustrates that plume-ridge interactions are consequences of ridge-suction-driven flow of plume materials, which melt by decompression because of lithospheric thinning towards ridges. There are excellent examples: 1. The decreasing La/Sm and increasing MgO and CaO/Al_2O_3 in Easter Seamount lavas from Salas-y-Gomez Islands to the Easter Microplate East rift zone result from progressive decompression melting of ridge-ward flowing plume materials. 2. The similar geochemical observations in lavas along the Foundation hotline towards the Pacific-Antarctic Ridge result from the same process. 3. The increasing ridge suction force with increasing spreading rate explains why the Iceland plume has asymmetric effects on its neighboring ridges: both topographic and

  17. Three Dimensional Volcanic Plume Simulations on Early Mars

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2016-12-01

    Current explosive volcanic plume models for early Mars are thought to overestimate plume height by tens of kilometers. They are based on 1D empirical terrestrial plume models, which determine plume rise using Morton-style convection. Not only do these models fail to account for turbulent mixing processes, but the Martian versions also violate assumptions regarding the speed of sound, radial expansion, and availability of ambient air for entrainment. Since volcanically derived volatiles are hypothesized to have increased early Martian warming, it is vital to understand how high these volatiles can be injected into the atmosphere. Active Tracer High-resolution Atmospheric Model (ATHAM; Oberhuber et al., 1998) is a 3D plume simulator that circumvents the underlying assumptions of the current Martian plume models by solving the Navier-Stokes equations. Martian-ATHAM (M-ATHAM) simulates Martian volcanic eruptions by replacing terrestrial planetary and atmospheric conditions with those appropriate for early Mars. In particular we evaluate three different atmospheric compositions with unique temperature and density profiles: 99.5% CO2/0.5% SO2 and 85% CO2/15% H2 representing a "warm and wet" climate and 100% CO2 representing a "cold and wet" climate. We evaluated for mass eruption rates from 10^3 kg/s to 10^10 kg/s using the Idaho National Laboratory's supercomputer Falcon in order determine what conditions produced stable eruption columns. Of the three different atmospheric compositions, 100% CO2 and 99.5% CO2/0.5% SO2 produced stable plumes for the same mass eruption rates whereas the 85% CO2/15% H2 atmosphere produced stable plumes for a slightly higher range of mass eruption rates. The tallest plumes were produced by 85% CO2/15% H2 atmosphere, producing plumes 5% taller than the revised empirical models, suggesting closer agreement than previously assumed under certain conditions. In comparison to terrestrial plumes, all early Martian plumes needed higher mass

  18. Stationary Plasma Thruster Plume Characteristics

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Manzella, David H.

    1994-01-01

    Stationary Plasma Thrusters (SPT's) are being investigated for application to a variety of near-term missions. This paper presents the results of a preliminary study of the thruster plume characteristics which are needed to assess spacecraft integration requirements. Langmuir probes, planar probes, Faraday cups, and a retarding potential analyzer were used to measure plume properties. For the design operating voltage of 300 V the centerline electron density was found to decrease from approximately 1.8 x 10 exp 17 cubic meters at a distance of 0.3 m to 1.8 X 10 exp 14 cubic meters at a distance of 4 m from the thruster. The electron temperature over the same region was between 1.7 and 3.5 eV. Ion current density measurements showed that the plume was sharply peaked, dropping by a factor of 2.6 within 22 degrees of centerline. The ion energy 4 m from the thruster and 15 degrees off-centerline was approximately 270 V. The thruster cathode flow rate and facility pressure were found to strongly affect the plume properties. In addition to the plume measurements, the data from the various probe types were used to assess the impact of probe design criteria

  19. Effects of NOx control and plume mixing on nighttime chemical processing of plumes from coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Karamchandani, Prakash; Yarwood, Greg; Peischl, Jeff; Ryerson, Thomas B.; Neuman, J. Andrew; Nowak, John B.; Holloway, John S.; Washenfelder, Rebecca A.; Brock, Charles A.; Frost, Gregory J.; Trainer, Michael; Parrish, David D.; Fehsenfeld, Frederick C.; Ravishankara, A. R.

    2012-04-01

    Coal-fired electric power plants produce a large fraction of total U.S. NOx emissions, but NOx from this sector has been declining in the last decade owing to installation of control technology. Nighttime aircraft intercepts of plumes from two different Texas power plants (Oklaunion near Wichita Falls and W. A. Parish near Houston) with different control technologies demonstrate the effect of these reductions on nighttime NOxoxidation rates. The analysis shows that the spatial extent of nighttime-emitted plumes to be quite limited and that mixing of highly concentrated plume NOx with ambient ozone is a determining factor for its nighttime oxidation. The plume from the uncontrolled plant had full titration of ozone through 74 km/2.4 h of downwind transport that suppressed nighttime oxidation of NO2 to higher oxides of nitrogen across the majority of the plume. The plume from the controlled plant did not have sufficient NOx to titrate background ozone, which led to rapid nighttime oxidation of NO2 during downwind transport. A plume model that includes horizontal mixing and nighttime chemistry reproduces the observed structures of the nitrogen species in the plumes from the two plants. The model shows that NOx controls not only reduce the emissions directly but also lead to an additional overnight NOx loss of 36-44% on average. The maximum reduction for 12 h of transport in darkness was 73%. The results imply that power plant NOxemissions controls may produce a larger than linear reduction in next-day, downwind ozone production following nighttime transport.

  20. Winds and the orientation of a coastal plane estuary plume

    NASA Astrophysics Data System (ADS)

    Xia, Meng; Xie, Lian; Pietrafesa, Leonard J.

    2010-10-01

    Based on a calibrated coastal plane estuary plume model, ideal model hindcasts of estuary plumes are used to describe the evolution of the plume pattern in response to river discharge and local wind forcing by selecting a typical partially mixed estuary (the Cape Fear River Estuary or CFRE). With the help of an existing calibrated plume model, as described by Xia et al. (2007), simulations were conducted using different parameters to evaluate the plume behavior type and its change associated with the variation of wind forcing and river discharge. The simulations indicate that relatively moderate winds can mechanically reverse the flow direction of the plume. Downwelling favorably wind will pin the plume to the coasts while the upwelling plume could induce plume from the left side to right side in the application to CFRE. It was found that six major types of plumes may occur in the estuary and in the corresponding coastal ocean. To better understand these plumes in the CFRE and other similar river estuary systems, we also investigated how the plumes transition from one type to another. Results showed that wind direction, wind speed, and sometimes river discharge contribute to plume transitions.

  1. Galileo observations of volcanic plumes on Io

    USGS Publications Warehouse

    Geissler, P.E.; McMillan, M.T.

    2008-01-01

    Io's volcanic plumes erupt in a dazzling variety of sizes, shapes, colors and opacities. In general, the plumes fall into two classes, representing distinct source gas temperatures. Most of the Galileo imaging observations were of the smaller, more numerous Prometheus-type plumes that are produced when hot flows of silicate lava impinge on volatile surface ices of SO2. Few detections were made of the giant, Pele-type plumes that vent high temperature, sulfur-rich gases from the interior of Io; this was partly because of the insensitivity of Galileo's camera to ultraviolet wavelengths. Both gas and dust spout from plumes of each class. Favorably located gas plumes were detected during eclipse, when Io was in Jupiter's shadow. Dense dust columns were imaged in daylight above several Prometheus-type eruptions, reaching heights typically less than 100 km. Comparisons between eclipse observations, sunlit images, and the record of surface changes show that these optically thick dust columns are much smaller in stature than the corresponding gas plumes but are adequate to produce the observed surface deposits. Mie scattering calculations suggest that these conspicuous dust plumes are made up of coarse grained “ash” particles with radii on the order of 100 nm, and total masses on the order of 106 kg per plume. Long exposure images of Thor in sunlight show a faint outer envelope apparently populated by particles small enough to be carried along with the gas flow, perhaps formed by condensation of sulfurous “snowflakes” as suggested by the plasma instrumentation aboard Galileo as it flew through Thor's plume [Frank, L.A., Paterson, W.R., 2002. J. Geophys. Res. (Space Phys.) 107, doi:10.1029/2002JA009240. 31-1]. If so, the total mass of these fine, nearly invisible particles may be comparable to the mass of the gas, and could account for much of Io's rapid resurfacing.

  2. Improving operational plume forecasts

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Forecasting how plumes of particles, such as radioactive particles from a nuclear disaster, will be transported and dispersed in the atmosphere is an important but computationally challenging task. During the Fukushima nuclear disaster in Japan, operational plume forecasts were produced each day, but as the emissions continued, previous emissions were not included in the simulations used for forecasts because it became impractical to rerun the simulations each day from the beginning of the accident. Draxler and Rolph examine whether it is possible to improve plume simulation speed and flexibility as conditions and input data change. The authors use a method known as a transfer coefficient matrix approach that allows them to simulate many radionuclides using only a few generic species for the computation. Their simulations work faster by dividing the computation into separate independent segments in such a way that the most computationally time consuming pieces of the calculation need to be done only once. This makes it possible to provide real-time operational plume forecasts by continuously updating the previous simulations as new data become available. They tested their method using data from the Fukushima incident to show that it performed well. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD017205, 2012)

  3. Ridge-crossing mantle plumes and gaps in tracks

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2002-12-01

    Hot spot tracks approach, cross, and leave ridge axes. The complications of this process make it difficult to determine the track followed by a plume and the evolution of its vigor. When a plume is sufficiently near the ridge axis, buoyant plume material flows along the base of the lithosphere toward the axis, forming an on-axis hot spot. The track of the on-axis hot spot is a symmetric V on both plates and an unreliable indication of the path followed by the plume. Aseismic ridges form more or less along flowlines from a plume to a ridge axis when channels form at the base of the lithosphere. A dynamic effect is that off-axis hot spots appear to shut off at the time that an on-axis hot spot becomes active along an axis-approaching track. This produces a gap in the obvious track and a jump of the hot spot to the ridge axis. The gap results from the effects of ponded plume material on intraplate (membrane) stress. Membrane tension lets dikes ascend efficiently to produce obvious tracks of edifices. An off-axis hot spot shuts down when the plume is sufficiently near the ridge axis that plume material flows there, putting the nearby lithosphere above the plume into compression, preventing dikes. In addition, the off-axis thickness of plume material, which produces membrane tension, decreases as the slope of the base of the lithosphere increases beneath young lithosphere. Slow spreading rates favor gaps produced in this way. Gaps are observed near both fast and slow ridges.

  4. PLUME-MoM 1.0: a new 1-D model of volcanic plumes based on the method of moments

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Neri, A.; Barsotti, S.

    2015-05-01

    In this paper a new mathematical model for volcanic plumes, named PlumeMoM, is presented. The model describes the steady-state 1-D dynamics of the plume in a 3-D coordinate system, accounting for continuous variability in particle distribution of the pyroclastic mixture ejected at the vent. Volcanic plumes are composed of pyroclastic particles of many different sizes ranging from a few microns up to several centimeters and more. Proper description of such a multiparticle nature is crucial when quantifying changes in grain-size distribution along the plume and, therefore, for better characterization of source conditions of ash dispersal models. The new model is based on the method of moments, which allows description of the pyroclastic mixture dynamics not only in the spatial domain but also in the space of properties of the continuous size-distribution of the particles. This is achieved by formulation of fundamental transport equations for the multiparticle mixture with respect to the different moments of the grain-size distribution. Different formulations, in terms of the distribution of the particle number, as well as of the mass distribution expressed in terms of the Krumbein log scale, are also derived. Comparison between the new moments-based formulation and the classical approach, based on the discretization of the mixture in N discrete phases, shows that the new model allows the same results to be obtained with a significantly lower computational cost (particularly when a large number of discrete phases is adopted). Application of the new model, coupled with uncertainty quantification and global sensitivity analyses, enables investigation of the response of four key output variables (mean and standard deviation (SD) of the grain-size distribution at the top of the plume, plume height and amount of mass lost by the plume during the ascent) to changes in the main input parameters (mean and SD) characterizing the pyroclastic mixture at the base of the plume

  5. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  6. Effects of plume afterburning on infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Xijuan; Xu, Ying; Ma, Jing; Duan, Ran; Wu, Jie

    2017-10-01

    Contains H2, CO and unburned components of high-temperature plume of rocket engine, then injected into the atmosphere, continue to carry out the oxidation reaction in the plume near field region with the volume in the plume of oxygen in the air, two times burning. The afterburning is an important cause of infrared radiation intensification of propellant plume, which increases the temperature of the flame and changes the components of the gas, thus enhancing the infrared radiation intensity of the flame. [1]. Two the combustion numerical using chemical reaction mechanism involving HO2 intermediate reaction, the study confirmed that HO2 is a key intermediate, plays a decisive role to trigger early response, on afterburning temperature and flow concentration distribution effect. A finite rate chemical reaction model is used to describe the two burning phenomenon in high temperature plume[2]. In this paper, a numerical simulation of the flame flow field and radiative transfer is carried out for the afterburning phenomenon. The effects of afterburning on the composition, temperature and infrared radiation of the plume are obtained by comparison.

  7. Total plankton respiration in the Chesapeake Bay plume

    NASA Technical Reports Server (NTRS)

    Robertson, C. N.; Thomas, J. P.

    1981-01-01

    Total plankton respiration (TPR) was measured at 17 stations within the Chesapeake Bay plume off the Virginia coast during March, June, and October 1980. Elevated rates of TPR, as well as higher concentrations of chlorophyll a and phaeopigment a, were found to be associated with the Bay plume during each survey. The TPR rates within the Bay plume were close to those found associated with the Hudson River plume for comparable times of the year. The data examined indicate that the Chesapeake Bay plume stimulates biological activity and is a source of organic loading to the contiguous shelf ecosystem.

  8. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  9. Near-field entrainment in black smoker plumes

    NASA Astrophysics Data System (ADS)

    Smith, J. E.; Germanovich, L. N.; Lowell, R. P.

    2013-12-01

    In this work, we study the entrainment rate of the ambient fluid into a plume in the extreme conditions of hydrothermal venting at ocean floor depths that would be difficult to reproduce in the laboratory. Specifically, we investigate the flow regime in the lower parts of three black smoker plumes in the Main Endeavour Field on the Juan de Fuca Ridge discharging at temperatures of 249°C, 333°C, and 336°C and a pressure of 21 MPa. Such flow conditions are typical for ocean floor hydrothermal venting but would be difficult to reproduce in the laboratory. The centerline temperature was measured at several heights in the plume above the orifice. Using a previously developed turbine flow meter, we also measured the mean flow velocity at the orifice. Measurements were conducted during dives 4452 and 4518 on the submersible Alvin. Using these measurements, we obtained a range of 0.064 - 0.068 for values of the entrainment coefficient α, which is assumed constant near the orifice. This is half the value of α ≈ 0.12 - 0.13 that would be expected for plume flow regimes based on the existing laboratory results and field measurements in lower temperature and pressure conditions. In fact, α = 0.064 - 0.068 is even smaller than the value of α ≈ 0.075 characteristic of jet flow regimes and appears to be the lowest reported in the literature. Assuming that the mean value α = 0.066 is typical for hydrothermal venting at ocean floor depths, we then characterized the flow regimes of 63 black smoker plumes located on the Endeavor Segment of the Juan de Fuca Ridge. Work with the obtained data is ongoing, but current results indicate that approximately half of these black smokers are lazy in the sense that their plumes exhibit momentum deficits compared to the pure plume flow that develops as the plume rises. The remaining half produces forced plumes that show the momentum excess compared to the pure plumes. The lower value of the entrainment coefficient has important

  10. A numerical study of the Magellan Plume

    NASA Astrophysics Data System (ADS)

    Palma, Elbio D.; Matano, Ricardo P.

    2012-05-01

    In this modeling study we investigate the dynamical mechanisms controlling the spreading of the Magellan Plume, which is a low-salinity tongue that extends along the Patagonian Shelf. Our results indicate that the overall characteristics of the plume (width, depth, spreading rate, etc.) are primarily influenced by tidal forcing, which manifests through tidal mixing and tidal residual currents. Tidal forcing produces a homogenization of the plume's waters and an offshore displacement of its salinity front. The interaction between tidal and wind-forcing reinforces the downstream and upstream buoyancy transports of the plume. The influence of the Malvinas Current on the Magellan Plume is more dominant north of 50°S, where it increases the along-shelf velocities and generates intrusions of saltier waters from the outer shelf, thus causing a reduction of the downstream buoyancy transport. Our experiments also indicate that the northern limit of the Magellan Plume is set by a high salinity discharge from the San Matias Gulf. Sensitivity experiments show that increments of the wind stress cause a decrease of the downstream buoyancy transport and an increase of the upstream buoyancy transport. Variations of the magnitude of the discharge produce substantial modifications in the downstream penetration of the plume and buoyancy transport. The Magellan discharge generates a northeastward current in the middle shelf, a recirculation gyre south of the inlet and a region of weak currents father north.

  11. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  12. Conjecture of plume components in hydrothermal sea area

    NASA Astrophysics Data System (ADS)

    Noda, K., IV; Aoyama, C.

    2017-12-01

    Investigation at Southern Okinawa Trough, western Kume Island, and Tokara Islands was performed from June 26 to July 12, 2016, as a part of Japan's cross ministerial Strategic Innovation Promotion Program (SIP) for a complete understanding of active hydrothermal vents. In this investigation, water column sonar data was obtained using multi-beam sonar (EM122) onboard YOKOSUKA (Japan Agency for Marine-Earth Science and Technology) and methane plumes were alsp monitored (YK16-07). Multi-beam sonar is an acoustic instrument used to measure submarine topography, and in this investigation, plumes were observed to successfully regenerate the data. It also became clear that volume backscattering strength (SV) of plumes varies, depending on the area where they are settled. On the other hand, components of plumes are still unknown. In this study, acoustic data obtained from YK16-07 will be reviewed using analytical software (echo view 7) to calculate volume backscattering strength (SV) of plumes. Likewise, multi-beam sonar (EM122) onboard DAIICHI KAIYOMARU (KAIYO ENGINEERING CO., LTD) was used to collect acoustic data. This already known data of methane plume from Sea of Japan will be analyzed using echo view 7. By comparing these data, plume components will be examined from plume size.

  13. Plume Collection Strategies for Icy World Sample Return

    NASA Technical Reports Server (NTRS)

    Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.

    2015-01-01

    Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.

  14. Simulation of Europa's water plume .

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Schneider, N. M.; Plainaki, C.; Mazzotta Epifani, E.; Zusi, M.; Palumbo, P.

    Plumes on Europa would be extremely interesting science and mission targets, particularly due to the unique opportunity to obtain direct information on the subsurface composition, thereby addressing Europa's potential habitability. The existence of water plume on the Jupiter's moon Europa has been long speculated until the recent discover. HST imaged surpluses of hydrogen Lyman alpha and oxygen emissions above the southern hemisphere in December 2012 that are consistent with two 200 km high plumes of water vapor (Roth et al. 2013). In previous works ballistic cryovolcanism has been considered and modeled as a possible mechanism for the formation of low-albedo features on Europa's surface (Fagents et al. 2000). Our simulation agrees with the model of Fagents et al. (2000) and consists of icy particles that follow ballistic trajectories. The goal of such an analysis is to define the height, the distribution and the extension of the icy particles falling on the moon's surface as well as the thickness of the deposited layer. We expect to observe high albedo regions in contrast with the background albedo of Europa surface since we consider that material falling after a cryovolcanic plume consists of snow. In order to understand if this phenomenon is detectable we convert the particles deposit in a pixel image of albedo data. We consider also the limb view of the plume because, even if this detection requires optimal viewing geometry, it is easier detectable in principle against sky. Furthermore, we are studying the loss rates due to impact electron dissociation and ionization to understand how these reactions decrease the intensity of the phenomenon. We expect to obtain constraints on imaging requirements necessary to detect potential plumes that could be useful for ESA's JUICE mission, and in particular for the JANUS camera (Palumbo et al. 2014).

  15. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    PubMed

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  16. UV Detection and Characterization of Plume Activity

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Esposito, L. W.; Hendrix, A. R.

    2017-12-01

    Observations at ultraviolet wavelengths offer multiple techniques for detecting and characterizing plumes of gas erupting from planetary bodies. At Enceladus and Europa, UV observations include emission and absorption by water vapor molecules, and reflectance from ice particles. Emission: Emission features from electrons' interaction with water products H, OH, O and O2 can signal the presence of a plume. OH and O form a torus in the Saturn system, supplied by Enceladus' water vapor plume, that was detected before Cassini arrived in orbit [1, 2]. The nature of the ratio of H, O, and O2 emissions from Europa allow separation of the possible presence of plume(s) from Europa's O2 exosphere [3]. Absorption: The spectrum of starlight transmitted through an absorbing gas will have attenuation at UV wavelengths that are diagnostic of the composition of the gas. At Enceladus stellar and solar occultations by Enceladus' plume showed the primary composition to be water, constrained plume dimensions and revealed the presence of imbedded supersonic jets [4]. The amount of water coming from Enceladus and its variability over a decade has been measured [5]. Using Saturn as a source was not useful for Enceladus when it was observed in transit across Saturn. In contrast the putative detection of plume(s) at Europa has been bolstered by evidence that reflected light from Jupiter was being absorbed at particular places along Europa's limb as it transited Jupiter [6]. This contrast may reveal fundamental differences in the plumes at Europa and Enceladus [7]. Reflectance: With extremely long integration times the Enceladus plume has been observed reflecting light - light which is in turn absorbed by a small percentage of C2H4 gas being expelled [8]. The ice grain / gas ratio has been estimated by comparison of reflected light at near-IR wavelengths to the gas absorption of sunlight in the UV [9]. [1] Shemansky, D. E. et al. (1993) Nature 363:329; [2] Esposito, L. W. et al. (2005

  17. Inter-comparison of three-dimensional models of volcanic plumes

    USGS Publications Warehouse

    Suzuki, Yujiro; Costa, Antonio; Cerminara, Matteo; Esposti Ongaro, Tomaso; Herzog, Michael; Van Eaton, Alexa; Denby, Leif

    2016-01-01

    We performed an inter-comparison study of three-dimensional models of volcanic plumes. A set of common volcanological input parameters and meteorological conditions were provided for two kinds of eruptions, representing a weak and a strong eruption column. From the different models, we compared the maximum plume height, neutral buoyancy level (where plume density equals that of the atmosphere), and level of maximum radial spreading of the umbrella cloud. We also compared the vertical profiles of eruption column properties, integrated across cross-sections of the plume (integral variables). Although the models use different numerical procedures and treatments of subgrid turbulence and particle dynamics, the inter-comparison shows qualitatively consistent results. In the weak plume case (mass eruption rate 1.5 × 106 kg s− 1), the vertical profiles of plume properties (e.g., vertical velocity, temperature) are similar among models, especially in the buoyant plume region. Variability among the simulated maximum heights is ~ 20%, whereas neutral buoyancy level and level of maximum radial spreading vary by ~ 10%. Time-averaging of the three-dimensional (3D) flow fields indicates an effective entrainment coefficient around 0.1 in the buoyant plume region, with much lower values in the jet region, which is consistent with findings of small-scale laboratory experiments. On the other hand, the strong plume case (mass eruption rate 1.5 × 109 kg s− 1) shows greater variability in the vertical plume profiles predicted by the different models. Our analysis suggests that the unstable flow dynamics in the strong plume enhances differences in the formulation and numerical solution of the models. This is especially evident in the overshooting top of the plume, which extends a significant portion (~ 1/8) of the maximum plume height. Nonetheless, overall variability in the spreading level and neutral buoyancy level is ~ 20%, whereas that of maximum height is ~ 10

  18. Plume structure in high-Rayleigh-number convection

    NASA Astrophysics Data System (ADS)

    Puthenveettil, Baburaj A.; Arakeri, Jaywant H.

    2005-10-01

    Near-wall structures in turbulent natural convection at Rayleigh numbers of 10^{10} to 10^{11} at A Schmidt number of 602 are visualized by a new method of driving the convection across a fine membrane using concentration differences of sodium chloride. The visualizations show the near-wall flow to consist of sheet plumes. A wide variety of large-scale flow cells, scaling with the cross-section dimension, are observed. Multiple large-scale flow cells are seen at aspect ratio (AR)= 0.65, while only a single circulation cell is detected at AR= 0.435. The cells (or the mean wind) are driven by plumes coming together to form columns of rising lighter fluid. The wind in turn aligns the sheet plumes along the direction of shear. the mean wind direction is seen to change with time. The near-wall dynamics show plumes initiated at points, which elongate to form sheets and then merge. Increase in rayleigh number results in a larger number of closely and regularly spaced plumes. The plume spacings show a common log normal probability distribution function, independent of the rayleigh number and the aspect ratio. We propose that the near-wall structure is made of laminar natural-convection boundary layers, which become unstable to give rise to sheet plumes, and show that the predictions of a model constructed on this hypothesis match the experiments. Based on these findings, we conclude that in the presence of a mean wind, the local near-wall boundary layers associated with each sheet plume in high-rayleigh-number turbulent natural convection are likely to be laminar mixed convection type.

  19. Plume propagation direction determination with SO2 cameras

    NASA Astrophysics Data System (ADS)

    Klein, Angelika; Lübcke, Peter; Bobrowski, Nicole; Kuhn, Jonas; Platt, Ulrich

    2017-03-01

    SO2 cameras are becoming an established tool for measuring sulfur dioxide (SO2) fluxes in volcanic plumes with good precision and high temporal resolution. The primary result of SO2 camera measurements are time series of two-dimensional SO2 column density distributions (i.e. SO2 column density images). However, it is frequently overlooked that, in order to determine the correct SO2 fluxes, not only the SO2 column density, but also the distance between the camera and the volcanic plume, has to be precisely known. This is because cameras only measure angular extents of objects while flux measurements require knowledge of the spatial plume extent. The distance to the plume may vary within the image array (i.e. the field of view of the SO2 camera) since the plume propagation direction (i.e. the wind direction) might not be parallel to the image plane of the SO2 camera. If the wind direction and thus the camera-plume distance are not well known, this error propagates into the determined SO2 fluxes and can cause errors exceeding 50 %. This is a source of error which is independent of the frequently quoted (approximate) compensation of apparently higher SO2 column densities and apparently lower plume propagation velocities at non-perpendicular plume observation angles.Here, we propose a new method to estimate the propagation direction of the volcanic plume directly from SO2 camera image time series by analysing apparent flux gradients along the image plane. From the plume propagation direction and the known location of the SO2 source (i.e. volcanic vent) and camera position, the camera-plume distance can be determined. Besides being able to determine the plume propagation direction and thus the wind direction in the plume region directly from SO2 camera images, we additionally found that it is possible to detect changes of the propagation direction at a time resolution of the order of minutes. In addition to theoretical studies we applied our method to SO2 flux

  20. Enceladus's Plumes: A Rocket Analogy

    NASA Astrophysics Data System (ADS)

    McNutt, R. L.; Perry, M. E.; Waite, J. H.; Fletcher, G.; Cravens, T. E.

    2009-12-01

    The plumes of Enceladus, and the source of the E-ring in the Saturnian system, easily rank as the major, significant, and unexpected discovery of the Cassini mission. While clearly the source of the E-ring,the nature of the sources and the energetics and dynamics of the plumes and underlying jets remains a subject of intensive study. Refinements of the observations suggest supersonic flow of the primary, water-vapor effluent. Such behavior implies a sonic critical point in the flow beginning from a heated reservoir of vapor, through a constriction, and out at supersonic speeds in the space above the plume/jet channels. Such geometry and thermal conditions mimic that of a de Laval nozzle, such as used in rocket engines for converting chemically heated combustion products into a directional flow. A chamber temperature of 180K suggests an outflow speed as high as 0.8 km/s. With a column density across a jet of ~3 x 1016 cm-2 (about twice that of the broad plume) and a jet width of ~10 km, the implied outflow of water molecules is ~3 x 1010 cm-3 x π/4 (106 cm)2 x 18 amu x 1.66 x 10-27 amu/kg x 8 x 104 cm/s = ~60 kg/s in each constituent jet, of which eight were identified by the Cassini Ultraviolet Imaging Spectrograph (UVIS) during the occultation measurements of the plume region of Enceladus carried out on 24 October 2007.

  1. Bromine oxidation in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; Vogel, L.; Kern, C.; Giuffrida, G. B.; Delgado-Granados, H.; Platt, U.

    2009-04-01

    Volcanoes are very strong sources of hydrogen, carbon, sulphur and halogen compounds, as well as of particles. Some gases only behave as passive tracers; others interact and affect the formation, growth or chemical characteristics of aerosol particles in a complex system. Recent measurements of halogen radicals in volcanic plumes showed that volcanic plumes are chemically very active. Kinetic considerations (Oppenheimer et al., 2006) and detailed calculations with an atmospheric chemistry model (Bobrowski et al., 2007) explain the halogen chemistry mainly with photochemical reactions involving both, the gas and particle phase. They reproduce the measured gas-phase concentrations quite well. However, temporal evolution of BrO in the early plume is not well described in the models. The understanding of chemical kinetics of BrO formation is still not complete. Recent measurement results (Vogel et al., 2008) do not fit with initial model calculation. The new data lead to the suggestion that the BrO formation could be much faster during the first few minutes after emission than initially suggested. Old and recent data sets will be confronted, compared and possible causes of their differences discussed. The measurements considered were taken at Mt. Etna (Italy), Villarica (Chile), and Popocatépetl (Mexico) volcanoes. Additionally, at Mt Etna the emission consists of up to four individual plumes from four summit craters. The differences between the individual plumes have been investigated during the last years and will be presented.

  2. Remote sensing of aerosol plumes: a semianalytical model

    NASA Astrophysics Data System (ADS)

    Alakian, Alexandre; Marion, Rodolphe; Briottet, Xavier

    2008-04-01

    A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5 μm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0° and 60° whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

  3. Remote sensing of aerosol plumes: a semianalytical model.

    PubMed

    Alakian, Alexandre; Marion, Rodolphe; Briottet, Xavier

    2008-04-10

    A semianalytical model, named APOM (aerosol plume optical model) and predicting the radiative effects of aerosol plumes in the spectral range [0.4,2.5 microm], is presented in the case of nadir viewing. It is devoted to the analysis of plumes arising from single strong emission events (high optical depths) such as fires or industrial discharges. The scene is represented by a standard atmosphere (molecules and natural aerosols) on which a plume layer is added at the bottom. The estimated at-sensor reflectance depends on the atmosphere without plume, the solar zenith angle, the plume optical properties (optical depth, single-scattering albedo, and asymmetry parameter), the ground reflectance, and the wavelength. Its mathematical expression as well as its numerical coefficients are derived from MODTRAN4 radiative transfer simulations. The DISORT option is used with 16 fluxes to provide a sufficiently accurate calculation of multiple scattering effects that are important for dense smokes. Model accuracy is assessed by using a set of simulations performed in the case of biomass burning and industrial plumes. APOM proves to be accurate and robust for solar zenith angles between 0 degrees and 60 degrees whatever the sensor altitude, the standard atmosphere, for plume phase functions defined from urban and rural models, and for plume locations that extend from the ground to a height below 3 km. The modeling errors in the at-sensor reflectance are on average below 0.002. They can reach values of 0.01 but correspond to low relative errors then (below 3% on average). This model can be used for forward modeling (quick simulations of multi/hyperspectral images and help in sensor design) as well as for the retrieval of the plume optical properties from remotely sensed images.

  4. Statistical characterization of thermal plumes in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng-Qi; Xie, Yi-Chao; Sun, Chao; Xia, Ke-Qing

    2016-09-01

    We report an experimental study on the statistical properties of the thermal plumes in turbulent thermal convection. A method has been proposed to extract the basic characteristics of thermal plumes from temporal temperature measurement inside the convection cell. It has been found that both plume amplitude A and cap width w , in a time domain, are approximately in the log-normal distribution. In particular, the normalized most probable front width is found to be a characteristic scale of thermal plumes, which is much larger than the thermal boundary layer thickness. Over a wide range of the Rayleigh number, the statistical characterizations of the thermal fluctuations of plumes, and the turbulent background, the plume front width and plume spacing have been discussed and compared with the theoretical predictions and morphological observations. For the most part good agreements have been found with the direct observations.

  5. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  6. Sensitivity of air quality simulation to smoke plume rise

    Treesearch

    Yongqiang Liu; Gary Achtemeier; Scott Goodrick

    2008-01-01

    Plume rise is the height smoke plumes can reach. This information is needed by air quality models such as the Community Multiscale Air Quality (CMAQ) model to simulate physical and chemical processes of point-source fire emissions. This study seeks to understand the importance of plume rise to CMAQ air quality simulation of prescribed burning to plume rise. CMAQ...

  7. Follow the plume: the habitability of Enceladus.

    PubMed

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  8. Mantle plume capture, anchoring and outflow during ridge interaction

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Richards, M. A.; Geist, D.

    2015-12-01

    Geochemical and geophysical studies have shown that >40% of the world's mantle plumes are currently interacting with the global ridge system and such interactions may continue for up to 180 Myr[1]. At sites of plume-ridge interaction up to 1400 km of the spreading centre is influenced by dispersed plume material but there are few constraints on how and where the ridge-ward transfer of deep-sourced material occurs, and also how it is sustained over long time intervals. Galápagos is an archetypal example of an off-axis plume and sheds important light on these mechanisms. The Galápagos plume stem is located ~200 km south of the spreading axis and its head influences 1000 km of the ridge. Nevertheless, the site of enriched basalts, greatest crustal thickness and elevated topography on the ridge, together with active volcanism in the archipelago, correlate with a narrow zone (~150 km) of low-velocity, high-temperature mantle that connects the plume stem and ridge at depths of ~100 km[2]. The enriched ridge basalts contain a greater amount of partially-dehydrated, recycled oceanic crust than basalts elsewhere on the spreading axis, or indeed basalts erupted in the region between the plume stem and ridge. The presence of these relatively volatile-rich ridge basalts requires flow of plume material below the peridotite solidus (i.e.>80 km). We propose a 2-stage model for the development and sustainment of a confined zone of deep ridge-ward plume flow. This involves initial on-axis capture and establishment of a sub-ridge channel of plume flow. Subsequent anchoring of the plume stem to a contact point on the ridge during axis migration results in confined ridge-ward flow of plume material via a deep network of melt channels embedded in the normal spreading and advection of the plume head[2]. Importantly, sub-ridge flow is maintained. The physical parameters and styles of mantle flow we have defined for Galápagos are less-well known at other sites of plume

  9. The Plasmaspheric Plume and Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Phan, T. D.; Sibeck, D. G.; Souza, V. M.

    2014-01-01

    We present near-simultaneous measurements from two THEMIS spacecraft at the dayside magnetopause with a 1.5 h separation in local time. One spacecraft observes a high-density plasmaspheric plume while the other does not. Both spacecraft observe signatures of magnetic reconnection, providing a test for the changes to reconnection in local time along the magnetopause as well as the impact of high densities on the reconnection process. When the plume is present and the magnetospheric density exceeds that in the magnetosheath, the reconnection jet velocity decreases, the density within the jet increases, and the location of the faster jet is primarily on field lines with magnetosheath orientation. Slower jet velocities indicate that reconnection is occurring less efficiently. In the localized region where the plume contacts the magnetopause, the high-density plume may impede the solar wind-magnetosphere coupling by mass loading the reconnection site.

  10. Birth, life, and death of a solar coronal plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pucci, Stefano; Romoli, Marco; Poletto, Giannina

    2014-10-01

    We analyze a solar polar-coronal-hole (CH) plume over its entire ≈40 hr lifetime, using high-resolution Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) data. We examine (1) the plume's relationship to a bright point (BP) that persists at its base, (2) plume outflows and their possible contribution to the solar wind mass supply, and (3) the physical properties of the plume. We find that the plume started ≈2 hr after the BP first appeared and became undetectable ≈1 hr after the BP disappeared. We detected radially moving radiance variations from both the plume and from interplume regions, corresponding to apparent outflowmore » speeds ranging over ≈(30-300) km s{sup –1} with outflow velocities being higher in the 'cooler' AIA 171 Å channel than in the 'hotter' 193 Å and 211 Å channels, which is inconsistent with wave motions; therefore, we conclude that the observed radiance variations represent material outflows. If they persist into the heliosphere and plumes cover ≈10% of a typical CH area, these flows could account for ≈50% of the solar wind mass. From a differential emission measure analysis of the AIA images, we find that the average electron temperature of the plume remained approximately constant over its lifetime, at T {sub e} ≈ 8.5 × 10{sup 5} K. Its density, however, decreased with the age of the plume, being about a factor of three lower when the plume faded compared to when it was born. We conclude that the plume died due to a density reduction rather than to a temperature decrease.« less

  11. Hubble Sees Recurring Plume Erupting From Europa

    NASA Image and Video Library

    2017-04-13

    These composite images show a suspected plume of material erupting two years apart from the same location on Jupiter's icy moon Europa. The images bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite. Both plumes, photographed in ultraviolet light by NASA's Hubble's Space Telescope Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. The newly imaged plume, shown at right, rises about 62 miles (100 kilometers) above Europa's frozen surface. The image was taken Feb. 22, 2016. The plume in the image at left, observed by Hubble on March 17, 2014, originates from the same location. It is estimated to be about 30 miles (50 kilometers) high. The snapshot of Europa, superimposed on the Hubble image, was assembled from data from NASA's Galileo mission to Jupiter. The plumes correspond to the location of an unusually warm spot on the moon's icy crust, seen in the late 1990s by the Galileo spacecraft (see PIA21444). Researchers speculate that this might be circumstantial evidence for water venting from the moon's subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. https://photojournal.jpl.nasa.gov/catalog/PIA21443

  12. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The US Environmental Protection Agency has a history of developing plume models and providing technical assistance. The Visual Plumes model (VP) is a recent addition to the public-domain models available on the EPA Center for Exposure Assessment Modeling (CEAM) web page. The Wind...

  13. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The U.S. Environmental Protection Agency has a long history of both supporting plume model development and providing mixing zone modeling software. The Visual Plumes model is the most recent addition to the suite of public-domain models available through the EPA-Athens Center f...

  14. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  15. The interaction of plume heads with compositional discontinuities in the Earth's mantle

    NASA Technical Reports Server (NTRS)

    Manga, Michael; Stone, Howard A.; O'Connell, Richard J.

    1993-01-01

    The effects of compositional discontinuities of density and viscosity in the Earth's mantle on the ascent of mantle plume heads is studied using a boundary integral numerical technique. Three specific problems are considered: (1) a plume head rising away from a deformable interface, (2) a plume head passing through an interface, and (3) a plume head approaching the surface of the Earth. For the case of a plume attached to a free-surface, the calculated time-dependent plume shapesare compared with experimental results. Two principle modes of plume head deformation are observed: plume head elingation or the formation of a cavity inside the plume head. The inferred structure of mantle plumes, namely, a large plume head with a long tail, is characteristic of plumes attached to their source region, and also of buoyant material moving away from an interface and of buoyant material moving through an interface from a high- to low-viscosity region. As a rising plume head approaches the upper mantle, most of the lower mantle will quickly drain from the gap between the plume head and the upper mantle if the plume head enters the upper mantle. If the plume head moves from a high- to low-viscosity region, the plume head becomes significantly elongated and, for the viscosity contrasts thought to exist in the Earth, could extend from the 670 km discontinuity to the surface. Plume heads that are extended owing to a viscosity decrease in the upper mantle have a cylindrical geometry. The dynamic surface topography induced by plume heads is bell-shaped when the top of the plume head is at depths greater than about 0.1 plume head radii. As the plume head approaches the surface and spreads, the dynamic topography becomes plateau-shaped. The largest stresses are produced in the early stages of plume spreading when the plume head is still nearly spherical, and the surface expression of these stresses is likely to be dominated by radial extension. As the plume spreads, compressional

  16. Space shuttle main engine plume radiation model

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1978-01-01

    The methods are described which are used in predicting the thermal radiation received by space shuttles, from the plumes of the main engines. Radiation to representative surface locations were predicted using the NASA gaseous plume radiation GASRAD program. The plume model is used with the radiative view factor (RAVFAC) program to predict sea level radiation at specified body points. The GASRAD program is described along with the predictions. The RAVFAC model is also discussed.

  17. Smoke plumes: Emissions and effects

    Treesearch

    Susan O' Neill; Shawn Urbanski; Scott Goodrick; Sim Larkin

    2017-01-01

    Smoke can manifest itself as a towering plume rising against the clear blue sky-or as a vast swath of thick haze, with fingers that settle into valleys overnight. It comes in many forms and colors, from fluffy and white to thick and black. Smoke plumes can rise high into the atmosphere and travel great distances across oceans and continents. Or smoke can remain close...

  18. Plume Splitting in a Two-layer Stratified Ambient Fluid

    NASA Astrophysics Data System (ADS)

    Ma, Yongxing; Flynn, Morris; Sutherland, Bruce

    2017-11-01

    A line-source plume descending into a two-layer stratified ambient fluid in a finite sized tank is studied experimentally. Although the total volume of ambient fluid is fixed, lower- and upper-layer fluids are respectively removed and added at a constant rate mimicking marine outfall through diffusers and natural and hybrid ventilated buildings. The influence of the plume on the ambient depends on the value of λ, defined as the ratio of the plume buoyancy to the buoyancy loss of the plume as it crosses the ambient interface. Similar to classical filling-box experiments, the plume can always reach the bottom of the tank if λ > 1 . By contrast, if λ < 1 , an intermediate layer eventually forms as a result of plume splitting. Eventually all of the plume fluid spreads within the intermediate layer. The starting time, tv, and the ending time, tt, of the transition process measured from experiments correlate with the value of λ. A three-layer ambient fluid is observed after transition, and the mean value of the measured densities of the intermediate layer fluid is well predicted using plume theory. Acknowledgments: Funding for this study was provided by NSERC.

  19. Teaching the Mantle Plumes Debate

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.

    2010-12-01

    There is an ongoing debate regarding whether or not mantle plumes exist. This debate has highlighted a number of issues regarding how Earth science is currently practised, and how this feeds into approaches toward teaching students. The plume model is an hypothesis, not a proven fact. And yet many researchers assume a priori that plumes exist. This assumption feeds into teaching. That the plume model is unproven, and that many practising researchers are skeptical, may be at best only mentioned in passing to students, with most teachers assuming that plumes are proven to exist. There is typically little emphasis, in particular in undergraduate teaching, that the origin of melting anomalies is currently uncertain and that scientists do not know all the answers. Little encouragement is given to students to become involved in the debate and to consider the pros and cons for themselves. Typically teachers take the approach that “an answer” (or even “the answer”) must be taught to students. Such a pedagogic approach misses an excellent opportunity to allow students to participate in an important ongoing debate in Earth sciences. It also misses the opportunity to illustrate to students several critical aspects regarding correct application of the scientific method. The scientific method involves attempting to disprove hypotheses, not to prove them. A priori assumptions should be kept uppermost in mind and reconsidered at all stages. Multiple working hypotheses should be entertained. The predictions of a hypothesis should be tested, and unpredicted observations taken as weakening the original hypothesis. Hypotheses should not be endlessly adapted to fit unexpected observations. The difficulty with pedagogic treatment of the mantle plumes debate highlights a general uncertainty about how to teach issues in Earth science that are not yet resolved with certainty. It also represents a missed opportunity to let students experience how scientific theories evolve, warts

  20. Tidal modulation on the Changjiang River plume in summer

    NASA Astrophysics Data System (ADS)

    WU, H.

    2011-12-01

    Tide effects on the structure of the near-field Changjiang River Plume and on the extension of the far-field plume have often been neglected in analysis and numerical simulations, which is the focus of this study. Numerical experiments highlighted the crucial role of the tidal forcing in modulating the Changjiang River plume. Without the tidal forcing, the plume results in an unrealistic upstream extension along the Jiangsu Coast. With the tidal forcing, the vertical mixing increases, resulting in a strong horizontal salinity gradient at the northern side of the Changjiang River mouth along the Jiangsu Coast, which acts as a dynamic barrier and restricts the northward migration of the plume. Furthermore, the tidal forcing produces a bi-directional plume structure in the near field and the plume separation is located at the head of the submarine canyon. A significant bulge occurs around the head of submarine canyon and rotates anticyclonically, which carries large portion of the diluted water towards the northeast and merges into the far-field plume. A portion of the diluted water moves towards the southeast, which is mainly caused by tidal ratification. This bi-directional plume structure is more evident under certain wind condition. During the neap tide with the reduced tidal energy, the near-field plume extends farther offshore and the bulge becomes less evident. These dynamic behaviors are maintained and fundamentally important in the region around the river mouth even under the summer monsoon and the shelf currents, although in the far field the wind forcing and shelf currents eventually dominate the plume extension.
    H. Wu

  1. Lidar sounding of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  2. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  3. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  4. Enceladus Plumes: Causes of Decadal Variability

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Ewald, Shawn P.

    2016-10-01

    The Enceladus plumes have decreased over the decade that Cassini has been observing them. This long-term variation is superposed on the much shorter-term variation tied to the position of Enceladus in its orbit around Saturn. The observations are ISS and VIMS images, which reveal the particles in the plumes but not the gas. The decadal variability largely consists of a 2-fold decline in the mass of plume material, but there is a hint of a recent turnaround. Here we offer three hypotheses, each with its strengths and weaknesses, to explain the long-term variability. The first is seasonal change, from summer to fall in the southern hemisphere. The loss of sunlight could increase the build-up of ice around the tiger stripes. The weakness is that the sunlight is likely to have a small effect, e.g., decreasing the sublimation rate of the ice by only ~1 cm/year. The second hypothesis is a statistical fluctuation in the number of active plumes, which tend to turn themselves off due to build-up of ice at the throat of the vent. The weakness is that the plumes are likely to fluctuate independently, and if there are ~100 plumes, their sum will only fluctuate by 10%. The third hypothesis is that the variation is part of a well-known decadal cycle of orbital eccentricity, which varies by ±2.5% around a mean of 0.0047. The peak eccentricity occurred in 2009-2010, and the minimum occurred in 2015. Since eccentricity controls the short-term orbital cycle variations, it could also control the longer-term decadal variations. The weakness is that the eccentricity variation is small, from 0.0046 to 0.0048. It is not certain that such a small variation could cause a 2-fold variation in the strength of the plumes. An independent study, still in its infancy, is the possibility that liquid water reaches the surface during part of the orbital cycle.

  5. The thin hot plume beneath Iceland

    USGS Publications Warehouse

    Allen, R.M.; Nolet, G.; Morgan, W.J.; Vogfjord, K.; Bergsson, B.H.; Erlendsson, P.; Foulger, G.R.; Jakobsdottir, S.; Julian, B.R.; Pritchard, M.; Ragnarsson, S.; Stefansson, R.

    1999-01-01

    We present the results of a seismological investigation of the frequency-dependent amplitude variations across Iceland using data from the HOTSPOT array currently deployed there. The array is composed of 30 broad-band PASSCAL instruments. We use the parameter t(*), defined in the usual manner from spectral ratios (Halderman and Davis 1991), to compare observed S-wave amplitude variations with those predicted due to both anelastic attenuation and diffraction effects. Four teleseismic events at a range of azimuths are used to measure t(*). A 2-D vertical cylindrical plume model with a Gaussian-shaped velocity anomaly is used to model the variations. That part of t(*) caused by attenuation was estimated by tracing a ray through IASP91, then superimposing our plume model velocity anomaly and calculating the path integral of 1/vQ. That part of t(*) caused by diffraction was estimated using a 2-D finite difference code to generate synthetic seismograms. The same spectral ratio technique used for the data was then used to extract a predicted t(*). The t(*) variations caused by anelastic attenuation are unable to account for the variations we observe, but those caused by diffraction do. We calculate the t(*) variations caused by diffraction for different plume models and obtain our best-fit plume, which exhibits good agreement between the observed and measured t(*). The best-fit plume model has a maximum S-velocity anomaly of - 12 per cent and falls to 1/e of its maximum at 100 km from the plume centre. This is narrower than previous estimates from seismic tomography, which are broadened and damped by the methods of tomography. This velocity model would suggest greater ray theoretical traveltime delays than observed. However, we find that for such a plume, wave-front healing effects at frequencies of 0.03-0.175 Hz (the frequency range used to pick S-wave arrivals) causes a 40 per cent reduction in traveltime delay, reducing the ray theoretical delay to that observed.

  6. Rocket exhaust plume computer program improvement. Volume 1: Summary: Method of characteristics nozzle and plume programs

    NASA Technical Reports Server (NTRS)

    Ratliff, A. W.; Smith, S. D.; Penny, N. M.

    1972-01-01

    A summary is presented of the various documents that discuss and describe the computer programs and analysis techniques which are available for rocket nozzle and exhaust plume calculations. The basic method of characteristics program is discussed, along with such auxiliary programs as the plume impingement program, the plot program and the thermochemical properties program.

  7. Capability of MODIS radiance to analyze Iberian turbid plumes

    NASA Astrophysics Data System (ADS)

    Fernandez-Novoa, Diego; deCastro, Maite; Des, Marisela; Costoya, Xurxo; Mendes, Renato; Gomez-Gesteira, Moncho

    2017-04-01

    River plumes are formed near river mouths by freshwater and riverine materials. Therefore, the area influenced by freshwater (salinity plume) is usually negatively correlated with the area occupied by suspension and dissolved material (turbid plume). Suspended material results in a strong signal detected by satellite sensors whereas ocean clear waters have negligible contributions. Thus, remote sensing data, such as radiance obtained from Moderate Resolution Imaging Spectroradiometer (MODIS), are a very useful tool to analyze turbid plumes due to the high spatial and time resolution provided. Here, MODIS capability for characterizing similarities and differences among the most important Iberian plumes was assessed under the influence of their main forcing. Daily radiance data from MODIS-Aqua and MODIS-Terra satellite sensors were processed obtaining a resolution of 500 m. Two approaches are usually used for atmospheric correction treatments: Near-Infrared (NIR) bands and a combined algorithm using NIR and Short Wave Infrared (SWIR) bands. In the particular case of Iberian Peninsula plumes both methods offered similar results, although NIR bands present a lower associated error. MODIS allows working with several bands of normalized water-leaving radiances (nLw). Focusing in the resolution provided, nLw555 and 645 were the most appropriate because both provide the best coverage and correlation with river discharge. The nLw645 band was chosen because has a lower water penetration avoiding overestimations of turbidity caused by shallow seafloor areas and/or upwelling blooms. Daily data from both satellites were merged to enhance the robustness and precision of the study by increasing the number of available pixels. Results indicate that differences between radiance data from both satellites are negligible for Iberian plumes, justifying the merging. By last, each turbid limit, to delimit the respective plume from adjacent seawater, was obtained using two alternative

  8. Saharan dust plume charging observed over the UK

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  9. Rocket Engine Plume Diagnostics at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; Langford, Lester A.; VanDyke, David B.; McVay, Gregory P.; Thurman, Charles C.

    2003-01-01

    The Stennis Space Center has been at the forefront of development and application of exhaust plume spectroscopy to rocket engine health monitoring since 1989. Various spectroscopic techniques, such as emission, absorption, FTIR, LIF, and CARS, have been considered for application at the engine test stands. By far the most successful technology h a been exhaust plume emission spectroscopy. In particular, its application to the Space Shuttle Main Engine (SSME) ground test health monitoring has been invaluable in various engine testing and development activities at SSC since 1989. On several occasions, plume diagnostic methods have successfully detected a problem with one or more components of an engine long before any other sensor indicated a problem. More often, they provide corroboration for a failure mode, if any occurred during an engine test. This paper gives a brief overview of our instrumentation and computational systems for rocket engine plume diagnostics at SSC. Some examples of successful application of exhaust plume spectroscopy (emission as well as absorption) to the SSME testing are presented. Our on-going plume diagnostics technology development projects and future requirements are discussed.

  10. Space Shuttle Plume Simulation Effect on Aerodynamics

    NASA Technical Reports Server (NTRS)

    Hair, L. M.

    1978-01-01

    Technology for simulating plumes in wind tunnel tests was not adequate to provide the required confidence in test data where plume induced aerodynamic effects might be significant. A broad research program was undertaken to correct the deficiency. Four tasks within the program are reported. Three of these tasks involve conducting experiments, related to three different aspects of the plume simulation problem: (1) base pressures; (2) lateral jet pressures; and (3) plume parameters. The fourth task involves collecting all of the base pressure test data generated during the program. Base pressures were measured on a classic cone ogive cylinder body as affected by the coaxial, high temperature exhaust plumes of a variety of solid propellant rockets. Valid data were obtained at supersonic freestream conditions but not at transonic. Pressure data related to lateral (separation) jets at M infinity = 4.5, for multiple clustered nozzles canted to the freestream and operating at high dynamic pressure ratios. All program goals were met although the model hardware was found to be large relative to the wind tunnel size so that operation was limited for some nozzle configurations.

  11. Chemical Plume Detection with an Iterative Background Estimation Technique

    DTIC Science & Technology

    2016-05-17

    schemes because of contamination of background statistics by the plume. To mitigate the effects of plume contamination , a first pass of the detector...can be used to create a background mask. However, large diffuse plumes are typically not removed by a single pass. Instead, contamination can be...is estimated using plume-pixels, the covariance matrix is contaminated and detection performance may be significantly reduced. To avoid Further author

  12. Investigation of solid plume simulation criteria to produce flight plume effects on multibody configuration in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Frost, A. L.; Dill, C. C.

    1986-01-01

    An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.

  13. Triton's Geyser-like Plumes

    NASA Astrophysics Data System (ADS)

    Brown, Robert H.; Soderblom, Laurence A.

    In August of 1989, while flying by Neptune's largest satellite Triton, Voyager 2 made another of its stunning discoveries in its epic journey through the outer solar system. First seen by one of us (LAS) and Tammy Becker (also of the USGS), after stereoscopic examination of a group of images taken very near Voyager's closest approach to the satellite, were at least two, geyser-like plumes spewing almost perfectly vertical columns of material 1-km across roughly 8-km high into Triton's atmosphere; there the columns were sheared by stratospheric winds into 100-km-long, dark clouds thought to composed of condensed nitrogen mixed with organic particles. Triton's plumes may be the most unique of all the manifestations of geologic activity on satellites in the outer solar system in that their energy source may be sunlight trapped below Triton's surface in a so-called "solid-state greenhouse". This talk will focus on the physical characteristics of those plumes, and on the various mechanisms proposed to explain their presence and apparent persistence on Triton.

  14. Geological factors affecting CO2 plume distribution

    USGS Publications Warehouse

    Frailey, S.M.; Leetaru, H.

    2009-01-01

    Understanding the lateral extent of a CO2 plume has important implications with regards to buying/leasing pore volume rights, defining the area of review for an injection permit, determining the extent of an MMV plan, and managing basin-scale sequestration from multiple injection sites. The vertical and lateral distribution of CO2 has implications with regards to estimating CO2 storage volume at a specific site and the pore pressure below the caprock. Geologic and flow characteristics such as effective permeability and porosity, capillary pressure, lateral and vertical permeability anisotropy, geologic structure, and thickness all influence and affect the plume distribution to varying degrees. Depending on the variations in these parameters one may dominate the shape and size of the plume. Additionally, these parameters do not necessarily act independently. A comparison of viscous and gravity forces will determine the degree of vertical and lateral flow. However, this is dependent on formation thickness. For example in a thick zone with injection near the base, the CO2 moves radially from the well but will slow at greater radii and vertical movement will dominate. Generally the CO2 plume will not appreciably move laterally until the caprock or a relatively low permeability interval is contacted by the CO2. Conversely, in a relatively thin zone with the injection interval over nearly the entire zone, near the wellbore the CO2 will be distributed over the entire vertical component and will move laterally much further with minimal vertical movement. Assuming no geologic structure, injecting into a thin zone or into a thick zone immediately under a caprock will result in a larger plume size. With a geologic structure such as an anticline, CO2 plume size may be restricted and injection immediately below the caprock may have less lateral plume growth because the structure will induce downward vertical movement of the CO2 until the outer edge of the plume reaches a spill

  15. Learning to Rapidly Re-Contact the Lost Plume in Chemical Plume Tracing

    PubMed Central

    Cao, Meng-Li; Meng, Qing-Hao; Wang, Jia-Ying; Luo, Bing; Jing, Ya-Qi; Ma, Shu-Gen

    2015-01-01

    Maintaining contact between the robot and plume is significant in chemical plume tracing (CPT). In the time immediately following the loss of chemical detection during the process of CPT, Track-Out activities bias the robot heading relative to the upwind direction, expecting to rapidly re-contact the plume. To determine the bias angle used in the Track-Out activity, we propose an online instance-based reinforcement learning method, namely virtual trail following (VTF). In VTF, action-value is generalized from recently stored instances of successful Track-Out activities. We also propose a collaborative VTF (cVTF) method, in which multiple robots store their own instances, and learn from the stored instances, in the same database. The proposed VTF and cVTF methods are compared with biased upwind surge (BUS) method, in which all Track-Out activities utilize an offline optimized universal bias angle, in an indoor environment with three different airflow fields. With respect to our experimental conditions, VTF and cVTF show stronger adaptability to different airflow environments than BUS, and furthermore, cVTF yields higher success rates and time-efficiencies than VTF. PMID:25825974

  16. The interaction of Io's plumes and sublimation atmosphere

    NASA Astrophysics Data System (ADS)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2017-09-01

    Io's volcanic plumes are the ultimate source of its SO2 atmosphere, but past eruptions have covered the moon in surface frost which sublimates in sunlight. Today, Io's atmosphere is a result of some combination of volcanism and sublimation, but it is unknown exactly how these processes work together to create the observed atmosphere. We use the direct simulation Monte Carlo (DSMC) method to model the interaction of giant plumes with a sublimation atmosphere. Axisymmetric plume/atmosphere simulations demonstrate that the total mass of SO2 above Io's surface is only poorly approximated as the sum of independent volcanic and sublimated components. A simple analytic model is developed to show how variation in the mass of erupting gas above Io's surface can counteract variation in the mass of its hydrostatic atmosphere as surface temperature changes over a Jupiter year. Three-dimensional, unsteady simulations of giant plumes over an Io day are also presented, showing how plume material becomes suspended in the sublimation atmosphere. We find that a plume which produces some total mass above Io's surface at night will cause a net increase in the noon-time atmosphere of only a fraction of the night-time value. However, as much as seven times the night-side mass of the plume will become suspended in the sublimation atmosphere, altering its composition and displacing sublimated material.

  17. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  18. The He isotope composition of the earliest picrites erupted by the Ethiopia plume, implications for mantle plume source

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Rogers, Nick; Davies, Marc

    2016-04-01

    The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a

  19. Regimes of plume-slab interaction and consequences for hotspot volcanism

    NASA Astrophysics Data System (ADS)

    Druken, Kelsey; Stegman, Dave; Kincaid, Christopher; Griffiths, Ross

    2013-04-01

    "Hotspot" volcanism is generally attributed to upwelling of anomalously warm mantle plumes, the intra-plate Hawaiian island chain and its simple age progression serving as an archetypal example. However, interactions of such plumes with plate margins, and in particular with subduction zones, is likely to have been a common occurrence and leads to more complicated geological records. Here we present results from a series of complementary, three-dimensional numerical and laboratory experiments that examine the dynamic interaction between negatively buoyant subducting slabs and positively buoyant mantle plumes. Slab-driven flow is shown to significantly influence the evolution and morphology of nearby plumes, which leads to a range of deformation regimes of the plume head and conduit. The success or failure of an ascending plume head to reach the lithosphere depends on the combination of plume buoyancy and position within the subduction system, where the mantle flow owing to downdip and rollback components of slab motion entrain plume material both vertically and laterally. Plumes rising within the sub-slab region tend to be suppressed by the surrounding flow field, while wedge-side plumes experience a slight enhancement before ultimately being entrained by subduction. Hotspot motion is more complex than that expected at intraplate settings and is primarily controlled by position alone. Regimes include severely deflected conduits as well as retrograde (corkscrew) motion from rollback-driven flow, often with weak and variable age-progression. The interaction styles and surface manifestations of plumes can be predicted from these models, and the results have important implications for potential hotspot evolution near convergent margins.

  20. A spreading drop model for plumes on Venus

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    1994-01-01

    Many of the large-scale, plume-related features on Venus can be modeled by a buoyant viscous drop, or plume head, as it rises and spreads laterally below a free fluid surface. The drop has arbitrary density and viscosity contrast and begins as a sphere below the surface of a fluid half space. The boundary integral method is used to solve for the motion of the plume head and for the topography, geoid, and stress at the fluid surface. As the plume approaches the surface, stresses in the fluid above it cause it to spread and become thin below the surface. During the spreading, the surface swell above evolves through various stages whose morphologies resemble several different plume-related features observed on Venus. When the plume head first approaches the surface, a high broad topographic dome develops, with a large geoid, and radial extensional deformation patterns. At later stages, the topography subsides and becomes plateau-like, the geoid to topography ratio (GTR) decreases, and the dominant stress pattern consists of a band of concentric extension surrounded by a band of concentric compression. We find that a low-viscosity model plume head (viscosity that is 0.1 times the mantle viscosity) produces maximum topography that is 20% lower, and swell features which evolve faster, than for an isoviscous plume. We compare model results with both the large-scale highland swells, and smaller-scale features such as coronae and novae. The dome-shaped highlands with large GTRs such as Beta, Atla, and Western Eistla Regiones may be the result of early stage plume motion, while the flatter highlands such as Ovda and Thetis Regiones which have lower GTRs may be later stage features. Comparison of model results with GTR data indicates that the highlands result from plume heads with initial diameters of about 1000 km. On a smaller scale, an evolutionary sequence may begin with novae (domes having radial extensional deformation), followed by features with radial and concentric

  1. A preliminary characterization of applied-field MPD thruster plumes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn

    1991-01-01

    Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.

  2. Io Plume Monitoring (frames 1-36)

    NASA Image and Video Library

    1997-11-04

    A sequence of full disk Io images was taken prior to Galileo's second encounter with Ganymede. The purpose of these observations was to view all longitudes of Io and search for active volcanic plumes. The images were taken at intervals of approximately one hour corresponding to Io longitude increments of about ten degrees. Because both the spacecraft and Io were traveling around Jupiter the lighting conditions on Io (e.g. the phase of Io) changed dramatically during the sequence. These images were registered at a common scale and processed to produce a time-lapse "movie" of Io. This movie combines all of the plume monitoring frames obtained by the Solid State Imaging system aboard NASA's Galileo spacecraft. The most prominent volcanic plume seen in this movie is Prometheus (latitude 1.6 south, longitude 153 west). The plume becomes visible as it moves into daylight, crosses the center of the disk, and is seen in profile against the dark of space at the edge of Io. This plume was first seen by the Voyager 1 spacecraft in 1979 and is believed to be a geyser-like eruption of sulfur dioxide snow and gas. Although details of the region around Prometheus have changed in the seventeen years since Voyager's visit, the shape and height of the plume have not changed significantly. It is possible that this geyser has been erupting nearly continuously over this time. Galileo's primary 24 month mission includes eleven orbits around Jupiter and will provide observations of Jupiter, its moons and its magnetosphere. North is to the top of all frames. The smallest features which can be discerned range from 13 to 31 kilometers across. The images were obtained between the 2nd and the 6th of September, 1996. The animation can be viewed at http://photojournal.jpl.nasa.gov/catalog/PIA01073

  3. Meteorological overview and plume transport patterns during Cal-Mex 2010

    NASA Astrophysics Data System (ADS)

    Bei, Naifang; Li, Guohui; Zavala, Miguel; Barrera, Hugo; Torres, Ricardo; Grutter, Michel; Gutiérrez, Wilfredo; García, Manuel; Ruiz-Suarez, Luis Gerardo; Ortinez, Abraham; Guitierrez, Yaneth; Alvarado, Carlos; Flores, Israel; Molina, Luisa T.

    2013-05-01

    Cal-Mex 2010 Field Study is a US-Mexico collaborative project to investigate cross-border transport of emissions in the California-Mexico border region, which took place from May 15 to June 30, 2010. The current study presents an overview of the meteorological conditions and plume transport patterns during Cal-Mex 2010 based on the analysis of surface and vertical measurements (radiosonde, ceilometers and tethered balloon) conducted in Tijuana, Mexico and the modeling output using a trajectory model (FLEXPRT-WRF) and a regional model (WRF). The WRF model has been applied for providing the meteorological daily forecasts that are verified using the available observations. Both synoptic-scale and urban-scale forecasts (including wind, temperature, and humidity) agree reasonably well with the NCEP-FNL reanalysis data and the measurements; however, the WRF model frequently underestimates surface temperature and planetary boundary layer (PBL) height during nighttime compared to measurements. Based on the WRF-FLEXPART simulations with particles released in Tijuana in the morning, four representative plume transport patterns are identified as “plume-southeast”, “plume-southwest”, “plume-east” and “plume-north”, indicating the downwind direction of the plume; this will be useful for linking meteorological conditions with observed changes in trace gases and particular matter (PM). Most of the days during May and June are classified as plume-east and plume-southeast days, showing that the plumes in Tijuana are mostly carried to the southeast and east of Tijuana within the boundary layer during daytime. The plume transport directions are generally consistent with the prevailing wind directions on 850 hPa. The low level (below 800 m) wind, temperature, and moisture characteristics are different for each plume transport category according to the measurements from the tethered balloon. Future studies (such as using data assimilation and ensemble forecasts) will be

  4. Starting buoyant plumes and vortex ring pinch-off

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait; Gharib, Mory

    2003-11-01

    The vortex ring formation process of a starting buoyant plume was studied experimentally. Buoyant plumes were produced using a heating element at the base of a water tank. The velocity and temperature fields in the flow were measured using digital particle image thermometry and velocimetry (DPITV), allowing the density and vorticity fields to be determined. The vortex ring initially grew, with additional circulation being supplied by the trailing plume. At later times, the vortex ring became disconnected from the trailing plume. This is analogous to the pinch-off of a vortex ring produced by a piston-cylinder apparatus reported by Gharib et al (1998 JFM 360: 121-140). The existence of a pinch-off process for starting buoyant plumes has many implications for environmental flows. Of particular interest is the effect of vortex ring pinch-off on the dispersal of particulates and contaminants in intermittent or sudden convection events.

  5. Space-based Observational Constraints for 1-D Plume Rise Models

    NASA Technical Reports Server (NTRS)

    Martin, Maria Val; Kahn, Ralph A.; Logan, Jennifer A.; Paguam, Ronan; Wooster, Martin; Ichoku, Charles

    2012-01-01

    We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined

  6. CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M.; Warren, H. P.; Muglach, K., E-mail: yi.wang@nrl.navy.mil, E-mail: harry.warren@nrl.navy.mil, E-mail: karin.muglach@nasa.gov

    Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimesmore » barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the ∼1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows.« less

  7. Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama

    USGS Publications Warehouse

    Stumpf, R.P.; Gelfenbaum, G.; Pennock, J.R.

    1993-01-01

    AVHRR satellite imagery and in situ observations were combined to study the motion of a buoyant plume at the mouth of Mobile Bay, Alabama. The plume extended up to 30 km from shore, with a thickness of about 1 m. The inner plume, which was 3-8 m thick, moved between the Bay and inner shelf in response to tidal forcing. The tidal prism could be identified through the movement of plume waters between satellite images. The plume responded rapidly to alongshore wind, with sections of the plume moving at speeds of more than 70 cm s-1, about 11% of the wind speed. The plume moved predominantly in the direction of the wind with a weak Ekman drift. The enhanced speed of the plume relative to normal surface drift is probably due to the strong stratification in the plume, which limits the transfer of momentum into the underlying ambient waters. ?? 1993.

  8. RELATIVE ABUNDANCE MEASUREMENTS IN PLUMES AND INTERPLUMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guennou, C.; Hahn, M.; Savin, D. W., E-mail: cguennou@iac.es

    2015-07-10

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) <10 eV are enhanced relative to their photospheric abundances. This coronal-to-photospheric abundance ratio, commonly called the FIP bias, is typically 1 for elements with a high-FIP (>10 eV). We have used Extreme Ultraviolet Imaging Spectrometer observations made on 2007 March 13 and 14 over a ≈24 hr period tomore » characterize abundance variations in plumes and interplumes. To assess their elemental composition, we used a differential emission measure analysis, which accounts for the thermal structure of the observed plasma. We used lines from ions of iron, silicon, and sulfur. From these we estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These results may help to identify whether plumes or interplumes contribute to the fast solar wind observed in situ and may also provide constraints on the formation and heating mechanisms of plumes.« less

  9. Optimizing smoke and plume rise modeling approaches at local scales

    Treesearch

    Derek V. Mallia; Adam K. Kochanski; Shawn P. Urbanski; John C. Lin

    2018-01-01

    Heating from wildfires adds buoyancy to the overlying air, often producing plumes that vertically distribute fire emissions throughout the atmospheric column over the fire. The height of the rising wildfire plume is a complex function of the size of the wildfire, fire heat flux, plume geometry, and atmospheric conditions, which can make simulating plume rises difficult...

  10. CALIOP-based Biomass Burning Smoke Plume Injection Height

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Choi, H. D.; Fairlie, T. D.; Pouliot, G.; Baker, K. R.; Winker, D. M.; Trepte, C. R.; Szykman, J.

    2017-12-01

    Carbon and aerosols are cycled between terrestrial and atmosphere environments during fire events, and these emissions have strong feedbacks to near-field weather, air quality, and longer-term climate systems. Fire severity and burned area are under the control of weather and climate, and fire emissions have the potential to alter numerous land and atmospheric processes that, in turn, feedback to and interact with climate systems (e.g., changes in patterns of precipitation, black/brown carbon deposition on ice/snow, alteration in landscape and atmospheric/cloud albedo). If plume injection height is incorrectly estimated, then the transport and deposition of those emissions will also be incorrect. The heights to which smoke is injected governs short- or long-range transport, which influences surface pollution, cloud interaction (altered albedo), and modifies patterns of precipitation (cloud condensation nuclei). We are working with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) science team and other stakeholder agencies, primarily the Environmental Protection Agency and regional partners, to generate a biomass burning (BB) plume injection height database using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model). These data have the capacity to provide enhanced smoke plume injection height parameterization in regional, national and international scientific and air quality models. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in local-, regional- and global-scale models used for air quality, chemical transport and climate. Specifically, we will present: (1) a methodology that links BB injection height and CALIOP air parcels to specific fires; (2) the daily evolution of smoke plumes for specific fires; (3) plumes transport and deposited on the Greenland Ice Sheet; and (4) compare CALIOP-derived smoke plume injection

  11. The controversy over plumes: Who is actually right?

    NASA Astrophysics Data System (ADS)

    Puchkov, V. N.

    2009-01-01

    The current state of the theory of mantle plumes and its relation to classic plate tectonics show that the “plume” line of geodynamic research is in a period of serious crisis. The number of publications criticizing this concept is steadily increasing. The initial suggestions of plumes’ advocates are disputed, and not without grounds. Questions have been raised as to whether all plumes are derived from the mantle-core interface; whether they all have a wide head and a narrow tail; whether they are always accompanied by uplifting of the Earth’s surface; and whether they can be reliably identified by geochemical signatures, e.g., by the helium-isotope ratio. Rather convincing evidence indicates that plumes cannot be regarded as a strictly fixed reference frame for moving lithospheric plates. More generally, the very existence of plumes has become the subject of debate. Alternative ideas contend that all plumes, or hot spots, are directly related to plate-tectonic mechanisms and appear as a result of shallow tectonic stress, subsequent decompression, and melting of the mantle enriched in basaltic material. Attempts have been made to explain the regular variation in age of volcanoes in ocean ridges by the crack propagation mechanism or by drift of melted segregations of enriched mantle in a nearly horizontal asthenospheric flow. In the author’s opinion, the crisis may be overcome by returning to the beginnings of the plume concept and by providing an adequate specification of plume attributes. Only mantle flows with sources situated below the asthenosphere should be referred to as plumes. These flows are not directly related to such plate-tectonic mechanisms as passive rifting and decompression melting in the upper asthenosphere and are marked by time-progressive volcanic chains; their subasthenospheric roots are detected in seismic tomographic images. Such plumes are mostly located at the margins of superswells, regions of attenuation of seismic waves at the

  12. Integrating wildfire plume rises within atmospheric transport models

    NASA Astrophysics Data System (ADS)

    Mallia, D. V.; Kochanski, A.; Wu, D.; Urbanski, S. P.; Krueger, S. K.; Lin, J. C.

    2016-12-01

    Wildfires can generate significant pyro-convection that is responsible for releasing pollutants, greenhouse gases, and trace species into the free troposphere, which are then transported a significant distance downwind from the fire. Oftentimes, atmospheric transport and chemistry models have a difficult time resolving the transport of smoke from these wildfires, primarily due to deficiencies in estimating the plume injection height, which has been highlighted in previous work as the most important aspect of simulating wildfire plume transport. As a result of the uncertainties associated with modeled wildfire plume rise, researchers face difficulties modeling the impacts of wildfire smoke on air quality and constraining fire emissions using inverse modeling techniques. Currently, several plume rise parameterizations exist that are able to determine the injection height of fire emissions; however, the success of these parameterizations has been mixed. With the advent of WRF-SFIRE, the wildfire plume rise and injection height can now be explicitly calculated using a fire spread model (SFIRE) that is dynamically linked with the atmosphere simulated by WRF. However, this model has only been tested on a limited basis due to computational costs. Here, we will test the performance of WRF-SFIRE in addition to several commonly adopted plume parameterizations (Freitas, Sofiev, and Briggs) for the 2013 Patch Springs (Utah) and 2012 Baker Canyon (Washington) fires, for both of which observations of plume rise heights are available. These plume rise techniques will then be incorporated within a Lagrangian atmospheric transport model (STILT) in order to simulate CO and CO2 concentrations during NASA's CARVE Earth Science Airborne Program over Alaska during the summer of 2012. Initial model results showed that STILT model simulations were unable to reproduce enhanced CO concentrations produced by Alaskan fires observed during 2012. Near-surface concentrations were drastically

  13. On the relative motions of long-lived Pacific mantle plumes.

    PubMed

    Konrad, Kevin; Koppers, Anthony A P; Steinberger, Bernhard; Finlayson, Valerie A; Konter, Jasper G; Jackson, Matthew G

    2018-02-27

    Mantle plumes upwelling beneath moving tectonic plates generate age-progressive chains of volcanos (hotspot chains) used to reconstruct plate motion. However, these hotspots appear to move relative to each other, implying that plumes are not laterally fixed. The lack of age constraints on long-lived, coeval hotspot chains hinders attempts to reconstruct plate motion and quantify relative plume motions. Here we provide 40 Ar/ 39 Ar ages for a newly identified long-lived mantle plume, which formed the Rurutu hotspot chain. By comparing the inter-hotspot distances between three Pacific hotspots, we show that Hawaii is unique in its strong, rapid southward motion from 60 to 50 Myrs ago, consistent with paleomagnetic observations. Conversely, the Rurutu and Louisville chains show little motion. Current geodynamic plume motion models can reproduce the first-order motions for these plumes, but only when each plume is rooted in the lowermost mantle.

  14. Effects of axisymmetric and normal air jet plumes and solid plume on cylindrical afterbody pressure distributions at Mach numbers from 1.65 to 2.50

    NASA Technical Reports Server (NTRS)

    Covell, P. F.

    1982-01-01

    A wind tunnel investigation of the interference effects of axisymmetric nozzle air plumes, a solid plume, and normal air jet plumes on the afterbody pressure distributions and base pressures of a cylindrical afterbody model was conducted at Mach numbers from 1.65 to 2.50. The axisymmetric nozzles, which varied in exit lip Mach number from 1.7 to 2.7, and the normal air jet nozzle were tested at jet pressure ratios from 1 (jet off) to 615. The tests were conducted at an angle of attack of 0 deg and a Reynolds number per meter of 6.56 million. The results of the investigation show that the solid plume induces greater interference effects than those induced by the axisymmetric nozzle plumes at the selected underexpanded design conditions. A thrust coefficient parameter based on nozzle lip conditons was found to correlate the afterbody disturbance distance and the base pressure between the different axisymmetric nozzles. The normal air jet plume and the solid plume induce afterbody disturbance distances similar to those induced by the axisymmetric air plumes when base pressure is held constant.

  15. Sedimentation from particle-bearing plumes in a stratified ambient

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce R.; Hong, Youn Sub Dominic

    2016-11-01

    Laboratory experiments are performed to examine the sedimentation of particles that initially rise in a plume, then spread radially and settle in uniformly stratified fluid. Using light attenuation, the depth of the sediment bed is measured nonintrusively as a function of radius from the center of the plume. To gain some insight into these dynamics, an idealized model is developed by adapting well-established plume theory and a theory that accounts for sedimentation from surface gravity currents emanating from a plume impacting a rigid lid. We also account for recycling of falling particles that are re-entrained into the plume. With a suitable choice of parameters determining the intrusion height, entrainment during fountain collapse, and the radius at which settling from the intrusion begins, in most cases for which particles are predicted to be drawn back into the plume and recycled. The predictions for intrusion height, particle mound height, and spread agree within 20% of observations.

  16. Accurately measuring volcanic plume velocity with multiple UV spectrometers

    USGS Publications Warehouse

    Williams-Jones, Glyn; Horton, Keith A.; Elias, Tamar; Garbeil, Harold; Mouginis-Mark, Peter J; Sutton, A. Jeff; Harris, Andrew J. L.

    2006-01-01

    A fundamental problem with all ground-based remotely sensed measurements of volcanic gas flux is the difficulty in accurately measuring the velocity of the gas plume. Since a representative wind speed and direction are used as proxies for the actual plume velocity, there can be considerable uncertainty in reported gas flux values. Here we present a method that uses at least two time-synchronized simultaneously recording UV spectrometers (FLYSPECs) placed a known distance apart. By analyzing the time varying structure of SO2 concentration signals at each instrument, the plume velocity can accurately be determined. Experiments were conducted on Kīlauea (USA) and Masaya (Nicaragua) volcanoes in March and August 2003 at plume velocities between 1 and 10 m s−1. Concurrent ground-based anemometer measurements differed from FLYSPEC-measured plume speeds by up to 320%. This multi-spectrometer method allows for the accurate remote measurement of plume velocity and can therefore greatly improve the precision of volcanic or industrial gas flux measurements.

  17. River plume patterns and dynamics within the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  18. Long-lived plasmaspheric drainage plumes: Where does the plasma come from?

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Welling, Daniel T.; Thomsen, Michelle F.; Denton, Michael H.

    2014-08-01

    Long-lived (weeks) plasmaspheric drainage plumes are explored. The long-lived plumes occur during long-lived high-speed-stream-driven storms. Spacecraft in geosynchronous orbit see the plumes as dense plasmaspheric plasma advecting sunward toward the dayside magnetopause. The older plumes have the same densities and local time widths as younger plumes, and like younger plumes they are lumpy in density and they reside in a spatial gap in the electron plasma sheet (in sort of a drainage corridor). Magnetospheric-convection simulations indicate that drainage from a filled outer plasmasphere can only supply a plume for 1.5-2 days. The question arises for long-lived plumes (and for any plume older than about 2 days): Where is the plasma coming from? Three candidate sources appear promising: (1) substorm disruption of the nightside plasmasphere which may transport plasmaspheric plasma outward onto open drift orbits, (2) radial transport of plasmaspheric plasma in velocity-shear-driven instabilities near the duskside plasmapause, and (3) an anomalously high upflux of cold ionospheric protons from the tongue of ionization in the dayside ionosphere, which may directly supply ionospheric plasma into the plume. In the first two cases the plume is drainage of plasma from the magnetosphere; in the third case it is not. Where the plasma in long-lived plumes is coming from is a quandary: to fix this dilemma, further work and probably full-scale simulations are needed.

  19. Characterization of redox conditions in groundwater contaminant plumes

    NASA Astrophysics Data System (ADS)

    Christensen, Thomas H.; Bjerg, Poul L.; Banwart, Steven A.; Jakobsen, Rasmus; Heron, Gorm; Albrechtsen, Hans-Jørgen

    2000-10-01

    Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.

  20. Smoke Plume Over Eastern Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In late May, a massive smoke plume hundreds of kilometers across blew eastward over New Brunswick toward the Atlantic Ocean. On May 26, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image at 11:40 a.m. local time. By the time MODIS took this picture, the smoke appeared to have completely detached itself from the source, a large fire burning in southwestern Quebec, beyond the western edge of this image. In this image, the smoke appears as a gray-beige opaque mass with fuzzy, translucent edges. The plume is thickest in the southwest and diminishes toward the northeast. Just southwest of the plume is a red outline indicating a hotspot an area where MODIS detected anomalously warm surface temperatures, such as those resulting from fires. This hotspot, however, is not the source for this smoke plume. According to a bulletin from the National Oceanic and Atmospheric Administration, the southwestern Quebec fire was the source. According to reports from the Canadian Interagency Forest Fire Centre on May 29, that fire was estimated at 63,211 hectares (156,197 acres), and it was classified as 'being held.' At the same time, more than 20 wildfires burned in Quebec, news sources reported, and firefighters from other Canadian provinces and the United States had been brought in to provide reinforcements for the area's firefighters.

  1. Primary hydrothermal input above nonbuoyant plume level in the water column.

    NASA Astrophysics Data System (ADS)

    Nakamura, K.

    2008-12-01

    Accumulating in-situ Eh measurements of seawater by CTD hydrothermal plume chasing above ridges in various oceans suggest that some ill-diluted reduced water can be eventually observed above nonbuoyant plume level, which indicate locations of buoyant rising plume penetration through spread nonbuoyant plume. Such location can even be intentionally detectable by successive three to four orthogonal CTD tow-yo operations. See an example in the South Atlantic (http://www.divediscover.whoi.edu/expedition12/daily/080109.html). Large/rapid voltage drops recorded by in- situ Eh (ORP) electrodes on moving platform like CTD (non-equilibrated measurement) occur when electrodes pass from oxygen-controlled to sulfide-controlled redox condition. Assuming a common chemical compositions of 350 deg C hydrothermal fluid source, the calculated redox potential of mixture of hydrothermal fluid and ambient seawater shows a sharp discontinuity around the dilution factor of 130 (aquatic chemistry textbooks of Morel(1983) p.345, (1993) p.460). In popular turbulent plume models based on Morton, Taylor and Turner (1956, point source and homogeneous dilution by ambient seawater entrainment along by an amount proportional to the vertical velocity in the plume), the dilution factors at the level of zero rising momentum are calculated as 5500 to 10,000 (ex., McDuff, 1995). Evidence of redox anomalies above nonbuoyant plume level contradicts momentum overshoot by popular turbulent plume models and prefers a plume cap overshoot in starting plume (Turner, 1973) or heterogeneous dilution. Turner's starting plume were thought to be generated by on and off of buoyant fluid input. The plume cap is assumed to have vortex structure like thermal and resistant to dilution. In the ridge environment with ocean tide it is likely generated spatially and temporary by semidiurnal to diurnal bottom current direction change. Some recent AUV profiles cross-cutting rising buoyant plume will be also presented to

  2. Constraints on the detection of cryovolcanic plumes on Europa

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Barnouin, Olivier S.; Prockter, Louise M.; Patterson, G. Wesley

    2013-09-01

    Surface venting is a common occurrence on several outer solar system satellites. Spacecraft have observed plumes erupting from the geologically young surfaces of Io, Triton and Enceladus. Europa also has a relatively young surface and previous studies have suggested that cryovolcanic eruptions may be responsible for the production of low-albedo deposits surrounding lenticulae and along triple band margins and lineae. Here, we have used the projected thicknesses of these deposits as constraints to determine the lifetimes of detectable cryovolcanic plumes that may have emplaced them. In an effort to explore the feasibility of detection of the particle component of plumes by spacecraft cameras operating at visible wavelengths, we present a conservative model to estimate plume characteristics such as height, eruption velocity, and optical depth under a variety of conditions. We find that cryovolcanic plumes on Europa are likely to be fairly small in stature with heights between 2.5 and 26 km, and eruption velocities between 81 and 261 m/s, respectively. Under these conditions and assuming that plumes are products of steady eruptions with particle radii of 0.5 μm, our model suggests that easily detectable plumes will have optical depths, τ, greater than or equal to 0.04, and that their lifetimes may be no more than 300,000 years. Plume detection may be possible if high phase angle limb observations and/or stereo imaging of the surface are undertaken in areas where eruptive activity is likely to occur. Cameras with imaging resolutions greater than 50 m/pixel should be used to make all observations. Future missions could employ the results of our model in searches for plume activity at Europa.

  3. Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes

    NASA Astrophysics Data System (ADS)

    Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; Barsanti, Kelley C.; Hatch, Lindsay E.; May, Andrew A.; Kreidenweis, Sonia M.; Pierce, Jeffrey R.

    2017-04-01

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated. We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms.We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol

  4. Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol

  5. Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes

    DOE PAGES

    Bian, Qijing; Jathar, Shantanu H.; Kodros, John K.; ...

    2017-04-28

    Secondary organic aerosol (SOA) has been shown to form in biomass-burning emissions in laboratory and field studies. However, there is significant variability among studies in mass enhancement, which could be due to differences in fuels, fire conditions, dilution, and/or limitations of laboratory experiments and observations. This study focuses on understanding processes affecting biomass-burning SOA formation in laboratory smog-chamber experiments and in ambient plumes. Vapor wall losses have been demonstrated to be an important factor that can suppress SOA formation in laboratory studies of traditional SOA precursors; however, impacts of vapor wall losses on biomass-burning SOA have not yet been investigated.more » We use an aerosol-microphysical model that includes representations of volatility and oxidation chemistry to estimate the influence of vapor wall loss on SOA formation observed in the FLAME III smog-chamber studies. Our simulations with base-case assumptions for chemistry and wall loss predict a mean OA mass enhancement (the ratio of final to initial OA mass, corrected for particle-phase wall losses) of 1.8 across all experiments when vapor wall losses are modeled, roughly matching the mean observed enhancement during FLAME III. The mean OA enhancement increases to over 3 when vapor wall losses are turned off, implying that vapor wall losses reduce the apparent SOA formation. We find that this decrease in the apparent SOA formation due to vapor wall losses is robust across the ranges of uncertainties in the key model assumptions for wall-loss and mass-transfer coefficients and chemical mechanisms. We then apply similar assumptions regarding SOA formation chemistry and physics to smoke emitted into the atmosphere. In ambient plumes, the plume dilution rate impacts the organic partitioning between the gas and particle phases, which may impact the potential for SOA to form as well as the rate of SOA formation. We add Gaussian dispersion to our aerosol

  6. Volcanic Plume Measurements with UAV (Invited)

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  7. CONSEQUENCES OF NON-LINEAR DENSITY EFFECTS ON BUOYANCY AND PLUME BEHAVIOR

    EPA Science Inventory

    Aquatic plumes, as turbulent streams, grow by entraining ambient water. Buoyant plumes rise and dense ones sink, but, non-linear kinetic effects can reverse the buoyant force in mid-phenomenon. The class of nascent-density plumes begin as buoyant, upwardly accelerating plumes tha...

  8. Influence of mass transfer on bubble plume hydrodynamics.

    PubMed

    Lima Neto, Iran E; Parente, Priscila A B

    2016-03-01

    This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes.

  9. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across

  10. UV missile-plume signature model

    NASA Astrophysics Data System (ADS)

    Roblin, Antoine; Baudoux, Pierre E.; Chervet, Patrick

    2002-08-01

    A new 3D radiative code is used to solve the radiative transfer equation in the UV spectral domain for a nonequilibrium and axisymmetric media such as a rocket plume composed of hot reactive gases and metallic oxide particles like alumina. Calculations take into account the dominant chemiluminescence radiation mechanism and multiple scattering effects produced by alumina particles. Plume radiative properties are studied by using a simple cylindrical media of finite length, deduced from different aerothermochemical real rocket plume afterburning zones. Assumed a log-normal size distribution of alumina particles, optical properties are calculated by using Mie theory. Due to large uncertainties of particles properties, systematic tests have been performed in order to evaluate the influence of the different input data (refractive index, particle mean geometric radius) upon the radiance field. These computations will help us to define the set of parameters which need to be known accurately in order to compare computations with radiance measurements obtained during field experiments.

  11. Ash Plume from Shiveluch

    NASA Image and Video Library

    2012-10-09

    When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA

  12. Stormwater plume detection by MODIS imagery in the southern California coastal ocean

    NASA Astrophysics Data System (ADS)

    Nezlin, Nikolay P.; DiGiacomo, Paul M.; Diehl, Dario W.; Jones, Burton H.; Johnson, Scott C.; Mengel, Michael J.; Reifel, Kristen M.; Warrick, Jonathan A.; Wang, Menghua

    2008-10-01

    Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S < 32.0 ("plume") and S > 33.0 ("ocean"). The plume optical signatures (i.e., the nLw differences between "plume" and "ocean") were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into "plume" and "ocean" using two criteria: (1) "plume" included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in "plume" exceeded the California State Water Board standards. The salinity threshold between "plume" and "ocean" was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the

  13. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-31

    A single plume of plasma, many times taller than the diameter of Earth, rose up from the Sun, twisted and spun around, all the while spewing streams of particles for over two days (Aug. 17-19, 2015) before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Experiments on Plume Spreading by Engineered Injection and Extraction

    NASA Astrophysics Data System (ADS)

    Mays, D. C.; Jones, M.; Tigera, R. G.; Neupauer, R.

    2014-12-01

    The notion that groundwater remediation is transport-limited emphasizes the coupling between physical (i.e., hydrodynamic), geochemical, and microbiological processes in the subsurface. Here we leverage this coupling to promote groundwater remediation using the approach of engineered injection and extraction. In this approach, inspired by the literature on chaotic advection, uncontaminated groundwater is injected and extracted through a manifold of wells surrounding the contaminated plume. The potential of this approach lies in its ability to actively manipulate the velocity field near the contaminated plume, generating plume spreading above and beyond that resulting from aquifer heterogeneity. Plume spreading, in turn, promotes mixing and reaction by chemical and biological processes. Simulations have predicted that engineered injection and extraction generates (1) chaotic advection whose characteristics depend on aquifer heterogeneity, and (2) faster rates and increased extent of groundwater remediation. This presentation focuses on a complimentary effort to experimentally demonstrate these predictions experimentally. In preparation for future work using refractive index matched (RIM) porous media, the experiments reported here use a Hele-Shaw apparatus containing silicone oil. Engineered injection and extraction is used to manipulate the geometry of an initially circular plume of black pigment, and photographs record the plume geometry after each step of injection of extraction. Image analysis, using complimentary Eulerian and Lagrangian approaches, reveals the thickness and variability of the dispersion zone surrounding the deformed plume of black pigment. The size, shape, and evolution of this dispersion zone provides insight into the interplay between engineered injection and extraction, which generates plume structure, and dispersion (here Taylor dispersion), which destroys plume structure. These experiments lay the groundwork for application of engineered

  15. Atmospheric Modeling of Mars Methane Plumes

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Allen, M.; Lee, S.

    2010-10-01

    We present two complementary methods for isolating and modeling surface source releases of methane in the martian atmosphere. From recent observations, there is strong evidence that periodic releases of methane occur from discrete surface locations, although the exact location and mechanism of release is still unknown. Numerical model simulations with the Mars Weather Research and Forecasting (MarsWRF) general circulation model (GCM) have been applied to the ground-based observations of atmospheric methane by Mumma et al., (2009). MarsWRF simulations reproduce the natural behavior of trace gas plumes in the martian atmosphere, and reveal the development of the plume over time. These results provide constraints on the timing and location of release of the methane plume. Additional detections of methane have been accumulated by the Planetary Fourier Spectrometer (PFS) on board Mars Express. For orbital observations, which generally have higher frequency and resolution, an alternate approach to source isolation has been developed. Drawing from the concept of natural selection within biology, we apply an evolutionary computational model to this problem of isolating source locations. Using genetic algorithms that `reward’ best-fit matches between observations and GCM plume simulations (also from MarsWRF) over many generations, we find that we can potentially isolate source locations to within tens of km, which is within the roving capabilities of future Mars rovers. Together, these methods present viable numerical approaches to restricting the timing, duration and size of methane release events, and can be used for other trace gas plumes on Mars as well as elsewhere in the solar system.

  16. Europa Scene: Plume, Galileo, Magnetic Field (Artist's Concept)

    NASA Image and Video Library

    2018-05-14

    Artist's illustration of Jupiter and Europa (in the foreground) with the Galileo spacecraft after its pass through a plume erupting from Europa's surface. A new computer simulation gives us an idea of how the magnetic field interacted with a plume. The magnetic field lines (depicted in blue) show how the plume interacts with the ambient flow of Jovian plasma. The red colors on the lines show more dense areas of plasma. https://photojournal.jpl.nasa.gov/catalog/PIA21922

  17. Role of transients in the sustainability of solar coronal plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raouafi, N.-E.; Stenborg, G., E-mail: NourEddine.Raouafi@jhuapl.edu

    2014-06-01

    We report on the role of small-scale, transient magnetic activity in the formation and evolution of solar coronal plumes. Three plumes within equatorial coronal holes are analyzed over the span of several days based on the Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly 171 Å and 193 Å images and SDO/Helioseismic and Magnetic Imager line-of-sight magnetograms. The focus is on the role of transient structures at the footpoints in sustaining coronal plumes for relatively long periods of time (i.e., several days). The appearance of plumes is a gradual and lengthy process. In some cases, the initial stages of plume formation aremore » marked by the appearance of pillar-like structures whose footpoints are the sources of transient brightenings. In addition to nominal jets occurring prior to and during the development of plumes, the data show that a large number of small jets (i.e., {sup j}etlets{sup )} and plume transient bright points (PTBPs) occur on timescales of tens of seconds to a few minutes. These features are the result of quasi-random cancellations of fragmented and diffuse minority magnetic polarity with the dominant unipolar magnetic field concentration over an extended period of time. They unambiguously reflect a highly dynamical evolution at the footpoints and are seemingly the main energy source for plumes. This suggests a tendency for plumes to be dependent on the occurrence of transients (i.e., jetlets, and PTBPs) resulting from low-rate magnetic reconnection. The decay phase of plumes is characterized by gradual fainting and multiple rejuvenations as a result of the dispersal of the unipolar magnetic concentration and its precipitation into multiple magnetic centers.« less

  18. Cassini Radio Occultation by Enceladus Plume

    NASA Astrophysics Data System (ADS)

    Kliore, A.; Armstrong, J.; Flasar, F.; French, R.; Marouf, E.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Aguilar, R.; Rochblatt, D.

    2006-12-01

    A fortuitous Cassini radio occultation by Enceladus plume occurs on September 15, 2006. The occultation track (the spacecraft trajectory in the plane of the sky as viewed from the Earth) has been designed to pass behind the plume (to pass above the south polar region of Enceladus) in a roughly symmetrical geometry centered on a minimum altitude above the surface of about 20 km. The minimum altitude was selected primarily to ensure probing much of the plume with good confidence given the uncertainty in the spacecraft trajectory. Three nearly-pure sinusoidal signals of 0.94, 3.6, and 13 cm-wavelength (Ka-, X-, and S-band, respectively) are simultaneously transmitted from Cassini and are monitored at two 34-m Earth receiving stations of the Deep Space Network (DSN) in Madrid, Spain (DSS-55 and DSS-65). The occultation of the visible plume is extremely fast, lasting less than about two minutes. The actual observation time extends over a much longer time interval, however, to provide a good reference baseline for potential detection of signal perturbations introduced by the tenuous neutral and ionized plume environment. Given the likely very small fraction of optical depth due to neutral particles of sizes larger than about 1 mm, detectable changes in signal intensity is perhaps unlikely. Detection of plume plasma along the radio path as perturbations in the signals frequency/phase is more likely and the magnitude will depend on the electron columnar density probed. The occultation time occurs not far from solar conjunction time (Sun-Earth-probe angle of about 33 degrees), causing phase scintillations due to the solar wind to be the primary limiting noise source. We estimate a delectability limit of about 1 to 3E16 electrons per square meter columnar density assuming about 100 seconds integration time. Potential measurement of the profile of electron columnar density along the occultation track is an exciting prospect at this time.

  19. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband

  20. Experimental study of oil plume stability: Parametric dependences and optimization.

    PubMed

    Li, Haoshuai; Shen, Tiantian; Bao, Mutai

    2016-10-15

    Oil plume is known to interact with density layer in spilled oil. Previous studies mainly focused on tracking oil plumes and predicting their impact on marine environment. Here, simulated experiments are presented that investigated the conditions inducing the formation of oil plume, focusing especially on the effects of oil/water volume ratio, oil/dispersant volume rate, ambient stratification and optimal conditions of oil plume on determining whether a plume will trap or escape. Scenario simulations showed that OWR influences the residence time most, dispersants dosage comes second and salinity least. The optimum residence time starts from 2387s, occurred at approximately condition (OWR, 0.1, DOR, 25.53% and salinity, 32.38). No change in the relative distribution under the more scale tank was observed, indicating these provide the time evolution of the oil plumes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Observations of cloud chemistry during longrange transport of power plant plumes

    NASA Astrophysics Data System (ADS)

    Clark, P. A.; Fletcher, I. S.; Kallend, A. S.; McElroy, W. J.; Marsh, A. R. W.; Webb, A. H.

    Measurements of the chemical composition of cloud water have been made as part of a programme to study the chemical development of power plant plumes in trajectories over the North Sea. During a two-day study (28-29 January 1981), the conditions were anticyclonic with light winds advecting the plume from the NE coast of England towards Denmark. The mixing layer overland was capped by stratocumulus beneath a very strong subsidence inversion, which resulted in the plume being entirely trapped within the layer. Low level acceleration occurred as the plume travelled towards the coast, accompanied by a shallowing of the mixing layer. This led to the unusual situation whereby the plume was confined to a shallow (400m) stratocumulus-filled boundary layer throughout most of its travel. The light winds enabled approximately Lagrangian sampling of the plume after about 5 and 22 h travel (~ 100 and 650km from source). The very shallow boundary layer constrained the dilution of the plume to such an extent that even though ambient O 3 was consumed within the plume by the reaction with NO, the NO 2/NO x ratio was still < 0.5 along the plume centre line after 22 h travel. The measurements have been compared with the predictions of a reactive plume model involving both gas phase and solution phase chemistry. The model predicts oxidation rates for SO 2 in the ambient air outside the plume to be substantially higher than those within the plume, at values of 0.5-1.0 and ~ 0.04 % h -1, respectively. This leads to the conclusion that nearly all the sulphate in the plume arose from entrainment of sulphate produced in cloud droplets outside the plume. The absence of an effective oxidation mechanism in solution for the conversion of NOx to HNO 3 suggests that nitrate in the cloud water was derived from the gas phase oxidation of NOx. HC1 was found to be the major contributor to cloud water acidity in the plume on this occasion. The resultant acidity suppressed the solubility of SO 2 and

  2. Stormwater plume detection by MODIS imagery in the southern California coastal ocean

    USGS Publications Warehouse

    Nezlin, N.P.; DiGiacomo, P.M.; Diehl, D.W.; Jones, B.H.; Johnson, S.C.; Mengel, M.J.; Reifel, K.M.; Warrick, J.A.; Wang, M.

    2008-01-01

    Stormwater plumes in the southern California coastal ocean were detected by MODIS-Aqua satellite imagery and compared to ship-based data on surface salinity and fecal indicator bacterial (FIB) counts collected during the Bight'03 Regional Water Quality Program surveys in February-March of 2004 and 2005. MODIS imagery was processed using a combined near-infrared/shortwave-infrared (NIR-SWIR) atmospheric correction method, which substantially improved normalized water-leaving radiation (nLw) optical spectra in coastal waters with high turbidity. Plumes were detected using a minimum-distance supervised classification method based on nLw spectra averaged within the training areas, defined as circular zones of 1.5-5.0-km radii around field stations with a surface salinity of S 33.0 ('ocean'). The plume optical signatures (i.e., the nLw differences between 'plume' and 'ocean') were most evident during the first 2 days after the rainstorms. To assess the accuracy of plume detection, stations were classified into 'plume' and 'ocean' using two criteria: (1) 'plume' included the stations with salinity below a certain threshold estimated from the maximum accuracy of plume detection; and (2) FIB counts in 'plume' exceeded the California State Water Board standards. The salinity threshold between 'plume' and 'ocean' was estimated as 32.2. The total accuracy of plume detection in terms of surface salinity was not high (68% on average), seemingly because of imperfect correlation between plume salinity and ocean color. The accuracy of plume detection in terms of FIB exceedances was even lower (64% on average), resulting from low correlation between ocean color and bacterial contamination. Nevertheless, satellite imagery was shown to be a useful tool for the estimation of the extent of potentially polluted plumes, which was hardly achievable by direct sampling methods (in particular, because the grids of ship-based stations covered only small parts of the plumes detected via

  3. Field experimental observations of highly graded sediment plumes.

    PubMed

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. AATSR Based Volcanic Ash Plume Top Height Estimation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-11-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55◦ forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.

  5. Mantle plumes and hotspot geochemistry

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Becker, T. W.; Konter, J.

    2017-12-01

    Ever improving global seismic models, together with expanding databases of mantle derived hotspot lavas, herald advances that relate the geochemistry of hotspots with low seismic shear-wave velocity conduits (plumes) in the mantle. Early efforts linked hotspot geochemistry with deep mantle large low velocity provinces (LLVPs) [1]. More recently, Konter and Becker (2012) [2] observed that the proportion of the C mantle component (inferred from Sr-Nd-Pb isotopes) in hotspot lavas shows an inverse relationship with seismic S-wave velocity anomalies in the shallow mantle (200 km) beneath each hotspot. They proposed that these correlations should also be made based on 3He/4He. Thus, we compare 3He/4He versus seismic S-wave velocity anomalies at 200 km depth. We find that plume-fed hotspots with the highest maximum 3He/4He (i.e., which host more of the C component) have higher hotspot buoyancy fluxes and overlie regions of lower seismic S-wave velocity (interpreted to relate to hotter mantle temperatures) at 200 km depth than hotspots that have only low 3He/4He [3]. This result complements recent work that shows an inverse relationship between maximum 3He/4He and seismic S-wave velocity anomalies in the mantle beneath the western USA [4]. The relationship between 3He/4He, shallow mantle seismic S-wave velocity anomalies, and buoyancy flux is most easily explained by a model where hotter plumes are more buoyant and entrain more of a deep, dense high 3He/4He reservoir than cooler plumes that underlie low 3He/4He hotspots. If the high 3He/4He domain is denser than other mantle components, it will be entrained only by the hottest, most buoyant plumes [3]. Such a deep, dense reservoir is ideally suited to preserving early-formed Hadean domains sampled in modern plume-fed hotspots. An important question is whether, like 3He/4He, seismic S-wave velocity anomalies in the mantle are associated with distinct heavy radiogenic isotopic compositions. C signatures are related to hot

  6. Effects of meteorological conditions on spore plumes

    NASA Astrophysics Data System (ADS)

    Burch, M.; Levetin, E.

    2002-05-01

    Fungal spores are an ever-present component of the atmosphere, and have long been known to trigger asthma and hay fever symptoms in sensitive individuals. The atmosphere around Tulsa has been monitored for airborne spores and pollen with Burkard spore traps at several sampling stations. This study involved the examination of the hourly spore concentrations on days that had average daily concentrations near 50,000 spores/m3 or greater. Hourly concentrations of Cladosporium, Alternaria, Epicoccum, Curvularia, Pithomyces, Drechslera, smut spores, ascospores, basidiospores, other, and total spores were determined on 4 days at three sites and then correlated with hourly meteorological data including temperature, rainfall, wind speed, dew point, air pressure, and wind direction. On each of these days there was a spore plume, a phenomenon in which spore concentrations increased dramatically over a very short period of time. Spore plumes generally occurred near midday, and concentrations were seen to increase from lows around 20,000 total spores/m3 to highs over 170,000 total spores/m3 in 2 h. Multiple regression analysis of the data indicated that increases in temperature, dew point, and air pressure correlated with the increase in spore concentrations, but no single weather variable predicted the appearance of a spore plume. The proper combination of changes in these meteorological parameters that result in a spore plume may be due to the changing weather conditions associated with thunderstorms, as on 3 of the 4 days when spore plumes occurred there were thunderstorms later that evening. The occurrence of spore plumes may have clinical significance, because other studies have shown that sensitization to certain spore types can occur during exposure to high spore concentrations.

  7. Summary of nozzle-exhaust plume flowfield analyses related to space shuttle applications

    NASA Technical Reports Server (NTRS)

    Penny, M. M.

    1975-01-01

    Exhaust plume shape simulation is studied, with the major effort directed toward computer program development and analytical support of various plume related problems associated with the space shuttle. Program development centered on (1) two-phase nozzle-exhaust plume flows, (2) plume impingement, and (3) support of exhaust plume simulation studies. Several studies were also conducted to provide full-scale data for defining exhaust plume simulation criteria. Model nozzles used in launch vehicle test were analyzed and compared to experimental calibration data.

  8. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  9. Mantle plumes on Venus revisited

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.

    1992-01-01

    The Equatorial Highlands of Venus consist of a series of quasicircular regions of high topography, rising up to about 5 km above the mean planetary radius. These highlands are strongly correlated with positive geoid anomalies, with a peak amplitude of 120 m at Atla Regio. Shield volcanism is observed at Beta, Eistla, Bell, and Atla Regiones and in the Hathor Mons-Innini Mons-Ushas Mons region of the southern hemisphere. Volcanos have also been mapped in Phoebe Regio and flood volcanism is observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in Ovda and Thetis Regiones. Extensional tectonism is also observed in many of these regions. It is now widely accepted that at least Beta, Atla, Eistla, and Bell Regiones are the surface expressions of hot, rising mantel plumes. Upwelling plumes are consistent with both the volcanism and the extensional tectonism observed in these regions. The geoid anomalies and topography of these four regions show considerable variation. Peak geoid anomalies exceed 90 m at Beta and Atla, but are only 40 m at Eistla and 24 m at Bell. Similarly, the peak topography is greater at Beta and Atla than at Eistla and Bell. Such a range of values is not surprising because terrestrial hotspot swells also have a side range of geoid anomalies and topographic uplifts. Kiefer and Hager used cylindrical axisymmetric, steady-state convection calculations to show that mantle plumes can quantitatively account for both the amplitude and the shape of the long-wavelength geoid and topography at Beta and Atla. In these models, most of the topography of these highlands is due to uplift by the vertical normal stress associated with the rising plume. Additional topography may also be present due to crustal thickening by volcanism and crustal thinning by rifting. Smrekar and Phillips have also considered the geoid and topography of plumes on Venus, but they restricted themselves to considering only the geoid-topography ratio and did not

  10. Large Igneous Provinces, Mantle Plumes, and Continental Break-up: An Overview.

    NASA Astrophysics Data System (ADS)

    Peate, D. W.

    2003-04-01

    Although mantle plumes are widely implicated in models for the generation of large igneous provinces (LIPs) and the break-up of supercontinents such as Gondwana, the exact role of the mantle plume in these processes, and even the very existence of mantle plumes, is controversial and hotly debated. The large volumes of magma produced within a LIP (> 10^6 km^3) in a relative short time interval (< few Myrs) require elevated mantle temperatures such as is inferred for a plume, but it is not easy to determine whether the melting occurred as a result of the arrival of a plume head in the shallow mantle or in response to lithospheric extension. Numerous questions remain unresolved: e.g. Can all LIPs be explained by plume-like mantle upwellings, or are non-plume models such as edge-driven convection a plausible alternative?; Are plumes wet-spots rather than hot-spots?; Do they originate from the core-mantle boundary?; How important is the influence of the overlying lithosphere (limiting the upwelling and extent of melting, modifying the composition of deeper melts, and possibly acting as a source for melts)? In this presentation, I will summarise key observations from three young LIP's (< 135 Ma), each associated with continental break-up. These case studies will be: (i) North Atlantic LIP - Iceland plume, (ii) Parana-Etendeka LIP - Tristan plume, and (iii) Ethiopia-Yemen LIP - Afar plume. Aspects that will be considered include: the areal extent, volume and eruption rates of magmatism; temporal relationship of flood basalt volcanism to lithospheric extension and continental break-up; compositional similarities and differences between the flood basalts and more recent lavas from the associated plume; spatial and temporal compositional variations as a means of assessing the location and length-scales of heterogeneities in the upwelling mantle, seismic tomographic images of mantle thermal structure today; crustal structure of the rifted margins from wide-angle and

  11. Linking Europa’s Plume Activity to Tides, Tectonics, and Liquid Water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa R.; Hurford, Terry; Roth, Lorenz; Retherford, Kurt

    2014-11-01

    Much of the geologic activity preserved on Europa’s icy surface has been attributed to tidal deformation, mainly due to Europa’s eccentric orbit. Although the surface is geologically young, evidence of ongoing tidally-driven processes has been lacking. However, a recent observation of water vapor near Europa’s south pole suggests that it may be geologically active. Non-detections in previous and follow-up observations indicate a temporal variation in plume visibility and suggests a relationship to Europa’s tidal cycle. Similarly, the Cassini spacecraft has observed plumes emanating from the south pole of Saturn’s moon, Enceladus, and variability in the intensity of eruptions has been linked to its tidal cycle. The inference that a similar mechanism controls plumes at both Europa and Enceladus motivates further analysis of Europa’s plume behavior and the relationship between plumes, tides, and liquid water on these two satellites.We determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa’s orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. In contrast, the addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of the model faults are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across model faults suggests that the plumes would be best observed earlier in Europa’s orbit. Our results indicate that Europa’s plumes, if

  12. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    NASA Astrophysics Data System (ADS)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and

  13. Simple Models of SL-9 Impact Plumes

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Deming, L. D.

    1996-09-01

    The impacts of the larger fragments of Comet Shomaker-Levy 9 on Jupiter left debris patterns of consistent appearance, likely caused by the landing of the observed impact plumes. Realistic fluid simulations of impact plume evolution may take months to years for even single computer runs. To provide guidance for these models and to elucidate the most basic aspects of the plumes, debris patterns, and their ultimate effect on the atmosphere, we have developed simple models that reproduce many of the key features. These Monte-Carlo models divide the plume into discrete mass elements, assign to them a velocity distribution based on numerical impact models, and follow their ballistic trajectories until they hit the planet. If particles go no higher than the observed ~ 3,000 km plume heights, they cannot reach the observed crescent pattern located ~ 10,000 km from the impact sites unless they slide horizontally after ballistic flight. By introducing parameterized sliding or higher trajectories, we can reproduce most of the observed impact features, including the central streak, the crescent, and the ephemeral ring located ~ 30,000 km from the impact sites. We also keep track of the amounts of energy and momentum delivered to the atmosphere as a function of time and location, for use in atmospheric models (D. Deming and J. Harrington, this meeting).

  14. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    NASA Astrophysics Data System (ADS)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  15. Simple models of SL-9 impact plumes in flight

    NASA Astrophysics Data System (ADS)

    Harrington, J.; Deming, D.

    1998-09-01

    We have extended our ballistic Monte-Carlo model of the Shoemaker-Levy 9 impact plumes (J. Harrington and D. Deming 1996. Simple models of SL9 impact plumes, Bull. Am. Astron. Soc. 28 1150--1151) to calculate the appearance of the plumes in flight. We compare these synthetic images to the data taken by the Hubble Space Telescope of plumes on the limb of Jupiter during impacts A, E, G, and W. The model uses a parameterized version of the final power-law velocity distribution from the impact models of Zahnle and Mac Low. The observed plume heights, lightcurve features, and debris patterns fix the values of model parameters. The parameters that best reproduce the debris patterns dictate an approximately conic plume geometry, with the apex of the cone initially near the impact site, the cone's axis pointed in the direction from which the impactor came, and an opening angle >45sp ° from the axis. Since material of a given velocity is, at any given time, a certain distance from the cone apex, the geometry spreads high-velocity material much thinner than low-velocity material. The power law exponent of -1.55 combines with this effect to make mass density fall off as the -3.55 power of the velocity (or distance from the plume base). However, the outer shell of highest-velocity material, corresponding to the atmospheric shock wave, carries considerably elevated mass density. We are currently studying the range of reasonable optical properties to determine whether the visible plume tops corresponded to the physical top of this shell, or to a lower density contour.

  16. Baby-Plumes beneath Central Europe - Indications from seismic studies

    NASA Astrophysics Data System (ADS)

    Achauer, U.; Granet, M.

    2011-12-01

    The most important result of the seismic investigations in the French Massif Central at the beginning of the 1990' (French-German co-operative project Limagne 91/92) was the proof of an ascending material stream from larger depth (250km), which due to its geochemical, petrological and temperature characteristics and its appearance was classified as a plume and which confirmed an already 20 years earlier expressed hypothesis. The really new of the results were that for the first time the exact size and shape of this plume at upper mantle depths was determined, as well as the fact that no plume head ("mushroom") could be found. This led to the expression of "baby plume" for this kind of material up-streaming in order to differentiate this feature to the classical idea of a plume (such as the model by Shilling). The results from the Massif Central triggered similar seismic experiments in other regions of Central Europe with variscan basement and recent volcanism, such as the Eifel plume project and BOHEMA and led to the proof of another such structure beneath the Eifel volcanic region. In contrast to that does the Bohemian massif anomaly more look like a classic asthenospheric upwarp. Recent investigations, in particularily based on additional data from a project across the southern Massif Central, let assume that the origin of these plume like structures lies in the mantle transition zone and that they might be connected to a fossil slab. In this lecture an overview will be given of the current state of affairs concerning the seismic research on baby plumes, as well as possible causes for their presence will be discussed.

  17. Two classes of volcanic plumes on Io

    USGS Publications Warehouse

    McEwen, A.S.; Soderblom, L.A.

    1983-01-01

    Comparison of Voyager 1 and Voyager 2 images of the south polar region of Io has revealed that a major volcanic eruption occured there during the period between the two spacecraft encounters. An annular deposit ???1400 km in diameter formed around the Aten Patera caldera (311??W, 48??S), the floor of which changed from orange to red-black. The characteristics of this eruption are remarkably similar to those described earlier for an eruption centered on Surt caldera (338??W, 45??N) that occured during the same period, also at high latitude, but in the north. Both volcanic centers were evidently inactive during the Voyager 1 and 2 encounters but were active sometime between the two. The geometric and colorimetric characteristics, as well as scale of the two annular deposits, are virtually identical; both resemble the surface features formed by the eruption of Pele (255??W, 18??S). These three very large plume eruptions suggest a class of eruption distinct from that of six smaller plumes observed to be continously active by both Voyagers 1 and 2. The smaller plumes, of which Prometheus is the type example, are longer-lived, deposit bright, whitish material, erupt at velocities of ???0.5 km sec-1, and are concentrated at low latitudes in an equatorial belt around the satellite. The very large Pele-type plumes, on the other hand, are relatively short-lived, deposit darker red materials, erupt at ???1.0 km sec-1, and (rather than restricted to a latitudinal band) are restricted in longitude from 240?? to 360??W. Both direct thermal infrared temperature measurements and the implied color temperatures for quenched liquid sulfur suggest that hot spot temperatures of ???650??K are associated with the large plumes and temperatures 650??K), sulfur is a low-viscosity fluid (orange and black, respectively); at other temperatures it is either solid or has a high viscosity. As a result, there will be two zones in Io's crust in which liquid sulfur will flow freely: a shallow zone

  18. The Green Propellant Infusion Mission Thruster Performance Testing for Plume Diagnostics

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Reed, Brian D.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters are currently being tested in a small rocket, altitude facility at NASA GRC. A suite of diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, and Schlieren imaging are being used to acquire plume measurements of AF-M315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  19. The adjustment of mantle plumes to changes in plate motion

    NASA Astrophysics Data System (ADS)

    Griffiths, Ross W.; Richards, Mark A.

    1989-05-01

    The relative motion of hotspots and lithospheric plates implies a velocity shear in the underlying mantle, causing horizontal advection of mantle plumes as they rise toward the lithosphere. Consequent tilting of plumes parallel to the direction of plate motion indicates that plumes must undergo a period of readjustment after the velocity vector for plate motion is altered. Thus the shape of bends in the surface tracks of hotspots, resulting from changes in plate motion, will reflect the plume adjustment. Laboratory experiments, as well as computations using a simple theory developed in Richards & Griffiths [1988] for the dynamics of continuous plume conduits, demonstrate that the bend in the surface track has a radius of curvature approximately equal to the maximum horizontal deflection of the conduit. Thus the sharpness of the bend at an age of 43Ma in the Hawaiian-Emperor volcanic chain implies that the deflection of the underlying plume in that case was small (<200 km). This small deflection is expected for plumes carrying large buoyancy fluxes, and it indicates that tilting of the conduit is unlikely to be sufficient to cause diapiric instability.

  20. Experimental and Computational Study of Sonic and Supersonic Jet Plumes

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Naughton, J. W.; Fletcher, D. G.; Edwards, Thomas A. (Technical Monitor)

    1994-01-01

    Study of sonic and supersonic jet plumes are relevant to understanding such phenomenon as jet-noise, plume signatures, and rocket base-heating and radiation. Jet plumes are simple to simulate and yet, have complex flow structures such as Mach disks, triple points, shear-layers, barrel shocks, shock-shear-layer interaction, etc. Experimental and computational simulation of sonic and supersonic jet plumes have been performed for under- and over-expanded, axisymmetric plume conditions. The computational simulation compare very well with the experimental observations of schlieren pictures. Experimental data such as temperature measurements with hot-wire probes are yet to be measured and will be compared with computed values. Extensive analysis of the computational simulations presents a clear picture of how the complex flow structure develops and the conditions under which self-similar flow structures evolve. From the computations, the plume structure can be further classified into many sub-groups. In the proposed paper, detail results from the experimental and computational simulations for single, axisymmetric, under- and over-expanded, sonic and supersonic plumes will be compared and the fluid dynamic aspects of flow structures will be discussed.

  1. The Bounce of SL-9 Impact Ejecta Plumes on Re-Entry

    NASA Astrophysics Data System (ADS)

    Deming, L. D.; Harrington, J.

    1996-09-01

    We have generated synthetic light curves of the re-entry of SL-9 ejecta plumes into Jupiter's atmosphere and have modeled the periodic oscillation of the observed R plume light curves (P. D. Nicholson et al. 1995, Geophys. Res. Lett. 22, 1613--1616) as a hydrodynamic bounce. Our model is separated into plume and atmospheric components. The plume portion of the model is a ballistic Monte Carlo calculation (Harrington and Deming, this meeting). In this paper we describe the atmospheric portion of the model. The infalling plume is divided over a spatial grid (in latitude/longitude). The plume is layered, and joined to a 1-D Lagrangian radiative-hydrodynamic model of the atmosphere, at each grid point. The radiative-hydrodynamic code solves the momentum, energy, and radiative transfer equations for both the infalling plume layers and the underlying atmosphere using an explicit finite difference scheme. It currently uses gray opacities for both the plume and the atmosphere, and the calculations indicate that a much greater opacity is needed for the plume than for the atmosphere. We compute the emergent infrared intensity at each grid point, and integrate spatially to yield a synthetic light curve. These curves exhibit many features in common with observed light curves, including a rapid rise to maximum light followed by a gradual decline due to radiative damping. Oscillatory behavior (the ``bounce'') is a persistent feature of the light curves, and is caused by the elastic nature of the plume impact. In addition to synthetic light curves, the model also calculates temperature profiles for the jovian atmosphere as heated by the plume infall.

  2. Microbial populations in contaminant plumes

    USGS Publications Warehouse

    Haack, S.K.; Bekins, B.A.

    2000-01-01

    Efficient biodegradation of subsurface contaminants requires two elements: (1) microbial populations with the necessary degradative capabilities, and (2) favorable subsurface geochemical and hydrological conditions. Practical constraints on experimental design and interpretation in both the hydrogeological and microbiological sciences have resulted in limited knowledge of the interaction between hydrogeological and microbiological features of subsurface environments. These practical constraints include: (1) inconsistencies between the scales of investigation in the hydrogeological and microbiological sciences, and (2) practical limitations on the ability to accurately define microbial populations in environmental samples. However, advances in application of small-scale sampling methods and interdisciplinary approaches to site investigations are beginning to significantly improve understanding of hydrogeological and microbiological interactions. Likewise, culture-based and molecular analyses of microbial populations in subsurface contaminant plumes have revealed significant adaptation of microbial populations to plume environmental conditions. Results of recent studies suggest that variability in subsurface geochemical and hydrological conditions significantly influences subsurface microbial-community structure. Combined investigations of site conditions and microbial-community structure provide the knowledge needed to understand interactions between subsurface microbial populations, plume geochemistry, and contaminant biodegradation.

  3. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

    2014-12-01

    Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

  4. The Entrainment Rate for Buoyant Plumes in a Crossflow

    NASA Astrophysics Data System (ADS)

    Devenish, B. J.; Rooney, G. G.; Webster, H. N.; Thomson, D. J.

    2010-03-01

    We consider large-eddy simulations (LES) of buoyant plumes from a circular source with initial buoyancy flux F 0 released into a stratified environment with constant buoyancy frequency N and a uniform crossflow with velocity U. We make a systematic comparison of the LES results with the mathematical theory of plumes in a crossflow. We pay particular attention to the limits {tilde{U}≪1} and {tilde{U}≫ 1}, where {tilde{U}=U/(F_0 N)^{1/4}}, for which analytical results are possible. For {tilde{U}≫ 1}, the LES results show good agreement with the well-known two-thirds law for the rise in height of the plume. Sufficiently far above the source, the centreline vertical velocity of the LES plumes is consistent with the analytical z -1/3 and z -1/2 scalings for respectively {tilde{U}≪ 1} and {tilde{U}≫ 1}. In the general case, where the entrainment is assumed to be the sum of the contributions from the horizontal and vertical velocity components, we find that the discrepancy between the LES data and numerical solutions of the plume equations is largest for {tilde{U}=O(1)}. We propose a modified additive entrainment assumption in which the contributions from the horizontal and vertical velocity components are not equally weighted. We test this against observations of the plume generated by the Buncefield fire in the U.K. in December 2005 and find that the results compare favourably. We also show that the oscillations of the plume as it settles down to its final rise height may be attenuated by the radiation of gravity waves. For {tilde{U}≪ 1} the oscillations decay rapidly due to the transport of energy away from the plume by gravity waves. For {tilde{U}>rsim 1} the gravity waves travel in the same direction and at the same speed as the flow. In this case, the oscillations of the plume do not decay greatly by radiation of gravity waves.

  5. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the

  6. The planet beyond the plume hypothesis

    NASA Astrophysics Data System (ADS)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for

  7. Mantle Plumes and Geologically Recent Volcanism on Mars

    NASA Astrophysics Data System (ADS)

    Kiefer, W. S.

    2013-12-01

    Despite its small size, Mars has remained volcanically active until the geologically recent past. Crater retention ages on the volcanos Arsia Mon, Olympus Mons, and Pavonis Mons indicate significant volcanic activity in the last 100-200 million years. The radiometric ages of many shergottites, a type of igneous martian meteorite, indicate igneous activity at about 180 million years ago. These ages correspond to the most recent 2-4% of the age of the Solar System. The most likely explanation for this young martian volcanism is adiabatic decompression melting in upwelling mantle plumes. Multiple plumes may be active at any time, with each of the major volcanos in the Tharsis region being formed by a separate plume. Like at least some terrestrial mantle plumes, mantle plumes on Mars likely form via an instability of the thermal boundary layer at the base of the mantle. Because Mars operates in the stagnant lid convection regime, the temperature difference between mantle and core is lower than on Earth. This reduces the temperature contrast between mantle and core, resulting in mantle plumes on Mars that are about 100 K hotter than the average mantle. The chemical composition of the martian meteorites indicates that the martian mantle is enriched in both iron and sodium relative to Earth's mantle. This lowers the dry solidus on early Mars by 30-40 K relative to Earth. Migration of sodium to the crust over time decreases this difference in solidus temperature to about 15 K at present, but that is sufficient to increase the current plume magma production rate by a factor of about 2. Hydrous phases in the martian meteorites indicate the presence of a few hundred ppm water in the mantle source region, roughly the same as Earth. Finite element simulations of martian plumes using temperature-dependent viscosity and realistic Rayleigh numbers can reproduce the geologically recent magma production rate that is inferred from geologic mapping and the melt fraction inferred from

  8. Velocity variations of an Equatorial plume throughout a Jovian year

    NASA Technical Reports Server (NTRS)

    Reese, E.; Beebe, R. F.

    1975-01-01

    Features in the equatorial zone of Jupiter show that the equatorial plume reported by Pioneer 10 has existed for an 11-year interval. During this interval the plume has shown an acceleration which can be interpreted as a constant component of 3 x 10 to minus 8th power m/sq cm and a sinusoidal component which anticorrelates with the planetocentric declination of the sun, D sub s, and has an amplitude of -0.96 meters per second per degree change of D sub s. The sinusoidal component has been interpreted in terms of solar heating. Throughout this interval of time the equatorial zone has appeared abnormally dark and has contained many dark projections along the northern edge. When the plume approaches to within 25 to 30 deg of these features they are deflected in the direction of motion of the plume and then dissipate or become obscured as the plume passes. After passage of the plume normal features are again observed.

  9. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  10. Bio-Inspired Navigation of Chemical Plumes

    DTIC Science & Technology

    2006-07-01

    Bio-Inspired Navigation of Chemical Plumes Maynard J. Porter III, Captain, USAF Department of Electrical and Computer Engineering Air Force Institute...Li. " Chemical plume tracing via an autonomous underwater vehicle". IEEE Journal of Ocean Engineering , 30(2):428— 442, 2005. [6] G. A. Nevitt...Electrical and Computer Engineering Air Force Institute of Technology Dayton, OH 45433-7765, U.S.A. juan.vasquez@afit.edu May 31, 2006 Abstract - The

  11. Comparison of FDNS liquid rocket engine plume computations with SPF/2

    NASA Technical Reports Server (NTRS)

    Kumar, G. N.; Griffith, D. O., II; Warsi, S. A.; Seaford, C. M.

    1993-01-01

    Prediction of a plume's shape and structure is essential to the evaluation of base region environments. The JANNAF standard plume flowfield analysis code SPF/2 predicts plumes well, but cannot analyze base regions. Full Navier-Stokes CFD codes can calculate both zones; however, before they can be used, they must be validated. The CFD code FDNS3D (Finite Difference Navier-Stokes Solver) was used to analyze the single plume of a Space Transportation Main Engine (STME) and comparisons were made with SPF/2 computations. Both frozen and finite rate chemistry models were employed as well as two turbulence models in SPF/2. The results indicate that FDNS3D plume computations agree well with SPF/2 predictions for liquid rocket engine plumes.

  12. A Model for Temperature Fluctuations in a Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Bisignano, A.; Devenish, B. J.

    2015-11-01

    We present a hybrid Lagrangian stochastic model for buoyant plume rise from an isolated source that includes the effects of temperature fluctuations. The model is based on that of Webster and Thomson (Atmos Environ 36:5031-5042, 2002) in that it is a coupling of a classical plume model in a crossflow with stochastic differential equations for the vertical velocity and temperature (which are themselves coupled). The novelty lies in the addition of the latter stochastic differential equation. Parametrizations of the plume turbulence are presented that are used as inputs to the model. The root-mean-square temperature is assumed to be proportional to the difference between the centreline temperature of the plume and the ambient temperature. The constant of proportionality is tuned by comparison with equivalent statistics from large-eddy simulations (LES) of buoyant plumes in a uniform crossflow and linear stratification. We compare plume trajectories for a wide range of crossflow velocities and find that the model generally compares well with the equivalent LES results particularly when added mass is included in the model. The exception occurs when the crossflow velocity component becomes very small. Comparison of the scalar concentration, both in terms of the height of the maximum concentration and its vertical spread, shows similar behaviour. The model is extended to allow for realistic profiles of ambient wind and temperature and the results are compared with LES of the plume that emanated from the explosion and fire at the Buncefield oil depot in 2005.

  13. Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man

    2018-05-01

    Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L 4-6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak power at about 100 Hz. Quantification of quasi-linear bounce-averaged electron scattering rates by hiss in the plume demonstrates that the waves are efficient to pitch angle scatter 10-100 keV electrons at rates up to 10-4 s-1 near the loss cone but become gradually insignificant to scatter the higher energy electron population. The resultant timescales of electron loss due to hiss in the nightside plume vary largely with electron kinetic energy over 3 orders of magnitude, that is, from several hours for tens of keV electrons to a few days for hundreds of keV electrons to well above 100 days for >1 MeV electrons. Changing slightly with L-shell and the multiquartile profile of hiss spectral intensity, these electron loss timescales suggest that hiss emissions in the nightside plume act as a viable candidate for the fast loss of the ≲100 keV electrons and the slow decay of higher energy electrons.

  14. Key factors controlling ozone production in wildfire plumes

    NASA Astrophysics Data System (ADS)

    Jaffe, D. A.

    2017-12-01

    Production of ozone in wildfire plumes is complex and highly variable. As a wildfire plume mixes into an urban area, ozone is often, but not always, produced. We have examined multiple factors that can help explain some of this variability. This includes CO/NOy enhancement ratios, photolysis rates, PAN/NOy fraction and degree of NOx oxidation. While fast ozone production is well known, on average, ozone production increases downwind in a plume for several days. Peroxyacetyl nitrate (PAN) is likely a key cause for delayed ozone formation. Recent observations at the Mt. Bachelor Observatory a mountain top observatory relatively remote from nearby anthropogenic influence and in Boise Idaho, an urban setting, show the importance of PAN in wildfire plumes. From these observations we can devise a conceptual model that considers four factors in ozone production: NOx/VOC emission ratio; degree of NOx oxidation; transport time and pathway; and mixing with urban pollutants. Using this conceptual model, we can then devise a lagrangian modeling strategy that can be used to improve our understanding of ozone production in wildfire plumes, both in remote and urban settings.

  15. Plume interference with space shuttle range safety signals

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Rajaseknar, P. S.

    1979-01-01

    The computational procedure for signal propagation in the presence of an exhaust plume is presented. Comparisons with well-known analytic diffraction solutions indicate that accuracy suffers when mesh spacing is inadequate to resolve the first unobstructed Fresnel zone at the plume edge. Revisions to the procedure to improve its accuracy without requiring very large arrays are discussed. Comparisons to field measurements during a shuttle solid rocket motor (SRM) test firing suggest that the plume is sharper edged than one would expect on the basis of time averaged electron density calculations. The effects, both of revisions to the computational procedure and of allowing for a sharper plume edge, are to raise the signal level near tail aspect. The attenuation levels then predicted are still high enough to be of concern near SRM burnout for northerly launches of the space shuttle.

  16. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  17. Development of a reactive-dispersive plume model

    NASA Astrophysics Data System (ADS)

    Kim, Hyun S.; Kim, Yong H.; Song, Chul H.

    2017-04-01

    A reactive-dispersive plume model (RDPM) was developed in this study. The RDPM can consider two main components of large-scale point source plume: i) turbulent dispersion and ii) photochemical reactions. In order to evaluate the simulation performance of newly developed RDPM, the comparisons between the model-predicted and observed mixing ratios were made using the TexAQS II 2006 (Texas Air Quality Study II 2006) power-plant experiment data. Statistical analyses show good correlation (0.61≤R≤0.92), and good agreement with the Index of Agreement (0.70≤R≤0.95). The chemical NOx lifetimes for two power-plant plumes (Monticello and Welsh power plants) were also estimated.

  18. RAPID REMOVAL OF A GROUNDWATER CONTAMINANT PLUME.

    USGS Publications Warehouse

    Lefkoff, L. Jeff; Gorelick, Steven M.; ,

    1985-01-01

    A groundwater management model is used to design an aquifer restoration system that removes a contaminant plume from a hypothetical aquifer in four years. The design model utilizes groundwater flow simulation and mathematical optimization. Optimal pumping and injection strategies achieve rapid restoration for a minimum total pumping cost. Rapid restoration is accomplished by maintaining specified groundwater velocities around the plume perimeter towards a group of pumping wells located near the plume center. The model does not account for hydrodynamic dispersion. Results show that pumping costs are particularly sensitive to injection capacity. An 8 percent decrease in the maximum allowable injection rate may lead to a 29 percent increase in total pumping costs.

  19. Photogrammetric and photometric investigation of a smoke plume viewed from space.

    NASA Technical Reports Server (NTRS)

    Randerson, D.; Garcia, J. G.; Whitehead, V. S.

    1971-01-01

    Use of detailed analyses of an Apollo 6 stereographic photograph of a smoke plume which originated in southern Arizona and crossed over into Mexico to illustrate how high-resolution photography can aid meteorologists in evaluating specific air pollution events. Photogrammetric analysis of the visible smoke plume revealed that the plume was 8.06 miles long and attained a maximum width of 4000 ft, 3.0 miles from the 570-ft chimney emitting the effluent. Stereometric analysis showed that the visible top of the plume rose nearly 2400 ft above stack top, attaining 90% of this total rise 1.75 miles downwind from the source. Photometric analysis of the plume revealed a field of plume optical density that portrayed leptokurtic and bimodal distributions rather than a true Gaussian distribution. A horizontal eddy diffusivity of about 650,000 sq cm/sec and a vertical eddy diffusivity of 230,000 sq cm/sec were determined from the plume dimensions. Neutron activation analysis of plume samples revealed the elemental composition of the smoke to be copper, arsenic, selenium, indium and antimony, with trace amounts of vanadium and scandium.

  20. Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow

    NASA Astrophysics Data System (ADS)

    Kincaid, C.; Druken, K. A.; Griffiths, R. W.; Stegman, D. R.

    2013-05-01

    The causes of volcanism in the northwestern United States over the past 20 million years are strongly contested. Three drivers have been proposed: melting associated with plate subduction; tectonic extension and magmatism resulting from rollback of a subducting slab; or the Yellowstone mantle plume. Observations of the opposing age progression of two neighbouring volcanic chains--the Snake River Plain and High Lava Plains--are often used to argue against a plume origin for the volcanism. Plumes are likely to occur near subduction zones, yet the influence of subduction on the surface expression of mantle plumes is poorly understood. Here we use experiments with a laboratory model to show that the patterns of volcanism in the northwestern United States can be explained by a plume upwelling through mantle that circulates in the wedge beneath a subduction zone. We find that the buoyant plume may be stalled, deformed and partially torn apart by mantle flow induced by the subducting plate. Using plausible model parameters, bifurcation of the plume can reproduce the primary volcanic features observed in the northwestern United States, in particular the opposite progression of two volcanic chains. Our results support the presence of the Yellowstone plume in the northwestern United States, and also highlight the power of plume-subduction interactions to modify surface geology at convergent plate margins.

  1. An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.

  2. Lightning in Colorado forest fire smoke plumes during summer 2012

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Krehbiel, P. R.; Dolan, B.; Lindsey, D.; Rutledge, S. A.; Rison, W.

    2012-12-01

    May and June 2012 were unusually hot and dry in Colorado, which was suffering from a strong drought. A major consequence of this climatic regime was one of the most destructive forest fire seasons in state history, with hundreds of thousands of acres of forest and grassland consumed by flames, hundreds of homes burned, and several lives lost. Many of these fires occurred within range of the newly installed Colorado Lightning Mapping Array (COLMA), which provides high-resolution observations of discharges over a large portion of the state. The COLMA was installed in advance of the Deep Convective Clouds and Chemistry (DC3) project. High-altitude lightning was observed to occur sporadically in the smoke plumes over three major fires that occurred during early summer: Hewlett Gulch, High Park, and Waldo Canyon. Additionally, the Colorado State University CHILL (CSU-CHILL) and Pawnee radars observed the Hewlett Gulch plume electrify with detailed polarimetric and dual-Doppler measurements, and also provided these same measurements for the High Park plume when it was not producing lightning. Meanwhile, local Next Generation Radars (NEXRADs) provided observations of the electrified High Park and Waldo Canyon plumes. All of these plumes also were observed by geostationary meteorological satellites. These observations provide an unprecedented dataset with which to study smoke plume and pyrocumulus electrification. The polarimetric data - low reflectivity, high differential reflectivity, low correlation coefficient, and noisy differential phase - were consistent with the smoke plumes and associated pyrocumulus being filled primarily with irregularly shaped ash particles. Lightning was not observed in the plumes until they reached over 10 km above mean sea level, which was an uncommon occurrence requiring explosive fire growth combined with increased meteorological instability and reduced wind shear. Plume updraft intensification and echo-top growth led the occurrence of

  3. Dynamics of fire plumes in verticle shear

    Treesearch

    Philip Cunningham; Scott L. Goodrick; Hussaini M. Yousuff; Rodman R. Linn; Chunmei Xia

    2003-01-01

    Plumes from wildfires and prescribed fires represent a critical aspect of smoke mangement and aire quality assessment, as as such it is important to understand the structure and dynamics of these plumes, both with respect to a basic understanding of the phenomena and with respect to an assessment of the validity of plumerise parameterizations over a wide variety of...

  4. Io with Loki Plume on Bright Limb

    NASA Image and Video Library

    1996-06-03

    NASA's Voyager 1 image of Io showing active plume of Loki on limb. Heart-shaped feature southeast of Loki consists of fallout deposits from active plume Pele. The images that make up this mosaic were taken from an average distance of approximately 490,000 kilometers (340,000 miles). http://photojournal.jpl.nasa.gov/catalog/PIA00010

  5. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  6. Why the SL9 Plumes Were All About the Same Height

    NASA Technical Reports Server (NTRS)

    Zahnle, K.; MacLow, M.-M.; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    Several of the SL9 ejecta plumes were observed by the HST to reach approximately the same height, about 3000 km above the jovian cloud tops. The duration of the infrared events, which were produced by the plume falling back on the atmosphere, measures time aloft and hence provides a second, more sensitive measure of plume height; the light curves indicate that the largest impacts produced modestly higher plumes. Evidently these plumes were launched with about the same vertical velocity, roughly 10-13 kilometers per second. As the impactors themselves were not all the same, nor the impacts equally luminous, nor the plumes equally opaque, the similar plume heights has been seen as a puzzle needing explanation. A second, closely related matter that needs to addressed quantitatively is the popular contention that a big plume requires a big impact. This view is misleading at best, yet plume heights can be used to constrain impact parameters. Dimensional analysis indicates that plume height goes as z alpha v (sup 2) (sub ej) alpha E/pH (sup 2), where v (sub ej) is the ejection velocity, E the explosion energy, and p and H the ambient pressure and scale height at termination. Using a semi-analytic model for the deceleration, disintegration, and destruction of intruding bodies by an ever-vigilant atmosphere, we find that the ratio E/pH(sup 2) is roughly constant for fragments with diameters of order 100 m to 1000 m. Constancy of v(sub ej) is in part due to the greater role of radiative ablation on the flight of smaller objects. We conclude that similar plume heights is a direct consequence of smaller impactors exploding at higher altitudes, in such a way that the different explosions were geometrically similar.

  7. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise [Estimated Plume Rise (in Meters) Based...

  8. 40 CFR Appendix Vi to Part 266 - Stack Plume Rise

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Stack Plume Rise VI Appendix VI to Part 266 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED... FACILITIES Pt. 266, App. VI Appendix VI to Part 266—Stack Plume Rise [Estimated Plume Rise (in Meters) Based...

  9. Observations of currents and density structure across a buoyant plume front

    USGS Publications Warehouse

    Gelfenbaum, G.; Stumpf, R.P.

    1993-01-01

    Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.

  10. Io Plume Monitoring (frames 1-36)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sequence of full disk Io images was taken prior to Galileo's second encounter with Ganymede. The purpose of these observations was to view all longitudes of Io and search for active volcanic plumes. The images were taken at intervals of approximately one hour corresponding to Io longitude increments of about ten degrees. Because both the spacecraft and Io were traveling around Jupiter the lighting conditions on Io (e.g. the phase of Io) changed dramatically during the sequence. These images were registered at a common scale and processed to produce a time-lapse 'movie' of Io. This movie combines all of the plume monitoring frames obtained by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The most prominent volcanic plume seen in this movie is Prometheus (latitude 1.6 south, longitude 153 west). The plume becomes visible as it moves into daylight, crosses the center of the disk, and is seen in profile against the dark of space at the edge of Io. This plume was first seen by the Voyager 1 spacecraft in 1979 and is believed to be a geyser-like eruption of sulfur dioxide snow and gas. Although details of the region around Prometheus have changed in the seventeen years since Voyager's visit, the shape and height of the plume have not changed significantly. It is possible that this geyser has been erupting nearly continuously over this time. Galileo's primary 24 month mission includes eleven orbits around Jupiter and will provide observations of Jupiter, its moons and its magnetosphere.

    North is to the top of all frames. The smallest features which can be discerned range from 13 to 31 kilometers across. The images were obtained between the 2nd and the 6th of September, 1996.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are

  11. Modeling a Hall Thruster from Anode to Plume Far Field

    DTIC Science & Technology

    2005-01-01

    Hall thruster simulation capability that begins with propellant injection at the thruster anode, and ends in the plume far field. The development of a comprehensive simulation capability is critical for a number of reasons. The main motivation stems from the need to directly couple simulation of the plasma discharge processes inside the thruster and the transport of the plasma to the plume far field. The simulation strategy will employ two existing codes, one for the Hall thruster device and one for the plume. The coupling will take place in the plume

  12. Crater Formation Due to Lunar Plume Impingement

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2011-01-01

    Thruster plume impingement on a surface comprised of small, loose particles may cause blast ejecta to be spread over a large area and possibly cause damage to the vehicle. For this reason it is important to study the effects of plume impingement and crater formation on surfaces like those found on the moon. Lunar soil, also known as regolith, is made up of fine granular particles on the order of 100 microns.i Whenever a vehicle lifts-off from such a surface, the exhaust plume from the main engine will cause the formation of a crater. This crater formation may cause laterally ejected mass to be deflected and possibly damage the vehicle. This study is a first attempt at analyzing the dynamics of crater formation due to thruster exhaust plume impingement during liftoff from the moon. Though soil erosion on the lunar surface is not considered, this study aims at examining the evolution of the shear stress along the lunar surface as the engine fires. The location of the regions of high shear stress will determine where the crater begins to form and will lend insight into how big the crater will be. This information will help determine the probability that something will strike the vehicle. The final sections of this report discuss a novel method for studying this problem that uses a volume of fluid (VOF)ii method to track the movement of both the exhaust plume and the eroding surface.

  13. Implementation of microwave transmissions for rocket exhaust plume diagnostics

    NASA Astrophysics Data System (ADS)

    Coutu, Nicholas George

    Rocket-launched vehicles produce a trail of exhaust that contains ions, free electrons, and soot. The exhaust plume increases the effective conductor length of the rocket. A conductor in the presence of an electric field (e.g. near the electric charge stored within a cloud) can channel an electric discharge. The electrical conductivity of the exhaust plume is related to its concentration of free electrons. The risk of a lightning strike in-flight is a function of both the conductivity of the body and its effective length. This paper presents an approach that relates the electron number density of the exhaust plume to its propagation constant. Estimated values of the collision frequency and electron number density generated from a numerical simulation of a rocket plume are used to guide the design of the experimental apparatus. Test par meters are identified for the apparatus designed to transmit a signal sweep form 4 GHz to 7 GHz through the exhaust plume of a J-class solid rocket motor. Measurements of the scattering parameters imply that the transmission does not penetrate the plume, but instead diffracts around it. The electron density 20 cm downstream from the nozzle exit is estimated to be between 2.7x1014 m--3 and 5.6x10 15 m--3.

  14. Plume induced environments on future lunar mission vehicles

    NASA Technical Reports Server (NTRS)

    Rochelle, Bill; Hughes, Ruston; Fitzgerald, Steve

    1992-01-01

    The objective of this presentation is to identify potential plume heating/impingement problem areas on vehicles used for future lunar missions. This is accomplished by comparison with lunar module plume investigations performed during 1968-1971. All material is presented in viewgraph format.

  15. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    DTIC Science & Technology

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  16. A Model of Mantle Plume Based on Hawaiian Magmatism

    NASA Astrophysics Data System (ADS)

    Takahashi, E.

    2001-12-01

    In order to constrain the chemistry and temperature of the hot rising material (mantle plume), we have studied growth history of Koolau volcano in Hawaii based on reconstruction of giant submarine landslides (Evolution of Hawaiian Volcanoes, AGU Monograph, 2001). Based on petrology of the Koolau lava and high-pressure melting experiments, we propose a model that the Hawaiian plume has a potential mantle temperature (PMT) of only 1400C and the primitive magma at the final growth stage of Koolau volcano (Makapuu stage) was formed by extensive melting of a large block of recycled old oceanic crust (eclogite block of 1000km3 in volume). Our PMT is much lower than the estimate for the modern Hawaiian plume by Watson and McKenzie (1991, PMT=1558C) assuming homogeneous peridotite source. Melting experiments of basalt/peridotite hybrid source at 3 GPa (Takahashi and Nakajima, 2001) show that only slight temperature increase (less than 50deg) will shift the Koolau type primary melts (SiO2=53, MgO=7 wt.%) to the parental Mauna Loa and Kilauea type melts (SiO2=49, MgO=14). Geometry of the partial melt zone surrounding upwelling eclogite blocks may cause the inter-shield chemical variation among the Hawaiian volcanoes. The lower plume temperature and the existence of large blocks of former oceanic crust in the plume require reconsideration on the origin of the mantle plume and the mechanism of its upwelling transport. Presence or absence of the old oceanic crust in the plume will explain chemical diversity and the contrasting melt productivity between hot spots (e.g., Iceland vs. Azores). The large low velocity anomaly down to the CMB underneath the South Pacific hot spots (most distinct in global tomography), presently yields smaller magma flux than a single Hawaiian hot spot. The South Pacific plume may consist of upwelling warm hurzburgite (depleted ancient oceanic lithosphere). The South Pacific hot spot however was very magma productive in the Cretaceous time when large

  17. Resolving the Mass Production and Surface Structure of the Enceladus Dust Plume

    NASA Astrophysics Data System (ADS)

    Kempf, Sascha; Southworth, Benjamin; Spitale, Joseph; Srama, Ralf; Schmidt, Jürgen; Postberg, Frank

    2017-04-01

    There are ongoing arguments with regards to the Enceldaus plume, both on the total mass of ice particles produced by the plume in kg/s, as well as the structure of plume ejection along the tiger stripes. Herein, results from Cassini's Cosmic Dust Analyzer (CDA) and Imaging Science Subsystem (ISS) are used in conjunction with large-scale plume simulations to resolve each of these issues. Additional results are provided on the short-term variability of the plume, and the relation of specifc surface deposition features to emissions along given areas of the tiger stripes. By adjusting their plume model to the dust flux measured by the Cassini dust detector during the close Enceladus flyby in 2005, Schmidt et al. (2008) obtained a total dust production rate in the plumes of about

  18. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  19. False alarm recognition in hyperspectral gas plume identification

    DOEpatents

    Conger, James L [San Ramon, CA; Lawson, Janice K [Tracy, CA; Aimonetti, William D [Livermore, CA

    2011-03-29

    According to one embodiment, a method for analyzing hyperspectral data includes collecting first hyperspectral data of a scene using a hyperspectral imager during a no-gas period and analyzing the first hyperspectral data using one or more gas plume detection logics. The gas plume detection logic is executed using a low detection threshold, and detects each occurrence of an observed hyperspectral signature. The method also includes generating a histogram for all occurrences of each observed hyperspectral signature which is detected using the gas plume detection logic, and determining a probability of false alarm (PFA) for all occurrences of each observed hyperspectral signature based on the histogram. Possibly at some other time, the method includes collecting second hyperspectral data, and analyzing the second hyperspectral data using the one or more gas plume detection logics and the PFA to determine if any gas is present. Other systems and methods are also included.

  20. Can molecular diffusion explain Space Shuttle plume spreading?

    NASA Astrophysics Data System (ADS)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  1. Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Böhlke, John Karl; Masoner, Jason R.; Breit, George N.; Lorah, Michelle M.; Tuttle, Michele L.W.; Jaeschke, Jeanne B.

    2011-01-01

    Leachate from municipal landfills can create groundwater contaminant plumes that may last for decades to centuries. The fate of reactive contaminants in leachate-affected aquifers depends on the sustainability of biogeochemical processes affecting contaminant transport. Temporal variations in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade. The leachate plume contained elevated concentrations of nonvolatile dissolved organic carbon (NVDOC) (up to 300 mg/L), methane (16 mg/L), ammonium (650 mg/L as N), iron (23 mg/L), chloride (1030 mg/L), and bicarbonate (4270 mg/L). Chemical and isotopic investigations along a 2D plume transect revealed consumption of solid and aqueous electron acceptors in the aquifer, depleting the natural attenuation capacity. Despite the relative recalcitrance of NVDOC to biodegradation, the center of the plume was depleted in sulfate, which reduces the long-term oxidation capacity of the leachate-affected aquifer. Ammonium and methane were attenuated in the aquifer relative to chloride by different processes: ammonium transport was retarded mainly by physical interaction with aquifer solids, whereas the methane plume was truncated largely by oxidation. Studies near plume boundaries revealed temporal variability in constituent concentrations related in part to hydrologic changes at various time scales. The upper boundary of the plume was a particularly active location where redox reactions responded to recharge events and seasonal water-table fluctuations. Accurately describing the biogeochemical processes that affect the transport of contaminants in this landfill-leachate-affected aquifer required understanding the aquifer's geologic and hydrodynamic framework.

  2. A user-friendly one-dimensional model for wet volcanic plumes

    USGS Publications Warehouse

    Mastin, Larry G.

    2007-01-01

    This paper presents a user-friendly graphically based numerical model of one-dimensional steady state homogeneous volcanic plumes that calculates and plots profiles of upward velocity, plume density, radius, temperature, and other parameters as a function of height. The model considers effects of water condensation and ice formation on plume dynamics as well as the effect of water added to the plume at the vent. Atmospheric conditions may be specified through input parameters of constant lapse rates and relative humidity, or by loading profiles of actual atmospheric soundings. To illustrate the utility of the model, we compare calculations with field-based estimates of plume height (∼9 km) and eruption rate (>∼4 × 105 kg/s) during a brief tephra eruption at Mount St. Helens on 8 March 2005. Results show that the atmospheric conditions on that day boosted plume height by 1–3 km over that in a standard dry atmosphere. Although the eruption temperature was unknown, model calculations most closely match the observations for a temperature that is below magmatic but above 100°C.

  3. Beyond the vent: New perspectives on hydrothermal plumes and pelagic biology

    NASA Astrophysics Data System (ADS)

    Phillips, Brennan T.

    2017-03-01

    Submarine hydrothermal vent fields introduce buoyant plumes of chemically altered seawater to the deep-sea water column. Chemoautotrophic microbes exploit this energy source, facilitating seafloor-based primary production that evidence suggests may transfer to pelagic consumers. While most hydrothermal plumes have relatively small volumes, there are recent examples of large-scale plume events associated with periods of eruptive activity, which have had a pronounced effect on water-column biology. This correlation suggests that hydrothermal plumes may have influenced basin-scale ocean chemistry during periods of increased submarine volcanism during the Phanerozoic eon. This paper synthesizes a growing body of scientific evidence supporting the hypothesis that hydrothermal plumes are the energetic basis of unique deep-sea pelagic food webs. While many important questions remain concerning the biology of hydrothermal plumes, this discussion is not present in ongoing management efforts related to seafloor massive sulfide (SMS) mining. Increased research efforts, focused on high-resolution surveys of midwater biology relative to plume structures, are recommended to establish baseline conditions and monitor the impact of future mining-based disturbances to the pelagic biosphere.

  4. Remote sensing of turbidity plumes in Lake Ontario

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J.

    1973-01-01

    Preliminary analyses of ERTS-1 imagery demonstrates the utility of the satellite to monitor turbidity plumes generated by the Welland Canal, and the Genese and Oswego Rivers. Although visible in high altitude photographs, the Niagara River plume is not readily identifiable from satellite imagery.

  5. EM Modelling of RF Propagation Through Plasma Plumes

    NASA Astrophysics Data System (ADS)

    Pandolfo, L.; Bandinelli, M.; Araque Quijano, J. L.; Vecchi, G.; Pawlak, H.; Marliani, F.

    2012-05-01

    Electric propulsion is a commercially attractive solution for attitude and position control of geostationary satellites. Hall-effect ion thrusters generate a localized plasma flow in the surrounding of the satellite, whose impact on the communication system needs to be qualitatively and quantitatively assessed. An electromagnetic modelling tool has been developed and integrated into the Antenna Design Framework- ElectroMagnetic Satellite (ADF-EMS). The system is able to guide the user from the plume definition phases through plume installation and simulation. A validation activity has been carried out and the system has been applied to the plume modulation analysis of SGEO/Hispasat mission.

  6. Laser beam-plasma plume interaction during laser welding

    NASA Astrophysics Data System (ADS)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  7. A study of space shuttle plumes in the lower thermosphere

    NASA Astrophysics Data System (ADS)

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  8. A model of the plumes above basaltic fissure eruptions

    NASA Astrophysics Data System (ADS)

    Woods, Andrew W.

    1993-06-01

    A simple model of the ascent of the volatiles above basaltic fissure eruptions shows that atmospheric moisture may play an important role in injecting volatiles high into the atmosphere. As ambient water vapor is entrained and carried upwards by the plume, it decompresses and some condensation may occur. This causes the release of latent heat which heats up the air and thereby increases the buoyancy of the plume enabling it to ascend several kilometers higher than in a dry atmosphere. The height of such plumes also increases with the mass fraction of fine ash in the fountain. Although very simple, the model predictions are in accord with observations of plume heights during historical eruptions including the 1984 eruption of Mauna Loa.

  9. Plume capture by a migrating ridge: Analog geodynamic experiments

    NASA Astrophysics Data System (ADS)

    Mendez, J. S.; Hall, P.

    2010-12-01

    Paleomagnetic data from the Hawaii-Emperor Seamount Chain (HESC) suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma but has remained relatively stationary since that time. This implies that the iconic bend in the HESC may in fact reflect the transition from a period of rapid hotspot motion to a stationary state, rather than a change in motion of the Pacific plate. Tarduno et al. (2009) have suggested that this period of rapid hotspot motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been “captured” and tilted by a migrating mid-ocean ridge. We report on a series of analog fluid dynamic experiments designed to characterize the interaction between a migrating spreading center and a thermally buoyant mantle plume. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is modeled using corn syrup introduced into the bottom of the tank from an external, heated, pressurized reservoir. Small (~2 mm diameter), neutrally buoyant Delrin spheres are mixed into reservoir of plume material to aid in visualization. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Experiments are

  10. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.

  11. Fractal analysis: A new tool in transient volcanic ash plume characterization.

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Peña Fernandez, Juan Jose; Taddeucci, Jacopo; Perugini, Diego; Sesterhenn, Jörn

    2017-04-01

    Transient volcanic plumes are time-dependent features generated by unstable eruptive sources. They represent a threat to human health and infrastructures, and a challenge to characterize due to their intrinsic instability. Plumes have been investigated through physical (e.g. visible, thermal, UV, radar imagery), experimental and numerical studies in order to provide new insights about their dynamics and better anticipate their behavior. It has been shown experimentally that plume dynamics is strongly dependent to source conditions and that plume shape evolution holds key to retrieve these conditions. In this study, a shape evolution analysis is performed on thermal high-speed videos of volcanic plumes from three different volcanoes Sakurajima (Japan), Stromboli (Italy) and Fuego (Guatemala), recorded with a FLIR SC655 thermal camera during several field campaigns between 2012 and 2016. To complete this dataset, three numerical gas-jet simulations at different Reynolds number (2000, 5000 and 10000) have been used in order to set reference values to the natural cases. Turbulent flow shapes are well known to feature scale-invariant structures and a high degree of complexity. For this reason we characterized the bi-dimensional shape of natural and synthetic plumes by using a fractal descriptor. Such method has been applied in other studies on experimental turbulent jets as well as on atmospheric clouds and have shown promising results. At each time-step plume contour has been manually outlined and measured using the box-counting method. This method consists in covering the image with squares of variable sizes and counting the number of squares containing the plume outline. The negative slope of the number of squares in function of their size in a log-log plot gives the fractal dimension of the plume at a given time. Preliminary results show an increase over time of the fractal dimension for natural volcanic plume as well as for the numerically simulated ones, but at

  12. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  13. Ozone production efficiency of a ship-plume: ITCT 2K2 case study.

    PubMed

    Kim, Hyun S; Kim, Yong H; Han, Kyung M; Kim, Jhoon; Song, Chul H

    2016-01-01

    Ozone production efficiency (OPE) of ship plume was first evaluated in this study, based on ship-plume photochemical/dynamic model simulations and the ship-plume composition data measured during the ITCT 2K2 (Intercontinental Transport and Chemical Transformation 2002) aircraft campaign. The averaged instantaneous OPEs (OPE(i)‾) estimated via the ship-plume photochemical/dynamic modeling for the ITCT 2K2 ship-plume ranged between 4.61 and 18.92, showing that the values vary with the extent of chemical evolution (or chemical stage) of the ship plume and the stability classes of the marine boundary layer (MBL). Together with OPE(i)‾, the equivalent OPEs (OPE(e)‾) for the entire ITCT 2K2 ship-plume were also estimated. The OPE(e)‾ values varied between 9.73 (for the stable MBL) and 12.73 (for the moderately stable MBL), which agreed well with the OPE(e)‾ of 12.85 estimated based on the ITCT 2K2 ship-plume observations. It was also found that both the model-simulated and observation-based OPE(e)‾ inside the ship-plume were 0.29-0.38 times smaller than the OPE(e)‾ calculated/measured outside the ITCT 2K2 ship-plume. Such low OPEs insides the ship plume were due to the high levels of NO and non-liner ship-plume photochemistry. Possible implications of this ship-plume OPE study in the global chemistry-transport modeling are also discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Gamma-ray dose from an overhead plume

    DOE PAGES

    McNaughton, Michael W.; Gillis, Jessica McDonnel; Ruedig, Elizabeth; ...

    2017-05-01

    Standard plume models can underestimate the gamma-ray dose when most of the radioactive material is above the heads of the receptors. Typically, a model is used to calculate the air concentration at the height of the receptor, and the dose is calculated by multiplying the air concentration by a concentration-to-dose conversion factor. Models indicate that if the plume is emitted from a stack during stable atmospheric conditions, the lower edges of the plume may not reach the ground, in which case both the ground-level concentration and the dose are usually reported as zero. However, in such cases, the dose frommore » overhead gamma-emitting radionuclides may be substantial. Such underestimates could impact decision making in emergency situations. The Monte Carlo N-Particle code, MCNP, was used to calculate the overhead shine dose and to compare with standard plume models. At long distances and during unstable atmospheric conditions, the MCNP results agree with the standard models. As a result, at short distances, where many models calculate zero, the true dose (as modeled by MCNP) can be estimated with simple equations.« less

  15. Apollo Video Photogrammetry Estimation Of Plume Impingement Effects

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Lane, John; Metzger, Philip T.; Clements, Sandra

    2008-01-01

    The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the Lander ejects the granular material at high velocities. Much work is needed to understand the physics of plume impingement during landing in order to protect hardware surrounding the landing sites. While mostly qualitative in nature, the Apollo Lunar Module landing videos can provide a wealth of quantitative information using modem photogrammetry techniques. The authors have used the digitized videos to quantify plume impingement effects of the landing exhaust on the lunar surface. The dust ejection angle from the plume is estimated at 1-3 degrees. The lofted particle density is estimated at 10(exp 8)- 10(exp 13) particles per cubic meter. Additionally, evidence for ejection of large 10-15 cm sized objects and a dependence of ejection angle on thrust are presented. Further work is ongoing to continue quantitative analysis of the landing videos.

  16. Modelling reaction front formation and oscillatory behaviour in a contaminant plume

    NASA Astrophysics Data System (ADS)

    Cribbin, Laura; Fowler, Andrew; Mitchell, Sarah; Winstanley, Henry

    2013-04-01

    Groundwater contamination is a concern in all industrialised countries that suffer countless spills and leaks of various contaminants. Often, the contaminated groundwater forms a plume that, under the influences of regional groundwater flow, could eventually migrate to streams or wells. This can have catastrophic consequences for human health and local wildlife. The process known as bioremediation removes pollutants in the contaminated groundwater through bacterial reactions. Microorganisms can transform the contaminant into less harmful metabolic products. It is important to be able to predict whether such bioremediation will be sufficient for the safe clean-up of a plume before it reaches wells or lakes. Borehole data from a contaminant plume which resulted from spillage at a coal carbonisation plant in Mansfield, England is the motivation behind modelling the properties of a contaminant plume. In the upper part of the plume, oxygen is consumed and a nitrate spike forms. Deep inside the plume, nitrate is depleted and oscillations of organic carbon and ammonium concentration profiles are observed. While there are various numerical models that predict the evolution of a contaminant plume, we aim to create a simplified model that captures the fundamental characteristics of the plume while being comparable in accuracy to the detailed numerical models that currently exist. To model the transport of a contaminant, we consider the redox reactions that occur in groundwater systems. These reactions deplete the contaminant while creating zones of dominant terminal electron accepting processes throughout the plume. The contaminant is depleted by a series of terminal electron acceptors, the order of which is typically oxygen, nitrate, manganese, iron, sulphate and carbon dioxide. We describe a reaction front, characteristic of a redox zone, by means of rapid reaction and slow diffusion. This aids in describing the depletion of oxygen in the upper part of the plume. To

  17. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (<0.2 ms) due to the complex flow inside the keyhole.

  18. The 1991 version of the plume impingement computer program. Volume 1: Description

    NASA Technical Reports Server (NTRS)

    Bender, Robert L.; Somers, Richard E.; Prendergast, Maurice J.; Clayton, Joseph P.; Smith, Sheldon D.

    1991-01-01

    The objective of this contract was to continue development of a vacuum plume impingement evaluator to provide an analyst with a capability for rapid assessment of thruster plume impingement scenarios. The research was divided into three areas: Plume Impingement Computer Program (PLIMP) modification/validation; graphics development; and documentation in the form of a Plume Handbook and PLIMP Input Guide.

  19. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  20. Fat Plumes May Reflect the Complex Rheology of the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Carrez, Ph.; Cordier, P.

    2018-02-01

    Recent tomographic imaging of the mantle below major hot spots shows slow seismic velocities extending down to the core-mantle boundary, confirming the existence of mantle plumes. However, these plumes are much thicker than previously thought. Using new laboratory experiments and scaling laws, we show that thermal plumes developing in a visco-plastic fluid present much larger diameters than plumes developing in a Newtonian fluid. Such a rheology requiring a yield stress is consistent with a lower mantle predominantly deforming by pure dislocation climb. Yield stress values between 1 and 10 MPa, implying dislocation densities between 108 and 1010 m-2, would be sufficient to reproduce the plumes morphology observed in tomographic images.

  1. Algorithms for Autonomous Plume Detection on Outer Planet Satellites

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Bunte, M. K.; Saripalli, S.; Greeley, R.

    2011-12-01

    We investigate techniques for automated detection of geophysical events (i.e., volcanic plumes) from spacecraft images. The algorithms presented here have not been previously applied to detection of transient events on outer planet satellites. We apply Scale Invariant Feature Transform (SIFT) to raw images of Io and Enceladus from the Voyager, Galileo, Cassini, and New Horizons missions. SIFT produces distinct interest points in every image; feature descriptors are reasonably invariant to changes in illumination, image noise, rotation, scaling, and small changes in viewpoint. We classified these descriptors as plumes using the k-nearest neighbor (KNN) algorithm. In KNN, an object is classified by its similarity to examples in a training set of images based on user defined thresholds. Using the complete database of Io images and a selection of Enceladus images where 1-3 plumes were manually detected in each image, we successfully detected 74% of plumes in Galileo and New Horizons images, 95% in Voyager images, and 93% in Cassini images. Preliminary tests yielded some false positive detections; further iterations will improve performance. In images where detections fail, plumes are less than 9 pixels in size or are lost in image glare. We compared the appearance of plumes and illuminated mountain slopes to determine the potential for feature classification. We successfully differentiated features. An advantage over other methods is the ability to detect plumes in non-limb views where they appear in the shadowed part of the surface; improvements will enable detection against the illuminated background surface where gradient changes would otherwise preclude detection. This detection method has potential applications to future outer planet missions for sustained plume monitoring campaigns and onboard automated prioritization of all spacecraft data. The complementary nature of this method is such that it could be used in conjunction with edge detection algorithms to

  2. Spatial variations in the dust-to-gas ratio of Enceladus' plume

    NASA Astrophysics Data System (ADS)

    Hedman, M. M.; Dhingra, D.; Nicholson, P. D.; Hansen, C. J.; Portyankina, G.; Ye, S.; Dong, Y.

    2018-05-01

    On day 138 of 2010, the plume of dust and gas emerging from Enceladus' South Polar Terrain passed between the Sun and the Cassini spacecraft. This solar occultation enabled Cassini's Ultraviolet Imaging Spectrograph (UVIS) and the Visual and Infrared Mapping Spectrometer (VIMS) to obtain simultaneous measurements of the plume's gas and dust components along the same lines of sight. The UVIS measurements of the plume's gas content are described in Hansen et al. (2011, GRL 38:11202) , while this paper describes the VIMS data and the information they provide about the plume's particle content. Together, the VIMS and UVIS measurements reveal that the plume material above Baghdad and Damascus sulci has a dust-to-gas mass ratio that is roughly an order of magnitude higher than the material above Alexandria and Cairo sulci. Similar trends in the plume's dust-to-gas ratio are also found in data obtained when Cassini flew through the plume in 2009, during which time the Ion and Neutral Mass Spectrometer (INMS), Radio and Plasma Wave Science instrument (RPWS) and Cosmic Dust Analyzer (CDA) instruments made in-situ measurements of the plume's gas and dust densities (Dong et al. 2015 JGR 120:915-937). These and other previously-published systematic differences in the material erupting from different fissures likely reflect variations in subsurface conditions across Encealdus' South Polar Terrain.

  3. Representative Atmospheric Plume Development for Elevated Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Lowrey, Justin D.; McIntyre, Justin I.

    2014-02-01

    An atmospheric explosion of a low-yield nuclear device will produce a large number of radioactive isotopes, some of which can be measured with airborne detection systems. However, properly equipped aircraft may not arrive in the region where an explosion occurred for a number of hours after the event. Atmospheric conditions will have caused the radioactive plume to move and diffuse before the aircraft arrives. The science behind predicting atmospheric plume movement has advanced enough that the location of the maximum concentrations in the plume can be determined reasonably accurately in real time, or near real time. Given the assumption thatmore » an aircraft can follow a plume, this study addresses the amount of atmospheric dilution expected to occur in a representative plume as a function of time past the release event. The approach models atmospheric transport of hypothetical releases from a single location for every day in a year using the publically available HYSPLIT code. The effective dilution factors for the point of maximum concentration in an elevated plume based on a release of a non-decaying, non-depositing tracer can vary by orders of magnitude depending on the day of the release, even for the same number of hours after the release event. However, the median of the dilution factors based on releases for 365 consecutive days at one site follows a power law relationship in time, as shown in Figure S-1. The relationship is good enough to provide a general rule of thumb for estimating typical future dilution factors in a plume starting at the same point. However, the coefficients of the power law function may vary for different release point locations. Radioactive decay causes the effective dilution factors to decrease more quickly with the time past the release event than the dilution factors based on a non-decaying tracer. An analytical expression for the dilution factors of isotopes with different half-lives can be developed given the power law

  4. Accuracy of entrainment coefficients in one-dimensional volcanic plume models

    NASA Astrophysics Data System (ADS)

    McNeal, J. S.; Freedland, G.; Cal, R. B.; Mastin, L. G.; Solovitz, S.

    2017-12-01

    During and after volcanic eruptions, ash clouds can present a danger to human activities, notably to air travel. Ash dispersal models can forecast the location and downwind path of the ash cloud, which are critical for mitigating potential threats. The accuracy of the ash dispersal model depends on the reliability of input parameters, one of which is the mass eruption rate (MER). Uncertainties in MER translate to uncertainties in forecasts of ash-cloud concentration. One-dimensional plume models can quickly estimate the MER from plume height, relying on empirical entrainment coefficients, α and β, which describe air inflow perpendicular and parallel to the centerline of the plume, respectively. While much work has been done to quantify α for strong plumes (0.06-0.09 in most cases), consensus has not been reached for α and β in moderate to weak plumes (i.e. plumes bent over by the wind). We conducted high precision jet entrainment measurements in a wind tunnel using particle image velocimetry (PIV). Observed centerline trajectories were compared to modeled ones using the one-dimensional plume model Plumeria. Test conditions produced Reynolds numbers (Re) on the order of 103 to 105 and jet-to-cross flow velocity ratios (Vr) from 6 to 34. Over this range, α and β were adjusted to match the modeled trajectories with measured ones. Additionally, we compared historical observations of plume height and MER during volcanic eruptions against Plumeria predictions. Uncertainties in MER were considered with additional model simulations to quantify their impact on the optimal entrainment coefficients. Our comparisons reveal a clear linear α-β relationship, where multiple α and β values could be found that produced accurate plume height predictions. For example, similar accuracy was found using both (α,β) = (0.07,0.35) and (α,β) = (0.04,0.95) for the test case based on the 2002 eruption of Reventador volcano in Ecuador. However, in some cases that we studied, the

  5. Dispersal of the Pearl River plume over continental shelf in summer

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng

    2017-07-01

    Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.

  6. Ash plume from Eyjafjallajokull Volcano, Iceland May 6th View

    NASA Image and Video Library

    2010-05-06

    NASA satellite image acquired May 6, 2010 at 11 :55 UTC To view a detail of this image go to: www.flickr.com/photos/gsfc/4583711511/ NASA Satellite Sees a Darker Ash Plume From Iceland Volcano NASA's Terra satellite flew over the Eyjafjallajokull Volcano, Iceland, on May 6 at 11:55 UTC (7:55 a.m. EDT). The Moderate Resolution Imaging Spectroradiometer instrument known as MODIS that flies onboard Terra, captured a visible image of the ash plume. The plume was blowing east then southeast over the Northern Atlantic. The satellite image shows that the plume is at a lower level in the atmosphere than the clouds that lie to its east, as the brown plume appears to slide underneath the white clouds. Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: www.nasa.gov/topics/earth/features/iceland-volcano-plume.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  7. Hydrocarbon-Fueled Rocket Engine Plume Diagnostics: Analytical Developments and Experimental Results

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; McVay, Gregory P.; Langford, Lester A.; St. Cyr, William W.

    2006-01-01

    A viewgraph presentation describing experimental results and analytical developments about plume diagnostics for hydrocarbon-fueled rocket engines is shown. The topics include: 1) SSC Plume Diagnostics Background; 2) Engine Health Monitoring Approach; 3) Rocket Plume Spectroscopy Simulation Code; 4) Spectral Simulation for 10 Atomic Species and for 11 Diatomic Molecular Electronic Bands; 5) "Best" Lines for Plume Diagnostics for Hydrocarbon-Fueled Rocket Engines; 6) Experimental Set Up for the Methane Thruster Test Program and Experimental Results; and 7) Summary and Recommendations.

  8. Standoff midwave infrared hyperspectral imaging of ship plumes

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin; Marcotte, Frédérick

    2016-05-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  9. Standoff midwave infrared hyperspectral imaging of ship plumes

    NASA Astrophysics Data System (ADS)

    Gagnon, Marc-André; Gagnon, Jean-Philippe; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Chamberland, Martin

    2016-10-01

    Characterization of ship plumes is very challenging due to the great variety of ships, fuel, and fuel grades, as well as the extent of a gas plume. In this work, imaging of ship plumes from an operating ferry boat was carried out using standoff midwave (3-5 μm) infrared hyperspectral imaging. Quantitative chemical imaging of combustion gases was achieved by fitting a radiative transfer model. Combustion efficiency maps and mass flow rates are presented for carbon monoxide (CO) and carbon dioxide (CO2). The results illustrate how valuable information about the combustion process of a ship engine can be successfully obtained using passive hyperspectral remote sensing imaging.

  10. Rocket Plume Scaling for Orion Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Greathouse, James S.; White, Molly E.

    2011-01-01

    A wind tunnel test program was undertaken to assess the jet interaction effects caused by the various solid rocket motors used on the Orion Launch Abort Vehicle (LAV). These interactions of the external flowfield and the various rocket plumes can cause localized aerodynamic disturbances yielding significant and highly non-linear control amplifications and attenuations. This paper discusses the scaling methodologies used to model the flight plumes in the wind tunnel using cold air as the simulant gas. Comparisons of predicted flight, predicted wind tunnel, and measured wind tunnel forces-and-moments and plume flowfields are made to assess the effectiveness of the selected scaling methodologies.

  11. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, Leon V.; Bratton, Bradford A.; Fuhrman, Paul W.

    1997-01-01

    A probe which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0.degree. to less than 90.degree., reflecting the light beam back through the vapor plume at a 90.degree. angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume.

  12. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.

  13. Parameters of thermochemical plumes responsible for the formation of batholiths: Results of experimental simulation

    NASA Astrophysics Data System (ADS)

    Kirdyashkin, A. A.; Kirdyashkin, A. G.; Gurov, V. V.

    2017-07-01

    Based on laboratory and theoretical modeling results, we present the thermal and hydrodynamical structure of the plume conduit during plume ascent and eruption on the Earth's surface. The modeling results show that a mushroom-shaped plume head forms after melt eruption on the surface for 1.9 < Ka < 10. Such plumes can be responsible for the formation of large intrusive bodies, including batholiths. The results of laboratory modeling of plumes with mushroom-shaped heads are presented for Ka = 8.7 for a constant viscosity and uniform melt composition. Images of flow patterns are obtained, as well as flow velocity profiles in the melt of the conduit and the head of the model plume. Based on the laboratory modeling data, we present a scheme of a thermochemical plume with a mushroom-shaped head responsible for the formation of a large intrusive body (batholith). After plume eruption to the surface, melting occurs along the base of the massif above the plume head, resulting in a mushroom-shaped plume head. A possible mechanism for the formation of localized surface manifestations of batholiths is presented. The parameters of some plumes with mushroom-shaped heads (plumes of the Altay-Sayan and Barguzin-Vitim large-igneous provinces, and Khangai and Khentei plumes) are estimated using geological data, including age intervals and volumes of magma melts.

  14. Instrumentation for In-Flight SSME Rocket Engine Plume Spectroscopy

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.; Bickford, Randall L.; Duncan, David B.

    1994-01-01

    This paper describes instrumentation that is under development for an in-flight demonstration of a plume spectroscopy system on the space shuttle main engine. The instrumentation consists of a nozzle mounted optical probe for observation of the plume, and a spectrometer for identification and quantification of plume content. This instrumentation, which is intended for use as a diagnostic tool to detect wear and incipient failure in rocket engines, will be validated by a hardware demonstration on the Technology Test Bed engine at the Marshall Space Flight Center.

  15. Large-eddy simulation study of oil/gas plumes in stratified fluid with cross current

    NASA Astrophysics Data System (ADS)

    Yang, Di; Xiao, Shuolin; Chen, Bicheng; Chamecki, Marcelo; Meneveau, Charles

    2017-11-01

    Dynamics of the oil/gas plume from a subsea blowout are strongly affected by the seawater stratification and cross current. The buoyant plume entrains ambient seawater and lifts it up to higher elevations. During the rising process, the continuously increasing density difference between the entrained and ambient seawater caused by the stable stratification eventually results in a detrainment of the entrained seawater and small oil droplets at a height of maximum rise (peel height), forming a downward plume outside the rising inner plume. The presence of a cross current breaks the plume's axisymmetry and causes the outer plume to fall along the downstream side of the inner plume. The detrained seawater and oil eventually fall to a neutral buoyancy level (trap height), and disperse horizontally to form an intrusion layer. In this study, the complex plume dynamics is investigated using large-eddy simulation (LES). Various laboratory and field scale cases are simulated to explore the effect of cross current and stratification on the plume dynamics. Based on the LES data, various turbulence statistics of the plume are systematically quantified, leading to some useful insights for modeling the mean plume dynamics using integral plume models. This research is made possible by a RFP-V Grant from The Gulf of Mexico Research Initiative.

  16. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume.

    PubMed

    Dick, Gregory J; Tebo, Bradley M

    2010-05-01

    Hydrothermal plumes are hot spots of microbial biogeochemistry in the deep ocean, yet little is known about the diversity or ecology of microorganisms inhabiting plumes. Recent biogeochemical evidence shows that Mn(II) oxidation in the Guaymas Basin (GB) hydrothermal plume is microbially mediated and suggests that the plume microbial community is distinct from deep-sea communities. Here we use a molecular approach to compare microbial diversity in the GB plume and in background deep seawater communities, and cultivation to identify Mn(II)-oxidizing bacteria from plumes and sediments. Despite dramatic differences in Mn(II) oxidation rates between plumes and background seawater, microbial diversity and membership were remarkably similar. All bacterial clone libraries were dominated by Gammaproteobacteria and archaeal clone libraries were dominated by Crenarchaeota. Two lineages, both phylogenetically related to methanotrophs and/or methylotrophs, were consistently over-represented in the plume. Eight Mn(II)-oxidizing bacteria were isolated, but none of these or previously identified Mn(II) oxidizers were abundant in clone libraries. Taken together with Mn(II) oxidation rates measured in laboratory cultures and in the field, these results suggest that Mn(II) oxidation in the GB hydrothermal plume is mediated by genome-level dynamics (gene content and/or expression) of microorganisms that are indigenous and abundant in the deep sea but have yet to be unidentified as Mn(II) oxidizers.

  17. Comparison of ACCENT 2000 Shuttle Plume Data with SIMPLE Model Predictions

    NASA Astrophysics Data System (ADS)

    Swaminathan, P. K.; Taylor, J. C.; Ross, M. N.; Zittel, P. F.; Lloyd, S. A.

    2001-12-01

    The JHU/APL Stratospheric IMpact of PLume Effluents (SIMPLE)model was employed to analyze the trace species in situ composition data collected during the ACCENT 2000 intercepts of the space shuttle Space Transportation Launch System (STS) rocket plume as a function of time and radial location within the cold plume. The SIMPLE model is initialized using predictions for species depositions calculated using an afterburning model based on standard TDK/SPP nozzle and SPF plume flowfield codes with an expanded chemical kinetic scheme. The time dependent ambient stratospheric chemistry is fully coupled to the plume species evolution whose transport is based on empirically derived diffusion. Model/data comparisons are encouraging through capturing observed local ozone recovery times as well as overall morphology of chlorine chemistry.

  18. Morphological changes in ultrafast laser ablation plumes with varying spot size

    DOE PAGES

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; ...

    2015-06-04

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmore » clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.« less

  19. Morphological changes in ultrafast laser ablation plumes with varying spot size.

    PubMed

    Harilal, S S; Diwakar, P K; Polek, M P; Phillips, M C

    2015-06-15

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 μm. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present results clearly show that the morphological changes in the plume with spot size are independent of laser pulse width.

  20. Mobile Bay turbidity plume study

    NASA Technical Reports Server (NTRS)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  1. Infrared signature characteristic of a microturbine engine exhaust plume

    NASA Astrophysics Data System (ADS)

    Gu, Bonchan; Baek, Seung Wook; Jegal, Hyunwook; Choi, Seong Man; Kim, Won Cheol

    2017-11-01

    This research investigates the infrared signature of the exhaust plume ejected from a microturbine engine. Circular and square nozzles are designed and tested to study their effects on the resultant infrared signature of the plume. A microturbine engine is operated under steady conditions with a kerosene added lubricant oil as a fuel. The measurements of the infrared signature are conducted using a spectroradiometer. Blackbody radiance is also measured at an arbitrary temperature and compared to theoretical values to validate the reference and to calibrate the raw spectrum. The infrared signatures emitted from the plume are measured at three measurement locations along the plume for two nozzle configurations. The results are grouped into sub-bands to examine and discuss their specific spectral characteristics. The infrared signatures are shown to decrease as the distance from the nozzle exit increases, which is attributed to the hot exhaust plume mixing with ambient air. The degree to which the signature is reduced at the different the measurement locations was dependent on the sub-band. Comparison of the results shows that the infrared signature of the square nozzle is lower than that of the circular nozzle in specific bands.

  2. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    PubMed

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  3. Probe for measurement of velocity and density of vapor in vapor plume

    DOEpatents

    Berzins, L.V.; Bratton, B.A.; Fuhrman, P.W.

    1997-03-11

    A probe is disclosed which directs a light beam through a vapor plume in a first direction at a first angle ranging from greater than 0{degree} to less than 90{degree}, reflecting the light beam back through the vapor plume at a 90{degree} angle, and then reflecting the light beam through the vapor plume a third time at a second angle equal to the first angle, using a series of mirrors to deflect the light beam while protecting the mirrors from the vapor plume with shields. The velocity, density, temperature and flow direction of the vapor plume may be determined by a comparison of the energy from a reference portion of the beam with the energy of the beam after it has passed through the vapor plume. 10 figs.

  4. Laminar and turbulent surgical plume characteristics generated from curved- and straight-blade laparoscopic ultrasonic dissectors.

    PubMed

    Kim, Fernando J; Sehrt, David; Pompeo, Alexandre; Molina, Wilson R

    2014-05-01

    To characterize laparoscopic ultrasonic dissector surgical plume emission (laminar or turbulent) and investigate plume settlement time between curved and straight blades. A straight and a curved blade laparoscopic ultrasonic dissector were activated on tissue and in a liquid environment to evaluate plume emission. Plume emission was characterized as either laminar or turbulent and the plume settlement times were compared. Devices were then placed in liquid to observed consistency in the fluid disruption. Two types of plume emission were identified generating different directions of plume: laminar flow causes minimal visual obstruction by directing the aerosol downwards, while turbulent flow directs plume erratically across the cavity. Laminar plume dissipates immediately while turbulent plume reaches a second maximum obstruction approximately 0.3 s after activation and clears after 2 s. Turbulent plume was observed with the straight blade in 10 % of activations, and from the curved blade in 47 % of activations. The straight blade emitted less obstructive plume. Turbulent flow is disruptive to laparoscopic visibility with greater field obstruction and requires longer settling than laminar plume. Ultrasonic dissectors with straight blades have more consistent oscillations and generate more laminar flow compared with curved blades. Surgeons may avoid laparoscope smearing from maximum plume generation depending on blade geometry.

  5. Analysis of bubble plume spacing produced by regular breaking waves

    NASA Astrophysics Data System (ADS)

    Phaksopa, J.; Haller, M. C.

    2012-12-01

    The breaking wave process in the ocean is a significant mechanism for energy dissipation, splash, and entrainment of air. The relationship between breaking waves and bubble plume characteristics is still a mystery because of the complexity of the breaking wave mechanism. This study takes a unique approach to quantitatively analyze bubble plumes produced by regular breaking waves. Various previous studies have investigated the formation and the characteristics of bubble plumes using either field observations, laboratory experiments, or numerical modeling However, in most observational work the plume characteristics have been studied from the underneath the water surface. In addition, though numerical simulations are able to include much of the important physics, the computational costs are high and bubble plume events are only simulated for short times. Hence, bubble plume evolution and generation throughout the surf zone is not yet computationally feasible. In the present work we take a unique approach to analyzing bubble plumes. These data may be of use for model/data comparisons as numerical simulations become more tractable. The remotely sensed video data from freshwater breaking waves in the OSU Large Wave Flume (Catalan and Haller, 2008) are analyzed. The data set contains six different regular wave conditions and the video intensity data are used to estimate the spacing of plume events (wavenumber spectrum), to calculate the spectral width (i.e. the range of plume spacing), and to relate these with the wave conditions. The video intensity data capture the evolution of the wave passage over a fixed bed arranged in a bar-trough morphology. Bright regions represent the moving path or trajectory coincident with bubble plume of each wave. It also shows the bubble foam were generated and released from wave crest shown in the form of bubble tails with almost regular spacing for each wave. The bubble tails show that most bubbles did not move along with wave. For the

  6. Constraining the Enceladus plume using numerical simulation and Cassini data

    NASA Astrophysics Data System (ADS)

    Yeoh, Seng Keat; Li, Zheng; Goldstein, David B.; Varghese, Philip L.; Levin, Deborah A.; Trafton, Laurence M.

    2017-01-01

    Since its discovery, the Enceladus plume has been subjected to intense study due to the major effects that it has on the Saturnian system and the window that it provides into the interior of Enceladus. However, several questions remain and we attempt to answer some of them in this work. In particular, we aim to constrain the H2O production rate from the plume, evaluate the relative importance of the jets and the distributed sources along the Tiger Stripes, and make inferences about the source of the plume by accurately modeling the plume and constraining the model using the Cassini INMS and UVIS data. This is an extension of a previous work (Yeoh, S.K., et al. [2015] Icarus, 253, 205-222) in which we only modeled the collisional part of the Enceladus plume and studied its important physical processes. In this work, we propagate the plume farther into space where the flow has become free-molecular and the Cassini INMS and UVIS data were sampled. Then, we fit this part of the plume to the INMS H2O density distributions sampled along the E3, E5 and E7 trajectories and also compare some of the fit results with the UVIS measurements of the plume optical depth collected during the solar occultation observation on 18 May 2010. We consider several vent conditions and source configurations for the plume. By constraining our model using the INMS and UVIS data, we estimate H2O production rates of several hundred kgs-1: 400-500 kg/s during the E3 and E7 flybys and ∼900 kg/s during the E5 flyby. These values agree with other estimates and are consistent with the observed temporal variability of the plume over the orbital period of Enceladus (Hedman, M.M., et al. [2013] Nature, 500, 182-184). In addition, we determine that one of the Tiger Stripes, Cairo, exhibits a local temporal variability consistent with the observed overall temporal variability of the plume. We also find that the distributed sources along the Tiger Stripes are likely dominant while the jets provide a

  7. Hele-Shaw Experiments on Plume Stretching and Folding

    NASA Astrophysics Data System (ADS)

    Foster, M.; Mays, D. C.; Neupauer, R. M.

    2013-12-01

    Fluid mixing in laminar flow is important in a number of practical applications, including remediation of contaminated groundwater. Recent modeling studies have shown that mixing can be accelerated and amplified by imposing a flow that generates stretching and folding of an injected plume of treatment solution. Stretching and folding, in turn, results from engineered injection and extraction of clean water through an array of wells surrounding the treatment solution. This poster describes a series of experiments whose goal is to demonstrate plume stretching and folding in a Hele-Shaw apparatus. An initial plume of treatment solution is injected into the center of the Hele-Shaw apparatus, which is assumed to represent a zone of contaminated groundwater, with four wells spaced evenly around the treatment solution. In order to spread the treatment solution into the groundwater, the four wells perform a series of infusions and withdrawals that push and pull apart the plume of treatment solution. With the proper steps, it will be shown that the plume can be stretched and folded to greatly increase the reactive interface area between the treatment solution and the contaminated groundwater. Consideration is given to two qualitative differences with respect to previous modeling studies. First, constant volume is required by the no-flow boundary used at the edge of the Hele-Shaw cell; any pump that is withdrawing water must have a complementary pump adding water at the same rate. Second, in these experiments, mixing results from a physical process, namely Taylor dispersion, eliminating the uncertainty resulting from the need to assume dispersion mechanisms in numerical models. Therefore, these experiments further elucidate the benefits and challenges of imposing plume stretching and folding in systems (like aquifers) where dispersion is unavoidable, providing new insight into the required logistics of using this approach in groundwater treatment.

  8. Interaction between Edge-Driven Convection and Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Manjón-Cabeza Córdoba, A.; Ballmer, M.

    2017-12-01

    Intraplate volcanism can occur in a variety of geodynamic settings. Its characteristics can inform about the underlying mantle dynamics. A non-negligible number of intraplate oceanic volcanoes are located close to continental shelves (e.g. Bermuda, Canary Islands, Cape Verde…). In these regions, any putative plumes would interact with Edge-Driven Convection (EDC), a mode of Small-Scale Convection that is triggered along steps of lithospheric thickness. We have systematically explored 2-D geodynamic models of EDC, varying e.g. the viscosity of the mantle, geometry of the edge, potential temperature, etc. In addition, we study the influence of a mantle plume with variable excess temperature and buoyancy flux at a given distance to the edge. The mantle-convection code is coupled with a new melting parameterization that considers the depletion effect on productivity. We apply this parameterization not only to predict the extent of melting for a given lithology, but also the major-element composition of extracted melts for comparison with geochemical data. Results show that the first EDC upwellings are always localized in the oceanic domain at a distance from the continental margin that depends on mantle viscosity. The initial geometry of the edge does not have a significant influence on the "steady-state" shape of EDC. Depending on the distance of the plume from the edge and plume vigor, the plume is either deflected or enhanced by EDC. The mix of materials that melts in the mantle, as well as the amount of melting, is controlled by the interaction of the plume with EDC (e.g., with melting restricted to fertile heterogeneities in the end-member EDC case). Because several model parameters affect this interaction and related melting, a joint analysis of major-element and trace-element composition of hotspot lavas is required to constrain mantle processes.

  9. Numerical models of volcanic eruption plumes: inter-comparison and sensitivity

    NASA Astrophysics Data System (ADS)

    Costa, Antonio; Suzuki, Yujiro; Folch, Arnau; Cioni, Raffaello

    2016-10-01

    The accurate description of the dynamics of convective plumes developed during explosive volcanic eruptions represents one of the most crucial and intriguing challenges in volcanology. Eruptive plume dynamics are significantly affected by complex interactions with the surrounding atmosphere, in the case of both strong eruption columns, rising vertically above the tropopause, and weak volcanic plumes, developing within the troposphere and often following bended trajectories. The understanding of eruptive plume dynamics is pivotal for estimating mass flow rates of volcanic sources, a crucial aspect for tephra dispersion models used to assess aviation safety and tephra fallout hazard. For these reasons, several eruption column models have been developed in the past decades, including the more recent sophisticated computational fluid dynamic models.

  10. Solutions to inverse plume in a crosswind problem using a predictor - corrector method

    NASA Astrophysics Data System (ADS)

    Vanderveer, Joseph; Jaluria, Yogesh

    2013-11-01

    Investigation for minimalist solutions to the inverse convection problem of a plume in a crosswind has developed a predictor - corrector method. The inverse problem is to predict the strength and location of the plume with respect to a select few downstream sampling points. This is accomplished with the help of two numerical simulations of the domain at differing source strengths, allowing the generation of two inverse interpolation functions. These functions in turn are utilized by the predictor step to acquire the plume strength. Finally, the same interpolation functions with the corrections from the plume strength are used to solve for the plume location. Through optimization of the relative location of the sampling points, the minimum number of samples for accurate predictions is reduced to two for the plume strength and three for the plume location. After the optimization, the predictor-corrector method demonstrates global uniqueness of the inverse solution for all test cases. The solution error is less than 1% for both plume strength and plume location. The basic approach could be extended to other inverse convection transport problems, particularly those encountered in environmental flows.

  11. Seismically imaging the Afar plume

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings

  12. Response of mantle transition zone thickness to plume buoyancy flux

    NASA Astrophysics Data System (ADS)

    Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.

    2010-01-01

    The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).

  13. Regional Simulations of Stratospheric Lofting of Smoke Plumes

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Fromm, M.; Robock, A.

    2006-12-01

    The lifetime and spatial distribution of sooty aerosols from multiple fires that would cause major climate impact were debated in studies of climatic and environmental consequences of a nuclear war in the 1980s. The Kuwait oil fires in 1991 did not show a cumulative effect of multiple smoke plumes on large-scale circulation systems and smoke was mainly dispersed in the middle troposphere. However, recent observations show that smoke from large forest fires can be directly injected into the lower stratosphere by strong pyro-convective storms. Smoke plumes in the upper troposphere can be partially mixed into the lower stratosphere because of the same heating and lofting effect that was simulated in large-scale nuclear winter simulations with interactive aerosols. However nuclear winter simulations were conducted using climate models with grid spacing of more than 100 km, which do not account for the fine-scale dynamic processes. Therefore in this study we conduct fine-scale regional simulations of the aerosol plume using the Regional Atmospheric Modeling System (RAMS) mesoscale model which was modified to account for radiatively interactive tracers. To resolve fine-scale dynamic processes we use horizontal grid spacing of 25 km and 60 vertical layers, and initiate simulations with the NCEP reanalysis fields. We find that dense aerosol layers could be lofted from 1 to a few km per day, but this critically depends on the optical depth of aerosol layer, single scatter albedo, and how fast the plume is being diluted. Kuwaiti plumes from different small-area fires reached only 5-6 km altitude and were probably diffused and diluted in the lower and middle troposphere. A plume of 100 km spatial scale initially developed in the upper troposphere tends to penetrate into the stratosphere. Short-term cloud resolving simulations of such a plume show that aerosol heating intensifies small-scale motions that tend to mix smoke polluted air into the lower stratosphere. Regional

  14. Primordial helium entrained by the hottest mantle plumes

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Konter, J. G.; Becker, T. W.

    2017-02-01

    Helium isotopes provide an important tool for tracing early-Earth, primordial reservoirs that have survived in the planet’s interior. Volcanic hotspot lavas, like those erupted at Hawaii and Iceland, can host rare, high 3He/4He isotopic ratios (up to 50 times the present atmospheric ratio, Ra) compared to the lower 3He/4He ratios identified in mid-ocean-ridge basalts that form by melting the upper mantle (about 8Ra; ref. 5). A long-standing hypothesis maintains that the high-3He/4He domain resides in the deep mantle, beneath the upper mantle sampled by mid-ocean-ridge basalts, and that buoyantly upwelling plumes from the deep mantle transport high-3He/4He material to the shallow mantle beneath plume-fed hotspots. One problem with this hypothesis is that, while some hotspots have 3He/4He values ranging from low to high, other hotspots exhibit only low 3He/4He ratios. Here we show that, among hotspots suggested to overlie mantle plumes, those with the highest maximum 3He/4He ratios have high hotspot buoyancy fluxes and overlie regions with seismic low-velocity anomalies in the upper mantle, unlike plume-fed hotspots with only low maximum 3He/4He ratios. We interpret the relationships between 3He/4He values, hotspot buoyancy flux, and upper-mantle shear wave velocity to mean that hot plumes—which exhibit seismic low-velocity anomalies at depths of 200 kilometres—are more buoyant and entrain both high-3He/4He and low-3He/4He material. In contrast, cooler, less buoyant plumes do not entrain this high-3He/4He material. This can be explained if the high-3He/4He domain is denser than low-3He/4He mantle components hosted in plumes, and if high-3He/4He material is entrained from the deep mantle only by the hottest, most buoyant plumes. Such a dense, deep-mantle high-3He/4He domain could remain isolated from the convecting mantle, which may help to explain the preservation of early Hadean (>4.5 billion years ago) geochemical anomalies in lavas sampling this reservoir.

  15. COLD WEATHER PLUME STUDY

    EPA Science Inventory

    While many studies of power plant plume transport and transformation have been performed during the summer, few studies of these processes during the winter have been carried out. Accordingly, the U.S. Environmental Protection Agency and the Electric Power Research Institute join...

  16. Evolution of the south Pacific helium plume over the past three decades

    NASA Astrophysics Data System (ADS)

    Lupton, J. E.; Jenkins, W. J.

    2017-05-01

    The recent GEOTRACES Eastern Pacific Zonal Transect in 2013 crossed the East Pacific Rise at 15°S following the same track as the 1987 Helios Expedition along the core of the mid-depth helium plume that spreads westward from the East Pacific Rise (EPR) axis. The fact that several stations were co-located with the earlier Helios stations has allowed a detailed comparison of the changes in the helium plume over the intervening 26 years. While the plume in many areas is unchanged, there is a marked decrease in plume intensity at longitude 120°W in the 2013 data which was not present in 1987. Recent radioisotope measurements along the plume track suggest that this decrease is due to the intrusion of a different water mass into the plume, rather than a modulation of hydrothermal input on the EPR axis. Analysis of GEOTRACES hydrographic data shows excess heat present in the plume up to 0.04°C, corresponding to a 3He/heat ratio of ˜2.5 × 10-18 mol J-1, similar to that found in mature hydrothermal vents. RAFOS floats deployed in 1987 indicate an average westward transport of ˜0.3 cm s-1 at 2500 m depth in the off-axis plume, in agreement with recent estimates of ˜0.4 cm s-1 based on "aging" of the plume from 227Ac/3He ratios.

  17. Eyjafjallajokull Volcano Plume Particle-Type Characterization from Space-Based Multi-angle Imaging

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Limbacher, James

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) Research Aerosol algorithm makes it possible to study individual aerosol plumes in considerable detail. From the MISR data for two optically thick, near-source plumes from the spring 2010 eruption of the Eyjafjallaj kull volcano, we map aerosol optical depth (AOD) gradients and changing aerosol particle types with this algorithm; several days downwind, we identify the occurrence of volcanic ash particles and retrieve AOD, demonstrating the extent and the limits of ash detection and mapping capability with the multi-angle, multi-spectral imaging data. Retrieved volcanic plume AOD and particle microphysical properties are distinct from background values near-source, as well as for overwater cases several days downwind. The results also provide some indication that as they evolve, plume particles brighten, and average particle size decreases. Such detailed mapping offers context for suborbital plume observations having much more limited sampling. The MISR Standard aerosol product identified similar trends in plume properties as the Research algorithm, though with much smaller differences compared to background, and it does not resolve plume structure. Better optical analogs of non-spherical volcanic ash, and coincident suborbital data to validate the satellite retrieval results, are the factors most important for further advancing the remote sensing of volcanic ash plumes from space.

  18. Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Sambamurthi, Jay K.

    1995-01-01

    Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.

  19. The effect of sediments on turbulent plume dynamics in a stratified fluid

    NASA Astrophysics Data System (ADS)

    Stenberg, Erik; Ezhova, Ekaterina; Brandt, Luca

    2017-11-01

    We report large eddy simulation results of sediment-loaded turbulent plumes in a stratified fluid. The configuration, where the plume is discharged from a round source, provides an idealized model of subglacial discharge from a submarine tidewater glacier and is a starting point for understanding the effect of sediments on the dynamics of the rising plume. The transport of sediments is modeled by means of an advection-diffusion equation where sediment settling velocity is taken into account. We initially follow the experimental setup of Sutherland (Phys. Rev. Fluids, 2016), considering uniformly stratified ambients and further extend the work to pycnocline-type stratifications typical of Greenland fjords. Apart from examining the rise height, radial spread and intrusion of the rising plume, we gain further insights of the plume dynamics by extracting turbulent characteristics and the distribution of the sediments inside the plume.

  20. Crustal Footprint of the Hainan Plume beneath Southeast China

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chen, F.; Leng, W.; Zhang, H.

    2016-12-01

    A hotspot track is an age-progressive line of volcanos that is connected to a hotspot that may have resulted from interactions between the lithosphere and a deep-seated mantle plume [Campbell and Griffiths, 1990; Richards et al., 1989]. Although global and regional seismic tomography results have revealed the presence of a mantle plume beneath Hainan Island [Lebedev et al., 2003; Lei et al., 2009; Huang, 2014], there is little evidence for a hotspot track associated with the Hainan plume. Here, a joint inversion of seismology and gravity data was performed with the receiver function method, and the results show that a linear corridor of seismic velocity anomalies at the base of the crust is located northeast of Hainan Island beneath southeast China. Geodynamic modeling demonstrates that this corridor could have formed by the interactions between a mantle plume and the continental lithosphere with a weak lower crust. Volcanic age distributions further suggest that this track likely formed in the Cenozoic, which constrains the average plate velocities of the South China Block during the Cenozoic to 2-6 cm/yr to the northeast. These results provide an independent reference frame for the motion history of the Eurasia plate in the Cenozoic. References 1. Campbell I H, Griffiths R W. Implications of mantle plume structure for the evolution of flood basalts [J]. Earth and Planetary Science Letters, 1990, 99(1): 79-93. 2. Richards M A, Duncan R A, Courtillot V E. Flood basalts and hot-spot tracks: plume heads and tails [J]. Science, 1989, 246(4926): 103-107. 3. Lebedev S, Nolet G. Upper mantle beneath Southeast Asia from S velocity tomography [J]. Journal of Geophysical Research: Solid Earth (1978-2012), 2003, 108(B1). 4. Lei J, Zhao D, Steinberger B, et al. New seismic constraints on the upper mantle structure of the Hainan plume [J]. Physics of the Earth and Planetary Interiors, 2009, 173(1): 33-50. 5. Huang J. P-and S-wave tomography of the Hainan and surrounding

  1. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  2. Modification of the Simons model for calculation of nonradial expansion plumes

    NASA Technical Reports Server (NTRS)

    Boyd, I. D.; Stark, J. P. W.

    1989-01-01

    The Simons model is a simple model for calculating the expansion plumes of rockets and thrusters and is a widely used engineering tool for the determination of spacecraft impingement effects. The model assumes that the density of the plume decreases radially from the nozzle exit. Although a high degree of success has been achieved in modeling plumes with moderate Mach numbers, the accuracy obtained under certain conditions is unsatisfactory. A modification made to the model that allows effective description of nonradial behavior in plumes is presented, and the conditions under which its use is preferred are prescribed.

  3. High-Speed Observer: Automated Streak Detection in SSME Plumes

    NASA Technical Reports Server (NTRS)

    Rieckoff, T. J.; Covan, M.; OFarrell, J. M.

    2001-01-01

    A high frame rate digital video camera installed on test stands at Stennis Space Center has been used to capture images of Space Shuttle main engine plumes during test. These plume images are processed in real time to detect and differentiate anomalous plume events occurring during a time interval on the order of 5 msec. Such speed yields near instantaneous availability of information concerning the state of the hardware. This information can be monitored by the test conductor or by other computer systems, such as the integrated health monitoring system processors, for possible test shutdown before occurrence of a catastrophic engine failure.

  4. An analytical and experimental investigation of resistojet plumes

    NASA Technical Reports Server (NTRS)

    Zana, L. M.; Hoffman, D. J.; Breyley, L. R.; Serafini, J. S.

    1987-01-01

    As a part of the electrothermal propulsion plume research program at the NASA Lewis Research Center, efforts have been initiated to analytically and experimentally investigate the plumes of resistojet thrusters. The method of G.A. Simons for the prediction of rocket exhaust plumes is developed for the resistojet. Modifications are made to the source flow equations to account for the increased effects of the relatively large nozzle boundary layer. Additionally, preliminary mass flux measurements of a laboratory resistojet using CO2 propellant at 298 K have been obtained with a cryogenically cooled quartz crystal microbalance (QCM). There is qualitative agreement between analysis and experiment, at least in terms of the overall number density shape functions in the forward flux region.

  5. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  6. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  7. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes In Quiet Regions and Coronal Holes?

    NASA Technical Reports Server (NTRS)

    Avallone, Ellis; Tiwari, Sanjiv K.; Panesar, Navdeep K.; Moore, Ronald L.; Winebarger, Amy

    2017-01-01

    Coronal plumes are bright magnetic funnels that are found in quiet regions and coronal holes that extend high into the solar corona whose lifetimes can last from hours to days. The heating processes that make plumes bright involve the magnetic field at the base of the plume, but their intricacies remain mysterious. Raouafi et al. (2014) infer from observation that plume heating is a consequence of magnetic reconnection at the base, whereas Wang et al. (2016) infer that plume heating is a result of convergence of the magnetic flux at the plume's base, or base flux. Both papers suggest that the base flux in their plumes is of mixed polarity, but do not quantitatively measure the base flux or consider whether a critical magnetic field strength is required for plume production. To investigate the magnetic origins of plume heating, we track plume luminosity in the 171 Å wavelength as well as the abundance and strength of the base flux over the lifetimes of six unipolar coronal plumes. Of these, three are in coronal holes and three are in quiet regions. For this sample, we find that plume heating is triggered when convergence of the base flux surpasses a field strength of approximately 300 - 500 Gauss, and that the luminosity of both quiet region and coronal hole plumes respond similarly to the strength of the magnetic field in the base.

  8. The Thermal Evolution of the Galapagos Mantle Plume: Insights from Al-in-Olivine Thermometry

    NASA Astrophysics Data System (ADS)

    Trela, J.; Gazel, E.; Sobolev, A. V.; Class, C.; Bizimis, M.; Jicha, B. R.; Batanova, V. G.; Denyer, P.

    2016-12-01

    The mantle plume hypothesis is widely accepted for the formation of large igneous provinces (LIP) and many ocean island basalts (OIB). Petrologic models support a mantle plume origin by indicating high mantle temperatures (>1500 °C) for some plume-melts relative to melts generated at ambient mid ocean ridge conditions (1350 °C). Mantle plumes forming LIPs and OIBs provide our primary source of information on the geochemical and lithological heterogeneity of the lower mantle. The Galapagos hotspot represents one of the most thermally and geochemically heterogeneous plumes on the planet, sustaining long-lived isotopic and lithological heterogeneity over its 90 Ma evolution. Previous petrologic studies showed that the Galapagos plume secularly cooled over time and that the decrease in the plume's temperature correlates with an increase in a recycled (pyroxenite) component. We used Al-in-olivine thermometry to show that maximum olivine crystallization temperatures confirm secular cooling of the Galapagos plume. Olivines from the early melting stages of the plume at 90 Ma (Caribbean LIP) record the highest crystallization temperatures (1600 °C). Olivines from the current archipelago record the lowest temperatures of only 1300 °C. The largest decrease in temperature occurred between 90 and 70 Ma ( 200 °C decrease) and coincides with the plume head-tail transition. Olivines from the 60-90 Ma-old accreted Galapagos-tracks in Costa Rica and Panama record higher Ni, Fe/Mn, and lower Ca contents than those from the present-day archipelago, indicating a higher abundance of pyroxenite (recycled oceanic crust) entrained in parts of the plume head that melted to form the Caribbean LIP. However, the Galapagos plume was pyroxenite-rich for 40 Ma thus pyroxenite-entrainment goes beyond the plume-tail transition. Our results suggest that hotter regions of the Galapagos plume entrained larger amounts of dense, recycled components due to their greater buoyancy; however, this

  9. DREDGED MATERIAL PLUME DISPERSAL IN CENTRAL LONG ISLAND SOUND

    EPA Science Inventory

    A simulation model based upon in situ current velocity data and records of disposal events was developed to predict the chemical exposure field resulting from dredged material disposal plumes in central Long island Sound (CLIS) during the spring of 1983. n the model, plumes are a...

  10. An Approach to In-Situ Observations of Volcanic Plumes

    NASA Technical Reports Server (NTRS)

    Smythe, W. D.; Lopes, M. C.; Pieri, D. C.; Hall, J. L.

    2005-01-01

    Volcanoes have long been recognized as playing a dominant role in the birth, and possibly the death, of biological populations. They are possible sources of primordial gases, provide conditions sufficient for creating amino acids, strongly affect the heat balance in the atmosphere, and have been shown to sustain life (in oceanic vents.) Eruptions can have profound effects on local flora and fauna, and for very large eruptions, may alter global weather patterns and cause entire species to fail. Measurements of particulates, gases, and dynamics within a volcanic plume are critical to understanding both how volcanoes work and how plumes affect populations, environment, and aviation. Volcanic plumes and associated eruption columns are a miasma of toxic gases, corrosive condensates, and abrasive particulates that makes them hazardous to nearby populations and poses a significant risk to all forms of aviation. Plumes also provide a mechanism for sampling the volcanic interior, which, for hydrothermal environments, may host unique biological populations.

  11. Numerical simulation of bubble plumes and an analysis of their seismic attributes

    NASA Astrophysics Data System (ADS)

    Li, Canping; Gou, Limin; You, Jiachun

    2017-04-01

    To study the bubble plume's seismic response characteristics, the model of a plume water body has been built in this article using the bubble-contained medium acoustic velocity model and the stochastic medium theory based on an analysis of both the acoustic characteristics of a bubble-contained water body and the actual features of a plume. The finite difference method is used for forward modelling, and the single-shot seismic record exhibits the characteristics of a scattered wave field generated by a plume. A meaningful conclusion is obtained by extracting seismic attributes from the pre-stack shot gather record of a plume. The values of the amplitude-related seismic attributes increase greatly as the bubble content goes up, and changes in bubble radius will not cause seismic attributes to change, which is primarily observed because the bubble content has a strong impact on the plume's acoustic velocity, while the bubble radius has a weak impact on the acoustic velocity. The above conclusion provides a theoretical reference for identifying hydrate plumes using seismic methods and contributes to further study on hydrate decomposition and migration, as well as on distribution of the methane bubble in seawater.

  12. Multiscale Approach to Small River Plumes off California

    NASA Astrophysics Data System (ADS)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  13. Vortex Ring Formation in a Starting Buoyant Plume

    NASA Astrophysics Data System (ADS)

    Pottebaum, Tait; Shusser, Michael; Gharib, Morteza

    1999-11-01

    Vortex ring formation in starting buoyant plumes is studied experimentally. Buoyant plumes are produced using a heating element at the base of a water tank. Digital particle image velocimetry and thermometry (DPIVT) is used to obtain the velocity and temperature fields, from which the vorticity and density fields are determined. The results indicate that the circulation of the vortex ring initially grows and saturates at later times. This saturation process is associated with the disconnection of the vorticity field of the vortex ring from that of the trailing plume. This is analogous to the pinch off of a vortex ring produced by a piston as reported by Gharib et al (1998 JFM 360, 121-140). Similar to the definition used by Gharib et al, a 'formation number' can be defined as the normalized time at which the circulation produced by the buoyancy source is equal to the peak circulation achieved by the vortex ring. This formation number is examined for a variety of plume density ratios. The results are compared to predictions of a model based on the Kelvin-Benjamin variational principle for steady axis-touching vortex rings.

  14. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  15. Quantifying mantle structure and dynamics using plume tracing in seismic tomography

    NASA Astrophysics Data System (ADS)

    O'Farrell, K. A.; Eakin, C. M.; Jackson, M. G.; Jones, T. D.; Lekic, V.; Lithgow-Bertelloni, C. R.

    2017-12-01

    Directly linking deep mantle processes with surface features and dynamics is a complex problem. Hotspot volcanism gives us surface observables of mantle signatures, but the depth and source of the mantle plumes feeding these hotspots are highly debated. To address these issues, it is necessary to consider the entire journey of a plume through the mantle. By analyzing the behavior of mantle plumes we can constrain the vigor of mantle convection, the net rotation of the mantle and the role of thermal versus chemical anomalies as well as the bulk physical properties such as the viscosity profile. To do this, we developed a new algorithm to trace plume-like features in shear-wave (Vs) seismic tomography models based on picking local minima in the velocity and searching for continuous features with depth. We applied this method to recent tomographic models and find 60+ continuous plume conduits that are > 750 km long. Approximately a third of these can be associated with known hotspots at the surface. We analyze the morphology of these continuous conduits and infer large scale mantle flow patterns and properties. We find the largest lateral deflections in the conduits occur near the base of the lower mantle and in the upper mantle (near the thermal boundary layers). The preferred orientation of the plume deflections show large variability at all depths and indicate no net mantle rotation. Plate by plate analysis shows little agreement in deflection below particular plates, indicating these deflected features might be long lived and not caused by plate shearing. Changes in the gradient of plume deflection are inferred to correspond with viscosity contrasts in the mantle and found below the transition zone as well as at 1000 km depth. From this inferred viscosity structure, we explore the dynamics of a plume through these viscosity jumps. We also retrieve the Vs profiles for the conduits and compare with the velocity profiles predicted for different mantle adiabat

  16. Ash plume from Eyjafjallajokull Volcano, Iceland May 6th View [Detail

    NASA Image and Video Library

    2017-12-08

    NASA satellite image acquired May 6, 2010 at 11 :55 UTC To view the full view go to: www.nasa.gov/topics/earth/features/iceland-volcano-plume.... NASA Satellite Sees a Darker Ash Plume From Iceland Volcano NASA's Terra satellite flew over the Eyjafjallajokull Volcano, Iceland, on May 6 at 11:55 UTC (7:55 a.m. EDT). The Moderate Resolution Imaging Spectroradiometer instrument known as MODIS that flies onboard Terra, captured a visible image of the ash plume. The plume was blowing east then southeast over the Northern Atlantic. The satellite image shows that the plume is at a lower level in the atmosphere than the clouds that lie to its east, as the brown plume appears to slide underneath the white clouds. Satellite: Terra NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team To learn more about MODIS go to: rapidfire.sci.gsfc.nasa.gov/gallery/?latest NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  17. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achtemeier, Gary, L.; Goodrick, Scott, A.; Liu, Yongqiang

    2011-08-19

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric environment, multiple-core updrafts, and detrainment of particulate matter. The number of empirical coefficients appearing in the model theory is reduced through a sensitivity analysis with the Fourier Amplitude Sensitivity Test (FAST). Daysmoke simulations for 'bent-over' plumes compare closely with Briggs theory although the two-thirds law is not explicit in Daysmoke. However, the solutions for themore » 'highly-tilted' plume characterized by weak buoyancy, low initial vertical velocity, and large initial plume diameter depart considerably from Briggs theory. Results from a study of weak plumes from prescribed burns at Fort Benning GA showed simulated ground-level PM2.5 comparing favorably with observations taken within the first eight kilometers of eleven prescribed burns. Daysmoke placed plume tops near the lower end of the range of observed plume tops for six prescribed burns. Daysmoke provides the levels and amounts of smoke injected into regional scale air quality models. Results from CMAQ with and without an adaptive grid are presented.« less

  18. A preliminary experiment to collect gas from a submarine gas plume

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Fukuoka, H.

    2016-12-01

    Thousands of gas plumes have been found on the sea floors around Japan. Most of them are associated with methane hydrates on seafloor surface and/or shallow subsurface, and those bubbles are consisting largely of methane. Concerns are emerging about large scale plumes may provide the highly efficient greenhouse gas to the atmosphere. A novel methodology is proposed in this study, to collect those gas bubbles in the plumes using membrane-made dome to reduce global greenhouse effect and to develop new energy resources. Experiment field is northeast offshore of the Sado Island, Niigata prefecture of Japan, where more than 40 gas plumes had been found, gushing out from rather shallower sea floor of 150 - 400 m depth. Authors will present the achievement obtained in the preliminary gas collection experiment which was performed in a gas plume in this sea area in March 2016.

  19. Very-Near-Field Plume Model of a Hall Thruster

    DTIC Science & Technology

    2003-07-20

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014988 TITLE: Very-Near-Field Plume Model of a Hall Thruster DISTRIBUTION...numbers comprise the compilation report: ADP014936 thru ADP015049 UNCLASSIFIED am 46 Very-Near-Field Plume Model of a Hall Thruster F. Taccogna’, S. LongoŖ

  20. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  1. Measuring Fluctuating Pressure Levels and Vibration Response in a Jet Plume

    NASA Technical Reports Server (NTRS)

    Osterholt, Douglas J.; Knox, Douglas M.

    2011-01-01

    The characterization of loads due to solid rocket motor plume impingement allows for moreaccurate analyses of components subjected to such an environment. Typically, test verification of predicted loads due to these conditions is widely overlooked or unsuccessful. ATA Engineering, Inc., performed testing during a solid rocket motor firing to obtain acceleration and pressure responses in the hydrodynamic field surrounding the jet plume. The test environment necessitated a robust design to facilitate measurements being made in close proximity to the jet plume. This paper presents the process of designing a test fixture and an instrumentation package that could withstand the solid rocket plume environment and protect the required instrumentation.

  2. Stochastic Mapping for Chemical Plume Source Localization With Application to Autonomous Hydrothermal Vent Discovery

    DTIC Science & Technology

    2007-02-01

    rise froom the seafloor a buoyant hydrothermal plume will have expanded laterally fromn oil the order of a few centimeters at an...diameters of rise height [20]. Detections of buoyant plume effluent are likely when the vehicle passes near the plume centerline; however, the in...the vertical extent of the plume . I will refer to this figure, W0 = 0.1 m/s, subsequently as the "canonical rise rate" for buoyant hydrothermal plumes

  3. Simulating Irregular Source Geometries for Ionian Plumes

    NASA Astrophysics Data System (ADS)

    McDoniel, W. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.; Buchta, D. A.; Freund, J.; Kieffer, S. W.

    2011-05-01

    Volcanic plumes on Io respresent a complex rarefied flow into a near-vacuum in the presence of gravity. A 3D Direct Simulation Monte Carlo (DSMC) method is used to investigate the gas dynamics of such plumes, with a focus on the effects of source geometry on far-field deposition patterns. A rectangular slit and a semicircular half annulus are simulated to illustrate general principles, especially the effects of vent curvature on deposition ring structure. Then two possible models for the giant plume Pele are presented. One is a curved line source corresponding to an IR image of a particularly hot region in the volcano's caldera and the other is a large area source corresponding to the entire caldera. The former is seen to produce the features seen in observations of Pele's ring, but with an error in orientation. The latter corrects the error in orientation, but loses some structure. A hybrid simulation of 3D slit flow is also discussed.

  4. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  5. Tracking aerosol plumes: lidar, modeling, and in situ measurement

    NASA Astrophysics Data System (ADS)

    Calhoun, Ron J.; Heap, Robert; Sommer, Jeffrey; Princevac, Marko; Peccia, Jordan; Fernando, H.

    2004-09-01

    The authors report on recent progress of on-going research at Arizona State University for tracking aerosol plumes using remote sensing and modeling approaches. ASU participated in a large field experiment, Joint Urban 2003, focused on urban and suburban flows and dispersion phenomena which took place in Oklahoma City during summer 2003. A variety of instruments were deployed, including two Doppler-lidars. ASU deployed one lidar and the Army Research deployed the other. Close communication and collaboration has produced datasets which will be available for dual Doppler analysis. The lidars were situated in a way to provide insight into dynamical flow structures caused by the urban core. Complementary scanning by the two lidars during the July 4 firework display in Oklahoma City demonstrated that smoke plumes could be tracked through the atmosphere above the urban area. Horizontal advection and dispersion of the smoke plumes were tracked on two horizontal planes by the ASU lidar and in two vertical planes with a similar lidar operated by the Army Research Laboratory. A number of plume dispersion modeling systems are being used at ASU for the modeling of plumes in catastrophic release scenarios. Progress using feature tracking techniques and data fusion approaches is presented for utilizing single and dual radial velocity fields from coherent Doppler lidar to improve dispersion modeling. The possibility of producing sensor/computational tools for civil and military defense applications appears worth further investigation. An experiment attempting to characterize bioaerosol plumes (using both lidar and in situ biological measurements) associated with the application of biosolids on agricultural fields is in progress at the time of writing.

  6. Satellite detection of wastewater diversion plumes in Southern California

    NASA Astrophysics Data System (ADS)

    Gierach, Michelle M.; Holt, Benjamin; Trinh, Rebecca; Jack Pan, B.; Rains, Christine

    2017-02-01

    Multi-sensor satellite observations proved useful in detecting surfacing wastewater plumes during the 2006 Hyperion Treatment Plant (HTP) and 2012 Orange County Sanitation District (OCSD) wastewater diversion events in Southern California. Satellite sensors were capable of detecting biophysical signatures associated with the wastewater, compared to ambient ocean waters, enabling monitoring of environmental impacts over a greater spatial extent than in situ sampling alone. Thermal satellite sensors measured decreased sea surface temperatures (SSTs) associated with the surfacing plumes. Ocean color satellite sensors did not measure a distinguishable biological response in terms of chlorophyll-a (chl-a) concentrations during the short lived, three-day long, 2006 HTP diversion. A period of decreased chl-a concentration was observed during the three-week long 2012 OCSD diversion, likely in association with enhanced chlorination of the discharged wastewater that suppressed the phytoplankton response and/or significant uptake by heterotrophic bacteria. Synthetic aperture radar (SAR) satellite data were able to identify and track the 2006 HTP wastewater plume through changes in surface roughness related to the oily components of the treated surfacing wastewater. Overall, it was found that chl-a and SST values must have differences of at least 1 mg m-3 and 0.5 °C, respectively, in comparison with adjacent waters for wastewater plumes and their biophysical impact to be detectable from satellite. For a wastewater plume to be identifiable in SAR imagery, wind speeds must range between ∼3 and 8 m s-1. The findings of this study illustrate the benefit of utilizing multiple satellite sensors to monitor the rapidly changing environmental response to surfacing wastewater plumes, and can help inform future wastewater diversions in coastal areas.

  7. Characteristics of chiral plasma plumes generated in the absence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Nie, LanLan; Liu, FengWu; Zhou, XinCai; Lu, XinPei; Xian, YuBin

    2018-05-01

    A chiral plasma plume has recently been generated inside a dielectric tube without the use of an external magnetic field. In this paper, we seek to further study the key properties of such a chiral plume to improve our understanding of how this interesting structure is generated and controlled. The chiral plume is generated by externally mounting a stainless steel helical coil or a ring onto the dielectric tube. By changing the pitch of the helical coil, the pitch of the plasma plume can be controlled, with the shape of the plume following the shape of the helical coil. The addition of the helical coil significantly expands the range of parameters under which the chiral plasma plume appears. When the frequency of the applied voltage increases, additional stable discharge channels appear between the adjacent helices. The addition of two helical coils results in the formation of two chiral plasma plumes, which follow the shape of the helical coils. When a metal ring is placed on the outside of the tube, there is no chiral plasma plume between the high voltage electrode and the ring; however, a chiral plasma plume appears on the right side of the ring if the distance between the ring and the high voltage electrode is small. These findings suggest that the chiral plasma can be effectively modulated and guided using an externally mounted helical coil, which acts as the floating/actual ground to reduce the impedance of the discharge and as such contributes to the emergence of the chiral plasma plume behavior.

  8. Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1-sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.

  9. Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1 sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.

  10. Overview of NASA GRCs Green Propellant Infusion Mission Thruster Testing and Plume Diagnostics

    NASA Technical Reports Server (NTRS)

    Deans, Matthew C.; Reed, Brian D.; Yim, John T.; Arrington, Lynn A.; Williams, George J.; Kojima, Jun J.; McLean, Christopher H.

    2014-01-01

    The Green Propellant Infusion Mission (GPIM) is sponsored by NASA's Space Technology Mission Directorate (STMD) Technology Demonstration Mission (TDM) office. The goal of GPIM is to advance the technology readiness level of a green propulsion system, specifically, one using the monopropellant, AF-M315E, by demonstrating ground handling, spacecraft processing, and on-orbit operations. One of the risks identified for GPIM is potential contamination of sensitive spacecraft surfaces from the effluents in the plumes of AF-M315E thrusters. NASA Glenn Research Center (GRC) is conducting activities to characterize the effects of AF-M315E plume impingement and deposition. GRC has established individual plume models of the 22-N and 1-N thrusters that will be used on the GPIM spacecraft. The models describe the pressure, temperature, density, Mach number, and species concentration of the AF-M315E thruster exhaust plumes. The models are being used to assess the impingement effects of the AF-M315E thrusters on the GPIM spacecraft. The model simulations will be correlated with plume measurement data from Laboratory and Engineering Model 22-N, AF-M315E thrusters. The thrusters will be tested in a small rocket, altitude facility at NASA GRC. The GRC thruster testing will be conducted at duty cycles representatives of the planned GPIM maneuvers. A suite of laser-based diagnostics, including Raman spectroscopy, Rayleigh spectroscopy, Schlieren imaging, and physical probes will be used to acquire plume measurements of AFM315E thrusters. Plume data will include temperature, velocity, relative density, and species concentration. The plume measurement data will be compared to the corresponding simulations of the plume model. The GRC effort will establish a data set of AF-M315E plume measurements and a plume model that can be used for future AF-M315E applications.

  11. When Boundary Layers Collide: Plumes v. Subduction Zones

    NASA Astrophysics Data System (ADS)

    Moresi, L. N.; Betts, P. G.; Miller, M. S.; Willis, D.; O'Driscoll, L.

    2014-12-01

    Many subduction zones retreat while hotspots remain sufficiently stable in the mantle to provide an approximate reference frame. As a consequence, the mantle can be thought of as an unusual convecting system which self-organises to promote frequent collisions of downgoing material with upwellings. We present three 3D numerical models of subduction where buoyant material from a plume head and an associated ocean-island chain or plateau produce flat slab subduction and deformation of the over-riding plate. We observe transient instabilities of the convergent margin including: contorted trench geometry; trench migration parallel with the plate margin; folding of the subducting slab and orocline development at the convergent margin; and transfer of the plateau to the overriding plate. The presence of plume material beneath the oceanic plateau causes flat subduction above the plume, resulting in a "bowed" shaped subducting slab. In the absence of a plateau at the surface, the slab can remain uncoupled from the over-riding plate during very shallow subduction and hence there is very little shortening at the surface or advance of the plate boundary. In plateau-only models, plateau accretion at the edge of the overriding plate results in trench migration around the edge of the plateau before subduction re-establishes directly behind the trailing edge of the plateau. The plateau shortens during accretion and some plateau material subducts. In a plateau-plus-plume model, accretion is associated with rapid trench advance as the flat slab drives the plateau into the margin. This indentation stops once a new convergent boundary forms close to the original trench location. A slab window formed beneath the accreted plateau allows plume material to flow from beneath the subducting plate to the underside of the overriding plate. In all of these models the subduction zone maintains a relatively stable configuration away from the buoyancy anomalies within the downgoing plate. The

  12. Space shuttle exhaust plumes in the lower thermosphere: Advective transport and diffusive spreading

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Lossow, Stefan; Siskind, David E.; Meier, R. R.; Randall, Cora E.; Russell, James M.; Urban, Jo; Murtagh, Donal

    2014-02-01

    The space shuttle main engine plume deposited between 100 and 115 km altitude is a valuable tracer for global-scale dynamical processes. Several studies have shown that this plume can reach the Arctic or Antarctic to form bursts of polar mesospheric clouds (PMCs) within a few days. The rapid transport of the shuttle plume is currently not reproduced by general circulation models and is not well understood. To help delineate the issues, we present the complete satellite datasets of shuttle plume observations by the Sounding of the Atmosphere using Broadband Emission Radiometry instrument and the Sub-Millimeter Radiometer instrument. From 2002 to 2011 these two instruments observed 27 shuttle plumes in over 600 limb scans of water vapor emission, from which we derive both advective meridional transport and diffusive spreading. Each plume is deposited at virtually the same place off the United States east coast so our results are relevant to northern mid-latitudes. We find that the advective transport for the first 6-18 h following deposition depends on the local time (LT) of launch: shuttle plumes deposited later in the day (~13-22 LT) typically move south whereas they otherwise typically move north. For these younger plumes rapid transport is most favorable for launches at 6 and 18 LT, when the displacement is 10° in latitude corresponding to an average wind speed of 30 m/s. For plumes between 18 and 30 h old some show average sustained meridional speeds of 30 m/s. For plumes between 30 and 54 h old the observations suggest a seasonal dependence to the meridional transport, peaking near the beginning of year at 24 m/s. The diffusive spreading of the plume superimposed on the transport is on average 23 m/s in 24 h. The plume observations show large variations in both meridional transport and diffusive spreading so that accurate modeling requires knowledge of the winds specific to each case. The combination of transport and spreading from the STS-118 plume in August

  13. Ozone production in the New York City urban plume

    NASA Astrophysics Data System (ADS)

    Kleinman, Lawrence I.; Daum, Peter H.; Imre, Dan G.; Lee, Jai H.; Lee, Yin-Nan; Nunnermacker, Linda J.; Springston, Stephen R.; Weinstein-Lloyd, Judith; Newman, Leonard

    2000-06-01

    In the summer of 1996 the Department of Energy G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the causes of elevated O3 levels in the northeastern United States. Measurements of O3, O3 precursors, and other photochemically active trace gases were made upwind and downwind of New York City with the objective of characterizing the O3 formation process and its dependence on ambient levels of NOx and volatile organic compounds (VOCs). Four flights are discussed in detail. On two of these flights, winds were from the W-SW, which is the typical direction for an O3 episode. On the other two flights, winds were from the NW, which puts a cleaner area upwind of the city. The data presented include plume and background values of O3, CO, NOx, and NOy concentration and VOC reactivity. On the W-SW flow days O3 reached 110 ppb. According to surface observations the G-1 intercepted the plume close to the region where maximum O3 occurred. At this point the ratio NOx/NOy was 20-30%, indicating an aged plume. Plume values of CO/NOy agree to within 20% with emission estimates from the core of the New York City metropolitan area. Steady state photochemical calculations were performed using observed or estimated trace gas concentrations as constraints. According to these calculations the local rate of O3 production P(O3) in all four plumes is VOC sensitive, sometimes strongly so. The local sensitivity calculations show that a specified fractional decrease in VOC concentration yields a similar magnitude fractional decrease in P(O3). Imposing a decrease in NOx, however, causes P(O3) to increase. The question of primary interest from a regulatory point of view is the sensitivity of O3 concentration to changes in emissions of NOx and VOCs. A qualitative argument is given that suggests that the total O3 formed in the plume, which depends on the entire time evolution of the

  14. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

    Treesearch

    G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman

    2011-01-01

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...

  15. Experimental and Numerical Examination of a Hall Thruster Plume (Preprint)

    DTIC Science & Technology

    2007-07-31

    Hall thruster has been characterized through measurements from various plasma electrostatic probes. Ion current flux, plasma potential, plasma density, and electron temperatures were measured from the near-field plume to 60 cm downstream of the exit plane. These experimentally derived measurements were compared to numerical simulations run with the plasma plume code DRACO. A major goal of this study was to determine the fidelity of the DRACO numerical simulation. The effect of background pressure on the thruster plume was also examined using ion current flux measurements

  16. Height and Motion of the Chikurachki Eruption Plume

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The height and motion of the ash and gas plume from the April 22, 2003, eruption of the Chikurachki volcano is portrayed in these views from the Multi-angle Imaging SpectroRadiometer (MISR). Situated within the northern portion of the volcanically active Kuril Island group, the Chikurachki volcano is an active stratovolcano on Russia's Paramushir Island (just south of the Kamchatka Peninsula).

    In the upper panel of the still image pair, this scene is displayed as a natural-color view from MISR's vertical-viewing (nadir) camera. The white and brownish-grey plume streaks several hundred kilometers from the eastern edge of Paramushir Island toward the southeast. The darker areas of the plume typically indicate volcanic ash, while the white portions of the plume indicate entrained water droplets and ice. According to the Kamchatkan Volcanic Eruptions Response Team (KVERT), the temperature of the plume near the volcano on April 22 was -12o C.

    The lower panel shows heights derived from automated stereoscopic processing of MISR's multi-angle imagery, in which the plume is determined to reach heights of about 2.5 kilometers above sea level. Heights for clouds above and below the eruption plume were also retrieved, including the high-altitude cirrus clouds in the lower left (orange pixels). The distinctive patterns of these features provide sufficient spatial contrast for MISR's stereo height retrieval to perform automated feature matching between the images acquired at different view angles. Places where clouds or other factors precluded a height retrieval are shown in dark gray.

    The multi-angle 'fly-over' animation (below) allows the motion of the plume and of the surrounding clouds to be directly observed. The frames of the animation consist of data acquired by the 70-degree, 60-degree, 46-degree and 26-degree forward-viewing cameras in sequence, followed by the images from the nadir camera and each of the four backward-viewing cameras, ending with the view

  17. Tracking the evolution of a hydrothermal event plume with a RAFOS neutrally buoyant drifter

    PubMed

    Lupton; Baker; Garfield; Massoth; Feely; Cowen; Greene; Rago

    1998-05-15

    The migration and evolution of a deep ocean hydrothermal event plume were tracked with a neutrally buoyant RAFOS float. The float remained entrained in the plume for 60 days, and the plume vorticity was calculated directly from the anticyclonic motion of the float. Concentrations of suspended particles, particulate iron, and dissolved manganese in the plume did not decay significantly during the 60 days, which indicates that event plumes would be easily detectable a year after formation.

  18. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    USGS Publications Warehouse

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from <10 to 200,000 nephelometric turbidity units. The most visible turbidity plumes were produced by surface discharge of material with high sand content into unconfined placement areas during times of strong tidal currents. The least visible turbidity plumes were produced by discharge of material with high silt and clay content into areas enclosed by floating turbidity barriers during times of weak tidal currents. Beach nourishment from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in

  19. Onboard Image Processing for Autonomous Spacecraft Detection of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Bunte, M.; Castaño, R.; Chien, S.; Greeley, R.

    2011-03-01

    Onboard spacecraft image processing could enable long-term monitoring for volcanic plume activity in the outer planets. A new plume detection technique shows strong performance on images of Enceladus and Io taken by Cassini, Voyager, and Galileo.

  20. Magmatic plumbing system from lower mantle of Hainan plume

    NASA Astrophysics Data System (ADS)

    Xia, Shaohong; Sun, Jinlong; Xu, Huilong; Huang, Haibo; Cao, Jinghe

    2017-04-01

    Intraplate volcanism during Late Cenozoic in the Leiqiong area of southernmost South China, with basaltic lava flows covering a total of more than 7000 km2, has been attributed to an underlying Hainan plume. However, detailed features of Hainan plume, such as morphology of magmatic conduits, depth of magmatic pool in the upper mantle and pattern of mantle upwelling, are still enigmatic. Here we present seismic tomographic images of the upper 1100 km of the mantle beneath the southern South China. Our results show a mushroom-like continuous low-velocity anomaly characterized by a columnar tail with diameter of about 200-300 km that tilts downward to lower mantle beneath north of Hainan hotspot and a head that spreads laterally near the mantle transition zone, indicating a magmatic pool in the upper mantle. Further upward, this head is decomposed into small patches, but when encountering the base of the lithosphere, a pancake-like anomaly is shaped again to feed the Hainan volcanism. Our results challenge the classical model of a fixed thermal plume that rises vertically to the surface, and propose the new layering-style pattern of magmatic upwelling of Hainan plume. This work indicates the spatial complexities and differences of global mantle plumes probably due to heterogeneous compositions and changefully thermochemical structures of deep mantle.

  1. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes in Quiet Regions and Coronal Holes?

    NASA Astrophysics Data System (ADS)

    Avallone, E. A.; Tiwari, S. K.; Panesar, N. K.; Moore, R. L.

    2017-12-01

    Coronal plumes are sporadic fountain-like structures that are bright in coronal emission. Each is a magnetic funnel rooted in a strong patch of dominant-polarity photospheric magnetic flux surrounded by a predominantly-unipolar magnetic network, either in a quiet region or a coronal hole. The heating processes that make plumes bright evidently involve the magnetic field in the base of the plume, but remain mysterious. Raouafi et al. (2014) inferred from observations that plume heating is a consequence of magnetic reconnection in the base, whereas Wang et al. (2016) showed that plume heating turns on/off from convection-driven convergence/divergence of the base flux. While both papers suggest that the base magnetic flux in their plumes is of mixed polarity, these papers provide no measurements of the abundance and strength of the evolving base flux or consider whether a critical magnetic field strength is required for a plume to become noticeably bright. To address plume production and evolution, we track the plume luminosity and the abundance and strength of the base magnetic flux over the lifetimes of six coronal plumes, using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 171 Å images and SDO/Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms. Three of these plumes are in coronal holes, three are in quiet regions, and each plume exhibits a unipolar base flux. We track the base magnetic flux over each plume's lifetime to affirm that its convergence and divergence respectively coincide with the appearance and disappearance of the plume in 171 Å images. We tentatively find that plume formation requires enough convergence of the base flux to surpass a field strength of ˜300-500 Gauss, and that quiet Sun and coronal-hole plumes both exhibit the same behavior in the response of their luminosity in 171 Å to the strength of the magnetic field in the base.

  2. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Cremer, Clemens J. M.; Graf, Thomas

    2015-02-01

    Flow under variable-density conditions is widespread, occurring in geothermal reservoirs, at waste disposal sites or due to saltwater intrusion. The migration of dense plumes typically results in the formation of vertical plume fingers which are known to be triggered by material heterogeneity or by variations in source concentration that causes the density variation. Using a numerical groundwater model, six perturbation methods are tested under saturated and unsaturated flow conditions to mimic heterogeneity and concentration variations on the pore scale in order to realistically generate dense fingers. A laboratory-scale sand tank experiment is numerically simulated, and the perturbation methods are evaluated by comparing plume fingers obtained from the laboratory experiment with numerically simulated fingers. Dense plume fingering for saturated flow can best be reproduced with a spatially random, time-constant perturbation of the solute source. For unsaturated flow, a spatially and temporally random noise of solute concentration or a random conductivity field adequately simulate plume fingering.

  3. Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations

    PubMed Central

    Perry, Mark E.; Hansen, Candice J.; Waite, J. Hunter; Porco, Carolyn C.; Spencer, John R.; Howett, Carly J. A.

    2017-01-01

    Abstract During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data. Our results confirm a mixture of both low and high Mach gas emission from Enceladus' surface tiger stripes, with gas accelerated as fast as Mach 10 before escaping the surface. The vapor source fluxes and jet intensities/densities vary dramatically and stochastically, up to a factor 10, both spatially along the tiger stripes and over time between flyby observations. This complex spatial variability and dynamics may result from time-variable tidal stress fields interacting with subsurface fissure geometry and tortuosity beyond detectability, including changing gas pathways to the surface, and fluid flow and boiling in response evolving lithostatic stress conditions. The total plume gas source has 30% uncertainty depending on the contributions assumed for adiabatic and nonadiabatic gas expansion/acceleration to the high Mach emission. The overall vapor plume source rate exhibits stochastic time variability up to a factor ∼5 between observations, reflecting that found in the individual gas sources/jets. Key Words: Cassini at Saturn—Geysers—Enceladus—Gas dynamics—Icy satellites. Astrobiology 17, 926–940. PMID:28872900

  4. Comet Shoemaker-Levy 9: Impact on Jupiter and plume evolution

    NASA Technical Reports Server (NTRS)

    Takata, Toshiko; O'Keefe, John D.; Ahrens, Thomas J.; Orton, Glenn S.

    1994-01-01

    The impact of fragments of Comet Shoemaker-Levy 9 on Jupiter and the resulting vapor plume expansion are investigated by conducting three-dimensional numerical simulations using the smoothed particle hydrodynamics (SPH) method. An icy body, representing the cometary fragments, with a velocity of 60 km/sec and a diameter of 2 km can penetrate to 350 km below the 1-bar pressure level in the atmosphere. Most of the initial kinetic energy of the fragment is transferred to the atmosphere between 50 km and 300 km below the 1-bar pressure level. The shock-heated atmospheric gas in the wake is totally dissociated and partially ionized. Scaling our SPH results to other sizes indicates that fragments larger than approximately 100 m in diameter can penetrate to below the visible cloud decks. The energy deposited in the atmosphere is explosively released in the upward expansion of the resulting plume. The plume preferentially expands upward rather than horizontally due to the density gradient of the ambient atmosphere. It rises greater than or equal to 10(exp 2) km in approximately 10(exp 2) sec. Eventually the total atmospheric mass ejected to above 1 bar is greater than or equal to 40 times the initial mass of the impactor. The plume temperature at a radius approximately 10(exp 3) km is greater than 10(exp 3) K for 10(exp 3) sec for a 2-km fragment. We predict that impact-induced plumes will be observable with the remote sensing instruments of the Galileo spacecraft. As the impact site rotates into the view of Earth some 20 min after the impact, the plume expansion will be observable using the Hubble Space Telescope (HST) and from visible and infrared instruments on groundbased telescopes. The rising plume reaches approximately 3000 km altitude in approximately 10 min and will be visible from Earth.

  5. Waves generated in the plasma plume of helicon magnetic nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Nagendra; Rao, Sathyanarayan; Ranganath, Praveen

    2013-03-15

    Experimental measurements have shown that the plasma plume created in a helicon plasma device contains a conical structure in the plasma density and a U-shaped double layer (US-DL) tightly confined near the throat where plasma begins to expand from the source. Recently reported two-dimensional particle-in-cell simulations verified these density and US-DL features of the plasma plume. Simulations also showed that the plasma in the plume develops non-thermal feature consisting of radial ion beams with large densities near the conical surface of the density structure. The plasma waves that are generated by the radial ion beams affecting the structure of themore » plasma plume are studied here. We find that most intense waves persist in the high-density regions of the conical density structure, where the transversely accelerated ions in the radial electric fields in the plume are reflected setting up counter-streaming. The waves generated are primarily ion Bernstein modes. The nonlinear evolution of the waves leads to magnetic field-aligned striations in the fields and the plasma near the conical surface of the density structure.« less

  6. Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal

    NASA Astrophysics Data System (ADS)

    Polak, Mark L.; Hall, Jeffrey L.; Herr, Kenneth C.

    1995-08-01

    We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau plume = (Lobsd - Lbb-plume)/(Lbkgd - Lbb-plume), where tau plume is the frequency-dependent transmission of the plume, L obsd is the spectral radiance of the scene that contains the plume, Lbkgd is the spectral radiance of the same scene without the plume, and Lbb-plume is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (Lbb-plume ), which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.

  7. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; hide

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  8. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  9. Tritium plume dynamics in the shallow unsaturated zone in an arid environment

    USGS Publications Warehouse

    Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.

    2014-01-01

    The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses

  10. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  11. Natural attenuation of xenobiotic organic compounds in a landfill leachate plume (Vejen, Denmark).

    PubMed

    Baun, Anders; Reitzel, Lotte A; Ledin, Anna; Christensen, Thomas H; Bjerg, Poul L

    2003-09-01

    Demonstration of natural attenuation of xenobiotic organic compounds (XOCs) in landfill leachate plumes is a difficult task and still an emerging discipline within groundwater remediation. One of the early studies was made at the Vejen Landfill in Denmark in the late 1980s, which suggested that natural attenuation of XOCs took place under strongly anaerobic conditions within the first 150 m of the leachate plume. This paper reports on a revisit to the same plume 10 years later. Within the strongly anaerobic part of the plume, 49 groundwater samples were characterized with respect to redox-sensitive species and XOCs. The analytical procedures have been developed further and more compounds and lower detection limits were observed this time. In addition, the samples were screened for degradation intermediates and for toxicity. The plume showed fairly stationary features over the 10-year period except that the XOC level as well as the level of chloride and nonvolatile organic carbon (NVOC) in the plume had decreased somewhat. Most of the compounds studied were subject to degradation in addition to dilution. Exceptions were benzene, the herbicide Mecoprop (MCPP), and NVOC. In the early study, NVOC seemed to degrade in the first part of the plume, but this was no longer the case. Benzyl succinic acid (BSA) was for the first time identified in a leachate plume as a direct indicator, and as the only intermediate of toluene degradation. Toxicity measurements on solid phase-extracted (SPE) samples revealed that toxic compounds not analytically identified were still present in the plume, suggesting that toxicity measurements could be helpful in assessing natural attenuation in leachate plumes.

  12. Time resolved optical diagnostics of ZnO plasma plumes in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shyam L.; Singh, Ravi Pratap; Thareja, Raj K.

    2013-10-15

    We report dynamical evolution of laser ablated ZnO plasma plumes using interferometry and shadowgraphy; 2-D fast imaging and optical emission spectroscopy in air ambient at atmospheric pressure. Recorded interferograms using Nomarski interferometer and shadowgram images at various time delays show the presence of electrons and neutrals in the ablated plumes. The inference drawn from sign change of fringe shifts is consistent with two dimensional images of the plume and optical emission spectra at varying time delays with respect to ablating pulse. Zinc oxide plasma plumes are created by focusing 1.06 μm radiation on to ZnO target in air and 532more » nm is used as probe beam.« less

  13. Plume Characteristics of the BHT-HD-600 Hall Thruster (Preprint)

    DTIC Science & Technology

    2006-07-01

    Hall thruster on spacecraft, a number of plume properties have been measured. These include current density using a Faraday probe, ion energy distribution using a retarding potential analyzer, and ion species fractions using an E x B probe. The BHT-HD-600 Hall thruster is a nominally 600 W xenon Hall thruster developed by Busek Co. Inc. for the U.S. Air Force Research Laboratory. Plume characterization of Hall thrusters is required to fully understand the impacts of thruster operation on spacecraft. Much of these plume data are

  14. Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Leng, W.

    2017-12-01

    Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.

  15. High-resolution numerical models for smoke transport in plumes from wildland fires

    Treesearch

    Philip Cunningham; Scott Goodrick

    2013-01-01

    A high-resolution large-eddy simulation (LES) model is employed to examine the fundamental structure and dynamics of buoyant plumes arising from heat sources representative of wildland fires. Herein we describe several aspects of the mean properties of the simulated plumes. Mean plume trajectories are apparently well described by the traditional two-thirds law for...

  16. SSME Condition Monitoring Using Neural Networks and Plume Spectral Signatures

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Benzing, Daniel

    1996-01-01

    For a variety of reasons, condition monitoring of the Space Shuttle Main Engine (SSME) has become an important concern for both ground tests and in-flight operation. The complexities of the SSME suggest that active, real-time condition monitoring should be performed to avoid large-scale or catastrophic failure of the engine. In 1986, the SSME became the subject of a plume emission spectroscopy project at NASA's Marshall Space Flight Center (MSFC). Since then, plume emission spectroscopy has recorded many nominal tests and the qualitative spectral features of the SSME plume are now well established. Significant discoveries made with both wide-band and narrow-band plume emission spectroscopy systems led MSFC to develop the Optical Plume Anomaly Detection (OPAD) system. The OPAD system is designed to provide condition monitoring of the SSME during ground-level testing. The operational health of the engine is achieved through the acquisition of spectrally resolved plume emissions and the subsequent identification of abnormal emission levels in the plume indicative of engine erosion or component failure. Eventually, OPAD, or a derivative of the technology, could find its way on to an actual space vehicle and provide in-flight engine condition monitoring. This technology step, however, will require miniaturized hardware capable of processing plume spectral data in real-time. An objective of OPAD condition monitoring is to determine how much of an element is present in the SSME plume. The basic premise is that by knowing the element and its concentration, this could be related back to the health of components within the engine. For example, an abnormal amount of silver in the plume might signify increased wear or deterioration of a particular bearing in the engine. Once an anomaly is identified, the engine could be shut down before catastrophic failure occurs. Currently, element concentrations in the plume are determined iteratively with the help of a non-linear computer

  17. Important parameters for smoke plume rise simulation with Daysmoke

    Treesearch

    L. Liu; G.L. Achtemeier; S.L. Goodrick; W. Jackson

    2010-01-01

    Daysmoke is a local smoke transport model and has been used to provide smoke plume rise information. It includes a large number of parameters describing the dynamic and stochastic processes of particle upward movement, fallout, fluctuation, and burn emissions. This study identifies the important parameters for Daysmoke simulations of plume rise and seeks to understand...

  18. Kinetic electron model for plasma thruster plumes

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Mauriño, Javier; Ahedo, Eduardo

    2018-03-01

    A paraxial model of an unmagnetized, collisionless plasma plume expanding into vacuum is presented. Electrons are treated kinetically, relying on the adiabatic invariance of their radial action integral for the integration of Vlasov's equation, whereas ions are treated as a cold species. The quasi-2D plasma density, self-consistent electric potential, and electron pressure, temperature, and heat fluxes are analyzed. In particular, the model yields the collisionless cooling of electrons, which differs from the Boltzmann relation and the simple polytropic laws usually employed in fluid and hybrid PIC/fluid plume codes.

  19. Remote Sensing of Volcanic Clouds: Sulfur Gases and Plume Top Topography

    NASA Technical Reports Server (NTRS)

    Crisp, Joy A.

    1999-01-01

    New absorption line parameters for H2S were published and submitted to the Gestion et Etude des Informations Spectroscopiques Atmospheriques (GEISA) and high resolution transmission molecular absorption (HITRAN) databases. These new absorption line parameters will make it possible to use observations from the future Tropospheric Emission Spectrometer (TES) instrument [Earth Observing System (EOS) Chemistry Mission (CHEM) platform] to make more accurate H2S measurements if it observes an H2S-rich volcanic cloud. H2S is the second most abundant volcanic sulfur gas, and like SO2, it also converts to H2SO4 aerosols and can have a climate impact. A paper on the Moderate-resolution Imaging-Spectroradiometer (MODIS) SO2 alert is being revised. New aspects in the revision include verification of the SO2 alert during the EOS mission; factors affecting SO2 detection at thermal infrared, ultraviolet, and microwave wavelengths; radiative transfer tests; more description of satellite instruments; and thermal surface alert installed for MODIS. Her research involves the use of remote sensing to generate maps of plume top altitude. This parameter is important for models of volcanic eruption, aircraft hazards, and climate impact. The topographic shape of the top surface of a volcanic plume can provide information necessary to understand the physics controlling the injection and dispersal of a volcanic plume in the atmosphere. Glaze et al. describe the application of a photoclinometric technique to volcanic plumes. The software algorithm has been improved to account for more general plume and illumination geometries and for easily extracting position information directly from Advanced Very High-Resolution Radiometer (AVHRR) level 1B data. Testing of the algorithm has focused on acquiring AVHRR data for a variety of volcanic plumes in an effort to identify problems with the software as well as model sensitivities. The plumes chosen were erupted from volcanoes at a variety of

  20. Sedimentation from Particle-Laden Plumes in Stratified Fluid

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Hong, Youn Sub

    2015-11-01

    Laboratory experiments are performed in which a mixture of particles, water and a small amount of dye is continuously injected upwards from a localized source into a uniformly stratified ambient. The particle-fluid mixture initially rises as a forced plume (which in most cases is buoyant, though in some cases due to high particle concentration is negative-buoyant at the source), reaches a maximum height, collapses upon itself and then spreads as a radial intrusion. The particles are observed to rain out of the descending intrusion and settle upon the floor of the tank. Using light attenuation, the depth of the particle mound is measured after the experiment has run for a fixed amount of time. In most experiments the distribution of particles is found to be approximately axisymmetric about the source with a near Gaussian structure for height as a function of radius. The results are compared with a code that combines classical plume theory with an adaptation to stratified fluids of the theory of Carey, Sigurdsson and Sparks (JGR, 1988) for the spread and fall of particles from a particle-laden plume impacting a rigid ceiling. Re-entrainment of particles into the plume is also taken into account.

  1. Ion energy distributions and densities in the plume of Enceladus

    NASA Astrophysics Data System (ADS)

    Sakai, Shotaro; Cravens, Thomas E.; Omidi, Nojan; Perry, Mark E.; Waite, J. Hunter

    2016-10-01

    Enceladus has a dynamic plume that is emitting gas, including water vapor, and dust. The gas is ionized by solar EUV radiation, charge exchange, and electron impact and extends throughout the inner magnetosphere of Saturn. The charge exchange collisions alter the plasma composition. Ice grains (dust) escape from the vicinity of Enceladus and form the E ring, including a portion that is negatively charged by the local plasma. The inner magnetosphere within 10 RS (Saturn radii) contains a complex mixture of plasma, neutral gas, and dust that links back to Enceladus. In this paper we investigate the energy distributions, ion species and densities of water group ions in the plume of Enceladus using test particle and Monte Carlo methods that include collisional processes such as charge exchange and ion-neutral chemical reactions. Ion observations from the Cassini Ion and Neutral Mass Spectrometer (INMS) for E07 are presented for the first time. We use the modeling results to interpret observations made by the Cassini Plasma Spectrometer (CAPS) and the INMS. The low energy ions, as observed by CAPS, appear to be affected by a vertical electric field (EZ=-10 μV/m) in the plume. The EZ field may be associated with the charged dust and/or the pressure gradient of plasma. The model results, along with the results of earlier models, show that H3O+ ions created by chemistry are predominant in the plume, which agrees with INMS and CAPS data, but the INMS count rate in the plume for the model is several times greater than the data, which we do not fully understand. This composition and the total ion count found in the plume agree with INMS and CAPS data. On the other hand, the Cassini Langmuir Probe measured a maximum plume ion density more than 30,000 cm-3, which is far larger than the maximum ion density from our model, 900 cm-3. The model results also demonstrate that most of the ions in the plume are from the external magnetospheric flow and are not generated by local

  2. The source location of mantle plumes from 3D spherical models of mantle convection

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Zhong, Shijie

    2017-11-01

    Mantle plumes are thought to originate from thermal boundary layers such as Earth's core-mantle boundary (CMB), and may cause intraplate volcanism such as large igneous provinces (LIPs) on the Earth's surface. Previous studies showed that the original eruption sites of deep-sourced LIPs for the last 200 Myrs occur mostly above the margins of the seismically-observed large low shear velocity provinces (LLSVPs) in the lowermost mantle. However, the mechanism that leads to the distribution of the LIPs is not clear. The location of the LIPs is largely determined by the source location of mantle plumes, but the question is under what conditions mantle plumes form outside, at the edges, or above the middle of LLSVPs. Here, we perform 3D geodynamic calculations and theoretical analyses to study the plume source location in the lowermost mantle. We find that a factor of five decrease of thermal expansivity and a factor of two increase of thermal diffusivity from the surface to the CMB, which are consistent with mineral physics studies, significantly reduce the number of mantle plumes forming far outside of thermochemical piles (i.e., LLSVPs). An increase of mantle viscosity in the lowermost mantle also reduces number of plumes far outside of piles. In addition, we find that strong plumes preferentially form at/near the edges of piles and are generally hotter than that forming on top of piles, which may explain the observations that most LIPs occur above LLSVP margins. However, some plumes originated at pile edges can later appear above the middle of piles due to lateral movement of the plumes and piles and morphologic changes of the piles. ∼65-70% strong plumes are found within 10 degrees from pile edges in our models. Although plate motion exerts significant controls over the large-scale mantle convection in the lower mantle, mantle plume formation at the CMB remains largely controlled by thermal boundary layer instability which makes it difficult to predict geographic

  3. Enceladus Plume Density Modeling and Reconstruction for Cassini Attitude Control System

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2010-01-01

    In 2005, Cassini detected jets composed mostly of water, spouting from a set of nearly parallel rifts in the crust of Enceladus, an icy moon of Saturn. During an Enceladus flyby, either reaction wheels or attitude control thrusters on the Cassini spacecraft are used to overcome the external torque imparted on Cassini due to Enceladus plume or jets, as well as to slew the spacecraft in order to meet the pointing needs of the on-board science instruments. If the estimated imparted torque is larger than it can be controlled by the reaction wheel control system, thrusters are used to control the spacecraft. Having an engineering model that can predict and simulate the external torque imparted on Cassini spacecraft due to the plume density during all projected low-altitude Enceladus flybys is important. Equally important is being able to reconstruct the plume density after each flyby in order to calibrate the model. This paper describes an engineering model of the Enceladus plume density, as a function of the flyby altitude, developed for the Cassini Attitude and Articulation Control Subsystem, and novel methodologies that use guidance, navigation, and control data to estimate the external torque imparted on the spacecraft due to the Enceladus plume and jets. The plume density is determined accordingly. The methodologies described have already been used to reconstruct the plume density for three low-altitude Enceladus flybys of Cassini in 2008 and will continue to be used on all remaining low-altitude Enceladus flybys in Cassini's extended missions.

  4. High resolution mapping of hydrothermal plumes in the Mariana back-arc relate seafloor sources to above-bottom plumes

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Resing, J. A.; Chadwick, W. W., Jr.; Merle, S. G.; Kaiser, C. L.

    2016-12-01

    The Mariana backarc spreading center between 12.9°-18°N was systematically explored for hydrothermal activity in Nov-Dec 2015 (R/V Falkor cruise FK151121) by conducting long distance along-axis CTD tows (vertical range was 20-600 meters above bottom (mab)) followed by higher resolution, horizontal grid AUV Sentry surveys at 70 mab in some of the areas where plumes were found. In those areas, the combination of along-axis CTD tows and near-bottom AUV surveys provides a nearly 3-dimensional view of the above-bottom plume relative to the seafloor morphology and potential sources. In addition, photo surveys were run at 5 mab at two of the sites. At 15.4°N, strong ORP anomalies (ΔE=-39 mv) with weak to absent optical signals were aligned with a new (<3yr) lava flow, suggesting widespread diffuse venting was associated with still-cooling lava to create a broad, optically weak plume that extended to 500 mab. About 10 km north of the new lava flow (15.5°N) there were fewer, but more distinct instances where temperature, particle, and OPR anomalies were co-located at 70 mab, providing information for the likely locations where more focused, higher temperature venting generated an optically intense (dNTU=0.032) above-bottom plume (to 500 mab over the axial high). The plume over the backarc segment high at 17.0°N exhibited a significant optical anomaly (dNTU=0.023) with a very strong ORP anomaly (ΔE=-88 mv) that extended only 1.5 km along-axis. The near-bottom survey showed a broad area ( 3km2) with robust temperature, particle, and ORP signals. Directed by this information, and the high resolution bathymetry acquired from the AUV survey, several active chimneys (one being 30 m tall with temperatures up to 340°C) were found during NOAA Okeanos Explorer ROV dives in May 2016. At 18°N, anomalies seen in the 11 km2 AUV survey were generally located along the axis of the spreading center and, with one exception, were limited to areas of previously-known (1987) venting

  5. Mass discharge in a tracer plume: Evaluation of the Theissen Polygon Method

    PubMed Central

    Mackay, Douglas M.; Einarson, Murray D.; Kaiser, Phil M.; Nozawa-Inoue, Mamie; Goyal, Sham; Chakraborty, Irina; Rasa, Ehsan; Scow, Kate M.

    2013-01-01

    A tracer plume was created within a thin aquifer by injection for 299 days of two adjacent “sub-plumes” to represent one type of plume heterogeneity encountered in practice. The plume was monitored by snapshot sampling of transects of fully screened wells. The mass injection rate and total mass injected were known. Using all wells in each transect (0.77 m well spacing, 1.4 points/m2 sampling density), the Theissen Polygon Method (TPM) yielded apparently accurate mass discharge (Md) estimates at 3 transects for 12 snapshots. When applied to hypothetical sparser transects using subsets of the wells with average spacing and sampling density from 1.55 to 5.39 m and 0.70 to 0.20 points/m2, respectively, the TPM accuracy depended on well spacing and location of the wells in the hypothesized transect with respect to the sub-plumes. Potential error was relatively low when the well spacing was less than the widths of the sub-plumes (> 0.35 points/m2). Potential error increased for well spacing similar to or greater than the sub-plume widths, or when less than 1% of the plume area was sampled. For low density sampling of laterally heterogeneous plumes, small changes in groundwater flow direction can lead to wide fluctuations in Md estimates by the TPM. However, sampling conducted when flow is known or likely to be in a preferred direction can potentially allow more useful comparisons of Md over multiyear time frames, such as required for performance evaluation of natural attenuation or engineered remediation systems. PMID:22324777

  6. A new method for GPS-based wind speed determinations during airborne volcanic plume measurements

    USGS Publications Warehouse

    Doukas, Michael P.

    2002-01-01

    Begun nearly thirty years ago, the measurement of gases in volcanic plumes is today an accepted technique in volcano research. Volcanic plume measurements, whether baseline gas emissions from quiescent volcanoes or more substantial emissions from volcanoes undergoing unrest, provide important information on the amount of gaseous output of a volcano to the atmosphere. Measuring changes in gas emission rates also allows insight into eruptive behavior. Some of the earliest volcanic plume measurements of sulfur dioxide were made using a correlation spectrometer (COSPEC). The COSPEC, developed originally for industrial pollution studies, is an upward-looking optical spectrometer tuned to the ultraviolet absorption wavelength of sulfur dioxide (Millán and Hoff, 1978). In airborne mode, the COSPEC is mounted in a fixed-wing aircraft and flown back and forth just underneath a volcanic plume, perpendicular to the direction of plume travel (Casadevall and others, 1981; Stoiber and others, 1983). Similarly, for plumes close to the ground, the COSPEC can be mounted in an automobile and driven underneath a plume if a suitable road system is available (Elias and others, 1998). The COSPEC can also be mounted on a tripod and used to scan a volcanic plume from a fixed location on the ground, although the effectiveness of this configuration declines with distance from the plume (Kyle and others, 1990). In the 1990’s, newer airborne techniques involving direct sampling of volcanic plumes with infrared spectrometers and electrochemical sensors were developed in order to measure additional gases such as CO2 and H2S (Gerlach and others, 1997; Gerlach and others, 1999; McGee and others, 2001). These methods involve constructing a plume cross-section from several measurement traverses through the plume in a vertical plane. Newer instruments such as open-path Fourier transform infrared (FTIR) spectrometers are now being used to measure the gases in volcanic plumes mostly from fixed

  7. Plume-ridge interaction: Shaping the geometry of mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric L.

    Manifestations of plume-ridge interaction are found across the ocean basins. Currently there are interactions between at least 21 hot spots and nearby ridges along 15--20% of the global mid-ocean ridge network. These interactions produce a number of anomalies including the presence of elevated topography, negative gravity anomalies, and anomalous crustal production. One form of anomalous crustal production is the formation of volcanic lineaments between hotspots and nearby mid-ocean ridges. In addition, observations indicate that mantle plumes tend to "capture" nearby mid-ocean ridges through asymmetric spreading, increased ridge propagation, and discrete shifts of the ridge axis, or ridge jumps. The initiation of ridge jumps and the formation of off-axis volcanic lineaments likely involve similar processes and may be closely related. In the following work, I use theoretical and numerical models to quantify the processes that control the formation of volcanic lineaments (Chapter 2), the initiation of mid-ocean ridge jumps associated with lithospheric heating due to magma passing through the plate (Chapter 3), and the initiation of jumps due to an upwelling mantle plume and magmatic heating governed by melt migration (Chapter 4). Results indicate that lineaments and ridge jumps associated with plume-ridge interaction are most likely to occur on young lithosphere. The shape of lineaments on the seafloor is predicted to be controlled by the pattern of lithospheric stresses associated with a laterally spreading, near-ridge mantle plume. Ridge jumps are likely to occur due to magmatic heating alone only in lithosphere ˜1Myr old, because the heating rate required to jump increases with spreading rate and plate age. The added effect of an upwelling plume introduces competing effects that both promote and inhibit ridge jumps. For models where magmatic heating is controlled by melt migration, repeat ridge jumps are predicted to occur as the plume and ridge separate, but

  8. Formation of mantle "lone plumes" in the global downwelling zone - A multiscale modelling of subduction-controlled plume generation beneath the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Li, Zheng-Xiang

    2018-01-01

    It has been established that almost all known mantle plumes since the Mesozoic formed above the two lower mantle large low shear velocity provinces (LLSVPs). The Hainan plume is one of the rare exceptions in that instead of rising above the LLSVPs, it is located within the broad global mantle downwelling zone, therefore classified as a "lone plume". Here, we use the Hainan plume example to investigate the feasibility of such lone plumes being generated by subducting slabs in the mantle downwelling zone using 3D geodynamic modelling. Our geodynamic model has a high-resolution regional domain embedded in a relatively low resolution global domain, which is set up in an adaptive-mesh-refined, 3D mantle convection code ASPECT (Advanced Solver for Problems in Earth's ConvecTion). We use a recently published plate motion model to define the top mechanical boundary condition. Our modelling results suggest that cold slabs under the present-day Eurasia, formed from the Mesozoic subduction and closure of the Tethys oceans, have prevented deep mantle hot materials from moving to the South China Sea from regions north or west of the South China Sea. From the east side, the Western Pacific subduction systems started to promote the formation of a lower-mantle thermal-chemical pile in the vicinity of the future South China Sea region since 70 Ma ago. As the top of this lower-mantle thermal-chemical pile rises, it first moved to the west, and finally rested beneath the South China Sea. The presence of a thermochemical layer (possible the D″ layer) in the model helps stabilizing the plume root. Our modelling is the first implementation of multi-scale mesh in the regional model. It has been proved to be an effective way of modelling regional dynamics within a global plate motion and mantle dynamics background.

  9. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.; Buscheck, T. A.; Mansoor, K.

    We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO 2 leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MTmore » response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO 2 plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO 2 plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.« less

  10. Satellite detection of smoke plumes and inadvertant weather modification

    Treesearch

    Wayne A. Pettyjohn; John B. McKeon

    1976-01-01

    Satellite imagery provides a convenient and inexpensive means for monitoring smoke plumes and evaluating inadvertant weather modification. Visual examination of LANDSAT-1 imagery for two sites in east-central Ohio indicates that, at times, a plume may extend nearly 48 km downwind and reach a width of six km. Density slicing techniques provide clues as to the...

  11. Anchoring Atmospheric Density Models Using Observed Shuttle Plume Emissions

    NASA Astrophysics Data System (ADS)

    Dimpfl, W. L.; Bernstien, L. S.

    2010-12-01

    Atmospheric number densities at a given low-earth orbit (LEO) altitude can vary by more than an order of magnitude, depending on such parameters as diurnal variations and solar activity. The MSIS atmospheric model, which includes these dependent variables as input, is reported as being accurate to ±15%. Improvement to such models requires accurate direct atmospheric measurement. Here, a means of anchoring atmospheric models is offered through measuring the size and shape of atomic line or molecular band radiance resulting from the atmospheric interaction from rocket engine plumes or gas releases in LEO. Many discrete line or band emissions, ranging from the infrared to the ultraviolet may be suitable. For this purpose we are focusing on NH(A→X), centered at 316 nm. This emission is seen in the plumes of the Shuttle Orbiter PRCS engines, is expected in the plume of any amine fueled engine, and can be observed from remote sensors in space or on the ground. The atmospheric interaction of gas releases or plumes from spacecraft in LEO are understood by comparison of observed radiance with that predicted by Direct Simulation Monte Carlo (DSMC) models. The recent Extended Variable Hard Sphere (EVHS) improvements in treating hyperthermal collisions has produced exceptional agreement between measured and modeled steady-state Space Shuttle OMS and PRCS 190-250 nm Cameron band plume radiance from CO(a→X), which is understood to result from a combination of two- and three-step mechanisms. Radiance from NH(A→X) in far field plumes is understood to result from a simpler single-step process of the reaction of a minor plume species with atomic oxygen, making it more suitable for use in determining atmospheric density. It is recommended that direct retrofire burns of amine fueled engines be imaged in a narrow band from remote sensors to reveal atmospheric number density. In principal the simple measurement of the distance between the engine exit and the peak in the steady

  12. Plume-induced roll back subduction around Venus large coronae

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Smrekar, S. E.; Tomlinson, S. M.

    2016-12-01

    On Venus, possible subduction trenches are mainly associated with large coronae, eventhough the latter are thought to be produced by hot mantle plumes. The mechanism of assocation between subduction and plume has long remained elusive. However, we recently observe the same association in laboratory experiments on thermal convection in colloidal aqueous dispersions of silica nanoparticles, which deform in the Newtonian regime at low solid particle fraction φp, and transition to strain-rate weakening, plasticity, elasticity, and brittle properties as φp increases. Hence, a dense skin akin to a planetary lithosphere grows on the surface when the system is dried from above. When a hot plume rises under the skin, the latter undergoes a flexural deformation which puts it under tension. Cracks then develop, sometimes using pre-existing weaknesses. Plume material (being more buoyant that the laboratory lithosphere) upwells through the cracks and spreads as a axisymmetric gravity current above the broken denser skin. The latter bends and sinks under the conjugate action of its own weight and the plume gravity current. The brittle character of the top experimental lithosphere forbids it to deform viscously to accomodate the sinking motions. Instead, the plate continues to tear as a sheet of paper would do upon intrusion. Several slabs are therefore produced, associated with trenches localized along partial circles on the plume, and strong roll-back is always observed. Depending on the lithospheric strength, roll-back can continue and triggers a complete resurfacing, or it stops when the plume stops spreading. Scalings derived from the experiments suggest that a weaker lithosphere than that present on Earth today is required for such a convective regime. We identified two candidates on Venus. At Artemis and Quetzelpetlatl Coronae, the radar image observations and subsurface density variations inferred from modeling the gravity and topography agree with the predictions from

  13. Gaseous and Particulate Content of Laser Hair Removal Plume.

    PubMed

    Chuang, Gary S; Farinelli, William; Christiani, David C; Herrick, Robert F; Lee, Norman C Y; Avram, Mathew M

    2016-12-01

    Potentially harmful chemicals are released when tissues are vaporized. Laser hair removal (LHR) causes heating and often vaporization of hairs, producing both a signature malodorous plume and visible particulates. To characterize the chemical composition and quantify the ultrafine particle content of the plume generated during LHR. In the laser center of a large academic hospital, discarded terminal hairs from the trunk and extremities were collected from 2 adult volunteers. The hair samples were sealed in glass gas chromatography chambers and treated with a laser. The laser plume was analyzed by gas chromatography-mass spectrometry (GC-MS). During LHR treatment, two 6-L negative pressure canisters were used to capture 30 seconds of laser plume, and a portable condensation particle counter was used to measure ultrafine particulates (<1 µm). Ultrafine particle concentrations were measured within the treatment room, within the waiting room, and outside the building. The chemical content of the laser plume was analyzed with GC-MS and screened for aerosolized toxins using Environmental Protection Agency-certified methods. The ambient concentration of ultrafine particles during LHR was measured by condensation particle counters. Analysis with GC-MS identified 377 chemical compounds. Sixty-two of these compounds, of which 13 are known or suspected carcinogens and more than 20 are known environmental toxins, exhibited strong absorption peaks. During LHR, the portable condensation particle counters documented an 8-fold increase compared with the ambient room baseline level of ultrafine particle concentrations (ambient room baseline, 15 300 particles per cubic centimeter [ppc]; LHR with smoke evacuator, 129 376 ppc), even when a smoke evacuator was in close proximity (5.0 cm) to the procedure site. When the smoke evacuator was turned off for 30 seconds, there was a more than 26-fold increase in particulate count compared with ambient baseline levels (ambient baseline

  14. Impact of the Fraser River Geometry on Tides and the River Plumes in a Model of the Fraser River Plume

    NASA Astrophysics Data System (ADS)

    Liu, J.; Allen, S. E.; Soontiens, N. K.

    2016-02-01

    Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.

  15. Linear bubble plume model for hypolimnetic oxygenation: Full-scale validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Singleton, V. L.; Gantzer, P.; Little, J. C.

    2007-02-01

    An existing linear bubble plume model was improved, and data collected from a full-scale diffuser installed in Spring Hollow Reservoir, Virginia, were used to validate the model. The depth of maximum plume rise was simulated well for two of the three diffuser tests. Temperature predictions deviated from measured profiles near the maximum plume rise height, but predicted dissolved oxygen profiles compared very well with observations. A sensitivity analysis was performed. The gas flow rate had the greatest effect on predicted plume rise height and induced water flow rate, both of which were directly proportional to gas flow rate. Oxygen transfer within the hypolimnion was independent of all parameters except initial bubble radius and was inversely proportional for radii greater than approximately 1 mm. The results of this work suggest that plume dynamics and oxygen transfer can successfully be predicted for linear bubble plumes using the discrete-bubble approach.

  16. Distinguishing remobilized ash from erupted volcanic plumes using space-borne multi-angle imaging.

    PubMed

    Flower, Verity J B; Kahn, Ralph A

    2017-10-28

    Volcanic systems are comprised of a complex combination of ongoing eruptive activity and secondary hazards, such as remobilized ash plumes. Similarities in the visual characteristics of remobilized and erupted plumes, as imaged by satellite-based remote sensing, complicate the accurate classification of these events. The stereo imaging capabilities of the Multi-angle Imaging SpectroRadiometer (MISR) were used to determine the altitude and distribution of suspended particles. Remobilized ash shows distinct dispersion, with particles distributed within ~1.5 km of the surface. Particle transport is consistently constrained by local topography, limiting dispersion pathways downwind. The MISR Research Aerosol (RA) retrieval algorithm was used to assess plume particle microphysical properties. Remobilized ash plumes displayed a dominance of large particles with consistent absorption and angularity properties, distinct from emitted plumes. The combination of vertical distribution, topographic control, and particle microphysical properties makes it possible to distinguish remobilized ash flows from eruptive plumes, globally.

  17. Martian methane plume models for defining Mars rover methane source search strategies

    NASA Astrophysics Data System (ADS)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  18. Constraints on Thermochemical Convection of the Mantle from Plume-related Observations

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2005-05-01

    Although geochemical observations have long suggested a layered mantle with more enriched mantle material in the bottom layer to provide a significant amount of heat to the top layer, the nature of such a layering remains unclear. An important observation that has been used to argue against the conventional layered mantle model (i.e., the layering at the 670 km depth) was the plume heat flux [Davies, 1999]. Plume heat flux is estimated as ~ 3.5 TW, or 10% of the surface heat flux [Davies, 1988; Sleep, 1990]. In this study, we demonstrate with 3-D spherical models of mantle convection with depth- and temperature-dependent viscosity that observed plume heat flux, plume excess temperature (<350°C), and upper mantle temperature (~ 1300°C) can pose important constraints on the layered mantle convection. We show that for a purely thermal convection model (i.e., a whole mantle convection), the observations of plume heat flux, plume excess temperature, and upper mantle temperature can be simultaneously explained only when internal heating rate is about 65%. For smaller internal heating rate, plume heat flux and plume excess temperature would be too large, and upper mantle temperature would be too small, compared with the observed. This suggests that for a whole mantle convection the CMB heat flux needs to be > 10 TW. For a core with no significant heat producing elements, such large CMB heat flux may lead to too rapid cooling of the core or a too young inner core. A layered mantle convection may help reduce the CMB heat flux. For layered convection models, we found that the top layer needs to be ~70% internally heated to explain the upper mantle temperature and plume-related observations, and this required internal heating ratio is insensitive to the layer thickness for the bottom layer (we used ~600 km and 1100 km thicknesses). This result suggests that heat generation rate for the bottom layer cannot be significantly larger (< a factor of 2) than that for the top layer

  19. Spatial and temporal migration of a landfill leachate plume in alluvium

    USGS Publications Warehouse

    Masoner, Jason R.; Cozzarelli, Isabelle M.

    2015-01-01

    Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl− concentrations during dry periods and decreasing Cl− concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl− concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl−concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic

  20. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Freshley, Mark D.; Last, George V.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.« less

  1. Hyper-spectral imaging of aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Bowen, Spencer; Bradley, Kenneth; Gross, Kevin; Perram, Glen; Marciniak, Michael

    2008-10-01

    An imaging Fourier-transform spectrometer has been used to determine low spatial resolution temperature and chemical species concentration distributions of aircraft jet engine exhaust plumes. An overview of the imaging Fourier transform spectrometer and the methodology of the project is presented. Results to date are shared and future work is discussed. Exhaust plume data from a Turbine Technologies, LTD, SR-30 turbojet engine at three engine settings was collected using a Telops Field-portable Imaging Radiometric Spectrometer Technology Mid-Wave Extended (FIRST-MWE). Although the plume exhibited high temporal frequency fluctuations, temporal averaging of hyper-spectral data-cubes produced steady-state distributions, which, when co-added and Fourier transformed, produced workable spectra. These spectra were then reduced using a simplified gaseous effluent model to fit forward-modeled spectra obtained from the Line-By-Line Radiative Transfer Model (LBLRTM) and the high-resolution transmission (HITRAN) molecular absorption database to determine approximate temperature and concentration distributions. It is theorized that further development of the physical model will produce better agreement between measured and modeled data.

  2. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  3. Ion Plume Damage in Formation Flight Regimes

    NASA Astrophysics Data System (ADS)

    Young, Jarred Alexander

    This effort examines the potential for damage from plume impingement from an electric propulsion system within spacecraft missions that utilize a formation flight architecture. Specifically, the potential erosion of a structural material (Aluminum) and anti-reflective coatings for solar cell coverglass are explored. Sputter yields for the materials of Aluminum, Magnesium Fluoride, and Indium Tin Oxide are experimentally validated using an electrostatic ion source at energies varying from 500-1500 eV. Erosion depths are analyzed using white-light optical profilometry to measure potential depths up to 1 microm. This erosion data was then utilized to create (or augment) Bohdansky and Yamamura theoretical curve fits for multiple incidence angles to look at theoretical sputter effects within formation flight regimes at multiple formation distances from 50-1000 m. The damage from these electric propulsion plumes is explored throughout multiple orbital conditions from LEO, Sun-Synchronous, and GEO. Factors affecting erosion are: plume density, local geomagnetic field environment and incidence angles of target surfaces. Results from this simulated study show significant erosion with GEO with minor erosion in some LEO and all Sun-Synchronous cases.

  4. Measuring Plume Meander in the Nighttime Stable Boundary Layer with Lidar

    NASA Astrophysics Data System (ADS)

    Hiscox, A.; Miller, D. R.; Nappo, C. J.

    2009-12-01

    Complex dynamics of the stable planetary boundary layer (PBL), such as the effects of density currents, intermittent turbulence, surface-layer decoupling, internal gravity waves, cold air pooling, and katabatic flows affect plume transport and diffusion. A better understanding of these effects is needed for nighttime transport model development. The JORNADA (Joint Observational Research on Nocturnal Atmospheric Dispersion of Aerosols) field campaign, conducted in the New Mexico desert during April 2005, sought to address some of these issues The JORNADA data set includes simultaneous micrometeorological measurements of the boundary layer structure, turbulence, and wave activity along with continuous lidar measurement of aerosol plume releases. What makes JORNADA unique is the real-time monitoring of an elevated plume with a lidar. The quantification of plume meander will be presented in this paper. The application of these techniques to the JORNADA data allows for a more complete understanding of the nocturnal boundary layer (NBL). We will present an in-depth analysis of lidar measurements of plume meander and dispersion and their relationship to the complexities of NBL structure.

  5. Mantle plumes and associated flow beneath Arabia and East Africa

    NASA Astrophysics Data System (ADS)

    Chang, Sung-Joon; Van der Lee, Suzan

    2011-02-01

    We investigate mantle plumes and associated flow beneath the lithosphere by imaging the three-dimensional S-velocity structure beneath Arabia and East Africa. This image shows elongated vertical and horizontal low-velocity anomalies down to at least mid mantle depths. This three-dimensional S-velocity model is obtained through the joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. In the resolved parts of our S-velocity model we find that the Afar plume is distinctly separate from the Kenya plume, showing the Afar plume's origin in the lower mantle beneath southwestern Arabia. We identify another quasi-vertical low-velocity anomaly beneath Jordan and northern Arabia which extends into the lower mantle and may be related to volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirm horizontal mantle flow radially away from Afar. Low-velocity channels in our model support southwestward flow beneath Ethiopia, eastward flow beneath the Gulf of Aden, but not northwestwards beneath the entire Red Sea. Instead, northward mantle flow from Afar appears to be channeled beneath Arabia.

  6. Plume trajectory formation under stack tip self-enveloping

    NASA Astrophysics Data System (ADS)

    Gribkov, A. M.; Zroichikov, N. A.; Prokhorov, V. B.

    2017-10-01

    The phenomenon of stack tip self-enveloping and its influence upon the conditions of plume formation and on the trajectory of its motion are considered. Processes are described occurring in the initial part of the plume while the interaction between vertically directed flue gases outflowing from the stack and a horizontally directed moving air flow at high wind velocities that lead to the formation of a flag-like plume. Conditions responsible for the origin and evolution of interaction between these flows are demonstrated. For the first time, a plume formed under these conditions without bifurcation is registered. A photo image thereof is presented. A scheme for the calculation of the motion of a plume trajectory is proposed, the quantitative characteristics of which are obtained based on field observations. The wind velocity and direction, air temperature, and atmospheric turbulence at the level of the initial part of the trajectory have been obtained based on data obtained from an automatic meteorological system (mounted on the outer parts of a 250 m high stack no. 1 at the Naberezhnye Chelny TEPP plant) as well as based on the results of photographing and theodolite sighting of smoke puffs' trajectory taking into account their velocity within its initial part. The calculation scheme is supplemented with a new acting force—the force of self-enveloping. Based on the comparison of the new calculation scheme with the previous one, a significant contribution of this force to the development of the trajectory is revealed. A comparison of the natural full-scale data with the results of the calculation according to the proposed new scheme is made. The proposed calculation scheme has allowed us to extend the application of the existing technique to the range of high wind velocities. This approach would make it possible to simulate and investigate the trajectory and full rising height of the calculated the length above the mouth of flue-pipes, depending on various modal

  7. Variable Melt Production Rate of the Kerguelen HotSpot Due To Long-Term Plume-Ridge Interaction

    NASA Astrophysics Data System (ADS)

    Bredow, Eva; Steinberger, Bernhard

    2018-01-01

    For at least 120 Myr, the Kerguelen plume has distributed enormous amounts of magmatic rocks over various igneous provinces between India, Australia, and Antarctica. Previous attempts to reconstruct the complex history of this plume have revealed several characteristics that are inconsistent with properties typically associated with plumes. To explore the geodynamic behavior of the Kerguelen hotspot, and in particular address these inconsistencies, we set up a regional viscous flow model with the mantle convection code ASPECT. Our model features complex time-dependent boundary conditions in order to explicitly simulate the surrounding conditions of the Kerguelen plume. We show that a constant plume influx can result in a variable magma production rate if the plume interacts with nearby spreading ridges and that a dismembered plume, multiple plumes, or solitary waves in the plume conduit are not required to explain the fluctuating magma output and other unusual characteristics attributed to the Kerguelen hotspot.

  8. Infrared characteristics and flow field of the exhaust plume outside twin engine nozzle

    NASA Astrophysics Data System (ADS)

    Feng, Yun-song

    2016-01-01

    For mastery of infrared radiation characteristics and flow field of exhaust plume of twin engine nozzles, first, a physical model of the double rectangular nozzles is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the twin engine nozzles, and the datum of flow field, such as temperature, pressure and density, are obtained. Finally, based on the plume temperature, the exhaust plume space is divided. The exhaust plume is equivalent to a gray-body. A calculating model of the plume infrared radiation is established, and the plume infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. The result improves that with the height increasing the temperature, press and infrared radiant intensity diminish. Compared with engine afterburning condition, temperature and infrared radiant intensity increases and press has no obvious change.

  9. The magnetic particle plume solar sail concept

    NASA Astrophysics Data System (ADS)

    Knuth, William H.

    2000-01-01

    A magnetic particle space radiator was proposed in the late 1950s as a means to dissipate waste heat from space nuclear systems. The concept was a plume of hot magnetic particles confined to and traversing a magnetic field produced by super conducting magnets in the space vehicle. The large surface area of the hot particles was expected to effectively radiate away the heat. The cooling particles followed along the lines of the magnetic field and eventually returned to the vehicle where they again picked up a fresh charge of waste heat for return out to the plume. This paper presents a new concept for consideration. The same basic magnetic particle plume idea is proposed in this paper, except the purpose of the plume would be to receive momentum (and possibly electric power) from the solar wind in the manner of a solar sail. Recent nano-technologies allow the magnetic particles to be 2-3 orders of magnitude smaller than envisioned for the heat radiator, and the magnetic field would be stronger than we envisioned in the '50s. The application of the magnetic solar sail would be for propelling space-faring vehicles on long duration exploration of the solar system and possibly beyond. A first look is provided at the elements of the system, together with an estimate of the thrust potential and the approximate weights of the system. The system appears to have the potential to develop on the order of 50lb and 100lb of thrust and weight on the order of 15,000lb .

  10. Plumes and Earth's Dynamic History : from Core to Biosphere

    NASA Astrophysics Data System (ADS)

    Courtillot, V. E.

    2002-12-01

    The last half century has been dominated by the general acceptance of plate tectonics. Although the plume concept emerged early in this story, its role has remained ambiguous. Because plumes are singularities, both in space and time, they tend to lie dangerously close to catastrophism, as opposed to the calm uniformitarian view of plate tectonics. Yet, it has become apparent that singular events and transient phenomena are of great importance, even if by definition they cover only a small fraction of geological time, in diverse observational and theoretical fields such as 1) magnetic reversals and the geodynamo, 2) tomography and mantle convection, 3) continental rifting and collision, and 4) evolution of the fluid envelopes (atmospheric and oceanic "climate"; evolution of species in the biosphere). I will emphasize recent work on different types of plumes and on the correlation between flood basalts and mass extinctions. The origin of mantle plumes remains a controversial topic. We suggest that three types of plumes exist, which originate at the three main discontinuities in the Earth's mantle (base of lithosphere, transition zone and core-mantle boundary). Most of the hotspots are short lived (~ 10Ma) and seem to come from the transition zone or above. Important concentrations occur above the Pacific and African superswells. Less than 10 hotspots have been long lived (~ 100Ma) and may have a very deep origin. In the last 50 Ma, these deep-seated plumes in the Pacific and Indo-Atlantic hemispheres have moved slowly, but motion was much faster prior to that. This change correlates with major episodes of true polar wander. The deeper ("primary") plumes are thought to trace global shifts in quadrupolar convection in the lower mantle. These are the plumes that were born as major flood basalts or oceanic plateaus (designated as large igneous provinces or LIPs). Most have an original volume on the order or in excess of 2.5 Mkm3. In most provinces, volcanism lasted on

  11. Hydrothermal plumes along the East Pacific Rise, 8 deg 40 min to 11 deg 50 min N: Plume distribution and relationship to the apparent magmatic budget

    NASA Astrophysics Data System (ADS)

    Baker, E. T.; Feely, R. A.; Mottl, M. J.; Sansone, F. T.; Wheat, C. G.; Resing, J. A.; Lupton, J. E.

    1994-11-01

    The interactions between hydrothermal circulation and large-scale geological and geophysical characteristics of the mid-ocean ridge cannot be ascertained without large-scale views of the pattern of hydrothermal venting. Such multi-ridge-segment surveys of venting are accomplished most efficiently by mapping the distribution and intensity of hydrothermal plumes. In November 1991, we mapped hydrothermal temperature (Delta(theta)) and light attenuation (Delta(c)) anomalies above the East Pacific Rise (EPR) continuously from 8 deg 40 min to 11 deg 50 min N, a fast spreading ridge crest portion bisected by the Clipperton Transform Fault. Plume distributions show a precise correlation with the distribution of active vents where video coverage of the axial caldera is exhaustive. Elsewhere in the study area the sketchy knowledge of vent locations gleaned from scattered camera tows predicts only poorly the large-scale hydrothermal pattern revealed by our plume studies. Plumes were most intense between 9 deg 42 min and 9 deg 54 min N, directly over a March/April, 1991, seafloor eruption. These plumes had exceptionally high Delta(c)/Delta(theta) ratios compared to the rest of the study area; we suggest that the phase-separated gas-rich vent fluids discharging here fertilize an abundant population of bacteria. Hydrothermal plume distributions define three categories: intense and continuous, weak and discontinuous and negligible. The location of each category is virtually congruent with areas that are, respectively, magmatically robust, magmatically weak and magmatically starved, as inferred from previous measurements of axial bathymetric undulations, cross-axis inflation and magma chamber depth and continuity. This congruency implies a fine-scale spatial and temporal connection between magmatic fluctuations and hydrothermal venting. We thus speculate that, at least along this fast spreading section of the EPR, cyclic replenishment, eruption and freezing of the thin axial melt

  12. Karymsky volcano eruptive plume properties based on MISR multi-angle imagery, and volcanological implications.

    PubMed

    Flower, Verity J B; Kahn, Ralph A

    2018-01-01

    Space-based, operational instruments are in unique positions to monitor volcanic activity globally, especially in remote locations or where suborbital observing conditions are hazardous. The Multi-angle Imaging SpectroRadiometer (MISR) provides hyper-stereo imagery, from which the altitude and microphysical properties of suspended atmospheric aerosols can be derived. These capabilities are applied to plumes emitted at Karymsky volcano from 2000 to 2017. Observed plumes from Karymsky were emitted predominantly to an altitude of 2-4 km, with occasional events exceeding 6 km. MISR plume observations were most common when volcanic surface manifestations, such as lava flows, were identified by satellite-based thermal anomaly detection. The analyzed plumes predominantly contained large (1.28 µm effective radius), strongly absorbing particles indicative of ash-rich eruptions. Differences between the retrievals for Karymsky volcano's ash-rich plumes and the sulfur-rich plumes emitted during the 2014-2015 eruption of Holuhraun (Iceland) highlight the ability of MISR to distinguish particle types from such events. Observed plumes ranged from 30 to 220 km in length, and were imaged at a spatial resolution of 1.1 km. Retrieved particle properties display evidence of downwind particle fallout, particle aggregation and chemical evolution. In addition, changes in plume properties retrieved from the remote-sensing observations over time are interpreted in terms of shifts in eruption dynamics within the volcano itself, corroborated to the extent possible with suborbital data. Plumes emitted at Karymsky prior to 2010 display mixed emissions of ash and sulfate particles. After 2010, all plumes contain consistent particle components, indicative of entering an ash-dominated regime. Post-2010 event timing, relative to eruption phase, was found to influence the optical properties of observed plume particles, with light-absorption varying in a consistent sequence as each respective

  13. Use of plume mapping data to estimate chlorinated solvent mass loss

    USGS Publications Warehouse

    Barbaro, J.R.; Neupane, P.P.

    2006-01-01

    Results from a plume mapping study from November 2000 through February 2001 in the sand-and-gravel surficial aquifer at Dover Air Force Base, Delaware, were used to assess the occurrence and extent of chlorinated solvent mass loss by calculating mass fluxes across two transverse cross sections and by observing changes in concentration ratios and mole fractions along a longitudinal cross section through the core of the plume. The plume mapping investigation was conducted to determine the spatial distribution of chlorinated solvents migrating from former waste disposal sites. Vertical contaminant concentration profiles were obtained with a direct-push drill rig and multilevel piezometers. These samples were supplemented with additional ground water samples collected with a minipiezometer from the bed of a perennial stream downgradient of the source areas. Results from the field program show that the plume, consisting mainly of tetrachloroethylene (PCE), trichloroethene (TCE), and cis-1,2-dichloroethene (cis-1,2-DCE), was approximately 670 m in length and 120 m in width, extended across much of the 9- to 18-m thickness of the surficial aquifer, and discharged to the stream in some areas. The analyses of the plume mapping data show that losses of the parent compounds, PCE and TCE, were negligible downgradient of the source. In contrast, losses of cis-1,2-DCE, a daughter compound, were observed in this plume. These losses very likely resulted from biodegradation, but the specific reaction mechanism could not be identified. This study demonstrates that plume mapping data can be used to estimate the occurrence and extent of chlorinated solvent mass loss from biodegradation and assess the effectiveness of natural attenuation as a remedial measure.

  14. Apollo Video Photogrammetry Estimation of Plume Impingement Effects

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Lane, John; Metzger, Philip; Clements, Sandra

    2008-01-01

    Each of the six Apollo mission landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were largely not an issue. The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the lander ejects the granular material at high velocities. With high vacuum conditions on the moon (10 (exp -14) to 10 (epx -12) torr), motion of all particles is completely ballistic. Estimates from damage to the Surveyor III show that the ejected regolith particles to be anywhere 400 m/s to 2500 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for the Constellation Program.

  15. An experimental study on the near-source region of lazy turbulent plumes

    NASA Astrophysics Data System (ADS)

    Ciriello, Francesco; Hunt, Gary R.

    2017-11-01

    The near-source region of a `lazy' turbulent buoyant plume issuing from a circular source is examined for source Richardson numbers in the range of 101 to 107. New data is acquired for the radial contraction and streamwise variation of volume flux through an experimental programme of dye visualisations and particle image velocimetry. This data reveals the limited applicability of traditional entrainment laws used in integral modelling approaches for the description of the near-source region for these source Richardson numbers. A revised entrainment function is proposed, based on which we introduce a classification of plume behaviour whereby the degree of `laziness' may be expressed in terms of the excess dilution that occurs compared to a `pure' constant Richardson number plume. The increased entrainment measured in lazy plumes is attributed to Rayleigh-Taylor instabilities developing along the contraction of the plume which promote the additional engulfment of ambient fluid into the plume. This work was funded by an EPSRC Industial Case Award sponsored by Dyson Technology Ltd. Special thanks go to the members of the Dyson Environmental Control Group that regularly visit us in Cambridge for discussions about our work.

  16. A migratory mantle plume on Venus: Implications for Earth?

    USGS Publications Warehouse

    Chapman, M.G.; Kirk, R.L.

    1996-01-01

    A spatially fixed or at least internally rigid hotspot reference frame has been assumed for determining relative plate motions on Earth. Recent 1:5,000,000 scale mapping of Venus, a planet without terrestrial-style plate tectonics and ocean cover, reveals a systematic age and dimensional progression of corona-like arachnoids occurring in an uncinate chain. The nonrandom associations between arachnoids indicate they likely formed from a deep-seated mantle plume in a manner similar to terrestrial hotspot features. However, absence of expected convergent "plate" margin deformation suggests that the arachnoids are the surface expression of a migratory mantle plume beneath a stationary surface. If mantle plumes are not stationary on Venus, what if any are the implications for Earth?

  17. Numerical investigation of hypersonic exhaust plume/afterbody flow fields

    NASA Astrophysics Data System (ADS)

    Edwards, T. A.

    An upwind, implicit Navier-Stokes computer program has been applied to hypersonic exhaust plume/afterbody flowfields. The sensitivity of gross thrust to operating conditions has been assessed through parametric variations. Comparison of the numerical results with available experimental data shows good agreement in all cases investigated. Results show that, for moderately underexpanded jets, the afterbody force varies linearly with the nozzle exit pressure. Exhaust gases with low isentropic exponents (gamma) were found to contribute up to 25 percent more afterbody force than high-gamma exhaust gases. Modifying the nozzle geometry influenced the exhaust plume development, which had a significant effect on the afterbody force. Grid density, while important to resolving the initial plume/afterbody interaction, had only a minor impact on the resultant afterbody force.

  18. The tidally-modulated plume of Enceladus: an update

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Porco, C.; Mitchell, C. J.; Van Hoolst, T.; Hedman, M. M.

    2016-12-01

    The brightness of the ice grain plume of Enceladus is observed to vary on a diurnal timescale [1,2], consistent with predictions that the plume's mass is modulated by normal tidal stresses, which open and close cracks that reach the ocean [3]. Here we extend our previous analysis [2] to a larger set of ISS plume observations, including images taken since 2010, extending the temporal baseline by more than a factor of two. The observations were reduced using the same approach as in [2]. Fits were performed as in [2] but now include two different assumptions of how plume brightness responds to stresses [4] plus an updated calculation of the effects of long-period librations [5]. An apparent phase lag of 30-60 degrees between the modelled and observed response is robustly present, irrespective of the data set and assumptions used. This phase lag may be the result of the viscosity structure of the ice shell [2,4], an eruptive delay caused by the hydrodynamics within tidally-pumped cracks [6], or other as yet unknown processes. An earlier suggestion [2], that the phase lag is caused by the additional stresses arising from an 0.8 degree 1:1 physical libration in the moon's ice shell, can be rejected now that this libration has been measured with an amplitude of 0.12 degrees [7]. We also find in ISS images a secular decrease in plume brightness over the ten years of Cassini observations; this decrease may be due to long-period (forced) librations of Enceladus. [1] Hedman et al., Nature 2013 [2] Nimmo et al., Astron. J. 2014 [3] Hurford et al., Nature 2007 [4] Behounkova et al., Nature Geosci. 2015 [5] Yseboodt & Van Hoolst, Fall AGU, 2015 [6] Kite & Rubin, PNAS 2016 [7] Thomas et al., Icarus 2016

  19. Issues related to aircraft take-off plumes in a mesoscale photochemical model.

    PubMed

    Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V

    2013-07-01

    The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    NASA Technical Reports Server (NTRS)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  1. Observations of The Dense Storfjord Plume Using A Ctd-mounted Adp

    NASA Astrophysics Data System (ADS)

    Fer, I.; Skogseth, R.; Haugan, P. M.

    Observations were made of the outflow of the dense bottom water plume from Stor- fjord (110 km long and 190 m deep at maximum depth) in the Svalbard Archipelago, using a CTD mounted ADP at densely spaced hydrographic stations during May 28 - June 2, 2001. Due to heavy ice inside the fjord, measurements were made from about 70 km downstream of a 115 m deep sill (7645 N) and onward. The dense bottom water generated by strong winter cooling, enhanced ice formation, and the consequent brine rejection drains into and fills the depressions of the fjord and cascades following the bathymetry. Data acquired by ADP allow for examination of the velocity structure associated with the plume as close as 1 m to the bottom with 1 m resolution in the vertical. The plume water was observed to have salinities within 34.9 - 35.1 psu with temperatures close to the freezing point temperature. The plume has a thickness of 51 +/- 20 m, and a density difference of 0.14 +/- 0.03 kg m-3 from the ambient wa- ters. The velocity profiles yield the most well-defined two-layered structure near the sloping sides with a mean plume speed of 0.15 +/- 0.04 m s-1, relative to the ambient waters. Mean overall Richardson number, estimated using these profiles, are within the range of 2 to 4. The plume is less distinct with respect to the velocity profile when it reaches the plane, Storfjordrenna, after cascading about 50 m in vertical. The width of the plume increases from about 8 km to 25 km along its path of 105 km leading to an entrainment rate of 5x10-4, when the plume thickness and speed are assumed constant. The values compare well with those obtained from moorings in the same region in the past, as well as those obtained from laboratory experiments of turbulent gravity currents flowing down a slope.

  2. Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.

    2013-04-01

    The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt

  3. Wildfire simulation using a chemically-reacting plume in a crossflow

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert; Alvarado, Travis; Potter, Brian

    2010-11-01

    Water tunnel experiments reveal the flame length of a chemically-reacting plume in a crossflow. Salt water containing a pH indicator and a base is slowly injected from above into the test section of a water tunnel containing an acidic solution. The flame length is measured optically as a function of the buoyancy flux, crossflow speed, and volume equivalence ratio of the chemical reaction. Based on earlier work of Broadwell with the transverse jet, a simple dilution model predicts the flame length of the transverse plume. The plume observations are in accord with the model. As with the jet, there is a minimum in the flame length of the plume at a transition between two self-similar regimes, corresponding to the formation of a pair of counter-rotating vortices at a certain crossflow speed. At the transition, there is a maximum in the entrainment and mixing rates. In an actual wildfire with variable winds, this transition may correspond to a dangerous condition for firefighters.

  4. Automatic Estimation of Volcanic Ash Plume Height using WorldView-2 Imagery

    NASA Technical Reports Server (NTRS)

    McLaren, David; Thompson, David R.; Davies, Ashley G.; Gudmundsson, Magnus T.; Chien, Steve

    2012-01-01

    We explore the use of machine learning, computer vision, and pattern recognition techniques to automatically identify volcanic ash plumes and plume shadows, in WorldView-2 imagery. Using information of the relative position of the sun and spacecraft and terrain information in the form of a digital elevation map, classification, the height of the ash plume can also be inferred. We present the results from applying this approach to six scenes acquired on two separate days in April and May of 2010 of the Eyjafjallajokull eruption in Iceland. These results show rough agreement with ash plume height estimates from visual and radar based measurements.

  5. Effect of defocusing on laser ablation plume observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Oba, Masaki; Miyabe, Masabumi; Akaoka, Katsuaki; Wakaida, Ikuo

    2016-02-01

    We used laser-induced fluorescence imaging with a varying beam focal point to observe ablation plumes from metal and oxide samples of gadolinium. The plumes expand vertically when the focal point is far from the sample surface. In contrast, the plume becomes hemispherical when the focal point is on the sample surface. In addition, the internal plume structure and the composition of the ablated atomic and ionic particles also vary significantly. The fluorescence intensity of a plume from a metal sample is greater than that from an oxide sample, which suggests that the number of monatomic species produced in each plume differs. For both the metal and oxide samples, the most intense fluorescence from atomic (ionic) species is observed with the beam focal point at 3-4 mm (2 mm) from the sample surface.

  6. Segmented electrode hall thruster with reduced plume

    DOEpatents

    Fisch, Nathaniel J.; Raitses, Yevgeny

    2004-08-17

    An apparatus and method for thrusting plasma, utilizing a Hall thruster with segmented electrodes along the channel, which make the acceleration region as localized as possible. Also disclosed are methods of arranging the electrodes so as to minimize erosion and arcing. Also disclosed are methods of arranging the electrodes so as to produce a substantial reduction in plume divergence. The use of electrodes made of emissive material will reduce the radial potential drop within the channel, further decreasing the plume divergence. Also disclosed is a method of arranging and powering these electrodes so as to provide variable mode operation.

  7. Optics of the Offshore Columbia River Plume from Glider Observations and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Saldias, G.; Shearman, R. K.; Barth, J. A.; Tufillaro, N.

    2016-02-01

    The Columbia River (CR) is the largest source of freshwater along the U.S. Pacific coast. The resultant plume is often transported southward and offshore forming a large buoyant feature off Oregon and northern California in spring-summer - the offshore CR plume. Observations from autonomous underwater gliders and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery are used to characterize the optics of the offshore CR plume off Newport, Oregon. Vertical sections, under contrasting river flow conditions, reveal a low-salinity and warm surface layer of 20-25 m (fresher in spring and warmer in summer), high Colored Dissolved Organic Matter (CDOM) concentration and backscatter, and associated with the base of the plume high chlorophyll fluorescence. Plume characteristics vary in the offshore direction as the warm and fresh surface layer thickens progressively to an average 30-40 m of depth 270-310 km offshore; CDOM, backscatter, and chlorophyll fluorescence decrease in the upper 20 m and increase at subsurface levels (30-50 m depth). MODIS normalized water-leaving radiance (nLw(λ)) spectra for CR plume cases show enhanced water-leaving radiance at green bands (as compared to no-CR plume cases) up to 154 km from shore. Farther offshore, the spectral shapes for both cases are very similar, and consequently, a contrasting color signature of low-salinity plume water is practically imperceptible from ocean color remote sensing. Empirical algorithms based on multivariate regression analyses of nLw(λ) plus Sea Surface Temperature (SST) data produce more accurate results detecting offshore plume waters than previous studies using single visible bands (e.g. adg(412) or nLw(555)).

  8. The growth and decay of equatorial backscatter plumes

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    1980-02-01

    During the past three years, a series of rocket experiments from the Kwajalein Atoll, Marshall Islands, were conducted to investigate the character of intense, scintillation-producing irregularities that occur in the nighttime equatorial ionosphere. Because the source mechanism of equatorial irregularities, believed to be the Rayleigh-Taylor instability, is analogous to that which generates plasma-density striations in a nuclear-induced environment, there is considerable interest in the underlying physics that controls the characteristics of these irregularities. A primary objective of ALTAIR investigations of equatorial irregularities is to seek an understanding of the underlying physics by establishing the relationship between meter-scale irregularities (detected by ALTAIR), and the large-scale plasma-density depletions (or 'bubbles') that contain the kilometer-scale, scintillation-producing irregularities. We describe the time evolution of backscatter 'plumes' produced by one meter equatorial field-aligned irregularities. Using ALTAIR, a fully steerable backscatter radar, to repeatedly map selected plumes, we characterize the dynamic behavior of plumes in terms of growth and a decay phase. Most of the observed characteristics are found to be consistent with equatorial-irregularity generation predicted by current theories of Rayleigh-Taylor and gradient-drift instabilities. However, other characteristics have been found that suggest key roles played by the eastward neutral wind and by altitude-modulation of the bottomside F layer in establishing the initial conditions for plume growth.

  9. Plume Characterization of a Laboratory Model 22 N GPIM Thruster via High-Frequency Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Williams, George J.; Kojima, Jun J.; Arrington, Lynn A.; Deans, Matthew C.; Reed, Brian D.; Kinzbach, McKenzie I.; McLean, Christopher H.

    2015-01-01

    The Green Propellant Infusion Mission (GPIM) will demonstrate the capability of a green propulsion system, specifically, one using the monopropellant, AF-M315E. One of the risks identified for GPIM is potential contamination of sensitive areas of the spacecraft from the effluents in the plumes of AF-M315E thrusters. Plume characterization of a laboratory-model 22 N thruster via optical diagnostics was conducted at NASA GRC in a space-simulated environment. A high-frequency pulsed laser was coupled with an electron-multiplied ICCD camera to perform Raman spectroscopy in the near-field, low-pressure plume. The Raman data yielded plume constituents and temperatures over a range of thruster chamber pressures and as a function of thruster (catalyst) operating time. Schlieren images of the near-field plume enabled calculation of plume velocities and revealed general plume structure of the otherwise invisible plume. The measured velocities are compared to those predicted by a two-dimensional, kinetic model. Trends in data and numerical results are presented from catalyst mid-life to end-of-life. The results of this investigation were coupled with the Raman and Schlieren data to provide an anchor for plume impingement analysis presented in a companion paper. The results of both analyses will be used to improve understanding of the nature of AF-M315E plumes and their impacts to GPIM and other future missions.

  10. Observations of brine plumes below melting Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  11. Ion Engine Plume Interaction Calculations for Prototypical Prometheus 1

    NASA Technical Reports Server (NTRS)

    Mandell, Myron J.; Kuharski, Robert A.; Gardner, Barbara M.; Katz, Ira; Randolph, Tom; Dougherty, Ryan; Ferguson, Dale C.

    2005-01-01

    Prometheus 1 is a conceptual mission to demonstrate the use of atomic energy for distant space missions. The hypothetical spacecraft design considered in this paper calls for multiple ion thrusters, each with considerably higher beam energy and beam current than have previously flown in space. The engineering challenges posed by such powerful thrusters relate not only to the thrusters themselves, but also to designing the spacecraft to avoid potentially deleterious effects of the thruster plumes. Accommodation of these thrusters requires good prediction of the highest angle portions of the main beam, as well as knowledge of clastically scattered and charge exchange ions, predictions for grid erosion and contamination of surfaces by eroded grid material, and effects of the plasma plume on radio transmissions. Nonlinear interactions of multiple thrusters are also of concern. In this paper we describe two- and three-dimensional calculations for plume structure and effects of conceptual Prometheus 1 ion engines. Many of the techniques used have been validated by application to ground test data for the NSTAR and NEXT ion engines. Predictions for plume structure and possible sputtering and contamination effects will be presented.

  12. Evidence of Plume on Europa from Galileo Magnetic and Plasma Density Signatures

    NASA Astrophysics Data System (ADS)

    Jia, X.; Kivelson, M.; Khurana, K. K.; Kurth, W. S.

    2017-12-01

    The icy surface of Jupiter's moon, Europa, is thought to lie on top of a global ocean [Khurana et al., 1998; Kivelson et al., 2000]. Water plumes rising 200 kilometers above the disk of the solid body in some Hubble Space Telescope images have been identified through emission spectra of hydrogen and oxygen [Roth et al., 2016] and through absorption in the far ultraviolet of sunlight reflected off of Jupiter [Sparks et al., 2016, 2017]. Plume activity appears to be intermittent, although Sparks et al. [2017] identified a plume at a location where one had been detected in an earlier study. While the detections appear to be valid within statistical uncertainty, they are all close to the limit of detection, making it desirable to find other evidence of the presence of localized vapor above Europa's surface. In this presentation, we examine magnetometer and electromagnetic wave data acquired by the Galileo spacecraft on a close encounter with Europa on December 16, 1997. We identify distinct features in the data that have the characteristics expected if the spacecraft went through magnetic flux tubes that pass around a plume, close to the location proposed for one of the plumes observed by Sparks et al. [2016]. 3D magnetohydrodynamic simulations have been conducted to model the interaction of plume with Europa's plasma and magnetic environment. Our simulations confirm that the magnetic and plasma signatures identified in the Galileo data are consistent with perturbations associated with a localized plume source.

  13. Effect of boundary conditions on thermal plume growth

    NASA Astrophysics Data System (ADS)

    Kondrashov, A.; Sboev, I.; Rybkin, K.

    2016-07-01

    We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.

  14. Naval Weapons Center Plume Radar Frequency Interference Code

    DTIC Science & Technology

    1982-10-01

    ppm sodium. Both equilibrium and finite rate chemistry during the expansion from the chamber were tried as initial conditions for the plume. In...was too large. The difference between the.e two sets of initial conditions diminished downstream as the chemistry in the plume mixing region began to...Rerkirre Arvliral I Comirlnrnde!- ir.C h ic 1. tVS. Pacific Hice ((Code 3251 1 Corimu tinde r. ’n, r-d I leer. Pearl I atar I Coimniaide r. Sevent

  15. Toxic Alexandrium blooms in the western Gulf of Maine: The plume advection hypothesis revisited

    USGS Publications Warehouse

    Anderson, D.M.; Keafer, B.A.; Geyer, W.R.; Signell, R.P.; Loder, T.C.

    2005-01-01

    The plume advection hypothesis links blooms of the toxic dinoflagellate Alexandrium fundyense in the western Gulf of Maine (GOM) to a buoyant plume derived from river outflows. This hypothesis was examined with cruise and moored-instrument observations in 1993 when levels of paralytic shellfish poisoning (PSP) toxins were high, and in 1994 when toxicity was low. A coupled physical-biological model simulated hydrography and A. fundyense distributions. Initial A. fundyense populations were restricted to low-salinity nearshore waters near Casco Bay, but also occurred in higher salinity waters along the plume boundary. This suggests two sources of cells - those from shallow-water cyst populations and those transported to shore from offshore blooms in the eastern segment of the Maine coastal current (EMCC). Observations confirm the role of the plume in A. fundyense transport and growth. Downwelling-favorable winds in 1993 transported the plume and its cells rapidly alongshore, enhancing toxicity and propagating PSP to the south. In 1994, sustained upwelling moved the plume offshore, resulting in low toxicity in intertidal shellfish. A. fundyense blooms were likely nutrient limited, leading to low growth rates and moderate cell abundances. These observations and mechanisms were reproduced by coupled physical-biological model simulations. The plume advection hypothesis provides a viable explanation for outbreaks of PSP in the western GOM, but should be refined to include two sources for cells that populate the plume and two major pathways for transport: one within the low-salinity plume and another where A. fundyense cells originating in the EMCC are transported along the outer boundary of the plume front with the western segment of the Maine coastal current.

  16. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    NASA Astrophysics Data System (ADS)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  17. An algorithm for the detection and characterisation of volcanic plumes using thermal camera imagery

    NASA Astrophysics Data System (ADS)

    Bombrun, Maxime; Jessop, David; Harris, Andrew; Barra, Vincent

    2018-02-01

    Volcanic plumes are turbulent mixtures of particles and gas which are injected into the atmosphere during a volcanic eruption. Depending on the intensity of the eruption, plumes can rise from a few tens of metres up to many tens of kilometres above the vent and thus, present a major hazard for the surrounding population. Currently, however, few if any algorithms are available for automated plume tracking and assessment. Here, we present a new image processing algorithm for segmentation, tracking and parameters extraction of convective plume recorded with thermal cameras. We used thermal video of two volcanic eruptions and two plumes simulated in laboratory to develop and test an efficient technique for analysis of volcanic plumes. We validated our method by two different approaches. First, we compare our segmentation method to previously published algorithms. Next, we computed plume parameters, such as height, width and spreading angle at regular intervals of time. These parameters allowed us to calculate an entrainment coefficient and obtain information about the entrainment efficiency in Strombolian eruptions. Our proposed algorithm is rapid, automated while producing better visual outlines compared to the other segmentation algorithms, and provides output that is at least as accurate as manual measurements of plumes.

  18. A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1979-01-01

    A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.

  19. MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID

    EPA Science Inventory

    Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...

  20. Emissions of Black Carbon Particles in Anthropogenic and Biomass Plumes over California during CARB 2008

    NASA Astrophysics Data System (ADS)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.

    2009-12-01

    Measurements of black carbon (BC) and other chemical species were made from the NASA DC-8 aircraft during the CARB campaign conducted over California in June 2008. We operated an SP2 system that measured BC and scattering particles. The vertical profiles of BC and scattering particles show enhancements in the lower troposphere. We have used relations of CO-CH3CN-SO2 to identify the sources of major plumes. The plumes originating from anthropogenic activities, mainly due to the use of fossil fuels (FF), were observed near the surface. However, the influence of smoke plumes from wild fire or biomass-burning (BB) sources was observed up to 3 km. Overall, the 1-minute average BC mass concentrations were in the ranges of about 90-500 ng/m3 and 300-700 ng/m3 in FF and BB plumes, respectively. The shell/core diameter ratios were much lagerer in BB plumes than those in FF plumes. Namely, the median shell/core ratios were 1.2-1.4 for FF plumes, while they were 1.4-1.7 for BB plumes. In both FF and BB plumes, the mass-size distributions of BC were single mode lognormal. However, the mass median diameters FF plumes were considerably smaller. The BC-CO2 regression slopes were 19±9 ng m-3/ppmv and 270±90 ng m-3/ppmv for FF and BB plumes, respectively. On the other hand the regression slopes of BC-CO were about 3.3 ng m-3/ppbv in both the plumes. Conversely, the regression slopes of BC with other co-emitted combustions products can be used to estimate the contributions of emissions from different sources.

  1. Plasma Plume Characterization of the HERMeS during a 1722-hr Wear Test Campaign

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Williams, George J.; Peterson, Peter Y.; Kamhawi, Hani; Gilland, James H.; Herman, Daniel A.

    2017-01-01

    A 1722-hour wear test campaign of NASAs 12.5 kilowatt Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.

  2. Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, C.; Kolker, A.; Chu, P. Y.

    2017-12-01

    Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.

  3. Controls of Plume Dispersal at the Slow Spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Walter, M.; Mertens, C.; Koehler, J.; Sueltenfuss, J.; Rhein, M.; Keir, R. S.; Schmale, O.; Schneider v. Deimling, J.; German, C. R.; Yoerger, D. R.; Baker, E. T.

    2011-12-01

    The slow-spreading Mid-Atlantic Ridges hosts a multitude of different types of hydrothermal systems. Here, we compare the fluxes and the plume dispersal at three high temperature sites located in very diverse settings at comparable depths (~3000m): The recently discovered sites Turtle Pits, and Nibelungen on the southern MAR, and the Logatchev field in the North Atlantic. Plume mapping for these sites on cruises between 2004 and 2009 consisted of CTD Towyo-, Yoyo,- and station work, including velocity profiling, as well as water sampling for analysis of trace gases (CH4, H2, 3He/4He) and metals; temperature measurements and fluid sampling at the vent sites were carried out with an ROV. The aim of this work is to gain a better understanding of how the setting of a vent site affects the dispersal of the particle plume, and what means can be used to infer possible locations of vent sites based on the hydrographic properties and plume observations, using high resolution bathymetric mapping and hydrographic information. The ultramafic-hosted Nibelungen site (8°18'S) consists of a single active smoking crater, along with several extinct smokers, which is located off-axis south of a non-transform offset. The setting is characterized by rugged topography, favorable for the generation of internal tides, internal wave breaking, and vertical mixing. Elevated mixing with turbulent diffusivities Kρ up to 0.1 m2 s-1, 3 to 4 orders of magnitude higher than open ocean values, was observed close to the vent site. The mixing as well as the flow field exhibited a strong tidal cycle; the plume dispersal is thus dominated by the fast and intermittent vertical exchange and characterized by small scale spatial and temporal variability. The Turtle Pits vent fields (4°48'S) are located on a sill in a north-south orientated rift valley. The site consists of three (known) high temperature fields: Turtle Pits, Comfortless Cove, and Red Lion. The particle plume is confined to the rift

  4. Guided Seismic Waves: Possible Diagnostics for Hot Plumes in the Mantle

    NASA Astrophysics Data System (ADS)

    Evans, J. R.; Julian, B. R.; Foulger, G. R.

    2005-12-01

    Seismic waves potentially provide by far the highest resolution view of the three-dimensional structure of the mantle, and the hope of detecting wave-speed anomalies caused by hot or compositionally buoyant mantle plumes has been a major incentive to the development of tomographic seismic techniques. Seismic tomography is limited, however, by the uneven geographical distribution of earthquakes and seismometers, which can produce artificial tomographic wave-speed anomalies that are difficult to distinguish from real structures in the mantle. An alternate approach may be possible, because hot plumes and possibly some compositional upwellings would have low seismic-wave speeds and would act as efficient waveguides over great depth ranges in the mantle. Plume-guided waves would be little affected by bends or other geometric complexities in the waveguides (analogously to French horns and fiber-optic cables), and their dispersion would make them distinctive on seismograms and would provide information on the size and structure of the waveguide. The main unanswered question is whether guided waves in plumes could be excited sufficiently to be observable. Earthquakes do not occur in the deep mantle, but at least two other possible sources of excitation can be imagined: (1) shallow earthquakes at or near plume-fed hotspots; and (2) coupling of plume-guided waves to seismic body waves near the bottom of the mantle. In the first case, downward-traveling guided waves transformed to seismic body waves at the bottom of the waveguide would have to be detected at teleseismic distances. In the second case, upward-traveling guided waves generated by teleseismic body waves would be detected on seismometers at hotspots. Qualitative reasoning based on considerations of reciprocity suggests that the signals in these two situations should be similar in size and appearance. The focusing of seismic core phases at caustics would amplify plume waves excited by either mechanism (1) or (2) at

  5. Development and Evaluation of a Reactive-Dispersive Plume Model: TexAQS II 2006 Case Study

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hoon; Kim, Hyun Soo; Song, Chul Han

    2015-04-01

    We describe the development and evaluation of a reactive-dispersive plume model (RDPM) that combines a photo-chemistry model with a plume dilution driven by turbulent dispersion of a power-plant plume. The plume transport and turbulent dispersion are derived from a Gaussian plume model and the plume chemistry model uses 71 HxOy-NxOy-CH4 chemistry-related reactions and 184 NMHC-related reactions. Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. To extensively understand and assess atmospheric impacts of the power-plant emissions, a general RDPM was applied to simultaneously simulate the dynamics and photo-chemistry of the Texas power-plant plumes. During the second Texas Air Quality Study 2006 (TexAQS II 2006) on 16 September 2006, pollutant concentrations were measured by NOAA WP-3D aircraft with successive transects across power-plant plumes in Texas, USA. The simulation performances of the RDPM were evaluated by a comparison study, using the observation data obtained from the measurements of a NOAA WP-3D flight during TexAQS II 2006 airborne field campaign. On 16 September, the WP-3D aircraft observed mainly meteorological parameters and particulate species concentrations, traversing the Monticello and Welsh power-plant plumes four times from transects A to D. In addition, some meteorological variables in an initial condition for model simulation were obtained from the Weather Research and Forecasting (WRF) model output for the specific objects. These power-plant plume cases were selected in this study, because a large number of nitrogen oxides and sulfur dioxide concentrations inside the power-plant plumes were measured without any interruption of other emission sources. For the Monticello and Welsh power-plant plumes, the model-predicted concentrations showed good agreements with the observed concentrations of ambient species (e.g., nitrogen oxides, ozone, sulfur dioxide, etc.) at the four transects. Based

  6. Dynamics of suspended sediment plumes in Lake Ontario

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Although turbidity plumes in Lake Ontario are usually not visible during the winter, meteorologic and hydrologic events may combine to ensure their detection. The clearly defined Niagara River plume of January 25, 1974, was the result of turbid water entering the river at its source near the eastern end of Lake Erie. A persistent southwest wind mild temperature resulted in a pile-up of ice free but turbid water at the source of the Niagara River where the highly colored water entered the river. Upon discharge into Lake Ontario, the Niagara River water appears several shades lighter in tone than the ambient lake water. On February 12, 1974, eastward moving ice floes along the Ontario shoreline were forced to move around the hydraulic barrier created by the Niagara River jet. As a result the Niagara River plume was clearly portrayed by a halo-like band of slush ice borne by wind-driven nearshore currents.

  7. Rocket exhaust plume impingement on the Voyager spacecraft

    NASA Technical Reports Server (NTRS)

    Baerwald, R. K.

    1978-01-01

    In connection with the conduction of the long-duration Voyager missions to the outer planets and the sophisticated propulsion systems required, it was necessary to carry out an investigation to avoid exhaust plume impingement problems. The rarefied gas dynamics literature indicates that, for most engineering surfaces, the assumption of diffuse reemission and complete thermal accommodation is warranted in the free molecular flow regime. This assumption was applied to an analysis of a spacecraft plume impingement problem in the near-free molecular flow regime and yielded results to within a few percent of flight data. The importance of a correct treatment of the surface temperature was also demonstrated. Specular reflection, on the other hand, was shown to yield results which may be unconservative by a factor of 2 or 3. It is pointed out that one of the most difficult portions of an exhaust plume impingement analysis is the simulation of the impinged hardware. The geometry involved must be described as accurately and completely as possible.

  8. Europa Plumes Located near Warm Spot on Europa

    NASA Image and Video Library

    2017-04-13

    These images of the surface of the Jovian moon Europa, taken by NASA's Galileo spacecraft, focus on a "region of interest" on the icy moon. The image at left traces the location of the erupting plumes of material, observed by NASA's Hubble Space Telescope in 2014 and again in 2016. The plumes are located inside the area surrounded by the green oval. The green oval also corresponds to a warm region on Europa's surface, as identified by the temperature map at right. The map is based on observations by the Galileo spacecraft. The warmest area is colored bright red. Researchers speculate these data offer circumstantial evidence for unusual activity that may be related to a subsurface ocean on Europa. The dark circle just below center in both images is a crater and is not thought to be related to the warm spot or the plume activity. https://photojournal.jpl.nasa.gov/catalog/PIA21444

  9. Transport and recirculation of aerosols off Southern Africa—macroscale plume structure

    NASA Astrophysics Data System (ADS)

    Tyson, P. D.; D'Abreton, P. C.

    A pall of aerosols and trace gases frequently occurs over southern Africa to a depth of ˜500 hPa, blanketing vast areas, particularly in the austral winter and spring. Large-scale offshore transport of these aerosols and trace gases in extremely large plumes from interior continental areas of the subcontinent to the Indian and Atlantic Oceans is a common occurrence. The nature of the transport plumes, their climatology, chemical composition and morphology are discussed. In the vertically integrated, surface-to-500 hPa layer, poleward of about 15° S, transport into the Indian Ocean is shown to be about 60% greater into the Indian Ocean than into the Atlantic Ocean. Recirculation of atmospheric constituents is considered and estimates of aerosol mass fluxes over central southern Africa are presented. Of the total of about 50 Mt yr -1 of aerosols being transported at the central meridian, 44% is shown to be recirculated material. The rest exits the subcontinent directly without recirculation. Preferred plume corridors of exit and entry are postulated for different localities on the east and west coasts. Two case studies of east- and west-coast plumes apparently flowing uniformly out of southern Africa are examined. The illusion of uniformity in plume structure is shown to be misleading. Both plumes are shown to be above and separated from the marine boundary layer. Each is over 1500 km in width and 3-5 km deep. Likewise, both are capped by absolutely stable layers at ˜500 hPa and exhibit a complex structure of both outflowing aerosols and trace gases and inflowing, recycled and recirculated material. Indications of the composition of the recirculated material are given and implications of the plume transports are considered.

  10. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations and numerical simulations

    NASA Technical Reports Server (NTRS)

    Darouzet, Fabien; DeKeyser, Johan; Decreau, Pierrette; Gallagher, Dennis; Pierrard, Viviane; Lemaire, Joseph; Dandouras, Iannis; Matsui, Hiroshi; Dunlop, Malcolm; Andre, Mats

    2005-01-01

    Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles can be derived from the plasma frequency and/or from the spacecraft potential (note that the electron spectrometer is usually not operating inside the plasmasphere); ion velocity is also measured onboard these satellites (but ion density is not reliable because of instrumental limitations). The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 minutes; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations for 3 plume events and compare CLUSTER in-situ data (panel A) with global images of the plasmasphere obtained from IMAGE (panel B), and with numerical simulations for the formation of plumes based on a model that includes the interchange instability mechanism (panel C). In particular, we study the geometry and the orientation of plasmaspheric plumes by using a four-point analysis method, the spatial gradient. We also compare several aspects of their motion as determined by different methods: (i) inner and outer plume boundary velocity calculated from time delays of this boundary observed by the wave experiment WHISPER on the four spacecraft, (ii) ion velocity derived from the ion spectrometer CIS onboard CLUSTER, (iii) drift velocity measured by the electron drift instrument ED1 onboard CLUSTER and (iv) global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  11. The Plume Impingement Contamination II Experiment: Motivation, Design, and Implementation Plan

    NASA Technical Reports Server (NTRS)

    Lumpkin, Forrest E., III; Albyn, Keith C.; Farrell, Thomas L.

    2001-01-01

    The International Space Station (ISS) will have a long service life during which it must be able to serve as a capable platform for a wide variety of scientific investigations. In order to provide this capability, the ISS has, at the system level, a design requirement of no more than 100 Angstroms of contaminant deposition per year from "non-quiescent" sources. Non-quiescent sources include the plumes resulting from the firing of reaction control system (ReS) engines on space vehicles visiting the ISS as well as the engines on the ISS itself. Unfortunately, good general plume contamination models do not yet exist. This is due both to the complexity of the problem, making the analytic approach difficult, and to the difficulty in obtaining empirical measurements of contaminant depositions. To address this lack of flight data, NASA Johnson Space Center is planning to fly an experiment, Plume Impingement Contamination-II, to measure the contamination deposition from the Shuttle Orbiter's primary RCS engines as a function angle from plume centerline. This represents the first direct on-orbit measurement of plume impingement contamination away from the nozzle centerline ever performed, and as such is extremely important in validating mathematical models which will be used to quantify the cumulative plume impingement contamination to the ISS over its lifetime. The paper will elaborate further upon the motivation behind making these measurements as well as present the design and implementation plan of this planned experiment.

  12. GPS Signal Feature Analysis to Detect Volcanic Plume on Mount Etna

    NASA Astrophysics Data System (ADS)

    Cannavo', Flavio; Aranzulla, Massimo; Scollo, Simona; Puglisi, Giuseppe; Imme', Giuseppina

    2014-05-01

    Volcanic ash produced during explosive eruptions can cause disruptions to aviation operations and to population living around active volcanoes. Thus, detection of volcanic plume becomes a crucial issue to reduce troubles connected to its presence. Nowadays, the volcanic plume detection is carried out by using different approaches such as satellites, radars and lidars. Recently, the capability of GPS to retrieve volcanic plumes has been also investigated and some tests applied to explosive activity of Etna have demonstrated that also the GPS may give useful information. In this work, we use the permanent and continuous GPS network of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Italy) that consists of 35 stations located all around volcano flanks. Data are processed by the GAMIT package developed by Massachusetts Institute of Technology. Here we investigate the possibility to quantify the volcanic plume through the GPS signal features and to estimate its spatial distribution by means of a tomographic inversion algorithm. The method is tested on volcanic plumes produced during the lava fountain of 4-5 September 2007, already used to confirm if weak explosive activity may or may not affect the GPS signals.

  13. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  14. Anatomy of a laminar starting thermal plume at high Prandtl number

    NASA Astrophysics Data System (ADS)

    Davaille, Anne; Limare, Angela; Touitou, Floriane; Kumagai, Ichiro; Vatteville, Judith

    2011-02-01

    We present an experimental study of the dynamics of a plume generated from a small heat source in a high Prandtl number fluid with a strongly temperature-dependent viscosity. The velocity field was determined with particle image velocimetry, while the temperature field was measured using differential interferometry and thermochromic liquid crystals. The combination of these different techniques run simultaneously allows us to identify the different stages of plume development, and to compare the positions of key-features of the velocity field (centers of rotation, maximum vorticity locations, stagnation points) respective to the plume thermal anomaly, for Prandtl numbers greater than 103. We further show that the thermal structure of the plume stem is well predicted by the constant viscosity model of Batchelor (Q J R Met Soc 80: 339-358, 1954) for viscosity ratios up to 50.

  15. Long-lived plasmaspheric plumes: What is the source of the plasma?

    NASA Astrophysics Data System (ADS)

    Denton, M.; Borovsky, J.; Thomsen, M. F.; Welling, D. T.

    2015-12-01

    Magnetospheric Plasma Analyzer (MPA) instruments on-board Los Alamos National Laboratory (LANL) satellites regularly measures cold ions in the plasmasphere, and in plasmaspheric plumes. Following periods of calm geomagnetic conditions, the plasmasphere fills to ion number densities in excess of 100 cm-3 - these ions corotate with the Earth. During enhanced convection the outer plasmasphere is eroded - these ions are convected to the dayside magnetopause. LANL/MPA instruments regularly measure plumes which last for many days. On occasion, plumes can last more than two weeks. Such observations raise questions as to the production mechanisms that can continually supply high-number-density material to geosynchronous orbit, and onwards to the magnetopause. We will discuss the plume observations by LANL/MPA, improvements in theoretical modeling of the refilling process, and the need for in-situ observations (from TEC, satellites, etc.) required to address this problem.

  16. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume.

    PubMed

    Abouchami, W; Hofmann, A W; Galer, S J G; Frey, F A; Eisele, J; Feigenson, M

    2005-04-14

    The two parallel chains of Hawaiian volcanoes ('Loa' and 'Kea') are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.

  17. Cross-flow shearing effects on the trajectory of highly buoyant bent-over plumes

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel Berkeley; Gollner, Michael J.

    2017-11-01

    The dynamics of highly buoyant plumes in cross-flow is ubiquitous throughout both industrial and environmental phenomena. The rise of smoke from a chimney, wastewater discharge into river currents, and dispersion of wildfire plumes are only a few instances. There have been many previous studies investigating the behavior of jets and highly buoyant plumes in cross-flow. So far, however, very little attention has been paid to the role of shearing effects in the boundary layer on the plume trajectory, particularly on the rise height. Numerical simulations and dimensional analysis are conducted to characterize the near- and far-field behavior of a highly buoyant plume in a boundary layer cross-flow. The results show that shear in the cross-flow leads to large differences in the rise height of the plume in relation to a uniform cross-flow, especially at far-field. This material is based upon work supported by the National Science Foundation under Grant No.1200560. Any opinions, findings, and conclusions or recommendations expressed in the material are of the authors and do not necessarily reflect the views of NSF.

  18. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  19. The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    NASA Astrophysics Data System (ADS)

    Carroll, D.; Sutherland, D. A.; Hudson, B.; Moon, T.; Catania, G. A.; Shroyer, E. L.; Nash, J. D.; Bartholomaus, T. C.; Felikson, D.; Stearns, L. A.; Noël, B. P. Y.; Broeke, M. R.

    2016-09-01

    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet.

  20. Cenozoic magmatism throughout east Africa resulting from impact of a single plume

    NASA Astrophysics Data System (ADS)

    Ebinger, C. J.; Sleep, N. H.

    1998-10-01

    The geology of northern and central Africa is characterized by broad plateaux, narrower swells and volcanism occurring from ~45Myr ago to the present. The greatest magma volumes occur on the >1,000-km-wide Ethiopian and east African plateaux, which are transected by the Red Sea, Gulf of Aden and east African rift systems, active since the late Oligocene epoch. Evidence for one or more mantle plumes having impinged beneath the plateaux comes from the dynamic compensation inferred from gravity studies, the generally small degrees of extension observed and the geochemistry of voluminous eruptive products. Here we present a model of a single large plume impinging beneath the Ethiopian plateau that takes into account lateral flow and ponding of plume material in pre-existing zones of lithospheric thinning. We show that this single plume can explain the distribution and timing of magmatism and uplift throughout east Africa. The thin lithosphere beneath the Mesozoic-Palaeogene rifts and passive margins of Africa and Arabia guides the lateral flow of plume material west to the Cameroon volcanic line and south to the Comoros Islands. Our results demonstrate the strong control that the lithosphere exerts on the spatial distribution of plume-related melting and magmatism.

  1. Experimental study of starting plumes simulating cumulus cloud flows in the atmosphere

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.; Diwan, S. S.; Narasimha, Roddam

    2009-11-01

    Turbulent jets and plumes subjected to off-source volumetric heating have been studied experimentally and numerically by Narasimha and co-workers and others over the past two decades. The off-source heating attempts to simulate the latent heat release that occurs in cumulus clouds on condensation of water vapour. This heat release plays a crucial role in determining the overall cloud shape among other things. Previous studies investigated steady state jets and plumes that had attained similarity upstream of heat injection. A better understanding and appreciation of the fluid dynamics of cumulus clouds should be possible by study of starting plumes. Experiments have been set up at JNCASR (Bangalore) using experimental techniques developed previously but incorporating various improvements. Till date, experiments have been performed on plumes at Re of 1000 and 2250, with three different heating levels in each case. Axial sections of the flow have been studied using standard PLIF techniques. The flow visualization provides us with data on the temporal evolution of the starting plume. It is observed that the broad nature of the effect of off-source heating on the starting plumes is generally consistent with the results obtained previously on steady state flows. More complete results and a critical discussion will be presented at the upcoming meeting.

  2. Non-equilibrium radiation from viscous chemically reacting two-phase exhaust plumes

    NASA Technical Reports Server (NTRS)

    Penny, M. M.; Smith, S. D.; Mikatarian, R. R.; Ring, L. R.; Anderson, P. G.

    1976-01-01

    A knowledge of the structure of the rocket exhaust plumes is necessary to solve problems involving plume signatures, base heating, plume/surface interactions, etc. An algorithm is presented which treats the viscous flow of multiphase chemically reacting fluids in a two-dimensional or axisymmetric supersonic flow field. The gas-particle flow solution is fully coupled with the chemical kinetics calculated using an implicit scheme to calculate chemical production rates. Viscous effects include chemical species diffusion with the viscosity coefficient calculated using a two-equation turbulent kinetic energy model.

  3. PLUME DISPERSION IN STABLY STRATIFIED FLOWS OVER COMPLEX TERRAIN, PHASE 2

    EPA Science Inventory

    Laboratory experiments were conducted in a stratified towing tank to investigate plume dispersion in stably stratified flows. First, plume dispersion over an idealized terrain model with a simulated elevated inversion in the atmosphere was investigated. These results were compare...

  4. Space Station flexible dynamics under plume impingement

    NASA Technical Reports Server (NTRS)

    Williams, Trevor

    1993-01-01

    Assembly of the Space Station requires numerous construction flights by the Space Shuttle. A particularly challenging problem is that of control of each intermediate station configuration when the shuttle orbiter is approaching it to deliver the next component. The necessary braking maneuvers cause orbiter thruster plumes to impinge on the station, especially its solar arrays. This in turn causes both overall attitude errors and excitation of flexible-body vibration modes. These plume loads are predicted to lead to CMG saturation during the approach of the orbiter to the SC-5 station configuration, necessitating the use of the station RCS jets for desaturation. They are also expected to lead to significant excitation of solar array vibrations. It is therefore of great practical importance to investigate the effects of plume loads on the flexible dynamics of station configuration SC-5 as accurately as possible. However, this system possesses a great many flexible modes (89 below 5 rad/s), making analysis time-consuming and complicated. Model reduction techniques can be used to overcome this problem, reducing the system model to one which retains only the significant dynamics, i.e. those which are strongly excited by the control inputs or plume disturbance forces and which strongly couple with the measured outputs. The particular technique to be used in this study is the subsystem balancing approach which was previously developed by the present investigator. This method is very efficient computationally. Furthermore, it gives accurate results even for the difficult case where the structure has many closed-spaced natural frequencies, when standard modal truncation can give misleading results. Station configuration SC-5 is a good example of such a structure.

  5. Stratospheric aircraft exhaust plume and wake chemistry

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1993-01-01

    Progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere is documented. A kinetic condensation model was implemented to predict heterogeneous condensation in the plume regime behind an HSCT flying in the lower stratosphere. Simulations were performed to illustrate the parametric dependence of contrail droplet growth on the exhaust condensation nuclei number density and size distribution. Model results indicate that the condensation of water vapor is strongly dependent on the number density of activated CN. Incorporation of estimates for dilution factors into a Lagrangian box model of the far-wake regime with scale-dependent diffusion indicates negligible decrease in ozone and enhancement of water concentrations of 6-13 times background, which decrease rapidly over 1-3 days. Radiative calculations indicate a net differential cooling rate of the plume about 3K/day at the beginning of the wake regime, with a total subsidence ranging between 0.4 and 1 km. Results from the Lagrangian plume model were used to estimate the effect of repeated superposition of aircraft plumes on the concentrations of water and NO(y) along a flight corridor. Results of laboratory studies of heterogeneous chemistry are also described. Kinetics of HCl, N2O5 and ClONO2 uptake on liquid sulfuric acid were measured as a function of composition and temperature. Refined measurements of the thermodynamics of nitric acid hydrates indicate that metastable dihydrate may play a role in the nucleation of more stable trihydrates PSC's.

  6. Acoustical Survey of Methane Plumes on North Hydrate Ridge: Constraining Temporal and Spatial Characteristics.

    NASA Astrophysics Data System (ADS)

    Kannberg, P. K.; Trehu, A. M.

    2008-12-01

    While methane plumes associated with hydrate formations have been acoustically imaged before, little is known about their temporal characteristics. Previous acoustic surveys have focused on determining plume location, but as far as we know, multiple, repeated surveys of the same plume have not been done prior to the survey presented here. In July 2008, we acquired sixteen identical surveys within 19 hours over the northern summit of Hydrate Ridge in the Cascadia accretionary complex using the onboard 3.5 and 12 kHz echosounders. As in previous studies, the plumes were invisible to the 3.5 kHz echosounder and clearly imaged with 12 kHz. Seafloor depth in this region is ~600 m. Three distinct plumes were detected close to where plumes were located by Heeschen et al. (2003) a decade ago. Two of the plumes disappeared at ~520 m water depth, which is the depth of the top of the gas hydrate stability as determined from CTD casts obtained during the cruise. This supports the conclusion of Heeschen et al. (2003) that the bubbles are armored by gas hydrate and that they dissolve in the water column when they leave the hydrate stability zone. One of the plumes near the northern summit, however, extended through this boundary to at least 400 m (the shallowest depth recorded). A similar phenomenon was observed in methane plumes in the Gulf of Mexico, where the methane was found to be armored by an oil skin. In addition to the steady plumes, two discrete "burps" were observed. One "burp" occurred approximately 600 m to the SSW of the northern summit. This was followed by a second strong event 300m to the north an hour later. To evaluate temporal and spatial patterns, we summed the power of the backscattered signal in different depth windows for each survey. We present the results as a movie in which the backscatter power is shown in map view as a function of time. The surveys encompassed two complete tidal cycles, but no correlation between plume location or intensity and tides

  7. Characterization of Iberian turbid plumes by means of synoptic patterns obtained through MODIS imagery

    NASA Astrophysics Data System (ADS)

    Fernández-Nóvoa, D.; deCastro, M.; Des, M.; Costoya, X.; Mendes, R.; Gómez-Gesteira, M.

    2017-08-01

    Turbid plumes formed by the main Iberian rivers were analyzed and compared in order to determine similarities and differences among them. Five Atlantic rivers (Minho, Douro, Tagus, Guadiana and Guadalquivir) and one Mediterranean river (Ebro) were considered. Plume extension and turbidity were evaluated through synoptic patterns obtained by means of MODIS imagery over the period 2003-2014. River discharge showed to be the main forcing. In fact, the dependence of plume extension on runoff is moderate or high for all rivers, except for Ebro. In addition, most of river plumes adjust immediately to runoff fluctuations. Only the extension of Tagus and Guadalquivir plumes is lagged with respect to river runoff, due to the high residence time generated by their large estuaries. Wind is a secondary forcing, being only noticeable under high discharges. Actually, the dependence of plume extension on wind is moderate or high for all rivers, except Guadalquivir and Ebro. All the Atlantic rivers show the maximum (minimum) near- field plume extension under landward (oceanward) cross-shore winds. The opposite situation was observed for Ebro River. Tide is also a secondary forcing although less important than wind. Actually, the dependence of plume extension on tide is only high for Guadiana River. Nevertheless, all Atlantic river plumes still have some dependence on semidiurnal tidal cycle, they increase under low tides and decrease under high tides. In addition, Tagus River plume also depends on the fortnightly tidal cycle being larger during spring tides than during neap tides. This is due to particular shape of the estuary, where the river debouches into a semi-enclosed embayment connected to the Atlantic Ocean through a strait. Ebro River constitutes a particular case since it has a low dependence on runoff and wind and a negligible dependence on tide. In fact, its plume is mainly driven by the Liguro-Provençal coastal current. Guadalquivir River also shows some unique

  8. Plasma Plume Characterization of the HERMeS During a 1722-hr Wear Test Campaign

    NASA Technical Reports Server (NTRS)

    Huang, Wensheng; Williams, George J.; Peterson, Peter Y.; Kamhawi, Hani; Gilland, James H.; Herman, Daniel A.

    2017-01-01

    A 1722-hr wear test campaign of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding was completed. This wear test campaign, completed in 2016, was divided into four segments including an electrical configuration characterization test, two short duration tests, and one long wear test. During the electrical configuration characterization test, the plasma plume was examined to provide data to support the down select of the electrical configuration for further testing. During the long wear tests, the plasma plume was periodically examined for indications of changes in thruster behavior. Examination of the plasma plume data from the electrical configuration characterization test revealed a correlation between the plume properties and the presence of a conduction path through the front poles. Examination of the long wear test plasma plume data revealed that the plume characteristics remained unchanged during testing to within the measurement uncertainty.

  9. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    NASA Astrophysics Data System (ADS)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-11-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  10. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    NASA Technical Reports Server (NTRS)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  11. Lithosphere erosion and continental breakup: Interaction of extension, plume upwelling and melting

    NASA Astrophysics Data System (ADS)

    Lavecchia, Alessio; Thieulot, Cedric; Beekman, Fred; Cloetingh, Sierd; Clark, Stuart

    2017-06-01

    We present the results of thermo-mechanical modelling of extension and breakup of a heterogeneous continental lithosphere, subjected to plume impingement in presence of intraplate stress field. We incorporate partial melting of the extending lithosphere, underlying upper mantle and plume, caused by pressure-temperature variations during the thermo-mechanical evolution of the conjugate passive margin system. Effects of melting included in the model account for thermal effects, causing viscosity reduction due to host rock heating, and mechanical effects, due to cohesion loss. Our study provides better understanding on how presence of melts can influence the evolution of rifting. Here we focus particularly on the role of melting for the temporal and spatial evolution of passive margin geometry and rift migration. Depending on the lithospheric structure, melt presence may have a significant impact on the characteristics of areas affected by lithospheric extension. Pre-existing lithosphere heterogeneities determine the location of initial breakup, but in presence of plumes the subsequent evolution is more difficult to predict. For small distances between plume and area of initial rifting, the development of symmetric passive margins is favored, whereas increasing the distance promotes asymmetry. For a plume-rifting distance large enough to prevent interaction, the effect of plumes on the overlying lithosphere is negligible and the rift persists at the location of the initial lithospheric weakness. When the melt effect is included, the development of asymmetric passive continental margins is fostered. In this case, melt-induced lithospheric weakening may be strong enough to cause rift jumps toward the plume location.

  12. On-Line Planning and Mapping for Chemical Plume Tracing

    DTIC Science & Technology

    2004-06-01

    09 - 2005 Final Report 01/04/2001 - 31/10/2004 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER On-line Planning and Mapping for Chemical Plume Tracing 5b...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Department of Electrical Engineering University of California...develop, and implement on-vehicle planning and mapping theory and software to find, trace, and map chemical plumes. This objective included accurate

  13. Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes

    NASA Technical Reports Server (NTRS)

    Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.

    1997-01-01

    The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.

  14. Measurement and analysis of a small nozzle plume in vacuum

    NASA Technical Reports Server (NTRS)

    Penko, P. F.; Boyd, I. D.; Meissner, D. L.; Dewitt, K. J.

    1993-01-01

    Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area.

  15. Improvements in Modeling Thruster Plume Erosion Damage to Spacecraft Surfaces

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Olsen, Randy; Steagall, Courtney; Huang, Alvin; Mikatarian, Ron; Myers, Brandon; Koontz, Steven; Worthy, Erica

    2015-01-01

    Spacecraft bipropellant thrusters impact spacecraft surfaces with high speed droplets of unburned and partially burned propellant. These impacts can produce erosion damage to optically sensitive hardware and systems (e.g., windows, camera lenses, solar cells and protective coatings). On the International Space Station (ISS), operational constraints are levied on the position and orientation of the solar arrays to mitigate erosion effects during thruster operations. In 2007, the ISS Program requested evaluation of erosion constraint relief to alleviate operational impacts due to an impaired Solar Alpha Rotary Joint (SARJ). Boeing Space Environments initiated an activity to identify and remove sources of conservatism in the plume induced erosion model to support an expanded range of acceptable solar array positions ? The original plume erosion model over-predicted plume erosion and was adjusted to better correlate with flight experiment results. This paper discusses findings from flight experiments and the methodology employed in modifying the original plume erosion model for better correlation of predictions with flight experiment data. The updated model has been successful employed in reducing conservatism and allowing for enhanced flexibility in ISS solar array operations.

  16. Numerical simulations and parameterizations of volcanic plumes observed at Reunion Island

    NASA Astrophysics Data System (ADS)

    Gurwinder Sivia, Sandra; Gheusi, Francois; Mari, Celine; DiMuro, Andrea; Tulet, Pierre

    2013-04-01

    Volcanoes are natural composite hazards. The volcanic ejecta can have considerable impact on human health. Volcanic gases and ash, can be especially harmful to people with lung disease such as asthma. Volcanic gases that pose the greatest potential hazards are sulfur dioxide, carbon dioxide, and hydrogen fluoride. Locally, sulfur dioxide gas can lead to acid rain and air pollution downwind from a volcano. These gases can come from lava flows as well as volcano eruptive plumes. This acidic pollution can be transported by wind over large distances. To comply with regulatory rules, modeling tools are needed to accurately predict the contribution of volcanic emissions to air quality degradation. Unfortunately, the ability of existing models to simulate volcanic plume production and dispersion is currently limited by inaccurate volcanic emissions and uncertainties in plume-rise estimates. The present work is dedicated to the study of deep injections of volcanic emissions into the troposphere developed as consequence of intense but localized input of heat near eruptive mouths. This work covers three aspects. First a precise quantification of heat sources in terms of surface, geometry and heat source intensity is done for the Piton de la Fournaise volcano. Second, large eddy simulation (LES) are performed with the Meso-NH model to determine the dynamics and vertical development of volcanic plumes. The estimated energy fluxes and the geometry of the heat source is used at the bottom boundary to generate and sustain the plume, while, passive tracers are used to represent volcanic gases and their injection into the atmosphere. The realism of the simulated plumes is validated on the basis of plume observations. The LES simulations finally serve as references for the development of column parameterizations for the coarser resolution version of the model which is the third aspect of the present work. At spatial resolution coarser than ~1km, buoyant volcanic plumes are sub

  17. Lidar ceilometer observations and modeling of a fireworks plume in Vancouver, British Columbia

    NASA Astrophysics Data System (ADS)

    van der Kamp, Derek; McKendry, Ian; Wong, May; Stull, Roland

    Observations of a plume emanating from a 30-min duration pyrotechnic display with a lidar ceilometer are described for an urban setting in complex, coastal terrain. Advection of the plume across the ceilometer occurred at a mean height of 250 m AGL. The plume traveled downwind at ˜3 m s -1, and at a distance of 8 km downwind, was ˜100 m in vertical thickness with particulate matter (PM) concentrations of order 30-40 μg m -3. Surface PM observations from surrounding urban monitoring stations suggest that the plume was not mixed to ground over the urban area. Plume trajectories at ˜250 m simulated by three numerical models all traveled to the northeast of the ceilometer location. Horizontal plume dispersion estimates suggest that the model trajectories were too far north to accommodate the likely lateral plume spread necessary to explain the ceilometer observations. This poor agreement between near surface observations and model output is consistent with previous mesoscale model validations in this region of complex urbanized terrain, and suggests that despite improvements in mesoscale model resolution, there remains an urgent need to improve upstream initial conditions over the Pacific Ocean, data assimilation over complex terrain, the representation of urban areas in mesoscale models, and to further validate such models for nocturnal applications in complex settings.

  18. Global volcanic emissions: budgets, plume chemistry and impacts

    NASA Astrophysics Data System (ADS)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  19. Plumes Provide New Insight Into the Physis of Mars' Atmosphere.

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Ergun, R.; Malaspina, D.; Thayer, F.; Yelle, R. V.; Merkel, A. W.; Stevens, M.; Mitchell, D. L.; McFadden, J. P.; Horanyi, M.; Jakosky, B. M.; Fowler, C. M.; Pilinski, M.

    2017-12-01

    Low-resolution time series data measured by the Langmuir Probe and Waves (LPW) instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft suggest the existence of a low-density dayside `dust' cloud stretching into the night side. At the poles, along the sunlit-shadow line, plumes of high concentration (1 #/m3) `dust particles' are observed. During one periapsis, the LPW instrument operated in a high-resolution dust mode to verify that the observed plumes in the low-resolution data are indeed created by dust particles impacting the spacecraft. This presentation will describe the observations and propose the cause of the plumes. These observations suggest that we do not yet fully understand the dust environment of Mars' atmosphere.

  20. ANALYSIS OF METEOROLOGICAL CONDITIONS DURING THE 1977 ANCLOTE KEYS PLUME STUDY

    EPA Science Inventory

    Meteorological conditions are described and analyzed for nine experimental observation periods of the Anclote Keys Plume Study, which was conducted near Tampa, Florida during February 1977. The primary objective of the Plume Study was to investigate both the short and long range ...

  1. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery

    PubMed Central

    Gómez-Gesteira, M.; Mendes, R.; deCastro, M.; Vaz, N.; Dias, J. M.

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides. PMID:29073209

  2. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    NASA Astrophysics Data System (ADS)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  3. Influence of main forcing affecting the Tagus turbid plume under high river discharges using MODIS imagery.

    PubMed

    Fernández-Nóvoa, D; Gómez-Gesteira, M; Mendes, R; deCastro, M; Vaz, N; Dias, J M

    2017-01-01

    The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.

  4. The 2010 Eyjafjallajökull and 2011 Grimsvötn ash plumes as seen by GPS

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Hreinsdottir, S.; Gudmundsson, M. T.

    2015-12-01

    The injection of a volcanic plume introduces a dynamic, localized, short-term heterogeneity in the atmosphere. Satellite-imagery based remote sensing techniques provide good spatial coverage for the detection of such plumes, but slow satellite repeat times (>30 minutes) and cloud cover can delay, if not entirely prevent, the detection. GPS, in turn, provides excellent temporal coverage, but requires favorable satellite-station-geometry such that the signal propagates through the plume if it is to be used for plume detection and analysis. Two methods exist to detect / analyze ash plumes with GPS: (a) Ash-heavy plumes result in signal dispersion and hence a lowered signal-to-noise ratio (SNR). A lowered SNR, recorded by some receivers, can provide useful information about the plume, such as location and velocity of ascent. These data can be evaluated directly as they are recorded by the receiver; without the need of solving for a receiver's position. (b) Wet plumes refract the GPS signals piercing the plume and hence induce a propagation delay. When solving for a receiver position GPS analysis tools do not model this localized phase delay effect and solutions for plume-piercing satellites do not fit the data well. This can be exploited for plume analysis such as the estimation of changes to the atmospheric refractivity index. We analyze GPS data of the ~2 month 2010 Eyafjallajökull erption and the week-long 2011 Grímsvötn eruption to infer a first order estimate of plume geometry and its progression. Using SNR and phase delay information, we evaluate the evolution of the partitioning of wet versus dry parts of the plume. During the GPS processing we iteratively solve for phase-delay and position and fix other parameters, hence reducing the mapping of least-squares misfit into position estimates and other parameters. Nearly continuous webcam imagery provides independent observations of first-order plume characteristics for the Eyafjallajökull event.

  5. On the relationship between tectonic plates and thermal mantle plume morphology

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.

  6. Radiative-hydrodynamic Modeling of the SL-9 Plume Infall

    NASA Astrophysics Data System (ADS)

    Deming, D.; Harrington, J.

    1998-09-01

    We are developing a model for the plume-infall phase of the SL-9/Jupiter collision. The modeling takes place in two steps. The first step is a ballistic Monte-Carlo simulation of the ejecta from the collision, based on a power-law distribution of ejecta velocities. Parameters from this simulation are adjusted to best reproduce the appearance of the ejecta plume above the jovian limb, and the debris patterns on the disk, as seen by HST. Results of those calculations are reported in a paper by Harrington and Deming (this meeting). In this paper we report results from the second step, wherein the ballistic Monte-Carlo plume simulations are coupled to the Zeus-3D hydrodynamic code. Zeus is used in a 2-D mode to follow both the radial and z-component motions of the infalling plume material, and model the resultant shock-heating of the ambient atmosphere. Zeus was modified to include radiative transport in the gray approximation. We discuss the results as concerns: 1) the temperatures and other physical conditions in the radiating upper atmospheric shocks, 2) the morphology of the light curve, including the nature of secondary maxima, and 3) the structure of the post-collision jovian atmosphere.

  7. Temperature fluctuation of the Iceland mantle plume through time

    NASA Astrophysics Data System (ADS)

    Spice, Holly E.; Fitton, J. Godfrey; Kirstein, Linda A.

    2016-02-01

    The newly developed Al-in-olivine geothermometer was used to find the olivine-Cr-spinel crystallization temperatures of a suite of picrites spanning the spatial and temporal extent of the North Atlantic Igneous Province (NAIP), which is widely considered to be the result of a deep-seated mantle plume. Our data confirm that start-up plumes are associated with a pulse of anomalously hot mantle over a large spatial area before becoming focused into a narrow upwelling. We find that the thermal anomaly on both sides of the province at Baffin Island/West Greenland and the British Isles at ˜61 Ma across an area ˜2000 km in diameter was uniform, with Al-in-olivine temperatures up to ˜300°C above that of average mid-ocean ridge basalt (MORB) primitive magma. Furthermore, by combining our results with geochemical data and existing geophysical and bathymetric observations, we present compelling evidence for long-term (>107 year) fluctuations in the temperature of the Iceland mantle plume. We show that the plume temperature fell from its initial high value during the start-up phase to a minimum at about 35 Ma, and that the mantle temperature beneath Iceland is currently increasing.

  8. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  9. Validation of smoke plume rise models using ground based lidar

    Treesearch

    Cyle E. Wold; Shawn Urbanski; Vladimir Kovalev; Alexander Petkov; Wei Min Hao

    2010-01-01

    Biomass fires can significantly degrade regional air quality. Plume rise height is one of the critical factors determining the impact of fire emissions on air quality. Plume rise models are used to prescribe the vertical distribution of fire emissions which are critical input for smoke dispersion and air quality models. The poor state of model evaluation is due in...

  10. Karymsky volcano eruptive plume properties based on MISR multi-angle imagery and the volcanological implications

    NASA Astrophysics Data System (ADS)

    Flower, Verity J. B.; Kahn, Ralph A.

    2018-03-01

    Space-based operational instruments are in unique positions to monitor volcanic activity globally, especially in remote locations or where suborbital observing conditions are hazardous. The Multi-angle Imaging SpectroRadiometer (MISR) provides hyper-stereo imagery, from which the altitude and microphysical properties of suspended atmospheric aerosols can be derived. These capabilities are applied to plumes emitted at Karymsky volcano from 2000 to 2017. Observed plumes from Karymsky were emitted predominantly to an altitude of 2-4 km, with occasional events exceeding 6 km. MISR plume observations were most common when volcanic surface manifestations, such as lava flows, were identified by satellite-based thermal anomaly detection. The analyzed plumes predominantly contained large (1.28 µm effective radius), strongly absorbing particles indicative of ash-rich eruptions. Differences between the retrievals for Karymsky volcano's ash-rich plumes and the sulfur-rich plumes emitted during the 2014-2015 eruption of Holuhraun (Iceland) highlight the ability of MISR to distinguish particle types from such events. Observed plumes ranged from 30 to 220 km in length and were imaged at a spatial resolution of 1.1 km. Retrieved particle properties display evidence of downwind particle fallout, particle aggregation and chemical evolution. In addition, changes in plume properties retrieved from the remote-sensing observations over time are interpreted in terms of shifts in eruption dynamics within the volcano itself, corroborated to the extent possible with suborbital data. Plumes emitted at Karymsky prior to 2010 display mixed emissions of ash and sulfate particles. After 2010, all plumes contain consistent particle components, indicative of entering an ash-dominated regime. Post-2010 event timing, relative to eruption phase, was found to influence the optical properties of observed plume particles, with light absorption varying in a consistent sequence as each respective

  11. Characterization of ultrafast laser-ablation plasma plumes at various Ar ambient pressures

    DOE PAGES

    Diwakar, P. K.; Harilal, S. S.; Phillips, M. C.; ...

    2015-07-30

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plumemore » species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. As a result, possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.« less

  12. Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Anmin; Jiang Yuanfei; Liu Hang

    2012-07-15

    The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

  13. Isotopic evolution of Mauna Loa and the chemical structure of the Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Depaolo, Donald J.; Bryce, Julia G.; Dodson, Allen; Shuster, David L.; Kennedy, B. Mack

    2001-07-01

    New He isotopic data from the HSDP pilot hole core, lava accumulation rate models, and data from the literature are used to develop a 200,000 year isotopic record for the lava erupted from the Mauna Loa volcano. This record, coupled with an analogous record from Mauna Kea from the Hawaii Scientific Drilling Project (HSDP) pilot hole project and other literature data from the GEOROC database, are used to construct a "map" of lava isotopic compositions for the island of Hawaii. The isotopic map is converted to a map of the He and Nd isotopic compositions of melts from the mantle plume, which can be compared with a published melt supply map derived from geodynamic modeling. The resulting map of the plume indicates that values of helium 3He/4He > 20 Ra are confined to the core of the plume (radius ≈ 20-25 km) and correspond to potential temperatures >1565°C, suggesting the He isotopic signal is derived from deep in the mantle. The 3He/4He map has closed contours down to 10 Ra; the contours are teardrop-shaped and elongated in the general direction of plate motion. The closed contours indicate that most of the plume He signal is lost during the early stages of melting, which is consistent with helium behaving as a strongly incompatible element (KHe ≤ 0.001). The ɛNd contours (and by inference the contours for Sr, Pb, Hf, and Os) do not all close on the scale of the island of Hawaii but instead partially follow material flow lines within the plume beneath the lithosphere. The plume signal for Nd extends circa 100 km in the direction of plate motion, which is consistent with the moderately incompatible behavior of Nd (KNd ≈ 0.02). Downstream from the plume core epicenter, plume Nd occurs with asthenospheric He; this could be mistaken for an additional plume component, whereas it may be only a manifestation of differing incompatibility. Data from Mauna Loa suggest the presence of a low-3He/4He plume component that has low ɛNd and high 87Sr/86Sr. The plume map

  14. Temporal and spatial variations of the Chesapeake Bay plume

    NASA Technical Reports Server (NTRS)

    Ruzecki, E. P.

    1981-01-01

    Historical records and data obtained during the Superflux experiments are used to describe the temporal and spatial variations of the effluent waters of Chesapeake Bay. The alongshore extent of the plume resulting from variations of freshwater discharge into the Bay and the effects of wind are illustrated. Variations of the cross sectional configuration of the plume over portions of a tidal cycle and results of a rapid underway water sampling system are discussed.

  15. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  16. Multi Plumes and Their Flows beneath Arabia and East Africa

    NASA Astrophysics Data System (ADS)

    Chang, S.; van der Lee, S.

    2010-12-01

    The three-dimensional S-velocity structure beneath Arabia and East Africa is estimated down to the lower mantle to investigate vertical and horizontal extension of low-velocity anomalies that bear out the presence of mantle plumes and their flows beneath lithosphere. We estimated this model through joint inversion of teleseismic S- and SKS-arrival times, regional S- and Rayleigh waveform fits, fundamental-mode Rayleigh-wave group velocities, and independent Moho constraints from receiver functions, reflection/refraction profiles, and gravity measurements. With the unprecedented resolution in our S-velocity model, we found different flow patterns of hot materials upwelling beneath Afar beneath the Red Sea and the Gulf of Aden. While the low-velocity anomaly from Afar is well confined beneath the Gulf of Aden, inferring mantle flow along the gulf, N-S channel of low velocity is found beneath Arabia, not along the Red Sea. The Afar plume is distinctively separate from the Kenya plume, showing its origin in the lower mantle beneath southwestern Arabia. We identified another low-velocity extension to the lower mantle beneath Jordan and northern Arabia, which is thought to have caused volcanism in Jordan, northern Arabia, and possibly southern Turkey. Comparing locations of mantle plumes from the joint inversion with fast axes of shear-wave splitting, we confirmed horizontal plume flow from Afar in NS direction beneath Arabia and in NE-SW direction beneath Ethiopia as a likely cause of the observed seismic anisotropy.

  17. Development of a GNSS Volcano Ash Plume Detector

    NASA Astrophysics Data System (ADS)

    Rainville, N.; Palo, S. E.; Larson, K. M.; Naik, S. R.

    2015-12-01

    Global Navigation Satellite Systems (GNSS), broadcast signals continuously from mid Earth orbit at a frequency near 1.5GHz. Of the four GNSS constellations, GPS and GLONASS are complete with more than 55 satellites in total. While GNSS signals are intended for navigation and timing, they have also proved to be useful for remote sensing applications. Reflections of the GNSS signals have been used to sense soil moisture, snow depth, and wind speed while refraction of the signals through the atmosphere has provided data on the electron density in the ionosphere as well as water vapor and temperature in the troposphere. Now analysis at the University of Colorado has shown that the attenuation of GNSS signals by volcanic ash plumes can be used to measure the presence and structure of the ash plume. This discovery is driving development of a distributed GNSS sensor network to complement existing optical and radar based ash plume monitoring systems. A GNSS based sensing system operating in L-band is unaffected by weather conditions or time of day. Additionally, the use of an existing signal source greatly reduces the per sensor cost and complexity compared to a radar system. However since any one measurement using this method provides only the total attenuation between the GNSS satellite and the receiver, full tomographic imaging of a plume requires a large number of sensors observing over a diversity of geometries. This presentation will provide an overview of the ongoing development of the GNSS sensor system. Evaluation of low priced commercial GNSS receivers will be discussed, as well as details on the inter sensor network. Based on analysis of existing GPS receivers near volcanic vents, the baseline configuration for an ash plume monitoring network is a 1km spaced ring of receivers 5km from the vent updating every 5 seconds. Preliminary data from field tests will be presented to show the suitability of the sensor system for this configuration near an active volcano.

  18. Do plumes exist beneath Northwest Kyushu southwest Japan?

    NASA Astrophysics Data System (ADS)

    Mashima, H.

    2014-12-01

    A thermal plume model was proposed for the Hot-spot type volcanism at Northwest Kyushu, southwest Japan in the post period of opening of the Sea of Japan. The model regards the Northwest Kyushu Basalts (NWKBs) were magmas fractionated from parental magmas with MgO = 12.8 - 18.8 wt. %, indicating that partial melting occurred at temperatures from 1330 to 1500 °C and at pressures from 1.5 to 3.0 GPa (Sakuyama et al., 2009; 2014). Previous petrological and observations, however, indicate that the NWKBs separated from the source mantle at pressures shallower than those inferred from the plume model. The Mg-Fe-Ni compositions of some NWKBs suggest that they could have been in equilibrium with mantle olivines with Fo = 81 - 87, meaning that they would have been not fractionated but primitive magmas. The NWKBs are associated with primitive high magnesium andesites, indicating that partial melting continued at low pressure such as 0.5 GPa (Mashima, 2009a, b). NWKBs include not garnet lherzolite xenoliths but spinel lherzolite, showing that primitive melt separation occurred at pressure lower than 2GPa (Arai et al., 2001). These lines of evidence indicate that the separation of primitive NWKBs occurred at temperature up to 1250 °C and pressures from 0.5 to 1.5 GPa, significantly lower than those assumed by the plume model. Instead of the plume model, geology of NW Kyushu infers that the volcanism was a consequence of the tectonic evolution of NW Kyushu. The volcanism was leaks of asthenosphere thickened extensional tectonics from the Paleogene to the early Miocene. Orientations of NWKB dikes indicate their eruption was induced by the reactivation of preexisting faults under horizontal compressive stress field oriented to a NW-SE direction. This horizontally compressive stress field would have been caused by mechanical interactions between the subducting Philippine Sea pate and the Eurasian Plate. The NW Kyushu volcanism could be explained in the context of plate

  19. EXAMPLES OF LANDFILL-GENERATED PLUMES IN LOW-RELIEF AREAS, SOUTHEAST FLORIDA.

    USGS Publications Warehouse

    Russell, Gary M.; Stewart, Mark; Higer, Aaron L.

    1987-01-01

    Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7 multiplied by 10** minus **4 to 5 multiplied by 10** minus **4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.

  20. Influences of source condition and dissolution on bubble plume in a stratified environment

    NASA Astrophysics Data System (ADS)

    Chu, Shigan; Prosperetti, Andrea

    2017-11-01

    A cross-sectionally averaged model is used to study a bubble plume rising in a stratified quiescent liquid. Scaling analyses for the peel height, at which the plume momentum vanishes, and the neutral height, at which its average density equals the ambient density, are presented. Contrary to a widespread practice in the literature, it is argued that the neutral height cannot be identified with the experimentally reported intrusion height. Recognizing this difference provides an explanation of the reason why the intrusion height is found so frequently to lie so much above predictions, and brings the theoretical results in line with observations. The mathematical model depends on three dimensionless parameters, some of which are related to the inlet conditions at the plume source. Their influence on the peel and neutral heights is illustrated by means of numerical results. Aside from the source parameters, we incorporate dissolution of bubbles and the corresponding density change of plume into the model. Contrary to what's documented in literature, density change of plume due to dissolution plays an important role in keeping the total buoyancy of plume, thus alleviating the rapid decrease of peel height because of dissolution.

  1. Platinum Group Element (PGE) Abundances in Lava Flows Generated by the Hawaiian Plume: Insights into Plume Evolution

    NASA Astrophysics Data System (ADS)

    Shafer, J. T.; Neal, C. R.

    2003-12-01

    Picritic and high-MgO (7.7-24 wt.%) basalt samples from Detroit (/sim81-76 Ma) and Koko (/sim48 Ma) Seamounts along the ESC have been analyzed for PGEs (Ru, Rh, Pd, Ir, and Pt) allowing an examination of how the PGEs in lavas from the Hawaiian plume have changed over time. Major and trace element (including the PGEs) concentrations were quantified by ICP methods at the University of Notre Dame. See Ely et al. (1999, Chem. Geol. 157:219) for the PGE analytical method. Bennett et al. (2000) analyzed Hawaiian picrites and found PGE abundances slightly greater than average MORB and comparable to the low-PGE basaltic komatiites. These authors modeled the PGE abundances of these picrites by using variable amounts of residual sulfide during melting, such that Koolau (low PGE contents) formed from a relatively sulfide-rich source and Loihi (high PGEs) from a sulfide-poor source. Our PGE data from Detroit Seamount show slightly higher PGE abundances than Loihi and Kilauea, suggesting these picrites formed from a source lacking residual sulfide. These results suggest that, if the model of Bennett et al. (2000) is correct, the dilution of plume lava with MORB source, as hypothesized on the basis of depleted isotope ratios and lower trace element abundances than modern Hawaii (Keller et al., 2000, Nature 405:603; Kinman & Neal, 2002, Eos 83:F1282; Regelous et al., 2003, JPet 44:113), was not the controlling factor in PGE abundances. However, since MORB PGE concentrations are not substantially different than low-PGE Hawaiian picrites, incorporation of MORB material within the Hawaiian plume at Detroit Seamount would not have drastically reduced the PGE abundances. Koko Seamount has relatively high PGE concentrations (/sim3-12 times greater than those from Detroit lavas). This may be the result of a lack of residual sulfide facilitated by higher degrees of partial melting. Although our initial data are consistent with variable degrees of partial melting and/or source

  2. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  3. Delineation of a landfill leachate plume using shallow electromagnetic and ground-penetrating radar surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobes, D.C.; Armstrong, M.J.; Broadbent, M.

    1994-12-31

    Leachate plumes are often more electrically conductive than the surrounding host pore waters, and thus can be detected using shallow electromagnetic (EM) methods. The depth of penetration of ground penetrating radar (GPR) is controlled to a large extent by the electrical conductivity. Conductive leachate plumes will appear as ``blank`` areas in the radar profiles, because the radar energy is more severely attenuated in the region of the leachate plume. The authors present here the results of EM and GPR Surveys carried out in an area adjacent to a landfill site. Previous resistivity surveys indicated the presence of a leachate plumemore » originating from an early stage of the landfill operation. The shallow EM and GPR surveys were carried out, in part, to confirm and refine the resistivity results, and to delineate the spatial extent of the plume. The surficial sediments are coastal sands, and the dune topography has an effect on the EM results, even though the variations in elevation are, in general, no more than 3 m. Besides the leachate plume, numerous conductivity highs and lows are present, which are at least coarsely correlated with topographic lows and highs. Following the empirical procedure outlined by Monier-Williams et al. (1990), the topographic effects have been removed, and the plume is better isolated and delineated. A possible second, weaker leachate plume has been identified, emanating from the current landfill operation. The second plume may follow a channel that was masked by the overlying dune sands. The leading edge of the primary leachate plume is moving to the south-southeast at a rate of 14 to 15 m/yr.« less

  4. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  5. Quantitative Chemical Analysis of Enceladus' Plume Composition.

    NASA Astrophysics Data System (ADS)

    Peter, J.; Nordheim, T.; Hofmann, A.; Hand, K. P.

    2017-12-01

    Analyses of data from Cassini's Ion and Neutral Mass Spectrometer (INMS) taken during several close flybys of Enceladus suggest the presence of a potentially habitable ocean underneath the ice shell [1,2]. Proper identification of the molecular species sampled from Enceladus' plumes by INMS is of utmost importance for characterizing the ocean's chemical composition. Data from Cassini's Cosmic Dust Analyzer (CDA) and Visible and Infrared Mapping Spectrometer (VIMS) have provided clues for possible plume chemistry, but further analysis of the INMS data is necessary [3,4]. Here we present a novel automated algorithm for comparing INMS spectra and analogue laboratory spectra to a vast library of sample spectra provided by the National Institute of Standards and Technology (NIST). The algorithm implements a Monte Carlo simulation that computes the angular similarity between the spectrum of interest and a random sample of synthetic spectra generated at arbitrary mixing ratios of molecular species. The synthetic spectra with the highest similarity scores are then averaged to produce a convergent estimate of the mixing ratio of the spectrum of interest. Here we will discuss the application of this technique to INMS and laboratory data and the implication of our preliminary results for the ocean chemistry and habitability of Enceladus. 1. Waite, J., et al., 2009. Liquid Water on Enceladus From Observations of Ammonia and 40Ar in the Plume. Nature 460, 487-498. 2. Waite, J., et al. 2017. Cassini Finds Molecular Hydrogen in the Enceladus Plume: Evidence for Hydrothermal Processes. Science 356, 155-159. 3. Postberg, F., et al., 2008. The E Ring in the Vicinity of Enceladus II: Signatures of Enceladus in the Elemental Composition of E-Ring Particles. Icarus 193(2), 438-454. 4. Brown, R., et al., 2006. Composition and Physical Properties of Enceladus' Surface. Science 311, 1425-1428.

  6. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e <1) and underexpanded exhaust plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These

  7. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin.

    PubMed

    Sheik, Cody S; Anantharaman, Karthik; Breier, John A; Sylvan, Jason B; Edwards, Katrina J; Dick, Gregory J

    2015-06-01

    Within hydrothermal plumes, chemosynthetic processes and microbe-mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes.

  8. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin

    PubMed Central

    Sheik, Cody S; Anantharaman, Karthik; Breier, John A; Sylvan, Jason B; Edwards, Katrina J; Dick, Gregory J

    2015-01-01

    Within hydrothermal plumes, chemosynthetic processes and microbe–mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes. PMID:25489728

  9. Improving Hall Thruster Plume Simulation through Refined Characterization of Near-field Plasma Properties

    NASA Astrophysics Data System (ADS)

    Huismann, Tyler D.

    Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous

  10. Simultaneous Ground- and Space-Based Observations of the Plasmaspheric Plume and Reconnection

    NASA Technical Reports Server (NTRS)

    Walsh, B. M.; Foster, J. C.; Erickson, P. J.; Sibeck, D. G.

    2014-01-01

    Magnetic reconnection is the primary process through which energy couples from the solar wind into Earth's magnetosphere and ionosphere. Conditions both in the incident solar wind and in the magnetosphere are important in determining the efficiency of this energy transfer. In particular, the cold, dense plasmaspheric plume can substantially impact the coupling in the dayside reconnection region. Using ground-based total electron content (TEC) maps and measurements from the THEMIS spacecraft, we investigated simultaneous ionosphere and magnetosphere observations of the plasmaspheric plume and its involvement in an unsteady magnetic reconnection process. The observations show the full circulation pattern of the plasmaspheric plume and validate the connection between signatures of variability in the dense plume and reconnection at the magnetopause as measured in situ and through TEC measurements in the ionosphere.

  11. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Waite, J. Hunter; Glein, Christopher R.; Perryman, Rebecca S.; Teolis, Ben D.; Magee, Brian A.; Miller, Greg; Grimes, Jacob; Perry, Mark E.; Miller, Kelly E.; Bouquet, Alexis; Lunine, Jonathan I.; Brockwell, Tim; Bolton, Scott J.

    2017-04-01

    Saturn’s moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume. By using the instrument’s open-source mode, background processes of hydrogen production in the instrument were minimized and quantified, enabling the identification of a statistically significant signal of hydrogen native to Enceladus. We find that the most plausible source of this hydrogen is ongoing hydrothermal reactions of rock containing reduced minerals and organic materials. The relatively high hydrogen abundance in the plume signals thermodynamic disequilibrium that favors the formation of methane from CO2 in Enceladus’ ocean.

  12. Simultaneous ground- and space-based observations of the plasmaspheric plume and reconnection.

    PubMed

    Walsh, B M; Foster, J C; Erickson, P J; Sibeck, D G

    2014-03-07

    Magnetic reconnection is the primary process through which energy couples from the solar wind into Earth's magnetosphere and ionosphere. Conditions both in the incident solar wind and in the magnetosphere are important in determining the efficiency of this energy transfer. In particular, the cold, dense plasmaspheric plume can substantially impact the coupling in the dayside reconnection region. Using ground-based total electron content (TEC) maps and measurements from the THEMIS spacecraft, we investigated simultaneous ionosphere and magnetosphere observations of the plasmaspheric plume and its involvement in an unsteady magnetic reconnection process. The observations show the full circulation pattern of the plasmaspheric plume and validate the connection between signatures of variability in the dense plume and reconnection at the magnetopause as measured in situ and through TEC measurements in the ionosphere.

  13. Intracontinental mantle plume and its implications for the Cretaceous tectonic history of East Asia

    NASA Astrophysics Data System (ADS)

    Ryu, In-Chang; Lee, Changyeol

    2017-12-01

    A-type granitoids, high-Mg basalts (e.g., picrites), adakitic rocks, basin-and-range-type fault basins, thinning of the North China Craton (NCC), and southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan during the Cretaceous are attributed to the passive upwelling of deep asthenospheric mantle or ridge subduction. However, the genesis of these features remains controversial. Furthermore, the lack of ridge subduction during the Cretaceous in recently suggested plate reconstruction models poses a problem because the Cretaceous adakites in southern Korea and southwestern Japan could not have been generated by the subduction of the old Izanagi oceanic plate. Here, we speculate that plume-continent (intracontinental plume-China continent) and subsequent plume-slab (intracontinental plume-subducted Izanagi oceanic plate) interactions generated the various intracontinental magmatic and tectonic activities in eastern China, Korea, and southwestern Japan. We support our proposal using three-dimensional numerical models: 1) An intracontinental mantle plume is dragged into the mantle wedge by corner flow of the mantle wedge, and 2) the resultant channel-like flow of the mantle plume in the mantle wedge apparently migrated from southwest to northeast because of the northeast-to-southwest migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. Our model calculations show that adakites and I-type granitoids can be generated by increased slab-surface temperatures because of the channel-like flow of the mantle plume in the mantle wedge. We also show that the southwest-to-northeast migration of the adakites and I-type granitoids in southern Korea and southwestern Japan can be attributable to the opposite migration of the East Asian continental blocks with respect to the Izanagi oceanic plate. This correlation implies that an intracontinental mantle plume existed in eastern China during the

  14. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    NASA Astrophysics Data System (ADS)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  15. The importance of plume rise on the concentrations and atmospheric impacts of biomass burning aerosol

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Freitas, Saulo R.; Kottmeier, Christoph; Kraut, Isabel; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard

    2016-07-01

    We quantified the effects of the plume rise of biomass burning aerosol and gases for the forest fires that occurred in Saskatchewan, Canada, in July 2010. For this purpose, simulations with different assumptions regarding the plume rise and the vertical distribution of the emissions were conducted. Based on comparisons with observations, applying a one-dimensional plume rise model to predict the injection layer in combination with a parametrization of the vertical distribution of the emissions outperforms approaches in which the plume heights are initially predefined. Approximately 30 % of the fires exceed the height of 2 km with a maximum height of 8.6 km. Using this plume rise model, comparisons with satellite images in the visible spectral range show a very good agreement between the simulated and observed spatial distributions of the biomass burning plume. The simulated aerosol optical depth (AOD) with data of an AERONET station is in good agreement with respect to the absolute values and the timing of the maximum. Comparison of the vertical distribution of the biomass burning aerosol with CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) retrievals also showed the best agreement when the plume rise model was applied. We found that downwelling surface short-wave radiation below the forest fire plume is reduced by up to 50 % and that the 2 m temperature is decreased by up to 6 K. In addition, we simulated a strong change in atmospheric stability within the biomass burning plume.

  16. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5-6 J/cm2) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis.

  17. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.

    2017-12-01

    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  18. Initial parametric study of the flammability of plume releases in Hanford waste tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antoniak, Z.I.; Recknagle, K.P.

    This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less

  19. Phytoplankton assemblages within the Chesapeake Bay plume and adjacent waters of the continental shelf

    NASA Technical Reports Server (NTRS)

    Marshall, H. G.

    1981-01-01

    The Chesapeake Bay plume was identified and plotted in relation to the presence and high concentrations of phytoplankton assemblages. Seasonal differences occurred within the plume during the collection period, with Skeletonema costatum and an ultraplankton component the dominant forms. Patchiness was found along the transects, with variations in composition and concentrations common on consecutive day sampling within the plume in its movement along the shelf. The presence of 236 species is noted, with their presence indicated for plume and shelf stations during the March, June, and October 1980 collections.

  20. Three-dimensional simulation of gas and dust in Io's Pele plume

    NASA Astrophysics Data System (ADS)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.