Sample records for kalabagh fault zone

  1. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  2. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    NASA Astrophysics Data System (ADS)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  3. Fault zone property near Xinfengjiang Reservoir using dense, across-fault seismic array

    NASA Astrophysics Data System (ADS)

    Lee, M. H. B.; Yang, H.; Sun, X.

    2017-12-01

    Properties of fault zones are important to the understanding of earthquake process. Around the fault zone is a damaged zone which is characterised by a lower seismic velocity. This is detectable as a low velocity zone and measure some physical property of the fault zone, which is otherwise difficult sample directly. A dense, across-fault array of short period seismometer is deployed on an inactive fault near Xinfengjiang Reservoir. Local events were manually picked. By computing the synthetic arrival time, we were able to constrain the parameters of the fault zone Preliminary result shows that the fault zone is around 350 m wide with a P and S velocity increase of around 10%. The fault is geologically inferred, and this result suggested that it may be a geological layer. The other possibility is that the higher velocity is caused by a combination of fault zone healing and fluid intrusion. Whilst the result was not able to tell us the nature of the fault, it demonstrated that this method is able to derive properties from a fault zone.

  4. Tectono-stratigraphic evolution of normal fault zones: Thal Fault Zone, Suez Rift, Egypt

    NASA Astrophysics Data System (ADS)

    Leppard, Christopher William

    The evolution of linkage of normal fault populations to form continuous, basin bounding normal fault zones is recognised as an important control on the stratigraphic evolution of rift-basins. This project aims to investigate the temporal and spatial evolution of normal fault populations and associated syn-rift deposits from the initiation of early-formed, isolated normal faults (rift-initiation) to the development of a through-going fault zone (rift-climax) by documenting the tectono-stratigraphic evolution of the Sarbut EI Gamal segment of the exceptionally well-exposed Thai fault zone, Suez Rift, Egypt. A number of dated stratal surfaces mapped around the syn-rift depocentre of the Sarbut El Gamal segment allow constraints to be placed on the timing and style of deformation, and the spatial variability of facies along this segment of the fault zone. Data collected indicates that during the first 3.5 My of rifting the structural style was characterised by numerous, closely spaced, short (< 3 km), low displacement (< 200 m) synthetic and antithetic normal faults within 1 - 2 km of the present-day fault segment trace, accommodating surface deformation associated with the development of a fault propagation monocline above the buried, pre-cursor strands of the Sarbut El Gamal fault segment. The progressive localisation of displacement onto the fault segment during rift-climax resulted in the development of a major, surface-breaking fault 3.5 - 5 My after the onset of rifting and is recorded by the death of early-formed synthetic and antithetic faults up-section, and thickening of syn-rift strata towards the fault segment. The influence of intrabasinal highs at the tips of the Sarbut EI Gamal fault segment on the pre-rift sub-crop level, combined with observations from the early-formed structures and coeval deposits suggest that the overall length of the fault segment was fixed from an early stage. The fault segment is interpreted to have grown through rapid lateral

  5. Seismic fault zone trapped noise

    NASA Astrophysics Data System (ADS)

    Hillers, G.; Campillo, M.; Ben-Zion, Y.; Roux, P.

    2014-07-01

    Systematic velocity contrasts across and within fault zones can lead to head and trapped waves that provide direct information on structural units that are important for many aspects of earthquake and fault mechanics. Here we construct trapped waves from the scattered seismic wavefield recorded by a fault zone array. The frequency-dependent interaction between the ambient wavefield and the fault zone environment is studied using properties of the noise correlation field. A critical frequency fc ≈ 0.5 Hz defines a threshold above which the in-fault scattered wavefield has increased isotropy and coherency compared to the ambient noise. The increased randomization of in-fault propagation directions produces a wavefield that is trapped in a waveguide/cavity-like structure associated with the low-velocity damage zone. Dense spatial sampling allows the resolution of a near-field focal spot, which emerges from the superposition of a collapsing, time reversed wavefront. The shape of the focal spot depends on local medium properties, and a focal spot-based fault normal distribution of wave speeds indicates a ˜50% velocity reduction consistent with estimates from a far-field travel time inversion. The arrival time pattern of a synthetic correlation field can be tuned to match properties of an observed pattern, providing a noise-based imaging tool that can complement analyses of trapped ballistic waves. The results can have wide applicability for investigating the internal properties of fault damage zones, because mechanisms controlling the emergence of trapped noise have less limitations compared to trapped ballistic waves.

  6. Modelling Fault Zone Evolution: Implications for fluid flow.

    NASA Astrophysics Data System (ADS)

    Moir, H.; Lunn, R. J.; Shipton, Z. K.

    2009-04-01

    Flow simulation models are of major interest to many industries including hydrocarbon, nuclear waste, sequestering of carbon dioxide and mining. One of the major uncertainties in these models is in predicting the permeability of faults, principally in the detailed structure of the fault zone. Studying the detailed structure of a fault zone is difficult because of the inaccessible nature of sub-surface faults and also because of their highly complex nature; fault zones show a high degree of spatial and temporal heterogeneity i.e. the properties of the fault change as you move along the fault, they also change with time. It is well understood that faults influence fluid flow characteristics. They may act as a conduit or a barrier or even as both by blocking flow across the fault while promoting flow along it. Controls on fault hydraulic properties include cementation, stress field orientation, fault zone components and fault zone geometry. Within brittle rocks, such as granite, fracture networks are limited but provide the dominant pathway for flow within this rock type. Research at the EU's Soultz-sous-Forệt Hot Dry Rock test site [Evans et al., 2005] showed that 95% of flow into the borehole was associated with a single fault zone at 3490m depth, and that 10 open fractures account for the majority of flow within the zone. These data underline the critical role of faults in deep flow systems and the importance of achieving a predictive understanding of fault hydraulic properties. To improve estimates of fault zone permeability, it is important to understand the underlying hydro-mechanical processes of fault zone formation. In this research, we explore the spatial and temporal evolution of fault zones in brittle rock through development and application of a 2D hydro-mechanical finite element model, MOPEDZ. The authors have previously presented numerical simulations of the development of fault linkage structures from two or three pre-existing joints, the results of

  7. Fault compaction and overpressured faults: results from a 3-D model of a ductile fault zone

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2003-10-01

    A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can creep and compact. The fault core is surrounded by, and mostly sealed from, a high permeability damaged zone. The model fault properties correspond explicitly to those of the coseismic fault core. Porosity and pore pressure evolve to account for the viscous compaction of the fault core, while stresses evolve in response to the applied tectonic loading and to shear creep of the fault itself. A small diffusive leakage is allowed in and out of the fault zone. Coseismically, porosity is created to account for frictional dilatancy. We show in the case of a 3-D fault model with no in-plane flow and constant fluid compressibility, pore pressures do not drop to hydrostatic levels after a seismic rupture, leading to an overpressured weak fault. Since pore pressure plays a key role in the fault behaviour, we investigate coseismic hydraulic property changes. In the full 3-D model, pore pressures vary instantaneously by the poroelastic effect during the propagation of the rupture. Once the stress state stabilizes, pore pressures are incrementally redistributed in the failed patch. We show that the significant effect of pressure-dependent fluid compressibility in the no in-plane flow case becomes a secondary effect when the other spatial dimensions are considered because in-plane flow with a near-lithostatically pressured neighbourhood equilibrates at a pressure much higher than hydrostatic levels, forming persistent high-pressure fluid compartments. If the observed faults are not all overpressured and weak, other mechanisms, not included in this model, must be at work in nature, which need to be

  8. Structural Analysis of the Exhumed SEMP Fault Zone, Austria: Towards an Understanding of Fault Zone Architecture Throughout the Seismogenic Crust

    NASA Astrophysics Data System (ADS)

    Frost, E. K.; Dolan, J. F.; Sammis, C.; Hacker, B.; Ratschbacher, L.

    2006-12-01

    One of the most exciting and important frontiers in earthquake science is the linkage between the internal structure and the mechanical behavior of fault zones. In particular, little is known about how fault-zone structure varies as a function of depth, from near-surface conditions down through the seismogenic crust and into the ductile lower crust. Such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This imperative has led us to the Oligo-Miocene Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault zone in Austria, a major left-lateral strike-slip fault that has been exhumed differentially such that it exposes a continuum of structural levels along strike. This exhumed fault system provides a unique opportunity to systematically examine depth-dependent changes in fault-zone geometry and structure along a single fault. In order to establish the structure of the fault zone in the seismogenic crust, we are studying exposures of this fault at a variety of exhumation levels, from <1 km near the eastern end of the fault, downward through the seismogenic crust, across the brittle-ductile transition, and into the uppermost part of the lower crust in western Austria. Here we present our results from one of these study sites, a spectacular exposure of the fault zone near the town of Gstatterboden in central Austria. The fault, which at this location has been exhumed from a depth of ~ 2-3 km, juxtaposes limestone of the Wettersteinkalk on the south with dolomite of the Ramsaudolomit on the north. We conducted two detailed structural traverses over a fault-perpendicular width of over 200 m. Analysis of the density and orientation of outcrop scale features, such as faults and fractures, reveals a highly asymmetric pattern of fault zone damage. Dolomite to the north of the fault is extensively shattered, while the limestone unit to the south shows only minor evidence of fault damage

  9. Fethiye-Burdur Fault Zone (SW Turkey): a myth?

    NASA Astrophysics Data System (ADS)

    Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan

    2017-04-01

    Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible

  10. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  11. Architecture of buried reverse fault zone in the sedimentary basin: A case study from the Hong-Che Fault Zone of the Junggar Basin

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Liu, Bo; Guo, Jianxun; Du, Yannan

    2017-12-01

    It is widely accepted that the faults can act as the conduits or the barrier for oil and gas migration. Years of studies suggested that the internal architecture of a fault zone is complicated and composed of distinct components with different physical features, which can highly influence the migration of oil and gas along the fault. The field observation is the most useful methods of observing the fault zone architecture, however, in the petroleum exploration, what should be concerned is the buried faults in the sedimentary basin. Meanwhile, most of the studies put more attention on the strike-slip or normal faults, but the architecture of the reverse faults attracts less attention. In order to solve these questions, the Hong-Che Fault Zone in the northwest margin of the Junggar Basin, Xinjiang Province, is chosen for an example. Combining with the seismic data, well logs and drill core data, we put forward a comprehensive method to recognize the internal architectures of buried faults. High-precision seismic data reflect that the fault zone shows up as a disturbed seismic reflection belt. Four types of well logs, which are sensitive to the fractures, and a comprehensive discriminated parameter, named fault zone index are used in identifying the fault zone architecture. Drill core provides a direct way to identify different components of the fault zone, the fault core is composed of breccia, gouge, and serpentinized or foliated fault rocks and the damage zone develops multiphase of fractures, which are usually cemented. Based on the recognition results, we found that there is an obvious positive relationship between the width of the fault zone and the displacement, and the power-law relationship also exists between the width of the fault core and damage zone. The width of the damage zone in the hanging wall is not apparently larger than that in the footwall in the reverse fault, showing different characteristics with the normal fault. This study provides a

  12. Fold-to-fault progression of a major thrust zone revealed in horses of the North Mountain fault zone, Virginia and West Virginia, USA

    USGS Publications Warehouse

    Orndorff, Randall C.

    2012-01-01

    The method of emplacement and sequential deformation of major thrust zones may be deciphered by detailed geologic mapping of these important structures. Thrust fault zones may have added complexity when horse blocks are contained within them. However, these horses can be an important indicator of the fault development holding information on fault-propagation folding or fold-to-fault progression. The North Mountain fault zone of the Central Appalachians, USA, was studied in order to better understand the relationships of horse blocks to hanging wall and footwall structures. The North Mountain fault zone in northwestern Virginia and eastern panhandle of West Virginia is the Late Mississippian to Permian Alleghanian structure that developed after regional-scale folding. Evidence for this deformation sequence is a consistent progression of right-side up to overturned strata in horses within the fault zone. Rocks on the southeast side (hinterland) of the zone are almost exclusively right-side up, whereas rocks on the northwest side (foreland) of the zone are almost exclusively overturned. This suggests that the fault zone developed along the overturned southeast limb of a syncline to the northwest and the adjacent upright limb of a faulted anticline to the southeast.

  13. Aftershocks illuminate the 2011 Mineral, Virginia, earthquake causative fault zone and nearby active faults

    USGS Publications Warehouse

    Horton, J. Wright; Shah, Anjana K.; McNamara, Daniel E.; Snyder, Stephen L.; Carter, Aina M

    2015-01-01

    Deployment of temporary seismic stations after the 2011 Mineral, Virginia (USA), earthquake produced a well-recorded aftershock sequence. The majority of aftershocks are in a tabular cluster that delineates the previously unknown Quail fault zone. Quail fault zone aftershocks range from ~3 to 8 km in depth and are in a 1-km-thick zone striking ~036° and dipping ~50°SE, consistent with a 028°, 50°SE main-shock nodal plane having mostly reverse slip. This cluster extends ~10 km along strike. The Quail fault zone projects to the surface in gneiss of the Ordovician Chopawamsic Formation just southeast of the Ordovician–Silurian Ellisville Granodiorite pluton tail. The following three clusters of shallow (<3 km) aftershocks illuminate other faults. (1) An elongate cluster of early aftershocks, ~10 km east of the Quail fault zone, extends 8 km from Fredericks Hall, strikes ~035°–039°, and appears to be roughly vertical. The Fredericks Hall fault may be a strand or splay of the older Lakeside fault zone, which to the south spans a width of several kilometers. (2) A cluster of later aftershocks ~3 km northeast of Cuckoo delineates a fault near the eastern contact of the Ordovician Quantico Formation. (3) An elongate cluster of late aftershocks ~1 km northwest of the Quail fault zone aftershock cluster delineates the northwest fault (described herein), which is temporally distinct, dips more steeply, and has a more northeastward strike. Some aftershock-illuminated faults coincide with preexisting units or structures evident from radiometric anomalies, suggesting tectonic inheritance or reactivation.

  14. Surface faulting along the Superstition Hills fault zone and nearby faults associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.

    1989-01-01

    The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors

  15. Spatiotemporal patterns of fault slip rates across the Central Sierra Nevada frontal fault zone

    NASA Astrophysics Data System (ADS)

    Rood, Dylan H.; Burbank, Douglas W.; Finkel, Robert C.

    2011-01-01

    Patterns in fault slip rates through time and space are examined across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38 and 39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and 10Be surface exposure dating, mean fault slip rates are defined, and by utilizing markers of different ages (generally, ~ 20 ka and ~ 150 ka), rates through time and interactions among multiple faults are examined over 10 4-10 5 year timescales. At each site for which data are available for the last ~ 150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~ 20 ky and ~ 150 ky timescales): 0.3 ± 0.1 mm year - 1 (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 + 0.3/-0.1 mm year - 1 along the West Fork of the Carson River at Woodfords. Data permit rates that are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~ 20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~ 20 km between the northern Mono Basin (1.3 + 0.6/-0.3 mm year - 1 at Lundy Canyon site) to the Bridgeport Basin (0.3 ± 0.1 mm year - 1 ). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin is indicative of a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveals that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection

  16. Spatiotemporal Patterns of Fault Slip Rates Across the Central Sierra Nevada Frontal Fault Zone

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D.; Finkel, R. C.

    2010-12-01

    We examine patterns in fault slip rates through time and space across the transition from the Sierra Nevada to the Eastern California Shear Zone-Walker Lane belt. At each of four sites along the eastern Sierra Nevada frontal fault zone between 38-39° N latitude, geomorphic markers, such as glacial moraines and outwash terraces, are displaced by a suite of range-front normal faults. Using geomorphic mapping, surveying, and Be-10 surface exposure dating, we define mean fault slip rates, and by utilizing markers of different ages (generally, ~20 ka and ~150 ka), we examine rates through time and interactions among multiple faults over 10-100 ky timescales. At each site for which data are available for the last ~150 ky, mean slip rates across the Sierra Nevada frontal fault zone have probably not varied by more than a factor of two over time spans equal to half of the total time interval (~20 ky and ~150 ky timescales): 0.3 ± 0.1 mm/yr (mode and 95% CI) at both Buckeye Creek in the Bridgeport basin and Sonora Junction; and 0.4 +0.3/-0.1 mm/yr along the West Fork of the Carson River at Woodfords. Our data permit that rates are relatively constant over the time scales examined. In contrast, slip rates are highly variable in space over the last ~20 ky. Slip rates decrease by a factor of 3-5 northward over a distance of ~20 km between the northern Mono Basin (1.3 +0.6/-0.3 mm/yr at Lundy Canyon site) and the Bridgeport Basin (0.3 ± 0.1 mm/yr). The 3-fold decrease in the slip rate on the Sierra Nevada frontal fault zone northward from Mono Basin reflects a change in the character of faulting north of the Mina Deflection as extension is transferred eastward onto normal faults between the Sierra Nevada and Walker Lane belt. A compilation of regional deformation rates reveal that the spatial pattern of extension rates changes along strike of the Eastern California Shear Zone-Walker Lane belt. South of the Mina Deflection, extension is accommodated within a diffuse zone of

  17. Fault-zone structure and weakening processes in basin-scale reverse faults: The Moonlight Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Alder, S.; Smith, S. A. F.; Scott, J. M.

    2016-10-01

    The >200 km long Moonlight Fault Zone (MFZ) in southern New Zealand was an Oligocene basin-bounding normal fault zone that reactivated in the Miocene as a high-angle reverse fault (present dip angle 65°-75°). Regional exhumation in the last c. 5 Ma has resulted in deep exposures of the MFZ that present an opportunity to study the structure and deformation processes that were active in a basin-scale reverse fault at basement depths. Syn-rift sediments are preserved only as thin fault-bound slivers. The hanging wall and footwall of the MFZ are mainly greenschist facies quartzofeldspathic schists that have a steeply-dipping (55°-75°) foliation subparallel to the main fault trace. In more fissile lithologies (e.g. greyschists), hanging-wall deformation occurred by the development of foliation-parallel breccia layers up to a few centimetres thick. Greyschists in the footwall deformed mainly by folding and formation of tabular, foliation-parallel breccias up to 1 m wide. Where the hanging-wall contains more competent lithologies (e.g. greenschist facies metabasite) it is laced with networks of pseudotachylyte that formed parallel to the host rock foliation in a damage zone extending up to 500 m from the main fault trace. The fault core contains an up to 20 m thick sequence of breccias, cataclasites and foliated cataclasites preserving evidence for the progressive development of interconnected networks of (partly authigenic) chlorite and muscovite. Deformation in the fault core occurred by cataclasis of quartz and albite, frictional sliding of chlorite and muscovite grains, and dissolution-precipitation. Combined with published friction and permeability data, our observations suggest that: 1) host rock lithology and anisotropy were the primary controls on the structure of the MFZ at basement depths and 2) high-angle reverse slip was facilitated by the low frictional strength of fault core materials. Restriction of pseudotachylyte networks to the hanging-wall of the

  18. Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning

    NASA Astrophysics Data System (ADS)

    Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta

    2018-01-01

    The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution

  19. Active faulting on the Wallula fault zone within the Olympic-Wallowa lineament, Washington State, USA

    USGS Publications Warehouse

    Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth

    2016-01-01

    The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.

  20. Heterogeneity in the Fault Damage Zone: a Field Study on the Borrego Fault, B.C., Mexico

    NASA Astrophysics Data System (ADS)

    Ostermeijer, G.; Mitchell, T. M.; Dorsey, M. T.; Browning, J.; Rockwell, T. K.; Aben, F. M.; Fletcher, J. M.; Brantut, N.

    2017-12-01

    The nature and distribution of damage around faults, and its impacts on fault zone properties has been a hot topic of research over the past decade. Understanding the mechanisms that control the formation of off fault damage can shed light on the processes during the seismic cycle, and the nature of fault zone development. Recent published work has identified three broad zones of damage around most faults based on the type, intensity, and extent of fracturing; Tip, Wall, and Linking damage. Although these zones are able to adequately characterise the general distribution of damage, little has been done to identify the nature of damage heterogeneity within those zones, often simplifying the distribution to fit log-normal linear decay trends. Here, we attempt to characterise the distribution of fractures that make up the wall damage around seismogenic faults. To do so, we investigate an extensive two dimensional fracture network exposed on a river cut platform along the Borrego Fault, BC, Mexico, 5m wide, and extending 20m from the fault core into the damage zone. High resolution fracture mapping of the outcrop, covering scales ranging three orders of magnitude (cm to m), has allowed for detailed observations of the 2D damage distribution within the fault damage zone. Damage profiles were obtained along several 1D transects perpendicular to the fault and micro-damage was examined from thin-sections at various locations around the outcrop for comparison. Analysis of the resulting fracture network indicates heterogeneities in damage intensity at decimetre scales resulting from a patchy distribution of high and low intensity corridors and clusters. Such patchiness may contribute to inconsistencies in damage zone widths defined along 1D transects and the observed variability of fracture densities around decay trends. How this distribution develops with fault maturity and the scaling of heterogeneities above and below the observed range will likely play a key role in

  1. Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock

    NASA Astrophysics Data System (ADS)

    Martel, Stephen J.; Pollard, David D.

    1989-07-01

    We exploit quasi-static fracture mechanics models for slip along pre-existing faults to account for the fracture structure observed along small exhumed faults and small segmented fault zones in the Mount Abbot quadrangle of California and to estimate stress drop and shear fracture energy from geological field measurements. Along small strike-slip faults, cracks that splay from the faults are common only near fault ends. In contrast, many cracks splay from the boundary faults at the edges of a simple fault zone. Except near segment ends, the cracks preferentially splay into a zone. We infer that shear displacement discontinuities (slip patches) along a small fault propagated to near the fault ends and caused fracturing there. Based on elastic stress analyses, we suggest that slip on one boundary fault triggered slip on the adjacent boundary fault, and that the subsequent interaction of the slip patches preferentially led to the generation of fractures that splayed into the zones away from segment ends and out of the zones near segment ends. We estimate the average stress drops for slip events along the fault zones as ˜1 MPa and the shear fracture energy release rate during slip as 5 × 102 - 2 × 104 J/m2. This estimate is similar to those obtained from shear fracture of laboratory samples, but orders of magnitude less than those for large fault zones. These results suggest that the shear fracture energy release rate increases as the structural complexity of fault zones increases.

  2. Mantle fault zone beneath Kilauea Volcano, Hawaii.

    PubMed

    Wolfe, Cecily J; Okubo, Paul G; Shearer, Peter M

    2003-04-18

    Relocations and focal mechanism analyses of deep earthquakes (>/=13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  3. Mantle fault zone beneath Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Wolfe, C.J.; Okubo, P.G.; Shearer, P.M.

    2003-01-01

    Relocations and focal mechanism analyses of deep earthquakes (???13 kilometers) at Kilauea volcano demonstrate that seismicity is focused on an active fault zone at 30-kilometer depth, with seaward slip on a low-angle plane, and other smaller, distinct fault zones. The earthquakes we have analyzed predominantly reflect tectonic faulting in the brittle lithosphere rather than magma movement associated with volcanic activity. The tectonic earthquakes may be induced on preexisting faults by stresses of magmatic origin, although background stresses from volcano loading and lithospheric flexure may also contribute.

  4. Quantifying Vertical Exhumation in Intracontinental Strike-Slip Faults: the Garlock fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Chinn, L.; Blythe, A. E.; Fendick, A.

    2012-12-01

    New apatite fission-track ages show varying rates of vertical exhumation at the eastern terminus of the Garlock fault zone. The Garlock fault zone is a 260 km long east-northeast striking strike-slip fault with as much as 64 km of sinistral offset. The Garlock fault zone terminates in the east in the Avawatz Mountains, at the intersection with the dextral Southern Death Valley fault zone. Although motion along the Garlock fault west of the Avawatz Mountains is considered purely strike-slip, uplift and exhumation of bedrock in the Avawatz Mountains south of the Garlock fault, as recently as 5 Ma, indicates that transpression plays an important role at this location and is perhaps related to a restricting bend as the fault wraps around and terminates southeastward along the Avawatz Mountains. In this study we complement extant thermochronometric ages from within the Avawatz core with new low temperature fission-track ages from samples collected within the adjacent Garlock and Southern Death Valley fault zones. These thermochronometric data indicate that vertical exhumation rates vary within the fault zone. Two Miocene ages (10.2 (+5.0/-3.4) Ma, 9.0 (+2.2/-1.8) Ma) indicate at least ~3.3 km of vertical exhumation at ~0.35 mm/yr, assuming a 30°C/km geothermal gradient, along a 2 km transect parallel and adjacent to the Mule Spring fault. An older Eocene age (42.9 (+8.7/-7.3) Ma) indicates ~3.3 km of vertical exhumation at ~0.08 mm/yr. These results are consistent with published exhumation rates of 0.35 mm/yr between ~7 and ~4 Ma and 0.13 mm/yr between ~15 and ~9 Ma, as determined by apatite fission-track and U-Th/He thermochronometry in the hanging-wall of the Mule Spring fault. Similar exhumation rates on both sides of the Mule Spring fault support three separate models: 1) Thrusting is no longer active along the Mule Spring fault, 2) Faulting is dominantly strike-slip at the sample locations, or 3) Miocene-present uplift and exhumation is below detection levels

  5. Porosity variations in and around normal fault zones: implications for fault seal and geomechanics

    NASA Astrophysics Data System (ADS)

    Healy, David; Neilson, Joyce; Farrell, Natalie; Timms, Nick; Wilson, Moyra

    2015-04-01

    Porosity forms the building blocks for permeability, exerts a significant influence on the acoustic response of rocks to elastic waves, and fundamentally influences rock strength. And yet, published studies of porosity around fault zones or in faulted rock are relatively rare, and are hugely dominated by those of fault zone permeability. We present new data from detailed studies of porosity variations around normal faults in sandstone and limestone. We have developed an integrated approach to porosity characterisation in faulted rock exploiting different techniques to understand variations in the data. From systematic samples taken across exposed normal faults in limestone (Malta) and sandstone (Scotland), we combine digital image analysis on thin sections (optical and electron microscopy), core plug analysis (He porosimetry) and mercury injection capillary pressures (MICP). Our sampling includes representative material from undeformed protoliths and fault rocks from the footwall and hanging wall. Fault-related porosity can produce anisotropic permeability with a 'fast' direction parallel to the slip vector in a sandstone-hosted normal fault. Undeformed sandstones in the same unit exhibit maximum permeability in a sub-horizontal direction parallel to lamination in dune-bedded sandstones. Fault-related deformation produces anisotropic pores and pore networks with long axes aligned sub-vertically and this controls the permeability anisotropy, even under confining pressures up to 100 MPa. Fault-related porosity also has interesting consequences for the elastic properties and velocity structure of normal fault zones. Relationships between texture, pore type and acoustic velocity have been well documented in undeformed limestone. We have extended this work to include the effects of faulting on carbonate textures, pore types and P- and S-wave velocities (Vp, Vs) using a suite of normal fault zones in Malta, with displacements ranging from 0.5 to 90 m. Our results show a

  6. Fluid flow and permeabilities in basement fault zones

    NASA Astrophysics Data System (ADS)

    Hollinsworth, Allan; Koehn, Daniel

    2017-04-01

    Fault zones are important sites for crustal fluid flow, specifically where they cross-cut low permeability host rocks such as granites and gneisses. Fluids migrating through fault zones can cause rheology changes, mineral precipitation and pore space closure, and may alter the physical and chemical properties of the host rock and deformation products. It is therefore essential to consider the evolution of permeability in fault zones at a range of pressure-temperature conditions to understand fluid migration throughout a fault's history, and how fluid-rock interaction modifies permeability and rheological characteristics. Field localities in the Rwenzori Mountains, western Uganda and the Outer Hebrides, north-west Scotland, have been selected for field work and sample collection. Here Archaean-age TTG gneisses have been faulted within the upper 15km of the crust and have experienced fluid ingress. The Rwenzori Mountains are an anomalously uplifted horst-block located in a transfer zone in the western rift of the East African Rift System. The north-western ridge is characterised by a tectonically simple western flank, where the partially mineralised Bwamba Fault has detached from the Congo craton. Mineralisation is associated with hydrothermal fluids heated by a thermal body beneath the Semliki rift, and has resulted in substantial iron oxide precipitation within porous cataclasites. Non-mineralised faults further north contain foliated gouges and show evidence of leaking fluids. These faults serve as an analogue for faults associated with the Lake Albert oil and gas prospects. The Outer Hebrides Fault Zone (OHFZ) was largely active during the Caledonian Orogeny (ca. 430-400 Ma) at a deeper crustal level than the Ugandan rift faults. Initial dry conditions were followed by fluid ingress during deformation that controlled its rheological behaviour. The transition also altered the existing permeability. The OHFZ is a natural laboratory in which to study brittle fault

  7. Characterizing the structural maturity of fault zones using high-resolution earthquake locations.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2017-12-01

    We use high-resolution earthquake locations to characterize the three-dimensional structure of active faults in California and how it evolves with fault structural maturity. We investigate the distribution of aftershocks of several recent large earthquakes that occurred on immature faults (i.e., slow moving and small cumulative displacement), such as the 1992 (Mw7.3) Landers and 1999 (Mw7.1) Hector Mine events, and earthquakes that occurred on mature faults, such as the 1984 (Mw6.2) Morgan Hill and 2004 (Mw6.0) Parkfield events. Unlike previous studies which typically estimated the width of fault zones from the distribution of earthquakes perpendicular to the surface fault trace, we resolve fault zone widths with respect to the 3D fault surface estimated from principal component analysis of local seismicity. We find that the zone of brittle deformation around the fault core is narrower along mature faults compared to immature faults. We observe a rapid fall off of the number of events at a distance range of 70 - 100 m from the main fault surface of mature faults (140-200 m fault zone width), and 200-300 m from the fault surface of immature faults (400-600 m fault zone width). These observations are in good agreement with fault zone widths estimated from guided waves trapped in low velocity damage zones. The total width of the active zone of deformation surrounding the main fault plane reach 1.2 km and 2-4 km for mature and immature faults, respectively. The wider zone of deformation presumably reflects the increased heterogeneity in the stress field along complex and discontinuous faults strands that make up immature faults. In contrast, narrower deformation zones tend to align with well-defined fault planes of mature faults where most of the deformation is concentrated. Our results are in line with previous studies suggesting that surface fault traces become smoother, and thus fault zones simpler, as cumulative fault slip increases.

  8. Ste. Genevieve Fault Zone, Missouri and Illinois. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.J.; Lumm, D.K.

    1985-07-01

    The Ste. Genevieve Fault Zone is a major structural feature which strikes NW-SE for about 190 km on the NE flank of the Ozark Dome. There is up to 900 m of vertical displacement on high angle normal and reverse faults in the fault zone. At both ends the Ste. Genevieve Fault Zone dies out into a monocline. Two periods of faulting occurred. The first was in late Middle Devonian time and the second from latest Mississippian through early Pennsylvanian time, with possible minor post-Pennsylvanian movement. No evidence was found to support the hypothesis that the Ste. Genevieve Fault Zonemore » is part of a northwestward extension of the late Precambrian-early Cambrian Reelfoot Rift. The magnetic and gravity anomalies cited in support of the ''St. Louis arm'' of the Reelfoot Rift possible reflect deep crystal features underlying and older than the volcanic terrain of the St. Francois Mountains (1.2 to 1.5 billion years old). In regard to neotectonics no displacements of Quaternary sediments have been detected, but small earthquakes occur from time to time along the Ste. Genevieve Fault Zone. Many faults in the zone appear capable of slipping under the current stress regime of east-northeast to west-southwest horizontal compression. We conclude that the zone may continue to experience small earth movements, but catastrophic quakes similar to those at New Madrid in 1811-12 are unlikely. 32 figs., 1 tab.« less

  9. Hydromechanical heterogeneities of a mature fault zone: impacts on fluid flow.

    PubMed

    Jeanne, Pierre; Guglielmi, Yves; Cappa, Frédéric

    2013-01-01

    In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc ) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties. © 2013, The Author(s). Ground Water © 2013, National Ground Water Association.

  10. Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation

    NASA Astrophysics Data System (ADS)

    Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro

    2017-01-01

    Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.

  11. Fault-zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California

    USGS Publications Warehouse

    Li, Y.-G.; Ellsworth, W.L.; Thurber, C.H.; Malin, P.E.; Aki, K.

    1997-01-01

    Fault-zone guided waves were successfully excited by near-surface explosions in the San Andreas fault zone both at Parkfield and Cienega Valley, central California. The guided waves were observed on linear, three-component seismic arrays deployed across the fault trace. These waves were not excited by explosions located outside the fault zone. The amplitude spectra of guided waves show a maximum peak at 2 Hz at Parkfield and 3 Hz at Cienega Valley. The guided wave amplitude decays sharply with observation distance from the fault trace. The explosion-excited fault-zone guided waves are similar to those generated by earthquakes at Parkfield but have lower frequencies and travel more slowly. These observations suggest that the fault-zone wave guide has lower seismic velocities as it approaches the surface at Parkfield. We have modeled the waveforms as S waves trapped in a low-velocity wave guide sandwiched between high-velocity wall rocks, resulting in Love-type fault-zone guided waves. While the results are nonunique, the Parkfield data are adequately fit by a shallow wave guide 170 m wide with an S velocity 0.85 km/sec and an apparent Q ??? 30 to 40. At Cienega Valley, the fault-zone wave guide appears to be about 120 m wide with an S velocity 0.7 km/sec and a Q ??? 30.

  12. New constraints on the late Quaternary slip rate and earthquake history of the Kalabagh fault from geomorphic mapping: Implications for slip rate and earthquake potential of the western Salt Range thrust

    NASA Astrophysics Data System (ADS)

    Madugo, C. M.; Meigs, A.; Ramzan, S.

    2013-12-01

    Whether the basal décollement ruptures in great earthquakes and at what rate it slips are open questions for the Pakistani Himalaya. The fact that the southern expression of the décollement, the Salt Range thrust (SRT) is localized in a thick evaporate deposit implies the fault has low strength. The lack of a strong motion event in historic records suggests no large earthquakes have struck this region in the past 2000 years. Because 101 year GPS geodetic slip rates for the SRT (~3 mm/yr) are up to four times lower than 106 year geologic rates (9-14 mm/yr), it is unknown whether the convergence rate has decreased over time, or whether the geodetic data reflect a transient phenomenon such as fault creep on the SRT. To evaluate these end members, we obtained intermediate term (104 yr) slip rates from offset geomorphic markers along the Kalabagh fault (KF). The KF is a structurally complex tear fault and lateral ramp that bounds the western side of the SRT. The bending of the western end of the SRT into the KF, and their similar geologic slip rates, suggest the faults are kinematically linked. Thus intermediate-scale slip rates and perhaps earthquake history for the KF represent a proxy for behavior of the SRT. On a section of the KF that exhibits geomorphic evidence of primarily strike slip motion, we identify two partially eroded alluvial fan apexes that are offset up to 300×25 m and 210×30 m from their source channels. Fan reconstructions suggest the offsets are probably not significantly lower than these values. Optically stimulated luminescence (OSL) ages of 23×3 ka and 16×2 ka constrain fan surface abandonment. Assuming that fan abandonment accompanied offset by the KF, both fans yield nearly identical slip rates of 13×3 mm/yr and 13×4 mm/yr for the KF. Within uncertainty, these rates are at the high end of the geologic rate for the KF and SRT, and at least several times higher than the geodetic rate for the SRT. We also identify evidence of liquefaction

  13. Gravity anomaly and density structure of the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Wang, Chi-Yuen; Rui, Feng; Zhengsheng, Yao; Xingjue, Shi

    1986-01-01

    A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made by McEvilly (1981). With Feng and McEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used by Parker (1973) and Oldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.

  14. Seismic measurements of the internal properties of fault zones

    USGS Publications Warehouse

    Mooney, W.D.; Ginzburg, A.

    1986-01-01

    The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites. ?? 1986 Birkha??user Verlag, Basel.

  15. A three-dimensional study of fault zone architecture: Results from the SEMP fault system, Austria.

    NASA Astrophysics Data System (ADS)

    Frost, E. K.; Dolan, J. F.; Sammis, C. G.; Hacker, B.; Cole, J.; Ratschbacher, L.

    2008-12-01

    One of the most exciting frontiers in earthquake science is the linkage between the internal structure and mechanical behavior of fault zones. Little is known about how fault-zone structure varies as a function of depth, yet such understanding is vital if we are to understand the mechanical instabilities that control the nucleation and propagation of seismic ruptures. This has led us to the Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault system in Austria, a major left-lateral strike-slip fault that has accommodated ~ 60 km of displacement during Oligo-Miocene time. Differential exhumation of the SEMP has resulted in a fault zone that reveals a continuum of structural levels along strike. This provides us with a unique opportunity to directly observe how fault-zone properties change with depth, from near-surface levels, down through the seismogenic crust, across the brittle-ductile transition, and into the uppermost part of the lower crust in western Austria. Here we present results from four key outcrops and discuss the mechanical implications of these new data. Our brittle outcrop at Gstatterboden has been exhumed from at least 4 km depth. Here the SEMP juxtaposes limestone of the Wettersteinkalk on the south against Rauwacken dolomite to the north. Faulting has produced extremely asymmetric damage, extensively shattering and shearing the dolomite while leaving the limestone largely intact. Measurements of outcrop-scale faults and fractures in the dolomite, combined with analysis of grain-size-distributions, suggest that strain has progressively localized to a zone ~ 10 m wide. These findings are compared to those from two outcrops (Kitzlochklamm and Liechtensteinklamm) that bracket the brittle-ductile transition, exhumed from depths of = 10 km. Here, the SEMP juxtaposes Greywacke Zone rocks on the north against carbonate mylonites of the Klammkalk to the south. We calculate the strain gradient in the ductile Klammkalk rocks by analyzing the lattice preferred

  16. Paleoseismological surveys on the Hinagu fault zone in Kumamoto, central Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Azuma, T.

    2017-12-01

    The Hinagu fault zone is located on the south of the Futagawa fault zone, which was a main part of the source fault of the 2016 Kumamoto earthquake of Mj 7.3. Northernmost part of the Hinagu fault zone was also acted in 2016 event and surface faults with right-lateral displacement upto ca. 50 cm were appeared. Seismicity along the central part of the Hinagu fault was increased just after the 2016 Kumamoto Earthquake. It seems that the Hinagu fault zone would produce the next large earthquake in the near future, although it has not occurred yet. The Headquarters of the Earthquake Research Promotions (HERP) conducted active fault surveys on the Hinagu fault zone to recognize the probability of the occurrence of the next faulting event. The Hinagu fault zone is composed with 3 fault segments, Takano-Shirahata, Hinagu, and Yatsushiro Bay. Yatsushiro Bay segment is offshore fault. In FY2016, we conducted paleoseismological trenching surveys at 2 sites (Yamaide, Minamibeta) and offshore drilling. Those result showed evidences that the recurrence intervals of the Hinagu fault zone was rather short and the last faulting event occurred around 1500-2000 yrsBP. In FY2017, we are planning another trenching survey on the southern part of the central segment, where Yatsushiro city located close to the fault.

  17. Transfer zones in listric normal fault systems

    NASA Astrophysics Data System (ADS)

    Bose, Shamik

    Listric normal faults are common in passive margin settings where sedimentary units are detached above weaker lithological units, such as evaporites or are driven by basal structural and stratigraphic discontinuities. The geometries and styles of faulting vary with the types of detachment and form landward and basinward dipping fault systems. Complex transfer zones therefore develop along the terminations of adjacent faults where deformation is accommodated by secondary faults, often below seismic resolution. The rollover geometry and secondary faults within the hanging wall of the major faults also vary with the styles of faulting and contribute to the complexity of the transfer zones. This study tries to understand the controlling factors for the formation of the different styles of listric normal faults and the different transfer zones formed within them, by using analog clay experimental models. Detailed analyses with respect to fault orientation, density and connectivity have been performed on the experiments in order to gather insights on the structural controls and the resulting geometries. A new high resolution 3D laser scanning technology has been introduced to scan the surfaces of the clay experiments for accurate measurements and 3D visualizations. Numerous examples from the Gulf of Mexico have been included to demonstrate and geometrically compare the observations in experiments and real structures. A salt cored convergent transfer zone from the South Timbalier Block 54, offshore Louisiana has been analyzed in detail to understand the evolutionary history of the region, which helps in deciphering the kinematic growth of similar structures in the Gulf of Mexico. The dissertation is divided into three chapters, written in a journal article format, that deal with three different aspects in understanding the listric normal fault systems and the transfer zones so formed. The first chapter involves clay experimental models to understand the fault patterns in

  18. Low-Temperature Thermochronology for Unraveling Thermal Processes and Dating of Fault Zones

    NASA Astrophysics Data System (ADS)

    Tagami, T.

    2016-12-01

    Thermal signatures as well as timing of fault motions can be constrained by thermochronological analyses of fault-zone rocks (e.g., Tagami, 2012). Fault-zone materials suitable for such analyses are produced by tectocic and geochemical processes, such as (1) mechanical fragmentation of host rocks, grain-size reduction of fragments and recrystallization of grains to form mica and clay minerals, (2) secondary heating/melting of host rocks by frictional fault motions, and (3) mineral vein formation as a consequence of fluid advection associated with fault motions. The geothermal structure of fault zones are primarily controlled by the following three factors: (a) regional geothermal structure around the fault zone that reflect background thermo-tectonic history of studied province, (b) frictional heating of wall rocks by fault motions and resultant heat transfer into surrounding rocks, and (c) thermal influences by hot fluid advection in and around the fault zone. Thermochronological methods widely applied in fault zones are K-Ar (40Ar/39Ar), fission-track (FT), and U-Th methods. In addition, OSL, TL, ESR and (U-Th)/He methods are applied in some fault zones, in order to extract temporal imformation related to low temperature and/or very recent fault activities. Here I briefly review the thermal sensitivity of individual thermochronological systems, which basically controls the response of each method against faulting processes. Then, the thermal sensitivity of FTs is highlighted, with a particular focus on the thermal processes characteristic to fault zones, i.e., flash and hydrothermal heating. On these basis, representative examples as well as key issues, including sampling strategy, are presented to make thermochronologic analysis of fault-zone materials, such as fault gouges, pseudotachylytes and mylonites, along with geological, geomorphological and seismological implications. Finally, the thermochronologic analyses of the Nojima fault are overviewed, as an

  19. Internal Structure of Taiwan Chelungpu Fault Zone Gouges

    NASA Astrophysics Data System (ADS)

    Song, Y.; Song, S.; Tang, M.; Chen, F.; Chen, Y.

    2005-12-01

    Gouge formation is found to exist in brittle faults at all scale (1). This fine-grain gouge is thought to control earthquake instability. And thus investigating the gouge textures and compositions is very important to an understanding of the earthquake process. Employing the transmission electron microscope (TEM) and a new transmission X-ray microscope (TXM), we study the internal structure of fault zone gouges from the cores of the Taiwan Chelungpu-fault Drilling Project (TCDP), which drilled in the fault zone of 1999 Chi-Chi earthquake. This X-ray microscope have installed at beamline BL01B of the Taiwan Light Source, National Synchrotron Radiation Research Center (NSRRC). It provides 2D imaging and 3D tomography at energy 8-11 keV with a spatial resolution of 25-60 nm, and is equipped with the Zernike-phase contrast capability for imaging light materials. In this work, we show the measurements of gouge texture, particle size distribution and 3D structure of the ultracataclasite in fault gouges within 12 cm about 1111.29 m depth. These characterizations in transition from the fault core to damage zone are related to the comminuting and the fracture energy in the earthquake faulting. The TXM data recently shows the particle size distributions of the ultracataclasite are between 150 nm and 900 nm in diameter. We will keep analyzing the characterization of particle size distribution, porosity and 3D structure of the fault zone gouges in transition from the fault core to damage zone to realize the comminuting and fracture surface energy in the earthquake faulting(2-5).The results may ascertain the implication of the nucleation, growth, transition, structure and permeability of the fault zones(6-8). Furthermore, it may be possible to infer the mechanism of faulting, the physical and chemical property of the fault, and the nucleation of the earthquake. References 1) B. Wilson, T. Dewerw, Z. Reches and J. Brune, Nature, 434 (2005) 749. 2) S. E. Schulz and J. P. Evans

  20. How can fluid overpressures be developed and maintained in crustal fault zones ?

    NASA Astrophysics Data System (ADS)

    LECLÈRE, H.; Cappa, F.; Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Fabbri, O.

    2013-12-01

    The presence of fluid overpressure in crustal fault zones is known to play a key role on the stability of faults and it has often been invoked to explain the triggering of earthquakes and the apparent weakness of misoriented faults. However, the mechanisms allowing the development and maintenance of fluid overpressures in fault remain unresolved. We investigate how fluid overpressures can be developed and maintained in complex fault zones with hydraulic and elastic heterogeneities. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault zone in the Ubaye-Argentera area (southeastern France). The fault zone studied is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and muscovite. It exposes several anastomosing core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The determination of fault structure in the field and its hydraulic and mechanical properties in the lab are key aspects to improve our understanding of the role of fluids in fault mechanics and earthquake triggering. Here, the permeability and elastic moduli of the host rock, damage zone and fault core were measured from natural plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a reduction of the permeability values of one order of magnitude between host rock and fault damage zone and a decrease of 50

  1. Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Bedrosian, P.; Ball, L. B.

    2017-12-01

    Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone

  2. Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt

    NASA Astrophysics Data System (ADS)

    Zaky, Khairy S.

    2017-04-01

    The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.

  3. Microstructural investigations on carbonate fault core rocks in active extensional fault zones from the central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Balsamo, Fabrizio; Storti, Fabrizio

    2017-04-01

    The study of the microstructural and petrophysical evolution of cataclasites and gouges has a fundamental impact on both hydraulic and frictional properties of fault zones. In the last decades, growing attention has been payed to the characterization of carbonate fault core rocks due to the nucleation and propagation of coseismic ruptures in carbonate successions (e.g., Umbria-Marche 1997, L'Aquila 2009, Amatrice 2016 earthquakes in Central Apennines, Italy). Among several physical parameters, grain size and shape in fault core rocks are expected to control the way of sliding along the slip surfaces in active fault zones, thus influencing the propagation of coseismic ruptures during earthquakes. Nevertheless, the role of grain size and shape distribution evolution in controlling the weakening or strengthening behavior in seismogenic fault zones is still not fully understood also because a comprehensive database from natural fault cores is still missing. In this contribution, we present a preliminary study of seismogenic extensional fault zones in Central Apennines by combining detailed filed mapping with grain size and microstructural analysis of fault core rocks. Field mapping was aimed to describe the structural architecture of fault systems and the along-strike fault rock distribution and fracturing variations. In the laboratory we used a Malvern Mastersizer 3000 granulometer to obtain a precise grain size characterization of loose fault rocks combined with sieving for coarser size classes. In addition, we employed image analysis on thin sections to quantify the grain shape and size in cemented fault core rocks. The studied fault zones consist of an up to 5-10 m-thick fault core where most of slip is accommodated, surrounded by a tens-of-meters wide fractured damage zone. Fault core rocks consist of (1) loose to partially cemented breccias characterized by different grain size (from several cm up to mm) and variable grain shape (from very angular to sub

  4. Development of Hydrologic Characterization Technology of Fault Zones (in Japanese; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Onishi, Tiemi; Wu, Yu-Shu

    2008-03-31

    Through an extensive literature survey we find that there is very limited amount of work on fault zone hydrology, particularly in the field using borehole testing. The common elements of a fault include a core, and damage zones. The core usually acts as a barrier to the flow across it, whereas the damage zone controls the flow either parallel to the strike or dip of a fault. In most of cases the damage zone isthe one that is controlling the flow in the fault zone and the surroundings. The permeability of damage zone is in the range of two tomore » three orders of magnitude higher than the protolith. The fault core can have permeability up to seven orders of magnitude lower than the damage zone. The fault types (normal, reverse, and strike-slip) by themselves do not appear to be a clear classifier of the hydrology of fault zones. However, there still remains a possibility that other additional geologic attributes and scaling relationships can be used to predict or bracket the range of hydrologic behavior of fault zones. AMT (Audio frequency Magneto Telluric) and seismic reflection techniques are often used to locate faults. Geochemical signatures and temperature distributions are often used to identify flow domains and/or directions. ALSM (Airborne Laser Swath Mapping) or LIDAR (Light Detection and Ranging) method may prove to be a powerful tool for identifying lineaments in place of the traditional photogrammetry. Nonetheless not much work has been done to characterize the hydrologic properties of faults by directly testing them using pump tests. There are some uncertainties involved in analyzing pressure transients of pump tests: both low permeability and high permeability faults exhibit similar pressure responses. A physically based conceptual and numerical model is presented for simulating fluid and heat flow and solute transport through fractured fault zones using a multiple-continuum medium approach. Data from the Horonobe URL site are analyzed to

  5. Noise Configuration and fault zone anisotropy investigation from Taiwan Chelungpu-fault Deep Borehole Array

    NASA Astrophysics Data System (ADS)

    Hung, R. J.; Ma, K. F.; Song, T. R. A.; Nishida, K.; Lin, Y. Y.

    2016-12-01

    The Taiwan Chelungpu-fault Drilling Project was operated to understand the fault zone characteristics associated with the 1999 Chichi earthquake. Seven Borehole Seismometers (TCDPBHS) were installed through the identified fault zone to monitor the micro-seismic activities, as well as the fault-zone seismic structure properties. To understand the fault zone anisotropy and its possible temporal variations after the Chichi earthquake, we calculated cross-correlations of the noise at different stations to obtain cross correlation functions (CCFs) of the ambient noise field between every pair of the stations. The result shows that TCDP well site suffers from complex wavefield, and phase traveltime from CCF can't provide explicit result to determine the dominated wavefield. We first analyze the power density spectra and probability density functions of this array. We observe that the spectra show diurnal variation in the frequency band 1-25 Hz, suggesting human-generated sources are dominated in this frequency band. Then, we focus on the particle motion analysis at each CCF. We assume one component at a station plays as a visual source and compute the CCF tensor in other station components. The particle motion traces show high linearity which indicate that the dominated wavefield in our study area is body wave signals with the azimuth approximate to 60° from north. We also analyze the Fourier spectral amplitudes by rotating every 5 degrees in time domain to search for the maximum background energy distribution. The result shows that the spectral amplitudes are stronger at NE-SW direction, with shallow incident angles which are comparable with the CCF particle motion measurement. In order to obtain higher resolution about the dominated wavefield in our study area, we also used beamforming from surface station array to validate our results from CCF analysis. In addition to the CCF analysis to provide the noise configuration at the TCDPBHS site for further analysis on

  6. Deformation processes and weakening mechanisms within the frictional viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland

    NASA Astrophysics Data System (ADS)

    Stewart, M.; Holdsworth, R. E.; Strachan, R. A.

    2000-05-01

    The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.

  7. Kinematic evolution of the Maacama Fault Zone, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Schroeder, Rick D.

    The Maacama Fault Zone (MFZ) is a major component of the Pacific-North American transform boundary in northern California, and its distribution of deformation and kinematic evolution defines that of a young continental transform boundary. The USGS Quaternary database (2010) currently defines the MFZ as a relatively narrow fault zone; however, a cluster analysis of microearthquakes beneath the MFZ defines a wider fault zone, composed of multiple seismogenically active faults. The surface projection of best-fit tabular zones through foci clusters correlates with previously interpreted faults that were assumed inactive. New investigations further delineate faults within the MFZ based on geomorphic features and shallow resistivity surveys, and these faults are interpreted to be part of several active pull-apart fault systems. The location of faults and changes in their geometry in relation to geomorphic features, indicate >8 km of cumulative dextral displacement across the eastern portion of the MFZ at Little Lake Valley, which includes other smaller offsets on fault strands in the valley. Some faults within the MFZ have geometries consistent with reactivated subduction-related reverse faults, and project near outcrops of pre-existing faults, filled with mechanically weak minerals. The mechanical behavior of fault zones is influenced by the spatial distribution and abundance of mechanically weak lithologies and mineralogies within the heterogeneous Franciscan melange that the MFZ displaces. This heterogeneity is characterized near Little Lake Valley (LLV) using remotely sensed data, field mapping, and wellbore data, and is composed of 2--5 km diameter disk-shaped coherent blocks that can be competent and resist deformation. Coherent blocks and the melange that surrounds them are the source for altered minerals that fill portions of fault zones. Mechanically weak minerals in pre-existing fault zones, identified by X-ray diffraction and electron microprobe analyses, are

  8. Influence of mineralogy and microstructures on strain localization and fault zone architecture of the Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Ichiba, T.; Kaneki, S.; Hirono, T.; Oohashi, K.; Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The Alpine Fault on New Zealand's South Island is an oblique, dextral strike-slip fault that accommodated the majority of displacement between the Pacific and the Australian Plates and presents the biggest seismic hazard in the region. Along its central segment, the hanging wall comprises greenschist and amphibolite facies Alpine Schists. Exhumation from 35 km depth, along a SE-dipping detachment, lead to mylonitization which was subsequently overprinted by brittle deformation and finally resulted in the fault's 1 km wide damage zone. The geomechanical behavior of a fault is affected by the internal structure of its fault zone. Consequently, studying processes controlling fault zone architecture allows assessing the seismic hazard of a fault. Here we present the results of a combined microstructural (SEM and TEM), mineralogical (XRD) and geochemical (XRF) investigation of outcrop samples originating from several locations along the Alpine Fault, the aim of which is to evaluate the influence of mineralogical composition, alteration and pre-existing fabric on strain localization and to identify the controls on the fault zone architecture, particularly the locus of brittle deformation in P, T and t space. Field observations reveal that the fault's principal slip zone (PSZ) is either a thin (< 1 cm to < 7 cm) layered structure or a relatively thick (10s cm) package lacking a detectable macroscopic fabric. Lithological and related rheological contrasts are widely assumed to govern strain localization. However, our preliminary results suggest that qualitative mineralogical composition has only minor impact on fault zone architecture. Quantities of individual mineral phases differ markedly between fault damage zone and fault core at specific sites, but the quantitative composition of identical structural units such as the fault core, is similar in all samples. This indicates that the degree of strain localization at the Alpine Fault might be controlled by small initial

  9. The offshore Palos Verdes fault zone near San Pedro, Southern California

    USGS Publications Warehouse

    Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.

    2004-01-01

    High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.

  10. Coseismic stresses indicated by pseudotachylytes in the Outer Hebrides Fault Zone, UK.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy; Lloyd, Geoffrey; Phillips, Richard; Holdsworth, Robert; Walcott, Rachel

    2015-04-01

    During the few seconds of earthquake slip, dynamic behaviour is predicted for stress, slip velocity, friction and temperature, amongst other properties. Fault-derived pseudotachylyte is a coseismic frictional melt and provides a unique snapshot of the rupture environment. Exhumation of ancient fault zones to seismogenic depths can reveal the structure and distribution of seismic slip as pseudotachylyte bearing fault planes. An example lies in NW Scotland along the Outer Hebrides Fault Zone (OHFZ) - this long-lived fault zone displays a suite of fault rocks developed under evolving kinematic regimes, including widespread pseudotachylyte veining which is distributed both on and away from the major faults. This study adds data derived from the OHFZ pseudotachylytes to published datasets from well-constrained fault zones, in order to explore the use of existing methodologies on more complex faults and to compare the calculated results. Temperature, stress and pressure are calculated from individual fault veins and added to existing datasets. The results pose questions on the physical meaning of the derived trends, the distribution of seismic energy release across scattered cm-scale faults and the range of earthquake magnitudes calculated from faults across any given fault zone.

  11. Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Boulton, Carolyn; Menzies, Catriona D.; Toy, Virginia G.; Townend, John; Sutherland, Rupert

    2017-01-01

    Oblique dextral motion on the central Alpine Fault in the last circa 5 Ma has exhumed garnet-oligoclase facies mylonitic fault rocks from ˜35 km depth. During exhumation, deformation, accompanied by fluid infiltration, has generated complex lithological variations in fault-related rocks retrieved during Deep Fault Drilling Project (DFDP-1) drilling at Gaunt Creek, South Island, New Zealand. Lithological, geochemical, and mineralogical results reveal that the fault comprises a core of highly comminuted cataclasites and fault gouges bounded by a damage zone containing cataclasites, protocataclasites, and fractured mylonites. The fault core-alteration zone extends ˜20-30 m from the principal slip zone (PSZ) and is characterized by alteration of primary phases to phyllosilicate minerals. Alteration associated with distinct mineral phases occurred proximal the brittle-to-plastic transition (T ≤ 300-400°C, 6-10 km depth) and at shallow depths (T = 20-150°C, 0-3 km depth). Within the fault core-alteration zone, fractures have been sealed by precipitation of calcite and phyllosilicates. This sealing has decreased fault normal permeability and increased rock mass competency, potentially promoting interseismic strain buildup.

  12. Fault zone structure and fluid-rock interaction of a high angle normal fault in Carrara marble (NW Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Molli, G.; Cortecci, G.; Vaselli, L.; Ottria, G.; Cortopassi, A.; Dinelli, E.; Mussi, M.; Barbieri, M.

    2010-09-01

    We studied the geometry, intensity of deformation and fluid-rock interaction of a high angle normal fault within Carrara marble in the Alpi Apuane NW Tuscany, Italy. The fault is comprised of a core bounded by two major, non-parallel slip surfaces. The fault core, marked by crush breccia and cataclasites, asymmetrically grades to the host protolith through a damage zone, which is well developed only in the footwall block. On the contrary, the transition from the fault core to the hangingwall protolith is sharply defined by the upper main slip surface. Faulting was associated with fluid-rock interaction, as evidenced by kinematically related veins observable in the damage zone and fluid channelling within the fault core, where an orange-brownish cataclasite matrix can be observed. A chemical and isotopic study of veins and different structural elements of the fault zone (protolith, damage zone and fault core), including a mathematical model, was performed to document type, role, and activity of fluid-rock interactions during deformation. The results of our studies suggested that deformation pattern was mainly controlled by processes associated with a linking-damage zone at a fault tip, development of a fault core, localization and channelling of fluids within the fault zone. Syn-kinematic microstructural modification of calcite microfabric possibly played a role in confining fluid percolation.

  13. The Fluid Flow Evolution During the Seismic Cycle Within Overpressured Fault Zones

    NASA Astrophysics Data System (ADS)

    de Paola, Nicola; Vanhunen, Jeroen; Collettini, Cristiano; Faulkner, Dan

    2010-05-01

    The integration of seismic reflection profiles with well-located earthquakes shows that the mainshocks of the 1997 Umbria-Marche seismic sequence (Mw < 6) nucleated at about 6 km depth, within the Triassic Evaporites, a 2 km thick sequence made of interbedded anhydrites and dolostones. Two boreholes, drilled northwest of the epicentral area, encountered CO2 fluid overpressures at about 0.8 of the lithostatic load, at about 4 km depth. It has been proposed that the time-space evolution of the 1997 aftershock sequence, was driven by the coseismic release of trapped high-pressure fluids (lv = 0.8), within the Triassic Evaporites. In order to understand whether CO2 fluid overpressure can be maintained up to the coseismic period, and trigger earthquake nucleation, we modelled fluid flow through a mature fault zone within the Triassic Evaporites. We assume that fluid flow within the fault zone occurs in accord with the Darcy's Law. Under this condition, a near lithostatic pore pressure gradient can develop, within the fault zone, when the upward transport of fluid along the fault zone exceeds the fluid loss in a horizontal direction. Our model's parameters are: a) Fault zone structure: model inputs have been obtained from large fault zone analogues derived from field observation. The architecture of large fault zones within the TE is given by a distinct fault core, up to few meters thick, of very fine-grained fault rocks (cataclasites and fault gouge), where most of the shear strain has been accommodated, surrounded by a geometrically complex and heterogeneous damage zone (up to few tens of meters wide). The damage zone is characterized by adjacent zones of heavily fractured rocks (dolostones) and foliated rocks displaying little fracturing (anhydrites). b) Fault zone permeability: field data suggests that the permeability of the fault core is relatively low due to the presence of fine grained fault rocks (k < 10E-18 m2). The permeability of the dolostones, within the

  14. The Honey Lake fault zone, northeastern California: Its nature, age, and displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.L.; Saucedo, G.J.; Grose, T.L.T.

    The Honey Lake fault zone of northeastern California is composed of en echelon, northwest trending faults that form the boundary between the Sierra Nevada and the Basin Ranges provinces. As such the Honey Lake fault zone can be considered part of the Sierra Nevada frontal fault system. It is also part of the Walker Lane of Nevada. Faults of the Honey Lake zone are vertical with right-lateral oblique displacements. The cumulative vertical component of displacement along the fault zone is on the order of 800 m and right-lateral displacement is at least 10 km (6 miles) but could be considerablymore » more. Oligocene to Miocene (30 to 22 Ma) age rhyolite tuffs can be correlated across the zone, but mid-Miocene andesites do not appear to be correlative indicating the faulting began in early to mid-Miocene time. Volcanic rocks intruded along faults of the zone, dated at 16 to 8 Ma, further suggest that faulting in the Honey Lake zone was initiated during mid-Miocene time. Late Quaternary to Holocene activity is indicated by offset of the 12,000 year old Lake Lahontan high stand shoreline and the surface rupture associated with the 1950 Fort Sage earthquake.« less

  15. Fault zone reverberations from cross-correlations of earthquake waveforms and seismic noise

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2016-03-01

    Seismic wavefields interact with low-velocity fault damage zones. Waveforms of ballistic fault zone head waves, trapped waves, reflected waves and signatures of trapped noise can provide important information on structural and mechanical fault zone properties. Here we extend the class of observable fault zone waves and reconstruct in-fault reverberations or multiples in a strike-slip faulting environment. Manifestations of the reverberations are significant, consistent wave fronts in the coda of cross-correlation functions that are obtained from scattered earthquake waveforms and seismic noise recorded by a linear fault zone array. The physical reconstruction of Green's functions is evident from the high similarity between the signals obtained from the two different scattered wavefields. Modal partitioning of the reverberation wavefield can be tuned using different data normalization techniques. The results imply that fault zones create their own ambiance, and that the here reconstructed reverberations are a key seismic signature of wear zones. Using synthetic waveform modelling we show that reverberations can be used for the imaging of structural units by estimating the location, extend and magnitude of lateral velocity contrasts. The robust reconstruction of the reverberations from noise records suggests the possibility to resolve the response of the damage zone material to various external and internal loading mechanisms.

  16. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types

    NASA Astrophysics Data System (ADS)

    Rawling, Geoffrey C.; Goodwin, Laurel B.; Wilson, John L.

    2001-01-01

    The Sand Hill fault is a steeply dipping, large-displacement normal fault that cuts poorly lithified Tertiary sediments of the Albuquerque basin, New Mexico, United States. The fault zone does not contain macroscopic fractures; the basic structural element is the deformation band. The fault core is composed of foliated clay flanked by structurally and lithologically heterogeneous mixed zones, in turn flanked by damage zones. Structures present within these fault-zone architectural elements are different from those in brittle faults formed in lithified sedimentary and crystalline rocks that do contain fractures. These differences are reflected in the permeability structure of the Sand Hill fault. Equivalent permeability calculations indicate that large-displacement faults in poorly lithified sediments have little potential to act as vertical-flow conduits and have a much greater effect on horizontal flow than faults with fractures.

  17. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective

  18. The Devils Mountain Fault zone: An active Cascadia upper plate zone of deformation, Pacific Northwest of North America

    NASA Astrophysics Data System (ADS)

    Barrie, J. Vaughn; Greene, H. Gary

    2018-02-01

    The Devils Mountain Fault Zone (DMFZ) extends east to west from Washington State to just south of Victoria, British Columbia, in the northern Strait of Juan de Fuca of Canada and the USA. Recently collected geophysical data were used to map this fault zone in detail, which show the main fault trace, and associated primary and secondary (conjugate) strands, and extensive northeast-southwest oriented folding that occurs within a 6 km wide deformation zone. The fault zone has been active in the Holocene as seen in the offset and disrupted upper Quaternary strata, seafloor displacement, and deformation within sediment cores taken close to the seafloor expression of the faults. Data suggest that the present DMFZ and the re-activated Leech River Fault may be part of the same fault system. Based on the length and previously estimated slip rates of the fault zone in Washington State, the DMFZ appears to have the potential of producing a strong earthquake, perhaps as large as magnitude 7.5 or greater, within 2 km of the city of Victoria.

  19. Late Quaternary Faulting along the San Juan de los Planes Fault Zone, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Busch, M. M.; Coyan, J. A.; Arrowsmith, J.; Maloney, S. J.; Gutierrez, G.; Umhoefer, P. J.

    2007-12-01

    As a result of continued distributed deformation in the Gulf Extensional Province along an oblique-divergent plate margin, active normal faulting is well manifest in southeastern Baja California. By characterizing normal-fault related deformation along the San Juan de los Planes fault zone (SJPFZ) southwest of La Paz, Baja California Sur we contribute to understanding the patterns and rates of faulting along the southwest gulf-margin fault system. The geometry, history, and rate of faulting provide constraints on the relative significance of gulf-margin deformation as compared to axial system deformation. The SJPFZ is a major north-trending structure in the southern Baja margin along which we focused our field efforts. These investigations included: a detailed strip map of the active fault zone, including delineation of active scarp traces and geomorphic surfaces on the hanging wall and footwall; fault scarp profiles; analysis of bedrock structures to better understand how the pattern and rate of strain varied during the development of this fault zone; and a gravity survey across the San Juan de los Planes basin to determine basin geometry and fault behavior. The map covers a N-S swath from the Gulf of California in the north to San Antonio in the south, an area ~45km long and ~1-4km wide. Bedrock along the SJPFZ varies from Cretaceous Las Cruces Granite in the north to Cretaceous Buena Mujer Tonalite in the south and is scarred by shear zones and brittle faults. The active scarp-forming fault juxtaposes bedrock in the footwall against Late Quaternary sandstone-conglomerate. This ~20m wide zone is highly fractured bedrock infused with carbonate. The northern ~12km of the SJPFZ, trending 200°, preserves discontinuous scarps 1-2km long and 1-3m high in Quaternary units. The scarps are separated by stretches of bedrock embayed by hundreds of meters-wide tongues of Quaternary sandstone-conglomerate, implying low Quaternary slip rate. Further south, ~2 km north of the

  20. Characteristics of Fault Zones in Volcanic Rocks Near Yucca Flat, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    During 2005 and 2006, the USGS conducted geological studies of fault zones at surface outcrops at the Nevada Test Site. The objectives of these studies were to characterize fault geometry, identify the presence of fault splays, and understand the width and internal architecture of fault zones. Geologic investigations were conducted at surface exposures in upland areas adjacent to Yucca Flat, a basin in the northeastern part of the Nevada Test Site; these data serve as control points for the interpretation of the subsurface data collected at Yucca Flat by other USGS scientists. Fault zones in volcanic rocks near Yucca Flat differ in character and width as a result of differences in the degree of welding and alteration of the protolith, and amount of fault offset. Fault-related damage zones tend to scale with fault offset; damage zones associated with large-offset faults (>100 m) are many tens of meters wide, whereas damage zones associated with smaller-offset faults are generally a only a meter or two wide. Zeolitically-altered tuff develops moderate-sized damage zones whereas vitric nonwelded, bedded and airfall tuff have very minor damage zones, often consisting of the fault zone itself as a deformation band, with minor fault effect to the surrounding rock mass. These differences in fault geometry and fault zone architecture in surface analog sites can serve as a guide toward interpretation of high-resolution subsurface geophysical results from Yucca Flat.

  1. Kinematics of shallow backthrusts in the Seattle fault zone, Washington State

    USGS Publications Warehouse

    Pratt, Thomas L.; Troost, K.G.; Odum, Jackson K.; Stephenson, William J.

    2015-01-01

    Near-surface thrust fault splays and antithetic backthrusts at the tips of major thrust fault systems can distribute slip across multiple shallow fault strands, complicating earthquake hazard analyses based on studies of surface faulting. The shallow expression of the fault strands forming the Seattle fault zone of Washington State shows the structural relationships and interactions between such fault strands. Paleoseismic studies document an ∼7000 yr history of earthquakes on multiple faults within the Seattle fault zone, with some backthrusts inferred to rupture in small (M ∼5.5–6.0) earthquakes at times other than during earthquakes on the main thrust faults. We interpret seismic-reflection profiles to show three main thrust faults, one of which is a blind thrust fault directly beneath downtown Seattle, and four small backthrusts within the Seattle fault zone. We then model fault slip, constrained by shallow deformation, to show that the Seattle fault forms a fault propagation fold rather than the alternatively proposed roof thrust system. Fault slip modeling shows that back-thrust ruptures driven by moderate (M ∼6.5–6.7) earthquakes on the main thrust faults are consistent with the paleoseismic data. The results indicate that paleoseismic data from the back-thrust ruptures reveal the times of moderate earthquakes on the main fault system, rather than indicating smaller (M ∼5.5–6.0) earthquakes involving only the backthrusts. Estimates of cumulative shortening during known Seattle fault zone earthquakes support the inference that the Seattle fault has been the major seismic hazard in the northern Cascadia forearc in the late Holocene.

  2. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    NASA Astrophysics Data System (ADS)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure

  3. Fault zone processes in mechanically layered mudrock and chalk

    NASA Astrophysics Data System (ADS)

    Ferrill, David A.; Evans, Mark A.; McGinnis, Ronald N.; Morris, Alan P.; Smart, Kevin J.; Wigginton, Sarah S.; Gulliver, Kirk D. H.; Lehrmann, Daniel; de Zoeten, Erich; Sickmann, Zach

    2017-04-01

    A 1.5 km long natural cliff outcrop of nearly horizontal Eagle Ford Formation in south Texas exposes northwest and southeast dipping normal faults with displacements of 0.01-7 m cutting mudrock, chalk, limestone, and volcanic ash. These faults provide analogs for both natural and hydraulically-induced deformation in the productive Eagle Ford Formation - a major unconventional oil and gas reservoir in south Texas, U.S.A. - and other mechanically layered hydrocarbon reservoirs. Fault dips are steep to vertical through chalk and limestone beds, and moderate through mudrock and clay-rich ash, resulting in refracted fault profiles. Steeply dipping fault segments contain rhombohedral calcite veins that cross the fault zone obliquely, parallel to shear segments in mudrock. The vertical dimensions of the calcite veins correspond to the thickness of offset competent beds with which they are contiguous, and the slip parallel dimension is proportional to fault displacement. Failure surface characteristics, including mixed tensile and shear segments, indicate hybrid failure in chalk and limestone, whereas shear failure predominates in mudrock and ash beds - these changes in failure mode contribute to variation in fault dip. Slip on the shear segments caused dilation of the steeper hybrid segments. Tabular sheets of calcite grew by repeated fault slip, dilation, and cementation. Fluid inclusion and stable isotope geochemistry analyses of fault zone cements indicate episodic reactivation at 1.4-4.2 km depths. The results of these analyses document a dramatic bed-scale lithologic control on fault zone architecture that is directly relevant to the development of porosity and permeability anisotropy along faults.

  4. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone.

    PubMed

    Xue, Lian; Li, Hai-Bing; Brodsky, Emily E; Xu, Zhi-Qing; Kano, Yasuyuki; Wang, Huan; Mori, James J; Si, Jia-Liang; Pei, Jun-Ling; Zhang, Wei; Yang, Guang; Sun, Zhi-Ming; Huang, Yao

    2013-06-28

    Permeability controls fluid flow in fault zones and is a proxy for rock damage after an earthquake. We used the tidal response of water level in a deep borehole to track permeability for 18 months in the damage zone of the causative fault of the 2008 moment magnitude 7.9 Wenchuan earthquake. The unusually high measured hydraulic diffusivity of 2.4 × 10(-2) square meters per second implies a major role for water circulation in the fault zone. For most of the observation period, the permeability decreased rapidly as the fault healed. The trend was interrupted by abrupt permeability increases attributable to shaking from remote earthquakes. These direct measurements of the fault zone reveal a process of punctuated recovery as healing and damage interact in the aftermath of a major earthquake.

  5. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct < 160 m wide interval of widely oriented gouge-filled fractures constitutes an inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault

  6. Complex fragmentation and silicification structures in fault zones: quartz crystallization and repeated fragmentation in the Rusey fault zone (Cornwall/UK)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.

    2015-04-01

    Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone

  7. Lithospheric thickness variations across the North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Thompson, D. A.; Rost, S.; Cornwell, D. G.; Houseman, G.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Kahraman, M.; Gulen, L.; Utkucu, M.; Williams, J. R.

    2017-12-01

    The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault zone, similar in size and scale to the San Andreas system, that extends 1200km across Turkey. These type of faults may broaden significantly with depth or penetrate as narrow features all the way to the lithosphere-asthenosphere boundary (LAB), potentially providing pathways for fluids and magma to shallower levels. The Dense Array for North Anatolia (DANA) was a 73 station broadband seismic network arranged in a rectangular grid (7km station spacing) deployed to image the deep structure of the fault zone. We present here new S-receiver function images that map out both the depth to the Moho and to negative velocity gradients commonly ascribed to the LAB, with preliminary results suggesting lithospheric thicknesses on the order of 80-100km for the region.

  8. Deformation associated with the Ste. Genevieve fault zone and mid-continent tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, A.; Baker, G.S.; Harrison, R.W.

    1992-01-01

    The Ste. Genevieve fault is a northwest-trending deformation zone on the northeast edge of the Ozark Dome in Missouri. The fault has been described as a high-angle block fault resulting from vertical uplift of Proterozoic basement rocks, and also as a left-lateral, strike-slip or transpressive wrench fault associated with the Reelfoot rift. Recent mapping across the fault zone documents significant changes in the style of deformation along strike, including variations in the number and the spacing of fault strands, changes in the orientation of rocks within and adjacent to the fault zone, and changes in the direction of stratigraphic offsetmore » between different fault slices. These data are inconsistent with existing Ste. Genevieve models of monoclinal folding over basement upthrusts. Mesoscopic structural analysis of rocks in and near the fault zone indicates highly deformed noncylindrical folds, faults with normal, reverse, oblique, and strike-slip components of movement, and complex joint systems. Fabric orientation, calcite shear fibers, and slickensides indicate that the majority of these mesoscopic structures are kinematically related to left-lateral oblique slip with the southwest side up. Within the fault zone are highly fractured rocks, microscopic to coarse-grained carbonate breccia, and siliciclastic cataclasite. Microscopic deformation includes twinning in carbonate rocks, deformation banding, undulose extinction, and strain-induced polygonization in quartz, tectonic stylolites, extension veining, microfractures, and grain-scale cataclasis. Data are consistent with models relating the Ste. Genevieve fault zone to left-lateral oblique slip possibly associated with New Madrid tectonism.« less

  9. Fault Zone Imaging from Correlations of Aftershock Waveforms

    NASA Astrophysics Data System (ADS)

    Hillers, Gregor; Campillo, Michel

    2018-03-01

    We image an active fault zone environment using cross correlations of 154 15 s long 1992 Landers earthquake aftershock seismograms recorded along a line array. A group velocity and phase velocity dispersion analysis of the reconstructed Rayleigh waves and Love waves yields shear wave velocity images of the top 100 m along the 800 m long array that consists of 22 three component stations. Estimates of the position, width, and seismic velocity of a low-velocity zone are in good agreement with the findings of previous fault zone trapped waves studies. Our preferred solution indicates the zone is offset from the surface break to the east, 100-200 m wide, and characterized by a 30% velocity reduction. Imaging in the 2-6 Hz range resolves further a high-velocity body of similar width to the west of the fault break. Symmetry and shape of zero-lag correlation fields or focal spots indicate a frequency and position dependent wavefield composition. At frequencies greater than 4 Hz surface wave propagation dominates, whereas at lower frequencies the correlation field also exhibits signatures of body waves that likely interact with the high-velocity zone. The polarization and late arrival times of coherent wavefronts observed above the low-velocity zone indicate reflections associated with velocity contrasts in the fault zone environment. Our study highlights the utility of the high-frequency correlation wavefield obtained from records of local and regional seismicity. The approach does not depend on knowledge of earthquake source parameters, which suggests the method can return images quickly during aftershock campaigns to guide network updates for optimal coverage of interesting geological features.

  10. Reconnaissance study of late quaternary faulting along cerro GoDen fault zone, western Puerto Rico

    USGS Publications Warehouse

    Mann, P.; Prentice, C.S.; Hippolyte, J.-C.; Grindlay, N.R.; Abrams, L.J.; Lao-Davila, D.

    2005-01-01

    The Cerro GoDen fault zone is associated with a curvilinear, continuous, and prominent topographic lineament in western Puerto Rico. The fault varies in strike from northwest to west. In its westernmost section, the fault is ???500 m south of an abrupt, curvilinear mountain front separating the 270- to 361-m-high La CaDena De San Francisco range from the Rio A??asco alluvial valley. The Quaternary fault of the A??asco Valley is in alignment with the bedrock fault mapped by D. McIntyre (1971) in the Central La Plata quadrangle sheet east of A??asco Valley. Previous workers have postulated that the Cerro GoDen fault zone continues southeast from the A??asco Valley and merges with the Great Southern Puerto Rico fault zone of south-central Puerto Rico. West of the A??asco Valley, the fault continues offshore into the Mona Passage (Caribbean Sea) where it is characterized by offsets of seafloor sediments estimated to be of late Quaternary age. Using both 1:18,500 scale air photographs taken in 1936 and 1:40,000 scale photographs taken by the U.S. Department of Agriculture in 1986, we iDentified geomorphic features suggestive of Quaternary fault movement in the A??asco Valley, including aligned and Deflected drainages, apparently offset terrace risers, and mountain-facing scarps. Many of these features suggest right-lateral displacement. Mapping of Paleogene bedrock units in the uplifted La CaDena range adjacent to the Cerro GoDen fault zone reveals the main tectonic events that have culminated in late Quaternary normal-oblique displacement across the Cerro GoDen fault. Cretaceous to Eocene rocks of the La CaDena range exhibit large folds with wavelengths of several kms. The orientation of folds and analysis of fault striations within the folds indicate that the folds formed by northeast-southwest shorTening in present-day geographic coordinates. The age of Deformation is well constrained as late Eocene-early Oligocene by an angular unconformity separating folDed, Deep

  11. The Maradi fault zone: 3-D imagery of a classic wrench fault in Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhaus, D.

    1993-09-01

    The Maradi fault zone extends for almost 350 km in a north-northwest-south-southeast direction from the Oman Mountain foothills into the Arabian Sea, thereby dissecting two prolific hydrocarbon provinces, the Ghaba and Fahud salt basins. During its major Late Cretaceous period of movement, the Maradi fault zone acted as a left-lateral wrench fault. An early exploration campaign based on two-dimensional seismic targeted at fractured Cretaceous carbonates had mixed success and resulted in the discovery of one producing oil field. The structural complexity, rapidly varying carbonate facies, and uncertain fracture distribution prevented further drilling activity. In 1990 a three-dimensional (3-D) seismic surveymore » covering some 500 km[sup 2] was acquired over the transpressional northern part of the Maradi fault zone. The good data quality and the focusing power of 3-D has enabled stunning insight into the complex structural style of a [open quotes]textbook[close quotes] wrench fault, even at deeper levels and below reverse faults hitherto unexplored. Subtle thickness changes within the carbonate reservoir and the unconformably overlying shale seal provided the tool for the identification of possible shoals and depocenters. Horizon attribute maps revealed in detail the various structural components of the wrench assemblage and highlighted areas of increased small-scale faulting/fracturing. The results of four recent exploration wells will be demonstrated and their impact on the interpretation discussed.« less

  12. Mechanisms and rates of strength recovery in laboratory fault zones

    NASA Astrophysics Data System (ADS)

    Muhuri, Sankar Kumar

    2001-07-01

    The life cycle of a typical fault zone consists of repeated catastrophic seismic events during which much of the slip is accommodated interspersed with creep during the inter-seismic cycle. Fault strength is regenerated during this period as a result of several time-dependent, fluid assisted deformation mechanisms that are favored by high stresses along active fault zones. The strengthening is thought to be a function of the sum total of the rates of recovery due to these multiple creep processes as well as the rate of tectonic loading. Mechanisms and rates of strength recovery in laboratory fault zones were investigated in this research with the aid of several experimental designs. It was observed that wet faults recover strength in a time-dependent manner after slip due to operative creep processes. Subsequent loading results in unstable failure of a cohesive gouge zone with large associated stress drops. The failure process is similar to that observed for intact rocks. Dry laboratory faults in contrast do not recover strength and slip along them is always stable with no observable drop in stress. Strengthening in laboratory faults proceeds in a manner that is a logarithmic function of time. The recovery is attributable to fluid mediated mechanisms such as pressure solution, crack sealing and Ostwald ripening that collectively cause a reduction in porosity and enhance lithification of an unconsolidated gouge. Rates for the individual deformation mechanisms investigated in separate experimental setups were also observed to be a non-linear function of time. Pressure solution and Ostwald ripening are especially enhanced due to the significant volume fraction of fine particles within the gouge created due to cataclasis during slip. The results of this investigation may be applied to explain observations of rapid strengthening along large, active crustal fault zones such as parts of the San Andreas Fault system in California and the Nojima fault in Japan. Presence of

  13. High-Resolution Fault Zone Monitoring and Imaging Using Long Borehole Arrays

    NASA Astrophysics Data System (ADS)

    Paulsson, B. N.; Karrenbach, M.; Goertz, A. V.; Milligan, P.

    2004-12-01

    Long borehole seismic receiver arrays are increasingly used in the petroleum industry as a tool for high--resolution seismic reservoir characterization. Placing receivers in a borehole avoids the distortion of reflected seismic waves by the near-surface weathering layer which leads to greatly improved vector fidelity and a much higher frequency content of 3-component recordings. In addition, a borehole offers a favorable geometry to image near-vertically dipping or overturned structure such as, e.g., salt flanks or faults. When used for passive seismic monitoring, long borehole receiver arrays help reducing depth uncertainties of event locations. We investigate the use of long borehole seismic arrays for high-resolution fault zone characterization in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD). We present modeling scenarios to show how an image of the vertically dipping fault zone down to the penetration point of the SAFOD well can be obtained by recording surface sources in a long array within the deviated main hole. We assess the ability to invert fault zone reflections for rock physical parameters by means of amplitude versus offset or angle (AVO/AVA) analyzes. The quality of AVO/AVA studies depends on the ability to illuminate the fault zone over a wide range of incidence angles. We show how the length of the receiver array and the receiver spacing within the borehole influence the size of the volume over which reliable AVO/AVA information could be obtained. By means of AVO/AVA studies one can deduce hydraulic properties of the fault zone such as the type of fluids that might be present, the porosity, and the fluid saturation. Images of the fault zone obtained from a favorable geometry with a sufficient illumination will enable us to map fault zone properties in the surrounding of the main hole penetration point. One of the targets of SAFOD is to drill into an active rupture patch of an earthquake cluster. The question of whether or not

  14. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  15. Fault-zone waves observed at the southern Joshua Tree earthquake rupture zone

    USGS Publications Warehouse

    Hough, S.E.; Ben-Zion, Y.; Leary, P.

    1994-01-01

    Waveform and spectral characteristics of several aftershocks of the M 6.1 22 April 1992 Joshua Tree earthquake recorded at stations just north of the Indio Hills in the Coachella Valley can be interpreted in terms of waves propagating within narrow, low-velocity, high-attenuation, vertical zones. Evidence for our interpretation consists of: (1) emergent P arrivals prior to and opposite in polarity to the impulsive direct phase; these arrivals can be modeled as headwaves indicative of a transfault velocity contrast; (2) spectral peaks in the S wave train that can be interpreted as internally reflected, low-velocity fault-zone wave energy; and (3) spatial selectivity of event-station pairs at which these data are observed, suggesting a long, narrow geologic structure. The observed waveforms are modeled using the analytical solution of Ben-Zion and Aki (1990) for a plane-parallel layered fault-zone structure. Synthetic waveform fits to the observed data indicate the presence of NS-trending vertical fault-zone layers characterized by a thickness of 50 to 100 m, a velocity decrease of 10 to 15% relative to the surrounding rock, and a P-wave quality factor in the range 25 to 50.

  16. Coseismic microstructures of experimental fault zones in Carrara marble

    NASA Astrophysics Data System (ADS)

    Ree, Jin-Han; Ando, Jun-ichi; Han, Raehee; Shimamoto, Toshihiko

    2014-09-01

    Experimental fault zones developed in Carrara marble that were deformed at seismic slip rates (1.18-1.30 m s-1) using a high-velocity-rotary-shear apparatus exhibit very low friction (friction coefficient as low as 0.06) at steady state due to nanoparticle lubrication of the decomposition product (lime). The fault zones show a layered structure; a central slip-localization layer (5-60 μm thick) of lime nanograins mantled by gouge layers (5-150 μm thick) and a plastically deformed layer (45-500 μm thick) between the wall rock and gouge layer in the marginal portion of cylindrical specimens. Calcite grains of the wall rock adjacent to the slip zone deform by dislocation glide when subjected to frictional heating and a lower strain rate than that of the principal slip zone. The very fine (2-5 μm) calcite grains in the gouge layer show a foam structure with relatively straight grain boundaries and 120° triple junctions. This foam structure is presumed to develop by welding at high temperature and low strain once slip is localized along the central layer. We suggest that a seismic event can be inferred from deformed marbles, given: (i) the presence of welded gouge with foam structure in a fault zone where wall rocks show no evidence of thermal metamorphism and (ii) a thin plastically deformed layer immediately adjacent to the principal slip zone of a cataclastic fault zone.

  17. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The

  18. Structural Analysis of Active North Bozgush Fault Zone (NW Iran)

    NASA Astrophysics Data System (ADS)

    Saber, R.; Isik, V.; Caglayan, A.

    2013-12-01

    NW Iran is one of the seismically active regions between Zagros Thrust Belt at the south and Caucasus at the north. Not only large magnitude historical earthquakes (Ms>7), but also 1987 Bozgush, 1997 Ardebil (Mw 6.1) and 2012 Ahar-Varzagan (Mw 6.4) earthquakes reveal that the region is seismically active. The North Bozgush Fault Zone (NBFZ) in this region has tens of kilometers in length and hundreds of meters in width. The zone has produced some large and destructive earthquakes (1593 M:6.1 and 1883 M:6.2). The NBFZ affects the Cenozoic units and along this zone Eocene units thrusted over Miocene and/or Plio-Quaternary sedimentary units. Together with morphologic features (stream offsets and alluvial fan movements) affecting the young unites reveal that the zone is active. The zone is mainly characterized by strike-slip faults with reverse component and reverse faults. Reverse faults striking N55°-85°E and dip of 40°-50° to the SW while strike-slip faults show right lateral slip with N60°-85°W and N60°-80°E directions. Our structural data analysis in NBFZ indicates that the axis direction of σ2 principal stress is vertical and the stress ratio (R) is 0.12. These results suggest that the tectonic regime along the North Bozgush Fault Zone is transpressive. Obtained other principal stresses (σ1, σ3) results are compatible with stress directions and GPS velocity suggested for NW Iran.

  19. Structure of a normal seismogenic fault zone in carbonates: The Vado di Corno Fault, Campo Imperatore, Central Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Demurtas, Matteo; Fondriest, Michele; Balsamo, Fabrizio; Clemenzi, Luca; Storti, Fabrizio; Bistacchi, Andrea; Di Toro, Giulio

    2016-09-01

    The Vado di Corno Fault Zone (VCFZ) is an active extensional fault cutting through carbonates in the Italian Central Apennines. The fault zone was exhumed from ∼2 km depth and accommodated a normal throw of ∼2 km since Early-Pleistocene. In the studied area, the master fault of the VCFZ dips N210/54° and juxtaposes Quaternary colluvial deposits in the hangingwall with cataclastic dolostones in the footwall. Detailed mapping of the fault zone rocks within the ∼300 m thick footwall-block evidenced the presence of five main structural units (Low Strain Damage Zone, High Strain Damage Zone, Breccia Unit, Cataclastic Unit 1 and Cataclastic Unit 2). The Breccia Unit results from the Pleistocene extensional reactivation of a pre-existing Pliocene thrust. The Cataclastic Unit 1 forms a ∼40 m thick band lining the master fault and recording in-situ shattering due to the propagation of multiple seismic ruptures. Seismic faulting is suggested also by the occurrence of mirror-like slip surfaces, highly localized sheared calcite-bearing veins and fluidized cataclasites. The VCFZ architecture compares well with seismological studies of the L'Aquila 2009 seismic sequence (mainshock MW 6.1), which imaged the reactivation of shallow-seated low-angle normal faults (Breccia Unit) cut by major high-angle normal faults (Cataclastic Units).

  20. A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey

    USGS Publications Warehouse

    Ben-Zion, Y.; Peng, Z.; Okaya, D.; Seeber, L.; Armbruster, J.G.; Ozer, N.; Michael, A.J.; Baris, S.; Aktar, M.

    2003-01-01

    We discuss the subsurface structure of the Karadere-Duzce branch of the North Anatolian Fault based on analysis of a large seismic data set recorded by a local PASSCAL network in the 6 months following the Mw = 7.4 1999 Izmit earthquake. Seismograms observed at stations located in the immediate vicinity of the rupture zone show motion amplification and long-period oscillations in both P- and S-wave trains that do not exist in nearby off-fault stations. Examination of thousands of waveforms reveals that these characteristics are commonly generated by events that are well outside the fault zone. The anomalous features in fault-zone seismograms produced by events not necessarily in the fault may be referred to generally as fault-zone-related site effects. The oscillatory shear wave trains after the direct S arrival in these seismograms are analysed as trapped waves propagating in a low-velocity fault-zone layer. The time difference between the S arrival and trapped waves group does not grow systematically with increasing source-receiver separation along the fault. These observations imply that the trapping of seismic energy in the Karadere-Duzce rupture zone is generated by a shallow fault-zone layer. Traveltime analysis and synthetic waveform modelling indicate that the depth of the trapping structure is approximately 3-4 km. The synthetic waveform modelling indicates further that the shallow trapping structure has effective waveguide properties consisting of thickness of the order of 100 m, a velocity decrease relative to the surrounding rock of approximately 50 per cent and an S-wave quality factor of 10-15. The results are supported by large 2-D and 3-D parameter space studies and are compatible with recent analyses of trapped waves in a number of other faults and rupture zones. The inferred shallow trapping structure is likely to be a common structural element of fault zones and may correspond to the top part of a flower-type structure. The motion amplification

  1. Interseismic Strain Accumulation of the Gazikoy-Saros segment (Ganos fault) of the North Anatolian Fault Zone

    NASA Astrophysics Data System (ADS)

    Havazli, E.; Wdowinski, S.; Amelung, F.

    2017-12-01

    The North Anatolian Fault Zone (NAFZ) is one of the most active continental transform faults in the world. A westward migrating earthquake sequence has started in 1939 in Erzincan and the last two events of this sequence occurred in 1999 in Izmit and Duzce manifesting the importance of NAFZ on the seismic hazard potential of the region. NAFZ exhibits slip rates ranging from 14-30 mm/yr along its 1500 km length with a right lateral strike slip characteristic. In the East of the Marmara Sea, the NAFZ splits into two branches. The Gazikoy-Saros segment (Ganos Fault) is the westernmost and onshore segment of the northern branch. The ENE-WSW oriented Ganos Fault is seismically active. It produced a Ms 7.2 earthquake in 1912, which was followed by several large aftershocks, including Ms 6.3 and Ms 6.9 events. Since 1912, the Ganos Fault did not produce any significant earthquakes (> M 5), in contrast to its adjacent segments, which produced 20 M>5 earthquakes, including a M 6.7 event, offshore in Gulf of Saros. Interseismic strain accumulation along the Ganos Fault was assessed from sparse GPS measurements along a single transect located perpendicular to the fault zone, suggesting strain accumulation rate of 20-25 mm/yr. Insofar, InSAR studies, based on C-band data, didn't produce conclusive results due to low coherence over the fault zone area, which is highly vegetated. In this study, we present a detailed interseismic velocity map of the Ganos Fault zone derived from L-band InSAR observations. We use 21 ALOS PALSAR scenes acquired over a 5-year period, from 2007 to 2011. We processed the ALOS data using the PySAR software, which is the University of Miami version of the Small Baseline (SB) method. The L-band observations enabled us to overcome the coherence issue in the study area. Our initial results indicate a maximum velocity of 15 mm/yr across the fault zone. The high spatial resolution of the InSAR-based interseismic velocity map will enable us to better to

  2. Permeability and strength structure around an ancient exhumed subduction-zone fault

    NASA Astrophysics Data System (ADS)

    Kato, A.; Sakaguchi, A.; Yoshida, S.; Kaneda, Y.

    2003-12-01

    Investigating the transporting properties of subduction zone faults is crucial for understanding shear strength and slip-stability, or instability, of subduction zone faults. Despite the influence of pore pressure on a wide range of subduction-zone fault processes, few previous studies have evaluated the permeability structure around the fault placed in a well-defined structural context. In this study, the aim is to gain the entire permeability and the shear strength structure around the ancient subduction zone fault. We have conducted a series of permeability measurements and shear failure experiments in seismogenic environments using intact rocks sampled at the outcrop of an exhumed fault zone in the Cretaceous Shimanto accretionary complex, in Shikoku, SW Japan, where a typical evidence for seismic fault rock of pseudotachylyte has been demonstrated [Ikesawa et al., 2003]. This fault zone is located at boundary between the sandstone-dominant coherent unit of the Nonokawa Formation and the Okitsu mélange. The porosity of each rock sample is less than 1 %, except for the shear zone. Cylindrical test specimens (length = 40 mm, diameter = 20 mm) were cored to an accuracy of within 0.02 mm. Most of values of permeability were evaluated at confining pressure Pc of 140 MPa and pore pressure Pp of 115 MPa simulating the depth of 5 km (suprahydrostatic pore pressure). It is found that the permeability at room temperature shows the heterogeneous structure across the fault zone. The permeability of sandstone-dominant coherent unit is the lowest (10-19 m2) across the fault zone. In contrast, high shear zone has the highest permeability (10-16 m2). Following the increase in temperature, permeability evolution has been investigated. The permeability at 250oC continuously decreases with hold time for all types of rock specimens, and the reduction rate of permeability against hold time seems to become small with hold time. It seems that the reduction rate does not

  3. Fault zone characterization using P- and S-waves

    NASA Astrophysics Data System (ADS)

    Wawerzinek, Britta; Buness, Hermann; Polom, Ulrich; Tanner, David C.; Thomas, Rüdiger

    2014-05-01

    Although deep fault zones have high potential for geothermal energy extraction, their real usability depends on complex lithological and tectonic factors. Therefore a detailed fault zone exploration using P- and S-wave reflection seismic data is required. P- and S-wave reflection seismic surveys were carried out along and across the eastern border of the Leinetal Graben in Lower Saxony, Germany, to analyse the structural setting, different reflection characteristics and possible anisotropic effects. In both directions the P-wave reflection seismic measurements show a detailed and complex structure. This structure was developed during several tectonic phases and comprises both steeply- and shallowly-dipping faults. In a profile perpendicular to the graben, a strong P-wave reflector is interpreted as shallowly west-dipping fault that is traceable from the surface down to 500 m depth. It is also detectable along the graben. In contrast, the S-waves show different reflection characteristics: There is no indication of the strong P-wave reflector in the S-wave reflection seismic measurements - neither across nor along the graben. Only diffuse S-wave reflections are observable in this region. Due to the higher resolution of S-waves in the near-surface area it is possible to map structures which cannot be detected in P-wave reflection seismic, e.g the thinning of the uppermost Jurassic layer towards the south. In the next step a petrophysical analysis will be conducted by using seismic FD modelling to a) determine the cause (lithological, structural, or a combination of both) of the different reflection characteristics of P- and S-waves, b) characterize the fault zone, as well as c) analyse the influence of different fault zone properties on the seismic wave field. This work is part of the gebo collaborative research programme which is funded by the 'Niedersächsisches Ministerium für Wissenschaft und Kultur' and Baker Hughes.

  4. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    NASA Astrophysics Data System (ADS)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  5. Determination of the relationship between major fault and zinc mineralization using fractal modeling in the Behabad fault zone, central Iran

    NASA Astrophysics Data System (ADS)

    Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang

    2017-10-01

    The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.

  6. Mountain front migration and drainage captures related to fault segment linkage and growth: The Polopos transpressive fault zone (southeastern Betics, SE Spain)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Martínez-Martínez, José Miguel; Azañón, José Miguel; Pérez-Romero, Joaquín; Villegas, Irene

    2013-01-01

    The Polopos E-W- to ESE-WNW-oriented dextral-reverse fault zone is formed by the North Alhamilla reverse fault and the North and South Gafarillos dextral faults. It is a conjugate fault system of the sinistral NNE-SSW Palomares fault zone, active from the late most Tortonian (≈7 Ma) up to the late Pleistocene (≥70 ky) in the southeastern Betics. The helicoidal geometry of the fault zone permits to shift SE-directed movement along the South Cabrera reverse fault to NW-directed shortening along the North Alhamilla reverse fault via vertical Gafarillos fault segments, in between. Since the Messinian, fault activity migrated southwards forming the South Gafarillos fault and displacing the active fault-related mountain-front from the north to the south of Sierra de Polopos; whilst recent activity of the North Alhamilla reverse fault migrated westwards. The Polopos fault zone determined the differential uplift between the Sierra Alhamilla and the Tabernas-Sorbas basin promoting the middle Pleistocene capture that occurred in the southern margin of the Sorbas basin. Continued tectonic uplift of the Sierra Alhamilla-Polopos and Cabrera anticlinoria and local subsidence associated to the Palomares fault zone in the Vera basin promoted the headward erosion of the Aguas river drainage that captured the Sorbas basin during the late Pleistocene.

  7. Transient cnoidal waves explain the formation and geometry of fault damage zones

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Schrank, Christoph

    2017-04-01

    The spatial footprint of a brittle fault is usually dominated by a wide area of deformation bands and fractures surrounding a narrow, highly deformed fault core. This diffuse damage zone relates to the deformation history of a fault, including its seismicity, and has a significant impact on flow and mechanical properties of faulted rock. Here, we propose a new mechanical model for damage-zone formation. It builds on a novel mathematical theory postulating fundamental material instabilities in solids with internal mass transfer associated with volumetric deformation due to elastoviscoplastic p-waves termed cnoidal waves. We show that transient cnoidal waves triggered by fault slip events can explain the characteristic distribution and extent of deformation bands and fractures within natural fault damage zones. Our model suggests that an overpressure wave propagating away from the slipping fault and the material properties of the host rock control damage-zone geometry. Hence, cnoidal-wave theory may open a new chapter for predicting seismicity, material and geometrical properties as well as the location of brittle faults.

  8. Fracture zones constrained by neutral surfaces in a fault-related fold: Insights from the Kelasu tectonic zone, Kuqa Depression

    NASA Astrophysics Data System (ADS)

    Sun, Shuai; Hou, Guiting; Zheng, Chunfang

    2017-11-01

    Stress variation associated with folding is one of the controlling factors in the development of tectonic fractures, however, little attention has been paid to the influence of neutral surfaces during folding on fracture distribution in a fault-related fold. In this study, we take the Cretaceous Bashijiqike Formation in the Kuqa Depression as an example and analyze the distribution of tectonic fractures in fault-related folds by core observation and logging data analysis. Three fracture zones are identified in a fault-related fold: a tensile zone, a transition zone and a compressive zone, which may be constrained by two neutral surfaces of fold. Well correlation reveals that the tensile zone and the transition zone reach the maximum thickness at the fold hinge and get thinner in the fold limbs. A 2D viscoelastic stress field model of a fault-related fold was constructed to further investigate the mechanism of fracturing. Statistical and numerical analysis reveal that the tensile zone and the transition zone become thicker with decreasing interlimb angle. Stress variation associated with folding is the first level of control over the general pattern of fracture distribution while faulting is a secondary control over the development of local fractures in a fault-related fold.

  9. Detection of postseismic fault-zone collapse following the Landers earthquake

    USGS Publications Warehouse

    Massonnet, D.; Thatcher, W.; Vadon, H.

    1996-01-01

    Stress changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone.

  10. Cyclical Fault Permeability in the Lower Seismogenic Zone: Geological Evidence

    NASA Astrophysics Data System (ADS)

    Sibson, R. H.

    2005-12-01

    Syntectonic hydrothermal veining is widespread in ancient fault zones exhibiting mixed brittle-ductile behavior that are exhumed from subgreenschist to greenschist environments. The hydrothermal material (predominantly quartz ± carbonate) commonly occurs as fault-veins developed along principal slip surfaces, with textures recording intermittent deposition, sometimes in the form of repeated episodes of brecciation and recementation. Systematic sets of extension veins with histories of incremental dilation often occur in adjacent wallrocks. Conspicuous for their size and continuity among these fault-hosted vein systems are mesozonal Au-quartz lodes, which are most widespread in Archean granite-greenstone belts but also occur throughout the geological record. Most of these lode gold deposits developed at pressures of 1-5 kbar and temperatures of 200-450°C within the lower continental seismogenic zone. A notable characteristic is their vertical continuity: many `ribbon-texture' fault veins with thicknesses of the order of a meter extend over depth ranges approaching 2 km. The largest lodes are usually hosted by reverse or reverse- oblique fault zones with low finite displacement. Associated flat-lying extension veins in the wallrock may taper away from the shear zones over tens or hundreds of meters, and demonstrate repeated attainment of the ~lithostatic fluid overpressures needed for hydraulic extension fracturing. Where hosted by extensional-transtensional fault systems, lode systems tend to be less well developed. Mesozonal vein systems are inferred to be the product of extreme fault-valve behavior, whereby episodic accumulation of pore-fluid pressure to near-lithostatic values over the interseismic period leads to fault rupture, followed by postseismic discharge of substantial fluid volumes along the freshly permeable rupture zone inducing hydrothermal precipitation that seals the fracture permeability. Aqueous mineralizing fluids were generally low

  11. Can compliant fault zones be used to measure absolute stresses in the upper crust?

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.; Fialko, Y.

    2009-04-01

    Geodetic and seismic observations reveal long-lived zones with reduced elastic moduli along active crustal faults. These fault zones localize strain from nearby earthquakes, consistent with the response of a compliant, elastic layer. Fault zone trapped wave studies documented a small reduction in P and S wave velocities along the Johnson Valley Fault caused by the 1999 Hector Mine earthquake. This reduction presumably perturbed a permanent compliant structure associated with the fault. The inferred changes in the fault zone compliance may produce a measurable deformation in response to background (tectonic) stresses. This deformation should have the same sense as the background stress, rather than the coseismic stress change. Here we investigate how the observed deformation of compliant zones in the Mojave Desert can be used to constrain the fault zone structure and stresses in the upper crust. We find that gravitational contraction of the coseismically softened zones should cause centimeters of coseismic subsidence of both the compliant zones and the surrounding region, unless the compliant fault zones are shallow and narrow, or essentially incompressible. We prefer the latter interpretation because profiles of line of sight displacements across compliant zones cannot be fit by a narrow, shallow compliant zone. Strain of the Camp Rock and Pinto Mountain fault zones during the Hector Mine and Landers earthquakes suggests that background deviatoric stresses are broadly consistent with Mohr-Coulomb theory in the Mojave upper crust (with μ ≥ 0.7). Large uncertainties in Mojave compliant zone properties and geometry preclude more precise estimates of crustal stresses in this region. With improved imaging of the geometry and elastic properties of compliant zones, and with precise measurements of their strain in response to future earthquakes, the modeling approach we describe here may eventually provide robust estimates of absolute crustal stress.

  12. Characterization of the Fault Core and Damage Zone of the Borrego Fault, 2010 M7.2 Rupture

    NASA Astrophysics Data System (ADS)

    Dorsey, M. T.; Rockwell, T. K.; Girty, G.; Ostermeijer, G.; Mitchell, T. M.; Fletcher, J. M.

    2017-12-01

    We collected a continuous sample of the fault core and 23 samples of the damage zone out to 52 m across the rupture trace of the 2010 M7.2 El Mayor-Cucapa earthquake to characterize the physical damage and chemical transformations associated with this active seismic source. In addition to quantifying fracture intensity from macroscopic analysis, we cut a continuous thin section through the fault core and from various samples in the damage zone, and ran each sample for XRD analyses for clay mineralogy, XRF for bulk geochemical analyses, and bulk and grain density from which porosity and volumetric strain were derived. The parent rock is a hydrothermally-altered biotite tonalite, with biotite partially altered to chlorite. The presence of epidote with chlorite suggests that these rocks were subjected to relatively high temperatures of 300-400° C. Adjacent to the outermost damage zone is a chaotic breccia zone with distinct chemical and physical characteristics, indicating possible connection to an ancestral fault to the southwest. The damage zone consists of an outer zone of protocataclasite, which grades inward towards mesocataclasite with seams of ultracataclasite. The fault core is anomalous in that it is largely composed of a sliver of marble that has been translated along the fault, so direct comparison with the damage zone is impaired. From collected data, we observe that chloritization increases into the breccia and damage zones, as does the presence of illite. Porosity reaches maximum values in the damage zone adjacent to the core, and closely follows trends in fracture intensity. Statistically significant gains in Mg, Na, K, Mn, and total bulk mass occurred within the inner damage zone, with losses of Ca and P mass, which led to the formation of chlorite and albite. The outer damage zone displays gains in Mg and Na mass with losses in Ca and P mass. The breccia zone shows gains in mass of Mg and Mn and loss in total bulk mass. A gain in LOI in both the

  13. Fracture zone drilling through Atotsugawa fault in central Japan - geological and geophysical structure -

    NASA Astrophysics Data System (ADS)

    Omura, K.; Yamashita, F.; Yamada, R.; Matsuda, T.; Fukuyama, E.; Kubo, A.; Takai, K.; Ikeda, R.; Mizuochi, Y.

    2004-12-01

    Drilling is an effective method to investigate the structure and physical state in and around the active fault zone, such as, stress and strength distribution, geological structure and materials properties. In particular, the structure in the fault zone is important to understand where and how the stress accumulates during the earthquake cycle. In previous studies, we did integrate investigation on active faults in central Japan by drilling and geophysical prospecting. Those faults are estimated to be at different stage in the earthquake cycle, i.e., Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2), the Neodani fault which appeared by the 1891 Nobi earth-quake (M=8.0), the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9), and Gofukuji Fault that is considered to have activated about 1200 years ago. Each faults showed characteristic features of fracture zone structure according to their geological and geophysical situations. In a present study, we did core recovery and down hole measurements at the Atotsugawa fault, central Japan, that is considered to have activated at 1858 Hida earthquake (M=7.0). The Atotsugawa fault is characterized by active seismicity along the fault. But, at the same time, the shallow region in the central segment of the fault seems to have low seismicity. The high seismicity segment and low seismicity segments may have different mechanical, physical and material properties. A 350m depth borehole was drilled vertically beside the surface trace of the fault in the low seismicity segment. Recovered cores were overall heavily fractured and altered rocks. In the cores, we observed many shear planes holding fault gouge. Logging data showed that the apparent resistance was about 100 - 600 ohm-m, density was about 2.0 - 2.5g/cm3, P wave velocity was approximately 3.0 - 4.0 km/sec, neutron porosity was 20 - 40 %. Results of physical logging show features of fault

  14. Paleoseismology of the Mt. Narryer Fault Zone, West Central Western Australia: a Multi-Segment Intraplate Fault System

    NASA Astrophysics Data System (ADS)

    Whitney, B. B.; Clark, D.; Hengesh, J.

    2014-12-01

    The Western Australia shear zone (WASZ) is a 2000 km long fault system within the intraplate region of Australia. A paleoseismological study of faults and fault-related folds comprising the Mount Narryer fault zone (MNfz) in the southern WASZ reveals a late Quaternary history of repeated morphogenic earthquake occurrence that has profoundly influenced the planform and course of the Murchison, Roderick, and Sanford Rivers. Folding in the near surface sediments is the predominant style of surface expression of reactivated basement faults which is consistent with other neotectonic structures throughout the Western Australia shear zone. CRN and OSL estimates of exposure and burial ages of fault-related folds and fold derived colluvium provide constraint on Late Quaternary slip rates on the underlying faults of ~0.05 - 0.1 mm/a. In the case of the Roderick River fault scarp, 2-3m high tectonic risers separating inset terraces where the Murchison River crosses the scarp are consistent with multiple late Quaternary seismic events on the order of magnitude Mw 7.1-7.3. Mid-Pleistocene ages of tectonically deformed strata in the MNfz are consistent with the timing of collision between the Australian extended margin and Savu-Rote ridge 0.2-1.8 Ma.

  15. Subsurface structures of the active reverse fault zones in Japan inferred from gravity anomalies.

    NASA Astrophysics Data System (ADS)

    Matsumoto, N.; Sawada, A.; Hiramatsu, Y.; Okada, S.; Tanaka, T.; Honda, R.

    2016-12-01

    The object of our study is to examine subsurface features such as continuity, segmentation and faulting type, of the active reverse fault zones. We use the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013) in this study. We obtained the Bouguer anomalies through terrain corrections with 10 m DEM (Sawada et al. 2015) under the assumed density of 2670 kg/m3, a band-pass filtering, and removal of linear trend. Several derivatives and structural parameters calculated from a gravity gradient tensor are applied to highlight the features, such as a first horizontal derivatives (HD), a first vertical derivatives (VD), a normalized total horizontal derivative (TDX), a dip angle (β), and a dimensionality index (Di). We analyzed 43 reverse fault zones in northeast Japan and the northern part of southwest Japan among major active fault zones selected by Headquarters for Earthquake Research Promotion. As the results, the subsurface structural boundaries clearly appear along the faults at 21 faults zones. The weak correlations appear at 13 fault zones, and no correlations are recognized at 9 fault zones. For example, in the Itoigawa-Shizuoka tectonic line, the subsurface structure boundary seems to extend further north than the surface trace. Also, a left stepping structure of the fault around Hakuba is more clearly observed with HD. The subsurface structures, which detected as the higher values of HD, are distributed on the east side of the surface rupture in the north segments and on the west side in the south segments, indicating a change of the dip direction, the east dipping to the west dipping, from north to south. In the Yokote basin fault zone, the subsurface structural boundary are clearly detected with HD, VD and TDX along the fault zone in the north segment, but less clearly in the south segment. Also, Di

  16. Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2015-12-01

    High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.

  17. Style and rate of quaternary deformation of the Hosgri Fault Zone, offshore south-central coastal California

    USGS Publications Warehouse

    Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.

    2004-01-01

    The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed

  18. Width of the Surface Rupture Zone for Thrust Earthquakes and Implications for Earthquake Fault Zoning: Chi-Chi 1999 and Wenchuan 2008 Earthquakes

    NASA Astrophysics Data System (ADS)

    Boncio, P.; Caldarella, M.

    2016-12-01

    We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.

  19. Subsurface geometry and evolution of the Seattle fault zone and the Seattle Basin, Washington

    USGS Publications Warehouse

    ten Brink, Uri S.; Molzer, P.C.; Fisher, M.A.; Blakely, R.J.; Bucknam, R.C.; Parsons, T.; Crosson, R.S.; Creager, K.C.

    2002-01-01

    The Seattle fault, a large, seismically active, east-west-striking fault zone under Seattle, is the best-studied fault within the tectonically active Puget Lowland in western Washington, yet its subsurface geometry and evolution are not well constrained. We combine several analysis and modeling approaches to study the fault geometry and evolution, including depth-converted, deep-seismic-reflection images, P-wave-velocity field, gravity data, elastic modeling of shoreline uplift from a late Holocene earthquake, and kinematic fault restoration. We propose that the Seattle thrust or reverse fault is accompanied by a shallow, antithetic reverse fault that emerges south of the main fault. The wedge enclosed by the two faults is subject to an enhanced uplift, as indicated by the boxcar shape of the shoreline uplift from the last major earthquake on the fault zone. The Seattle Basin is interpreted as a flexural basin at the footwall of the Seattle fault zone. Basin stratigraphy and the regional tectonic history lead us to suggest that the Seattle fault zone initiated as a reverse fault during the middle Miocene, concurrently with changes in the regional stress field, to absorb some of the north-south shortening of the Cascadia forearc. Kingston Arch, 30 km north of the Seattle fault zone, is interpreted as a more recent disruption arising within the basin, probably due to the development of a blind reverse fault.

  20. Scissoring Fault Rupture Properties along the Median Tectonic Line Fault Zone, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Nishizaka, N.; Onishi, K.; Sakamoto, J.; Takahashi, K.

    2017-12-01

    The Median Tectonic Line fault zone (hereinafter MTLFZ) is the longest and most active fault zone in Japan. The MTLFZ is a 400-km-long trench parallel right-lateral strike-slip fault accommodating lateral slip components of the Philippine Sea plate oblique subduction beneath the Eurasian plate [Fitch, 1972; Yeats, 1996]. Complex fault geometry evolves along the MTLFZ. The geomorphic and geological characteristics show a remarkable change through the MTLFZ. Extensional step-overs and pull-apart basins and a pop-up structure develop in western and eastern parts of the MTLFZ, respectively. It is like a "scissoring fault properties". We can point out two main factors to form scissoring fault properties along the MTLFZ. One is a regional stress condition, and another is a preexisting fault. The direction of σ1 anticlockwise rotate from N170°E [Famin et al., 2014] in the eastern Shikoku to Kinki areas and N100°E [Research Group for Crustral Stress in Western Japan, 1980] in central Shikoku to N85°E [Onishi et al., 2016] in western Shikoku. According to the rotation of principal stress directions, the western and eastern parts of the MTLFZ are to be a transtension and compression regime, respectively. The MTLFZ formed as a terrain boundary at Cretaceous, and has evolved with a long active history. The fault style has changed variously, such as left-lateral, thrust, normal and right-lateral. Under the structural condition of a preexisting fault being, the rupture does not completely conform to Anderson's theory for a newly formed fault, as the theory would require either purely dip-slip motion on the 45° dipping fault or strike-slip motion on a vertical fault. The fault rupture of the 2013 Barochistan earthquake in Pakistan is a rare example of large strike-slip reactivation on a relatively low angle dipping fault (thrust fault), though many strike-slip faults have vertical plane generally [Avouac et al., 2014]. In this presentation, we, firstly, show deep subsurface

  1. Three Types of Flower Structures in a Divergent-Wrench Fault Zone

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Liu, Chi-yang

    2017-12-01

    Flower structures are typical features of wrench fault zones. In conventional studies, two distinct kinds of flower structures have been identified based on differences in their internal structural architecture: (1) negative flower structures characterized by synforms and normal separations and (2) positive flower structures characterized by antiforms and reverse separations. In addition to negative and positive flower structures, in this study, a third kind of flower structure was identified in a divergent-wrench fault zone, a hybrid characterized by both antiforms and normal separations. Negative flower structures widely occur in divergent-wrench fault zones, and their presence indicates the combined effects of extensional and strike-slip motion. In contrast, positive and hybrid flower structures occur only in fault restraining bends and step overs. A hybrid flower structure can be considered as product of a kind of structural deformation typical of divergent-wrench zones; it is the result of the combined effects of extensional, compressional, and strike-slip strains under a locally appropriate compressional environment. The strain situation in it represents the transition stage that in between positive and negative flower structures. Kinematic and dynamic characteristics of the hybrid flower structures indicate the salient features of structural deformation in restraining bends and step overs along divergent-wrench faults, including the coexistence of three kinds of strains (i.e., compression, extension, and strike-slip) and synchronous presence of compressional (i.e., typical fault-bend fold) and extensional (normal faults) deformation in the same place. Hybrid flower structures are also favorable for the accumulation of hydrocarbons because of their special structural configuration in divergent-wrench fault zones.

  2. The western limits of the Seattle fault zone and its interaction with the Olympic Peninsula, Washington

    USGS Publications Warehouse

    A.P. Lamb,; L.M. Liberty,; Blakely, Richard J.; Pratt, Thomas L.; Sherrod, B.L.; Van Wijk, K.

    2012-01-01

    We present evidence that the Seattle fault zone of Washington State extends to the west edge of the Puget Lowland and is kinemati-cally linked to active faults that border the Olympic Massif, including the Saddle Moun-tain deformation zone. Newly acquired high-resolution seismic reflection and marine magnetic data suggest that the Seattle fault zone extends west beyond the Seattle Basin to form a >100-km-long active fault zone. We provide evidence for a strain transfer zone, expressed as a broad set of faults and folds connecting the Seattle and Saddle Mountain deformation zones near Hood Canal. This connection provides an explanation for the apparent synchroneity of M7 earthquakes on the two fault systems ~1100 yr ago. We redefi ne the boundary of the Tacoma Basin to include the previously termed Dewatto basin and show that the Tacoma fault, the southern part of which is a backthrust of the Seattle fault zone, links with a previously unidentifi ed fault along the western margin of the Seattle uplift. We model this north-south fault, termed the Dewatto fault, along the western margin of the Seattle uplift as a low-angle thrust that initiated with exhu-mation of the Olympic Massif and today accommodates north-directed motion. The Tacoma and Dewatto faults likely control both the southern and western boundaries of the Seattle uplift. The inferred strain trans-fer zone linking the Seattle fault zone and Saddle Mountain deformation zone defi nes the northern margin of the Tacoma Basin, and the Saddle Mountain deformation zone forms the northwestern boundary of the Tacoma Basin. Our observations and model suggest that the western portions of the Seattle fault zone and Tacoma fault are com-plex, require temporal variations in principal strain directions, and cannot be modeled as a simple thrust and/or backthrust system.

  3. Detection of postseismic fault-zone collapse following the Landers earthquake

    NASA Astrophysics Data System (ADS)

    Massonnet, Didier; Thatcher, Wayne; Vadon, Hélèna

    1996-08-01

    STRESS changes caused by fault movement in an earthquake induce transient aseismic crustal movements in the earthquake source region that continue for months to decades following large events1-4. These motions reflect aseismic adjustments of the fault zone and/or bulk deformation of the surroundings in response to applied stresses2,5-7, and supply information regarding the inelastic behaviour of the Earth's crust. These processes are imperfectly understood because it is difficult to infer what occurs at depth using only surface measurements2, which are in general poorly sampled. Here we push satellite radar interferometry to near its typical artefact level, to obtain a map of the postseismic deformation field in the three years following the 28 June 1992 Landers, California earthquake. From the map, we deduce two distinct types of deformation: afterslip at depth on the fault that ruptured in the earthquake, and shortening normal to the fault zone. The latter movement may reflect the closure of dilatant cracks and fluid expulsion from a transiently over-pressured fault zone6-8.

  4. Continuous Record of Permeability inside the Wenchuan Earthquake Fault Zone

    NASA Astrophysics Data System (ADS)

    Xue, Lian; Li, Haibing; Brodsky, Emily

    2013-04-01

    Faults are complex hydrogeological structures which include a highly permeable damage zone with fracture-dominated permeability. Since fractures are generated by earthquakes, we would expect that in the aftermath of a large earthquake, the permeability would be transiently high in a fault zone. Over time, the permeability may recover due to a combination of chemical and mechanical processes. However, the in situ fault zone hydrological properties are difficult to measure and have never been directly constrained on a fault zone immediately after a large earthquake. In this work, we use water level response to solid Earth tides to constrain the hydraulic properties inside the Wenchuan Earthquake Fault Zone. The transmissivity and storage determine the phase and amplitude response of the water level to the tidal loading. By measuring phase and amplitude response, we can constrain the average hydraulic properties of the damage zone at 800-1200 m below the surface (~200-600 m from the principal slip zone). We use Markov chain Monte Carlo methods to evaluate the phase and amplitude responses and the corresponding errors for the largest semidiurnal Earth tide M2 in the time domain. The average phase lag is ~ 30o, and the average amplitude response is 6×10-7 strain/m. Assuming an isotropic, homogenous and laterally extensive aquifer, the average storage coefficient S is 2×10-4 and the average transmissivity T is 6×10-7 m2 using the measured phase and the amplitude response. Calculation for the hydraulic diffusivity D with D=T/S, yields the reported value of D is 3×10-3 m2/s, which is two orders of magnitude larger than pump test values on the Chelungpu Fault which is the site of the Mw 7.6 Chi-Chi earthquake. If the value is representative of the fault zone, then this means the hydrology processes should have an effect on the earthquake rupture process. This measurement is done through continuous monitoring and we could track the evolution for hydraulic properties

  5. Fault reactivation by fluid injection considering permeability evolution in fault-bordering damage zones

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Yehya, A.; Rice, J. R.; Yin, J.

    2017-12-01

    Earthquakes can be induced by human activity involving fluid injection, e.g., as wastewater disposal from hydrocarbon production. The occurrence of such events is thought to be, mainly, due to the increase in pore pressure, which reduces the effective normal stress and hence the strength of a nearby fault. Change in subsurface stress around suitably oriented faults at near-critical stress states may also contribute. We focus on improving the modeling and prediction of the hydro-mechanical response due to fluid injection, considering the full poroelastic effects and not solely changes in pore pressure in a rigid host. Thus we address the changes in porosity and permeability of the medium due to the changes in the local volumetric strains. Our results also focus on including effects of the fault architecture (low permeability fault core and higher permeability bordering damage zones) on the pressure diffusion and the fault poroelastic response. Field studies of faults have provided a generally common description for the size of their bordering damage zones and how they evolve along their direction of propagation. Empirical laws, from a large number of such observations, describe their fracture density, width, permeability, etc. We use those laws and related data to construct our study cases. We show that the existence of high permeability damage zones facilitates pore-pressure diffusion and, in some cases, results in a sharp increase in pore-pressure at levels much deeper than the injection wells, because these regions act as conduits for fluid pressure changes. This eventually results in higher seismicity rates. By better understanding the mechanisms of nucleation of injection-induced seismicity, and better predicting the hydro-mechanical response of faults, we can assess methodologies and injection strategies to avoid risks of high magnitude seismic events. Microseismic events occurring after the start of injection are very important indications of when injection

  6. The Damage and Geochemical Signature of a Crustal Scale Strike-Slip Fault Zone

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Mitchell, T. M.; Arancibia, G.; Jensen Siles, E.; Rempe, M.; Cembrano, J. M.; Faulkner, D. R.

    2013-12-01

    Fluid-flow migration in the upper crust is strongly controlled by fracture network permeability and connectivity within fault zones, which can lead to fluid-rock chemical interaction represented as mineral precipitation in mesh veins and/or mineralogical changes (alteration) of the host rock. While the dimensions of fault damage zones defined by fracture intensity is beginning to be better understood, how such dimensions compare to the size of alteration zones is less well known. Here, we show quantitative structural and chemical analyses as a function of distance from a crustal-scale strike-slip fault in the Atacama Fault System, Northern Chile, to compare fault damage zone characteristics with its geochemical signature. The Jorgillo Fault (JF) is a ca. 18 km long NNW striking strike-slip fault cutting Mesozoic rocks with sinistral displacement of ca. 4 km. In the study area, the JF cuts through orthogranulitic and gabbroic rocks at the west (JFW) and the east side (JFE), respectively. A 200 m fault perpendicular transect was mapped and sampled for structural and XRF analyses of the core, damage zone and protolith. The core zone consists of a ca. 1 m wide cataclasite zone bounded by two fault gouge zones ca. 40 cm. The damage zone width defined by fracture density is ca. 50 m wide each side of the core. The damage zone in JFW is characterized by NW-striking subvertical 2 cm wide cataclastic rocks and NE-striking milimetric open fractures. In JFE, 1-20 mm wide chlorite, quartz-epidote and quartz-calcite veins, cut the gabbro. Microfracture analysis in JFW reveal mm-wide cataclasitic/ultracataclasitic bands with clasts of protolith and chlorite orientated subparallel to the JF in the matrix, calcite veins in a T-fractures orientation, and minor polidirectional chlorite veins. In JFE, chlorite filled conjugate fractures with syntaxial growth textures and evidence for dilational fracturing processes are seen. Closest to the core, calcite veins crosscut chlorite veins

  7. Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.

    2015-12-01

    Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.

  8. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  9. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    DOE PAGES

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; ...

    2017-08-12

    In this paper, we studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite differencemore » modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. Finally, the plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).« less

  10. Distribution of Subsurface Flexure zone caused by Uemachi Fault, Japan and its activity

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Inoue, N.; Takemura, K.; Ito, H.; Mitamura, M.

    2012-12-01

    In Osaka, Uemachi Fault is one of the famous active faults. It across the center of Osaka and lies in N-S direction mainly and is more than 40 km in length. The faults bound sedimentary basins, where thick sedimentary deposits of the Pliocene-Quaternary Osaka Group have accumulated. The deposits consist primarily of sand and marine and non-marine clay, and the clay layers are key markers for the interpretation of glacial and interglacial cycles. In this study, we estimate the width of the flexure zone using a geotechnical borehole database. GI database collects more than 40,000 boreholes and includes both geological information and soil properties around Osaka by the Geo-database Information Committee of Kansai Area. Our results indicate that the deformation associated with the flexure zone is distributed primarily along the splay fault (NE-SW) and not along the main fault, suggesting that the splay fault might be the primary fault at present. We first examined the borehole data along the seismic reflection line and then considered the surrounding area. An Upper Pleistocene marine clay (Ma12) is a good indicator of the flexure zone. We constructed many cross sections in and around the fault zone and classified the deformation form into three categories around the flexure zone. The results of this study allowed us to map the distribution of folding in a zone in the west of the Osaka area. Folding can be classified into three types: (1) Ma12 folding, (2) Ma12 folding that does not continue toward the hanging wall, and (3) folding or displacement of old marine clay. These folding zone trends are N-W strike however these trace are serpentine. These folding zone information are not in worth to estimate the source fault, however these zone will be more serious damaged when the earthquake occurred. Our result agrees well with the average displacement speed of about 0.4 m/ka that was derived by the Headquarters for Earthquake Research Promotion of the Ministry of Education

  11. Constraints on Fault Damage Zone Properties and Normal Modes from a Dense Linear Array Deployment along the San Jacinto Fault Zone

    NASA Astrophysics Data System (ADS)

    Allam, A. A.; Lin, F. C.; Share, P. E.; Ben-Zion, Y.; Vernon, F.; Schuster, G. T.; Karplus, M. S.

    2016-12-01

    We present earthquake data and statistical analyses from a month-long deployment of a linear array of 134 Fairfield three-component 5 Hz seismometers along the Clark strand of the San Jacinto fault zone in Southern California. With a total aperture of 2.4km and mean station spacing of 20m, the array locally spans the entire fault zone from the most intensely fractured core to relatively undamaged host rock on the outer edges. We recorded 36 days of continuous seismic data at 1000Hz sampling rate, capturing waveforms from 751 local events with Mw>0.5 and 43 teleseismic events with M>5.5, including two 600km deep M7.5 events along the Andean subduction zone. For any single local event on the San Jacinto fault, the central stations of the array recorded both higher amplitude and longer duration waveforms, which we interpret as the result of damage-related low-velocity structure acting as a broad waveguide. Using 271 San Jacinto events, we compute the distributions of three quantities for each station: maximum amplitude, mean amplitude, and total energy (the integral of the envelope). All three values become statistically lower with increasing distance from the fault, but in addition show a nonrandom zigzag pattern which we interpret as normal mode oscillations. This interpretation is supported by polarization analysis which demonstrates that the high-amplitude late-arriving energy is strongly vertically polarized in the central part of the array, consistent with Love-type trapped waves. These results, comprising nearly 30,000 separate coseismic waveforms, support the consistent interpretation of a 450m wide asymmetric damage zone, with the lowest velocities offset to the northeast of the mapped surface trace by 100m. This asymmetric damage zone has important implications for the earthquake dynamics of the San Jacinto and especially its ability to generate damaging multi-segment ruptures.

  12. Permeability of the San Andreas Fault Zone at Depth

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Song, I.; Saffer, D.

    2010-12-01

    Quantifying fault rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that affect fault mechanics by mediating effective stress. These include long-term fault strength as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. Despite its importance, measurements of fault zone permeability for relevant natural materials are scarce, owing to the difficulty of coring through active fault zones seismogenic depths. Most existing measurements of fault zone permeability are from altered surface samples or from thinner, lower displacement faults than the SAF. Here, we report on permeability measurements conducted on gouge from the actively creeping Central Deformation Zone (CDZ) of the San Andreas Fault, sampled in the SAFOD borehole at a depth of ~2.7 km (Hole G, Run 4, sections 4,5). The matrix of the gouge in this interval is predominantly composed of particles <10 µm, with ~5 vol% clasts of serpentinite, very fine-grained sandstone, and siltstone. The 2.6 m-thick CDZ represents the main fault trace and hosts ~90% of the active slip on the SAF at this location, as documented by repeated casing deformation surveys. We measured permeability in two different configurations: (1) in a uniaxial pressure cell, in which a sample is placed into a rigid steel ring which imposes a zero lateral strain condition and subjected to axial load, and (2) in a standard triaxial system under isostatic stress conditions. In the uniaxial configuration, we obtained permeabilities at axial effective stresses up to 90 MPa, and in the triaxial system up to 10 MPa. All experiments were conducted on cylindrical subsamples of the SAFOD core 25 mm in diameter, with lengths ranging from 18mm to 40mm, oriented for flow approximately perpendicular to the fault. In uniaxial tests, permeability is determined by running constant rate of strain (CRS) tests up

  13. High stresses stored in fault zones: example of the Nojima fault (Japan)

    NASA Astrophysics Data System (ADS)

    Boullier, Anne-Marie; Robach, Odile; Ildefonse, Benoît; Barou, Fabrice; Mainprice, David; Ohtani, Tomoyuki; Fujimoto, Koichiro

    2018-04-01

    During the last decade pulverized rocks have been described on outcrops along large active faults and attributed to damage related to a propagating seismic rupture front. Questions remain concerning the maximal lateral distance from the fault plane and maximal depth for dynamic damage to be imprinted in rocks. In order to document these questions, a representative core sample of granodiorite located 51.3 m from the Nojima fault (Japan) that was drilled after the Hyogo-ken Nanbu (Kobe) earthquake is studied by using electron backscattered diffraction (EBSD) and high-resolution X-ray Laue microdiffraction. Although located outside of the Nojima damage fault zone and macroscopically undeformed, the sample shows pervasive microfractures and local fragmentation. These features are attributed to the first stage of seismic activity along the Nojima fault characterized by laumontite as the main sealing mineral. EBSD mapping was used in order to characterize the crystallographic orientation and deformation microstructures in the sample, and X-ray microdiffraction was used to measure elastic strain and residual stresses on each point of the mapped quartz grain. Both methods give consistent results on the crystallographic orientation and show small and short wavelength misorientations associated with laumontite-sealed microfractures and alignments of tiny fluid inclusions. Deformation microstructures in quartz are symptomatic of the semi-brittle faulting regime, in which low-temperature brittle plastic deformation and stress-driven dissolution-deposition processes occur conjointly. This deformation occurred at a 3.7-11.1 km depth interval as indicated by the laumontite stability domain. Residual stresses are calculated from deviatoric elastic strain tensor measured using X-ray Laue microdiffraction using the Hooke's law. The modal value of the von Mises stress distribution is at 100 MPa and the mean at 141 MPa. Such stress values are comparable to the peak strength of a

  14. Assessment of the geothermal potential of fault zones in Germany by numerical modelling

    NASA Astrophysics Data System (ADS)

    Kuder, Jörg

    2017-04-01

    Fault zones with significantly better permeabilities than host rocks can act as natural migration paths for ascending fluids that are able to transport thermal energy from deep geological formations. Under these circumstances, fault zones are interesting for geothermal utilization especially those in at least 7 km depth (Jung et al. 2002, Paschen et al. 2003). One objective of the joint project "The role of deep rooting fault zones for geothermal energy utilization" supported by the Federal Ministry for Economic Affairs and Energy was the evaluation of the geothermal potential of fault zones in Germany by means of numerical modelling with COMSOL. To achieve this goal a method was developed to estimate the potential of regional generalized fault zones in a simple but yet sophisticated way. The main problem for the development of a numerical model is the lack of geological and hydrological data. To address this problem the geothermal potential of a cube with 1 km side length including a 20 meter broad, 1000 m high and 1000 m long fault zone was calculated as a unified model with changing parameter sets. The properties of the surrounding host rock and the fault zone are assumed homogenous. The numerical models were calculated with a broad variety of fluid flow, rock and fluid property parameters for the depths of 3000-4000 m, 4000-5000 m, 5000-6000 m and 6000-7000 m. The fluid parameters are depending on temperature, salt load and initial pressure. The porosity and permeability values are provided by the database of the geothermal information system (GeotIS). The results are summarized in a table of values of geothermal energy modelled with different parameter sets and depths. The geothermal potential of fault zones in Germany was then calculated on the basis of this table and information of the geothermal atlas of Germany (2016).

  15. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan.

    PubMed

    Ma, Kuo-Fong; Lin, Yen-Yu; Lee, Shiann-Jong; Mori, Jim; Brodsky, Emily E

    2012-07-27

    Shear failure is the dominant mode of earthquake-causing rock failure along faults. High fluid pressure can also potentially induce rock failure by opening cavities and cracks, but an active example of this process has not been directly observed in a fault zone. Using borehole array data collected along the low-stress Chelungpu fault zone, Taiwan, we observed several small seismic events (I-type events) in a fluid-rich permeable zone directly below the impermeable slip zone of the 1999 moment magnitude 7.6 Chi-Chi earthquake. Modeling of the events suggests an isotropic, nonshear source mechanism likely associated with natural hydraulic fractures. These seismic events may be associated with the formation of veins and other fluid features often observed in rocks surrounding fault zones and may be similar to artificially induced hydraulic fracturing.

  16. The permeability of fault zones in the upper continental crust: statistical analysis from 460 datasets, updated depth-trends, and permeability contrasts between fault damage zones and protoliths.

    NASA Astrophysics Data System (ADS)

    Scibek, J.; Gleeson, T. P.; Ingebritsen, S.; McKenzie, J. M.

    2017-12-01

    Fault zones are an important part of the hydraulic structure of the Earth's crust and influence a wide range of Earth processes and a large amount of test data has been collected over the years. We conducted a meta-analysis of global of fault zone permeabilities in the upper brittle continental crust, using about 10,000 published research items from a variety of geoscience and engineering disciplines. Using 460 datasets at 340 localities, the in-situ bulk permeabilities (>10's meters scale, including macro-fractures) and matrix permeabilities (drilled core samples or outcrop spot tests) are separated, analyzed, and compared. The values have log-normal distributions and we analyze the log-permeability values. In the fault damage zones of plutonic and metamorphic rocks the mean bulk permeability was 1x10-14m2, compared to matrix mean of 1x10-16m2. In sedimentary siliciclastic rocks the mean value was the same for bulk and matrix permeability (4x10-14m2). More useful insights were determined from the regression analysis of paired permeability data at all sites (fault damage zone vs. protolith). Much of the variation in fault permeability is explained by the permeability of protolith: in relatively weak volcaniclastic and clay-rich rocks up to 70 to 88% of the variation is explained, and only 20-30% in plutonic and metamorphic rocks. We propose a revision at shallow depths for previously published upper-bound curves for the "fault-damaged crust " and the geothermal-metamorphic rock assemblage outside of major fault zones. Although the bounding curves describe the "fault-damaged crust" permeability parameter space adequately, the only statistically significant permeability-depth trend is for plutonic and metamorphic rocks (50% of variation explained). We find a depth-dependent systematic variation of the permeability ratio (fault damage zone / protolith) from the in-situ bulk permeability global data. A moving average of the log-permeability ratio value is 2 to 2

  17. Fracture Modes and Identification of Fault Zones in Wenchuan Earthquake Fault Scientific Drilling Boreholes

    NASA Astrophysics Data System (ADS)

    Deng, C.; Pan, H.; Zhao, P.; Qin, R.; Peng, L.

    2017-12-01

    After suffering from the disaster of Wenchuan earthquake on May 12th, 2008, scientists are eager to figure out the structure of formation, the geodynamic processes of faults and the mechanism of earthquake in Wenchuan by drilling five holes into the Yingxiu-Beichuan fault zone and Anxian-Guanxian fault zone. Fractures identification and in-situ stress determination can provide abundant information for formation evaluation and earthquake study. This study describe all the fracture modes in the five boreholes on the basis of cores and image logs, and summarize the response characteristics of fractures in conventional logs. The results indicate that the WFSD boreholes encounter enormous fractures, including natural fractures and induced fractures, and high dip-angle conductive fractures are the most common fractures. The maximum horizontal stress trends along the borehole are deduced as NWW-SEE according to orientations of borehole breakouts and drilling-induced fractures, which is nearly parallel to the strikes of the younger natural fracture sets. Minor positive deviations of AC (acoustic log) and negative deviation of DEN (density log) demonstrate their responses to fracture, followed by CNL (neutron log), resistivity logs and GR (gamma ray log) at different extent of intensity. Besides, considering the fact that the reliable methods for identifying fracture zone, like seismic, core recovery and image logs, can often be hampered by their high cost and limited application, this study propose a method by using conventional logs, which are low-cost and available in even old wells. We employ wavelet decomposition to extract the high frequency information of conventional logs and reconstruction a new log in special format of enhance fracture responses and eliminate nonfracture influence. Results reveal that the new log shows obvious deviations in fault zones, which confirm the potential of conventional logs in fracture zone identification.

  18. Fine structure of the landers fault zone: Segmentation and the rupture process

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.

    1994-01-01

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  19. Fault zone structure and inferences on past activities of the active Shanchiao Fault in the Taipei metropolis, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.; Lee, J.; Chan, Y.; Lu, C.

    2010-12-01

    The Taipei Metropolis, home to around 10 million people, is subject to seismic hazard originated from not only distant faults or sources scattered throughout the Taiwan region, but also active fault lain directly underneath. Northern Taiwan including the Taipei region is currently affected by post-orogenic (Penglai arc-continent collision) processes related to backarc extension of the Ryukyu subduction system. The Shanchiao Fault, an active normal fault outcropping along the western boundary of the Taipei Basin and dipping to the east, is investigated here for its subsurface structure and activities. Boreholes records in the central portion of the fault were analyzed to document the stacking of post- Last Glacial Maximum growth sediments, and a tulip flower structure is illuminated with averaged vertical slip rate of about 3 mm/yr. Similar fault zone architecture and post-LGM tectonic subsidence rate is also found in the northern portion of the fault. A correlation between geomorphology and structural geology in the Shanchiao Fault zone demonstrates an array of subtle geomorphic scarps corresponds to the branch fault while the surface trace of the main fault seems to be completely erased by erosion and sedimentation. Such constraints and knowledge are crucial in earthquake hazard evaluation and mitigation in the Taipei Metropolis, and in understanding the kinematics of transtensional tectonics in northern Taiwan. Schematic 3D diagram of the fault zone in the central portion of the Shanchiao Fault, displaying regional subsurface geology and its relation to topographic features.

  20. Space-time evolution of cataclasis in carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco; Grieco, Donato Stefano; Agosta, Fabrizio; Prosser, Giacomo

    2018-05-01

    The present contribution focuses on the micro-mechanisms associated to cataclasis of both calcite- and dolomite-rich fault rocks. This work combines field and laboratory data of carbonate fault cores currently exposed in central and southern Italy. By first deciphering the main fault rock textures, their spatial distribution, crosscutting relationships and multi-scale dimensional properties, the relative timing of Intragranular Extensional Fracturing (IEF), chipping, and localized shear is inferred. IEF was predominant within already fractured carbonates, forming coarse and angular rock fragments, and likely lasted for a longer period within the dolomitic fault rocks. Chipping occurred in both lithologies, and was activated by grain rolling forming minute, sub-rounded survivor grains embedded in a powder-like carbonate matrix. The largest fault zones, which crosscut either limestones or dolostones, were subjected to localized shear and, eventually, to flash temperature increase which caused thermal decomposition of calcite within narrow (cm-thick) slip zones. Results are organized in a synoptic panel including the main dimensional properties of survivor grains. Finally, a conceptual model of the time-dependent evolution of cataclastic deformation in carbonate rocks is proposed.

  1. Continuous Record of Permeability inside the Wenchuan Earthquake Fault Zone

    NASA Astrophysics Data System (ADS)

    Xue, L.; Li, H.; Brodsky, E. E.; Wang, H.; Pei, J.

    2012-12-01

    Faults are complex hydrogeological structures which include a highly permeable damage zone with fracture-dominated permeability. Since fractures are generated by earthquakes, we would expect that in the aftermath of a large earthquake, the permeability would be transiently high in a fault zone. Over time, the permeability may recover due to a combination of chemical and mechanical processes. However, the in situ fault zone hydrological properties are difficult to measure and have never been directly constrained on a fault zone immediately after a large earthquake. In this work, we use water level response to solid Earth tides to constrain the hydraulic properties inside the Wenchuan Earthquake Fault Zone. The transmissivity and storage determine the phase and amplitude response of the water level to the tidal loading. By measuring phase and amplitude response, we can constrain the average hydraulic properties of the damage zone at 800-1200 m below the surface (˜200-600 m from the principal slip zone). We use Markov chain Monte Carlo methods to evaluate the phase and amplitude responses and the corresponding errors for the largest semidiurnal Earth tide M2 in the time domain. The average phase lag is ˜30°, and the average amplitude response is 6×10-7 strain/m. Assuming an isotropic, homogenous and laterally extensive aquifer, the average storage coefficient S is 2×10-4 and the average transmissivity T is 6×10-7 m2 using the measured phase and the amplitude response. Calculation for the hydraulic diffusivity D with D=T/S, yields the reported value of D is 3×10-3 m2/s, which is two orders of magnitude larger than pump test values on the Chelungpu Fault which is the site of the Mw 7.6 Chi-Chi earthquake. If the value is representative of the fault zone, then this means the hydrology processes should have an effect on the earthquake rupture process. This measurement is done through continuous monitoring and we could track the evolution for hydraulic properties

  2. Structural styles of Paleozoic intracratonic fault reactivation: A case study of the Grays Point fault zone in southeastern Missouri, USA

    USGS Publications Warehouse

    Clendenin, C.W.; Diehl, S.F.

    1999-01-01

    A pronounced, subparallel set of northeast-striking faults occurs in southeastern Missouri, but little is known about these faults because of poor exposure. The Commerce fault system is the southernmost exposed fault system in this set and has an ancestry related to Reelfoot rift extension. Recent published work indicates that this fault system has a long history of reactivation. The northeast-striking Grays Point fault zone is a segment of the Commerce fault system and is well exposed along the southeast rim of an inactive quarry. Our mapping shows that the Grays Point fault zone also has a complex history of polyphase reactivation, involving three periods of Paleozoic reactivation that occurred in Late Ordovician, Devonian, and post-Mississippian. Each period is characterized by divergent, right-lateral oblique-slip faulting. Petrographic examination of sidwall rip-out clasts in calcite-filled faults associated with the Grays Point fault zone supports a minimum of three periods of right-lateral oblique-slip. The reported observations imply that a genetic link exists between intracratonic fault reactivation and strain produced by Paleozoic orogenies affecting the eastern margin of Laurentia (North America). Interpretation of this link indicate that right-lateral oblique-slip has occurred on all of the northeast-striking faults in southeastern Missouri as a result of strain influenced by the convergence directions of the different Paleozoic orogenies.

  3. The Queen Charlotte-Fairweather Fault Zone - The Knife-Edged Pacific-North American Plate Boundary

    NASA Astrophysics Data System (ADS)

    Greene, H. G.; Barrie, J. V. J.; Brothers, D. S.; Nishenko, S. P.; Conway, K.; Enkin, R.; Conrad, J. E.; Maier, K. L.; Stacy, C.

    2016-12-01

    Recent investigations of the Queen Charlotte-Fairweather (QC-FW) Fault zone using multibeam echosounder bathymetric and 3.5-kHz sub-bottom profile data show that the fault zone is primarily represented by a single linear structure with small, localized pull-apart basins suggestive of transtension. Water column acoustical data imaged gas plumes concentrated along the fault zone with plume columns extending as much as 700 m above the crest of mud volcanoes. Piston cores indicate that the fault zone cuts hard-packed dense sands that have been dated as Pleistocene in age. The newly discovered fluids associated with the southern half of the fault zone and volcanic edifices with oceanic and continental plate petrologic affinities suggest that the QC-FW is a leaky transform system. Two independent investigations, one in the north part and one in the central part of the fault zone, using two different types of piercing points, found that the slip rate along at least a 200 km length was consistent at between 40-55 mm/yr. since about 14 ka, equivalent to the relative plate motion between the Pacific and North American plates in the NE Pacific region. We surmise that the QC-FW is accommodating most, if not all, of relative motion along a single primary strand without any detectable partitioning of motion onto other faults. This right-lateral strike-slip fault zone is expressed on the seafloor as a very straight feature that probably represents nearly pure strike-slip motion.

  4. Field-based perspective on fault rock evolution and microstructures in low-angle fault zones (W-Cyclades, Greece)

    NASA Astrophysics Data System (ADS)

    Grasemann, Bernhard

    2010-05-01

    The mechanics of sub-horizontal faults, typically active at the brittle/ductile transition zone, are still controversial because they do not conform to current fault-mechanical theory. In the Western Cyclades (Greece) conjugate high-angle brittle faults mechanically interact with sub-horizontal faults and therefore models based on fault and/or stress rotation can be rejected. A range of different deformation mechanisms and/or rock properties must have resulted in an reduction of the fault strength in both the ductily and cataclastically deformed fault rocks. Typically the low-angle faults have following characteristics: The footwall below the subhorizontal faults consists of coarse-grained impure marbles and greenschists, which record an increase in shear strain localizing in several meters to tens of meters thick ultra fine-grained marble mylonites. These ultamylonites are delimited along a knife-sharp slickenside plane juxtaposing tens of decimeter thick zones of polyphase ultracataclasites. The marbles accommodated high shear strain by ductile deformation mechanisms such as dislocation creep and/or grain size sensitive flow by recrystallization, which might have result in fault zone weakening. Typically the marbles are impure and record spatial arrangement of mica and quartz grains, which might have lead to structural softening by decoupling of the calcite matrix from the clasts. During brittle deformation the massif marble ultramylonites act as a strong plate and ultracataclastic deformation is localizing exactly along the border of this plate. Although some of the cataclastic deformation mechanisms lead to chaotic fabrics with evidence for frictional sliding and comminution, others favor the formation of foliated cataclasites and fault gouges with various intensities of phyllosilicate fabrics. Frequently, a repeated switch between grain fracturing processes and processes, which created a sc or scc'-type foliation can be observed. On Serifos the low-angle fault

  5. The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault

    NASA Astrophysics Data System (ADS)

    Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.

    2012-12-01

    The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.

  6. Static versus dynamic fracturing in shallow carbonate fault zones

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Doan, M. L.; Aben, F. M.; Fusseis, F.; Mitchell, T. M.; Di Toro, G.

    2015-12-01

    Moderate to large earthquakes often nucleate within and propagate through carbonates in the shallow crust, therefore several field and experimental studies were recently aimed to constrain earthquake-related deformation processes within carbonate fault rocks. In particular, the occurrence of thick belts (10-100s m) of low-strain fault-related breccias (average size of rock fragments >1 cm), which is relatively common within carbonate damage zones, was generally interpreted as resulting from the quasi-static growth of fault zones rather than from the cumulative effect of multiple earthquake ruptures. Here we report the occurrence of up to hundreds of meters thick belts of intensely fragmented dolostones along the major transpressive Foiana Fault Zone (Italian Southern Alps) which was exhumed from < 2 km depth. Such dolostones are reduced into fragments ranging from few centimeters down to few millimeters in size with ultrafine-grained layers in proximity to the principal slip zones. Preservation of the original bedding indicates a lack of significant shear strain in the fragmented dolostones which seem to have been shattered in situ. To investigate the origin of the in-situ shattered rocks, the host dolostones were deformed in uniaxial compression both under quasi-static loading (strain rate ~10-3 s-1) and dynamic loading (strain rate >50 s-1). Dolostones deformed up to failure under low-strain rate were affected by single to multiple discrete (i.e. not interconnected) extensional fractures sub-parallel to the loading direction. Dolostones deformed under high-strain rate were shattered above a strain rate threshold of ~200 s-1(strain >1.2%) while they were split in few fragments or were macroscopically intact for lower strain rates. Experimentally shattered dolostones were reduced into a non-cohesive material with most rock fragments a few millimeters in size and elongated parallel to the loading direction. Fracture networks were investigated by X

  7. Pore network properties of sandstones in a fault damage zone

    NASA Astrophysics Data System (ADS)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier

    2018-05-01

    The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.

  8. Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Mitchell, T.; Faulkner, D.

    2008-12-01

    In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault

  9. Paleoearthquake recurrence on the East Paradise fault zone, metropolitan Albuquerque, New Mexico

    USGS Publications Warehouse

    Personius, Stephen F.; Mahan, Shannon

    2000-01-01

    A fortuitous exposure of the East Paradise fault zone near Arroyo de las Calabacillas has helped us determine a post-middle Pleistocene history for a long-forgotten Quaternary fault in the City of Albuquerque, New Mexico. Mapping of two exposures of the fault zone allowed us to measure a total vertical offset of 2.75 m across middle Pleistocene fluvial and eolian deposits and to estimate individual surface-faulting events of about 1, 0.5, and 1.25 m. These measurements and several thermoluminescence ages allow us to calculate a long-term average slip rate of 0.01 ± 0.001 mm/yr and date two surface-faulting events to 208 ± 25 ka and 75 ± 7 ka. The youngest event probably occurred in the late Pleistocene, sometime after 75 ± 7 ka. These data yield a single recurrence interval of 133 ± 26 ka and an average recurrence interval of 90 ± 10 ka. However, recurrence intervals are highly variable because the two youngest events occurred in less than 75 ka. Offsets of 0.5-1.25 m and a fault length of 13-20 km indicate that surface-rupturing paleoearthquakes on the East Paradise fault zone had probable Ms or Mw magnitudes of 6.8-7.0. Although recurrence intervals are long on the East Paradise fault zone, these data are significant because they represent some of the first published slip rate, paleoearthquake magnitude, and recurrence information for any of the numerous Quaternary faults in the rapidly growing Albuquerque-Rio Rancho metropolitan area.

  10. Comparisons of Low-Strain Amplification at Soft-Sediment, Hard-Rock, Topographic, and Fault-Zone Sites in the Hayward Fault Zone, California

    NASA Astrophysics Data System (ADS)

    Catchings, R.; Strayer, L. M.; Goldman, M.

    2014-12-01

    We used a temporary network of approximately 600 seismographs to record a seismic source generated by the collapse of a 13-story building near the active trace of the Hayward Fault. These data allow us to evaluate variations in ground shaking across a series of 30 2-km-long radial arrays centered on the seismic source. Individual seismographs were spaced at 200-m intervals, forming a series of 360°concentric arrays around the seismic source. The data show variations in amplification caused by (1) soft sediments within the East Bay alluvial plain (EBAP), (2) hard rocks within the East Bay hills (EBH), (3) low-velocity rocks within the Hayward Fault zone (HFZ), and (4) topography. Given that ground shaking varies strongly with distance from the source, the concentric arrays allowed us to measure variations in ground shaking as a function of azimuth at fixed distances from the source. On individual linear profiles within the concentric arrays, we observed decreases in peak ground velocity (PGV) across the HFZ and other faults within the EBH. However, for a given distance from the source, we observe four to five fold amplification from the EBAP sites compared to most sites in the EBH. Topographic and fault-zone amplification effects within the EBH, however, are greater than the EBAP sediment amplification. Thus, for future earthquakes, shaking at many sites within the EBH may be significantly stronger than many sites within the EBAP. These observations suggest amplification can be expected in unconsolidated sediments, but topographic and fault-zone amplification can be larger. This confirms the importance of site effects for hazard mitigation and in interpreting MMI for future and historical earthquakes.

  11. Fault interaction and stresses along broad oceanic transform zone: Tjörnes Fracture Zone, north Iceland

    NASA Astrophysics Data System (ADS)

    Homberg, C.; Bergerat, F.; Angelier, J.; Garcia, S.

    2010-02-01

    Transform motion along oceanic transforms generally occurs along narrow faults zones. Another class of oceanic transforms exists where the plate boundary is quite large (˜100 km) and includes several subparallel faults. Using a 2-D numerical modeling, we simulate the slip distribution and the crustal stress field geometry within such broad oceanic transforms (BOTs). We examine the possible configurations and evolution of such BOTs, where the plate boundary includes one, two, or three faults. Our experiments show that at any time during the development of the plate boundary, the plate motion is not distributed along each of the plate boundary faults but mainly occurs along a single master fault. The finite width of a BOT results from slip transfer through time with locking of early faults, not from a permanent distribution of deformation over a wide area. Because of fault interaction, the stress field geometry within the BOTs is more complex than that along classical oceanic transforms and includes stress deflections close to but also away from the major faults. Application of this modeling to the 100 km wide Tjörnes Fracture Zone (TFZ) in North Iceland, a major BOT of the Mid-Atlantic Ridge that includes three main faults, suggests that the Dalvik Fault and the Husavik-Flatey Fault developed first, the Grismsey Fault being the latest active structure. Since initiation of the TFZ, the Husavik-Flatey Fault accommodated most of the plate motion and probably persists until now as the main plate structure.

  12. Observations of fault zone heterogeneity effects on stress alteration and slip nucleation during a fault reactivation experiment in the Mont Terri rock laboratory, Switzerland

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Guglielmi, Y.

    2016-12-01

    The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations

  13. The effect of gradational velocities and anisotropy on fault-zone trapped waves

    NASA Astrophysics Data System (ADS)

    Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2017-08-01

    Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.

  14. Abrupt along-strike change in tectonic style: San Andreas fault zone, San Francisco Peninsula

    USGS Publications Warehouse

    Zoback, M.L.; Jachens, R.C.; Olson, J.A.

    1999-01-01

    Seismicity and high-resolution aeromagnetic data are used to define an abrupt change from compressional to extensional tectonism within a 10- to 15-km-wide zone along the San Andreas fault on the San Francisco Peninsula and offshore from the Golden Gate. This 100-km-long section of the San Andreas fault includes the hypocenter of the Mw = 7.8 1906 San Francisco earthquake as well as the highest level of persistent microseismicity along that ???470-km-long rupture. We define two distinct zones of deformation along this stretch of the fault using well-constrained relocations of all post-1969 earthquakes based a joint one-dimensional velocity/hypocenter inversion and a redetermination of focal mechanisms. The southern zone is characterized by thrust- and reverse-faulting focal mechanisms with NE trending P axes that indicate "fault-normal" compression in 7- to 10-km-wide zones of deformation on both sides of the San Andreas fault. A 1- to 2-km-wide vertical zone beneath the surface trace of the San Andreas is characterized by its almost complete lack of seismicity. The compressional deformation is consistent with the young, high topography of the Santa Cruz Mountains/Coast Ranges as the San Andreas fault makes a broad restraining left bend (???10??) through the southernmost peninsula. A zone of seismic quiescence ???15 km long separates this compressional zone to the south from a zone of combined normal-faulting and strike-slip-faulting focal mechanisms (including a ML = 5.3 earthquake in 1957) on the northernmost peninsula and offshore on the Golden Gate platform. Both linear pseudo-gravity gradients, calculated from the aeromagnetic data, and seismic reflection data indicate that the San Andreas fault makes an abrupt ???3-km right step less than 5 km offshore in this northern zone. A similar right-stepping (dilatational) geometry is also observed for the subparallel San Gregorio fault offshore. Persistent seismicity and extensional tectonism occur within the San

  15. Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements: Can we Predict Damage Zone Permeability?

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Faulkner, D. R.

    2009-04-01

    Models predicting crustal fluid flow are important for a variety of reasons; for example earthquake models invoking fluid triggering, predicting crustal strength modelling flow surrounding deep waste repositories or the recovery of natural resources. Crustal fluid flow is controlled by both the bulk transport properties of rocks as well as heterogeneities such as faults. In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were

  16. Stress state and movement potential of the Kar-e-Bas fault zone, Fars, Iran

    NASA Astrophysics Data System (ADS)

    Sarkarinejad, Khalil; Zafarmand, Bahareh

    2017-08-01

    The Kar-e-Bas or Mengharak basement-inverted fault is comprised of six segments in the Zagros foreland folded belt of Iran. In the Fars region, this fault zone associated with the Kazerun, Sabz-Pushan and Sarvestan faults serves as a lateral transfer zone that accommodates the change in shortening direction from the western central to the eastern Zagros. This study evaluates the recent tectonic stress regime of the Kar-e-Bas fault zone based on inversion of earthquake focal mechanism data, and quantifies the fault movement potential of this zone based on the relationship between fault geometric characteristics and recent tectonic stress regimes. The trend and plunge of σ 1 and σ 3 are S25°W/04°-N31°E/05° and S65°E/04°-N60°W/10°, respectively, with a stress ratio of Φ = 0.83. These results are consistent with the collision direction of the Afro-Arabian continent and the Iranian microcontinent. The near horizontal plunge of maximum and minimum principle stresses and the value of stress ratio Φ indicate that the state of stress is nearly strike-slip dominated with little relative difference between the value of two principal stresses, σ 1 and σ 2. The obliquity of the maximum compressional stress into the fault trend reveals a typical stress partitioning of thrust and strike-slip motion in the Kar-e-Bas fault zone. Analysis of the movement potential of this fault zone shows that its northern segment has a higher potential of fault activity (0.99). The negligible difference between the fault-plane dips of the segments indicates that their strike is a controlling factor in the changes in movement potential.

  17. Are faults preferential flow paths through semiarid and arid vadose zones?

    NASA Astrophysics Data System (ADS)

    Sigda, John M.; Wilson, John L.

    2003-08-01

    Numerous faults crosscut the poorly lithified, basin-fill sands found in New Mexico's Rio Grande rift and in other extensional regimes. The deformational processes that created these faults sharply reduced both fault porosity and fault saturated hydraulic conductivity by altering grains and pores, particularly in structures referred to as deformation bands. The resulting pore distribution changes, which create barriers to saturated flow, should enhance fault unsaturated flow relative to parent sand under the relatively dry conditions of the semiarid southwest. We report the first measurements of unsaturated hydraulic properties for undisturbed fault materials, using samples from a small-displacement normal fault and parent sands in the Bosque del Apache Wildlife Refuge, central New Mexico. Fault samples were taken from a narrow zone of deformation bands. The unsaturated flow apparatus (UFA) centrifuge system was used to measure both relative permeability and moisture retention curves. We compared these relations and fitted hydraulic conductivity-matric potential models to test whether the fault has significantly different unsaturated hydraulic properties than its parent sand. Saturated conductivity is 3 orders of magnitude less in the fault than the undeformed sand. As matric potential decreases from 0 to -200 cm, unsaturated conductivity decreases roughly 1 order of magnitude in the fault but 5-6 orders of magnitude in undeformed sands. Fault conductivity is greater by 2-6 orders of magnitude at matric potentials between -200 and -1000 cm, which are typical potentials for semiarid and arid vadose zones. Fault deformation bands have much higher air-entry matric potential values than parent sands and remain close to saturation well after the parent sands have begun to approach residual moisture content. Under steady state, one-dimensional, gravity-driven flow conditions, moisture transport and solute advection is 102-106 times larger in the fault material than

  18. Dynamic rupture simulations on complex fault zone structures with off-fault plasticity using the ADER-DG method

    NASA Astrophysics Data System (ADS)

    Wollherr, Stephanie; Gabriel, Alice-Agnes; Igel, Heiner

    2015-04-01

    In dynamic rupture models, high stress concentrations at rupture fronts have to to be accommodated by off-fault inelastic processes such as plastic deformation. As presented in (Roten et al., 2014), incorporating plastic yielding can significantly reduce earlier predictions of ground motions in the Los Angeles Basin. Further, an inelastic response of materials surrounding a fault potentially has a strong impact on surface displacement and is therefore a key aspect in understanding the triggering of tsunamis through floor uplifting. We present an implementation of off-fault-plasticity and its verification for the software package SeisSol, an arbitrary high-order derivative discontinuous Galerkin (ADER-DG) method. The software recently reached multi-petaflop/s performance on some of the largest supercomputers worldwide and was a Gordon Bell prize finalist application in 2014 (Heinecke et al., 2014). For the nonelastic calculations we impose a Drucker-Prager yield criterion in shear stress with a viscous regularization following (Andrews, 2005). It permits the smooth relaxation of high stress concentrations induced in the dynamic rupture process. We verify the implementation by comparison to the SCEC/USGS Spontaneous Rupture Code Verification Benchmarks. The results of test problem TPV13 with a 60-degree dipping normal fault show that SeisSol is in good accordance with other codes. Additionally we aim to explore the numerical characteristics of the off-fault plasticity implementation by performing convergence tests for the 2D code. The ADER-DG method is especially suited for complex geometries by using unstructured tetrahedral meshes. Local adaptation of the mesh resolution enables a fine sampling of the cohesive zone on the fault while simultaneously satisfying the dispersion requirements of wave propagation away from the fault. In this context we will investigate the influence of off-fault-plasticity on geometrically complex fault zone structures like subduction

  19. Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession

    NASA Astrophysics Data System (ADS)

    Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.

    2017-12-01

    The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were

  20. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  1. The role of bed-parallel slip in the development of complex normal fault zones

    NASA Astrophysics Data System (ADS)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.

  2. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, Stephen; Younker, Leland; Zobeck, Mark; Cooper, George; ,

    1994-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through an integrated program of coring, fluid sampling, in-situ and laboratory experimentation and long-term monitoring, we hope to provide fundamental constraints on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300??C; 2) continuous coring of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6 and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of seismicity and a broad range of physical and chemical properties over periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the regions of greatest scientific interest.

  3. San Andreas fault zone drilling project: scientific objectives and technological challenges

    USGS Publications Warehouse

    Hickman, S.H.; Younker, L.W.; Zoback, M.D.

    1995-01-01

    We are leading a new international initiative to conduct scientific drilling within the San Andreas fault zone at depths of up to 10 km. This project is motivated by the need to understand the physical and chemical processes operating within the fault zone and to answer fundamental questions about earthquake generation along major plate-boundary faults. Through a comprehensive program of coring, fluid sampling, downhole measurements, laboratory experimentation, and long-term monitoring, we hope to obtain critical information on the structure, composition, mechanical behavior and physical state of the San Andreas fault system at depths comparable to the nucleation zones of great earthquakes. The drilling, sampling and observational requirements needed to ensure the success of this project are stringent. These include: 1) drilling stable vertical holes to depths of about 9 km in fractured rock at temperatures of up to 300°C; 2) continuous coring and completion of inclined holes branched off these vertical boreholes to intersect the fault at depths of 3, 6, and 9 km; 3) conducting sophisticated borehole geophysical measurements and fluid/rock sampling at high temperatures and pressures; and 4) instrumenting some or all of these inclined core holes for continuous monitoring of earthquake activity, fluid pressure, deformation and other parameters for periods of up to several decades. For all of these tasks, because of the overpressured clay-rich formations anticipated within the fault zone at depth, we expect to encounter difficult drilling, coring and hole-completion conditions in the region of greatest scientific interest.

  4. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    NASA Astrophysics Data System (ADS)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  5. A 3-D view of field-scale fault-zone cementation from geologically ground-truthed electrical resistivity

    NASA Astrophysics Data System (ADS)

    Barnes, H.; Spinelli, G. A.; Mozley, P.

    2015-12-01

    Fault-zones are an important control on fluid flow, affecting groundwater supply, hydrocarbon/contaminant migration, and waste/carbon storage. However, current models of fault seal are inadequate, primarily focusing on juxtaposition and entrainment effects, despite the recognition that fault-zone cementation is common and can dramatically reduce permeability. We map the 3D cementation patterns of the variably cemented Loma Blanca fault from the land surface to ~40 m depth, using electrical resistivity and induced polarization (IP). The carbonate-cemented fault zone is a region of anomalously low normalized chargeability, relative to the surrounding host material. Zones of low-normalized chargeability immediately under the exposed cement provide the first ground-truth that a cemented fault yields an observable IP anomaly. Low-normalized chargeability extends down from the surface exposure, surrounded by zones of high-normalized chargeability, at an orientation consistent with normal faults in the region; this likely indicates cementation of the fault zone at depth, which could be confirmed by drilling and coring. Our observations are consistent with: 1) the expectation that carbonate cement in a sandstone should lower normalized chargeability by reducing pore-surface area and bridging gaps in the pore space, and 2) laboratory experiments confirming that calcite precipitation within a column of glass beads decreases polarization magnitude. The ability to characterize spatial variations in the degree of fault-zone cementation with resistivity and IP has exciting implications for improving predictive models of the hydrogeologic impacts of cementation within faults.

  6. Dependence of residual displacements on the width and depth of compliant fault zones: a 3D study

    NASA Astrophysics Data System (ADS)

    Kang, J.; Duan, B.

    2011-12-01

    Compliant fault zones have been detected along active faults by seismic investigations (trapped waves and travel time analysis) and InSAR observations. However, the width and depth extent of compliant fault zones are still under debate in the community. Numerical models of dynamic rupture build a bridge between theories and the geological and geophysical observations. Theoretical 2D plane-strain studies of elastic and inelastic response of compliant fault zones to nearby earthquake have been conducted by Duan [2010] and Duan et al [2010]. In this study, we further extend the experiments to 3D with a focus on elastic response. We are specifically interested in how residual displacements depend on the structure and properties of complaint fault zones, in particular on the width and depth extent. We conduct numerical experiments on various types of fault-zone models, including fault zones with a constant width along depth, with decreasing widths along depth, and with Hanning taper profiles of velocity reduction. . Our preliminary results suggest 1) the width of anomalous horizontal residual displacement is only indicative of the width of a fault zone near the surface, and 2) the vertical residual displacement contains information of the depth extent of compliant fault zones.

  7. Scaling of the critical slip distance for seismic faulting with shear strain in fault zones

    USGS Publications Warehouse

    Marone, Chris; Kilgore, Brian D.

    1993-01-01

    THEORETICAL and experimentally based laws for seismic faulting contain a critical slip distance1-5, Dc, which is the slip over which strength breaks down during earthquake nucleation. On an earthquake-generating fault, this distance plays a key role in determining the rupture nucleation dimension6, the amount of premonitory and post-seismic slip7-10, and the maximum seismic ground acceleration1,11. In laboratory friction experiments, Dc has been related to the size of surface contact junctions2,5,12; thus, the discrepancy between laboratory measurements of Dc (??? 10-5 m) and values obtained from modelling earthquakes (??? 10-2 m) has been attributed to differences in roughness between laboratory surfaces and natural faults5. This interpretation predicts a dependence of Dc on the particle size of fault gouge 2 (breccia and wear material) but not on shear strain. Here we present experimental results showing that Dc scales with shear strain in simulated fault gouge. Our data suggest a new physical interpretation for the critical slip distance, in which Dc is controlled by the thickness of the zone of localized shear strain. As gouge zones of mature faults are commonly 102-103 m thick13-17, whereas laboratory gouge layers are 1-10 mm thick, our data offer an alternative interpretation of the discrepancy between laboratory and field-based estimates of Dc.

  8. Holocene deceleration of the San Andreas fault zone in San Bernardino and implications for the eastern California shear zone rate debate

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Lavier, L.; Anderson, M. L.; Matti, J.; Powell, R. E.

    2005-05-01

    New geodetic inferences for the rate of strain accumulation on the San Andreas fault associated with tectonic loading are ~20 mm/yr slower than observed Holocene surface displacement rates in the San Bernardino area, south of the fault's intersection with the San Jacinto fault zone, and north of its intersection with the eastern California shear zone (ECSZ). This displacement rate "anomaly" is significantly larger than can be easily explained by locking depth errors or earthquake cycle effects not accounted for in geodesy-constrained models for elastic loading rate. Using available time-averaged fault displacement-rates for the San Andreas and San Jacinto fault zones, we estimate instantaneous time-variable displacement rates on the San Andreas-San Jacinto-ECSZ fault zones, assuming that these fault zones form a closed system in the latitude band along which the fault zones overlap with one another and share in the accommodation of steady Pacific-North America relative plate motion. We find that the Holocene decrease in San Andreas loading rate can be compensated by a rapid increase in loading/displacement rate within the ECSZ over the past ~5 kyrs, independent of, but consistent with geodetic and geologic constraints derived from the ECSZ itself. Based on this model, we suggest that reported differences between fast contemporary strain rates observed on faults of the ECSZ using geodesy and slow rates inferred from Quaternary geology and Holocene paleoseismology (i.e., the ECSZ rate debate) may be explained by rapid changes in the pattern and rates of strain accumulation associated with fault loading largely unrelated to postseismic stress relaxation. If so, displacement rate data sets from Holocene geology and present-day geodesy could potentially provide important new constraints on the rheology of the lower crust and upper mantle representing lithospheric behavior on time-scales of thousands of years. Moreover, the results underscore that disagreement between

  9. Delineation of fault zones using imaging radar

    NASA Technical Reports Server (NTRS)

    Toksoz, M. N.; Gulen, L.; Prange, M.; Matarese, J.; Pettengill, G. H.; Ford, P. G.

    1986-01-01

    The assessment of earthquake hazards and mineral and oil potential of a given region requires a detailed knowledge of geological structure, including the configuration of faults. Delineation of faults is traditionally based on three types of data: (1) seismicity data, which shows the location and magnitude of earthquake activity; (2) field mapping, which in remote areas is typically incomplete and of insufficient accuracy; and (3) remote sensing, including LANDSAT images and high altitude photography. Recently, high resolution radar images of tectonically active regions have been obtained by SEASAT and Shuttle Imaging Radar (SIR-A and SIR-B) systems. These radar images are sensitive to terrain slope variations and emphasize the topographic signatures of fault zones. Techniques were developed for using the radar data in conjunction with the traditional types of data to delineate major faults in well-known test sites, and to extend interpretation techniques to remote areas.

  10. Fault zone structure from topography: signatures of en echelon fault slip at Mustang Ridge on the San Andreas Fault, Monterey County, California

    USGS Publications Warehouse

    DeLong, Stephen B.; Hilley, George E.; Rymer, Michael J.; Prentice, Carol

    2010-01-01

    We used high-resolution topography to quantify the spatial distribution of scarps, linear valleys, topographic sinks, and oversteepened stream channels formed along an extensional step over on the San Andreas Fault (SAF) at Mustang Ridge, California. This location provides detail of both creeping fault landform development and complex fault zone kinematics. Here, the SAF creeps 10–14 mm/yr slower than at locations ∼20 km along the fault in either direction. This spatial change in creep rate is coincident with a series of en echelon oblique-normal faults that strike obliquely to the SAF and may accommodate the missing deformation. This study presents a suite of analyses that are helpful for proper mapping of faults in locations where high-resolution topographic data are available. Furthermore, our analyses indicate that two large subsidiary faults near the center of the step over zone appear to carry significant distributed deformation based on their large apparent vertical offsets, the presence of associated sag ponds and fluvial knickpoints, and the observation that they are rotating a segment of the main SAF. Several subsidiary faults in the southeastern portion of Mustang Ridge are likely less active; they have few associated sag ponds and have older scarp morphologic ages and subdued channel knickpoints. Several faults in the northwestern part of Mustang Ridge, though relatively small, are likely also actively accommodating active fault slip based on their young morphologic ages and the presence of associated sag ponds.

  11. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  12. Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.

    2012-12-01

    New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.

  13. Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M. L.; Mitchell, T. M.

    2017-12-01

    Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively

  14. Tectonic creep in the Hayward fault zone, California

    USGS Publications Warehouse

    Radbruch-Hall, Dorothy H.; Bonilla, M.G.

    1966-01-01

    Tectonic creep is slight apparently continuous movement along a fault. Evidence of creep has been noted at several places within the Hayward fault zone--a zone trending northwestward near the western front of the hills bordering the east side of San Francisco Bay. D. H. Radbruch of the Geological Survey and B. J. Lennert, consulting engineer, confirmed a reported cracking of a culvert under the University of California stadium. F. B. Blanchard and C. L. Laverty of the East Bay Municipal Utility District of Oakland studied cracks in the Claremont water tunnel in Berkeley. M. G. Bonilla of the Geological Survey noted deformation of railroad tracks in the Niles district of Fremont. Six sets of tracks have been bent and shifted. L. S. Cluff of Woodward-Clyde-Sherard and Associates and K. V. Steinbrugge of the Pacific Fire Rating Bureau noted that the concrete walls of a warehouse in the Irvington district of Fremont have been bent and broken, and the columns forced out of line. All the deformations noted have been right lateral and range from about 2 inches in the Claremont tunnel to about 8 inches on the railroad tracks. Tectonic creep almost certainly will continue to damage buildings, tunnels, and other structures that cross the narrow bands of active movement within the Hayward fault zone.

  15. Sources, Fluxes, and Effects of Fluids in the Alpine Fault Zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Menzies, C. D.; Teagle, D. A. H.; Niedermann, S.; Cox, S.; Craw, D.; Zimmer, M.; Cooper, M. J.; Erzinger, J.

    2015-12-01

    Historic ruptures on some plate boundary faults occur episodically. Fluids play a key role in modifying the chemical and physical properties of fault zones, which may prime them for repeated rupture by the generation of high pore fluid pressures. Modelling of fluid loss rates from fault zones has led to estimates of fluid fluxes required to maintain overpressure (Faulkner and Rutter, 2001), but fluid sources and fluxes, and permeability evolution in fault zones remain poorly constrained. High mountains in orogenic belts can drive meteoric water to the middle crust, and metamorphic water is generated during rock dehydration. Additionally, fluids from the mantle are transported into the crust when fluid pathways are created by tectonism or volcanism. Here we use geochemical tracers to determine fluid flow budgets for meteoric, metamorphic and mantle fluids at a major compressional tectonic plate boundary. The Alpine Fault marks the transpressional Pacific-Australian plate boundary through South Island of New Zealand, it has historically produced large earthquakes (Mw ~8) and is late in its 329±68 year seismic cycle, having last ruptured in 1717. We present strontium isotope ratios of hot springs and hydrothermal minerals that trace fluid flow paths in and around the Alpine Fault to illustrate that the fluid flow regime is restricted by low cross-fault permeability. Fluid-rock interaction limits cross-fault fluid flow by the precipitating clays and calcite that infill pore spaces and fractures in the Alpine Fault alteration zone. In contrast, helium isotopes ratios measured in hot springs near to the fault (0.15-0.81 RA) indicate the fault acts as a conduit for mantle fluids from below. Mantle fluid fluxes are similar to the San Andreas Fault (<1x10-5 m3m-2/yr) and insufficient to promote fault weakening. The metamorphic fluid flux is of similar magnitude to the mantle flux. The dominant fluid throughout the seismogenic zone is meteoric in origin (secondary mineral

  16. Teleseismic Upper-mantle Tomography of the Tanlu Fault Zone in East China

    NASA Astrophysics Data System (ADS)

    Lei, J., Sr.; Zhao, D.; Du, M.; Mi, Q.; Lu, M.

    2017-12-01

    The Tanlu fault zone, NNE-SSW oriented with strike-slip motions, is the most significant active fault in East China. The great 1668 Tancheng earthquake (Ms 8.5) occurred on this fault zone, which is located above the stagnant Pacific slab in the mantle transition zone (MTZ). To the east of the Tancheng earthquake epicenter and under the southernmost Korean Peninsula to westernmost Japan, the subducting Pacific slab exhibits a sharp change in its geometry. However, the relationship between the Pacific slab and the great earthquake on the Tanlu fault is unclear. To address this issue, we conduct teleseismic P-wave tomography using 44,715 relative arrival times. These data are collected from high-quality seismograms of 838 teleseismic events (M > 5.5; epicenter distances of 30-90 degrees) recorded at 126 provincial seismic stations around the Tanlu fault zone in East China. Our results show that at depths < 150 km, high velocity (high-V) anomalies appear to the west of the Tanlu fault, whereas some low velocity (low-V) anomalies are visible to the east of the fault zone. Strong lateral heterogeneities are revealed along the fault zone. At depths of 230-470 km, to the northwest of the Tanlu fault, there are obvious low-V anomalies which may reflect hot and wet mantle upwelling, whereas to the east, some high-V anomalies are visible, which may reflect the detached Eurasian lithosphere. In the MTZ, both high-V and low-V anomalies are visible, and the widespread high-V anomalies may reflect the stagnant Pacific slab. Beneath the hypocenter of the 1668 Tancheng earthquake, a prominent low-V anomaly is revealed in the upper mantle down the MTZ depth, which may reflect upwelling flow of hot and wet materials. Fluids from the upwelling mantle flow may have played a key role in the generation of the Tancheng earthquake. Integrating with previous findings, our present results suggest that the Tancheng earthquake could be related to the sharp change in the Pacific slab geometry

  17. The effect of segmented fault zones on earthquake rupture propagation and termination

    NASA Astrophysics Data System (ADS)

    Huang, Y.

    2017-12-01

    A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for

  18. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    USGS Publications Warehouse

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  19. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    PubMed

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.

  20. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.

    PubMed

    Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J

    2014-12-12

    Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis. Copyright © 2014, American Association for the Advancement of Science.

  1. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    USGS Publications Warehouse

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  2. Evidence of shallow fault zone strengthening after the 1992 M7.5 Landers, California, earthquake

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Xu, Fei; Burdette, T.

    1998-01-01

    Repeated seismic surveys of the Landers, California, fault zone that ruptured in the magnitude (M) 7.5 earthquake of 1992 reveal an increase in seismic velocity with time. P, S, and fault zone trapped waves were excited by near-surface explosions in two locations in 1994 and 1996, and were recorded on two linear, three-component seismic arrays deployed across the Johnson Valley fault trace. The travel times of P and S waves for identical shot-receiver pairs decreased by 0.5 to 1.5 percent from 1994 to 1996, with the larger changes at stations located within the fault zone. These observations indicate that the shallow Johnson Valley fault is strengthening after the main shock, most likely because of closure of cracks that were opened by the 1992 earthquake. The increase in velocity is consistent with the prevalence of dry over wet cracks and with a reduction in the apparent crack density near the fault zone by approximately 1.0 percent from 1994 to 1996.

  3. Fault zone structure and kinematics from lidar, radar, and imagery: revealing new details along the creeping San Andreas Fault

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Donnellan, A.; Pickering, A.

    2017-12-01

    Aseismic fault creep, coseismic fault displacement, distributed deformation, and the relative contribution of each have important bearing on infrastructure resilience, risk reduction, and the study of earthquake physics. Furthermore, the impact of interseismic fault creep in rupture propagation scenarios, and its impact and consequently on fault segmentation and maximum earthquake magnitudes, is poorly resolved in current rupture forecast models. The creeping section of the San Andreas Fault (SAF) in Central California is an outstanding area for establishing methodology for future scientific response to damaging earthquakes and for characterizing the fine details of crustal deformation. Here, we describe how data from airborne and terrestrial laser scanning, airborne interferometric radar (UAVSAR), and optical data from satellites and UAVs can be used to characterize rates and map patterns of deformation within fault zones of varying complexity and geomorphic expression. We are evaluating laser point cloud processing, photogrammetric structure from motion, radar interferometry, sub-pixel correlation, and other techniques to characterize the relative ability of each to measure crustal deformation in two and three dimensions through time. We are collecting new and synthesizing existing data from the zone of highest interseismic creep rates along the SAF where a transition from a single main fault trace to a 1-km wide extensional stepover occurs. In the stepover region, creep measurements from alignment arrays 100 meters long across the main fault trace reveal lower rates than those in adjacent, geomorphically simpler parts of the fault. This indicates that deformation is distributed across the en echelon subsidiary faults, by creep and/or stick-slip behavior. Our objectives are to better understand how deformation is partitioned across a fault damage zone, how it is accommodated in the shallow subsurface, and to better characterize the relative amounts of fault creep

  4. Microstructural evidence for northeastward movement on the Chocolate Mountains fault zone, southeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, C.

    1990-01-10

    Microstructural analysis of rocks from the Chocolate Mountains fault zone, Gavilan Hills area, southeastern California, show unequivocal evidence for northeast directed transport of the upper plate gneisses over lower plate Orocopia schists. Samples were taken from transects through the fault zone. Prefaulting fabrics in upper plate gneisses show a strong component of northeast directed rotational deformation under lower amphibolite facies conditions. In contrast, prefaulting lower plate Orocopia schists show strongly coaxial fabrics (minimum stretch value of 2.2) formed at greenschist grade. Mylonitic fabrics associated with the Chocolate Mountains fault are predominantly northeast directed shear bands that are unidirectional (northeastward) inmore » the gneisses but bi-directional in the schists, suggesting a significant component of nonrotational deformation occurred in the Orocopia schists during and after emplacement of the upper plate. The kinematic findings are in agreement with Dillon et al. (1989), who found that the vergence of asymmetrical folds within the fault zone indicates overthrusting to the northeast, toward the craton, in this region. The available evidence favors a single protracted northeastward movement on the Chocolate Mountains fault zone with temperatures waning as deformation proceeded.« less

  5. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  6. A low-angle detachment fault revealed: Three-dimensional images of the S-reflector fault zone along the Galicia passive margin

    NASA Astrophysics Data System (ADS)

    Schuba, C. Nur; Gray, Gary G.; Morgan, Julia K.; Sawyer, Dale S.; Shillington, Donna J.; Reston, Tim J.; Bull, Jonathan M.; Jordan, Brian E.

    2018-06-01

    A new 3-D seismic reflection volume over the Galicia margin continent-ocean transition zone provides an unprecedented view of the prominent S-reflector detachment fault that underlies the outer part of the margin. This volume images the fault's structure from breakaway to termination. The filtered time-structure map of the S-reflector shows coherent corrugations parallel to the expected paleo-extension directions with an average azimuth of 107°. These corrugations maintain their orientations, wavelengths and amplitudes where overlying faults sole into the S-reflector, suggesting that the parts of the detachment fault containing multiple crustal blocks may have slipped as discrete units during its late stages. Another interface above the S-reflector, here named S‧, is identified and interpreted as the upper boundary of the fault zone associated with the detachment fault. This layer, named the S-interval, thickens by tens of meters from SE to NW in the direction of transport. Localized thick accumulations also occur near overlying fault intersections, suggesting either non-uniform fault rock production, or redistribution of fault rock during slip. These observations have important implications for understanding how detachment faults form and evolve over time. 3-D seismic reflection imaging has enabled unique insights into fault slip history, fault rock production and redistribution.

  7. Towards "realistic" fault zones in a 3D structure model of the Thuringian Basin, Germany

    NASA Astrophysics Data System (ADS)

    Kley, J.; Malz, A.; Donndorf, S.; Fischer, T.; Zehner, B.

    2012-04-01

    3D computer models of geological architecture are evolving into a standard tool for visualization and analysis. Such models typically comprise the bounding surfaces of stratigraphic layers and faults. Faults affect the continuity of aquifers and can themselves act as fluid conduits or barriers. This is one reason why a "realistic" representation of faults in 3D models is desirable. Still so, many existing models treat faults in a simplistic fashion, e.g. as vertical downward projections of fault traces observed at the surface. Besides being geologically and mechanically unreasonable, this also causes technical difficulties in the modelling workflow. Most natural faults are inclined and may change dips according to rock type or flatten into mechanically weak layers. Boreholes located close to a fault can therefore cross it at depth, resulting in stratigraphic control points allocated to the wrong block. Also, faults tend to split up into several branches, forming fault zones. Obtaining a more accurate representation of faults and fault zones is therefore challenging. We present work-in-progress from the Thuringian Basin in central Germany. The fault zone geometries are never fully constrained by data and must be extrapolated to depth. We use balancing of serial, parallel cross-sections to constrain subsurface extrapolations. The structure sections are checked for consistency by restoring them to an undeformed state. If this is possible without producing gaps or overlaps, the interpretation is considered valid (but not unique) for a single cross-section. Additional constraints are provided by comparison of adjacent cross-sections. Structures should change continuously from one section to another. Also, from the deformed and restored cross-sections we can measure the strain incurred during deformation. Strain should be compatible among the cross-sections: If at all, it should vary smoothly and systematically along a given fault zone. The stratigraphic contacts and

  8. Two-dimensional seismic image of the San Andreas Fault in the Northern Gabilan Range, central California: Evidence for fluids in the fault zone

    USGS Publications Warehouse

    Thurber, C.; Roecker, S.; Ellsworth, W.; Chen, Y.; Lutter, W.; Sessions, R.

    1997-01-01

    A joint inversion for two-dimensional P-wave velocity (Vp), P-to-S velocity ratio (Vp/Vs), and earthquake locations along the San Andreas fault (SAF) in central California reveals a complex relationship among seismicity, fault zone structure, and the surface fault trace. A zone of low Vp and high Vp/Vs lies beneath the SAF surface trace (SAFST), extending to a depth of about 6 km. Most of the seismic activity along the SAF occurs at depths of 3 to 7 km in a southwest-dipping zone that roughly intersects the SAFST, and lies near the southwest edge of the low Vp and high Vp/Vs zones. Tests indicate that models in which this seismic zone is significantly closer to vertical can be confidently rejected. A second high Vp/Vs zone extends to the northeast, apparently dipping beneath the Diablo Range. Another zone of seismicity underlies the northeast portion of this Vp/Vs high. The high Vp/Vs zones cut across areas of very different Vp values, indicating that the high Vp/Vs values are due to the presence of fluids, not just lithology. The close association between the zones of high Vp/Vs and seismicity suggests a direct involvement of fluids in the faulting process. Copyright 1997 by the American Geophysical Union.

  9. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  10. Sedimentary record of relay zone evolution, Central Corinth Rift (Greece): Role of fault propagation and structural inheritance.

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Meyer, Nicolas

    2013-04-01

    Relay zones along rift border fault systems form topographic lows that are considered to allow the transfer of sediment from the footwall into hanging wall depocentres. Present knowledge focuses on the modifications of drainage patterns and sediment pathways across relay zones, however their vertical motion during growth and interaction of faults segments is not well documented. 3D models of fault growth and linkage are also under debate. The Corinth rift (Greece) is an ideal natural laboratory for the study of fault system evolution. Fault activity and rift depocentres migrated northward during Pliocene to Recent N-S extension. We report on the evolution of a relay zone in the currently active southern rift margin fault system from Pleistocene to present-day. The relay zone lies between the E-W East Helike (EHF) and Derveni faults (DF) that lie just offshore and around the town of Akrata. During its evolution the relay zone captured the antecedent Krathis river which continued to deposit Gilbert-type deltas across the relay zone during fault interaction, breaching and post linkage phases. Moreover our work underlines the role that pre-existing structure in the location of the transfer zone. Offshore fault geometry and kinematics, and sediment distribution were defined by interpretation and depth conversion of high resolution seismic profiles (from Maurice Ewing 2001 geophysical survey). Early lateral propagation of the EHF is recorded by synsedimentary fault propagation folds while the DF records tilted block geometries since initiation. Within the relay zone beds are gradually tilted toward the basin before breaching. These different styles of deformation highlight mechanical contrasts and upper crustal partition associated with the development of the Akrata relay zone. Onshore detailed lithostratigraphy, structure and geomorphological features record sedimentation across the subsiding relay ramp and subsequent footwall uplift after breaching. The area is

  11. Temperature and composition of carbonate cements record early structural control on cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA

    NASA Astrophysics Data System (ADS)

    Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.

    2016-10-01

    Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.

  12. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone

    PubMed Central

    Singh, Satish C.; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E.; Carton, Helene; Wei, Shengji; Nugroho, Adam B.; Gemilang, Wishnu A.; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude (Mw) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin. PMID:28070561

  13. The discovery of a conjugate system of faults in the Wharton Basin intraplate deformation zone.

    PubMed

    Singh, Satish C; Hananto, Nugroho; Qin, Yanfang; Leclerc, Frederique; Avianto, Praditya; Tapponnier, Paul E; Carton, Helene; Wei, Shengji; Nugroho, Adam B; Gemilang, Wishnu A; Sieh, Kerry; Barbot, Sylvain

    2017-01-01

    The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude ( M w ) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

  14. Frictional melting experiments investigate coseismic behaviour of pseudotachylyte-bearing faults in the Outer Hebrides Fault Zone, UK.

    NASA Astrophysics Data System (ADS)

    Campbell, L.; De Paola, N.; Nielsen, S. B.; Holdsworth, R.; Lloyd, G. E. E.; Phillips, R. J.; Walcott, R.

    2015-12-01

    Recent experimental studies, performed at seismic slip rates (≥ 1 m/s), suggest that the friction coefficient of seismic faults is significantly lower than at sub-seismic (< 1 mm/s) speeds. Microstructural observations, integrated with theoretical studies, suggest that the weakening of seismic faults could be due to a range of thermally-activated mechanisms (e.g. gel, nanopowder and melt lubrication, thermal pressurization, viscous flow), triggered by frictional heating in the slip zone. The presence of pseudotachylyte within both exhumed fault zones and experimental slip zones in crystalline rocks suggests that lubrication plays a key role in controlling dynamic weakening during rupture propagation. The Outer Hebrides Fault Zone (OHFZ), UK contains abundant pseudotachylyte along faults cutting varying gneissic lithologies. Our field observations suggest that the mineralogy of the protolith determines volume, composition and viscosity of the frictional melt, which then affects the coseismic weakening behaviour of the fault and has important implications for the magnitudes and distribution of stress drops during slip episodes. High velocity friction experiments at 18 MPa axial load, 1.3 ms-1 and up to 10 m slip were run on quartzo-feldspathic, metabasic and mylonitic samples, taken from the OHFZ in an attempt to replicate its coseismic frictional behaviour. These were configured in cores of a single lithology, or in mixed cores with two rock types juxtaposed. All lithologies produce a general trend of frictional evolution, where an initial peak followed by transient weakening precedes a second peak which then decays to a steady state. Metabasic and felsic single-lithology samples both produce sharper frictional peaks, at values of μ = 0.19 and μ= 0.37 respectively, than the broader and smaller (μ= 0.15) peak produced by a mixed basic-felsic sample. In addition, both single-lithology peaks occur within 0.2 m slip, whereas the combined-lithology sample displays a

  15. Paleoearthquakes and Eolian-dominated fault sedimentation along the Hubbell Spring fault zone near Albuquerque, New Mexico

    USGS Publications Warehouse

    Personius, S.F.; Mahan, S.A.

    2003-01-01

    The Hubbell Spring fault zone forms the modern eastern margin of the Rio Grande rift in the Albuquerque basin of north-central New Mexico. Knowledge of its seismic potential is important because the fault zone transects Kirtland Air Force Base/Sandia National Laboratories and underlies the southern Albuquerque metropolitan area. No earthquakes larger than ML 5.5 have been reported in the last 150 years in this region, so we excavated the first trench across this fault zone to determine its late Quaternary paleoseismic history. Our trench excavations revealed a complex, 16-m-wide fault zone overlain by four tapered blankets of mixed eolian sand and minor colluvium that we infer were deposited after four large-magnitude, surface-rupturing earthquakes. Although the first (oldest) rupture event is undated, we used luminescence (thermoluminescence and infrared-stimulated luminescence) ages to determine that the subsequent three rupture events occurred about 56 ?? 6, 29 ?? 3, and 12 ?? 1 ka. These ages yield recurrence intervals of 27 and 17 k.y. between events and an elapsed time of 12 k.y. since the latest surface-rupturing paleoearthquake. Slip rates are not well constrained, but our preferred average slip rate since rupture event 2 (post-56 ka) is 0.05 mm/yr, and interval slip rates between the last three events are 0.06 and 0.09 mm/yr, respectively. Vertical displacements of 1-2 m per event and probable rupture lengths of 34-43 km indicate probable paleoearthquake magnitudes (Ms or Mw) of 6.8-7.1. Future earthquakes of this size likely would cause strong ground motions in the Albuquerque metropolitan area.

  16. Detailed Northern Anatolian Fault Zone crustal structure from receiver functions

    NASA Astrophysics Data System (ADS)

    Cornwell, D. G.; Kahraman, M.; Thompson, D. A.; Houseman, G. A.; Rost, S.; Turkelli, N.; Teoman, U.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.

    2013-12-01

    We present high resolution images derived from receiver functions of the continental crust in Northern Turkey that is dissected by two fault strands of the Northern Anatolian Fault Zone (NAFZ). The NAFZ is a major continental strike-slip fault system that is comparable in length and slip rate to the San Andreas Fault Zone. Recent large earthquakes occurred towards the western end of the NAFZ in 1999 at Izmit (M7.5) and Düzce (M7.2). As part of the multi-disciplinary Faultlab project, we aim to develop a model of NAFZ crustal structure and locate deformation by constraining variations in seismic properties and anisotropy in the upper and lower crust. The crustal model will be an input to test deformation scenarios in order to match geodetic observations from different phases of the earthquake loading cycle. We calculated receiver functions from teleseismic earthquakes recorded by a rectangular seismometer array spanning the NAFZ with 66 stations at a nominal inter-station spacing of 7 km and 7 additional stations further afield. This Dense Array for North Anatolia (DANA) was deployed from May 2012 until September 2013 and we selected large events (Mw>5.5) from the high quality seismological dataset to analyze further. Receiver functions were calculated for different frequency bands then collected into regional stacks before being inverted for crustal S-wave velocity structure beneath the entire DANA array footprint. In addition, we applied common conversion point (CCP) migration using a regional velocity model to construct a migrated 3D volume of P-to-S converted and multiple energy in order to identify the major crustal features and layer boundaries. We also performed the CCP migration with transverse receiver functions in order to identify regions of anisotropy within the crustal layers. Our preliminary results show a heterogeneous crust above a flat Moho that is typically at a depth of 33 km. We do not observe a prominent step in the Moho beneath the surface

  17. Large mid-Holocene and late Pleistocene earthquakes on the Oquirrh fault zone, Utah

    USGS Publications Warehouse

    Olig, S.S.; Lund, W.R.; Black, B.D.

    1994-01-01

    The Oquirrh fault zone is a range-front normal fault that bounds the east side of Tooele Valley and it has long been recognized as a potential source for large earthquakes that pose a significant hazard to population centers along the Wasatch Front in central Utah. Scarps of the Oquirrh fault zone offset the Provo shoreline of Lake Bonneville and previous studies of scarp morphology suggested that the most recent surface-faulting earthquake occurred between 9000 and 13,500 years ago. Based on a potential rupture length of 12 to 21 km from previous mapping, moment magnitude (Mw) estimates for this event range from 6.3 to 6.6 In contrast, our results from detailed mapping and trench excavations at two sites indicate that the most-recent event actually occurred between 4300 and 6900 yr B.P. (4800 and 7900 cal B.P.) and net vertical displacements were 2.2 to 2.7 m, much larger than expected considering estimated rupture lengths for this event. Empirical relations between magnitude and displacement yield Mw 7.0 to 7.2. A few, short discontinuous fault scarps as far south as Stockton, Utah have been identified in a recent mapping investigation and our results suggest that they may be part of the Oquirrh fault zone, increasing the total fault length to 32 km. These results emphasize the importance of integrating stratigraphic and geomorphic information in fault investigations for earthquake hazard evaluations. At both the Big Canyon and Pole Canyon sites, trenches exposed faulted Lake Bonneville sediments and thick wedges of fault-scarp derived colluvium associated with the most-recent event. Bulk sediment samples from a faulted debris-flow deposit at the Big Canyon site yield radiocarbon ages of 7650 ?? 90 yr B.P. and 6840 ?? 100 yr B.P. (all lab errors are ??1??). A bulk sediment sample from unfaulted fluvial deposits that bury the fault scarp yield a radiocarbon age estimate of 4340 ?? 60 yr B.P. Stratigraphic evidence for a pre-Bonneville lake cycle penultimate

  18. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than

  19. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After

  20. Fault slip rates in the modern new madrid seismic zone

    PubMed

    Mueller; Champion; Guccione; Kelson

    1999-11-05

    Structural and geomorphic analysis of late Holocene sediments in the Lake County region of the New Madrid seismic zone indicates that they are deformed by fault-related folding above the blind Reelfoot thrust fault. The widths of narrow kink bands exposed in trenches were used to model the Reelfoot scarp as a forelimb on a fault-bend fold; this, coupled with the age of folded sediment, yields a slip rate on the blind thrust of 6.1 +/- 0.7 mm/year for the past 2300 +/- 100 years. An alternative method used structural relief across the scarp and the estimated dip of the underlying blind thrust to calculate a slip rate of 4.8 +/- 0.2 mm/year. Geometric relations suggest that the right lateral slip rate on the New Madrid seismic zone is 1.8 to 2.0 mm/year.

  1. Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.

    2008-01-01

    Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.

  2. Heat flow and energetics of the San Andreas fault zone.

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1980-01-01

    Approximately 100 heat flow measurements in the San Andreas fault zone indicate 1) there is no evidence for local frictional heating of the main fault trace at any latitude over a 1000-km length from Cape Mendocino to San Bernardino, 2) average heat flow is high (ca.2 HFU, ca.80 mW m-2) throughout the 550-km segment of the Coast Ranges that encloses the San Andreas fault zone in central California; this broad anomaly falls off rapidly toward the Great Valley to the east, and over a 200-km distance toward the Mendocino Triple Junction to the northwest. As others have pointed out, a local conductive heat flow anomaly would be detectable unless the frictional resistance allocated to heat production on the main trace were less than 100 bars. Frictional work allocated to surface energy of new fractures is probably unimportant, and hydrologic convection is not likely to invalidate the conduction assumption, since the heat discharge by thermal springs near the fault is negligible. -Authors

  3. Ductile shear zones beneath strike-slip faults: Implications for the thermomechanics of the San Andreas fault zone

    USGS Publications Warehouse

    Thatcher, W.; England, P.C.

    1998-01-01

    We have carried out two-dimensional (2-D) numerical experiments on the bulk flow of a layer of fluid that is driven in a strike-slip sense by constant velocities applied at its boundaries. The fluid has the (linearized) conventional rheology assumed to apply to lower crust/upper mantle rocks. The temperature dependence of the effective viscosity of the fluid and the shear heating that accompanies deformation have been incorporated into the calculations, as has thermal conduction in an overlying crustal layer. Two end-member boundary conditions have been considered, corresponding to a strong upper crust driving a weaker ductile substrate and a strong ductile layer driving a passive, weak crust. In many cases of practical interest, shear heating is concentrated close to the axial plane of the shear zone for either boundary condition. For these cases, the resulting steady state temperature field is well approximated by a cylindrical heat source embedded in a conductive half-space at a depth corresponding to the top of the fluid layer. This approximation, along with the application of a theoretical result for one-dimensional shear zones, permits us to obtain simple analytical approximations to the thermal effects of 2-D ductile shear zones for a range of assumed rheologies and crustal geotherms, making complex numerical calculations unnecessary. Results are compared with observable effects on heat flux near the San Andreas fault using constraints on the slip distribution across the entire fault system. Ductile shearing in the lower crust or upper mantle can explain the observed increase in surface heat flux southeast of the Mendocino triple junction and match the amplitude of the regional heat flux anomaly in the California Coast Ranges. Because ductile dissipation depends only weakly on slip rate, faults moving only a few millimeters per year can be important heat sources, and the superposition of effects of localized ductile shearing on both currently active and now

  4. History of displacement along Ste. Genevieve Fault Zone, Southwestern Illinois

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwalb, H.R.

    1983-09-01

    The Ste. Genevieve fault zone extends eastward from Missouri across the Mississippi River into Jackson County, Illinois, about 75 mi (120 km) southeast of St. Louis. Outcrop studies have dated movement along portions of the zone as pre-Middle Devonian, post-Mississippian, and post-Pennsylvanian. Present displacement is down to the north and east with throw ranging up to 3,000 ft (915 m). However, pre-Middle Devonian movement was down to the south and west. The present upthrown block shows no evidence of vertical movement during the Cambrian and Ordovician. Nor is there any indication that the fault zone was part of the northernmore » border of the Reelfoot basin, where earliest Paleozoic sediments infilled an aulacogen at the northern end of the Mississippi embayment.« less

  5. Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Hickman, Stephen H.

    2015-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific drillhole near Parkfield, California crosses the San Andreas Fault at a depth of 2.7 km. Downhole measurements and analysis of core retrieved from Phase 3 drilling reveal two narrow, actively deforming zones of smectite-clay gouge within a roughly 200 m-wide fault damage zone of sandstones, siltstones and mudstones. Here we report electrical resistivity and permeability measurements on core samples from all of these structural units at effective confining pressures up to 120 MPa. Electrical resistivity (~10 ohm-m) and permeability (10-21 to 10-22 m2) in the actively deforming zones were one to two orders of magnitude lower than the surrounding damage zone material, consistent with broader-scale observations from the downhole resistivity and seismic velocity logs. The higher porosity of the clay gouge, 2 to 8 times greater than that in the damage zone rocks, along with surface conduction were the principal factors contributing to the observed low resistivities. The high percentage of fine-grained clay in the deforming zones also greatly reduced permeability to values low enough to create a barrier to fluid flow across the fault. Together, resistivity and permeability data can be used to assess the hydrogeologic characteristics of the fault, key to understanding fault structure and strength. The low resistivities and strength measurements of the SAFOD core are consistent with observations of low resistivity clays that are often found in the principal slip zones of other active faults making resistivity logs a valuable tool for identifying these zones.

  6. Spatiotemporal earthquake clusters along the North Anatolian fault zone offshore Istanbul

    USGS Publications Warehouse

    Bulut, Fatih; Ellsworth, William L.; Bohnhoff, Marco; Aktar, Mustafa; Dresen, Georg

    2011-01-01

    We investigate earthquakes with similar waveforms in order to characterize spatiotemporal microseismicity clusters within the North Anatolian fault zone (NAFZ) in northwest Turkey along the transition between the 1999 ??zmit rupture zone and the Marmara Sea seismic gap. Earthquakes within distinct activity clusters are relocated with cross-correlation derived relative travel times using the double difference method. The spatiotemporal distribution of micro earthquakes within individual clusters is resolved with relative location accuracy comparable to or better than the source size. High-precision relative hypocenters define the geometry of individual fault patches, permitting a better understanding of fault kinematics and their role in local-scale seismotectonics along the region of interest. Temporal seismic sequences observed in the eastern Sea of Marmara region suggest progressive failure of mostly nonoverlapping areas on adjacent fault patches and systematic migration of microearthquakes within clusters during the progressive failure of neighboring fault patches. The temporal distributions of magnitudes as well as the number of events follow swarmlike behavior rather than a mainshock/aftershock pattern.

  7. The Dandridge-Vonore Fault Zone in the Eastern Tennessee Seismic Zone (and Rejuvenation of the Smokies?)

    NASA Astrophysics Data System (ADS)

    Cox, R. T.; Hatcher, R. D., Jr.; Forman, S. L.; Gamble, E. D. S.; Warrell, K. F.

    2017-12-01

    The eastern Tennessee seismic zone (ETSZ) trends 045o from NE Alabama and NW Georgia through Tennessee to SE Kentucky, and seismicity is localized 5-26 km deep in the basement. The ETSZ is the second most seismically active region in North America east of the Rocky Mountains, although no historic earthquakes larger than Mw 4.8 have been recorded here. Late Quaternary paleoiseismic evidence suggests that the ETSZ is capable of M7+ earthquakes and that neotectonic faults may have significantly influenced the regional relief. We have identified an 80 km-long, 060o-trending corridor in eastern Tennessee that contains collinear northeast-striking thrust, strike-slip, and normal Quaternary faults with displacements of 1-2 m, herein termed the Dandridge-Vonore fault zone (DVFZ). French Broad River alluvium in the northeast DVFZ near Dandridge, TN, is displaced by a 050o-striking, SE-dipping thrust fault and by a set of related fissures that record at least two significant post 25 ka paleo-earthquakes. Southwest of Dandridge near Alcoa, TN, a 060o-striking, SE-dipping thrust fault cuts Little River alluvium and records two significant post-15 ka paleo-earthquakes. Farther southwest at Vonore, colluvium with alluvial cobbles is thrust >1 m by a 057o-striking, steeply SE-dipping fault that may also have a significant strike-slip component, and Little Tennessee River alluvium is dropped >2 m along a 070o- striking normal fault. The DVFZ partly overlaps and is collinear with a local trend of maximum seismicity that extends 30 km farther SW of the DVFZ (as currently mapped), for a total length of 110 km. The DVFZ is coincident with a steep gradient in S-wave velocities (from high velocity on the SE to low velocity on the NW) at mid-crustal depths of 20 to 24 km, consistent with a fault and source zone at hypocentral depths in the crystalline basement. Moreover, the DVFZ parallels the NW foot of Blue Ridge Mountains, and the sense of thrusting at all sites of Quaternary faulting

  8. High resolution seismics methods in application to fault zone detection

    NASA Astrophysics Data System (ADS)

    Matula, Rafal; Czaja, Klaudia; Mahmod, Adam Ahmed

    2014-05-01

    Surveys were carried out along border line between Outer Carpathians, Inner Carpathians and Pieniny Klippen Belt. Main point of interest was imaging transition zone structured by para-conglomerates, sandstone and clays lenses, crossing in near neighbourhood of Stare Bystre, village in the southern part of Poland. Actually geological works states existence of two hypothetical faults, first at the direction NE-SW and second NNW-SSE. Main aim of geological and geophysical investigation was to prove that mentioned fault has a system of smaller discontinuities connected with previous main fault activity. Para-conglomerate exposures, which is localized close to discussed fault is cut by visible system of cracks. That fact provide geological evidences that this system could be the effect of previous fault activity so in other words, it has a continuation up to main discontinuities. What is more part of the same formation para-conglomerates is covered by Neogen river sediments, so non-direct detection methods of cracks azimuth must be applied. Geophysical investigation was located near mentioned exposure and conducted in 3-D variant. Measurements were extremely focused on determining any changes of elevation buried para-conglomerates and velocity variation inside studied sediments. Seismic methods such as refraction and refraction tomography were used to imaging bedrock. Surveys were carried out in non typical acquisition, azimuthal schema. During field works 24- channels seismograph and 4 Hz, 10 Hz and 100 Hz geophones were used. Hypothetical discontinuities were estimated after analysing seismic records and expressed by velocity variation in bedding rocks and additionally evaluated changes in its elevation. Furthermore, in this study attempt of use refraction wave attributes related to loosing rock - para-conglomerates continuity were exposed. The presentation of geophysical data had a volumetric character what was easier to interpret and better related to assumptions

  9. Spatial and Temporal Variation of in-situ Stress in and around Active Fault zones in Central Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, R.; Omura, K.; Matsuda, T.; Iio, Y.

    2002-12-01

    In the "Active Fault Zone Drilling Project in Japan," we have compared the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone in different conditions. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault which appeared by the 1891 Nobi earthquake (M=8.0), have been drilled through their fault fracture zones. A similar experiment conducted on and research of the Atera fault, of which some parts have seemed to be dislocated by the 1586 Tensyo earthquake (M=7.9). We can use a deep borehole as a reliable tool to understand overall fault structure and composed materials directly. Additionally, the stress states in and around the fault fractured zones were obtained from in-situ stress measurements by the hydraulic fracturing method. Important phenomena such as rapid stress drop in the fault fracture zones were observed in the Neodani well (1300 m deep) and the Nojima well (1800 m) of the fault zone drillings, as well as in the Ashio well (2,000 m) in the focal area. In the Atera fault project, we have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Four boreholes (400 m to 600 m deep) were located on a line crossing the fracture zone of the Atera fault. We noted that the stress magnitude decreases in the area closer to the center of the fracture zone. Furthermore the orientation of the maximum horizontal compressive stress was almost reverse of the fault moving direction. These results support the idea that the differential stress is extremely small at narrow zones adjoining fracture zones. We also noted that the frictional strength of the crust adjacent to the faults is high and the level of shear stress in the crust adjacent to the faults is principally controlled by the frictional strength of rock. We argue that the stress state observed in these sites exists only if the faults are quite "weak." As

  10. Identifying active interplate and intraplate fault zones in the western Caribbean plate from seismic reflection data and the significance of the Pedro Bank fault zone in the tectonic history of the Nicaraguan Rise

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.

    2015-12-01

    The offshore Nicaraguan Rise in the western Caribbean Sea is an approximately 500,000 km2 area of Precambrian to Late Cretaceous tectonic terranes that have been assembled during the Late Cretaceous formation of the Caribbean plate and include: 1) the Chortis block, a continental fragment; 2) the Great Arc of the Caribbean, a deformed Cretaceous arc, and 3) the Caribbean large igneous province formed in late Cretaceous time. Middle Eocene to Recent eastward motion of the Caribbean plate has been largely controlled by strike-slip faulting along the northern Caribbean plate boundary zone that bounds the northern margin of the Nicaraguan Rise. These faults reactivate older rift structures near the island of Jamaica and form the transtensional basins of the Honduran Borderlands near Honduras. Recent GPS studies suggest that small amount of intraplate motion within the current margin of error of GPS measurements (1-3 mm/yr) may occur within the center of the western Caribbean plate at the Pedro Bank fault zone and Hess Escarpment. This study uses a database of over 54,000 km of modern and vintage 2D seismic data, combined with earthquake data and results from previous GPS studies to define the active areas of inter- and intraplate fault zones in the western Caribbean. Intraplate deformation occurs along the 700-km-long Pedro Bank fault zone that traverses the center of the Nicaraguan Rise and reactivates the paleo suture zone between the Great Arc of the Caribbean and the Caribbean large igneous province. The Pedro Bank fault zone also drives active extension at the 200-km-long San Andres rift along the southwest margin of the Nicaraguan Rise. Influence of the Cocos Ridge indentor may be contributing to reactivation of faulting along the southwesternmost, active segment of the Hess Escarpment.

  11. Numerical modeling of fluid flow in a fault zone: a case of study from Majella Mountain (Italy).

    NASA Astrophysics Data System (ADS)

    Romano, Valentina; Battaglia, Maurizio; Bigi, Sabina; De'Haven Hyman, Jeffrey; Valocchi, Albert J.

    2017-04-01

    The study of fluid flow in fractured rocks plays a key role in reservoir management, including CO2 sequestration and waste isolation. We present a numerical model of fluid flow in a fault zone, based on field data acquired in Majella Mountain, in the Central Apennines (Italy). This fault zone is considered a good analogue for the massive presence of fluid migration in the form of tar. Faults are mechanical features and cause permeability heterogeneities in the upper crust, so they strongly influence fluid flow. The distribution of the main components (core, damage zone) can lead the fault zone to act as a conduit, a barrier, or a combined conduit-barrier system. We integrated existing information and our own structural surveys of the area to better identify the major fault features (e.g., type of fractures, statistical properties, geometrical and petro-physical characteristics). In our model the damage zones of the fault are described as discretely fractured medium, while the core of the fault as a porous one. Our model utilizes the dfnWorks code, a parallelized computational suite, developed at Los Alamos National Laboratory (LANL), that generates three dimensional Discrete Fracture Network (DFN) of the damage zones of the fault and characterizes its hydraulic parameters. The challenge of the study is the coupling between the discrete domain of the damage zones and the continuum one of the core. The field investigations and the basic computational workflow will be described, along with preliminary results of fluid flow simulation at the scale of the fault.

  12. The role of fault surface geometry in the evolution of the fault deformation zone: comparing modeling with field example from the Vignanotica normal fault (Gargano, Southern Italy).

    NASA Astrophysics Data System (ADS)

    Maggi, Matteo; Cianfarra, Paola; Salvini, Francesco

    2013-04-01

    Faults have a (brittle) deformation zone that can be described as the presence of two distintive zones: an internal Fault core (FC) and an external Fault Damage Zone (FDZ). The FC is characterized by grinding processes that comminute the rock grains to a final grain-size distribution characterized by the prevalence of smaller grains over larger, represented by high fractal dimensions (up to 3.4). On the other hand, the FDZ is characterized by a network of fracture sets with characteristic attitudes (i.e. Riedel cleavages). This deformation pattern has important consequences on rock permeability. FC often represents hydraulic barriers, while FDZ, with its fracture connection, represents zones of higher permability. The observation of faults revealed that dimension and characteristics of FC and FDZ varies both in intensity and dimensions along them. One of the controlling factor in FC and FDZ development is the fault plane geometry. By changing its attitude, fault plane geometry locally alter the stress component produced by the fault kinematics and its combination with the bulk boundary conditions (regional stress field, fluid pressure, rocks rheology) is responsible for the development of zones of higher and lower fracture intensity with variable extension along the fault planes. Furthermore, the displacement along faults provides a cumulative deformation pattern that varies through time. The modeling of the fault evolution through time (4D modeling) is therefore required to fully describe the fracturing and therefore permeability. In this presentation we show a methodology developed to predict distribution of fracture intensity integrating seismic data and numerical modeling. Fault geometry is carefully reconstructed by interpolating stick lines from interpreted seismic sections converted to depth. The modeling is based on a mixed numerical/analytical method. Fault surface is discretized into cells with their geometric and rheological characteristics. For each

  13. 3D Dynamic Rupture Simulations along Dipping Faults, with a focus on the Wasatch Fault Zone, Utah

    NASA Astrophysics Data System (ADS)

    Withers, K.; Moschetti, M. P.

    2017-12-01

    We study dynamic rupture and ground motion from dip-slip faults in regions that have high-seismic hazard, such as the Wasatch fault zone, Utah. Previous numerical simulations have modeled deterministic ground motion along segments of this fault in the heavily populated regions near Salt Lake City but were restricted to low frequencies ( 1 Hz). We seek to better understand the rupture process and assess broadband ground motions and variability from the Wasatch Fault Zone by extending deterministic ground motion prediction to higher frequencies (up to 5 Hz). We perform simulations along a dipping normal fault (40 x 20 km along strike and width, respectively) with characteristics derived from geologic observations to generate a suite of ruptures > Mw 6.5. This approach utilizes dynamic simulations (fully physics-based models, where the initial stress drop and friction law are imposed) using a summation by parts (SBP) method. The simulations include rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) in addition to off-fault plasticity. Energy losses from heat and other mechanisms, modeled as anelastic attenuation, are also included, as well as free-surface topography, which can significantly affect ground motion patterns. We compare the effect of material structure and both rate and state and slip-weakening friction laws have on rupture propagation. The simulations show reduced slip and moment release in the near surface with the inclusion of plasticity, better agreeing with observations of shallow slip deficit. Long-wavelength fault geometry imparts a non-uniform stress distribution along both dip and strike, influencing the preferred rupture direction and hypocenter location, potentially important for seismic hazard estimation.

  14. Late quaternary paleoseismology of the southern Steens fault zone, northern Nevada

    USGS Publications Warehouse

    Personius, S.F.; Crone, A.J.; Machette, M.N.; Mahan, S.A.; Kyung, J.B.; Cisneros, H.; Lidke, D.J.

    2007-01-01

    The 192-km-long Steens fault zone is the most prominent normal fault system in the northern Basin and Range province of western North America. We use trench mapping and radiometric dating to estimate displacements and timing of the last three surface-rupturing earthquakes (E1-E3) on the southern part of the fault south of Denio, Nevada. Coseismic displacements range from 1.1 to 2.2 ?? 0.5 m, and radiometric ages indicate earthquake times of 11.5 ?? 2.0 ka (E3), 6.1 ?? 0.5 ka (E2), and 4.6 ?? 1.0 ka (E1). These data yield recurrence intervals of 5.4 ?? 2.1 k.y. between E3 and E2, 1.5 ?? 1.1 k.y. between E2 and E1, and an elapsed time of 4.6 ?? 1.0 k.y. since E1. The recurrence data yield variable interval slip rates (between 0.2 ?? 0.22 and 1.5 ?? 2.3 mm/yr), but slip rates averaged over the past ???18 k.y. (0.24 ?? 0.06 mm/year) are similar to long-term (8.5-12.5 Ma) slip rates (0.2 ?? 0.1 mm /yr) measured a few kilometers to the north. We infer from the lack of significant topographic relief across the fault in Bog Hot Valley that the fault zone is propagating southward and may now be connected with a fault at the northwestern end of the Pine Forest Range. Displacements documented in the trench and a rupture length of 37 km indicate a history of three latest Quaternary earthquakes with magnitudes of M 6.6-7.1 on the southern part of the Steens fault zone.

  15. A kinematic model for the evolution of the Eastern California Shear Zone and Garlock Fault, Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Dixon, Timothy H.; Xie, Surui

    2018-07-01

    The Eastern California shear zone in the Mojave Desert, California, accommodates nearly a quarter of Pacific-North America plate motion. In south-central Mojave, the shear zone consists of six active faults, with the central Calico fault having the fastest slip rate. However, faults to the east of the Calico fault have larger total offsets. We explain this pattern of slip rate and total offset with a model involving a crustal block (the Mojave Block) that migrates eastward relative to a shear zone at depth whose position and orientation is fixed by the Coachella segment of the San Andreas fault (SAF), southwest of the transpressive "big bend" in the SAF. Both the shear zone and the Garlock fault are assumed to be a direct result of this restraining bend, and consequent strain redistribution. The model explains several aspects of local and regional tectonics, may apply to other transpressive continental plate boundary zones, and may improve seismic hazard estimates in these zones.

  16. Ductile creep and compaction: A mechanism for transiently increasing fluid pressure in mostly sealed fault zones

    USGS Publications Warehouse

    Sleep, Norman H.; Blanpied, M.L.

    1994-01-01

    A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it. ?? 1994 Birkha??user Verlag.

  17. Scientific drilling into the San Andreas Fault Zone - an overview of SAFOD's first five years

    USGS Publications Warehouse

    Zoback, Mark; Hickman, Stephen; Ellsworth, William; ,

    2011-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) was drilled to study the physical and chemical processes controlling faulting and earthquake generation along an active, plate-bounding fault at depth. SAFOD is located near Parkfield, California and penetrates a section of the fault that is moving due to a combination of repeating microearthquakes and fault creep. Geophysical logs define the San Andreas Fault Zone to be relatively broad (~200 m), containing several discrete zones only 2–3 m wide that exhibit very low P- and S-wave velocities and low resistivity. Two of these zones have progressively deformed the cemented casing at measured depths of 3192 m and 3302 m. Cores from both deforming zones contain a pervasively sheared, cohesionless, foliated fault gouge that coincides with casing deformation and explains the observed extremely low seismic velocities and resistivity. These cores are being now extensively tested in laboratories around the world, and their composition, deformation mechanisms, physical properties, and rheological behavior are studied. Downhole measurements show that within 200 m (maximum) of the active fault trace, the direction of maximum horizontal stress remains at a high angle to the San Andreas Fault, consistent with other measurements. The results from the SAFOD Main Hole, together with the stress state determined in the Pilot Hole, are consistent with a strong crust/weak fault model of the San Andreas. Seismic instrumentation has been deployed to study physics of faulting—earthquake nucleation, propagation, and arrest—in order to test how laboratory-derived concepts scale up to earthquakes occurring in nature.

  18. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    NASA Astrophysics Data System (ADS)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  19. Physical and Transport Properties of the carbonate-bearing faults: experimental insights from the Monte Maggio Fault zone (Central Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, Fabio; Scuderi, Marco Maria; Collettini, Cristiano

    2015-04-01

    Physical properties of fault zones vary with time and space and in particular, fluid flow and permeability variations are strictly related to fault zone processes. Here we investigate the physical properties of carbonate samples collected along the Monte Maggio normal Fault (MMF), a regional structure (length ~10 km and displacement ~500 m) located within the active system of the Apennines. In particular we have studied an exceptionally exposed outcrop of the fault within the Calcare Massiccio formation (massive limestone) that has been recently exposed by new roadworks. Large cores (100 mm in diameter and up to 20 cm long) drilled perpendicular to the fault plane have been used to: 1) characterize the damage zone adjacent to the fault plane and 2) to obtain smaller cores, 38 mm in diameter both parallel and perpendicular to the fault plane, for rock deformation experiments. At the mesoscale two types of cataclastic damage zones can be identified in the footwall block (i) a Cemented Cataclasite (CC) and (ii), a Fault Breccia (FB). Since in some portions of the fault the hangingwall (HW) is still preserved we also collected HW samples. After preliminary porosity measurements at ambient pressure, we performed laboratory measurements of Vp, Vs, and permeability at effective confining pressures up to 100 MPa in order to simulate crustal conditions. The protolith has a primary porosity of about 7 %, formed predominantly by isolated pores since the connected porosity is only 1%. FB samples are characterized by 10% and 5% of bulk and connected porosity respectively, whilst CC samples show lower bulk porosity (7%) and a connected porosity of 2%. From ambient pressure to 100 MPa, P-wave velocity is about 5,9-6,0 km/s for the protolith, ranges from 4,9 km/s to 5,9 km/s for FB samples, whereas it is constant at 5,9 km/s for CC samples and ranges from 5,4 to 5,7 for HW sample. Vs shows the same behaviour resulting in a constant Vp/Vs ratio from 0 to 100 MPa that ranges from 1

  20. Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling

    NASA Astrophysics Data System (ADS)

    Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.

    2007-08-01

    Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration

  1. Theoretical constraints on dynamic pulverization of fault zone rocks

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Ben-Zion, Yehuda

    2017-04-01

    We discuss dynamic rupture results aiming to elucidate the generation mechanism of pulverized fault zone rocks (PFZR) observed in 100-200 m wide belts distributed asymmetrically across major strike-slip faults separating different crustal blocks. Properties of subshear and supershear ruptures are considered using analytical results of Linear Elastic Fracture Mechanics and numerical simulations of Mode-II ruptures along faults between similar or dissimilar solids. The dynamic fields of bimaterial subshear ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks having no preferred orientation, in agreement with field observations. Subshear ruptures in a homogeneous solid are expected to produce off-fault damage with high-angle tensile cracks on the extensional side of the fault, while supershear ruptures between similar or dissimilar solids are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. One or more of these features are not consistent with properties of natural samples of PFZR. At a distance of about 100 m from the fault, subshear and supershear ruptures without stress singularities produce strain rates up to 1 s-1. This is less than required for rock pulverization in laboratory experiments with centimetre-scale intact rock samples, but may be sufficient for pulverizing larger samples with pre-existing damage.

  2. Resonant slow fault slip in subduction zones forced by climatic load stress.

    PubMed

    Lowry, Anthony R

    2006-08-17

    Global Positioning System (GPS) measurements at subduction plate boundaries often record fault movements similar to earthquakes but much slower, occurring over timescales of approximately 1 week to approximately 1 year. These 'slow slip events' have been observed in Japan, Cascadia, Mexico, Alaska and New Zealand. The phenomenon is poorly understood, but several observations hint at the processes underlying slow slip. Although slip itself is silent, seismic instruments often record coincident low-amplitude tremor in a narrow (1-5 cycles per second) frequency range. Also, modelling of GPS data and estimates of tremor location indicate that slip focuses near the transition from unstable ('stick-slip') to stable friction at the deep limit of the earthquake-producing seismogenic zone. Perhaps most intriguingly, slow slip is periodic at several locations, with recurrence varying from 6 to 18 months depending on which subduction zone (or even segment) is examined. Here I show that such periodic slow fault slip may be a resonant response to climate-driven stress perturbations. Fault slip resonance helps to explain why slip events are periodic, why periods differ from place to place, and why slip focuses near the base of the seismogenic zone. Resonant slip should initiate within the rupture zone of future great earthquakes, suggesting that slow slip may illuminate fault properties that control earthquake slip.

  3. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    PubMed

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California

    USGS Publications Warehouse

    Moore, Diane E.; Byerlee, J.

    1992-01-01

    Moore, D.E. and Byerlee, J., 1992. Relationships between sliding behavior and internal geometry of laboratory fault zones and some creeping and locked strike-slip faults of California. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 305-316. In order to relate fault geometries to sliding behavior, maps of recently active breaks within the Hayward fault of central California, which is characterized by fault creep, have been examined and compared to maps of the San Andreas fault. The patterns of recent breaks of the Hayward fault are consistent with those found within the creeping section of the San Andreas, and they appear to have plausible physical explanations in the findings of laboratory experiments. The distinguishing geometric features of the examined locked and creeping faults are: (1) P-type second-order traces predominate over R(Riedel)-type traces in creeping sections; and (2) R-type second-order traces make smaller angles to the local fault strike in creeping sections than they do in locked sections. Two different maps of the Hayward fault gave similar results, supporting the inference that the patterns identified are basic characteristics of the fault rather than artifacts of a particular mapping procedure. P shears predominate over R shears under laboratory conditions that allow dilation within the fault zone. In our own experiments, P-shear development was favored by the generation of excess pore-fluid pressures. We propose that creep in California faults also is the result of fluid overpressures that are maintained in a low-permeability gouge zone and that significantly lower effective stresses, thus helping to stabilize slip and producing high values of the ratio P/R. Small R-trace angles may also be an indicator of low effective stresses, but the evidence for this is not conclusive because other factors can also affect the size of the angles. ?? 1992.

  5. Strain-dependent Damage Evolution and Velocity Reduction in Fault Zones Induced by Earthquake Rupture

    NASA Astrophysics Data System (ADS)

    Zhong, J.; Duan, B.

    2009-12-01

    Low-velocity fault zones (LVFZs) with reduced seismic velocities relative to the surrounding wall rocks are widely observed around active faults. The presence of such a zone will affect rupture propagation, near-field ground motion, and off-fault damage in subsequent earth-quakes. In this study, we quantify the reduction of seismic velocities caused by dynamic rup-ture on a 2D planar fault surrounded by a low-velocity fault zone. First, we implement the damage rheology (Lyakhovsky et al. 1997) in EQdyna (Duan and Oglesby 2006), an explicit dynamic finite element code. We further extend this damage rheology model to include the dependence of strains on crack density. Then, we quantify off-fault continuum damage distribution and velocity reduction induced by earthquake rupture with the presence of a preexisting LVFZ. We find that the presence of a LVFZ affects the tempo-spatial distribu-tions of off-fault damage. Because lack of constraint in some damage parameters, we further investigate the relationship between velocity reduction and these damage prameters by a large suite of numerical simulations. Slip velocity, slip, and near-field ground motions computed from damage rheology are also compared with those from off-fault elastic or elastoplastic responses. We find that the reduction in elastic moduli during dynamic rupture has profound impact on these quantities.

  6. Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.

    2016-12-01

    Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.

  7. Multi-Scale Structure and Earthquake Properties in the San Jacinto Fault Zone Area

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.

    2014-12-01

    I review multi-scale multi-signal seismological results on structure and earthquake properties within and around the San Jacinto Fault Zone (SJFZ) in southern California. The results are based on data of the southern California and ANZA networks covering scales from a few km to over 100 km, additional near-fault seismometers and linear arrays with instrument spacing 25-50 m that cross the SJFZ at several locations, and a dense rectangular array with >1100 vertical-component nodes separated by 10-30 m centered on the fault. The structural studies utilize earthquake data to image the seismogenic sections and ambient noise to image the shallower structures. The earthquake studies use waveform inversions and additional time domain and spectral methods. We observe pronounced damage regions with low seismic velocities and anomalous Vp/Vs ratios around the fault, and clear velocity contrasts across various sections. The damage zones and velocity contrasts produce fault zone trapped and head waves at various locations, along with time delays, anisotropy and other signals. The damage zones follow a flower-shape with depth; in places with velocity contrast they are offset to the stiffer side at depth as expected for bimaterial ruptures with persistent propagation direction. Analysis of PGV and PGA indicates clear persistent directivity at given fault sections and overall motion amplification within several km around the fault. Clear temporal changes of velocities, probably involving primarily the shallow material, are observed in response to seasonal, earthquake and other loadings. Full source tensor properties of M>4 earthquakes in the complex trifurcation area include statistically-robust small isotropic component, likely reflecting dynamic generation of rock damage in the source volumes. The dense fault zone instruments record seismic "noise" at frequencies >200 Hz that can be used for imaging and monitoring the shallow material with high space and time details, and

  8. Weak ductile shear zone beneath the western North Anatolian Fault Zone: inferences from earthquake cycle model constrained by geodetic observations

    NASA Astrophysics Data System (ADS)

    Yamasaki, T.; Wright, T. J.; Houseman, G. A.

    2013-12-01

    After large earthquakes, rapid postseismic transient motions are commonly observed. Later in the loading cycle, strain is typically focused in narrow regions around the fault. In simple two-layer models of the loading cycle for strike-slip faults, rapid post-seismic transients require low viscosities beneath the elastic layer, but localized strain later in the cycle implies high viscosities in the crust. To explain this apparent paradox, complex transient rheologies have been invoked. Here we test an alternative hypothesis in which spatial variations in material properties of the crust can explain the geodetic observations. We use a 3D viscoelastic finite element code to examine two simple models of periodic fault slip: a stratified model in which crustal viscosity decreases exponentially with depth below an upper elastic layer, and a block model in which a low viscosity domain centered beneath the fault is embedded in a higher viscosity background representing normal crust. We test these models using GPS data acquired before and after the 1999 Izmit/Duzce earthquakes on the North Anatolian Fault Zone (Turkey). The model with depth-dependent viscosity can show both high postseismic velocities, and preseismic localization of the deformation, if the viscosity contrast from top to bottom of layer exceeds a factor of about 104. However, with no lateral variations in viscosity, this model cannot explain the proximity to the fault of maximum postseismic velocities. In contrast, the model which includes a localized weak zone beneath the faulted elastic lid can explain all the observations, if the weak zone extends down to mid-crustal levels and outward to 10 or 20 km from the fault. The non-dimensional ratio of relaxation time to earthquake repeat time, τ/Δt, is the critical parameter in controlling the observed deformation. In the weak-zone model, τ/Δt should be in the range 0.005 to 0.01 in the weak domain, and larger than ~ 1.0 elsewhere. This implies a viscosity

  9. Subsurface fault damage zone of the 2014 Mw 6.0 South Napa, California, earthquake viewed from fault‐zone trapped waves

    USGS Publications Warehouse

    Li, Yong-Gang; Catchings, Rufus D.; Goldman, Mark R.

    2016-01-01

    The aftershocks of the 24 August 2014 Mw 6.0 South Napa earthquake generated prominent fault‐zone trapped waves (FZTWs) that were recorded on two 1.9‐km‐long seismic arrays deployed across the northern projection (array 1, A1) and the southern part (A2) of the surface rupture of the West Napa fault zone (WNFZ). We also observed FZTWs on an array (A3) deployed across the intersection of the Franklin and Southampton faults, which appear to be the southward continuations of the WNFZ. A1, A2, and A3 consisted of 20, 20, and 10 L28 (4.5 Hz) three‐component seismographs. We analyzed waveforms of FZTWs from 55 aftershocks in both time and frequency to characterize the fault damage zone associated with this Mw 6.0 earthquake. Post‐S coda durations of FZTWs increase with epicentral distances and focal depths from the recording arrays, suggesting a low‐velocity waveguide along the WNFZ to depths in excess of 5–7 km. Locations of the aftershocks showing FZTWs, combined with 3D finite‐difference simulations, suggest the subsurface rupture zone having an S‐wave speed reduction of ∼40%–50% between A1 and A2, coincident with the ∼14‐km‐long mapped surface rupture zone and at least an ∼500‐m‐wide deformation zone. The low‐velocity waveguide along the WNFZ extends further southward to at least A3, but with a more moderate‐velocity reduction of 30%–35% at ray depth. This last FZTW observation suggests continuity between the WNFZ and Franklin fault. The waveguide effect may have localized and amplified ground shaking along the WNFZ and the faults farther to the south (see a companion paper by Catchings et al., 2016).

  10. Hydrothermal minerals and microstructures in the Silangkitang geothermal field along the Great Sumatran fault zone, Sumatra, Indonesia

    USGS Publications Warehouse

    Moore, Diane E.; Hickman, S.; Lockner, D.A.; Dobson, P.F.

    2001-01-01

    Detailed study of core samples of silicic tuff recovered from three geothermal wells along the strike-slip Great Sumatran fault zone near Silangkitang, North Sumatra, supports a model for enhanced hydrothermal circulation adjacent to this major plate-boundary fault. Two wells (A and C) were drilled nearly vertically ??1 km southwest of the eastern (i.e., the principal) fault trace, and the third, directional well (B) was drilled eastward from the site of well A to within ??100 m of the principal fault trace. The examined core samples come from depths of 1650-2120 m at measured well temperatures of 180-320 ??C. The samples collected near the principal fault trace have the highest temperatures, the largest amount of secondary pore space that correlates with high secondary permeability, and the most extensive hydrothermal mineral development. Secondary permeability and the degree of hydrothermal alteration decrease toward the southwestern margin of the fault zone. These features indicate episodic, localized flow of hot, possibly CO2-rich fluids within the fault zone. The microstructure populations identified in the core samples correlate to the subsidiary fault patterns typical of strike-slip faults. The geothermal reservoir appears to be centered on the fault zone, with the principal fault strands and adjoining, highly fractured and hydrothermally altered rock serving as the main conduits for vertical fluid flow and advective heat transport from deeper magmatic sources.

  11. San Andreas tremor cascades define deep fault zone complexity

    USGS Publications Warehouse

    Shelly, David R.

    2015-01-01

    Weak seismic vibrations - tectonic tremor - can be used to delineate some plate boundary faults. Tremor on the deep San Andreas Fault, located at the boundary between the Pacific and North American plates, is thought to be a passive indicator of slow fault slip. San Andreas Fault tremor migrates at up to 30 m s-1, but the processes regulating tremor migration are unclear. Here I use a 12-year catalogue of more than 850,000 low-frequency earthquakes to systematically analyse the high-speed migration of tremor along the San Andreas Fault. I find that tremor migrates most effectively through regions of greatest tremor production and does not propagate through regions with gaps in tremor production. I interpret the rapid tremor migration as a self-regulating cascade of seismic ruptures along the fault, which implies that tremor may be an active, rather than passive participant in the slip propagation. I also identify an isolated group of tremor sources that are offset eastwards beneath the San Andreas Fault, possibly indicative of the interface between the Monterey Microplate, a hypothesized remnant of the subducted Farallon Plate, and the North American Plate. These observations illustrate a possible link between the central San Andreas Fault and tremor-producing subduction zones.

  12. Incremental Holocene slip rates from the Hope fault at Hossack Station, Marlborough fault zone, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Hatem, A. E.; Dolan, J. F.; Langridge, R.; Zinke, R. W.; McGuire, C. P.; Rhodes, E. J.; Van Dissen, R. J.

    2015-12-01

    The Marlborough fault system, which links the Alpine fault with the Hikurangi subduction zone within the complex Australian-Pacific plate boundary zone, partitions strain between the Wairau, Awatere, Clarence and Hope faults. Previous best estimates of dextral strike-slip along the Hope fault are ≤ ~23 mm/yr± 4 mm/year. Those rates, however, are poorly constrained and could be improved using better age determinations in conjunction with measurements of fault offsets using high-resolution imagery. In this study, we use airborne lidar- and field-based mapping together with the subsurface geometry of offset channels at the Hossack site 12 km ESE of Hanmer Springs to more precisely determine stream offsets that were previously identified by McMorran (1991). Specifically, we measured fault offsets of ~10m, ~75 m, and ~195m. Together with 65 radiocarbon ages on charcoal, peat, and wood and 25 pending post-IR50-IRSL225 luminescence ages from the channel deposits, these offsets yield three different fault slip rates for the early Holocene, the late Holocene, and the past ca. 500-1,000 years. Using the large number of age determinations, we document in detail the timing of initiation and abandonment of each channel, enhancing the geomorphic interpretation at the Hossack site as channels deform over many earthquake cycles. Our preliminary incremental slip rate results from the Hossack site may indicate temporally variable strain release along the Hope fault. This study is part of a broader effort aimed at determining incremental slip rates and paleo-earthquake ages and displacements from all four main Marlborough faults. Collectively, these data will allow us to determine how the four main Marlborough faults have work together during Holocene-late Pleistocene to accommodate plate-boundary deformation in time and space.

  13. Vertical tectonic deformation associated with the San Andreas fault zone offshore of San Francisco, California

    USGS Publications Warehouse

    Ryan, H.F.; Parsons, T.; Sliter, R.W.

    2008-01-01

    A new fault map of the shelf offshore of San Francisco, California shows that faulting occurs as a distributed shear zone that involves many fault strands with the principal displacement taken up by the San Andreas fault and the eastern strand of the San Gregorio fault zone. Structures associated with the offshore faulting show compressive deformation near where the San Andreas fault goes offshore, but deformation becomes extensional several km to the north off of the Golden Gate. Our new fault map serves as the basis for a 3-D finite element model that shows that the block between the San Andreas and San Gregorio fault zone is subsiding at a long-term rate of about 0.2-0.3??mm/yr, with the maximum subsidence occurring northwest of the Golden Gate in the area of a mapped transtensional basin. Although the long-term rates of vertical displacement primarily show subsidence, the model of coseismic deformation associated with the 1906 San Francisco earthquake indicates that uplift on the order of 10-15??cm occurred in the block northeast of the San Andreas fault. Since 1906, 5-6??cm of regional subsidence has occurred in that block. One implication of our model is that the transfer of slip from the San Andreas fault to a fault 5??km to the east, the Golden Gate fault, is not required for the area offshore of San Francisco to be in extension. This has implications for both the deposition of thick Pliocene-Pleistocene sediments (the Merced Formation) observed east of the San Andreas fault, and the age of the Peninsula segment of the San Andreas fault.

  14. Strain indicators and magnetic fabric in intraplate fault zones: Case study of Daroca thrust, Iberian Chain, Spain

    NASA Astrophysics Data System (ADS)

    Casas-Sainz, A. M.; Gil-Imaz, A.; Simón, J. L.; Izquierdo-Llavall, E.; Aldega, L.; Román-Berdiel, T.; Osácar, M. C.; Pueyo-Anchuela, Ó.; Ansón, M.; García-Lasanta, C.; Corrado, S.; Invernizzi, C.; Caricchi, C.

    2018-04-01

    Anisotropy of magnetic susceptibility (AMS) has been applied to the study of shallow fault zones, although interpretation of the results requires establishing clear relationships between petrofabric and magnetic features, magnetic behaviour of fault rocks, and an extensive knowledge of P-T conditions. In this work, we demonstrate that magnetic methods can be applied to the study of heterogeneous fault zones, provided that a series of requisites are met. A major fault zone within the Iberian plate (Daroca thrust), showing transpressional movements during Cenozoic time was chosen for this purpose, because of the exceptional outcrops of fault gouge and microbreccia and its relevance within the context of the northeastern Iberian Plate. Magnetic fabrics were analysed and the results were compared with foliation and S-C structures measured within the fault zone. Clay mineral assemblages suggest maximum burial depths shallower than 2 km (<60-70 °C) for fault rocks in the footwall of the Daroca thrust. The orientation of the AMS axes is consistent with mesostructural strain indicators: kmin parallels the mean pole to S, or it is intermediate between S and C poles; kmax is oriented at a high angle (nearly orthogonal in overall) to the transport direction, which can be explained from both deformational and mineralogical controls. Both magnetic fabrics and kinematic indicators are consistent with a reverse movement for most of the fault zone.

  15. The hydraulic structure of the Gole Larghe Fault Zone (Italian Southern Alps) through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2017-12-01

    The 600 m-thick, strike slip Gole Larghe Fault Zone (GLFZ) experienced several hundred seismic slip events at c. 8 km depth, well-documented by numerous pseudotachylytes, was then exhumed and is now exposed in beautiful and very continuous outcrops. The fault zone was also characterized by hydrous fluid flow during the seismic cycle, demonstrated by alteration halos and precipitation of hydrothermal minerals in veins and cataclasites. We have characterized the GLFZ with > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed us obtaining 3D Discrete Fracture Network (DFN) models, based on robust probability density functions for parameters of fault and fracture sets, and simulating the fault zone hydraulic properties. In addition, the correlation between evidences of fluid flow and the fault/fracture network parameters have been studied with a geostatistical approach, allowing generating more realistic time-varying permeability models of the fault zone. Based on this dataset, we have developed a FEM hydraulic model of the GLFZ for a period of some tens of years, covering one seismic event and a postseismic period. The higher permeability is attained in the syn- to early post-seismic period, when fractures are (re)opened by off-fault deformation, then permeability decreases in the postseismic due to fracture sealing. The flow model yields a flow pattern consistent with the observed alteration/mineralization pattern and a marked channelling of fluid flow in the inner part of the fault zone, due to permeability anisotropy related to the spatial arrangement of different fracture sets. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, and the heterogeneity and evolution of mechanical parameters due to fluid-rock interaction.

  16. Southeastern extension of the Lake Basin fault zone in south- central Montana: implications for coal and hydrocarbon exploration ( USA).

    USGS Publications Warehouse

    Robinson, L.N.; Barnum, B.E.

    1986-01-01

    The Lake Basin fault zone consists mainly of en echelon NE-striking normal faults that have been interpreted to be surface expressions of left-lateral movement along a basement wrench fault. Information gathered from recent field mapping of coal beds and from shallow, closely-spaced drill holes resulted in detailed coal bed correlations, which revealed another linear zone of en echelon faulting directly on the extended trend of the Lake Basin fault zone. This faulted area, referred to as the Sarpy Creek area, is located 48 km E of Hardin, Montana. It is about 16 km long, 13 km wide, and contains 21 en echelon normal faults that have an average strike of N 63oE. We therefore extend the Lake Basin fault zone 32 km farther SE than previously mapped to include the Sarpy Creek area. The Ash Creek oil field, Wyoming, 97 km due S of the Sarpy Creek area, produces from faulted anticlinal structues that have been interpreted to be genetically related to the primary wrench-fault system known as the Nye-Bowler fault zone. The structural similarities between the Sarpy Creek area and the Ash Creek area indicate that the Sarpy Creek area is a possible site for hydrocarbon accumulation.-from Authors

  17. Structural and microstructural evolution of fault zones in Cretaceous poorly lithified sandstones of the Rio do Peixe basin, Paraiba, NE Brazil

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Nogueira, Francisco; Storti, Fabrizio; Bezerra, Francisco H. R.; De Carvalho, Bruno R.; André De Souza, Jorge

    2017-04-01

    In this contribution we describe the structural architecture and microstructural features of fault zones developed in Cretaceous, poorly lithified sandstones of the Rio do Peixe basin, NE Brazil. The Rio do Peixe basin is an E-W-trending, intracontinental half-graben basin developed along the Precambrian Patos shear zone where it is abutted by the Porto Alegre shear zone. The basin formed during rifting between South America and Africa plates and was reactivated and inverted in a strike-slip setting during the Cenozoic. Sediments filling the basin consist of an heterolithic sequence of alternating sandstones, conglomerates, siltstone and clay-rich layers. These lithologies are generally poorly lithified far from the major fault zones. Deformational structures in the basin mostly consist of deformation band-dominated fault zones. Extensional and strike-slip fault zones, clusters of deformation bands, and single deformation bands are commonly well developed in the proximity of the basin-boundary fault systems. All deformation structures are generally in positive relief with respect to the host rocks. Extensional fault zones locally have growth strata in their hangingwall blocks and have displacement generally <10 m. In map view, they are organized in anastomosed segments with high connectivity. They strike E-W to NE-SW, and typically consist of wide fault cores (< 1 m in width) surrounded by up to few-meter wide damage zones. Fault cores are characterized by distributed deformation without pervasive strain localization in narrow shear bands, in which bedding is transposed into foliation imparted by grain preferred orientation. Microstructural observations show negligible cataclasis and dominant non-destructive particulate flow, suggesting that extensional fault zones developed in soft-sediment conditions in a water-saturated environment. Strike-slip fault zones commonly overprint the extensional ones and have displacement values typically lower than about 2 m. They

  18. Kinematic vicissitudes and the spatial distribution of the alteration zone related to the Byobuyama fault, central Japan. (Implication; Influence of another faults.)

    NASA Astrophysics Data System (ADS)

    Katori, T.; Kobayashi, K.

    2015-12-01

    The central Japan is one of the most concentrated area of active faults (Quaternary fault). These are roughly classified into two orthogonally-oriented fault sets of NE-SW and NW-SE strikes. The study area is located in Gifu prefecture, central Japan. In there, the basement rocks are composed mainly of Triassic-Jurassic accretionary prism (Mino belt), Cretaceous Nohi Rhyolite and Cretaceous granitic rocks. Miocene Mizunami G. and Pliocene-Pleistocene Toki Sand and Gravel F. unconformably cover the basement rocks. The Byobuyama fault, 32 km in length, is NE-SW strike and displaces perpendicularly the Toki Sand and Gravel F. by 500 m. The northeastern terminal of the fault has contact with the southern terminal of the Atera fault of NW-SE strike and offset their displacements each other. It is clear that the activity of the Byobuyama fault plays a role of the development of the complicated fault geometry system in the central Japan. In this study, we performed a broad-based investigation along the Byobuyama fault and collected samples. Actually, we observed 400 faults and analyzed 200 fault rocks. Based on these results, we obtained the following new opinion. 1. The Byobuyama fault has experienced following activities that can be divided to 3 stages at least under different stress field. 1) Movement with the sinisterly sense (preserved in cataclasite zone). 2) Dextral movement (preserved in fault gouge zone). 3) Reverse fault movement (due to the aggressive rise of mountains). In addition, the change from Stage 2 to Stage 3 is a continuous. 2. There is a relationship between the distance from the trace of the Byobuyama fault and the combination of alteration minerals included in the fault rocks. 3. In the central part of the Byobuyama fault (CPBF), fault plane trend and combination of alteration minerals shows specific features. The continuous change is considered to mean the presence of factors that interfere with the dextral movement of the Byobuyama fault. What is

  19. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    DOE PAGES

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less

  20. Infrastructure and mechanical properties of a fault zone in sandstone as an outcrop analogue of a potential geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Bauer, J. F.; Meier, S.; Philipp, S. L.

    2013-12-01

    Due to high drilling costs of geothermal projects, it is economically sensible to assess the potential suitability of a reservoir prior to drilling. Fault zones are of particular importance, because they may enhance fluid flow, or be flow barriers, respectively, depending on their particular infrastructure. Outcrop analogue studies are useful to analyze the fault zone infrastructure and thereby increase the predictability of fluid flow behavior across fault zones in the corresponding deep reservoir. The main aims of the present study are to 1) analyze the infrastructure and the differences of fracture system parameters in fault zones and 2) determine the mechanical properties of the faulted rocks. We measure fracture frequencies as well as orientations, lengths and apertures and take representative rock samples for each facies to obtain Young's modulus, compressive and tensile strengths in the laboratory. Since fractures reduce the stiffnesses of in situ rock masses we use an inverse correlation of the number of discontinuities to calculate effective (in situ) Young's moduli to investigate the variation of mechanical properties in fault zones. In addition we determine the rebound hardness, which correlates with the compressive strength measured in the laboratory, with a 'Schmidt-Hammer' in the field because this allows detailed maps of mechanical property variations within fault zones. Here we present the first results for a fault zone in the Triassic Lower Bunter of the Upper Rhine Graben in France. The outcrop at Cleebourg exposes the damage zone of the footwall and a clear developed fault core of a NNW-SSE-striking normal fault. The approximately 15 m wide fault core consists of fault gouge, slip zones, deformation bands and host rock lenses. Intensive deformation close to the core led to the formation of a distal fault core, a 5 m wide zone with disturbed layering and high fracture frequency. The damage zone also contains more fractures than the host rock

  1. Mechanical evolution of transpression zones affected by fault interactions: Insights from 3D elasto-plastic finite element models

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Tohid; Alavi, Seyed Ahmad; Mohammadi, Soheil; Ghassemi, Mohammad Reza

    2018-01-01

    The mechanical evolution of transpression zones affected by fault interactions is investigated by a 3D elasto-plastic mechanical model solved with the finite-element method. Ductile transpression between non-rigid walls implies an upward and lateral extrusion. The model results demonstrate that a, transpression zone evolves in a 3D strain field along non-coaxial strain paths. Distributed plastic strain, slip transfer, and maximum plastic strain occur within the transpression zone. Outside the transpression zone, fault slip is reduced because deformation is accommodated by distributed plastic shear. With progressive deformation, the σ3 axis (the minimum compressive stress) rotates within the transpression zone to form an oblique angle to the regional transport direction (∼9°-10°). The magnitude of displacement increases faster within the transpression zone than outside it. Rotation of the displacement vectors of oblique convergence with time suggests that transpression zone evolves toward an overall non-plane strain deformation. The slip decreases along fault segments and with increasing depth. This can be attributed to the accommodation of bulk shortening over adjacent fault segments. The model result shows an almost symmetrical domal uplift due to off-fault deformation, generating a doubly plunging fold and a 'positive flower' structure. Outside the overlap zone, expanding asymmetric basins subside to 'negative flower' structures on both sides of the transpression zone and are called 'transpressional basins'. Deflection at fault segments causes the fault dip fall to less than 90° (∼86-89°) near the surface (∼1.5 km). This results in a pure-shear-dominated, triclinic, and discontinuous heterogeneous flow of the transpression zone.

  2. Hydrogeological impact of fault zones on a fractured carbonate aquifer, Semmering (Austria)

    NASA Astrophysics Data System (ADS)

    Mayaud, Cyril; Winkler, Gerfried; Reichl, Peter

    2015-04-01

    Fault zones are the result of tectonic processes and are geometrical features frequently encountered in carbonate aquifer systems. They can hamper the fluid migration (hydrogeological barriers), propagate the movement of fluid (draining conduits) or be a combination of both processes. Numerical modelling of fractured carbonate aquifer systems is strongly bound on the knowledge of a profound conceptual model including geological and tectonic settings such as fault zones. In further consequence, numerical models can be used to evaluate the conceptual model and its introduced approximations. The study was conducted in a fractured carbonate aquifer built up by permomesozoic dolo/limestones of the Semmering-Wechsel complex in the Eastern Alps (Austria). The aquifer has an assumed thickness of about 200 m and dips to the north. It is covered by a thin quartzite layer and a very low permeable layer of quartz-phyllite having a thickness of up to several hundred meters. The carbonate layer crops out only in the southern part of the investigation area, where it receives autogenic recharge. The geological complexity affects some uncertainties related to the extent of the model area, which was determined to be about 15 km². Three vertical fault zones cross the area approximately in a N-S direction. The test site includes an infrastructural pilot tunnel gallery of 4.3 km length with two pumping stations, respectively active since August 1997 and June 1998. The total pumping rate is about 90 l/s and the drawdown data were analysed analytically, providing a hydraulic conductivity of about 5E-05 m/s for the carbonate layer. About 120 m drawdown between the initial situation and situation with pumping is reported by piezometers. This led to the drying up of one spring located at the southern border of the carbonates. A continuum approach using MODFLOW-2005 was applied to reproduce numerically the observed aquifer behaviour and investigate the impact of the three fault zones. First

  3. Gravity field and structure of the Sorong Fault Zone, eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Sardjono

    Gravity surveys along coastlines of islands in the region Banggai-Sula, Eastern Sulawesi, Halmahera, Bacan and Obi were carried out as part of the Sorong Fault Zone Project. Results of the Surveys were integrated with gravity data previously acquired by other projects, including on-land gravity data from the Bird Head area Irian Jaya (Dow et al 1986), Seram Island (Milsom 1977), Buru Island (Oemar and Reminton 1993) and Central Sulawesi (Silver et al. 1983) as well as marine gravity information within and surrounding the Sorong Fault Zone (Bowin et al. 1980). Gravity expeditions of the Sorong Fault Zone Project also include measurements in Mayu Island and the island group of Talaud, situated further north in the Central Molucca Sea region. A total of one hundred and forty two gravity data were acquired in the region of Banggai-Sula islands, forty seven in eastern part of Central Sulawesi, about four hundred in Halmahera, Bacan and Obi, and seventy nine in Mayu and Talaud. Surveys in the eastern part of Central Sulawesi were carried out for the purpose of tieing the older gravity data obtained from Silver et al. (1983) and the more recent data of the Sorong Fault Zone Project. About one thousand thirty hundred and thirty gravity data were acquired as part of the Irian Jaya Geological Mapping Project (IJGMP) in the period of 1978-1983, a project commissioned by the Indonesian Geological Research and Development Centre (GRDC) and the Australian Bureau of Mineral Resources (BMR). The remoteness of the survey areas of the Sorong Fault Zone Project necessitated a careful planning for travel arrangements and provision of logistics. A wide range of magnitude of gravity field was observed in the Sorong Fault Zone, extending from values below -250 mGal recorded in the southern part of the Molucca Sea to values in excess of +320 mGal measured near to sea level in the coastal areas south of Mangole and north of Sulabesi, the two islands of the Sula Group. Steep gradients of

  4. Complex permeability structure of a fault zone crosscutting a sequence of sandstones and shales and its influence on hydraulic head distribution

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Aydin, A.; Hazelton, G.

    2013-12-01

    Characterization of the structural architecture of a 5 km-long, N40°E-striking fault zone provides new insights for the interpretation of hydraulic heads measured across and along the fault. Of interest is the contaminant transport across a portion of the Upper Cretaceous Chatsworth Formation, a 1400 m-thick turbidite sequence of sandstones and shales exposed in the Simi Hills, south California. Local bedding consistently dips about 20° to 30° to NW. Participating hydrogeologists monitor the local groundwater system by means of numerous boreholes used to define the 3D distribution of the groundwater table around the fault. Sixty hydraulic head measurements consistently show differences of 10s of meters, except for a small area. In this presentation, we propose a link between this distribution and the fault zone architecture. Despite an apparent linear morphological trend, the fault is made up of at least three distinct segments named here as northern, central and southern segments. Key aspects of the fault zone architecture have been delineated at two sites. The first is an outcrop of the central segment and the second is a borehole intersecting the northern segment at depth. The first site shows the fault zone juxtaposing sandstones against shales. Here the fault zone consists of a 13 meter-wide fault rock including a highly deformed sliver of sandstone on the northwestern side. In the sandstone, shear offset was resolved along N42°E striking and SE dipping fracture surfaces localized within a 40 cm thick strand. Here the central core of the fault zone is 8 m-wide and contains mostly shale characterized by highly diffuse deformation. It shows a complex texture overprinted by N30°E-striking carbonate veins. At the southeastern edge of the fault zone exposure, a shale unit dipping 50° NW towards the fault zone provides the key information that the shale unit was incorporated into the fault zone in a manner consistent with shale smearing. At the second site, a

  5. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  6. Preliminary results from fault-slip analysis of the Pärvie neotectonic postglacial fault zone, northern Sweden

    NASA Astrophysics Data System (ADS)

    Backstrom, Ann; Viola, Giulio; Rantakokko, Nina; Jonsson, Erik; Ask, Maria

    2013-04-01

    Our study aims at constraining the paleostress field evolution of neotectonic postglacial faulting in northern Sweden. Postglacial faulting is a special type of intraplate faulting triggered by the retreat of continental glaciers and by the induced changes of the local stress field. We investigated the longest known post-glacial fault (PGF) in Scandinavia, the Pärvie PGF. It is 155 km long and consists of a series of 3-10 m high fault scarps developed in several rock types such as mafic and felsic meta-volcanic rocks, and in the north, Archean granites and gneisses. Most of the scarps trend north-northeast and dip steeply to the west. A smaller sibling fault to the east (the Lansjärv PGF) displaces postglacial sediments. It is interpreted as resulting from a great earthquake (M≤8.2) at the end or just after the last glaciation (~10 ky B.P.). Microseismic activity is still present along the Pärvie fault zone. Unfortunately, the stress history of the Pärvie PGF before the last glaciation is poorly known. To reconstruct its stress history, we have performed fault-slip analysis. Fault slip data have been collected from two profiles across the Pärvie PGF in the Corruvagge valley and in Kamasjaure in the north, and Stora Sjöfallet in the southern part of the fault zone. Cross-cutting relationships, fracture mineralization and structural features of the brittle overprint of the rocks have been used to suggest a conceptual model of the brittle history of the fault. Ca. 40 kinematically constrained fault planes were used in the inversion study in addition to ca. 1060 fractures. Preliminary results indicate that the oldest generation of fractures are coated by pink plagioclase and clinoamphibole. The key mineral epidote is prominent along cataclastic structures. Rarly multiple kinematic indicators are identified along the same fracture, indicating polyphase reactivation. Epidote coating is found along fractures from all the computed stress-fields, indicating that

  7. Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps

    NASA Astrophysics Data System (ADS)

    Frost, Erik; Dolan, James; Ratschbacher, Lothar; Hacker, Bradley; Seward, Gareth

    2011-02-01

    Structural analysis of two key exposures reveals the architecture of the brittle-ductile transition (BDT) of the subvertical, strike-slip Salzachtal fault. At Lichtensteinklamm, the fault zone is dominantly brittle, with a ˜70 m wide, high-strain fault core highlighted by a 50 m thick, highly foliated gouge zone. In contrast, at Kitzlochklamm, deformation is dominantly ductile, albeit with relatively low strain indicated by weak lattice-preferred orientations (LPOs). The marked contrast in structural style indicates that these sites span the BDT. The close proximity of the outcrops, coupled with Raman spectroscopy indicating similar maximum temperatures of ˜400°C, suggests that the difference in exhumation depth is small, with a commensurately small difference in total downdip width of the BDT. The small strains indicated by weak LPOs at Kitzlochklamm, coupled with evidence for brittle slip at the main fault contact and along the sides of a 5 m wide fault-bounded sliver of Klammkalk exposed 30 m into the Grauwacken zone rocks, suggest the possibility that this exposure may record hybrid behavior at different times during the earthquake cycle, with ductile deformation occurring during slow interseismic slip and brittle deformation occurring during earthquakes, as dynamic coseismic stresses induced a strain rate-dependent shift to brittle fault behavior within the nominally ductile regime in the lower part of the BDT. A key aspect of both outcrops is evidence of a high degree of strain localization through the BDT, with high-strain fault cores no wider than a few tens of meters.

  8. Experimental tests of truncated diffusion in fault damage zones

    NASA Astrophysics Data System (ADS)

    Suzuki, Anna; Hashida, Toshiyuki; Li, Kewen; Horne, Roland N.

    2016-11-01

    Fault zones affect the flow paths of fluids in groundwater aquifers and geological reservoirs. Fault-related fracture damage decreases to background levels with increasing distance from the fault core according to a power law. This study investigated mass transport in such a fault-related structure using nonlocal models. A column flow experiment is conducted to create a permeability distribution that varies with distance from a main conduit. The experimental tracer response curve is preasymptotic and implies subdiffusive transport, which is slower than the normal Fickian diffusion. If the surrounding area is a finite domain, an upper truncated behavior in tracer response (i.e., exponential decline at late times) is observed. The tempered anomalous diffusion (TAD) model captures the transition from subdiffusive to Fickian transport, which is characterized by a smooth transition from power-law to an exponential decline in the late-time breakthrough curves.

  9. Finite-frequency wave propagation through outer rise fault zones and seismic measurements of upper mantle hydration

    USGS Publications Warehouse

    Miller, Nathaniel; Lizarralde, Daniel

    2016-01-01

    Effects of serpentine-filled fault zones on seismic wave propagation in the upper mantle at the outer rise of subduction zones are evaluated using acoustic wave propagation models. Modeled wave speeds depend on azimuth, with slowest speeds in the fault-normal direction. Propagation is fastest along faults, but, for fault widths on the order of the seismic wavelength, apparent wave speeds in this direction depend on frequency. For the 5–12 Hz Pn arrivals used in tomographic studies, joint-parallel wavefronts are slowed by joints. This delay can account for the slowing seen in tomographic images of the outer rise upper mantle. At the Middle America Trench, confining serpentine to fault zones, as opposed to a uniform distribution, reduces estimates of bulk upper mantle hydration from ~3.5 wt % to as low as 0.33 wt % H2O.

  10. The Queen Charlotte-Fairweather Fault Zone - Geomorphology of a submarine transform fault, offshore British Columbia and southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Barrie, V.; Greene, H. G.; Brothers, D. S.; Conway, K.; Conrad, J. E.

    2017-12-01

    The Queen Charlotte-Fairweather (QC-FW) Fault Zone is the Pacific - North America transform plate boundary and is clearly seen for over 900 km on the seabed as a linear and continuous feature from offshore central Haida Gwaii, British Columbia to Icy Point, Alaska. Recently (July - September 2017) collected multibeam bathymetry, seismic-reflection profiles and sediment cores provide evidence for the continuous strike-slip morphology along the continental shelfbreak and upper slope, including a linear fault valley, offset submarine canyons and gullies, and right-step offsets (pull apart basins). South of central Haida Gwaii, the QC-FW is represented by several NW-SE to N-S trending faults to the southern end of the islands. Adjacent to the fault at the southern extreme and offshore Dixon Entrance (Canada/US boundary) are 400 to 600 m high mud volcanos in 1000 to 1600 m water depth that have plumes extending up 700 m into the water column and contain extensive carbonate crusts and chemosynthetic communities within the craters. In addition, gas plumes have been identified that appear to be directly associated with the fault zone. Surficial Quaternary sediments within and adjacent to the central and southern fault date either to the deglaciation of this region of the Pacific north coast (16,000 years BP) or to the last interstadial period ( 40,000 years BP). Sediment accumulation is minimal and the sediments cored are primarily hard-packed dense sands that appear to have been transported along the fault valley. The majority of the right-lateral slip along the entire QC-FW appears to be accommodated by the single fault north of the convergence at its southern most extent.

  11. The Queen Charlotte-Fairweather Fault Zone - Geomorphology of a submarine transform fault, offshore British Columbia and southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Walton, M. A. L.; Barrie, V.; Greene, H. G.; Brothers, D. S.; Conway, K.; Conrad, J. E.

    2016-12-01

    The Queen Charlotte-Fairweather (QC-FW) Fault Zone is the Pacific - North America transform plate boundary and is clearly seen for over 900 km on the seabed as a linear and continuous feature from offshore central Haida Gwaii, British Columbia to Icy Point, Alaska. Recently (July - September 2017) collected multibeam bathymetry, seismic-reflection profiles and sediment cores provide evidence for the continuous strike-slip morphology along the continental shelfbreak and upper slope, including a linear fault valley, offset submarine canyons and gullies, and right-step offsets (pull apart basins). South of central Haida Gwaii, the QC-FW is represented by several NW-SE to N-S trending faults to the southern end of the islands. Adjacent to the fault at the southern extreme and offshore Dixon Entrance (Canada/US boundary) are 400 to 600 m high mud volcanos in 1000 to 1600 m water depth that have plumes extending up 700 m into the water column and contain extensive carbonate crusts and chemosynthetic communities within the craters. In addition, gas plumes have been identified that appear to be directly associated with the fault zone. Surficial Quaternary sediments within and adjacent to the central and southern fault date either to the deglaciation of this region of the Pacific north coast (16,000 years BP) or to the last interstadial period ( 40,000 years BP). Sediment accumulation is minimal and the sediments cored are primarily hard-packed dense sands that appear to have been transported along the fault valley. The majority of the right-lateral slip along the entire QC-FW appears to be accommodated by the single fault north of the convergence at its southern most extent.

  12. The permeaiblity of fault-zones:the role of stylolites as incipit of dissolution

    NASA Astrophysics Data System (ADS)

    Magni, Silvana

    2017-04-01

    Fault zones and fractures play an important role in fluid circulation and then in dissolution, acting as barriers or conductors depending on the distribution of other features associated with them and on the specific conditions (lithological and structural, as well). The fault zone have a high permeability only in the early stages of the movement but shortly after recrystallization and reprecipitation processes greatly reduce the permeability within them. Indeed the dissolution is a complex phenomenon which involves both several factors that lead to the formation of caves and karst systems often complex. Traditionally, in the field of karst , the dissolution is associated with extensional structures such as faults and joints believing that they are more favorable to the water circulation. In this context compressional tectonic structures, as like the stylolites, are never considered. In fact the stylolites play an important role in the fluid circulation (Rawling, 2001) and in particular in the incipit of dissolution and then of the karst. We have so focused our research on the study of permeability of four fault zones in a karst area of Alte Murge (South Italy). Through a detailed structural analysis in the field and using the method of Caine (Caine, 1996), we reconstructed the permeability of the four previous fault zones. Our attention was focused on faults, joints and on stylolites. Contrary to the literature the dissolution and therefore the karst was mainly found along the stylolites and only secondarily along faults. No sign of dissolution was found along the joints. In the context of karst studies, the stylolites, which are structures due to pressure solution has never been taken into account, thinking that in compressional structures is not possible any circulation of water and that therefore there is no fluid-rock interaction. No consideration has been given to the enormous role that the pressure and the microfluidic that are created have in this context

  13. Fabric transition with dislocation creep of a carbonate fault zone in the brittle regime

    NASA Astrophysics Data System (ADS)

    Kim, Sungshil; Ree, Jin-Han; Han, Raehee; Kim, Nahyeon; Jung, Haemyeong

    2018-01-01

    Fabric transition by a switch in the dominant slip system of minerals in the plastic regime can be induced by changes in temperature, strain rate, or water content. We propose here this fabric transition by frictional heating in seismogenic fault zones in the brittle regime. The Garam Thrust in the Taebaeksan Basin of South Korea has a hanging wall of Cambrian dolostone juxtaposed against a footwall of Ordovician limestone and records a minimum displacement of 120 m. In a 10 cm thick plastically deformed layer adjacent to the principal slip layer of the fault zone, the lattice preferred orientation of calcite grains suggests that the dominant slip system changes, approaching the principal slip layer, from r 〈02-21〉 and e-twinning, through r 〈02-21〉 and basal 〈a〉, to basal 〈a〉. This fabric transition requires a high temperature-gradient of 40 °C/cm, which we infer to result from frictional heating of the seismic fault zone. We suggest that fabric transition within a thin plastically deformed layer adjacent to the principal slip layer of a fault zone indicates an unusually steep temperature gradient and provides strong evidence of seismic slip.

  14. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    NASA Astrophysics Data System (ADS)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  15. Structure of a seismogenic fault zone in dolostones: the Foiana Line (Italian Southern Alps)

    NASA Astrophysics Data System (ADS)

    Di Toro, G.; Fondriest, M.; Smith, S. A.; Aretusini, S.

    2012-12-01

    Fault zones in carbonate rocks (limestones and dolostones) represent significant upper crustal seismogenic sources in several areas worldwide (e.g. L'Aquila 2009 Mw = 6.3 in central Italy). Here we describe an exhumed example of a regionally-significant fault zone cutting dolostones. The Foiana Line (FL) is a major NNE-SSW-trending sinistral transpressive fault cutting sedimentary Triassic dolostones in the Italian Southern Alps. The FL has a cumulative vertical throw of 1.5-2 km that reduces toward its southern termination. The fault zone is 50-300 m wide and is exposed for ~ 10 km along strike within several outcrops exhumed from increasing depths from the south (1 km) to the north (2.5 km). The southern portion of the FL consists of heavily fractured (shattered) dolostones, with particles of a few millimeters in size (exposed in badlands topography over an area of 6 km2), cut by a dense network of 1-20 m long mirror-like fault surfaces with dispersed attitudes. The mirror-like faults have mainly dip-slip reverse kinematics and displacements ranging between 0.04 m and 0.5 m. The northern portion of the FL consists of sub-parallel fault strands spaced 2-5 m apart, surrounded by 2-3 m thick bands of shattered dolostones. The fault strands are characterized by smooth to mirror-like sub-vertical slip surfaces with dominant strike-slip kinematics. Overall, deformation is more localized moving from South to North along the FL. Mirror-like fault surfaces similar to those found in the FL were produced in friction experiments at the deformation conditions expected during seismic slip along the FL (Fondriest et al., this meeting). Scanning Electron Microscope investigations of the natural shattered dolostones beneath the mirror-like fault surfaces show: 1) lack of significant shear strain (even at a few micrometers from the slip surface), 2) pervasive extensional fracturing down to the micrometer scale, 3) exploded clasts with radial fractures, and 4) chains of split

  16. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  17. Physical properties of fault zone rocks from SAFOD: Tying logging data to high-pressure measurements on drill core

    NASA Astrophysics Data System (ADS)

    Jeppson, T.; Tobin, H. J.

    2013-12-01

    In the summer of 2005, Phase 2 of the San Andreas Fault Observatory at Depth (SAFOD) borehole was completed and logged with wireline tools including a dipole sonic tool to measure P- and S-wave velocities. A zone of anomalously low velocity was detected from 3150 to 3414 m measured depth (MD), corresponding with the subsurface location of the San Andreas Fault Zone (SAFZ). This low velocity zone is 5-30% slower than the surrounding host rock. Within this broad low-velocity zone, several slip surfaces were identified as well as two actively deforming shear zones: the southwest deformation zone (SDZ) and the central deformation zone (CDZ), located at 3192 and 3302 m MD, respectively. The SAFZ had also previously been identified as a low velocity zone in seismic velocity inversion models. The anomalously low velocity was hypothesized to result from either (a) brittle deformation in the damage zone of the fault, (b) high fluid pressures with in the fault zone, or (c) lithological variation, or a combination of the above. We measured P- and S-wave velocities at ultrasonic frequencies on saturated 2.5 cm diameter core plug samples taken from SAFOD core obtained in 2007 from within the low velocity zone. The resulting values fall into two distinct groups: foliated fault gouge and non-gouge. Samples of the foliated fault gouge have P-wave velocities between 2.3-3.5 km/s while non-gouge samples lie between 4.1-5.4 km/s over a range of effective pressures from 5-70 MPa. There is a good correlation between the log measurements and laboratory values of P-and S wave velocity at in situ pressure conditions especially for the foliated fault gouge. For non-gouge samples the laboratory values are approximately 0.08-0.73 km/s faster than the log values. This difference places the non-gouge velocities within the Great Valley siltstone velocity range, as measured by logs and ultrasonic measurements performed on outcrop samples. As a high fluid pressure zone was not encountered during

  18. Permeability and of the San Andreas Fault core and damage zone from SAFOD drill core

    NASA Astrophysics Data System (ADS)

    Rathbun, A. P.; Fry, M.; Kitajima, H.; Song, I.; Carpenter, B. M.; Marone, C.; Saffer, D. M.

    2012-12-01

    Quantifying fault-rock permeability is important toward understanding both the regional hydrologic behavior of fault zones, and poro-elastic processes that may affect faulting and earthquake mechanics by mediating effective stress. These include persistent fluid overpressures hypothesized to reduce fault strength, as well as dynamic processes that may occur during earthquake slip, including thermal pressurization and dilatancy hardening. To date, studies of permeability on fault rocks and gouge from plate-boundary strike-slip faults have mainly focused on samples from surface outcrops. We report on permeability tests conducted on the host rock, damage zone, and a major actively creeping fault strand (Central Deformation Zone, CDZ) of the San Andreas Fault (SAF), obtained from coring across the active SAF at ~2.7 km depth as part of SAFOD Phase III. We quantify permeability on subsamples oriented both perpendicular and parallel to the coring axis, which is nearly perpendicular to the SAF plane, to evaluate permeability anisotropy. The fault strand samples were obtained from the CDZ, which accommodates significant creep, and hosts ~90% of the observed casing deformation measured between drilling phases. The CDZ is 2.6 m thick with a matrix grain size < 10 μm and ~5% vol. clasts, and contains ~80% clay, of which ~90% is smectite. We also tested damage zone samples taken from adjacent core sections within a few m on either side of the CDZ. Permeability experiments were conducted in a triaxial vessel, on samples 25.4 mm in diameter and ~20-35 mm in length. We conducted measurements under isotropic stress conditions, at effective stress (Pc') of ~5-70 MPa. We measure permeability using a constant head flow-through technique. At the highest Pc', low permeability of the CDZ and damage zone necessitates using a step loading transient method and is in good agreement with permeabilities obtained from flow-through experiments. We quantify compression behavior by monitoring

  19. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea

    2016-04-01

    A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate

  20. Structural evolution of fault zones in sandstone by multiple deformation mechanisms: Moab fault, southeast Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Eichhubl, P.; Aydin, A.

    2005-01-01

    Faults in sandstone are frequently composed of two classes of structures: (1) deformation bands and (2) joints and sheared joints. Whereas the former structures are associated with cataclastic deformation, the latter ones represent brittle fracturing, fragmentation, and brecciation. We investigated the distribution of these structures, their formation, and the underlying mechanical controls for their occurrence along the Moab normal fault in southeastern Utah through the use of structural mapping and numerical elastic boundary element modeling. We found that deformation bands occur everywhere along the fault, but with increased density in contractional relays. Joints and sheared joints only occur at intersections and extensional relays. In all locations , joints consistently overprint deformation bands. Localization of joints and sheared joints in extensional relays suggests that their distribution is controlled by local variations in stress state that are due to mechanical interaction between the fault segments. This interpretation is consistent with elastic boundary element models that predict a local reduction in mean stress and least compressive principal stress at intersections and extensional relays. The transition from deformation band to joint formation along these sections of the fault system likely resulted from the combined effects of changes in remote tectonic loading, burial depth, fluid pressure, and rock properties. In the case of the Moab fault, we conclude that the structural heterogeneity in the fault zone is systematically related to the geometric evolution of the fault, the local state of stress associated with fault slip , and the remote loading history. Because the type and distribution of structures affect fault permeability and strength, our results predict systematic variations in these parameters with fault evolution. ?? 2004 Geological Society of America.

  1. Near-surface location, geometry, and velocities of the Santa Monica Fault Zone, Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.; Rymer, M.J.; Bawden, G.W.

    2008-01-01

    High-resolution seismic-reflection and seismic-refraction imaging, combined with existing borehole, earthquake, and paleoseismic trenching data, suggest that the Santa Monica fault zone in Los Angeles consists of multiple strands from several kilometers depth to the near surface. We interpret our seismic data as showing two shallow-depth low-angle fault strands and multiple near-vertical (???85??) faults in the upper 100 m. One of the low-angle faults dips northward at about 28?? and approaches the surface at the base of a topographic scarp on the grounds of the Wadsworth VA Hospital (WVAH). The other principal low-angle fault dips northward at about 20?? and projects toward the surface about 200 m south of the topographic scarp, near the northernmost areas of the Los Angeles Basin that experienced strong shaking during the 1994 Northridge earthquake. The 20?? north-dipping low-angle fault is also apparent on a previously published seismic-reflection image by Pratt et al. (1998) and appears to extend northward to at least Wilshire Boulevard, where the fault may be about 450 m below the surface. Slip rates determined at the WVAH site could be significantly underestimated if it is assumed that slip occurs only on a single strand of the Santa Monica fault or if it is assumed that the near-surface faults dip at angles greater than 20-28??. At the WVAH, tomographic velocity modeling shows a significant decrease in velocity across near-surface strands of the Santa Monica fault. P-wave velocities range from about 500 m/sec at the surface to about 4500 m/sec within the upper 50 m on the north side of the fault zone at WVAH, but maximum measured velocities on the south side of the low-angle fault zone at WVAH are about 3500 m/sec. These refraction velocities compare favorably with velocities measured in nearby boreholes by Gibbs et al. (2000). This study illustrates the utility of com- bined seismic-reflection and seismic-refraction methods, which allow more accurate

  2. Finite element models of earthquake cycles in mature strike-slip fault zones

    NASA Astrophysics Data System (ADS)

    Lynch, John Charles

    The research presented in this dissertation is on the subject of strike-slip earthquakes and the stresses that build and release in the Earth's crust during earthquake cycles. Numerical models of these cycles in a layered elastic/viscoelastic crust are produced using the finite element method. A fault that alternately sticks and slips poses a particularly challenging problem for numerical implementation, and a new contact element dubbed the "Velcro" element was developed to address this problem (Appendix A). Additionally, the finite element code used in this study was bench-marked against analytical solutions for some simplified problems (Chapter 2), and the resolving power was tested for the fault region of the models (Appendix B). With the modeling method thus developed, there are two main questions posed. First, in Chapter 3, the effect of a finite-width shear zone is considered. By defining a viscoelastic shear zone beneath a periodically slipping fault, it is found that shear stress concentrates at the edges of the shear zone and thus causes the stress tensor to rotate into non-Andersonian orientations. Several methods are used to examine the stress patterns, including the plunge angles of the principal stresses and a new method that plots the stress tensor in a manner analogous to seismic focal mechanism diagrams. In Chapter 4, a simple San Andreas-like model is constructed, consisting of two great earthquake producing faults separated by a freely-slipping shorter fault. The model inputs of lower crustal viscosity, fault separation distance, and relative breaking strengths are examined for their effect on fault communication. It is found that with a lower crustal viscosity of 1018 Pa s (in the lower range of estimates for California), the two faults tend to synchronize their earthquake cycles, even in the cases where the faults have asymmetric breaking strengths. These models imply that postseismic stress transfer over hundreds of kilometers may play a

  3. Late Quaternary activity of the Ecemiş Fault Zone, Turkey; implications from cosmogenic 36Cl dating of offset alluvial fans

    NASA Astrophysics Data System (ADS)

    Akif Sarıkaya, Mehmet; Yıldırım, Cengiz; Çiner, Attila

    2014-05-01

    The Ecemiş Fault Zone is the southernmost segment of the Central Anatolian Fault Zone. The tectonic trough of the fault zone defines the boundary between the Central and Eastern Taurides Ranges. The presence of faulted alluvial fans and colluvium within this trough provide favorable conditions to unravel the Late Quaternary slip-rate of the fault zone by cosmogenic surface exposure dating. In this context, we focused on the main strand of the fault zone and also on the Cevizlik Fault that delimits the mountain front of the Aladaǧlar, Eastern Taurides. Geomorphic mapping and topographic surveying indicate four different alluvial fan levels deposited along the main strand. Our topographic survey reveals 60±5 m horizontal and 18±2 m vertical displacement of the oldest fan surface (AF1) associated with the main strand of the fault zone. We dated the surface of the AF1 with 13 cosmogenic 36Cl samples. Our results indicate that the AF1 surface was abandoned maximum 105.3±1.5 ka ago. Accordingly, we propose 0.57±0.05 mm/yr horizontal and 0.17±0.02 mm/yr vertical mean slip-rates since 100 ka for the main strand. On the other hand, we measured 20±2 m vertical displacement on the colluvium along the Cevizlik Fault. The surface exposure age of the colluvium yielded 21.9±0.3 ka that translates to 0.91±0.09 mm/yr vertical slip-rate for the Cevizlik Fault. Our results reveal significant Quaternary deformation, and low strain rates might indicate very long earthquake recurrence intervals along the fault zone.

  4. Fault Zone Resistivity Structure and Monitoring at the Taiwan Chelungpu Drilling Project from AMT data

    NASA Astrophysics Data System (ADS)

    Chiang, C.-W.; Unsworth, M. J.; Chen, C.-S.; Chen, C.-C.; Lin, A.-T.; Hsu, H.-L.

    2009-04-01

    The Chi-Chi earthquake occurred on September 21st, 1999 in the Western Foothills of central Taiwan. This Mw=7.6 earthquake produced a 90 km long surface rupture and caused severe damage across Taiwan. The coseismic displacement on the Chelungpu fault was one of the largest ever observed. The Taiwan Chelungpu drilling project (TCDP) began in 2003 and resulted in a 2,000 m well that recovered cores from the fault zone at A-hole and finished in 2005 with two boreholes (A-hole and B-hole) being completed. The Chelungpu fault that caused the Chi-Chi earthquake was observed in the core at a depth of 1,111 m (FAZ1111). Another fault zone (Sanyi Fault - FAZ1710) was observed at depths of 1,500~1,710 m. Since the electrical resistivity of rocks is sensitive to the presence of fluids, geophysical methods that remotely sense sub-surface resistivity, such as Magnetotellurics (MT), can be a powerful tool in investigating the fluid distribution in the shallow crust. The effectiveness of MT in imaging fault zones has been demonstrated by studies of the San Andreas Fault zone in California, the U.S. and elsewhere. In magnetotellurics, the depth of exploration increases as the signal frequency decreases. Thus for imaging shallow fault zone structure at the TCDP site, the higher frequency audio-magnetotelluric (AMT) method is the most suitable. In this paper, AMT data collected at the TCDP site from 2004 to 2006 are presented. Spatial and temporal variations are described and interpreted in terms of the tectonic setting. Audio-magnetotelluric (AMT) measurements were used to investigate electrical resistivity structure at the TCDP site from 2004~2006. These data show a geoelectric strike direction of N15°E to N30°E. Inversion and forward modeling of the AMT data were used to generate a 1-D resistivity model that has a prominent low resistivity zone (< 10 ohm-m) between depths of 1,100 and 1,500 m. When combined with porosity measurements, the AMT measurements imply that the ground

  5. A geophysical investigation of shallow deformation along an anomalous section of the Wasatch fault zone, Utah, USA

    USGS Publications Warehouse

    McBride, J.H.; Stephenson, W.J.; Thompson, T.J.; Harper, M.P.; Eipert, A.A.; Hoopes, J.C.; Tingey, D.G.; Keach, R.W.; Okojie-Ayoro, A. O.; Gunderson, K.L.; Meirovitz, C.D.; Hicks, T.C.; Spencer, C.J.; Yaede, J.R.; Worley, D.M.

    2008-01-01

    We report the results of a geophysical study of the Wasatch fault zone near the Provo and Salt Lake City segment boundary. This area is anomalous because the fault zone strikes more east-west than north-south. Vibroseis was used to record a common mid-point (CMP) profile that provides information to depths of ???500 m. A tomographic velocity model, derived from first breaks, constrained source and receiver static corrections; this was required due to complex terrain and significant lateral velocity contrasts. The profile reveals an ???250-m-wide graben in the hanging wall of the main fault that is associated with both synthetic and antithetic faults. Faults defined by apparent reflector offsets propagate upward toward topographic gradients. Faults mapped from a nearby trench and the seismic profile also appear to correlate with topographic alignments on LiDAR gradient maps. The faults as measured in the trench show a wide range of apparent dips, 20??-90??, and appear to steepen with depth on the seismic section. Although the fault zone is likely composed of numerous small faults, the broad asymmetric structure in the hanging wall is fairly simple and dominated by two inward-facing ruptures. Our results indicate the feasibility of mapping fault zones in rugged terrain and complex near-surface geology using low-frequency vibroseis. Further, the integration of geologic mapping and seismic reflection can extend surface observations in areas where structural deformation is obscured by poorly stratified or otherwise unmappable deposits. Therefore, the vibroseis technique, when integrated with geological information, provides constraints for assessing geologic hazards in areas of potential development.

  6. Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.

    PubMed

    Chen, Mou; Tao, Gang

    2016-08-01

    In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.

  7. Shallow Vs Structure Accross Hayward Fault Zone Inferred from Multichannel Analysis of Surface Waves (MASW)

    NASA Astrophysics Data System (ADS)

    Chan, J. H.; Richardson, I. S.; Strayer, L. M.; Catchings, R.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    The Hayward Fault Zone (HFZ) includes the Hayward fault (HF), as well as several named and unnamed subparallel, subsidiary faults to the east, among them the Quaternary-active Chabot Fault (CF), the Miller Creek Fault (MCF), and a heretofore unnamed fault, the Redwood Thrust Fault (RTF). With an ≥M6.0 recurrence interval of 130 y for the HF and the last major earthquake in 1868, the HFZ is a major seismic hazard in the San Francisco Bay Area, exacerbated by the many unknown and potentially active secondary faults of the HFZ. In 2016, researchers from California State University, East Bay, working in concert with the United States Geological Survey conducted the East Bay Seismic Investigation (EBSI). We deployed 296 RefTek RT125 (Texan) seismographs along a 15-km-long linear seismic profile across the HF, extending from the bay in San Leandro to the hills in Castro Valley. Two-channel seismographs were deployed at 100 m intervals to record P- and S-waves, and additional single-channel seismographs were deployed at 20 m intervals where the seismic line crossed mapped faults. The active-source survey consisted of 16 buried explosive shots located at approximately 1-km intervals along the seismic line. We used the Multichannel Analysis of Surfaces Waves (MASW) method to develop 2-D shear-wave velocity models across the CF, MCF, and RTF. Preliminary MASW analysis show areas of anomalously low S-wave velocities , indicating zones of reduced shear modulus, coincident with these three mapped faults; additional velocity anomalies coincide with unmapped faults within the HFZ. Such compliant zones likely correspond to heavily fractured rock surrounding the faults, where the shear modulus is expected to be low compared to the undeformed host rock.

  8. Slip rate on the San Diego trough fault zone, inner California Borderland, and the 1986 Oceanside earthquake swarm revisited

    USGS Publications Warehouse

    Ryan, Holly F.; Conrad, James E.; Paull, C.K.; McGann, Mary

    2012-01-01

    The San Diego trough fault zone (SDTFZ) is part of a 90-km-wide zone of faults within the inner California Borderland that accommodates motion between the Pacific and North American plates. Along with most faults offshore southern California, the slip rate and paleoseismic history of the SDTFZ are unknown. We present new seismic reflection data that show that the fault zone steps across a 5-km-wide stepover to continue for an additional 60 km north of its previously mapped extent. The 1986 Oceanside earthquake swarm is located within the 20-km-long restraining stepover. Farther north, at the latitude of Santa Catalina Island, the SDTFZ bends 20° to the west and may be linked via a complex zone of folds with the San Pedro basin fault zone (SPBFZ). In a cooperative program between the U.S. Geological Survey (USGS) and the Monterey Bay Aquarium Research Institute (MBARI), we measure and date the coseismic offset of a submarine channel that intersects the fault zone near the SDTFZ–SPBFZ junction. We estimate a horizontal slip rate of about 1:5 0:3 mm=yr over the past 12,270 yr.

  9. Investigations into the Fish Lake Valley Fault Zone (FLVFZ) and its interactions with normal faulting within Eureka and Deep Springs Valleys

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Rhodes, E.; Yin, A.

    2016-12-01

    In most textbooks, the San Andreas Fault is stated to be the plate boundary between the North American and the Pacific plates, as plate tectonics assumes that boundaries are essentially discrete. In the Western United States this is not the case, as up to 25% of relative plate motion is accommodated on other structures within the Walker Lane Shear Zone (WLSZ) in a diffuse 100 km margin (Faulds et al., 2005; Oldow et al., 2001). Fish Lake Valley Fault Zone (FLVFZ), situated at the northern border of Death Valley National Park, is the northern continuation of the Furnace Creek Fault Zone (FCFZ), and is an important transfer structure within the Walker Lane Shear Zone. Though the FLVFZ has a long term rate (since 10 Ma) of 5 mm/yr (Reheis and Sawyer, 1997), it has a highly variable slip rate. In the middle Pleistocene, the rate has a maximum of up to 11 mm/yr which would accommodate nearly the entirety of slip within the Walker Lane, and yet this rate decreases significantly ( 2.5 to 3 mm/yr) by the late Pleistocene due to unknown causes (Frankel et al. 2007). This variation in slip rate has been proposed by previous workers to be due to strain transience, an increase in the overall strain rate, or due to other unknown structures (Lee et al., 2009). Currently, we are investigating the cause of this variation, and the possibility of the transfer of slip to faults south of the FLVFZ on oblique normal faults within Eureka and Deep Springs Valleys. Preliminary data will be shown utilizing scarp transects, geomorphic scarp modeling, and Optically Stimulated Luminescence (OSL) dating techniques.

  10. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    NASA Astrophysics Data System (ADS)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope

  11. Shear concentration in a collision zone: kinematics of the Chihshang Fault as revealed by outcrop-scale quantification of active faulting, Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Angelier, J.; Chu, H.-T.; Lee, J.-C.

    1997-06-01

    Repeated measurements of active deformation were carried out at three sites along the active Chihshang Fault, a segment of the Longitudinal Valley Fault zone of eastern Taiwan (the present-day plate boundary between the Philippine Sea Plate and Eurasia). Reliable annual records of displacement along an active fault, were obtained based on detailed surveys of faulted concrete structures. Along the active Chihshang Fault striking N18°E, we determined average motion vectors trending N37°W with an average shortening of 2.2 cm/yr. Thus, the transverse component of motion related to westward thrusting is 1.8 cm/yr, whereas the left-lateral strike-slip component of motion is 1.3 cm/yr. The fault dips 39-45° to the east, so that the vertical displacement is 1.5-3 cm/yr and the actual oblique offset of the fault increases at a rate of 2.7-3.7 cm/yr. This is in good agreement with the results of regional geodetic and tectonic analyses in Taiwan, and consistent with the N54°W trend of convergence between the northernmost Luzon Arc and South China revealed by GPS studies. Our study provides an example of extreme shear concentration in an oblique collision zone. At Chihshang, the whole horizontal shortening of the Longitudinal Valley Fault, 2.2 cm/yr on average, occurs across a single, narrow fault zone, so that the whole reverse slip (about 2.7-3.7 cm/yr depending on fault dip) was entirely recorded by walls 20-200 m long where faults are tightly localized. This active faulting accounts for more than one fourth (27%) of the total shortening between the Luzon Arc and South China recorded through GPS analyses. Further surveys should indicate whether the decreasing shortening velocity across the fault is significant (revealing increasing earthquake risk due to stress accumulation) or not (revealing continuing fault creep and 'weak' behaviour of the Chihshang Fault).

  12. Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: Evidence for a shallow trapping structure

    USGS Publications Warehouse

    Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L.

    2003-01-01

    We analyse quantitatively a waveform data set of 238 earthquakes recorded by a dense seismic array across and along the rupture zone of the 1992 Landers earthquake. A grid-search method with station delay corrections is used to locate events that do not have catalogue locations. The quality of fault zone trapped waves generated by each event is determined from the ratios of seismic energy in time windows corresponding to trapped waves and direct S waves at stations close to and off the fault zone. Approximately 70 per cent of the events with S-P times of less than 2 s, including many clearly off the fault, produce considerable trapped wave energy. This distribution is in marked contrast with previous claims that trapped waves are generated only by sources close to or inside the Landers rupture zone. The time difference between the S arrival and trapped waves group does not grow systematically with increasing hypocentral distance and depth. The dispersion measured from the trapped waves is weak. These results imply that the seismic trapping structure at the Landers rupture zone is shallow and does not extend continuously along-strike by more than a few kilometres. Synthetic waveform modelling indicates that the fault zone waveguide has depth of approximately 2-4 km, a width of approximately 200 m, an S-wave velocity reduction relative to the host rock of approximately 30-40 per cent and an S-wave attenuation coefficient of approximately 20-30. The fault zone waveguide north of the array appears to be shallower and weaker than that south of the array. The waveform modelling also indicates that the seismic trapping structure below the array is centred approximately 100 m east of the surface break.

  13. Permeability and seismic velocity anisotropy across a ductile-brittle fault zone in crystalline rock

    NASA Astrophysics Data System (ADS)

    Wenning, Quinn C.; Madonna, Claudio; de Haller, Antoine; Burg, Jean-Pierre

    2018-05-01

    This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.

  14. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2017-11-01

    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  15. Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms

    NASA Astrophysics Data System (ADS)

    Xue, Lian; Bürgmann, Roland; Shelly, David R.; Johnson, Christopher W.; Taira, Taka'aki

    2018-05-01

    Earthquake swarms represent a sudden increase in seismicity that may indicate a heterogeneous fault-zone, the involvement of crustal fluids and/or slow fault slip. Swarms sometimes precede major earthquake ruptures. An earthquake swarm occurred in October 2015 near San Ramon, California in an extensional right step-over region between the northern Calaveras Fault and the Concord-Mt. Diablo fault zone, which has hosted ten major swarms since 1970. The 2015 San Ramon swarm is examined here from 11 October through 18 November using template matching analysis. The relocated seismicity catalog contains ∼4000 events with magnitudes between - 0.2 fault segments of km-scale dimension and thickness of up to 200 m. The segments contain coexisting populations of different focal-mechanisms, suggesting a complex fault zone structure with several sets of en échelon fault orientations. The migration of events along the three planar structures indicates a complex fluid and faulting interaction processes. We searched for correlations between seismic activity and tidal stresses and found some suggestive features, but nothing that we can be confident is statistically significant.

  16. The seismic velocity structure of a foreshock zone on an oceanic transform fault: Imaging a rupture barrier to the 2008 Mw 6.0 earthquake on the Gofar fault, EPR

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; McGuire, J. J.; Lizarralde, D.; Collins, J. A.

    2010-12-01

    East Pacific Rise (EPR) oceanic transform faults are known to exhibit a number of unique seismicity characteristics, including abundant seismic swarms, a prevalence of aseismic slip, and high rates of foreshock activity. Until recently the details of how this behavior fits into the seismic cycle of large events that occur periodically on transforms have remained poorly understood. In 2008 the most recent seismic cycle of the western segment (G3) of the Gofar fault (4 degrees South on the EPR) ended with a Mw 6.0 earthquake. Seismicity associated with this event was recorded by a local array of ocean bottom seismometers, and earthquake locations reveal several distinct segments with unique slip behavior on the G3 fault. Preceding the Mw 6.0 event, a significant foreshock sequence was recorded just to the east of the mainshock rupture zone that included more than 20,000 detected earthquakes. This foreshock zone formed the eastern barrier to the mainshock rupture, and following the mainshock, seismicity rates within the foreshock zone remained unchanged. Based on aftershock locations of events following the 2007 Mw 6.0 event that completed the seismic cycle on the eastern end of the G3 fault, it appears that the same foreshock zone may have served as the western rupture barrier for that prior earthquake. Moreover, mainshock rupture associated with each of the last 8 large (~ Mw 6.0) events on the G3 fault seems to terminate at the same foreshock zone. In order to elucidate some of the structural controls on fault slip and earthquake rupture along transform faults, we present a seismic P-wave velocity profile crossing the center of the foreshock zone of the Gofar fault, as well as a profile for comparison across the neighboring Quebrada fault. Although tectonically similar, Quebrada does not sustain large earthquakes and is thought to accommodate slip primarily aseismically and with small magnitude earthquake swarms. Velocity profiles were obtained using data collected

  17. The May 29 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks

    NASA Astrophysics Data System (ADS)

    Brandsdottir, B.; Parsons, M.; White, R. S.; Gudmundsson, O.; Drew, J.

    2010-12-01

    The mid-Atlantic plate boundary breaks up into a series of segments across Iceland. The South Iceland Seismic Zone (SISZ) is a complex transform zone where left-lateral E-W shear between the Reykjanes Peninsula Rift Zone and the Eastern Volcanic Zone is accommodated by bookshelf faulting along N-S lateral strike-slip faults. The SISZ is also a transient feature, migrating sideways in response to the southward propagation of the Eastern Volcanic Zone. Sequences of large earthquakes (M > 6) lasting from days to years and affecting most of the seismic zone have occurred repeatedly in historical time (last 1100 years), separated by intervals of relative quiescence lasting decades to more than a century. On May 29 2008, a Mw 6.1 earthquake struck the western part of the South Iceland Seismic Zone, followed within seconds by a slightly smaller event on a second fault ~5 km further west. Aftershocks, detected by a temporal array of 11 seismometers and three permanent Icelandic Meteorological Office stations were located using an automated Coalescence Microseismic Mapping technique. The epicenters delineate two major and several smaller N-S faults as well as an E-W zone of activity stretching further west into the Reykjanes Peninsula Rift Zone. Fault plane solutions show both right lateral and oblique strike slip mechanisms along the two major N-S faults. The aftershocks deepen from 3-5 km in the north to 8-9 km in the south, suggesting that the main faults dip southwards. The faulting is interpreted to be driven by the local stress due to transform motion between two parallel segments of the divergent plate boundary crossing Iceland.

  18. The San Gabriel mountains bright reflective zone: Possible evidence of young mid-crustal thrust faulting in southern California

    USGS Publications Warehouse

    Ryberg, T.; Fuis, G.S.

    1998-01-01

    During the Los Angeles Region Seismic Experiment (LARSE), a reflection/retraction survey was conducted along a line extending northeastward from Seal Beach, California, to the Mojave Desert, crossing the Los Angeles basin and San Gabriel Mountains. Shots and receivers were spaced most densely through the San Gabriel Mountains for the purpose of obtaining a combined reflection and refraction image of the crust in that area. A stack of common-midpoint (CMP) data reveals a bright reflective zone, 1-s thick, that dominates the stack and extends throughout most of the mid-crust of the San Gabriel Mountains. The top of this zone ranges in depth from 6 s (???18-km depth) in the southern San Gabriel Mountains to 7.5 s (???23-km depth) in the northern San Gabriel Mountains. The zone bends downward beneath the surface traces of the San Gabriel and San Andreas faults. It is brightest between these two faults, where it is given the name San Gabriel Mountains 'bright spot' (SGMBS). and becomes more poorly defined south of the San Gabriel fault and north of the San Andreas fault. The polarity of the seismic signal at the top of this zone is clearly negative, and our analysis suggests it represents a negative velocity step. The magnitude of the velocity step is approximately 1.7 km/s. In at least one location, an event with positive polarity can be observed 0.2 s beneath the top of this zone, indicating a thickness of the order of 500 m for the low-velocity zone at this location. Several factors combine to make the preferred interpretation of this bright reflective zone a young fault zone, possibly a 'master' decollement. (1) It represents a significant velocity reduction. If the rocks in this zone contain fluids, such a reduction could be caused by a differential change in fluid pressure between the caprock and the rocks in the SGMBS; near-lithostatic fluid pressure is required in the SGMBS. Such differential changes are believed to occur in the neighborhood of active fault

  19. Evidence of Enhanced Subrosion in a Fault Zone and Characterization of Hazard Zones with Elastic Parameters derived from SH-wave reflection Seismics and VSP

    NASA Astrophysics Data System (ADS)

    Wadas, S. H.; Tanner, D. C.; Tschache, S.; Polom, U.; Krawczyk, C. M.

    2017-12-01

    Subrosion, the dissolution of soluble rocks, e.g., sulfate, salt, or carbonate, requires unsaturated water and fluid pathways that enable the water to flow through the subsurface and generate cavities. Over time, different structures can occur that depend on, e.g., rock solubility, flow rate, and overburden type. The two main structures are sinkholes and depressions. To analyze the link between faults, groundwater flow, and soluble rocks, and to determine parameters that are useful to characterize hazard zones, several shear-wave (SH) reflection seismic profiles were surveyed in Thuringia in Germany, where Permian sulfate rocks and salt subcrop close to the surface. From the analysis of the seismic sections we conclude that areas affected by tectonic deformation phases are prone to enhanced subrosion. The deformation of fault blocks leads to the generation of a damage zone with a dense fracture network. This increases the rock permeability and thus serves as a fluid pathway for, e.g., artesian-confined groundwater. The more complex the fault geometry and the more interaction between faults, the more fractures are generated, e.g., in a strike slip-fault zone. The faults also act as barriers for horizontal groundwater flow perpendicular to the fault surfaces and as conduits for groundwater flow along the fault strike. In addition, seismic velocity anomalies and attenuation of seismic waves are observed. Low velocities <200 m/s and high attenuation may indicate areas affected by subrosion. Other parameters that characterize the underground stability are the shear modulus and the Vp/Vs ratio. The data revealed zones of low shear modulus <100 MPa and high Vp/Vs ratio >2.5, which probably indicate unstable areas due to subrosion. Structural analysis of S-wave seismics is a valuable tool to detect near-surface faults in order to determine whether or not an area is prone to subrosion. The recognition of even small fault blocks can help to better understand the hydrodynamic

  20. Seismicity and Fault Zone Structure Near the Xinfengjiang Water Reservoir, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Yang, H.; Sun, X.; He, L.; Wang, S.

    2015-12-01

    Xingfengjiang Water Reservoir (XWR) was built in 1958 and the first impoundment was conducted in 1959. Immediately following the reservoir impoundment, a series of earthquakes occurred in the vicinity of the XWR, including the 1962 M6.1 earthquake that occurred ~1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. To investigate the present seismicity and associated fault zone structure, we deployed a temporary seismic network, including a dense linear array across the Ren-Zi-Shi fault southwest to the reservoir. The temporary network is consisted of 42 stations that are operated in the field for more than one month. Because of the mountainous terrain, it is impossible to deploy broadband sensors. Here we use DDV-5 seismometer with a central frequency of 120Hz-5s that is independent on external GPS and battery. During our deployment, numerous earthquakes were recorded. Preliminary results of travel time analysis have shown the characteristic of low velocity fault zone. More detailed analysis, including relocation of earthquakes, ambient noise cross correlation, and modeling body waves, will be presented.

  1. Volcanic avalanche fault zone with pseudotachylite and gouge in French Massif Central

    NASA Astrophysics Data System (ADS)

    Bernard, Karine; van Wyk de Vries, Benjamin

    2017-11-01

    Structures and textures with sedimentological variations at different scales of the lithofacies assemblage help us to constrain the basal kinematic transition from non-depositional to depositional conditions during volcanic avalanche emplacement. In the well-exposed impact-sheared contact along volcanic avalanche fault zone in the French Massif Central, we observe how the granular textures of the pseudotachylite and fault gouge have recorded the propagation of shock wave with granular oscillatory stress. Sequential events of basal aggradation along avalanche fault zone have been established related to fractal D-values, temperature pressure regime and oscillatory stress during slow wave velocity. A typical lithofacies assemblage with a reverse grading shows the pseudotachylite and fault gouge. A cataclastic gradient is characterised by the fractal D-values from 2.7 in jigsaw breccias with pseudotachylite partial melt, to 2.6 in the polymodal gouge. Shock, brecciation and comminution produce cataclastic shear bands in the pseudotachylite and quartz microstructures along the basal contact of the volcanic debris-avalanche deposit. Gouge microstructures show granular segregation, cataclasis with antithetic rotational Riedel shear, and an arching effect between the Riedel shear bands. X-ray microtomography provided 3D microfabrics along the clastic vein in the sandy-gouge. From the available statistical dataset, a few equations have been developed implicating the same cataclastic origin with a co-genetic evolution of lithofacies. An impact wave during primary shear propagation may contribute to produce hydroclastic matrix, pseudotachylite partial melt and proximal gouge thixotropy with v 50m/s and a T < 654 °C. The interseismic period with oscillatory stress is related to crushed clasts and basaltic melt around 800 °C, Riedel shear bands with granular segregation along the fault gouge. The secondary shock by matrix-rich avalanche (ΔP = 10GPa, T ≥ 1000-1500

  2. Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: Implications for the 2001 M s8.1 Kunlun earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Mooney, W.D.; Ding, Z.; Yang, J.; Yao, Z.; Lou, H.

    2009-01-01

    The shallow seismic velocity structure of the Kunlun fault zone (KLFZ) was jointly deduced from seismic refraction profiling and the records of trapped waves that were excited by five explosions. The data were collected after the 2001 Kunlun M s8.1 earthquake in the northern Tibetan Plateau. Seismic phases for the in-line record sections (26 records up to a distance of 15 km) along the fault zone were analysed, and 1-D P- and S-wave velocity models of shallow crust within the fault zone were determined by using the seismic refraction method. Sixteen seismic stations were deployed along the off-line profile perpendicular to the fault zone. Fault-zone trapped waves appear clearly on the record sections, which were simulated with a 3-D finite difference algorithm. Quantitative analysis of the correlation coefficients of the synthetic and observed trapped waveforms indicates that the Kunlun fault-zone width is 300 m, and S-wave quality factor Q within the fault zone is 15. Significantly, S-wave velocities within the fault zone are reduced by 30-45 per cent from surrounding rocks to a depth of at least 1-2 km, while P-wave velocities are reduced by 7-20 per cent. A fault-zone with such P- and S-low velocities is an indication of high fluid pressure because Vs is affected more than Vp. The low-velocity and low-Q zone in the KLFZ model is the effect of multiple ruptures along the fault trace of the 2001 M s8.1 Kunlun earthquake. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  3. Quaternary faulting of basalt flows on the Melones and Almanor fault zones, North Fork Feather River, northeastern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, J.; Page, W.D.

    1993-04-01

    Field relations indicate multiple sequences of late Cenozoic basalt flowed down the canyon of the North Fork Feather River from the Modoc Plateau during the Pliocene and early Quaternary. Remnants of at least three flow sequences are exposed in the canyon, the intermediate one yielding a K/Ar plagioclase date of 1.8 Ma. Topographic profiling of the remnants allows identification of Quaternary tectonic deformation along the northern Plumas trench, which separates the Sierra Nevada from the Diamond Mountains. The authors have identified several vertical displacements of the 1.8-Ma unit in the North Fork canyon and the area NE of Lake Almanor.more » NE of the lake, three NW-striking faults, each having down-to-the-west displacements of up to 35 m, are related to faulting along the east side of the Almanor tectonic depression. Analysis of the displaced basalt flows suggests that uplift of the Sierra Nevada occurred with canyon development prior to 2 Ma, and has continued coincident with several subsequent episodes of basalt deposition. Quaternary faulting of the basalt is associated with the Melones fault zone and the Plumas trench where they extend northward from the northern Sierra Nevada into the Modoc Plateau and southern Cascades. In contrast to the Mohawk Valley area, where the Plumas trench forms a 5-km-wide graben, faulting in the Almanor region is distributed over a 15-km-wide zone. A change in the strike of faulting occurs at Lake Almanor, from N50W along the Plumas trench to N20W north of the lake. The right-slip component on the fault of the Plums trench may result in a releasing bend at the change in strike and explain the origin of the Almanor depression.« less

  4. Low grade metamorphism fluid circulation in a sedimentary environment thrust fault zone: properties and modeling

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Lacroix, Brice; Buatier, Martine D.; Charpentier, Delphine; Labaume, Pierre; Lahfid, Abdeltif

    2014-05-01

    In fold-and-thrust belts, shortening is mainly accommodated by thrust faults that can constitute preferential pathways for fluid circulation. The present study focuses on the Pic de Port Vieux thrust, a second-order thrust related to major Gavarnie thrust in the Axial Zone of the Pyrenees. The fault juxtaposes lower Triassic red siltstones and sandstones in the hanging-wall and Upper Cretaceous limestone in the footwall. A dense network of synkinematic quartz-chlorite veins is present in outcrop and allows to unravel the nature of the fluid that circulated in the fault zone. The hanging wall part of fault zone comprises a core which consists of intensely foliated phyllonite; the green color of this shear zone is related to the presence of abundant newly-formed chlorite. Above, the damage zone consists of red pelites and sandstones. Both domains feature kinematic markers like S-C type shear structures associated with shear and extension quartz-chlorite veins and indicate a top to the south displacement. In the footwall, the limestone display increasing mylonitization and marmorization when getting close to the contact. In order to investigate the mineralogical and geochemical changes induced by deformation and subsequent fluid flow, sampling was conducted along a complete transect of the fault zone, from the footwall limestone to the red pelites of the hanging wall. In the footwall limestone, stable isotope and Raman spectroscopy analyzes were performed. The strain gradient is strongly correlated with a high decrease in δ18OV PDB values (from -5.5 to -14) when approaching the thrust (i.e. passing from limestone to marble) while the deformation temperatures estimated with Raman spectroscopy on carbon remain constant around 300° C. These results suggest that deformation is associated to a dynamic calcite recrystallization of carbonate in a fluid-open system. In the hanging wall, SEM observations, bulk chemical XRF analyses and mineral quantification from XRD

  5. Characterization of frictional melting processes in subduction zone faults by trace element and isotope analyses

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Ujiie, K.

    2017-12-01

    Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages

  6. Central Japan's Atera Active Fault's Wide-Fractured Zone: An Examination of the Structure and In-situ Crustal Stress

    NASA Astrophysics Data System (ADS)

    Ikeda, R.; Omura, K.; Matsuda, T.; Mizuochi, Y.; Uehara, D.; Chiba, A.; Kikuchi, A.; Yamamoto, T.

    2001-12-01

    In-situ downhole measurements and coring within and around an active fault zone are needed to better understand the structure and material properties of fault rocks as well as the physical state of active faults and intra-plate crust. Particularly, the relationship between the stress concentration state and the heterogeneous strength of an earthquake fault zone is important to estimate earthquake occurrence mechanisms which correspond to the prediction of an earthquake. It is necessary to compare some active faults in different conditions of the chrysalis stage and their relation to subsequent earthquake occurrence. To better understand such conditions, "Active Fault Zone Drilling Project" has been conducted in the central part of Japan by the National Research Institute for Earth Science and Disaster Prevention. The Nojima fault which appeared on the surface by the 1995 Great Kobe earthquake (M=7.2) and the Neodani fault created by the 1981 Nobi earthquake, the greatest inland earthquake M=8.0 in Japan, have been drilled through the fault fracture zones. During these past four years, a similar experiment and research at the Atera fault, of which some parts seem to have been dislocated by the 1586 Tensyo earthquake, has been undertaken. The features of the Atera fault are as follows: (1) total length is about 70 km, (2) general trend is NW45_Kwith a left-lateral strike slip, (3) slip rate is estimated as 3-5 m/1000 yrs. and the average recurrence time as 1700 yrs., (4) seismicity is very low at present, and (5) lithologies around the fault are basically granitic rocks and rhyolite. We have conducted integrated investigations by surface geophysical survey and drilling around the Atera fault. Six boreholes have been drilled from the depth of 400 m to 630 m. Four of these boreholes are located on a line crossing the fracture zone of the Atera fault. Resistivity and gravity structures inferred from surface geophysical surveys were compared with the physical properties

  7. Influence of fault trend, fault bends, and fault convergence on shallow structure, geomorphology, and hazards, Hosgri strike-slip fault, offshore central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.

    2012-12-01

    We mapped a ~94-km-long portion of the right-lateral Hosgri Fault Zone from Point Sal to Piedras Blancas in offshore central California using high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. The database includes 121 seismic profiles across the fault zone and is perhaps the most comprehensive reported survey of the shallow structure of an active strike-slip fault. These data document the location, length, and near-surface continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergences in the development of shallow structure and tectonic geomorphology. The Hosgri Fault Zone is continuous through the study area passing through a broad arc in which fault trend changes from about 338° to 328° from south to north. The southern ~40 km of the fault zone in this area is more extensional, resulting in accommodation space that is filled by deltaic sediments of the Santa Maria River. The central ~24 km of the fault zone is characterized by oblique convergence of the Hosgri Fault Zone with the more northwest-trending Los Osos and Shoreline Faults. Convergence between these faults has resulted in the formation of local restraining and releasing fault bends, transpressive uplifts, and transtensional basins of varying size and morphology. We present a hypothesis that links development of a paired fault bend to indenting and bulging of the Hosgri Fault by a strong crustal block translated to the northwest along the Shoreline Fault. Two diverging Hosgri Fault strands bounding a central uplifted block characterize the northern ~30 km of the Hosgri Fault in this area. The eastern Hosgri strand passes through releasing and restraining bends; the releasing bend is the primary control on development of an elongate, asymmetric, "Lazy Z" sedimentary basin. The western strand of the Hosgri Fault Zone passes through a significant restraining bend and

  8. Seismicity and Seismotectonic Properties of The Sultandağı Fault Zone (Afyonkarahisar-Konya): Western Anatolia,Turkey

    NASA Astrophysics Data System (ADS)

    Kalafat, D.; Gunes, Y.; Kekovali, K.; Kara, M.; Gorgun, E.

    2017-12-01

    n this study we investigated seismicity and source characteristics of the Sultandağı Fault Zone (SFZ). As known Western Anatolia is one of the most important seismically active region in Turkey. The relative movement of the African-Arabian plates, it causes the Anatolian Plate to movement to the west-Southwest direction 2.5 cm per year and this result provides N-S direction with extensional regime in the recent tectonic. In this study, especially with the assessment of seismic activity occurring in Afyon and around between 200-2002 years, we have been evaluated to date with seismic activity as well as fault mechanism solution. We analyzed recent seismicity and distribution of earthquakes in this region. In the last century, 3 important earthquakes occurred in the Sultandağı Fault zone (Afyon-Akşehir Graben), this result shown it was seismic active and broken fault segments caused stress balance in the region and it caused to occur with short intervals of earthquakes in 2000 and 2002, triggering each other. The scope of this tudy, we installed new BB stations in the region and we have been done of the fault plane solutions for important earthquakes. The focal mechanisms clearly exhibit the activation of a NE-SW trending normal faulting system along the SFZ region. The results of stress analysis showed that the effective current tectonic evolution of normal faulting in this region. This study is supported by Bogazici University Research Projects Commission under SRP/BAP project No. 12280. Key Words: Sultandağı fault zone, normal faulting, seismicity, fault mechanism

  9. Mantle helium along the Newport-Inglewood fault zone, Los Angeles basin, California: A leaking paleo-subduction zone

    NASA Astrophysics Data System (ADS)

    Boles, J. R.; Garven, G.; Camacho, H.; Lupton, J. E.

    2015-07-01

    Mantle helium is a significant component of the helium gas from deep oil wells along the Newport-Inglewood fault zone (NIFZ) in the Los Angeles (LA) basin. Helium isotope ratios are as high as 5.3 Ra (Ra = 3He/4He ratio of air) indicating 66% mantle contribution (assuming R/Ra = 8 for mantle), and most values are higher than 1.0 Ra. Other samples from basin margin faults and from within the basin have much lower values (R/Ra < 1.0). The 3He enrichment inversely correlates with CO2, a potential magmatic carrier gas. The δ13C of the CO2 in the 3He rich samples is between 0 and -10‰, suggesting a mantle influence. The strong mantle helium signal along the NIFZ is surprising considering that the fault is currently in a transpressional rather than extensional stress regime, lacks either recent magma emplacement or high geothermal gradients, and is modeled as truncated by a proposed major, potentially seismically active, décollement beneath the LA basin. Our results demonstrate that the NIFZ is a deep-seated fault directly or indirectly connected with the mantle. Based on a 1-D model, we calculate a maximum Darcy flow rate q ˜ 2.2 cm/yr and a fault permeability k ˜ 6 × 10-17 m2 (60 microdarcys), but the flow rates are too low to create a geothermal anomaly. The mantle leakage may be a result of the NIFZ being a former Mesozoic subduction zone in spite of being located 70 km west of the current plate boundary at the San Andreas fault.

  10. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.

    2016-01-01

    The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.

  11. Landslide susceptibility mapping for a part of North Anatolian Fault Zone (Northeast Turkey) using logistic regression model

    NASA Astrophysics Data System (ADS)

    Demir, Gökhan; aytekin, mustafa; banu ikizler, sabriye; angın, zekai

    2013-04-01

    The North Anatolian Fault is know as one of the most active and destructive fault zone which produced many earthquakes with high magnitudes. Along this fault zone, the morphology and the lithological features are prone to landsliding. However, many earthquake induced landslides were recorded by several studies along this fault zone, and these landslides caused both injuiries and live losts. Therefore, a detailed landslide susceptibility assessment for this area is indispancable. In this context, a landslide susceptibility assessment for the 1445 km2 area in the Kelkit River valley a part of North Anatolian Fault zone (Eastern Black Sea region of Turkey) was intended with this study, and the results of this study are summarized here. For this purpose, geographical information system (GIS) and a bivariate statistical model were used. Initially, Landslide inventory maps are prepared by using landslide data determined by field surveys and landslide data taken from General Directorate of Mineral Research and Exploration. The landslide conditioning factors are considered to be lithology, slope gradient, slope aspect, topographical elevation, distance to streams, distance to roads and distance to faults, drainage density and fault density. ArcGIS package was used to manipulate and analyze all the collected data Logistic regression method was applied to create a landslide susceptibility map. Landslide susceptibility maps were divided into five susceptibility regions such as very low, low, moderate, high and very high. The result of the analysis was verified using the inventoried landslide locations and compared with the produced probability model. For this purpose, Area Under Curvature (AUC) approach was applied, and a AUC value was obtained. Based on this AUC value, the obtained landslide susceptibility map was concluded as satisfactory. Keywords: North Anatolian Fault Zone, Landslide susceptibility map, Geographical Information Systems, Logistic Regression Analysis.

  12. Style and Rate of Late Pleistocene - Holocene Deformation of the Poukawa Fault Zone, Central Hawke's Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    Basili, R.; Langridge, R. M.; Villamor, P.; Rieser, U.

    2008-12-01

    The Poukawa Fault Zone is one component of a complex system of contractional faulting in eastern North Island, New Zealand. It is located within the actively uplifting Hikurangi Margin where the Australian plate meets the Pacific plate at a convergence rate of over 40 mm/yr. The most destructive earthquake in New Zealand history, the 1931 Hawke's Bay earthquake of M 7.8, occurred just off the northern termination of the Poukawa Fault Zone. To the south and probably within the Poukawa Fault Zone, another strong earthquake struck near Waipukurau in 1863. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including exploratory trenching; geomorphic data aided by 1m resolution digital orthophotos, a LIDAR-derived Terrain Model, and GPS-RTK surveys; stratigraphic and paleoseismic analysis; radiocarbon and OSL dating and tephra correlation. We have also made a detailed reconstruction of the terrace sequences formed where the Kaikora Stream crosses at a high angle to the Poukawa Fault Zone. These data show that the Poukawa Fault Zone is a contractional fault system formed by a series of NE-SW strands with style varying, from west to east, from high-angle east-dipping reverse to low-angle west-dipping thrusting. The geometry of the system suggests that these faults may merge at shallow depth into a single large structure capable of generating strong earthquakes similar to those that occurred in the past on nearby sections. All these faults variously displace the top of the Ohakean aggradation surface (12-15 ka) thereby generating scarps of several meters. The Kaikora Stream terrace sequences also testify to a series of uplift events associated with the late-Holocene growth of two of the eastern thrust faults. Two reaches of Kaikora Stream show evidence of uplifted and abandoned inset Holocene stream terraces found in association with a surface-rupture trace and an active fold. The four

  13. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure

    NASA Astrophysics Data System (ADS)

    Samant, Hrishikesh; Pundalik, Ashwin; D'souza, Joseph; Sheth, Hetu; Lobo, Keegan Carmo; D'souza, Kyle; Patel, Vanit

    2017-02-01

    The Panvel flexure is a 150-km long tectonic structure, comprising prominently seaward-dipping Deccan flood basalts, on the western Indian rifted margin. Given the active tectonic faulting beneath the Panvel flexure zone inferred from microseismicity, better structural understanding of the region is needed. The geology of Elephanta Island in the Mumbai harbour, famous for the ca. mid-6th century A.D. Hindu rock-cut caves in Deccan basalt (a UNESCO World Heritage site) is poorly known. We describe a previously unreported but well-exposed fault zone on Elephanta Island, consisting of two large faults dipping steeply east-southeast and producing easterly downthrows. Well-developed slickensides and structural measurements indicate oblique slip on both faults. The Elephanta Island fault zone may be the northern extension of the Alibag-Uran fault zone previously described. This and two other known regional faults (Nhava-Sheva and Belpada faults) indicate a progressively eastward step-faulted structure of the Panvel flexure, with the important result that the individual movements were not simply downdip but also oblique-slip and locally even rotational (as at Uran). An interesting problem is the normal faulting, block tectonics and rifting of this region of the crust for which seismological data indicate a normal thickness (up to 41.3 km). A model of asymmetric rifting by simple shear may explain this observation and the consistently landward dips of the rifted margin faults.

  14. Evidence of a major fault zone along the California-Nevada state line 35 deg 30 min to 36 deg 30 min north latitude

    NASA Technical Reports Server (NTRS)

    Liggett, M. A.; Childs, J. F.

    1973-01-01

    The author has identified the following significant results. Geologic reconnaissance guided by analysis of ERTS-1 and Apollo-9 satellite imagery and intermediate scale photography from X-15 and U-2 aircraft has confirmed the presence of a major fault zone along the California-Nevada state line, between 35 deg 30 min and 36 deg 30 min north latitude. The name Pahrump Fault Zone has been suggested for this feature after the valley in which it is best exposed. Field reconnaissance has indicated the existence of previously unreported faults cutting bedrock along range fronts, and displacing Tertiary and Quaternary basin sediments. Gravity data support the interpretation of regional structural discontinuity along this zone. Individual fault traces within the Pahrump Fault Zone form generally left-stepping en echelon patterns. These fault patterns, the apparent offset of a Laramide age thrust fault, and possible drag folding along a major fault break suggest a component of right lateral displacement. The trend and postulated movement of the Pahrump Fault Zone are similar to the adjacent Las Vegas Shear Zone and Death Valley-Furnace Creek Faults, which are parts of a regional strike slip system in the southern Basin-Range Province.

  15. The damage is done: Low fault friction recorded in the damage zone of the shallow Japan Trench décollement

    NASA Astrophysics Data System (ADS)

    Keren, Tucker T.; Kirkpatrick, James D.

    2016-05-01

    Fault damage zones record the integrated deformation caused by repeated slip on faults and reflect the conditions that control slip behavior. To investigate the Japan Trench décollement, we characterized the damage zone close to the fault from drill core recovered during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project (JFAST)). Core-scale and microscale structures include phyllosilicate bands, shear fractures, and joints. They are most abundant near the décollement and decrease in density sharply above and below the fault. Power law fits describing the change in structure density with distance from the fault result in decay exponents (n) of 1.57 in the footwall and 0.73 in the hanging wall. Microstructure decay exponents are 1.09 in the footwall and 0.50 in the hanging wall. Observed damage zone thickness is on the order of a few tens of meters. Core-scale structures dip between ~10° and ~70° and are mutually crosscutting. Compared to similar offset faults, the décollement has large decay exponents and a relatively narrow damage zone. Motivated by independent constraints demonstrating that the plate boundary is weak, we tested if the observed damage zone characteristics could be consistent with low-friction fault. Quasi-static models of off-fault stresses and deformation due to slip on a wavy, frictional fault under conditions similar to the JFAST site predict that low-friction fault produces narrow damage zones with no preferred orientations of structures. These results are consistent with long-term frictional weakness on the décollement at the JFAST site.

  16. Fault zone identification in the eastern part of the Persian Gulf based on combined seismic attributes

    NASA Astrophysics Data System (ADS)

    Mirkamali, M. S.; Keshavarz FK, N.; Bakhtiari, M. R.

    2013-02-01

    Faults, as main pathways for fluids, play a critical role in creating regions of high porosity and permeability, in cutting cap rock and in the migration of hydrocarbons into the reservoir. Therefore, accurate identification of fault zones is very important in maximizing production from petroleum traps. Image processing and modern visualization techniques are provided for better mapping of objects of interest. In this study, the application of fault mapping in the identification of fault zones within the Mishan and Aghajari formations above the Guri base unconformity surface in the eastern part of Persian Gulf is investigated. Seismic single- and multi-trace attribute analyses are employed separately to determine faults in a vertical section, but different kinds of geological objects cannot be identified using individual attributes only. A mapping model is utilized to improve the identification of the faults, giving more accurate results. This method is based on combinations of all individual relevant attributes using a neural network system to create combined attributes, which gives an optimal view of the object of interest. Firstly, a set of relevant attributes were separately calculated on the vertical section. Then, at interpreted positions, some example training locations were manually selected in each fault and non-fault class by an interpreter. A neural network was trained on combinations of the attributes extracted at the example training locations to generate an optimized fault cube. Finally, the results of the fault and nonfault probability cube were estimated, which the neural network applied to the entire data set. The fault probability cube was obtained with higher mapping accuracy and greater contrast, and with fewer disturbances in comparison with individual attributes. The computed results of this study can support better understanding of the data, providing fault zone mapping with reliable results.

  17. A New Paradigm For Modeling Fault Zone Inelasticity: A Multiscale Continuum Framework Incorporating Spontaneous Localization and Grain Fragmentation.

    NASA Astrophysics Data System (ADS)

    Elbanna, A. E.

    2015-12-01

    The brittle portion of the crust contains structural features such as faults, jogs, joints, bends and cataclastic zones that span a wide range of length scales. These features may have a profound effect on earthquake nucleation, propagation and arrest. Incorporating these existing features in modeling and the ability to spontaneously generate new one in response to earthquake loading is crucial for predicting seismicity patterns, distribution of aftershocks and nucleation sites, earthquakes arrest mechanisms, and topological changes in the seismogenic zone structure. Here, we report on our efforts in modeling two important mechanisms contributing to the evolution of fault zone topology: (1) Grain comminution at the submeter scale, and (2) Secondary faulting/plasticity at the scale of few to hundreds of meters. We use the finite element software Abaqus to model the dynamic rupture. The constitutive response of the fault zone is modeled using the Shear Transformation Zone theory, a non-equilibrium statistical thermodynamic framework for modeling plastic deformation and localization in amorphous materials such as fault gouge. The gouge layer is modeled as 2D plane strain region with a finite thickness and heterogeenous distribution of porosity. By coupling the amorphous gouge with the surrounding elastic bulk, the model introduces a set of novel features that go beyond the state of the art. These include: (1) self-consistent rate dependent plasticity with a physically-motivated set of internal variables, (2) non-locality that alleviates mesh dependence of shear band formation, (3) spontaneous evolution of fault roughness and its strike which affects ground motion generation and the local stress fields, and (4) spontaneous evolution of grain size and fault zone fabric.

  18. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports

  19. Deformation of conjugate compliant fault zones induced by the 2013 Mw7.7 Baluchistan (Pakistan) earthquake

    NASA Astrophysics Data System (ADS)

    Dutta, Rishabh; Wang, Teng; Feng, Guangcai; Harrington, Jonathan; Vasyura-Bathke, Hannes; Jónsson, Sigurjón

    2017-04-01

    Strain localizations in compliant fault zones (with elastic moduli lower than the surrounding rocks) induced by nearby earthquakes have been detected using geodetic observations in a few cases in the past. Here we observe small-scale changes in interferometric Synthetic Aperture Radar (InSAR) measurements along multiple conjugate faults near the rupture of the 2013 Mw7.7 Baluchistan (Pakistan) earthquake. After removing the main coseismic deformation signal in the interferograms and correcting them for topography-related phase, we observe 2-3 cm signal along several conjugate faults that are 15-30 km from the mainshock fault rupture. These conjugate compliant faults have strikes of N30°E and N45°W. The sense of motion indicates left-lateral deformation across the N30°E faults and right-lateral deformation across the N45°W faults, which suggests the conjugate faults were subjected to extensional coseismic stresses along the WSW-ENE direction. The spacing between the different sets of faults is around 5 to 8 km. We explain the observed strain localizations as an elastic response of the compliant conjugate faults induced by the Baluchistan earthquake. Using 3D Finite Element models (FEM), we impose coseismic static displacements due to the earthquake along the boundaries of the FEM domain to reproduce the coseismic stress changes acting across the compliant faults. The InSAR measurements are used to constrain the geometry and rigidity variations of the compliant faults with respect to the surrounding rocks. The best fitting models show the compliant fault zones to have a width of 0.5 km to 2 km and a reduction of the shear modulus by a factor of 3 to 4. Our study yields similar values as were found for compliant fault zones near the 1992 Landers and the 1999 Hector Mine earthquakes in California, although here the strain localization is occurring on more complex conjugate sets of faults.

  20. Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin, New Mexico - Implications for Ground-Water Flow

    USGS Publications Warehouse

    Minor, Scott A.; Hudson, Mark R.

    2006-01-01

    Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are <100 m, and fault zones appear to

  1. Dynamic Dilational Strengthening During Earthquakes in Saturated Gouge-Filled Fault Zones

    NASA Astrophysics Data System (ADS)

    Sparks, D. W.; Higby, K.

    2016-12-01

    The effect of fluid pressure in saturated fault zones has been cited as an important factor in the strength and slip-stability of faults. Fluid pressure controls the effective normal stress across the fault and therefore controls the faults strength. In a fault core consisting of granular fault gouge, local transient dilations and compactions occur during slip that dynamically change the fluid pressure. We use a grain-scale numerical model to investigate the effect of these fluid effects in fault gouge during an earthquake. We use a coupled finite difference-discrete element model (Goren et al, 2011), in which the pore space is filled with a fluid. Local changes in grain packing generate local deviations in fluid pressure, which can be relieved by fluid flow through the permeable gouge. Fluid pressure gradients exert drag forces on the grains that couple the grain motion and fluid flow. We simulated 39 granular gouge zones that were slowly loaded in shear stress to near the failure point, and then conducted two different simulations starting from each grain packing: one with a high enough mean permeability (> 10-11 m2) that pressure remains everywhere equilibrated ("fully drained"), and one with a lower permeability ( 10-14 m2) in which flow is not fast enough to prevent significant pressure variations from developing ("undrained"). The static strength of the fault, the size of the event and the evolution of slip velocity are not imposed, but arise naturally from the granular packing. In our particular granular model, all fully drained slip events are well-modeled by a rapid drop in the frictional resistance of the granular packing from a static value to a dynamic value that remains roughly constant during slip. Undrained events show more complex behavior. In some cases, slip occurs via a slow creep with resistance near the static value. When rapid slip events do occur, the dynamic resistance is typically larger than in drained events, and highly variable

  2. Thematic Mapper and field investigations at the intersection of the Death Valley and Garlock fault zones, California

    NASA Technical Reports Server (NTRS)

    Brady, Roland H., III; Cregan, Alan; Clayton, Jeff; Troxel, Bennie W.; Verosub, Kenneth L.; Abrams, Michael

    1989-01-01

    Analysis of processed images and detailed field investigations have provided significant information concerning the late-Pliocene and Quaternary evolution of the intersection of the Garlock and Death Valley fault zones. The imagery was used to determine patterns of sedimentation and age relationships on alluvial fans and to determine the geometry, styles of deformation, and relative ages of movements on major and minor faults in the study area. The field investigation often confirmed the inferences drawn from the images and provided additional tectonic and geomorphologic data about the Quaternary deformation of the region. All the data gathered in the course of this project support the contention that the Garlock fault zone terminates in the Avawatz Mountains and that the Death Valley fault zone continues south of the intersection for at least 50 km, forming the eastern boundary of the Mojave province.

  3. Structural controls on geothermal circulation in Surprise Valley, California: A re-evaluation of the Lake City fault zone

    USGS Publications Warehouse

    Anne E. Egger,; Glen, Jonathan; McPhee, Darcy K.

    2014-01-01

    Faults and fractures play an important role in the circulation of geothermal fluids in the crust, and the nature of that role varies according to structural setting and state of stress. As a result, detailed geologic and geophysical mapping that relates thermal springs to known structural features is essential to modeling geothermal systems. Published maps of Surprise Valley in northeastern California suggest that the “Lake City fault” or “Lake City fault zone” is a significant structural feature, cutting obliquely across the basin and connecting thermal springs across the valley. Newly acquired geophysical data (audio-magnetotelluric, gravity, and magnetic), combined with existing geochemical and geological data, suggest otherwise. We examine potential field profiles and resistivity models that cross the mapped Lake City fault zone. While there are numerous geophysical anomalies that suggest subsurface structures, they mostly do not coincide with the mapped traces of the Lake City fault zone, nor do they show a consistent signature in gravity, magnetics, or resistivities that would suggest a through-going fault that would promote connectivity through lateral fluid flow. Instead of a single, continuous fault, we propose the presence of a deformation zone associated with the growth of the range-front Surprise Valley fault. The implication for geothermal circulation is that this is a zone of enhanced porosity but lacks length-wise connectivity that could conduct fluids across the valley. Thermal fluid circulation is most likely controlled primarily by interactions between N-S–trending normal faults.

  4. Near-surface versus fault zone damage following the 1999 Chi-Chi earthquake: Observation and simulation of repeating earthquakes

    USGS Publications Warehouse

    Chen, Kate Huihsuan; Furumura, Takashi; Rubinstein, Justin L.

    2015-01-01

    We observe crustal damage and its subsequent recovery caused by the 1999 M7.6 Chi-Chi earthquake in central Taiwan. Analysis of repeating earthquakes in Hualien region, ~70 km east of the Chi-Chi earthquake, shows a remarkable change in wave propagation beginning in the year 2000, revealing damage within the fault zone and distributed across the near surface. We use moving window cross correlation to identify a dramatic decrease in the waveform similarity and delays in the S wave coda. The maximum delay is up to 59 ms, corresponding to a 7.6% velocity decrease averaged over the wave propagation path. The waveform changes on either side of the fault are distinct. They occur in different parts of the waveforms, affect different frequencies, and the size of the velocity reductions is different. Using a finite difference method, we simulate the effect of postseismic changes in the wavefield by introducing S wave velocity anomaly in the fault zone and near the surface. The models that best fit the observations point to pervasive damage in the near surface and deep, along-fault damage at the time of the Chi-Chi earthquake. The footwall stations show the combined effect of near-surface and the fault zone damage, where the velocity reduction (2–7%) is twofold to threefold greater than the fault zone damage observed in the hanging wall stations. The physical models obtained here allow us to monitor the temporal evolution and recovering process of the Chi-Chi fault zone damage.

  5. The Terminology of Fault Zones in the Brittle Regime: Making Field Observations More Useful to the End User

    NASA Astrophysics Data System (ADS)

    Shipton, Z.; Caine, J. S.; Lunn, R. J.

    2013-12-01

    Geologists are tiny creatures living on the 2-and-a-bit-D surface of a sphere who observe essentially 1D vanishingly small portions (boreholes, roadcuts, stream and beach sections) of complex, 4D tectonic-scale structures. Field observations of fault zones are essential to understand the processes of fault growth and to make predictions of fault zone mechanical and hydraulic properties at depth. Here, we argue that a failure of geologists to communicate their knowledge effectively to other scientists/engineers can lead to unrealistic assumptions being made about fault properties, and may result in poor economic performance and a lack of robustness in industrial safety cases. Fault zones are composed of many heterogeneously distributed deformation-related elements. Low permeability features include regions of intense grain-size reduction, pressure solution, cementation and shale smears. Other elements are likely to have enhanced permeability through fractures and breccias. Slip surfaces can have either enhanced or reduced permeability depending on whether they are open or closed, and the local stress state. The highly variable nature of 1) the architecture of faults and 2) the properties of deformation-related elements demonstrates that there are many factors controlling the evolution of fault zone internal structures (fault architecture). The aim of many field studies of faults is to provide data to constrain predictions at depth. For these data to be useful, pooling of data from multiple sites is usually necessary. This effort is frequently hampered by variability in the usage of fault terminologies. In addition, these terms are often used in ways as to make it easy for 'end-users' such as petroleum reservoir engineers, mining geologists, and seismologists to mis-interpret or over-simplify the implications of field studies. Field geologists are comfortable knowing that if you walk along strike or up dip of a fault zone you will find variations in fault rock type

  6. Near-surface clay authigenesis in exhumed fault rock of the Alpine Fault Zone (New Zealand); O-H-Ar isotopic, XRD and chemical analysis of illite and chlorite

    NASA Astrophysics Data System (ADS)

    Boles, Austin; Mulch, Andreas; van der Pluijm, Ben

    2018-06-01

    Exhumed fault rock of the central Alpine Fault Zone (South Island, New Zealand) shows extensive clay mineralization, and it has been the focus of recent research that aims to describe the evolution and frictional behavior of the fault. Using Quantitative X-ray powder diffraction, 40Ar/39Ar geochronology, hydrogen isotope (δD) geochemistry, and electron microbeam analysis, we constrain the thermal and fluid conditions of deformation that produced two predominant clay phases ubiquitous to the exposed fault damage zone, illite and chlorite. Illite polytype analysis indicates that most end-member illite and chlorite material formed in equilibrium with meteoric fluid (δD = -55 to -75‰), but two locations preserve a metamorphic origin of chlorite (δD = -36 to -45‰). Chlorite chemical geothermometry constrains crystal growth to T = 210-296 °C. Isotopic analysis also constrains illite growth to T < 100 °C, consistent with the mineralogy, with Ar ages <0.5 Ma. High geothermal gradients in the study area promoted widespread, near-surface mineralization, and limited the window of clay authigenesis in the Alpine Fault Zone to <5 km for chlorite and <2 km for illite. This implies a significant contrast between fault rock exposed at the surface and that at depth, and informs discussions about fault strength, clays and frictional behavior.

  7. Seismic Moment and Recurrence using Luminescence Dating Techniques: Characterizing brittle fault zone materials suitable for luminescence dating

    NASA Astrophysics Data System (ADS)

    Tsakalos, E.; Lin, A.; Bassiakos, Y.; Kazantzaki, M.; Filippaki, E.

    2017-12-01

    During a seismic-geodynamic process, frictional heating and pressure are generated on sediments fragments resulting in deformation and alteration of minerals contained in them. The luminescence signal enclosed in minerals crystal lattice can be affected and even zeroed during such an event. This has been breakthrough in geochronological studies as it could be utilized as a chronometer for the previous seismic activity of a tectonically active area. Although the employment of luminescence dating has in some cases been successfully described, a comprehensive study outlining and defining protocols for routine luminescence dating applied to neotectonic studies has not been forthcoming. This study is the experimental investigation, recording and parameterization of the effects of tectonic phenomena on minerals luminescence signal and the development of detailed protocols for the standardization of the luminescence methodology for directly dating deformed geological formations, so that the long-term temporal behaviour of seismically active faults could be reasonably understood and modeled. This will be achieved by: a) identifying and proposing brittle fault zone materials suitable for luminescence dating using petrological, mineralogical and chemical analyses and b) investigating the "zeroing" potential of the luminescence signal of minerals contained in fault zone materials by employing experimental simulations of tectonic processes in the laboratory, combined with luminescence measurements on samples collected from real fault zones. For this to be achieved, a number of samples collected from four faults of four different geographical regions will be used. This preliminary-first step of the study presents the microstructural, and mineralogical analyses for the characterization of brittle fault zone materials that contain suitable minerals for luminescence dating (e.g., quartz and feldspar). The results showed that the collected samples are seismically deformed fault

  8. New Constraints on Late Pleistocene - Holocene Slip Rates and Seismic Behavior Along the Panamint Valley Fault Zone, Eastern California

    NASA Astrophysics Data System (ADS)

    Hoffman, W.; Kirby, E.; McDonald, E.; Walker, J.; Gosse, J.

    2008-12-01

    Space-time patterns of seismic strain release along active fault systems can provide insight into the geodynamics of deforming lithosphere. Along the eastern California shear zone, fault systems south of the Garlock fault appear to have experienced an ongoing pulse of seismic activity over the past ca. 1 kyr (Rockwell et al., 2000). Recently, this cluster of seismicity has been implicated as both cause and consequence of the oft-cited discrepancy between geodetic velocities and geologic slip rates in this region (Dolan et al., 2007; Oskin et al., 2008). Whether other faults within the shear zone exhibit similar behavior remains uncertain. Here we report the preliminary results of new investigations of slip rates and seismic history along the Panamint Valley fault zone (PVFZ). The PVFZ is characterized by dextral, oblique-normal displacement along a moderately to shallowly-dipping range front fault. Previous workers (Zhang et al., 1990) identified a relatively recent surface rupture confined to a ~25 km segment of the southern fault zone and associated with dextral displacements of ~3 m. Our mapping reveals that youthful scarps ranging from 2-4 m in height are distributed along the central portion of the fault zone for at least 50 km. North of Ballarat, a releasing jog in the fault zone forms a 2-3 km long embayment. Displacement of debris-flow levees and channels along NE-striking faults that confirm that displacement is nearly dip-slip, consistent with an overall transport direction toward ~340°, and affording an opportunity to constrain fault displacement directly from the vertical offset of alluvial surfaces of varying age. At the mouth of Happy Canyon, the frontal fault strand displaces a fresh debris-flow by ~3-4 m; soil development atop the debris-flow surface is incipient to negligible. Radiocarbon ages from logs embedded in the flow matrix constrain the timing of the most recent event to younger than ~ 600 cal yr BP. Older alluvial surfaces, such as that

  9. Advective, Diffusive and Eruptive Leakage of CO2 and Brine within Fault Zone

    NASA Astrophysics Data System (ADS)

    Jung, N. H.; Han, W. S.

    2014-12-01

    This study investigated a natural analogue for CO2 leakage near the Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined to similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m-2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations overtly exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (Xco2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only the low-k fault scenario engenders development of CO2 anticlinal trap within the shallow aquifers (Entrada and Navajo), concentrating high CO­­­2 fluxes (~1,273 g m-2 d-1) within the northern footwall of the LGW fault similar to the field. Moreover, eruptive CO2 leakage at a well

  10. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    NASA Astrophysics Data System (ADS)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  11. Growth and linkage of the quaternary Ubrique Normal Fault Zone, Western Gibraltar Arc: role on the along-strike relief segmentation

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanya, Juan Carlos; Exposito, Inmaculada; Diaz-Azpiroz, Manuel; Barcos, Leticia

    2015-04-01

    Strain partitioning modes within migrating orogenic arcs may result in arc-parallel stretching that produces along-strike structural and topographic discontinuities. In the Western Gibraltar Arc, arc-parallel stretching has operated from the Lower Miocene up to recent times. In this study, we have reviewed the Colmenar Fault, located at the SW end of the Subbetic ranges, previously interpreted as a Middle Miocene low-angle normal fault. Our results allow to identify younger normal fault segments, to analyse their kinematics, growth and segment linkage, and to discuss its role on the structural and relief drop at regional scale. The Colmenar Fault is folded by post-Serravallian NE-SW buckle folds. Both the SW-dipping fault surfaces and the SW-plunging fold axes contribute to the structural relief drop toward the SW. Nevertheless, at the NW tip of the Colmenar Fault, we have identified unfolded normal faults cutting quaternary soils. They are grouped into a N110˚E striking brittle deformation band 15km long and until 3km wide (hereafter Ubrique Normal Fault Zone; UNFZ). The UNFZ is divided into three sectors: (a) The western tip zone is formed by normal faults which usually dip to the SW and whose slip directions vary between N205˚E and N225˚E. These segments are linked to each other by left-lateral oblique faults interpreted as transfer faults. (b) The central part of the UNFZ is composed of a single N115˚E striking fault segment 2,4km long. Slip directions are around N190˚E and the estimated throw is 1,25km. The fault scarp is well-conserved reaching up to 400m in its central part and diminishing to 200m at both segment terminations. This fault segment is linked to the western tip by an overlap zone characterized by tilted blocks limited by high-angle NNE-SSW and WNW-ESE striking faults interpreted as "box faults" [1]. (c) The eastern tip zone is formed by fault segments with oblique slip which also contribute to the downthrown of the SW block. This kinematic

  12. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  13. Anatomy of an Active Seismic Source: the Interplay between Present-Day Seismic Activity and Inherited Fault Zone Architecture (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fondriest, M.; Demurtas, M.; Bistacchi, A.; Fabrizio, B.; Storti, F.; Valoroso, L.; Di Toro, G.

    2017-12-01

    The mechanics and seismogenic behaviour of fault zones are strongly influenced by their internal structure, in terms of both fault geometry and fault rock constitutive properties. In recent years high-resolution seismological techniques yielded new constraints on the geometry and velocity structure of seismogenic faults down to 10s meters length scales. This reduced the gap between geophysical imaging of active seismic sources and field observations of exhumed fault zones. Nevertheless fundamental questions such as the origin of geometrical and kinematic complexities associated to seismic faulting remain open. We addressed these topics by characterizing the internal structure of the Vado di Corno Fault Zone, an active seismogenic normal fault cutting carbonates in the Central Apennines of Italy and comparing it with the present-day seismicity of the area. The fault footwall block, which was exhumed from < 2 km depth, was mapped with high detail (< 1 m spatial resolution) for 2 km of exposure along strike, combining field structural data and photogrammetric surveys in a three dimensional structural model. Three main structural units separated by principal fault strands were recognized: (i) cataclastic unit (20-100 m thick), (ii) damage zone (≤ 300 m thick), (iii) breccia unit ( 20 thick). The cataclastic unit lines the master fault and represents the core of the normal fault zone. In-situ shattering together with evidence of extreme (possibly coseismic) shear strain localization (e.g., mirror-like faults with truncated clasts, ultrafine-grained sheared veins) was recognized. The breccia unit is an inherited thrust zone affected by pervasive veining and secondary dolomitization. It strikes subparallel to the active normal fault and is characterized by a non-cylindrical geometry with 10-100 m long frontal and lateral ramps. The cataclastic unit cuts through thrust flats within the breccia unit, whereas normal to oblique inversion occur on frontal and lateral ramps

  14. Fault zone structure and seismic reflection characteristics in zones of slow slip and tsunami earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Henrys, Stuart; Sutherland, Rupert; Barker, Daniel; Wallace, Laura; Holden, Caroline; Power, William; Wang, Xiaoming; Morgan, Joanna; Warner, Michael; Downes, Gaye

    2015-04-01

    Over the last couple of decades we have learned that a whole spectrum of different fault slip behaviour takes place on subduction megathrust faults from stick-slip earthquakes to slow slip and stable sliding. Geophysical data, including seismic reflection data, can be used to characterise margins and fault zones that undergo different modes of slip. In this presentation we will focus on the Hikurangi margin, New Zealand, which exhibits marked along-strike changes in seismic behaviour and margin characteristics. Campaign and continuous GPS measurements reveal deep interseismic coupling and deep slow slip events (~30-60 km) at the southern Hikurangi margin. The northern margin, in contrast, experiences aseismic slip and shallow (<10-15 km) slow slip events (SSE) every 18-24 months with equivalent moment magnitudes of Mw 6.5-6.8. Updip of the SSE region two unusual megathrust earthquakes occurred in March and May 1947 with characteristics typical of tsunami earthquakes. The Hikurangi margin is therefore an excellent natural laboratory to study differential fault slip behaviour. Using 2D seismic reflection, magnetic anomaly and geodetic data we observe in the source areas of the 1947 tsunami earthquakes i) low amplitude interface reflectivity, ii) shallower interface relief, iii) bathymetric ridges, iv) magnetic anomaly highs and in the case of the March 1947 earthquake v) stronger geodetic coupling. We suggest that this is due to the subduction of seamounts, similar in dimensions to seamounts observed on the incoming Pacific plate, to depths of <10 km. We propose a source model for the 1947 tsunami earthquakes based on geophysical data and find that extremely low rupture velocities (c. 300 m/s) are required to model the observed large tsunami run-up heights (Bell et al. 2014, EPSL). Our study suggests that subducted topography can cause the nucleation of moderate earthquakes with complex, low velocity rupture scenarios that enhance tsunami waves, and the role of

  15. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of

  16. Unexpected earthquake hazard revealed by Holocene rupture on the Kenchreai Fault (central Greece): Implications for weak sub-fault shear zones

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Grützner, Christoph; Howell, Andy; Jackson, James; Penney, Camilla; Wimpenny, Sam

    2018-03-01

    High-resolution elevation models, palaeoseismic trenching, and Quaternary dating demonstrate that the Kenchreai Fault in the eastern Gulf of Corinth (Greece) has ruptured in the Holocene. Along with the adjacent Pisia and Heraion Faults (which ruptured in 1981), our results indicate the presence of closely-spaced and parallel normal faults that are simultaneously active, but at different rates. Such a configuration allows us to address one of the major questions in understanding the earthquake cycle, specifically what controls the distribution of interseismic strain accumulation? Our results imply that the interseismic loading and subsequent earthquakes on these faults are governed by weak shear zones in the underlying ductile crust. In addition, the identification of significant earthquake slip on a fault that does not dominate the late Quaternary geomorphology or vertical coastal motions in the region provides an important lesson in earthquake hazard assessment.

  17. Elongation Of The North Anatolian Fault Zone in the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Kurtulus, C.; Canbay, M. M.

    2003-04-01

    The North Anatolian Fault Zone (NAFZ) is a 1500 km long, seismically active, right lateral strike sleep fault that accommodates the relative motion between the Anatolian and Pontide blocks. The Sea of Marmara is an intra-continental sea lying along the western part of the NAFZ. There are two major fault systems in the Sea of Marmara one of which consists of the east-west striking faults and the other one is made up of NE-SW-trending faults that dissect the first group. The east, middle and the south parts of the Sea of Marmara are interpreted as pull-apart basins characterized by shear stresses. The interpretation of the structural framework indicates that the northern strand of the NAFZ traverses the Gulf of Izmit and deep Marmara to bind the Gulf of Saros and the middle strand of it traverses the Gulf of Gemlik, Bandirma and the Gulf of Erdek.

  18. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    NASA Astrophysics Data System (ADS)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin

    2017-12-01

    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  19. Structure of the eastern Seattle fault zone, Washington state: New insights from seismic reflection data

    USGS Publications Warehouse

    Liberty, L.M.; Pratt, T.L.

    2008-01-01

    We identify and characterize the active Seattle fault zone (SFZ) east of Lake Washington with newly acquired seismic reflection data. Our results focus on structures observed in the upper 1 km below the cities of Bellevue, Sammamish, Newcastle, and Fall City, Washington. The SFZ appears as a broad zone of faulting and folding at the southern boundary of the Seattle basin and north edge of the Seattle uplift. We interpret the Seattle fault as a thrust fault that accommodates north-south shortening by forming a fault-propagation fold with a forelimb breakthrough. The blind tip of the main fault forms a synclinal growth fold (deformation front) that extends at least 8 km east of Vasa Park (west side of Lake Sammamish) and defines the south edge of the Seattle basin. South of the deformation front is the forelimb break-through fault, which was exposed in a trench at Vasa Park. The Newcastle Hills anticline, a broad anticline forming the north part of the Seattle uplift east of Lake Washington, is interpreted to lie between the main blind strand of the Seattle fault and a backthrust. Our profiles, on the northern limb of this anticline, consistently image north-dipping strata. A structural model for the SFZ east of Lake Washington is consistent with about 8 km of slip on the upper part of the Seattle fault, but the amount of motion is only loosely constrained.

  20. Logs and Scarp Data from a Paloseismic Investigation of the Surprise Valley Fault Zone, Modoc County, California

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Lidke, David J.; Bradley, Lee-Ann; Mahan, Shannon

    2007-01-01

    This report contains field and laboratory data from a paleoseismic study of the Surprise Valley fault zone near Cedarville, California. The 85-km-long Surprise Valley fault zone forms the western active margin of the Basin and Range province in northeastern California. The down-to-the-east normal fault is marked by Holocene fault scarps along most of its length, from Fort Bidwell on the north to near the southern end of Surprise Valley. We studied the central section of the fault to determine ages of paleoearthquakes and to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005; 2007). We excavated a trench in June 2005 across a prominent fault scarp on pluvial Lake Surprise deltaic sediments near the mouth of Cooks Canyon, 4 km north of Cedarville. This site was chosen because of the presence of a well-preserved fault scarp and its development on lacustrine deposits thought to be suitable for luminescence dating. We also logged a natural exposure of the fault in similar deltaic sediments near the mouth of Steamboat Canyon, 11 km south of Cedarville, to better understand the along-strike extent of surface ruptures. The purpose of this report is to present photomosaics, trench, drill hole, and stream exposure logs; scarp profiles; and fault slip, tephrochronologic, radiocarbon, luminescence, and unit description data obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Surprise Valley fault zone; that history will be the subject of a future report.

  1. Seismic Velocity Structure across the Hayward Fault Zone Near San Leandro, California

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Catchings, R.; Chan, J. H.; Richardson, I. S.; McEvilly, A.; Goldman, M.; Criley, C.; Sickler, R. R.

    2017-12-01

    In Fall 2016 we conducted the East Bay Seismic Investigation, a NEHRP-funded collaboration between California State University, East Bay and the United State Geological Survey. The study produced a large volume of seismic data, allowing us to examine the subsurface across the East Bay plain and hills using a variety of geophysical methods. We know of no other survey performed in the past that has imaged this area, at this scale, and with this degree of resolution. Initial models show that seismic velocities of the Hayward Fault Zone (HFZ), the East Bay plain, and the East Bay hills are illuminated to depths of 5-6 km. We used explosive sources at 1-km intervals along a 15-km-long, NE-striking ( 055°), seismic line centered on the HFZ. Vertical- and horizontal-component sensors were spaced at 100 m intervals along the entire profile, with vertical-component sensors at 20 m intervals across mapped or suspected faults. Preliminary seismic refraction tomography across the HFZ, sensu lato, (includes sub-parallel, connected, and related faults), shows that the San Leandro Block (SLB) is a low-velocity feature in the upper 1-3 km, with nearly the same Vp as the adjacent Great Valley sediments to the east, and low Vs values. In our initial analysis we can trace the SLB and its bounding faults (Hayward, Chabot) nearly vertically, to at least 2-4 km depth. Similarly, preliminary migrated reflection images suggest that many if not all of the peripheral reverse, strike-slip and oblique-slip faults of the wider HFZ dip toward the SLB, into a curtain of relocated epicenters that define the HFZ at depth, indicative of a `flower-structure'. Preliminary Vs tomography identifies another apparently weak zone at depth, located about 1.5 km east of the San Leandro shoreline, that may represent the northward continuation of the Silver Creek Fault. Centered 4 km from the Bay, there is a distinctive, 2 km-wide, uplifted, horst-like, high-velocity structure (both Vp & Vs) that bounds the

  2. Fault-related structural permeability: Qualitative insights of the damage-zone from micro-CT analysis.

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Nehler, Mathias; Bracke, Rolf; Stöckhert, Ferdinand

    2016-04-01

    Fault zones and their related structural permeability play a leading role in the migration of fluids through the continental crust. A first approximation to understanding the structural permeability conditions, and the estimation of its hydraulic properties (i.e. palaeopermeability and fracture porosity conditions) of the fault-related fracture mesh is the 2D analysis of its veinlets, usually made in thin-section. Those estimations are based in the geometrical parameters of the veinlets, such as average fracture density, length and aperture, which can be statistically modelled assuming penny-shaped fractures of constant radius and aperture within an anisotropic fracture system. Thus, this model is related to fracture connectivity, its length and to the cube of the fracture apertures. In this way, the estimated values presents their own inaccuracies owing to the method used. Therefore, the study of the real spatial distribution of the veinlets of the fault-related fracture mesh (3D), feasible with the use of micro-CT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, together with the validation of previous estimations made in 2D analyses in thin-sections. This early contribution shows the preliminary results of a fault-related fracture mesh and its 3D spatial distribution in the damage zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of the drilling of vertically oriented plugs of 5 mm in diameter located at different distances from the JF core - damage zone boundary. Each specimen was, then, scanned with an x-ray micro-CT scanner (ProCon X-Ray CTalpha) in order to assess the fracture mesh. X-rays were generated in a transmission target x-ray tube with acceleration voltages ranging from 90

  3. Role of the Precambrian Mughese Shear Zone on Cenozoic faulting along the Rukwa-Malawi Rift segment of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Heilman, E.; Kolawole, F.; Mayle, M.; Atekwana, E. A.; Abdelsalam, M. G.

    2017-12-01

    We address the longstanding question of the role of long-lived basement structures in strain accommodation within active rift systems. Studies have highlighted the influence of pre-existing zones of lithospheric weakness in modulating faulting and fault kinematics. Here, we investigate the role of the Neoproterozoic Mughese Shear Zone (MSZ) in Cenozoic rifting along the Rukwa-Malawi rift segment of the East African Rift System (EARS). Detailed analyses of Shuttle Radar Topography Mission (SRTM) DEM and filtered aeromagnetic data allowed us to determine the relationship between rift-related basement-rooted normal faults and the MSZ fabric extending along the southern boundary of the Rukwa-Malawi Rift North Basin. Our results show that the magnetic lineaments defining the MSZ coincide with the collinear Rukwa Rift border fault (Ufipa Fault), a dextral strike-slip fault (Mughese Fault), and the North Basin hinge-zone fault (Mbiri Fault). Fault-scarp and minimum fault-throw analyses reveal that within the Rukwa Rift, the Ufipa Border Fault has been accommodating significant displacement relative to the Lupa Border Fault, which represents the northeastern border fault of the Rukwa Rift. Our analysis also shows that within the North Basin half-graben, the Mbiri Fault has accommodated the most vertical displacement relative to other faults along the half-graben hinge zone. We propose that the Cenozoic reactivation along the MSZ facilitated significant normal slip displacement along the Ufipa Border Fault and the Mbiri Fault, and minor dextral strike-slip between the two faults. We suggest that the fault kinematics along the Rukwa-Malawi Rift is the result of reactivation of the MSZ through regional oblique extension.

  4. Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system

    NASA Astrophysics Data System (ADS)

    Hsu, Y. J.; Yu, S. B.; Loveless, J. P.; Bacolcol, T.; Woessner, J.; Solidum, R., Jr.

    2015-12-01

    The Sunda plate converges obliquely with the Philippine Sea plate with a rate of ~100 mm/yr and results in the sinistral slip along the 1300 km-long Philippine fault. Using GPS data from 1998 to 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks and elastic deformation associated with fault slip at block boundaries. Our preferred model composed of 8 blocks, produces a mean residual velocity of 3.4 mm/yr at 93 GPS stations. Estimated long-term slip rates along the Manila subduction zone show a gradual southward decrease from 66 mm/yr at the northwest tip of Luzon to 60 mm/yr at the southern portion of the Manila Trench. We infer a low coupling fraction of 11% offshore northwest Luzon and a coupling fraction of 27% near the subduction of Scarborough Seamount. The accumulated strain along the Manila subduction zone at latitudes 15.5°~18.5°N could be balanced by earthquakes with composite magnitudes of Mw 8.7 and Mw 8.9 based on a recurrence interval of 500 years and 1000 years, respectively. Estimates of sinistral slip rates on the major splay faults of the Philippine fault system in central Luzon increase from east to west: sinistral slip rates are 2 mm/yr on the Dalton fault, 8 mm/yr on the Abra River fault, and 12 mm/yr on the Tubao fault. On the southern segment of the Philippine fault (Digdig fault), we infer left-lateral slip of ~20 mm/yr. The Vigan-Aggao fault in northwest Luzon exhibits significant reverse slip of up to 31 mm/yr, although deformation may be distributed across multiple offshore thrust faults. On the Northern Cordillera fault, we calculate left-lateral slip of ~7 mm/yr. Results of block modeling suggest that the majority of active faults in Luzon are fully locked to a depth of 15-20 km. Inferred moment magnitudes of inland large earthquakes in Luzon fall in the range of Mw 7.0-7.5 based on a recurrence interval of 100 years. Using the long-term plate convergence rate between the Sunda plate

  5. Kinematics at the intersection of the Garlock and Death Valley fault zones, California: Integration of TM data and field studies

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Verosub, Ken; Finnerty, Tony; Brady, Roland

    1987-01-01

    The Garlock and Death Valley fault zones in SE California are two active strike-slip faults coming together on the east side of the Avawatz Mtns. The kinematics of this intersection, and the possible continuation of either fault zone, are being investigated using a combination of field mapping, and processing and interpretation of remotely sensed image data. Regional and local relationships are derivable from Thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution over more limited areas. Hypotheses being considered are: (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault which continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. From kinematic considerations, image analysis, and field work the third hypothesis is favored. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.

  6. Permeability - Fluid Pressure - Stress Relationship in Fault Zones in Shales

    NASA Astrophysics Data System (ADS)

    Henry, P.; Guglielmi, Y.; Morereau, A.; Seguy, S.; Castilla, R.; Nussbaum, C.; Dick, P.; Durand, J.; Jaeggi, D.; Donze, F. V.; Tsopela, A.

    2016-12-01

    Fault permeability is known to depend strongly on stress and fluid pressures. Exponential relationships between permeability and effective pressure have been proposed to approximate fault response to fluid pressure variations. However, the applicability of these largely empirical laws remains questionable, as they do not take into account shear stress and shear strain. A series of experiments using mHPP probes have been performed within fault zones in very low permeability (less than 10-19 m2) Lower Jurassic shale formations at Tournemire (France) and Mont Terri (Switzerland) underground laboratories. These probes allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. In addition, in the Mont-Terri experiment, passive pressure sensors were installed in observation boreholes. Fracture transmissivity was estimated from single borehole pulse test, constant pressure injection tests, and cross-hole tests. It is found that the transmissivity-pressure dependency can be approximated with an exponential law, but only above a pressure threshold that we call the Fracture Opening Threshold (F.O.P). The displacement data show a change of the mechanical response across the F.O.P. The displacement below the F.O.P. is dominated by borehole response, which is mostly elastic. Above F.O.P., the poro-elasto-plastic response of the fractures dominates. Stress determinations based on previous work and on the analysis of slip data from mHPPP probe indicate that the F.O.P. is lower than the least principal stress. Below the F.O.P., uncemented fractures retain some permeability, as pulse tests performed at low pressures yield diffusivities in the range 10-2 to 10-5 m2/s. Overall, this dual behavior appears consistent with the results of CORK experiments performed in accretionary wedge decollements. Results suggest (1) that fault zones become highly permeable when approaching the critical Coulomb threshold (2

  7. Feasibility of estimating cementation rates in a brittle fault zone using Sr/Ca partition coefficients for sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Foit, Franklin F.

    2000-04-01

    Cement phases such as calcite or quartz often incorporate trace elements from the parent fluids as they crystallize. Experimental sedimentary diagenesis indicates that trace element partition coefficients reflect rates of cementation. The applicability of these findings to fault zone cementation is examined as we make a preliminary attempt to estimate calcite cementation rate in a brittle fault zone directly from the fault-rock composition data. Samples for this study were collected from the Knoxville outcrop of the Saltville fault in Tennessee. The cementation rates for the fault rock samples range from 1×10 -12 to 3×10 -13 m3/ h per m, in agreement with some experimental rates and the rates reported for samples from the DSDP sites. When applied to a non-responsive pore-system model, these rates result in rapid precipitation sealing indicating the influence exerted by the surface-area/volume ratio of the pore network. We find it feasible to obtain a reasonable range of values for the cementation rate using the trace element partition method. However, the study also indicates the need for relatively accurate values for the trace/carrier element ratio in the fault zone syntectonic pore fluid, and exhumed cement.

  8. Physical and Transport Property Variations Within Carbonate-Bearing Fault Zones: Insights From the Monte Maggio Fault (Central Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, F.; Carpenter, B. M.; Mollo, S.; Scuderi, M. M.; Scarlato, P.; Collettini, C.

    2017-11-01

    The physical characterization of carbonate-bearing normal faults is fundamental for resource development and seismic hazard. Here we report laboratory measurements of density, porosity, Vp, Vs, elastic moduli, and permeability for a range of effective confining pressures (0.1-100 MPa), conducted on samples representing different structural domains of a carbonate-bearing fault. We find a reduction in porosity from the fault breccia (11.7% total and 6.2% connected) to the main fault plane (9% total and 3.5% connected), with both domains showing higher porosity compared to the protolith (6.8% total and 1.1% connected). With increasing confining pressure, P wave velocity evolves from 4.5 to 5.9 km/s in the fault breccia, is constant at 5.9 km/s approaching the fault plane and is low (4.9 km/s) in clay-rich fault domains. We find that while the fault breccia shows pressure sensitive behavior (a reduction in permeability from 2 × 10-16 to 2 × 10-17 m2), the cemented cataclasite close to the fault plane is characterized by pressure-independent behavior (permeability 4 × 10-17 m2). Our results indicate that the deformation processes occurring within the different fault structural domains influence the physical and transport properties of the fault zone. In situ Vp profiles match well the laboratory measurements demonstrating that laboratory data are valuable for implications at larger scale. Combining the experimental values of elastic moduli and frictional properties it results that at shallow crustal levels, M ≤ 1 earthquakes are less favored, in agreement with earthquake-depth distribution during the L'Aquila 2009 seismic sequence that occurred on carbonates.

  9. Palaeopermeability structure within fault-damage zones: A snap-shot from microfracture analyses in a strike-slip system

    NASA Astrophysics Data System (ADS)

    Gomila, Rodrigo; Arancibia, Gloria; Mitchell, Thomas M.; Cembrano, Jose M.; Faulkner, Daniel R.

    2016-02-01

    Understanding fault zone permeability and its spatial distribution allows the assessment of fluid-migration leading to precipitation of hydrothermal minerals. This work is aimed at unraveling the conditions and distribution of fluid transport properties in fault zones based on hydrothermally filled microfractures, which reflect the ''frozen-in'' instantaneous advective hydrothermal activity and record palaeopermeability conditions of the fault-fracture system. We studied the Jorgillo Fault, an exposed 20 km long, left-lateral strike-slip fault, which juxtaposes Jurassic gabbro against metadiorite belonging to the Atacama Fault System in northern Chile. Tracings of microfracture networks of 19 oriented thin sections from a 400 m long transect across the main fault trace was carried out to estimate the hydraulic properties of the low-strain fault damagezone, adjacent to the high-strain fault core, by assuming penny-shaped microfractures of constant radius and aperture within an anisotropic fracture system. Palaeopermeability values of 9.1*10-11 to 3.2*10-13 m2 in the gabbro and of 5.0*10-10 to 1.2*10-13 m2 in the metadiorite were determined, both decreasing perpendicularly away from the fault core. Fracture porosity values range from 40.00% to 0.28%. The Jorgillo Fault has acted as a left-lateral dilational fault-bend, generating large-scale dilation sites north of the JF during co-seismic activity.

  10. Preferential Flow Paths In A Karstified Spring Catchment: A Study Of Fault Zones As Conduits To Rapid Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Terrell, A. N.; Veltri, M.; Sauter, M.; Schmidt, S.

    2017-12-01

    In this study we model saturated and unsaturated flow in the karstified Weendespring catchment, located within the Leinetal graben in Goettingen, Germany. We employ the finite element COMSOL Multiphysics modeling software to model variably saturated flow using the Richards equation with a van Genuchten type parameterization. As part of the graben structure, the Weende spring catchment is intersected by seven fault zones along the main flow path of the 7400 m cross section of the catchment. As the Weende spring is part of the drinking water supply in Goettingen, it is particularly important to understand the vulnerability of the catchment and effect of fault zones on rapid transport of contaminants. Nitrate signals have been observed at the spring only a few days after the application of fertilizers within the catchment at a distance of approximately 2km. As the underlying layers are known to be highly impermeable, fault zones within the area are likely to create rapid flow paths to the water table and the spring. The model conceptualizes the catchment as containing three hydrogeological limestone units with varying degrees of karstification: the lower Muschelkalk limestone as a highly conductive layer, the middle Muschelkalk as an aquitard, and the upper Muschelkalk as another conductive layer. The fault zones are parameterized based on a combination of field data from quarries, remote sensing and literary data. The fault zone is modeled considering the fracture core as well as the surrounding damage zone with separate, specific hydraulic properties. The 2D conceptual model was implemented in COMSOL to study unsaturated flow at the catchment scale using van Genuchten parameters. The study demonstrates the importance of fault zones for preferential flow within the catchment and its effect on the spatial distribution of vulnerability.

  11. Dynamic rupture models of subduction zone earthquakes with off-fault plasticity

    NASA Astrophysics Data System (ADS)

    Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.

    2017-12-01

    Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor

  12. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    USGS Publications Warehouse

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at

  13. Structure of the Melajo clay near Arima, Trinidad and strike-slip motion in the El Pilar fault zone

    NASA Technical Reports Server (NTRS)

    Robertson, P.; Burke, K.; Wadge, G.

    1985-01-01

    No consensus has yet emerged on the sense, timing and amount of motion in the El Pilar fault zone. As a contribution to the study of this problem, a critical area within the zone in North Central Trinidad has been mapped. On the basis of the mapping, it is concluded that the El Pilar zone has been active in right-lateral strike-slip motion during the Pleistocene. Recognition of structural styles akin to those of the mapped area leads to the suggestion that the El Pilar zone is part of a 300 km wide plate boundary zone extending from the Orinoco delta northward to Grenada. Lateral motion of the Caribbean plate with respect to South America has been suggested to amount to 1900 km in the last 38 Ma. Part of this displacement since the Miocene can be readily accommodated within the broad zone identified here. No one fault system need account for more than a fraction of the total motion and all faults need not be active simultaneously.

  14. Evolution of fault zones in carbonates with mechanical stratigraphy - Insights from scale models using layered cohesive powder

    NASA Astrophysics Data System (ADS)

    van Gent, Heijn W.; Holland, Marc; Urai, Janos L.; Loosveld, Ramon

    2010-09-01

    We present analogue models of the formation of dilatant normal faults and fractures in carbonate fault zones, using cohesive hemihydrate powder (CaSO 4·½H 2O). The evolution of these dilatant fault zones involves a range of processes such as fragmentation, gravity-driven breccia transport and the formation of dilatant jogs. To allow scaling to natural prototypes, extensive material characterisation was done. This showed that tensile strength and cohesion depend on the state of compaction, whereas the friction angle remains approximately constant. In our models, tensile strength of the hemihydrate increases with depth from 9 to 50 Pa, while cohesion increases from 40 to 250 Pa. We studied homogeneous and layered material sequences, using sand as a relatively weak layer and hemihydrate/graphite mixtures as a slightly stronger layer. Deformation was analyzed by time-lapse photography and Particle Image Velocimetry (PIV) to calculate the evolution of the displacement field. With PIV the initial, predominantly elastic deformation and progressive localization of deformation are observed in detail. We observed near-vertical opening-mode fractures near the surface. With increasing depth, dilational shear faults were dominant, with releasing jogs forming at fault-dip variations. A transition to non-dilatant shear faults was observed near the bottom of the model. In models with mechanical stratigraphy, fault zones are more complex. The inferred stress states and strengths in different parts of the model agree with the observed transitions in the mode of deformation.

  15. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  16. Transformation of graphite by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand

    NASA Astrophysics Data System (ADS)

    Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina

    2017-04-01

    Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite

  17. Holocene earthquakes and right-lateral slip on the left-lateral Darrington-Devils Mountain fault zone, northern Puget Sound, Washington

    USGS Publications Warehouse

    Personius, Stephen F.; Briggs, Richard W.; Nelson, Alan R.; Schermer, Elizabeth R; Maharrey, J. Zebulon; Sherrod, Brian; Spaulding, Sarah A.; Bradley, Lee-Ann

    2014-01-01

    Sources of seismic hazard in the Puget Sound region of northwestern Washington include deep earthquakes associated with the Cascadia subduction zone, and shallow earthquakes associated with some of the numerous crustal (upper-plate) faults that crisscross the region. Our paleoseismic investigations on one of the more prominent crustal faults, the Darrington–Devils Mountain fault zone, included trenching of fault scarps developed on latest Pleistocene glacial sediments and analysis of cores from an adjacent wetland near Lake Creek, 14 km southeast of Mount Vernon, Washington. Trench excavations revealed evidence of a single earthquake, radiocarbon dated to ca. 2 ka, but extensive burrowing and root mixing of sediments within 50–100 cm of the ground surface may have destroyed evidence of other earthquakes. Cores in a small wetland adjacent to our trench site provided stratigraphic evidence (formation of a laterally extensive, prograding wedge of hillslope colluvium) of an earthquake ca. 2 ka, which we interpret to be the same earthquake documented in the trenches. A similar colluvial wedge lower in the wetland section provides possible evidence for a second earthquake dated to ca. 8 ka. Three-dimensional trenching techniques revealed evidence for 2.2 ± 1.1 m of right-lateral offset of a glacial outwash channel margin, and 45–70 cm of north-side-up vertical separation across the fault zone. These offsets indicate a net slip vector of 2.3 ± 1.1 m, plunging 14° west on a 286°-striking, 90°-dipping fault plane. The dominant right-lateral sense of slip is supported by the presence of numerous Riedel R shears preserved in two of our trenches, and probable right-lateral offset of a distinctive bedrock fault zone in a third trench. Holocene north-side-up, right-lateral oblique slip is opposite the south-side-up, left-lateral oblique sense of slip inferred from geologic mapping of Eocene and older rocks along the fault zone. The cause of this slip reversal is

  18. In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley Nevada

    USGS Publications Warehouse

    Hickman, S.H.; Barton, C.A.; Zoback, M.D.; Morin, R.; Sass, J.; Benoit, R.

    1997-01-01

    Borehole televiewer and hydrologic logging and hydraulic fracturing stress measurements were carried out in a 2.7-km-deep geothermal production well (73B-7) drilled into the Stillwater fault zone. Precision temperature and spinner flowmeter logs were also acquired in well 73B-7, with and without simultaneously injecting water into the well. Localized perturbations to well-bore temperature and flow were used to identify hydraulically conductive fractures. Comparison of these data with fracture orientations from the televiewer log indicates that permeable fractures within and adjacent to the Stillwater fault zone are critically stressed, potentially active shear planes in the current west-northwest extensional stress regime at Dixie Valley.

  19. Microstructural and petrophysical characterization of a "structurally oversimplified" fault zone in poorly lithified sands: evidence for a coseismic rupture?

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio

    2010-05-01

    We studied an extensional fault zone developed in poorly lithified, quartz-rich high porosity sandy sediments of the seismically active Crotone basin (southern Italy). The fault zone cuts across interlayered fine- to coarse-grained sands and consists of a cm-thick, discrete fault core embedded in virtually undeformed wall sediments. Consequently, it can be described as "structurally oversimplified" due to the lack of footwall and hanging wall damage zones. We acquired microstructural, grain size, grain shape, porosity, mineralogical and permeability data to investigate the influence of initial sedimentological characteristics of sands on the final faulted granular products and related hydrologic properties. Faulting evolves by a general grain size and porosity reduction with a combination of intragranular fracturing, spalling, and flaking of grain edges, irrespective of grain mineralogy. The dominance of cataclasis, also confirmed by fractal dimensions >2.6, is generally not expected at a deformation depth <1 km. Coarse-grained sand shows a much higher comminution intensity, grain shape variations and permeability drop than fine-grained sands. This is because coarser aggregates have (i) fewer grain-to-grain contacts for a given area, which results in higher stress concentration at contact points, and (ii) a higher probability of pre-existing intragranular microstructural defects that result in a lower grain strength. The peculiar structural architecture, the dominance of cataclasis over non-destructive particulate flow, and the compositional variations of clay minerals in the fault core, strongly suggest that the studied fault zone developed by a coseismic rupture.

  20. Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland

    NASA Astrophysics Data System (ADS)

    Green, R. G.; White, R. S.; Greenfield, T. S.

    2013-12-01

    Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.

  1. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and

  2. Initiation of deformation of the Eastern California Shear Zone: Constraints from Garlock fault geometry and GPS observations

    USGS Publications Warehouse

    Gan, Weijun; Zhang, P.; Shen, Z.-K.; Prescott, W.H.; Svarc, J.L.

    2003-01-01

    We suggest a 2-stage deformation model for the Eastern California Shear Zone (ECSZ) to explain the geometry of the Garlock fault trace. We assume the Garlock fault was originally straight and then was gradually curved by right-lateral shear deformation across the ECSZ. In our 2-stage deformation model, the first stage involves uniform shear deformation across the eastern part of the shear zone, and the second stage involves uniform shear deformation across the entire shear zone. In addition to the current shape of the Garlock fault, our model incorporates constraints on contemporary deformation rates provided by GPS observations. We find that the best fitting age for initiation of shear in eastern part of the ECSZ is about 5.0 ?? 0.4 Ma, and that deformation of the western part started about 1.6 Myr later.

  3. Structural analysis of the Gachsar sub-zone in central Alborz range; constrain for inversion tectonics followed by the range transverse faulting

    NASA Astrophysics Data System (ADS)

    Yassaghi, A.; Naeimi, A.

    2011-08-01

    Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic-Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N-S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.

  4. Audio-frequency magnetotelluric imaging of the Hijima fault, Yamasaki fault system, southwest Japan

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Ogawa, Y.; Fuji-Ta, K.; Ujihara, N.; Inokuchi, H.; Oshiman, N.

    2010-04-01

    An audio-frequency magnetotelluric (AMT) survey was undertaken at ten sites along a transect across the Hijima fault, a major segment of the Yamasaki fault system, Japan. The data were subjected to dimensionality analysis, following which two-dimensional inversions for the TE and TM modes were carried out. This model is characterized by (1) a clear resistivity boundary that coincides with the downward projection of the surface trace of the Hijima fault, (2) a resistive zone (>500 Ω m) that corresponds to Mesozoic sediment, and (3) shallow and deep two highly conductive zones (30-40 Ω m) along the fault. The shallow conductive zone is a common feature of the Yamasaki fault system, whereas the deep conductor is a newly discovered feature at depths of 800-1,800 m to the southwest of the fault. The conductor is truncated by the Hijima fault to the northeast, and its upper boundary is the resistive zone. Both conductors are interpreted to represent a combination of clay minerals and a fluid network within a fault-related fracture zone. In terms of the development of the fluid networks, the fault core of the Hijima fault and the highly resistive zone may play important roles as barriers to fluid flow on the northeast and upper sides of the conductive zones, respectively.

  5. Kinematics at the Intersection of the Garlock and Death Valley Fault Zones, California: Integration of TM Data and Field Studies

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Brady, Roland H., III; Abrams, Michael

    1989-01-01

    Kinematic relationships at the intersection of the southern Death Valley and Garlock fault zones were examined to identify and delineate the eastern structural boundary between the Mojave and the Basin and Range geologic terrains, and to construct a model for the evolution of this boundary through time. In order to accomplish this, satellite imagery was combined with field investigations to study six areas in the vicinity of the intersection, or possible extensions, of the fault zones. The information gathered from these areas allows the test of various hypotheses that were proposed to explain the interaction between the Death Valley and Garlock fault zones.

  6. Geoelectric characteristics of portions of the Raha fault zone and surrounding rocks, Jabal As Silsilah Quadrangle, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Zablocki, Charles J.; Hajnour, M.O.

    1987-01-01

    Telluric-electric and auto-magnetotelluric measurements obtained in and around the Raha fault zone in the Buqaya area indicate that it dips steeply to the southwest. Large contrasts in the electrical properties of Qarnayn and Maraghan metasedimentary rocks located on either side of the fault are characteristic of the rocks within the fault zone. However, no large electrical contrasts were detected along several segments of a southern branch of the main fault in the Shiaila area, indicating that the rocks on either side of the fault are of similar composition. Extremely low resistivity readings in the Buqaya and Shiaila areas are associated with fracturing and clay-bearing gouge that accompany known shear zones. The locations of several shallow plutons have been inferred from these studies, one of which is probably a source of gold-bearing quartz veins in the metasedimentary rocks of the Shiaila area.

  7. Geologic map and cross sections of the Embudo Fault Zone in the Southern Taos Valley, Taos County, New Mexico

    USGS Publications Warehouse

    Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte

    2016-01-01

    The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to

  8. Theoretical Constraints on Properties of Dynamic Ruptures Implied by Pulverized Fault Zone Rocks

    NASA Astrophysics Data System (ADS)

    Xu, S.; Ben-Zion, Y.

    2016-12-01

    Prominent belts of Pulverized Fault Zone Rocks (PFZR) have been observed adjacent to several major strike-slip faults that separate different crustal blocks. They consist of 100-200m wide zones of highly damaged rock products, primarily of crystalline origin, that were mechanically shattered to sub-micron scale while preserving most of their original fabric with little evidence of shear. PFZR are strongly asymmetric with respect to the fault trace, existing primarily on the side with higher seismic velocity at depth, and their fabric suggests volumetric deformation with tensile cracks in all directions (e.g., Dor et al., 2006; Rockwell et al., 2009; Mitchell et al., 2011). Generating with split Hopkinson pressure bar in intact cm-scale sample microstructures similar to those observed in PFZR requires strain-rates higher than 150/s (e.g., Doan and Gary, 2009; Yuan et al., 2011). Using samples with preexisting damage reduces the strain-rate required for pulverization by 50% (Doan and d'Hour, 2012). These laboratory observations support earlier suggestions that PFZR are produced by dynamic stress fields at the tip of earthquake ruptures (e.g., Ben-Zion and Shi, 2005; Reches and Dewers, 2005). To clarify the conditions associated with generation of PFZR, we discuss theoretical results based on Linear Elastic Fracture Mechanics and simulations of Mode-II dynamic ruptures on frictional faults (Xu and Ben-Zion, 2016). We consider subshear and supershear ruptures along faults between similar and dissimilar solids. The results indicate that strain-rates higher than 150/s can be generated at distance of about 100m from the fault by either subshear ruptures on a bimaterial interface or supershear ruptures between similar and dissimilar solids. The dynamic fields of subshear bimaterial ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks that have no preferred orientation, in agreement with observations. In contrast

  9. San Antonio relay ramp: Area of stratal continuity between large-displacement barrier faults of the Edwards aquifer and Balcones fault zone, central Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E.W.

    1996-09-01

    The San Antonio relay ramp, a gentle southwest-dipping monocline, formed between the tips of two en echelon master faults having maximum throws of >240 in. Structural analysis of this relay ramp is important to studies of Edwards aquifer recharge and ground-water flow because the ramp is an area of relatively good stratal continuity linking the outcrop belt recharge zone and unconfined aquifer with the downdip confined aquifer. Part of the relay ramp lies within the aquifer recharge zone and is crossed by several southeast-draining creeks, including Salado, Cibolo, and Comal Creeks, that supply water to the ramp recharge area. Thismore » feature is an analog for similar structures within the aquifer and for potential targets for hydrocarbons in other Gulf Coast areas. Defining the ramp is an {approximately}13-km-wide right step of the Edwards Group outcrop belt and the en echelon master faults that bound the ramp. The master faults strike N55-75{degrees}E, and maximum displacement exceeds the {approximately}165-m thickness of the Edwards Group strata. The faults therefore probably serve as barriers to Edwards ground-water flow. Within the ramp, tilted strata gently dip southwestward at {approximately}5 m/km, and the total structural relief along the ramp`s southwest-trending axis is <240 in. The ramp`s internal framework is defined by three fault blocks that are {approximately}4 to {approximately}6 km wide and are bound by northeast-striking faults having maximum throws between 30 and 150 m. Within the fault blocks, local areas of high fracture permeability may exist where smaller faults and joints are well connected.« less

  10. The seismogenic Gole Larghe Fault Zone (Italian Southern Alps): quantitative 3D characterization of the fault/fracture network, mapping of evidences of fluid-rock interaction, and modelling of the hydraulic structure through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2016-12-01

    The Gole Larghe Fault Zone (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault zone over a continuous area > 1.5 km2, the fault zone architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault zone strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic

  11. Disturbed zones; indicators of deep-seated subsurface faults in the Valley and Ridge and Appalachian structural front of Pennsylvania

    USGS Publications Warehouse

    Pohn, Howard A.; Purdy, Terri L.

    1982-01-01

    Field studies of geologic structures in the Valley and Ridge and adjacent parts of the Appalachian Plateau provinces in Pennsylvania have shown a new type of structure, formerly poorly understood and frequently unmapped, is a significant indicator of deep-seated subsurface faulting. These structures, herein called disturbed zones, are formed by movement between closely spaced pairs of thrust faults. Disturbed zones are characterized at the surface by long, narrow, intensely folded and faulted zones of rocks in a relatively undisturbed stratigraphic sequence. These zones are frequently kilometers to tens of kilometers long and tens to hundreds of meters wide. Although disturbed zones generally occur in sequences of alternating siltstone and shale beds, they can also occur in other lithologies including massively-bedded sandstones and carbonates. Disturbed zones are not only easily recognized in outcrop but their presence can also be inferred on geologic maps by disharmonic fold patterns, which necessitates a detachment between adjacent units that show the disharmony. A number of geologic problems can be clarified by understanding the principles of the sequence of formation and the method of location of disturbed zones, including the interpretation of some published geologic cross sections and maps. The intense folding and faulting which accompanies the formation of a typical disturbed zone produces a region of fracture porosity which, if sealed off from the surface, might well serve as a commercially-exploitable hydrocarbon trap. We believe that the careful mapping of concentrations of disturbed zones can serve as an important exploration method which is much less expensive than speculation seismic lines.

  12. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    NASA Astrophysics Data System (ADS)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of

  13. Strong ground motion prediction applying dynamic rupture simulations for Beppu-Haneyama Active Fault Zone, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Yoshimi, M.; Matsushima, S.; Ando, R.; Miyake, H.; Imanishi, K.; Hayashida, T.; Takenaka, H.; Suzuki, H.; Matsuyama, H.

    2017-12-01

    We conducted strong ground motion prediction for the active Beppu-Haneyama Fault zone (BHFZ), Kyushu island, southwestern Japan. Since the BHFZ runs through Oita and Beppy cities, strong ground motion as well as fault displacement may affect much to the cities.We constructed a 3-dimensional velocity structure of a sedimentary basin, Beppu bay basin, where the fault zone runs through and Oita and Beppu cities are located. Minimum shear wave velocity of the 3d model is 500 m/s. Additional 1-d structure is modeled for sites with softer sediment: holocene plain area. We observed, collected, and compiled data obtained from microtremor surveys, ground motion observations, boreholes etc. phase velocity and H/V ratio. Finer structure of the Oita Plain is modeled, as 250m-mesh model, with empirical relation among N-value, lithology, depth and Vs, using borehole data, then validated with the phase velocity data obtained by the dense microtremor array observation (Yoshimi et al., 2016).Synthetic ground motion has been calculated with a hybrid technique composed of a stochastic Green's function method (for HF wave), a 3D finite difference (LF wave) and 1D amplification calculation. Fault geometry has been determined based on reflection surveys and active fault map. The rake angles are calculated with a dynamic rupture simulation considering three fault segments under a stress filed estimated from source mechanism of earthquakes around the faults (Ando et al., JpGU-AGU2017). Fault parameters such as the average stress drop, a size of asperity etc. are determined based on an empirical relation proposed by Irikura and Miyake (2001). As a result, strong ground motion stronger than 100 cm/s is predicted in the hanging wall side of the Oita plain.This work is supported by the Comprehensive Research on the Beppu-Haneyama Fault Zone funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  14. S-velocity structure in Cimandiri fault zone derived from neighbourhood inversion of teleseismic receiver functions

    NASA Astrophysics Data System (ADS)

    Syuhada; Anggono, T.; Febriani, F.; Ramdhan, M.

    2018-03-01

    The availability information about realistic velocity earth model in the fault zone is crucial in order to quantify seismic hazard analysis, such as ground motion modelling, determination of earthquake locations and focal mechanism. In this report, we use teleseismic receiver function to invert the S-velocity model beneath a seismic station located in the Cimandiri fault zone using neighbourhood algorithm inversion method. The result suggests the crustal thickness beneath the station is about 32-38 km. Furthermore, low velocity layers with high Vp/Vs exists in the lower crust, which may indicate the presence of hot material ascending from the subducted slab.

  15. Coulomb stress interactions among M≥5.9 earthquakes in the Gorda deformation zone and on the Mendocino Fracture Zone, Cascadia megathrust, and northern San Andreas fault

    USGS Publications Warehouse

    Rollins, John C.; Stein, Ross S.

    2010-01-01

    The Gorda deformation zone, a 50,000 km2 area of diffuse shear and rotation offshore northernmost California, has been the site of 20 M ≥ 5.9 earthquakes on four different fault orientations since 1976, including four M ≥ 7 shocks. This is the highest rate of large earthquakes in the contiguous United States. We calculate that the source faults of six recent M ≥ 5.9 earthquakes had experienced ≥0.6 bar Coulomb stress increases imparted by earthquakes that struck less than 9 months beforehand. Control tests indicate that ≥0.6 bar Coulomb stress interactions between M ≥ 5.9 earthquakes separated by Mw = 7.3 Trinidad earthquake are consistent with the locations of M ≥ 5.9 earthquakes in the Gorda zone until at least 1995, as well as earthquakes on the Mendocino Fault Zone in 1994 and 2000. Coulomb stress changes imparted by the 1980 earthquake are also consistent with its distinct elbow-shaped aftershock pattern. From these observations, we derive generalized static stress interactions among right-lateral, left-lateral and thrust faults near triple junctions.

  16. Core-Log-Seismic Integrative Study of a Subduction Zone Megasplay Fault -An Example from the Nobeoka Thrust, Shimanto Belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.

    2016-12-01

    Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.

  17. Constraining geometrical, hydrodynamical and mechanical properties of a fault zone at hourly time scales from ground surface tilt data

    NASA Astrophysics Data System (ADS)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédéric

    2017-04-01

    Flow through reservoirs such as fractured media is powered by pressure gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of ground surface deformation and sub-surface fluid pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Amongst all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically-induced deformation over a broad range of time scales with a remarkable precision (1 nanoradian). Here, we investigate the information content of transient surface tilt generated by flow in a kilometer scale sub-vertical fault zone and its surrounding fractured rock matrix. Our approach involves the combined analysis of field data and results of a fully coupled poroelastic model, where fault and matrix are represented as equivalent homogeneous domains. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in: 1) tilt time series alone from a set of 4 instruments; 2) the ratio of tilt over pressure. With the model, we evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. In particular, we show a few well placed tiltmeters (on each side of a fault) give more information on the medium's properties than well spatialized surface displacement maps. Furthermore, the ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone, and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated to fault zone hydrogeology at short time scales, where space-borne surveying methods fail to seize any deformation signal.

  18. Traditional and innovative methods applied to a crystalline aquifer for characterizing fault zone hydrology at different scales

    NASA Astrophysics Data System (ADS)

    Bour, O.; Ruelleu, S.; Le Borgne, T.; Boudin, F.; Moreau, F.; Durand, S.; Longuevergne, L.

    2011-12-01

    Crystalline rocks aquifers are difficult to characterize since flow is mainly localized in few fractures or faults. In particular, the geometry of the main flow paths and the connections of the aquifer with the sub-surface are often poorly constrained. Here, we present results from different geophysical and hydraulic methods to quantify fault zone hydrology of a crystalline confined aquifer (Ploemeur, French Brittany). This outstandingly productive crystalline rock aquifer is exploited at a rate of about 10 6 m3 per year since 1991. The pumping site is located at the intersection of two main structures: the contact zone between granite roof and overlying micaschists, and a steeply dipping fault striking North 20°, with combined dextral strike-slip and normal components. Core samples and borehole optical imagery reveals that the contact zone at the granite roof consists of alternating deformed granitic sheets and enclaves of micaschists, pegmatite and aplite dykes, as well as quartz veins. Locally, this contact is marked by mylonites and pegmatite-bearing breccias that are often but not systematically associated with major borehole inflows. Other significant inflows are localized within single fractures independently of the lithologies encountered. At the borehole scale the structural and hydraulic properties of the aquifer are thus highly variable. At the site scale - typically a kilometer squared - the water levels are monitored in 22 boreholes, 100 meters deep in average. The connectivity of the main flow paths and the hydraulic properties are relatively well constrained and quantified thanks to cross-borehole flowmeter tests and traditional pumping tests. In complement, long-base tiltmeters monitoring and ground-surface leveling allows to monitor sub-surface deformation. It provides a quantification of the hydro-mechanical properties of the aquifer and better constraints about the geometry of the main fault zone. Surprisingly, the storage coefficient of the

  19. Fault Growth and Propagation and its Effect on Surficial Processes within the Incipient Okavango Rift Zone, Northwest Botswana, Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.

    2010-12-01

    The Okavango Rift Zone (ORZ) is suggested to be a zone of incipient continental rifting occuring at the distal end of the southwestern branch of the East African Rift System (EARS), therefore providing a unique opportunity to investigate neotectonic processes during the early stages of rifting. We used geophysical (aeromagnetic, magnetotelluric), Shuttle Radar Tomography Mission, Digital Elevation Model (SRTM-DEM), and sedimentological data to characterize the growth and propagation of faults associated with continental extension in the ORZ, and to elucidate the interplay between neotectonics and surficial processes. The results suggest that: (1) fault growth occurs by along axis linkage of fault segments, (2) an immature border fault is developing through the process of “Fault Piracy” by fault-linkages between major fault systems, (3) significant discrepancies exits between the height of fault scarps and the throws across the faults compared to their lengths in the basement, (4) utilization of preexisting zones of weakness allowed the development of very long faults (> 25-100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift, (5) active faults are characterized by conductive anomalies resulting from fluids, whereas, inactive faults show no conductivity anomaly; and 6) sedimentlogical data reveal a major perturbation in lake sedimentation between 41 ka and 27 ka. The sedimentation perturbation is attributed to faulting associated with the rifting and may have resulted in the alteration of hydrology forming the modern day Okavango delta. We infer that this time period may represent the age of the latest rift reactivation and fault growth and propagation within the ORZ.

  20. Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA

    USGS Publications Warehouse

    Howle, James F.; Bawden, Gerald W.; Schweickert, Richard A.; Finkel, Robert C.; Hunter, Lewis E.; Rose, Ronn S.; von Twistern, Brent

    2012-01-01

    We integrated high-resolution bare-earth airborne light detection and ranging (LiDAR) imagery with field observations and modern geochronology to characterize the Tahoe-Sierra frontal fault zone, which forms the neotectonic boundary between the Sierra Nevada and the Basin and Range Province west of Lake Tahoe. The LiDAR imagery clearly delineates active normal faults that have displaced late Pleistocene glacial moraines and Holocene alluvium along 30 km of linear, right-stepping range front of the Tahoe-Sierra frontal fault zone. Herein, we illustrate and describe the tectonic geomorphology of faulted lateral moraines. We have developed new, three-dimensional modeling techniques that utilize the high-resolution LiDAR data to determine tectonic displacements of moraine crests and alluvium. The statistically robust displacement models combined with new ages of the displaced Tioga (20.8 ± 1.4 ka) and Tahoe (69.2 ± 4.8 ka; 73.2 ± 8.7 ka) moraines are used to estimate the minimum vertical separation rate at 17 sites along the Tahoe-Sierra frontal fault zone. Near the northern end of the study area, the minimum vertical separation rate is 1.5 ± 0.4 mm/yr, which represents a two- to threefold increase in estimates of seismic moment for the Lake Tahoe basin. From this study, we conclude that potential earthquake moment magnitudes (Mw) range from 6.3 ± 0.25 to 6.9 ± 0.25. A close spatial association of landslides and active faults suggests that landslides have been seismically triggered. Our study underscores that the Tahoe-Sierra frontal fault zone poses substantial seismic and landslide hazards.

  1. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    USGS Publications Warehouse

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  2. Estimation of recurrence interval of large earthquakes on the central Longmen Shan fault zone based on seismic moment accumulation/release model.

    PubMed

    Ren, Junjie; Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 10¹⁷ N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region.

  3. Estimation of Recurrence Interval of Large Earthquakes on the Central Longmen Shan Fault Zone Based on Seismic Moment Accumulation/Release Model

    PubMed Central

    Zhang, Shimin

    2013-01-01

    Recurrence interval of large earthquake on an active fault zone is an important parameter in assessing seismic hazard. The 2008 Wenchuan earthquake (Mw 7.9) occurred on the central Longmen Shan fault zone and ruptured the Yingxiu-Beichuan fault (YBF) and the Guanxian-Jiangyou fault (GJF). However, there is a considerable discrepancy among recurrence intervals of large earthquake in preseismic and postseismic estimates based on slip rate and paleoseismologic results. Post-seismic trenches showed that the central Longmen Shan fault zone probably undertakes an event similar to the 2008 quake, suggesting a characteristic earthquake model. In this paper, we use the published seismogenic model of the 2008 earthquake based on Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data and construct a characteristic seismic moment accumulation/release model to estimate recurrence interval of large earthquakes on the central Longmen Shan fault zone. Our results show that the seismogenic zone accommodates a moment rate of (2.7 ± 0.3) × 1017 N m/yr, and a recurrence interval of 3900 ± 400 yrs is necessary for accumulation of strain energy equivalent to the 2008 earthquake. This study provides a preferred interval estimation of large earthquakes for seismic hazard analysis in the Longmen Shan region. PMID:23878524

  4. Possible Non-volcanic Tremor Discovered in the Reelfoot Fault Zone, Northern Tennessee

    NASA Astrophysics Data System (ADS)

    Langston, C. A.; Williams, R. A.; Magnani, M.; Rieger, D. M.

    2007-12-01

    A swarm of ~80 microearthquakes was fortuitously detected in 20, 14 second-duration long-offset vibroseis shotgathers collected for a seismic reflection experiment near Mooring, TN, directly over the Reelfoot fault zone on the afternoon of 16 November 2006. These natural events show up in the shotgathers as near-vertically incident P waves with a dominant frequency of 10-15 Hz. The reflection line was 715m in length consisting of 144 channels with a sensor spacing of 5m, 8Hz vertical geophones, and recording using a Geometrics 24bit Geode seismograph. Small variations in event moveout across the linear array indicate that the seismicity was not confined to the same hypocenter and probably occurred at depths of approximately 10 km. The largest events in the series are estimated to have local magnitudes of ~-1 if at 10 km distance from the array. This is about 2.5 magnitude units lower than the threshold for local events detected and located by the CERI cooperative network in the area. The seismicity rate was ~1000 events per hour based on the total time duration of the shotgathers. The expected number of earthquakes of ML greater than or equal to -1 for the entire central United States is only 1 per hour. This detection of microseismic swarms in the Reelfoot fault zone indicates active physical processes that may be similar to non-volcanic tremor seen in the Cascadia and San Andreas fault zones and merits long-term monitoring to understand its source.

  5. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth

    USGS Publications Warehouse

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris

    2017-01-01

    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  6. Trench Logs and Scarp Data from an Investigation of the Steens Fault Zone, Bog Hot Valley and Pueblo Valley, Humboldt County, Nevada

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Kyung, Jai Bok; Cisneros, Hector; Lidke, David J.; Mahan, Shannon

    2006-01-01

    Introduction: This report contains field and laboratory data from a study of the Steens fault zone near Denio, Nev. The 200-km-long Steens fault zone forms the longest, most topographically prominent fault-bounded escarpment in the Basin and Range of southern Oregon and northern Nevada. The down-to-the-east normal fault is marked by Holocene fault scarps along nearly half its length, including the southern one-third of the fault from the vicinity of Pueblo Mountain in southern Oregon to the southern margin of Bog Hot Valley (BHV) southwest of Denio, Nev. We studied this section of the fault to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005). We excavated a trench in May 2003 across one of a series of right-stepping fault scarps that extend south from the southern end of the Pueblo Mountains and traverse the floor of Bog Hot Valley, about 4 km south of Nevada State Highway 140. This site was chosen because of the presence of well-preserved fault scarps, their development on lacustrine deposits thought to be suitable for luminescence dating, and the proximity of two geodetic stations that straddle the fault zone. We excavated a second trench in the southern BHV, but the fault zone in this trench collapsed during excavation and thus no information about fault history was documented from this site. We also excavated a soil pit on a lacustrine barrier bar in the southern Pueblo Valley (PV) to better constrain the age of lacustrine deposits exposed in the trench. The purpose of this report is to present photomosaics and trench logs, scarp profiles and slip data, soils data, luminescence and radiocarbon ages, and unit descriptions obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Steens fault zone; that history will be the subject of a future

  7. Palaeopermeability anisotropies of a strike-slip fault damage zone: 3D Insights of quantitative fluid flow from µCT analysis.

    NASA Astrophysics Data System (ADS)

    Gomila, R.; Arancibia, G.; Nehler, M.; Bracke, R.; Morata, D.

    2017-12-01

    Fault zones and their related structural permeability are a key aspect in the migration of fluids through the continental crust. Therefore, the estimation of the hydraulic properties (palaeopermeability conditions; k) and the spatial distribution of the fracture mesh within the damage zone (DZ) are critical in the assessment of fault zones behavior for fluids. The study of the real spatial distribution of the veinlets of the fracture mesh (3D), feasible with the use of µCT analyses, is a first order factor to unravel both, the real structural permeability conditions of a fault-zone, and the validation of previous (and classical) estimations made in 2D analyses in thin-sections. This work shows the results of a fault-related fracture mesh and its 3D spatial distribution in the damage-zone of the Jorgillo Fault (JF), an ancient subvertical left-lateral strike-slip fault exposed in the Atacama Fault System in northern Chile. The JF is a ca. 20 km long NNW-striking strike-slip fault with sinistral displacement of ca. 4 km. The methodology consisted of drilling 5 mm vertically oriented plugs at several locations within the JF damage zone. Each specimen was scanned with an X-Ray µCT scanner, to assess the fracture mesh, with a voxel resolution of ca. 4.5 µm in the 3D reconstructed data. Tensor permeability modeling, using Lattice-Boltzmann Method, through the segmented microfracture mesh show GMkmin (geometric mean values) of 2.1x10-12 and 9.8x10-13 m2, and GMkmax of 6.4x10-12 and 2.1x10-12 m2. A high degree of anisotropy of the DZ permeability tensor both sides of the JF (eastern and western side, respectively) is observed, where the k values in the kmax plane are 2.4 and 1.9 times higher than the kmin direction at the time of fracture sealing. This style of anisotropy is consistent with the obtained for bedded sandstones supporting the idea that damage zones have an analogous effect - but vertically orientated - on bulk permeability (in low porosity rocks) as

  8. Geophysical investigation of the Denali fault and Alaska Range orogen within the aftershock zone of the October-November 2002, M = 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Fisher, M.A.; Nokleberg, W.J.; Ratchkovski, N.A.; Pellerin, L.; Glen, J.M.; Brocher, T.M.; Booker, J.

    2004-01-01

    The aftershock zone of the 3 November 2002, M = 7.9 earthquake that ruptured along the right-slip Denali fault in south-central Alaska has been investigated by using gravity and magnetic, magnetotelluric, and deep-crustal, seismic reflection data as well as outcrop geology and earthquake seismology. Strong seismic reflections from within the Alaska Range orogen north of the Denali fault dip as steeply as 25°N and extend to depths as great as 20 km. These reflections outline a relict crustal architecture that in the past 20 yr has produced little seismicity. The Denali fault is nonreflective, probably because this fault dips steeply to vertical. The most intriguing finding from geophysical data is that earthquake aftershocks occurred above a rock body, with low electrical resistivity (>10 Ω·m), that is at depths below ∼10 km. Aftershocks of the Denali fault earthquake have mainly occurred shallower than 10 km. A high geothermal gradient may cause the shallow seismicity. Another possibility is that the low resistivity results from fluids, which could have played a role in locating the aftershock zone by reducing rock friction within the middle and lower crust.

  9. Evolving geometrical heterogeneities of fault trace data

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari

    2010-08-01

    We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.

  10. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    NASA Astrophysics Data System (ADS)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  11. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    NASA Astrophysics Data System (ADS)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  12. Interactions between Polygonal Normal Faults and Larger Normal Faults, Offshore Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Pham, T. Q. H.; Withjack, M. O.; Hanafi, B. R.

    2017-12-01

    Polygonal faults, small normal faults with polygonal arrangements that form in fine-grained sedimentary rocks, can influence ground-water flow and hydrocarbon migration. Using well and 3D seismic-reflection data, we have examined the interactions between polygonal faults and larger normal faults on the passive margin of offshore Nova Scotia, Canada. The larger normal faults strike approximately E-W to NE-SW. Growth strata indicate that the larger normal faults were active in the Late Cretaceous (i.e., during the deposition of the Wyandot Formation) and during the Cenozoic. The polygonal faults were also active during the Cenozoic because they affect the top of the Wyandot Formation, a fine-grained carbonate sedimentary rock, and the overlying Cenozoic strata. Thus, the larger normal faults and the polygonal faults were both active during the Cenozoic. The polygonal faults far from the larger normal faults have a wide range of orientations. Near the larger normal faults, however, most polygonal faults have preferred orientations, either striking parallel or perpendicular to the larger normal faults. Some polygonal faults nucleated at the tip of a larger normal fault, propagated outward, and linked with a second larger normal fault. The strike of these polygonal faults changed as they propagated outward, ranging from parallel to the strike of the original larger normal fault to orthogonal to the strike of the second larger normal fault. These polygonal faults hard-linked the larger normal faults at and above the level of the Wyandot Formation but not below it. We argue that the larger normal faults created stress-enhancement and stress-reorientation zones for the polygonal faults. Numerous small, polygonal faults formed in the stress-enhancement zones near the tips of larger normal faults. Stress-reorientation zones surrounded the larger normal faults far from their tips. Fewer polygonal faults are present in these zones, and, more importantly, most polygonal faults

  13. Maine Pseudotachylyte Localities and the Role of Host Rock Anisotropy in Fault Zone Development and Frictional Melting

    NASA Astrophysics Data System (ADS)

    Swanson, M. T.

    2004-12-01

    Three brittle strike-slip fault localities in coastal Maine have developed pseudotachylyte fault veins, injection veins and other reservoir structures in a variety of host rocks where the pre-existing layering can serve as a controlling fabric for brittle strike-slip reactivation. Host rocks with a poorly-oriented planar anisotropy at high angles to the shear direction will favor the development of R-shears in initial en echelon arrays as seen in the Two Lights and Richmond Island Fault Zones of Cape Elizabeth that cut gently-dipping phyllitic quartzites. These en echelon R-shears grow to through-going faults with the development of P-shear linkages across the dominantly contractional stepovers in the initial arrays. Pseudotachylyte on these faults is very localized, typically up to 1-2 mm in thickness and is restricted to through-going fault segments, P-shear linkages and some sidewall ripouts. Overall melt production is limited by the complex geometry of the multi-fault array. Host rocks with a favorably-oriented planar anisotropy for reactivation in brittle shear, however, preferentially develop a multitude of longer, non-coplanar layer-parallel fault segments. Pseudotachylyte in the newly-discovered Harbor Island Fault Zone in Muscongus Bay is developed within vertical bedding on regional upright folds with over 50 individual layer-parallel single-slip fault veins, some of which can be traced for over 40 meters along strike. Many faults show clear crosscuts of pre-existing quartz veins that indicate a range of coseismic displacements of 0.23-0.53 meters yielding fault vein widths of a few mm and dilatant reservoirs up to 2 cm thick. Both vertical and rare horizontal lateral injection veins can be found in the adjoining wall rock up to 0.7 cm thick and 80 cm in length. The structure of these faults is simple with minor development of splay faults, sidewall ripouts and strike-slip duplexes. The prominent vertical flow layering within the mylonite gneisses of

  14. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  15. Implications of Preliminary Gravity and Magnetic Surveys to the Understanding of the Bartlett Springs Fault Zone, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Jachens, R. C.; Morin, R. L.; McCabe, C. M.; Page, W. D.

    2007-12-01

    We use new gravity and magnetic data in the Lake Pillsbury region to help understand the geometry and character of the Bartlett Springs fault zone, one of the three main strands of the San Andreas system north of the San Francisco Bay area. We collected 153 new gravity stations in the Lake Pillsbury region that complement the sparse regional dataset and are used to estimate the thickness of Quaternary deposits in the inferred Gravelly Valley (Lake Pillsbury) pull-apart basin. We also collected 38 line-km of ground magnetic data on roads and 65 line-km by boat on the lake to supplement regional aeromagnetic surveys and to map concealed fault strands beneath the lake. The new gravity data show a significant northwest-striking gravity gradient at the base of which lies the Bartlett Springs fault zone. Superposed on this major east-facing gravity gradient is a 5 mGal low centered on Lake Pillsbury and Gravelly Valley. Inversion of the gravity field for basin thickness assuming a density contrast of 400 kg/m3 indicates the deepest part of the basin is about 400 m and located in the northern part of the valley, although the inversion lacks gravity stations within the lake. The basin is about 3 km wide and 5 km long and basin edges coincide with strands of the Bartlett Springs fault zone. Our gravity data suggest that Potter Valley, which lies between the Maacama and Bartlett Springs faults, is also as much as 400 m deep in the southern part of the valley, although additional data west of the valley would better isolate the gravity low. Geomorphologic characteristics of the valley suggest that this structure has been quiescent during the late Quaternary. Ground magnetic data are very noisy but the data in conjunction with 9.6 km-spaced NURE aeromagnetic lines suggest that regional analog aeromagnetic data flown in 1962 may suffer from location errors. The regional and NURE data show a northwest-striking magnetic high that extends across Lake Pillsbury. The northeast edge

  16. Mesozoic strike-slip movement of the Dunhua-Mishan Fault Zone in NE China: A response to oceanic plate subduction

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Zhu, Guang; Zhang, Shuai; Gu, Chengchuan; Li, Yunjian; Su, Nan; Xiao, Shiye

    2018-01-01

    The NE-striking Dunhua-Mishan Fault Zone (DMFZ) is one of two branches of the continental-scale sinistral Tan-Lu Fault Zone in NE China. The field data presented here indicate that the ca. 1000 km long DMFZ records two phases of sinistral faulting. The structures produced by these two phases of faulting include NE-SW-striking ductile shear belts and brittle faults, respectively. Mylonite-hosted microstructures and quartz c-axis fabrics suggest deformation temperatures of 450 °C-500 °C for the ductile shear belts. Combining new zircon U-Pb dates for 14 igneous rock samples analyzed during this study with the geology of this region indicates these shear belts formed during the earliest Early Cretaceous. This phase of sinistral displacement represents the initial formation of the DMFZ in response to the northward propagation of the Tan-Lu Fault Zone into NE China. A phase of Early Cretaceous rifting was followed by a second phase of sinistral faulting at 102-96 Ma, as evidenced by our new U-Pb ages for associated igneous rocks. Combining our new data with the results of previous research indicates that the DFMZ records a four-stage Cretaceous evolutionary history, where initial sinistral faulting at the beginning of the Early Cretaceous gave way to rifting during the rest of the Early Cretaceous. This was followed by a second phase of sinistral faulting at the beginning of the Late Cretaceous and a second phase of local rifting during the rest of the Late Cretaceous. The Cretaceous evolution of the DMFZ records the synchronous tectonic evolution of the NE China continent bordering the Pacific Ocean. Two phases of regional N-S compression generated the two phases of sinistral faulting within the DMFZ, whereas two-stage regional extension generated the two phases of rifting. The two compressive events were the result of the rapid low-angle subduction of the Izanagi and Pacific plates, whereas the two-stage extension was caused by the roll-back of these respective

  17. Automatic identification of fault zone head waves and direct P waves and its application in the Parkfield section of the San Andreas Fault, California

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Peng, Zhigang

    2016-06-01

    Fault zone head waves (FZHWs) are observed along major strike-slip faults and can provide high-resolution imaging of fault interface properties at seismogenic depth. In this paper, we present a new method to automatically detect FZHWs and pick direct P waves secondary arrivals (DWSAs). The algorithm identifies FZHWs by computing the amplitude ratios between the potential FZHWs and DSWAs. The polarities, polarizations and characteristic periods of FZHWs and DSWAs are then used to refine the picks or evaluate the pick quality. We apply the method to the Parkfield section of the San Andreas Fault where FZHWs have been identified before by manual picks. We compare results from automatically and manually picked arrivals and find general agreement between them. The obtained velocity contrast at Parkfield is generally 5-10 per cent near Middle Mountain while it decreases below 5 per cent near Gold Hill. We also find many FZHWs recorded by the stations within 1 km of the background seismicity (i.e. the Southwest Fracture Zone) that have not been reported before. These FZHWs could be generated within a relatively wide low velocity zone sandwiched between the fast Salinian block on the southwest side and the slow Franciscan Mélange on the northeast side. Station FROB on the southwest (fast) side also recorded a small portion of weak precursory signals before sharp P waves. However, the polarities of weak signals are consistent with the right-lateral strike-slip mechanisms, suggesting that they are unlikely genuine FZHW signals.

  18. Strength of the San Andreas Fault Zone: Insight From SAFOD Cuttings and Core

    NASA Astrophysics Data System (ADS)

    Tembe, S.; Lockner, D. A.; Solum, J. G.; Morrow, C. A.; Wong, T.; Moore, D. E.

    2005-12-01

    Cuttings acquired during drilling of the SAFOD scientific hole near Parkfield, California offer a continuous physical record of the lithology across the San Andreas fault (SAF) zone and provide the only complete set of samples available for laboratory testing. Guided by XRD clay mineral analysis and velocity and gamma logs, we selected washed cuttings from depths spanning the main hole from 1.85 to 3.0 km true vertical depth. Cuttings were chosen to represent primary lithologic units as well as significant shear zones, including candidates for the currently active SAF. To determine frictional properties triaxial sliding tests were conducted on cylindrical granite blocks containing sawcuts inclined at 30° and filled with 1 mm-thick sample gouge layers. Tests were run at constant effective normal stresses of 10 and 40 MPa and constant pore pressure of 1 MPa. Samples were sheared up to 10.4 mm at room temperature and velocities of 1, 0.1 and 0.01 μm/s. Stable sliding behavior and overall strain hardening were observed in all tests. The coefficient of friction typically showed a modest decrease with increasing effective normal stress and mostly velocity strengthening was observed. Preliminary results yield coefficients of friction, μ, which generally fell into two clusters spanning the range of 0.45 to 0.8. The higher values of friction (~0.7 - 0.8) corresponded to quartzofeldspathic samples derived from granodiorites and arkoses encountered in the drill hole. Lower values of friction (0.45 - 0.55) were observed at depth intervals interpreted as shear zones based on enriched clay content, reduced seismic velocities and increased gamma radiation. Arguments for a weak SAF suggest coseismic frictional strength of μ = 0.1 to 0.2 yet the actual fault zone materials studied here appear consistently stronger. At least two important limitations exist for inferring in-situ fault strength from cuttings. (1) Clays and weak minerals are preferentially lost during drilling and

  19. Evidence for a Battle Mountain-Eureka crustal fault zone, north-central Nevada, and its relation to Neoproterozoic-Early Paleozoic continental breakup

    USGS Publications Warehouse

    Grauch, V.J.S.; Rodriguez, B.D.; Bankey, V.; Wooden, J.L.

    2003-01-01

    Combined evidence from gravity, radiogenic isotope, and magnetotelluric (MT) data indicates a crustal fault zone that coincides with the northwest-trending Battle Mountain-Eureka (BME) mineral trend in north-central Nevada, USA. The BME crustal fault zone likely originated during Neoproterozoic-Early Paleozoic rifting of the continent and had a large influence on subsequent tectonic events, such as emplacement of allochthons and episodic deformation, magmatism, and mineralization throughout the Phanerozoic. MT models show the fault zone is about 10 km wide, 130-km long, and extends from 1 to 5 km below the surface to deep crustal levels. Isotope data and gravity models imply the fault zone separates crust of fundamentally different character. Geophysical evidence for such a long-lived structure, likely inherited from continental breakup, defies conventional wisdom that structures this old have been destroyed by Cenozoic extensional processes. Moreover, the coincidence with the alignment of mineral deposits supports the assertion by many economic geologists that these alignments are indicators of buried regional structures.

  20. Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California

    NASA Astrophysics Data System (ADS)

    McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.

    2017-11-01

    A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin

  1. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    EPA Pesticide Factsheets

    LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.

  2. Identification of repeating earthquakes and spatio-temporal variations of fault zone properties around the Parkfield section of the San Andreas fault and the central Calaveras fault

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Peng, Z.

    2008-12-01

    We systemically identify repeating earthquakes and investigate spatio-temporal variations of fault zone properties associated with the 2004 Mw6.0 Parkfield earthquake along the Parkfield section of the San Andreas fault, and the 1984 Mw6.2 Morgan Hill earthquake along the central Calaveras fault. The procedure for identifying repeating earthquakes is based on overlapping of the source regions and the waveform similarity, and is briefly described as follows. First, we estimate the source radius of each event based on a circular crack model and a normal stress drop of 3 MPa. Next, we compute inter-hypocentral distance for events listed in the relocated catalog of Thurber et al. (2006) around Parkfield, and Schaff et al. (2002) along the Calaveras fault. Then, we group all events into 'initial' clusters by requiring the separation distance between each event pair to be less than the source radius of larger event, and their magnitude difference to be less than 1. Next, we calculate the correlation coefficients between every event pair within each 'initial' cluster using a 3-s time window around the direct P waves for all available stations. The median value of the correlation coefficients is used as a measure of similarity between each event pair. We drop an event if the median similarity to the rest events in that cluster is less than 0.9. After identifying repeating clusters in both regions, our next step is to apply a sliding window waveform cross-correlation technique (Niu et al., 2003; Peng and Ben-Zion, 2006) to calculate the delay time and decorrelation index for each repeating cluster. By measuring temporal changes in waveforms of repeating clusters at different locations and depth, we hope to obtain a better constraint on spatio-temporal variations of fault zone properties and near-surface layers associated with the occurrence of major earthquakes.

  3. Fault zone characteristics and basin complexity in the southern Salton Trough, California

    USGS Publications Warehouse

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang

    2016-01-01

    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  4. Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    USGS Publications Warehouse

    Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting

  5. Paleoseismic evidence for late Holocene tectonic deformation along the Saddle mountain fault zone, Southeastern Olympic Peninsula, Washington

    USGS Publications Warehouse

    Barnett, Elizabeth; Sherrod, Brian; Hughes, Jonathan F.; Kelsey, Harvey M.; Czajkowski, Jessica L.; Walsh, Timothy J.; Contreras, Trevor A.; Schermer, Elizabeth R.; Carson, Robert J.

    2015-01-01

    Trench and wetland coring studies show that northeast‐striking strands of the Saddle Mountain fault zone ruptured the ground about 1000 years ago, generating prominent scarps. Three conspicuous subparallel fault scarps can be traced for 15 km on Light Detection and Ranging (LiDAR) imagery, traversing the foothills of the southeast Olympic Mountains: the Saddle Mountain east fault, the Saddle Mountain west fault, and the newly identified Sund Creek fault. Uplift of the Saddle Mountain east fault scarp impounded stream flow, forming Price Lake and submerging an existing forest, thereby leaving drowned stumps still rooted in place. Stratigraphy mapped in two trenches, one across the Saddle Mountain east fault and the other across the Sund Creek fault, records one and two earthquakes, respectively, as faulting juxtaposed Miocene‐age bedrock against glacial and postglacial deposits. Although the stratigraphy demonstrates that reverse motion generated the scarps, slip indicators measured on fault surfaces suggest a component of left‐lateral slip. From trench exposures, we estimate the postglacial slip rate to be 0.2  mm/yr and between 0.7 and 3.2  mm/yr during the past 3000 years. Integrating radiocarbon data from this study with earlier Saddle Mountain fault studies into an OxCal Bayesian statistical chronology model constrains the most recent paleoearthquake age of rupture across all three Saddle Mountain faults to 1170–970 calibrated years (cal B.P.), which overlaps with the nearby Mw 7.5 1050–1020 cal B.P. Seattle fault earthquake. An earlier earthquake recorded in the Sund Creek trench exposure, dates to around 3500 cal B.P. The geometry of the Saddle Mountain faults and their near‐synchronous rupture to nearby faults 1000 years ago suggest that the Saddle Mountain fault zone forms a western boundary fault along which the fore‐arc blocks migrate northward in response to margin‐parallel shortening across the Puget Lowland.

  6. Role of the offshore Pedro Banks left-lateral strike-slip fault zone in the plate tectonic evolution of the northern Caribbean

    NASA Astrophysics Data System (ADS)

    Ott, B.; Mann, P.; Saunders, M.

    2013-12-01

    Previous workers, mainly mapping onland active faults on Caribbean islands, defined the northern Caribbean plate boundary zone as a 200-km-wide bounded by two active and parallel strike-slip faults: the Oriente fault along the northern edge of the Cayman trough with a GPS rate of 14 mm/yr, and and the Enriquillo-Plaintain Garden fault zone (EPGFZ) with a rate of 5-7 mm/yr. In this study we use 5,000 km of industry and academic data from the Nicaraguan Rise south and southwest of the EPGFZ in the maritime areas of Jamaica, Honduras, and Colombia to define an offshore, 700-km-long, active, left-lateral strike-slip fault in what has previously been considered the stable interior of the Caribbean plate as determined from plate-wide GPS studies. The fault was named by previous workers as the Pedro Banks fault zone because a 100-km-long segment of the fault forms an escarpment along the Pedro carbonate bank of the Nicaraguan Rise. Two fault segments of the PBFZ are defined: the 400-km-long eastern segment that exhibits large negative flower structures 10-50 km in width, with faults segments rupturing the sea floor as defined by high resolution 2D seismic data, and a 300-km-long western segment that is defined by a narrow zone of anomalous seismicity first observed by previous workers. The western end of the PBFZ terminates on a Quaternary rift structure, the San Andres rift, associated with Plio-Pleistocene volcanism and thickening trends indicating initial rifting in the Late Miocene. The southern end of the San Andreas rift terminates on the western Hess fault which also exhibits active strands consistent with left-lateral, strike-slip faults. The total length of the PBFZ-San Andres rift-Southern Hess escarpment fault is 1,200 km and traverses the entire western end of the Caribbean plate. Our interpretation is similar to previous models that have proposed the "stable" western Caribbean plate is broken by this fault whose rate of displacement is less than the threshold

  7. Structural architecture and petrophysical properties of the Rocca di Neto extensional fault zone developed in the shallow marine sediments of the Crotone Basin (Southern Apennines, Italy).

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Balsamo, Fabrizio; Iacumin, Paola; Swennen, Rudy; Storti, Fabrizio

    2017-04-01

    In this contribution we describe the architecture and petrophysical properties of the Rocca di Neto extensional fault zone in loose and poorly lithified sediments, located in the Crotone forearc basin (south Italy). To this end, we combined fieldwork with microstructural observations, grain size analysis, and in situ permeability measurements. The studied fault zone has an estimated maximum displacement of 80-90 m and separates early Pleistocene age (Gelasian) sands in the footwall from middle Pleistocene (Calabrian) silty clay in the hangingwall. The analysed outcrop consists of about 70 m section through the fault zone mostly developed in the footwall block. Fault zone consists of four different structural domains characterized by distinctive features: (1) <1 m-thick fault core (where the majority of the displacement is accommodated) in which bedding is transposed into foliation imparted by grain preferential orientation and some black gouges decorate the main slip surfaces; (2) zone of tectonic mixing characterized by a set of closely spaced and anastomosed deformation bands parallel to the main slip surface; (3) about 8 m-thick footwall damage zone characterized by synthetic and antithetic sets of deformation bands; (4) zone of background deformation with a few, widely-spaced conjugate minor faults and deformation bands. The boundary between the relatively undeformed sediments and the damage zone is not sharp and it is characterized by a progressive decrease in deformation intensity. The silty clay in the hangingwall damage zone is characterized by minor faults. Grain size and microstructural data indicate that particulate flow with little amount of cataclasis is the dominant deformation mechanism in both fault core rocks and deformation bands. Permeability of undeformed sediments is about 70000 mD, whereas the permeability in deformation bands ranges from 1000 to 18000 mD; within the fault core rocks permeability is reduced up to 3-4 orders of magnitude

  8. The Proterozoic Mount Isa Fault Zone, northeastern Australia: is it really a ca. 1.9 Ga terrane-bounding suture?

    NASA Astrophysics Data System (ADS)

    Bierlein, Frank P.; Betts, Peter G.

    2004-09-01

    In marked contrast to Palaeoproterozoic Laurentia, the location of sutures and boundaries of discrete crustal fragments amalgamated during Palaeoproterozoic formation of the North Australian Craton remain highly speculative. Interpretations of suture locations have relied heavily on the analysis of regional geophysical datasets because of sparse exposure of rocks of the appropriate age. The Mount Isa Fault Zone has been interpreted as one such Palaeoproterozoic terrane-bounding suture. Furthermore, the coincidence of this fault zone with major shale-hosted massive sulphide Pb-Zn-Ag orebodies has led to speculations that trans-lithospheric faults may be an important ingredient for the development of this deposit type. This study has integrated geophysical and geochemical data to test the statute of the Mount Isa Fault as a terrane-bounding suture. Forward modelling of gravity data shows that basement rocks on either side of the Mount Isa Fault have similar densities. These interpretations are consistent with geochemical observations and Sm-Nd data that suggest that basement lithologies on either side of the Mount Isa Fault are geochemically and isotopically indistinguishable from each other, and that the Mount Isa Fault is unlikely to represent a suture zone that separates different Palaeoproterozoic terranes. Our data indicate that the crustal blocks on both sides of the Mount Isa Fault Zone must have been in within close proximity of each other since the Palaeoproterozoic, and that the Western Fold Belt was part of the (ancestral) North Australian Craton well before the ˜1.89-1.87 Ga Barramundi Orogeny. It appears that deep crustal variations in density may be related to the boundary between a shallowly west-dipping high-density mafic to ultramafic plate and low-density basement rocks. This interpretation in turn impacts on crustal-scale models for the development of shale-hosted massive sulphide Pb-Zn mineralisation, which do not require trans

  9. Textural and Rb-Sr isotopic evidence for late Paleozoic mylonitization within the Honey Hill fault zone southeastern Connecticut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, K.D.; Gromet, L.P.

    A petrographic and Rb-Sr isotopic study of rocks within and near the Honey Hill fault zone places important constraints on its history of movement. Rb-Sr apparent ages for micas and plagioclase from these rocks have been reset and range from Permian to Triassic, considerably younger than the minimum stratigraphic age (Ordovician) of the rocks studied or of Acadian (Devonian) regional metamorphism. Permian Rb-Sr ages of dynamically recrystallized muscovite date the development of mylonite fabric. An older age is precluded by the excellent preservation of unrecovered quartz, which indicates that these rocks did not experience temperatures high enough to anneal quartzmore » or thermally reset Rb-Sr isotopic systems in muscovite since the time of mylonitization. Metamorphic mineral assemblages and mineral apparent ages in rocks north of the fault zone indicate recrystallization under similar upper greenschist-lower amphibolite grade conditions during Permian to Triassic time. Collectively these results indicate that the Honey Hill fault zone was active during the Late Paleozoic and that ductile deformation and metamorphism associated with the Alleghanian orogeny extend well into southern Connecticut. An Alleghanian age for mylonitization within the Honey Hill fault zone suggests it should be considered as a possible site for the major Late Paleozoic strike-slip displacements inferred from paleomagnetic studies for parts of coastal New England and maritime Canada.« less

  10. VNIR reflectance spectroscopy of natural carbonate rocks: implication for remote sensing identification of fault damage zones

    NASA Astrophysics Data System (ADS)

    Traforti, Anna; Mari, Giovanna; Carli, Cristian; Demurtas, Matteo; Massironi, Matteo; Di Toro, Giulio

    2017-04-01

    Reflectance spectroscopy in the visible and near-infrared (VNIR) is a common technique used to study the mineral composition of Solar System bodies from remote sensed and in-situ robotic exploration. In the VNIR spectral range, both crystal field and vibrational overtone absorptions can be present with spectral characteristics (i.e. albedo, slopes, absorption band with different positions and depths) that vary depending on composition and texture (e.g. grain size, roughness) of the sensed materials. The characterization of the spectral variability related to the rock texture, especially in terms of grain size (i.e., both the size of rock components and the size of particulates), commonly allows to obtain a wide range of information about the different geological processes modifying the planetary surfaces. This work is aimed at characterizing how the grain size reduction associated to fault zone development produces reflectance variations in rock and mineral spectral signatures. To achieve this goal we present VNIR reflectance analysis of a set of fifteen rock samples collected at increasing distances from the fault core of the Vado di Corno fault zone (Campo Imperatore Fault System - Italian Central Apennines). The selected samples had similar content of calcite and dolomite but different grain size (X-Ray Powder Diffraction, optical and scanning electron microscopes analysis). Consequently, differences in the spectral signature of the fault rocks should not be ascribed to mineralogical composition. For each sample, bidirectional reflectance spectra were acquired with a Field-Pro Spectrometer mounted on a goniometer, on crushed rock slabs reduced to grain size <800, <200, <63, <10 μm and on intact fault zone rock slabs. The spectra were acquired on dry samples, at room temperature and normal atmospheric pressure. The source used was a Tungsten Halogen lamp with an illuminated spot area of ca. 0.5 cm2and incidence and emission angles of 30˚ and 0˚ respectively

  11. Imaging San Jacinto Fault damage zone structure using dense linear arrays: application of ambient noise tomography, Rayleigh wave ellipticity, and site amplification

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Lin, F. C.; Allam, A. A.; Ben-Zion, Y.

    2017-12-01

    The San Jacinto fault is presently the most seismically active component of the San Andreas Transform system in Southern California. To study the damage zone structure, two dense linear geophone arrays (BS and RR) were deployed across the Clark segment of the San Jacinto Fault between Anza and Hemet during winter 2015 and Fall 2016, respectively. Both arrays were 2 km long with 20 m station spacing. Month-long three-component ambient seismic noise data were recorded and used to calculate multi-channel cross-correlation functions. All three-component noise records of each array were normalized simultaneously to retain relative amplitude information between different stations and different components. We observed clear Rayleigh waves and Love waves on the cross-correlations of both arrays at 0.3 - 1 s period. The phase travel times of the Rayleigh waves on both arrays were measured by frequency-time analysis (FTAN), and inverted for Rayleigh wave phase velocity profiles of the upper 500 m depth. For both arrays, we observe prominent asymmetric low velocity zones which narrow with depth. At the BS array near the Hemet Stepover, an approximately 250m wide slow zone is observed to be offset by 75m to the northeast of the surface fault trace. At the RR array near the Anza segment of the fault, a similar low velocity zone width and offset are observed, along with a 10% across-fault velocity contrast. Analyses of Rayleigh wave ellipticity (H/V ratio), Love wave phase travel times, and site amplification are in progress. By using multiple measurements from ambient noise cross-correlations, we can obtain strong constraints on the local damage zone structure of the San Jacinto Fault. The results contribute to improved understanding of rupture directivity, maximum earthquake magnitude and more generally seismic hazard associated with the San Jacinto fault zone.

  12. Tectonic history of the northern Nabitah fault zone, Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Quick, J.E.; Bosch, Paul S.

    1990-01-01

    Based on the presence of similar lithologies, similar structure, and analogous tectonic setting, the Mother Lode District in California is reviewed as a model for gold occurrences near the Nabitah fault zone in this report.

  13. Fault Scarp Detection Beneath Dense Vegetation Cover: Airborne Lidar Mapping of the Seattle Fault Zone, Bainbridge Island, Washington State

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Berghoff, Gregory S.

    2000-01-01

    The emergence of a commercial airborne laser mapping industry is paying major dividends in an assessment of earthquake hazards in the Puget Lowland of Washington State. Geophysical observations and historical seismicity indicate the presence of active upper-crustal faults in the Puget Lowland, placing the major population centers of Seattle and Tacoma at significant risk. However, until recently the surface trace of these faults had never been identified, neither on the ground nor from remote sensing, due to cover by the dense vegetation of the Pacific Northwest temperate rainforests and extremely thick Pleistocene glacial deposits. A pilot lidar mapping project of Bainbridge Island in the Puget Sound, contracted by the Kitsap Public Utility District (KPUD) and conducted by Airborne Laser Mapping in late 1996, spectacularly revealed geomorphic features associated with fault strands within the Seattle fault zone. The features include a previously unrecognized fault scarp, an uplifted marine wave-cut platform, and tilted sedimentary strata. The United States Geologic Survey (USGS) is now conducting trenching studies across the fault scarp to establish ages, displacements, and recurrence intervals of recent earthquakes on this active fault. The success of this pilot study has inspired the formation of a consortium of federal and local organizations to extend this work to a 2350 square kilometer (580,000 acre) region of the Puget Lowland, covering nearly the entire extent (approx. 85 km) of the Seattle fault. The consortium includes NASA, the USGS, and four local groups consisting of KPUD, Kitsap County, the City of Seattle, and the Puget Sound Regional Council (PSRC). The consortium has selected Terrapoint, a commercial lidar mapping vendor, to acquire the data.

  14. A method and example of seismically imaging near‐surface fault zones in geologically complex areas using Vp, Vs, and their ratios

    USGS Publications Warehouse

    Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.; Sickler, Robert R.; Criley, Coyn J.

    2014-01-01

    The determination of near‐surface (vadose zone and slightly below) fault locations and geometries is important because assessment of ground rupture, strong shaking, geologic slip rates, and rupture histories occurs at shallow depths. However, seismic imaging of fault zones at shallow depths can be difficult due to near‐surface complexities, such as weathering, groundwater saturation, massive (nonlayered) rocks, and vertically layered strata. Combined P‐ and S‐wave seismic‐refraction tomography data can overcome many of the near‐surface, fault‐zone seismic‐imaging problems because of differences in the responses of elastic (bulk and shear) moduli of P and S waves to shallow‐depth, fault‐zone properties. We show that high‐resolution refraction tomography images of P‐ to S‐wave velocity ratios (VP/VS) can reliably identify near‐surface faults. We demonstrate this method using tomography images of the San Andreas fault (SAF) surface‐rupture zone associated with the 18 April 1906 ∼M 7.9 San Francisco earthquake on the San Francisco peninsula in California. There, the SAF cuts through Franciscan mélange, which consists of an incoherent assemblage of greywacke, chert, greenstone, and serpentinite. A near‐vertical zone (∼75° northeast dip) of high P‐wave velocities (up to 3000  m/s), low S‐wave velocities (∼150–600  m/s), high VP/VS ratios (4–8.8), and high Poisson’s ratios (0.44–0.49) characterizes the main surface‐rupture zone to a depth of about 20 m and is consistent with nearby trench observations. We suggest that the combined VP/VSimaging approach can reliably identify most near‐surface fault zones in locations where many other seismic methods cannot be applied.

  15. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales

    NASA Astrophysics Data System (ADS)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe

    2017-12-01

    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.

  16. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  17. Faulting processes in active faults - Evidences from TCDP and SAFOD drill core samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssen, C.; Wirth, R.; Wenk, H. -R.

    The microstructures, mineralogy and chemistry of representative samples collected from the cores of the San Andreas Fault drill hole (SAFOD) and the Taiwan Chelungpu-Fault Drilling project (TCDP) have been studied using optical microscopy, TEM, SEM, XRD and XRF analyses. SAFOD samples provide a transect across undeformed host rock, the fault damage zone and currently active deforming zones of the San Andreas Fault. TCDP samples are retrieved from the principal slip zone (PSZ) and from the surrounding damage zone of the Chelungpu Fault. Substantial differences exist in the clay mineralogy of SAFOD and TCDP fault gouge samples. Amorphous material has beenmore » observed in SAFOD as well as TCDP samples. In line with previous publications, we propose that melt, observed in TCDP black gouge samples, was produced by seismic slip (melt origin) whereas amorphous material in SAFOD samples was formed by comminution of grains (crush origin) rather than by melting. Dauphiné twins in quartz grains of SAFOD and TCDP samples may indicate high seismic stress. The differences in the crystallographic preferred orientation of calcite between SAFOD and TCDP samples are significant. Microstructures resulting from dissolution–precipitation processes were observed in both faults but are more frequently found in SAFOD samples than in TCDP fault rocks. As already described for many other fault zones clay-gouge fabrics are quite weak in SAFOD and TCDP samples. Clay-clast aggregates (CCAs), proposed to indicate frictional heating and thermal pressurization, occur in material taken from the PSZ of the Chelungpu Fault, as well as within and outside of the SAFOD deforming zones, indicating that these microstructures were formed over a wide range of slip rates.« less

  18. Has El Salvador Fault Zone produced M ≥ 7.0 earthquakes? The 1719 El Salvador earthquake

    NASA Astrophysics Data System (ADS)

    Canora, C.; Martínez-Díaz, J.; Álvarez-Gómez, J.; Villamor, P.; Ínsua-Arévalo, J.; Alonso-Henar, J.; Capote, R.

    2013-05-01

    Historically, large earthquakes, Mw ≥ 7.0, in the Εl Salvador area have been attributed to activity in the Cocos-Caribbean subduction zone. Τhis is correct for most of the earthquakes of magnitude greater than 6.5. However, recent paleoseismic evidence points to the existence of large earthquakes associated with rupture of the Εl Salvador Fault Ζone, an Ε-W oriented strike slip fault system that extends for 150 km through central Εl Salvador. Τo calibrate our results from paleoseismic studies, we have analyzed the historical seismicity of the area. In particular, we suggest that the 1719 earthquake can be associated with paleoseismic activity evidenced in the Εl Salvador Fault Ζone. Α reinterpreted isoseismal map for this event suggests that the damage reported could have been a consequence of the rupture of Εl Salvador Fault Ζone, rather than rupture of the subduction zone. Τhe isoseismal is not different to other upper crustal earthquakes in similar tectonovolcanic environments. We thus challenge the traditional assumption that only the subduction zone is capable of generating earthquakes of magnitude greater than 7.0 in this region. Τhis result has broad implications for future risk management in the region. Τhe potential occurrence of strong ground motion, significantly higher and closer to the Salvadorian populations that those assumed to date, must be considered in seismic hazard assessment studies in this area.

  19. Aftershocks of the 2014 South Napa, California, Earthquake: Complex faulting on secondary faults

    USGS Publications Warehouse

    Hardebeck, Jeanne L.; Shelly, David R.

    2016-01-01

    We investigate the aftershock sequence of the 2014 MW6.0 South Napa, California, earthquake. Low-magnitude aftershocks missing from the network catalog are detected by applying a matched-filter approach to continuous seismic data, with the catalog earthquakes serving as the waveform templates. We measure precise differential arrival times between events, which we use for double-difference event relocation in a 3D seismic velocity model. Most aftershocks are deeper than the mainshock slip, and most occur west of the mapped surface rupture. While the mainshock coseismic and postseismic slip appears to have occurred on the near-vertical, strike-slip West Napa fault, many of the aftershocks occur in a complex zone of secondary faulting. Earthquake locations in the main aftershock zone, near the mainshock hypocenter, delineate multiple dipping secondary faults. Composite focal mechanisms indicate strike-slip and oblique-reverse faulting on the secondary features. The secondary faults were moved towards failure by Coulomb stress changes from the mainshock slip. Clusters of aftershocks north and south of the main aftershock zone exhibit vertical strike-slip faulting more consistent with the West Napa Fault. The northern aftershocks correspond to the area of largest mainshock coseismic slip, while the main aftershock zone is adjacent to the fault area that has primarily slipped postseismically. Unlike most creeping faults, the zone of postseismic slip does not appear to contain embedded stick-slip patches that would have produced on-fault aftershocks. The lack of stick-slip patches along this portion of the fault may contribute to the low productivity of the South Napa aftershock sequence.

  20. Crustal-scale shear zones and heterogeneous structure beneath the North Anatolian Fault Zone, Turkey, revealed by a high-density seismometer array

    NASA Astrophysics Data System (ADS)

    Kahraman, Metin; Cornwell, David G.; Thompson, David A.; Rost, Sebastian; Houseman, Gregory A.; Türkelli, Niyazi; Teoman, Uğur; Altuncu Poyraz, Selda; Utkucu, Murat; Gülen, Levent

    2015-11-01

    Continental scale deformation is often localised along strike-slip faults constituting considerable seismic hazard in many locations. Nonetheless, the depth extent and precise geometry of such faults, key factors in how strain is accumulated in the earthquake cycle and the assessment of seismic hazard, are poorly constrained in the mid to lower crust. Using a dense broadband network of 71 seismic stations with a nominal station spacing of 7 km in the vicinity of the 1999 Izmit earthquake we map previously unknown small-scale structure in the crust and upper mantle along this part of the North Anatolian Fault Zone (NAFZ). We show that lithological and structural variations exist in the upper, mid and lower crust on length scales of less than 10 km and less than 20 km in the upper mantle. The surface expression of the NAFZ in this region comprises two major branches; both are shown to continue at depth with differences in dip, depth extent and (possibly) width. We interpret a <10 km wide northern branch that passes downward into a shear zone that traverses the entire crust and penetrates the upper mantle to a depth of at least 50 km. The dip of this structure appears to decrease west-east from ∼90° to ∼65° to the north over a distance of 30 to 40 km. Deformation along the southern branch may be accommodated over a wider (>10 km) zone in the crust with a similar variation of dip but there is no clear evidence that this shear zone penetrates the Moho. Layers of anomalously low velocity in the mid crust (20-25 km depth) and high velocity in the lower crust (extending from depths of 28-30 km to the Moho) are best developed in the Armutlu-Almacik block between the two shear zones. A mafic lower crust, possibly resulting from ophiolitic obduction or magmatic intrusion, can best explain the coherent lower crustal structure of this block. Our images show that strain has developed in the lower crust beneath both northern and southern strands of the North Anatolian Fault

  1. Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire

    2018-04-01

    Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.

  2. High-resolution mapping of two large-scale transpressional fault zones in the California Continental Borderland: Santa Cruz-Catalina Ridge and Ferrelo faults

    NASA Astrophysics Data System (ADS)

    Legg, Mark R.; Kohler, Monica D.; Shintaku, Natsumi; Weeraratne, Dayanthie S.

    2015-05-01

    New mapping of two active transpressional fault zones in the California Continental Borderland, the Santa Cruz-Catalina Ridge fault and the Ferrelo fault, was carried out to characterize their geometries, using over 4500 line-km of new multibeam bathymetry data collected in 2010 combined with existing data. Faults identified from seafloor morphology were verified in the subsurface using existing seismic reflection data including single-channel and multichannel seismic profiles compiled over the past three decades. The two fault systems are parallel and are capable of large lateral offsets and reverse slip during earthquakes. The geometry of the fault systems shows evidence of multiple segments that could experience throughgoing rupture over distances exceeding 100 km. Published earthquake hypocenters from regional seismicity studies further define the lateral and depth extent of the historic fault ruptures. Historical and recent focal mechanisms obtained from first-motion and moment tensor studies confirm regional strain partitioning dominated by right slip on major throughgoing faults with reverse-oblique mechanisms on adjacent structures. Transpression on west and northwest trending structures persists as far as 270 km south of the Transverse Ranges; extension persists in the southern Borderland. A logjam model describes the tectonic evolution of crustal blocks bounded by strike-slip and reverse faults which are restrained from northwest displacement by the Transverse Ranges and the southern San Andreas fault big bend. Because of their potential for dip-slip rupture, the faults may also be capable of generating local tsunamis that would impact Southern California coastlines, including populated regions in the Channel Islands.

  3. Seismic-wave attenuation associated with crustal faults in the New Madrid seismic zone

    USGS Publications Warehouse

    Hamilton, R.M.; Mooney, W.D.

    1990-01-01

    The attenuation of upper crustal seismic waves that are refracted with a velocity of about 6 kilometers per second varies greatly among profiles in the area of the New Madrid seismic zone in the central Mississippi Valley. The waves that have the strongest attenuation pass through the seismic trend along the axis of the Reelfoot rift in the area of the Blytheville arch. Defocusing of the waves in a low-velocity zone and/ or seismic scattering and absorption could cause the attenuation; these effects are most likely associated with the highly deformed rocks along the arch. Consequently, strong seismic-wave attenuation may be a useful criterion for identifying seismogenic fault zones.

  4. Geometry and architecture of faults in a syn-rift normal fault array: The Nukhul half-graben, Suez rift, Egypt

    NASA Astrophysics Data System (ADS)

    Wilson, Paul; Gawthorpe, Rob L.; Hodgetts, David; Rarity, Franklin; Sharp, Ian R.

    2009-08-01

    The geometry and architecture of a well exposed syn-rift normal fault array in the Suez rift is examined. At pre-rift level, the Nukhul fault consists of a single zone of intense deformation up to 10 m wide, with a significant monocline in the hanging wall and much more limited folding in the footwall. At syn-rift level, the fault zone is characterised by a single discrete fault zone less than 2 m wide, with damage zone faults up to approximately 200 m into the hanging wall, and with no significant monocline developed. The evolution of the fault from a buried structure with associated fault-propagation folding, to a surface-breaking structure with associated surface faulting, has led to enhanced bedding-parallel slip at lower levels that is absent at higher levels. Strain is enhanced at breached relay ramps and bends inherited from pre-existing structures that were reactivated during rifting. Damage zone faults observed within the pre-rift show ramp-flat geometries associated with contrast in competency of the layers cut and commonly contain zones of scaly shale or clay smear. Damage zone faults within the syn-rift are commonly very straight, and may be discrete fault planes with no visible fault rock at the scale of observation, or contain relatively thin and simple zones of scaly shale or gouge. The geometric and architectural evolution of the fault array is interpreted to be the result of (i) the evolution from distributed trishear deformation during upward propagation of buried fault tips to surface faulting after faults breach the surface; (ii) differences in deformation response between lithified pre-rift units that display high competence contrasts during deformation, and unlithified syn-rift units that display low competence contrasts during deformation, and; (iii) the history of segmentation, growth and linkage of the faults that make up the fault array. This has important implications for fluid flow in fault zones.

  5. Microstructural and fabric characterization of brittle-ductile transitional deformation of middle crustal rocks along the Jinzhou detachment fault zone, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Juyi; Jiang, Hao; Liu, Junlai

    2017-04-01

    Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500

  6. Preliminary results on the tectonic activity of the Ovacık Fault (Malatya-Ovacık Fault Zone, Turkey): Implications of the morphometric analyses

    NASA Astrophysics Data System (ADS)

    Yazıcı, Müge; Zabci, Cengiz; Sançar, Taylan; Sunal, Gürsel; Natalin, Boris A.

    2016-04-01

    The Anatolian 'plate' is being extruded westward relative to the Eurasia along two major tectonic structures, the North Anatolian and the East Anatolian shear zones, respectively making its northern and eastern boundaries. Although the main deformation is localized along these two structures, there is remarkable intra-plate deformation within Anatolia, especially which are characterized by NE-striking sinistral and NW-striking dextral strike-slip faults (Şengör et al. 1985). The Malatya-Ovacık Fault Zone (MOFZ) and its northeastern member, the Ovacık Fault (OF), is a one of the NE-striking sinistral strike slip faults in the central 'ova' neotectonic province of Anatolia, located close to its eastern boundary. Although this fault zone is claimed to be an inactive structure in some studies, the recent GPS measurements (Aktuǧ et al., 2013) and microseismic activity (AFAD, 2013) strongly suggest the opposite. In order to understand rates and patterns of vertical ground motions along the OF, we studied the certain morphometric analyses such as hypsometric curves and integrals, longitudinal channel profiles, and asymmetry of drainage basins. The Karasu (Euphrates) and Munzur rivers form the main drainage systems of the study area. We extracted all drainage network from SRTM-based Digital Elevation Model with 30 m ground pixel resolution and totally identified 40 sub-drainage basins, which are inhomogeneously distributed to the north and to the south of the OF. Most of these basins show strong asymmetry, which are mainly tilted to SW. The asymmetry relatively decreases from NE to SW in general. The only exception is at the margins of the Ovacık Basin (OB), where almost the highest asymmetry values were calculated. On the other hand, the characteristics of hypsometric curves and the calculated hypsometric integrals do not show the similar systematic spatial pattern. The hypsometric curves with convex-shaped geometry, naturally indicating relatively young morphology

  7. Magnetotelluric Studies of Fault Zones Surrounding the 2016 Pawnee, Oklahoma Earthquake

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Key, K.; Atekwana, E. A.

    2016-12-01

    Since 2008, there has been a dramatic increase in earthquake activity in the central United States in association with major oil and gas operations. Oklahoma is now considered one the most seismically active states. Although seismic networks are able to detect activity and map its locus, they are unable to image the distribution of fluids in the fault responsible for triggering seismicity. Electrical geophysical methods are ideally suited to image fluid bearing faults since the injected waste-waters are highly saline and hence have a high electrical conductivity. To date, no study has imaged the fluids in the faults in Oklahoma and made a direct link to the seismicity. The 2016 M5.8 Pawnee, Oklahoma earthquake provides an unprecedented opportunity for scientists to provide that link. Several injection wells are located within a 20 km radius of the epicenter; and studies have suggested that injection of fluids in high-volume wells can trigger earthquakes as far away as 30 km. During late October to early November, 2016, we are collecting magnetotelluric (MT) data with the aim of constraining the distribution of fluids in the fault zone. The MT technique uses naturally occurring electric and magnetic fields measured at Earth's surface to measure conductivity structure. We plan to carry out a series of short two-dimensional (2D) profiles of wideband MT acquisition located through areas where the fault recently ruptured and seismic activity is concentrated and also across the faults in the vicinity that did not rupture. The integration of our results and ongoing seismic studies will lead to a better understanding of the links between fluid injection and seismicity.

  8. A Normal-faulting Paleostress in the Vicinity of Up-dip Limit of Seismogenic Zone Detected by Meso-scale Fault Analysis in a Tectonic Mélange

    NASA Astrophysics Data System (ADS)

    Sato, K.; Ikesawa, E.; Kimura, G.

    2003-12-01

    The Mugi mélange in the Shimanto Belt, SW Japan, is a mixture of terrigenous and oceanic materials of late Cretaceous to Paleocene. Intermittent bedding planes trend ENE-WSW to E-W (subparallel to the Nankai trough axis) and dip steeply northward. The Mugi mélange consists of several duplex units accompanied by shear zones of basalt layers at their boundaries. Systematic shear fabrics and P-T conditions estimated from analyses of vitrinite reflectance and fluid inclusions indicate that the Mugi mélange had once been subducted to a significant depth (6-7 km below sea floor, which appears to coincide with the up-dip limit of the seismogenic zone), then underplated to the Shimanto accretionary prism, and is now exhumed on ground surface. In this study, for the purpose of determining paleostress fields related to the processes in which subducted materials were deformed, underplated and uplifted to surface, orientations of meso-scale faults and striations were analyzed. Stress inversion techniques including Angelier's Inversion, Multiple Inversion and Ginkgo Method were applied to fault-slip data obtained in each duplex unit of the Mugi mélange, and the results were almost consistent with each other. Most of the resultant σ 1 axes trend N-S horizontally, and are parallel to poles of shale cleavages, which are roughly parallel to bedding planes. Although the cleavages slightly vary their orientations according to later rotation, σ 1 axis changes together with them. This cleavage-controlled paleostress has a low Bishop's stress ratio (i.e. low magnitude of σ 2), therefore is an axial compressional stress normal to cleavages. The restored paleostress was probably exerted just before or at the same time of the formation of duplex structure and the rotation of bedding planes. The meso-scale faults appear to have been formed as normal ones due to overburden. P-T conditions estimated by analysis of fluid inclusions, which occur in the mineral veins sealing measured

  9. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    USGS Publications Warehouse

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  10. Earthquake-driven fluid flow rates inferred from borehole temperature measurements within the Japan Trench plate boundary fault zone

    NASA Astrophysics Data System (ADS)

    Fulton, P. M.; Brodsky, E. E.

    2016-12-01

    Using borehole sub-seafloor temperature measurements, we have recently identified signatures suggestive of earthquake-driven fluid pulses within the Japan Trench plate boundary fault zone during a major aftershock sequence. Here we use numerical models to show that these signatures are consistent with time-varying fluid flow rates out of permeable zones within the formation into the borehole annulus. In addition, we also identify an apparent time-varying sensitivity of whether suspected fluid pulses occur in response to earthquakes of a given magnitude and distance. The results suggest a damage and healing process and therefore provides a mechanism to allow for a disproportionate amount of heat and chemical transport in the short time frame after an earthquake. Our observations come from an observatory installed across the main plate boundary fault as part of IODP's Japan Trench Fast Drilling Project (JFAST) following the March 2011 Mw 9.0 Tohoku-oki earthquake. It operated from July 2012 - April 2013 during which a Mw 7.3 earthquake and numerous aftershocks occurred. High-resolution temperature time series data reveal spatially correlated transients in response to earthquakes with distinct patterns interpreted to reflect advection by transient pulses of fluid flow from permeable zones into the borehole annulus. Typical transients involve perturbations over 12 m with increases of 10 mK that build over 0.1 days at shallower depths and decreases at deeper depths. They are consistently centered around 792.5 m below seafloor (mbsf) where a secondary fault and permeable zone have been independently identified within the damage zone above the main plate boundary fault at 820 mbsf . Model simulations suggest transient flow rates of up to 10-3m/s from the formation that quickly decrease. Comparison of characteristics of earthquakes identified in nearby ocean bottom pressure measurements suggest there is not a clear relationship between fluid pulses and static strain. There

  11. Winnetka deformation zone: Surface expression of coactive slip on a blind fault during the Northridge earthquake sequence, California. Evidence that coactive faulting occurred in the Canoga Park, Winnetka, and Northridge areas during the 17 January 1994, Northridge, California earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruikshank, K.M.; Johnson, A.M.; Fleming, R.W.

    1996-12-31

    Measurements of normalized length changes of streets over an area of 9 km{sup 2} in San Fernando Valley of Los Angeles, California, define a distinctive strain pattern that may well reflect blind faulting during the 1994 Northridge earthquake. Strain magnitudes are about 3 {times} 10{sup {minus}4}, locally 10{sup {minus}3}. They define a deformation zone trending diagonally from near Canoga Park in the southwest, through Winnetka, to near Northridge in the northeast. The deformation zone is about 4.5 km long and 1 km wide. The northwestern two-thirds of the zone is a belt of extension of streets, and the southeastern one-thirdmore » is a belt of shortening of streets. On the northwest and southeast sides of the deformation zone the magnitude of the strains is too small to measure, less than 10{sup {minus}4}. Complete states of strain measured in the northeastern half of the deformation zone show that the directions of principal strains are parallel and normal to the walls of the zone, so the zone is not a strike-slip zone. The magnitudes of strains measured in the northeastern part of the Winnetka area were large enough to fracture concrete and soils, and the area of larger strains correlates with the area of greater damage to such roads and sidewalks. All parts of the pattern suggest a blind fault at depth, most likely a reverse fault dipping northwest but possibly a normal fault dipping southeast. The magnitudes of the strains in the Winnetka area are consistent with the strains produced at the ground surface by a blind fault plane extending to depth on the order of 2 km and a net slip on the order of 1 m, within a distance of about 100 to 500 m of the ground surface. The pattern of damage in the San Fernando Valley suggests a fault segment much longer than the 4.5 km defined by survey data in the Winnetka area. The blind fault segment may extend several kilometers in both directions beyond the Winnetka area. This study of the Winnetka area further supports

  12. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2

  13. Character of High Temperature Mylonitic Shear Zones Associated with Oceanic Detachment Faults at the Ultra-Slow Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Marr, C.; John, B. E.; Cheadle, M. J.; German, C. R.

    2014-12-01

    Two well-preserved core complexes at the Mid-Cayman Rise (MCR), Mt Dent and Mt Hudson, provide an opportunity to examine the deformation history and rheology of detachment faults at an ultra-slow spreading ridge. Samples from the CAYTROUGH (1976-77) project and the Nautilus NA034 cruise (2013) were selected for detailed petrographic and microstructural study. Surface samples from Mt. Dent (near the center of the MCR) provide insight into lateral variation in footwall rock type and deformation history across a core complex in both the across and down dip directions. In contrast, sampling of Mt. Hudson (SE corner of the MCR) focuses on a high-angle, crosscutting normal fault scarp, which provides a cross section of the detachment fault system. Sampling across Mt Dent reveals that the footwall is composed of heterogeneously-distributed gabbro (47%) and peridotite (20%) with basaltic cover (33%) dominating the top of the core complex. Sampling of Mt Hudson is restricted to the normal fault scarp cutting the core complex and suggests the interior is dominated by gabbro (85% gabbro, 11% peridotite, 4% basalt). At Mt. Dent, peridotite is exposed within ~4km of the breakaway indicating that the Mt. Dent detachment does not cut Penrose-style oceanic crust. The sample set provides evidence of a full down-temperature sequence of detachment related-fault rocks, from possible granulite and clear amphibolite mylonitizatization to prehnite-pumpellyite brittle deformation. Both detachments show low-temperature brittle deformation overprinting higher temperature plastic fabrics. Fe-Ti oxide gabbro mylonites dominate the sample set, and plastic deformation of plagioclase is recorded in samples collected as near as ~4km from the inferred breakaway along the southern flank of Mt. Dent, suggesting the brittle-plastic transition was initially at ~3km depth. Recovered samples suggest strain associated with both detachment systems is localized into discrete mylonitic shear zones (~1-10cm

  14. Faulting along the southern margin of Reelfoot Lake, Tennessee

    USGS Publications Warehouse

    Van Arsdale, R.; Purser, J.; Stephenson, W.; Odum, J.

    1998-01-01

    The Reelfoot Lake basin, Tennessee, is structurally complex and of great interest seismologically because it is located at the junction of two seismicity trends of the New Madrid seismic zone. To better understand the structure at this location, a 7.5-km-long seismic reflection profile was acquired on roads along the southern margin of Reelfoot Lake. The seismic line reveals a westerly dipping basin bounded on the west by the Reelfoot reverse fault zone, the Ridgely right-lateral transpressive fault zone on the east, and the Cottonwood Grove right-lateral strike-slip fault in the middle of the basin. The displacement history of the Reelfoot fault zone appears to be the same as the Ridgely fault zone, thus suggesting that movement on these fault zones has been synchronous, perhaps since the Cretaceous. Since the Reelfoot and Ridgely fault systems are believed responsible for two of the mainshocks of 1811-1812, the fault history revealed in the Reelfoot Lake profile suggests that multiple mainshocks may be typical of the New Madrid seismic zone. The Ridgely fault zone consists of two northeast-striking faults that lie at the base of and within the Mississippi Valley bluff line. This fault zone has 15 m of post-Eocene, up-to-the-east displacement and appears to locally control the eastern limit of Mississippi River migration. The Cottonwood Grove fault zone passes through the center of the seismic line and has approximately 5 m up-to-the-east displacement. Correlation of the Cottonwood Grove fault with a possible fault scarp on the floor of Reelfoot Lake and the New Markham fault north of the lake suggests the Cottonwood Grove fault may change to a northerly strike at Reelfoot Lake, thereby linking the northeast-trending zones of seismicity in the New Madrid seismic zone.

  15. Geophysical Investigation of the Lake City Fault Zone, Surprise Valley, California, and Implications for Geothermal Circulation

    NASA Astrophysics Data System (ADS)

    McPhee, D. K.; Glen, J. M.; Egger, A. E.; Chuchel, B. A.

    2009-12-01

    New audiomagnetotelluric (AMT), gravity, and magnetic data were collected in Surprise Valley, northwestern Basin and Range, in order to investigate the role that the Lake City Fault Zone (LCFZ) may play in controlling geothermal circulation in the area. Surprise Valley hosts an extensional geothermal system currently undergoing exploration for development on several scales. The focus of much of that exploration has been the LCFZ, a set of NW-SE-trending structures that has been suggested on the basis of (1) low-relief scarps in the NW portion of the zone, (2) dissolved mineral-rich groundwater chemistry along its length, and (3) parallelism with a strong regional fabric that includes the Brothers Fault Zone. The LCFZ extends across the valley at a topographic high, intersecting the N-S-trending basin-bounding faults where major hot springs occur. This relationship suggests that the LCFZ may be a zone of permeability for flow of hydrothermal fluids. Previous potential field data indicate that there is no vertical offset along this fault zone, and little signature at all in either the gravity or magnetic data; along with the lack of surface expression along most of its length, the subsurface geometry of the LCFZ and its influence on geothermal fluid circulation remains enigmatic. The LCFZ therefore provides an ideal opportunity to utilize AMT data, which measures subsurface resistivity and therefore - unlike potential field data - is highly sensitive to the presence of saline fluids. AMT data and additional gravity and magnetic data were collected in 2009 along 3 profiles perpendicular to the LCFZ in order to define the subsurface geometry and conductivity of the fault zone down to depths of ~ 500 m. AMT soundings were collected using the Geometrics Stratagem EH4 system, a four channel, natural and controlled-source tensor system recording in the range of 10 to 92,000 Hz. To augment the low signal in the natural field a transmitter of two horizontal-magnetic dipoles

  16. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE PAGES

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric; ...

    2015-03-01

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  17. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Rinaldi, Antonio P.; Cappa, Frédéric

    We conducted three-dimensional coupled fluid-flow and geomechanical modeling of fault activation and seismicity associated with hydraulic fracturing stimulation of a shale-gas reservoir. We simulated a case in which a horizontal injection well intersects a steeply dip- ping fault, with hydraulic fracturing channeled within the fault, during a 3-hour hydraulic fracturing stage. Consistent with field observations, the simulation results show that shale-gas hydraulic fracturing along faults does not likely induce seismic events that could be felt on the ground surface, but rather results in numerous small microseismic events, as well as aseismic deformations along with the fracture propagation. The calculated seismicmore » moment magnitudes ranged from about -2.0 to 0.5, except for one case assuming a very brittle fault with low residual shear strength, for which the magnitude was 2.3, an event that would likely go unnoticed or might be barely felt by humans at its epicenter. The calculated moment magnitudes showed a dependency on injection depth and fault dip. We attribute such dependency to variation in shear stress on the fault plane and associated variation in stress drop upon reactivation. Our simulations showed that at the end of the 3-hour injection, the rupture zone associated with tensile and shear failure extended to a maximum radius of about 200 m from the injection well. The results of this modeling study for steeply dipping faults at 1000 to 2500 m depth is in agreement with earlier studies and field observations showing that it is very unlikely that activation of a fault by shale-gas hydraulic fracturing at great depth (thousands of meters) could cause felt seismicity or create a new flow path (through fault rupture) that could reach shallow groundwater resources.« less

  18. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: Implications for neotectonics and Lateglacial fault-bound basin formation

    NASA Astrophysics Data System (ADS)

    Brandes, Christian; Steffen, Holger; Sandersen, Peter B. E.; Wu, Patrick; Winsemann, Jutta

    2018-06-01

    The Sorgenfrei-Tornquist Zone (STZ) is the northwestern segment of the Tornquist Zone and extends from Bornholm across the Baltic Sea and northern Denmark into the North Sea. It represents a major lithospheric structure with a significant increase in lithosphere thickness from south to north. A series of meter-scale normal faults and soft-sediment deformation structures (SSDS) are developed in Lateglacial marine and lacustrine sediments, which are exposed along the Lønstrup Klint cliff at the North Sea coast of northern Denmark. These deformed deposits occur in the local Nørre Lyngby basin that forms part of the STZ. Most of the SSDS are postdepositional, implying major tectonic activity between the Allerød and Younger Dryas (∼14 ka to 12 ka). The occurrence of some syn- and metadepositional SSDS point to an onset of tectonic activity at around 14.5 ka. The formation of normal faults is probably the effect of neotectonic movements along the Børglum fault, which represents the northern boundary fault of the STZ in the study area. The narrow and elongated Nørre Lyngby basin can be interpreted as a strike-slip basin that developed due to right-lateral movements at the Børglum fault. As indicated by the SSDS, these movements were most likely accompanied by earthquake(s). Based on the association of SSDS these earthquake(s) had magnitudes of at least Ms ≥ 4.2 or even up to magnitude ∼ 7 as indicated by a fault with 3 m displacement. The outcrop data are supported by a topographic analysis of the terrain that points to a strong impact from the fault activity on the topography, characterized by a highly regular erosional pattern, the evolution of fault-parallel sag ponds and a potential fault scarp with a height of 1-2 m. With finite-element simulations, we test the impact of Late Pleistocene (Weichselian) glaciation-induced Coulomb stress change on the reactivation potential of the Børglum fault. The numerical simulations of deglaciation-related lithospheric

  19. Late Quaternary Faulting in Southeastern Louisiana: A Natural Laboratory for Understanding Shallow Faulting in Deltaic Materials

    NASA Astrophysics Data System (ADS)

    Dawers, N. H.; McLindon, C.

    2017-12-01

    A synthesis of late Quaternary faults within the Mississippi River deltaic plain aims to provide a more accurate assessment of regional and local fault architecture, and interactions between faulting, sediment loading, salt withdrawal and compaction. This effort was initiated by the New Orleans Geological Society and has resulted in access to industry 3d seismic reflection data, as well as fault trace maps, and various types of well data and biostratigraphy. An unexpected outgrowth of this project is a hypothesis that gravity-driven normal faults in deltaic settings may be good candidates for shallow aseismic and slow-slip phenomena. The late Quaternary fault population is characterized by several large, highly segmented normal fault arrays: the Baton Rouge-Tepetate fault zone, the Lake Pontchartrain-Lake Borgne fault zone, the Golden Meadow fault zone (GMFZ), and a major counter-regional salt withdrawal structure (the Bay Marchand-Timbalier Bay-Caillou Island salt complex and West Delta fault zone) that lies just offshore of southeastern Louisiana. In comparison to the other, more northerly fault zones, the GMFZ is still significantly salt-involved. Salt structures segment the GMFZ with fault tips ending near or within salt, resulting in highly localized fault and compaction related subsidence separated by shallow salt structures, which are inherently buoyant and virtually incompressible. At least several segments within the GMFZ are characterized by marsh breaks that formed aseismically over timescales of days to months, such as near Adams Bay and Lake Enfermer. One well-documented surface rupture adjacent to a salt dome propagated over a 3 day period in 1943. We suggest that Louisiana's coastal faults make excellent analogues for deltaic faults in general, and propose that a series of positive feedbacks keep them active in the near surface. These include differential sediment loading and compaction, weak fault zone materials, high fluid pressure, low elastic

  20. Progressive failure during the 1596 Keicho earthquakes on the Median Tectonic Line active fault zone, southwest Japan

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Toda, S.; Nishizaka, N.; Onishi, K.; Suzuki, S.

    2015-12-01

    Rupture patterns of a long fault system are controlled by spatial heterogeneity of fault strength and stress associated with geometrical characteristics and stress perturbation history. Mechanical process for sequential ruptures and multiple simultaneous ruptures, one of the characteristics of a long fault such as the North Anatolian fault, governs the size and frequency of large earthquakes. Here we introduce one of the cases in southwest Japan and explore what controls rupture initiation, sequential ruptures and fault branching on a long fault system. The Median Tectonic Line active fault zone (hereinafter MTL) is the longest and most active fault in Japan. Based on historical accounts, a series of M ≥ 7 earthquakes occurred on at least a 300-km-long portion of the MTL in 1596. On September 1, the first event occurred on the Kawakami fault segment, in Central Shikoku, and the subsequent events occurred further west. Then on September 5, another rupture initiated from the Central to East Shikoku and then propagated toward the Rokko-Awaji fault zone to Kobe, a northern branch of the MTL, instead of the eastern main extent of the MTL. Another rupture eventually extended to near Kyoto. To reproduce this progressive failure, we applied two numerical models: one is a coulomb stress transfer; the other is a slip-tendency analysis under the tectonic stress. We found that Coulomb stress imparted from historical ruptures have triggered the subsequent ruptures nearby. However, stress transfer does not explain beginning of the sequence and rupture directivities. Instead, calculated slip-tendency values show highly variable along the MTL: high and low seismic potential in West and East Shikoku. The initiation point of the 1596 progressive failure locates near the boundary in the slip-tendency values. Furthermore, the slip-tendency on the Rokko-Awaji fault zone is far higher than that of the MTL in Wakayama, which may explain the rupture directivity toward Kobe-Kyoto.

  1. Earthquake behavior of the Enriquillo fault zone, Haiti revealed by interactive terrain visualization

    NASA Astrophysics Data System (ADS)

    Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.

    2010-12-01

    The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and

  2. The Amount and Preferred Orientation of Simple-shear in a Deformation Tensor: Implications for Detecting Shear Zones and Faults with GPS

    NASA Astrophysics Data System (ADS)

    Johnson, A. M.; Griffiths, J. H.

    2007-05-01

    At the 2005 Fall Meeting of the American Geophysical Union, Griffiths and Johnson [2005] introduced a method of extracting from the deformation-gradient (and velocity-gradient) tensor the amount and preferred orientation of simple-shear associated with 2-D shear zones and faults. Noting the 2-D is important because the shear zones and faults in Griffiths and Johnson [2005] were assumed non-dilatant and infinitely long, ignoring the scissors- like action along strike associated with shear zones and faults of finite length. Because shear zones and faults can dilate (and contract) normal to their walls and can have a scissors-like action associated with twisting about an axis normal to their walls, the more general method of detecting simple-shear is introduced and called MODES "method of detecting simple-shear." MODES can thus extract from the deformation-gradient (and velocity- gradient) tensor the amount and preferred orientation of simple-shear associated with 3-D shear zones and faults near or far from the Earth's surface, providing improvements and extensions to existing analytical methods used in active tectonics studies, especially strain analysis and dislocation theory. The derivation of MODES is based on one definition and two assumptions: by definition, simple-shear deformation becomes localized in some way; by assumption, the twirl within the deformation-gradient (or the spin within the velocity-gradient) is due to a combination of simple-shear and twist, and coupled with the simple- shear and twist is a dilatation of the walls of shear zones and faults. The preferred orientation is thus the orientation of the plane containing the simple-shear and satisfying the mechanical and kinematical boundary conditions. Results from a MODES analysis are illustrated by means of a three-dimensional diagram, the cricket- ball, which is reminiscent of the seismologist's "beach ball." In this poster, we present the underlying theory of MODES and illustrate how it works by

  3. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin

    2017-04-01

    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855

  4. Quantitative Characterisation of Fracturing Around the Damage Zone Surrounding New Zealand's Alpine Fault Using X-ray CT Scans of DFDP-1 Core

    NASA Astrophysics Data System (ADS)

    Williams, J. N.; Toy, V.; Massiot, C.; Mcnamara, D. D.; Wang, T.

    2015-12-01

    X-ray computer tomography (CT) scans of core recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through the Alpine Fault provide an excellent opportunity to analyse brittle deformation around the fault. In particular, assessment can be made of the heavily fractured protolith constituting the damage zone. Damage zone structures are divided into two types that result from two distinct processes: (1) "off fault damage" formed by stress changes induced by the passage of a seismic rupture and (2) "off fault deformation" that represent structures, which accommodate strain around the fault that was not localised on the principal slip zone (PSZ). The distribution of these damage zones structures within CT scans of the recovered core was measured along a scanline parallel to the core axis and assessed using a weighted moving average technique to account for orientation bias. The results of this analysis reveal that within the part of the fault rocks sampled by DFDP-1 there is no increase in density of these structures towards the PSZ. This is in agreement with independent analysis using Borehole Televiewer Data of the DFDP-1B borehole. Instead, we consider the density of these structures to be controlled to the first order by lithology, which modulates the mechanical properties of the fault rocks such as its frictional strength and cohesion. Comparisons of fracture density to p-wave velocities obtained from wireline logs indicate they are independent of each other, therefore, for the cores sampled in this study fractures impart no influence on the elastic properties of the rock. This is consistent with the observation from core that the majority of fractures are cemented. We consider how this might influence future rupture dynamics.

  5. Microstructural and mineral analysis on the fault gouge in the coseismic shear zone of the 2008 M w 7.9 Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Yuan, Ren-mao; Zhang, Bing-liang; Xu, Xi-wei; Lin, Chuan-yong; Han, Zhu-jun

    2015-07-01

    The 2008 M w 7.9 Wenchuan earthquake formed two coseismic surface rupture zones with the trend of N35°E, known as the Beichuan-Yingxiu rupture and the Pengguan rupture. The Beichuan-Yingxiu rupture is the principle one with abundant fault gouge development along its length. In the exploratory trench at the Saba village along the Beichuan-Yingxiu rupture, the new fault gouge zone is only ~3 mm wide, which suggests that fault slip was constrained in a very narrow zone. In this study, we thus carried out detailed microstructural and mineral component analysis on the oriented fault gouge samples from the Saba exploratory trench to understand their features and geological implication. The results show that different microstructures of localized brittle deformation can be observed in the fault gouges, including Y-shear, R1-shear, R2-shear, P-shear as well as tension fracture, bookshelf glided structure and so on. These microstructures are commonly recognized as the product of seismic fault slipping. Furthermore, within the area between two parallel Y-shears of the fault gouge, a few of microstructures of distributed ductile deformations were developed, such as P-foliation, elongation and asymmetrical trailing structure of detrital particles. The microstructure features of fault gouges implicate the thrust movement of the fault during the Wenchuan earthquake. In addition, the fault gouge has less quartz and feldspar and more clay than the surrounding rocks, which indicates that some quartz and feldspar in the surrounding rocks were transformed into clay, whereas the fault gouge has more illite and less illite/montmorillonite mixed layers than the surrounding rocks, which shows that the illite/montmorillonite mixed layer was partly converted into illite due to temperature increasing induced by coseismic fault slipping friction (also being affected partly by the chemical action of solutions). Such microstructures features and mineral component changes recorded the

  6. Temperature micro-mapping and redox conditions of a chlorite zoning pattern in green-schist facies fault zone

    NASA Astrophysics Data System (ADS)

    Trincal, Vincent; Lanari, Pierre; Lacroix, Brice; Buatier, Martine D.; Charpentier, Delphine; Labaume, Pierre; Muñoz, Manuel

    2014-05-01

    Faults are major discontinuities driving fluid flows and playing a major role in precipitation of ore deposits. Mineral paragenesis and crystal chemistry depend on Temperature (T) condition, fluid composition but also on the redox environment of precipitation. The studied samples come from the Pic de Port Vieux thrust sheet, a minor thrust sheet associated to Gavarnie thrust fault zone (Central Pyrenees). The Pic de Port Vieux Thrust sheet comprises a 1-20 meter thick layer of Triassic red beds and mylonitized Cretaceous limestone. The thrust sheet is affected by faults and cleavage; the other important deformation product is a set of veins filled by quartz and chlorite. Microstructural and mineralogical investigations were performed based on the previous work of Grant (1992). The crystallization of chlorite is syn-tectonic and strongly controlled by the fluid circulation during the Gavarnie thrust sheet emplacement. Chlorite precipitated in extension veins, crack-seal shear veins or in open cavities. The chlorite filling the open cavities occurs as pseudo-uniaxial plates arranged in rosette-shaped aggregates. These aggregates appear to have developed as a result of radial growth of the chlorite platelets. According to point and microprobe X-ray images, these chlorites display oscillatory chemical zoning patterns with alternating iron rich and magnesium rich bands. The chlorite composition ranges from Fe rich pole (Si2.62Al1.38O10(Al1.47Fe1.87Mg2.61)6(OH)8) to Mg rich pole (Si2.68Al1.31O10(Al1.45Fe1.41Mg3.06)6(OH)8). In metamorphic rocks, zoning pattern or rimmed minerals results for varying P or T conditions and can be used to unravel the P-T history of the sample. In the present study, temperature maps are derived from standardized microprobe X-ray images using the program XMapTools (Lanari et al 2014). The (Fe3+/Fetot) value in chlorite was directly measured using μXANES spot analyses collected at the Fe-K edge. The results indicate a homogeneous temperature of

  7. Structural analysis of S-wave seismics around an urban sinkhole: evidence of enhanced dissolution in a strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Wadas, Sonja H.; Tanner, David C.; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-12-01

    In November 2010, a large sinkhole opened up in the urban area of Schmalkalden, Germany. To determine the key factors which benefited the development of this collapse structure and therefore the dissolution, we carried out several shear-wave reflection-seismic profiles around the sinkhole. In the seismic sections we see evidence of the Mesozoic tectonic movement in the form of a NW-SE striking, dextral strike-slip fault, known as the Heßleser Fault, which faulted and fractured the subsurface below the town. The strike-slip faulting created a zone of small blocks ( < 100 m in size), around which steep-dipping normal faults, reverse faults and a dense fracture network serve as fluid pathways for the artesian-confined groundwater. The faults also acted as barriers for horizontal groundwater flow perpendicular to the fault planes. Instead groundwater flows along the faults which serve as conduits and forms cavities in the Permian deposits below ca. 60 m depth. Mass movements and the resulting cavities lead to the formation of sinkholes and dissolution-induced depressions. Since the processes are still ongoing, the occurrence of a new sinkhole cannot be ruled out. This case study demonstrates how S-wave seismics can characterize a sinkhole and, together with geological information, can be used to study the processes that result in sinkhole formation, such as a near-surface fault zone located in soluble rocks. The more complex the fault geometry and interaction between faults, the more prone an area is to sinkhole occurrence.

  8. Seismic anisotropy in central North Anatolian Fault Zone and its implications on crustal deformation

    NASA Astrophysics Data System (ADS)

    Licciardi, A.; Eken, T.; Taymaz, T.; Piana Agostinetti, N.; Yolsal-Çevikbilen, S.

    2018-04-01

    We investigate the crustal seismic structure and anisotropy around the central portion of the North Anatolian Fault Zone, a major plate boundary, using receiver function analysis. The characterization of crustal seismic anisotropy plays a key role in our understanding of present and past deformation processes at plate boundaries. The development of seismic anisotropy in the crust arises from the response of the rocks to complicated deformation regimes induced by plate interaction. Through the analysis of azimuthally-varying signals of teleseismic receiver functions, we map the anisotropic properties of the crust as a function of depth, by employing the harmonic decomposition technique. Although the Moho is located at a depth of about 40 km, with no major offset across the area, our results show a clear asymmetric distribution of crustal properties between the northern and southern blocks, divided by the North Anatolian Fault Zone. Heterogeneous and strongly anisotropic crust is present in the southern block, where complex intra-crustal signals are the results of strong deformation. In the north, a simpler and weakly anisotropic crust is typically observed. The strongest anisotropic signal is located in the first 15 km of the crust and is widespread in the southern block. Stations located on top of the main active faults in the area indicate the highest amplitudes, together with fault-parallel strikes of the fast plane of anisotropy. We interpret the origin of this signal as due to structure-induced anisotropy, and roughly determine its depth extent up to 15-20 km for these stations. Away from the faults, we suggest the contribution of previously documented uplifted basement blocks to explain the observed anisotropy at upper and middle crustal depths. Finally, we interpret coherent NE-SW orientations below the Moho as a result of frozen-in anisotropy in the upper mantle, as suggested by previous studies.

  9. The history of late holocene surface-faulting earthquakes on the central segments of the Wasatch fault zone, Utah

    USGS Publications Warehouse

    Duross, Christopher; Personius, Stephen; Olig, Susan S; Crone, Anthony J.; Hylland, Michael D.; Lund, William R; Schwartz, David P.

    2017-01-01

    The Wasatch fault (WFZ)—Utah’s longest and most active normal fault—forms a prominent eastern boundary to the Basin and Range Province in northern Utah. To provide paleoseismic data for a Wasatch Front regional earthquake forecast, we synthesized paleoseismic data to define the timing and displacements of late Holocene surface-faulting earthquakes on the central five segments of the WFZ. Our analysis yields revised histories of large (M ~7) surface-faulting earthquakes on the segments, as well as estimates of earthquake recurrence and vertical slip rate. We constrain the timing of four to six earthquakes on each of the central segments, which together yields a history of at least 24 surface-faulting earthquakes since ~6 ka. Using earthquake data for each segment, inter-event recurrence intervals range from about 0.6 to 2.5 kyr, and have a mean of 1.2 kyr. Mean recurrence, based on closed seismic intervals, is ~1.1–1.3 kyr per segment, and when combined with mean vertical displacements per segment of 1.7–2.6 m, yield mean vertical slip rates of 1.3–2.0 mm/yr per segment. These data refine the late Holocene behavior of the central WFZ; however, a significant source of uncertainty is whether structural complexities that define the segments of the WFZ act as hard barriers to ruptures propagating along the fault. Thus, we evaluate fault rupture models including both single-segment and multi-segment ruptures, and define 3–17-km-wide spatial uncertainties in the segment boundaries. These alternative rupture models and segment-boundary zones honor the WFZ paleoseismic data, take into account the spatial and temporal limitations of paleoseismic data, and allow for complex ruptures such as partial-segment and spillover ruptures. Our data and analyses improve our understanding of the complexities in normal-faulting earthquake behavior and provide geological inputs for regional earthquake-probability and seismic hazard assessments.

  10. Toward a physics-based rate and state friction law for earthquake nucleation processes in fault zones with granular gouge

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Rubin, A. M.

    2017-12-01

    Numerical simulations of earthquake nucleation rely on constitutive rate and state evolution laws to model earthquake initiation and propagation processes. The response of different state evolution laws to large velocity increases is an important feature of these constitutive relations that can significantly change the style of earthquake nucleation in numerical models. However, currently there is not a rigorous understanding of the physical origins of the response of bare rock or gouge-filled fault zones to large velocity increases. This in turn hinders our ability to design physics-based friction laws that can appropriately describe those responses. We here argue that most fault zones form a granular gouge after an initial shearing phase and that it is the behavior of the gouge layer that controls the fault friction. We perform numerical experiments of a confined sheared granular gouge under a range of confining stresses and driving velocities relevant to fault zones and apply 1-3 order of magnitude velocity steps to explore dynamical behavior of the system from grain- to macro-scales. We compare our numerical observations with experimental data from biaxial double-direct-shear fault gouge experiments under equivalent loading and driving conditions. Our intention is to first investigate the degree to which these numerical experiments, with Hertzian normal and Coulomb friction laws at the grain-grain contact scale and without any time-dependent plasticity, can reproduce experimental fault gouge behavior. We next compare the behavior observed in numerical experiments with predictions of the Dieterich (Aging) and Ruina (Slip) friction laws. Finally, the numerical observations at the grain and meso-scales will be used for designing a rate and state evolution law that takes into account recent advances in rheology of granular systems, including local and non-local effects, for a wide range of shear rates and slow and fast deformation regimes of the fault gouge.

  11. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  12. Stressing of the New Madrid seismic zone by a lower crust detachment fault

    USGS Publications Warehouse

    Stuart, W.D.; Hildenbrand, T.G.; Simpson, R.W.

    1997-01-01

    A new mechanical model for the cause of the New Madrid seismic zone in the central United States is analyzed. The model contains a subhorizontal detachment fault which is assumed to be near the domed top surface of locally thickened anomalous lower crust ("rift pillow"). Regional horizontal compression induces slip on the fault, and the slip creates a stress concentration in the upper crust above the rift pillow dome. In the coseismic stage of the model earthquake cycle, where the three largest magnitude 7-8 earthquakes in 1811-1812 are represented by a single model mainshock on a vertical northeast trending fault, the model mainshock has a moment equivalent to a magnitude 8 event. During the interseismic stage, corresponding to the present time, slip on the detachment fault exerts a right-lateral shear stress on the locked vertical fault whose failure produces the model mainshock. The sense of shear is generally consistent with the overall sense of slip of 1811-1812 and later earthquakes. Predicted rates of horizontal strain at the ground surface are about 10-7 year-1 and are comparable to some observed rates. The model implies that rift pillow geometry is a significant influence on the maximum possible earthquake magnitude.

  13. Location, structure, and seismicity of the Seattle fault zone, Washington: Evidence from aeromagnetic anomalies, geologic mapping, and seismic-reflection data

    USGS Publications Warehouse

    Blakely, R.J.; Wells, R.E.; Weaver, C.S.; Johnson, S.Y.

    2002-01-01

    A high-resolution aeromagnetic survey of the Puget Lowland shows details of the Seattle fault zone, an active but largely concealed east-trending zone of reverse faulting at the southern margin of the Seattle basin. Three elongate, east-trending magnetic anomalies are associated with north-dipping Tertiary strata exposed in the hanging wall; the magnetic anomalies indicate where these strata continue beneath glacial deposits. The northernmost anomaly, a narrow, elongate magnetic high, precisely correlates with magnetic Miocene volcanic conglomerate. The middle anomaly, a broad magnetic low, correlates with thick, nonmagnetic Eocene and Oligocene marine and fluvial strata. The southern anomaly, a broad, complex magnetic high, correlates with Eocene volcanic and sedimentary rocks. This tripartite package of anomalies is especially clear over Bainbridge Island west of Seattle and over the region east of Lake Washington. Although attenuated in the intervening region, the pattern can be correlated with the mapped strike of beds following a northwest-striking anticline beneath Seattle. The aeromagnetic and geologic data define three main strands of the Seattle fault zone identified in marine seismic-reflection profiles to be subparallel to mapped bedrock trends over a distance of >50 km. The locus of faulting coincides with a diffuse zone of shallow crustal seismicity and the region of uplift produced by the M 7 Seattle earthquake of A.D. 900-930.

  14. Geomorphic Evolution and Slip rate Measurements of the Noushki Segment , Chaman Fault Zone, Pakistan

    NASA Astrophysics Data System (ADS)

    Abubakar, Y.; Khan, S. D.; Owen, L. A.; Khan, A.

    2012-12-01

    The Nushki segment of the Chaman fault system is unique in its nature as it records both the imprints of oblique convergence along the western Indian Plate boundary as well as the deformation along the Makran subduction zone. The left-lateral Chaman transform zone has evolved from a subduction zone along the Arabian-Eurasian collision complex to a strike-slip fault system since the collision of the Indian Plate with the Eurasia. The geodetically and geologically constrained displacement rates along the Chaman fault varies from about 18 mm/yr to about 35 mm/yr respectively throughout its total length of ~ 860 km. Two major hypothesis has been proposed by workers for these variations; i) Variations in rates of elastic strain accumulation along the plate boundary and, ii) strain partitioning along the plate boundary. Morphotectonic analysis is a very useful tool in investigations of spatial variations in tectonic activities both regionally and locally. This work uses morphotectonic analysis to investigate the degree of variations in active tectonic deformation, which can be directly related to elastic strain accumulation and other kinematics in the western boundary of the plate margin. Geomorphic mapping was carried out using remotely sensed data. ASTER and RADAR data were used in establishing Quaternary stratigraphy and measurement of geomorphic indices such as stream length gradient index, valley floor width to height ratio and, river/stream longitudinal profile within the study area. High resolution satellite images (e.g., IKONOS imagery) and 30m ASTER DEMs were employed to measure displacement recorded by landforms along individual strands of the fault. Results from geomorphic analysis shows three distinct levels of tectonic deformation. Areas showing high levels of tectonic deformation are characterized by displaced fan surfaces, deflected streams and beheaded streams. Terrestrial Cosmogenic nuclide surface exposure dating of the displaced landforms is being

  15. Characterization of the Hosgri Fault Zone and adjacent structures in the offshore Santa Maria Basin, south-central California: Chapter CC of Evolution of sedimentary basins/onshore oil and gas investigations - Santa Maria province

    USGS Publications Warehouse

    Willingham, C. Richard; Rietman, Jan D.; Heck, Ronald G.; Lettis, William R.

    2013-01-01

    The Hosgri Fault Zone trends subparallel to the south-central California coast for 110 km from north of Point Estero to south of Purisima Point and forms the eastern margin of the present offshore Santa Maria Basin. Knowledge of the attributes of the Hosgri Fault Zone is important for petroleum development, seismic engineering, and environmental planning in the region. Because it lies offshore along its entire reach, our characterizations of the Hosgri Fault Zone and adjacent structures are primarily based on the analysis of over 10,000 km of common-depth-point marine seismic reflection data collected from a 5,000-km2 area of the central and eastern parts of the offshore Santa Maria Basin. We describe and illustrate the along-strike and downdip geometry of the Hosgri Fault Zone over its entire length and provide examples of interpreted seismic reflection records and a map of the structural trends of the fault zone and adjacent structures in the eastern offshore Santa Maria Basin. The seismic data are integrated with offshore well and seafloor geologic data to describe the age and seismic appearance of offshore geologic units and marker horizons. We develop a basin-wide seismic velocity model for depth conversions and map three major unconformities along the eastern offshore Santa Maria Basin. Accompanying plates include maps that are also presented as figures in the report. Appendix A provides microfossil data from selected wells and appendix B includes uninterpreted copies of the annotated seismic record sections illustrated in the chapter. Features of the Hosgri Fault Zone documented in this investigation are suggestive of both lateral and reverse slip. Characteristics indicative of lateral slip include (1) the linear to curvilinear character of the mapped trace of the fault zone, (2) changes in structural trend along and across the fault zone that diminish in magnitude toward the ends of the fault zone, (3) localized compressional and extensional structures

  16. Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strait, Southern Italy

    NASA Astrophysics Data System (ADS)

    Fu, Lili; Heidarzadeh, Mohammad; Cukur, Deniz; Chiocci, Francesco L.; Ridente, Domenico; Gross, Felix; Bialas, Jörg; Krastel, Sebastian

    2017-03-01

    The 1908 Messina tsunami was the most catastrophic tsunami hitting the coastline of Southern Italy in the younger past. The source of this tsunami, however, is still heavily debated, and both rupture along a fault and a slope failure have been postulated as potential origin of the tsunami. Here we report a newly discovered active Fiumefreddo-Melito di Porto Salvo Fault Zone (F-MPS_FZ), which is located in the outer Messina Strait in a proposed landslide source area of the 1908 Messina tsunami. Tsunami modeling showed that this fault zone would produce devastating tsunamis by assuming slip amounts of ≥5 m. An assumed slip of up to 17 m could even generate a tsunami comparable to the 1908 Messina tsunami, but we do not consider the F-MPS_FZ as a source for the 1908 Messina tsunami because its E-W strike contradicts seismological observations of the 1908 Messina earthquake. Future researches on the F-MPS_FZ, however, may contribute to the tsunami risk assessment in the Messina Strait.

  17. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  18. Slip Rates of Main Active Fault Zones Through Turkey Inferred From GPS Observations

    NASA Astrophysics Data System (ADS)

    Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.; Acar, M.; Emre, O.; Yilmaz, O.; Turgut, B.; Halicioglu, K.; Sabuncu, A.; Bal, O.; Eraslan, A.

    2015-12-01

    Active Fault Map of Turkey was revised and published by General Directorate of Mineral Research and Exploration in 2012. This map reveals that there are about 500 faults can generate earthquakes.In order to understand the earthquake potential of these faults, it is needed to determine the slip rates. Although many regional and local studies were performed in the past, the slip rates of the active faults in Turkey have not been determined. In this study, the block modelling, which is the most common method to produce slip rates, will be done. GPS velocities required for block modeling is being compiled from the published studies and the raw data provided then velocity field is combined. To form a homogeneous velocity field, different stochastic models will be used and the optimal velocity field will be achieved. In literature, GPS site velocities, which are computed for different purposes and published, are combined globally and this combined velocity field are used in the analysis of strain accumulation. It is also aimed to develop optimal stochastic models to combine the velocity data. Real time, survey mode and published GPS observations is being combined in this study. We also perform new GPS observations. Furthermore, micro blocks and main fault zones from Active Fault Map Turkey will be determined and homogeneous velocity field will be used to infer slip rates of these active faults. Here, we present the result of first year of the study. This study is being supported by THE SCIENTIFIC AND TECHNOLOGICAL RESEARCH COUNCIL OF TURKEY (TUBITAK)-CAYDAG with grant no. 113Y430.

  19. Geophysical study of the Ota-VF Xira-Lisbon-Sesimbra fault zone and the lower Tagus Cenozoic basin

    NASA Astrophysics Data System (ADS)

    Carvalho, João; Rabeh, Taha; Bielik, Miroslav; Szalaiová, Eva; Torres, Luís; Silva, Marisa; Carrilho, Fernando; Matias, Luís; Miranda, Jorge Miguel

    2011-09-01

    This paper focuses on the interpretation of seismic reflection, gravimetric, topographic, deep seismic refraction and seismicity data to study the recently proposed Ota-Vila Franca de Xira-Lisbon-Sesimbra (OVLS) fault zone and the lower Tagus Cenozoic basin (LTCB). The studied structure is located in the lower Tagus valley (LTV), an area with over 2 million inhabitants that has experienced historical earthquakes which caused significant damage and economical losses (1344, 1531 and 1909 earthquakes) and whose tectonic sources are thought to be local but mostly remain unknown. This study, which is intended as a contribution to improve the seismic hazard of the area and the neotectonics of the region, shows that the above-proposed fault zone is probably a large crustal thrust fault that constitutes the western limit of the LTCB. Gravimetric, deep refraction and seismic reflection data suggest that the LTCB is a foreland basin, as suggested previously by some authors, and that the OVLS northern and central sectors act as the major thrusts. The southern sector fault has been dominated by strike-slip kinematics due to a different orientation to the stress field. Indeed, geological outcrop and seismic reflection data interpretation suggests that, based on fault geometry and type of deformation at depth, the structure is composed of three major segments. These data suggest that these segments have different kinematics in agreement with their orientation to the regional stress field. The OVLS apparently controls the distribution of the seismicity in the area. Geological and geophysical information previously gathered also points that the central segment is active into the Quaternary. The segment lengths vary between 20 and 45 km. Since faults usually rupture only by segments, maximum expectable earthquake magnitudes and other parameters have been calculated for the three sectors of the OVLS fault zone using empirical relationships between earthquake statistics and

  20. Deep-tow studies of the Vema Fracture Zone: 1. Tectonics of a major slow slipping transform fault and its intersection with the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    MacDonald, Ken. C.; Castillo, David A.; Miller, Stephen P.; Fox, Paul J.; Kastens, Kim A.; Bonatti, Enrico

    1986-03-01

    The Vema transform fault, which slips at a rate of 24 mm/yr, displaces the Mid-Atlantic Ridge (MAR) 320 km in a left-lateral sense. High-resolution deep-tow studies of the Vema ridge-transform intersection (RTI) and the eastern 130 km of the active transform fault reveal a complex pattern of dip-slip and strike-slip faults which evolve in time and space. At the intersection, both the neovolcanic zone and the west wall of the MAR rift valley curve counterclockwise toward the transform fault along trends approximately 30° oblique to the regional north-south trend of the spreading axis. The curving of extensional structures in the rift valley, such as normal faults and the axial zone of dike injection, appears to be related to transmission of transform related shear stresses into the spreading center domain. Intermittent locking of the American and African lithospheric plates across the RTI causes shear stresses to penetrate up to 4 km into the MAR axial neovolcanic zone where the lithosphere is relatively thin and up to 12 km into the block-faulted west wall of the rift valley where the lithosphere is thicker. The degree of shear coupling across the RTI may vary with time due to changes in the thickness of the lithosphere along the axis (0-10 km), the strength of a "mantle weld" at depth, and the presence or absence of an axial magma chamber, so that extensional structures at the RTI may be either spreading center parallel when coupling is weak or oblique when coupling is strong. Oblique extension across the RTI in addition to other factors may account for some of the down dropping of lithosphere within the deep nodal basin. The easternmost 20 km of the active transform fault zone near the RTI displays a braided network of three to nine tectonically active grabens and V-shaped furrows in a zone 2-4 km wide, interpreted to consist of interwoven Riedel shears, P shears, and oblique normal faults. Clay cake deformation experiments and deep-tow observations suggest that

  1. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Zhang, H.; Peng, Z.; Zhao, P.

    2011-12-01

    Large crustal faults such as the San Andreas fault (SAF) often juxtapose rocks of significantly different elastic properties, resulting in well-defined bimaterial interfaces. A sharp material contrast across the fault interface is expected to generate fault zone head waves (FZHW's) that spend a large portion of their propagation paths refracting along the bimaterial interface (Ben-Zion 1989, 1990; Ben-Zion & Aki 1990). Because of this FZHW's provide a high-resolution tool for imaging the velocity contrast across the fault. Recently, Zhao et al. (2010) systematically analyzed large data sets of near-fault waveforms recorded by several permanent and temporary seismic networks along the Parkfield section of the SAF. The local-scale tomography study of Zhang et al. (2009) for a roughly 10 km3 volume centered on SAFOD and the more regional-scale study of Thurber et al. (2006) for a 130 km x 120 km x 20 km volume centered on the 2004 Parkfield earthquake rupture provide what are probably the best 3D images of the seismic velocity structure of the area. The former shows a low velocity zone associated with the SAF extending to significant depth, and both image the well-known velocity contrast across the fault. Seismic tomography generally uses just first P and/or S arrivals because of the relative simplicity of phase picking and ray tracing. Adding secondary arrivals such as FZHW's, however, can enhance the resolution of structure and strengthen constraints on earthquake locations and focal mechanisms. We present a model of 3D velocity structure for the Parkfield region that utilizes a combination of arrival times for FZHW's and the associated direct-wave secondary arrivals as well as existing P-wave arrival time data. The resulting image provides a higher-resolution model of the SAF at depth than previously published models. In addition, we plan to measure polarizations of the direct P and S waves and FZHW's and incorporate the data into our updated velocity tomography

  2. Preliminary assessment of a previously unknown fault zone beneath the Daytona Beach sand blow cluster near Marianna, Arkansas

    USGS Publications Warehouse

    Odum, Jackson K.; Williams, Robert; Stephenson, William J.; Tuttle, Martitia P.; Al-Shukri, Hadar

    2016-01-01

    We collected new high‐resolution P‐wave seismic‐reflection data to explore for possible faults beneath a roughly linear cluster of early to mid‐Holocene earthquake‐induced sand blows to the south of Marianna, Arkansas. The Daytona Beach sand blow deposits are located in east‐central Arkansas about 75 km southwest of Memphis, Tennessee, and about 80 km south of the southwestern end of the New Madrid seismic zone (NMSZ). Previous studies of these sand blows indicate that they were produced between 10,500 and 5350 yr B.P. (before A.D. 1950). The sand blows are large and similar in size to those in the heart of the NMSZ produced by the 1811–1812 earthquakes. The seismic‐reflection profiles reveal a previously unknown zone of near‐vertical faults imaged in the 100–1100‐m depth range that are approximately coincident with a cluster of earthquake‐induced sand blows and a near‐linear surface lineament composed of air photo tonal anomalies. These interpreted faults are expressed as vertical discontinuities with the largest displacement fault showing about 40 m of west‐side‐up displacement at the top of the Paleozoic section at about 1100 m depth. There are about 20 m of folding on reflections within the Eocene strata at 400 m depth. Increasing fault displacement with depth suggests long‐term recurrent faulting. The imaged faults within the vicinity of the numerous sand blow features could be a causative earthquake source, although it does not rule out the possibility of other seismic sources nearby. These newly located faults add to a growing list of potentially active Pleistocene–Holocene faults discovered over the last two decades that are within the Mississippi embayment region but outside of the historical NMSZ.

  3. Along-Strike Variation in Geometry and Kinematics of a Major, Active Intracontinental Thrust System: the Pred-Terskey Fault Zone, Kyrgyz Tien Shan, Central Asia

    NASA Astrophysics Data System (ADS)

    Burgette, R. J.; Weldon, R. J.; Abdrakhmatov, K. Y.; Ormukov, C.

    2004-12-01

    The Pred-Terskey fault zone defines the southern margin of the Issyk-Kul basin, extending eastward over 250 km from at least the Chu River to the Kazakhstan border, and appears to be one of the most active zones in the Kyrgyz Tien Shan. Despite a diversity of structural styles and changes of vergence at the surface, the lateral continuity and overall geometry of the zone is consistent with a single north vergent thrust at depth, which uplifts the Terskey Range and generally tilts the south margin of the basin to the north. This northward tilting of the margin is probably due to a flattening of the fault as it approaches the surface. In spite of historical quiescence, it is likely capable of producing great earthquakes. We have conducted detailed field mapping coupled with terrace profiling and dating at seven representative, well-exposed areas of the fault zone. Based on these field observations and satellite image and air photo interpretation along the entire zone, we identify three major divisions in structural style expressed at the surface. The western segment is typified by the Tura-Su, Ak-Terek and Ton areas. A series of left-stepping, south-vergent, basement-involved reverse faults and folds are uplifting the southern margin of the Issyk-Kul basin in this area. The resulting uphill-facing scarps have trapped and diverted many of the rivers flowing north from the Terskey Range. Tertiary strata and Quaternary geomorphic surfaces show consistent, progressive northward tilting across the entire zone. The west-central segment is represented by the Kajy-Say area. South-vergent reverse faults and a north-vergent backthrust have uplifted an arcuate granite block. Offshore of this area, the lake floor descends to a sharp break in slope with a low relief area at a depth of about 650 m. Late Quaternary geomorphic features do not show evidence of tilting. In contrast to the areas east and west, the major north-dipping thrust is likely planar over this segment and

  4. Coda Wave Attenuation Characteristics for North Anatolian Fault Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Sertcelik, Fadime; Guleroglu, Mehmet

    2017-10-01

    North Anatolian Fault Zone, on which large earthquakes have occurred in the past, migrates regularly from east to west, and it is one of the most active faults in the world. The purpose of this study is to estimate the coda wave quality factor (Qc) for each of the five sub regionsthat were determined according to the fault rupture of these large earthquakes and along the fault. 978 records have been analyzed for 1.5, 3, 6, 9, 12 and 18 Hz frequencies by Single Backscattering Method. Along the fault, the variations in the Qc with lapse time are determined via, Qc = (136±25)f(0.96±0.027), Qc = (208±22)f(0.85±0.02) Qc = (307±28)f(0.72±0.025) at 20, 30, 40 sec lapse times, respectively. The estimated average frequency-dependence quality factor for all lapse time are; Qc(f) = (189±26)f(0.86±0.02) for Karliova-Tokat region; Qc(f) = (216±19)f(0.76±0.018) for Tokat-Çorum region; Qc(f) = (232±18)f(0.76±0.019) for Çorum-Adapazari region; Qc(f) = (280±28)f(0.79±0.021) for Adapazari-Yalova region; Qc(f) = (252±26)f(0.81±0.022) for Yalova-Gulf of Saros region. The coda wave quality factor at all the lapse times and frequencies is Qc(f) = (206±15)f(0.85±0.012) in the study area. The most change of Qc with lapse time is determined at Yalova-Saros region. The result may be related to heterogeneity degree of rapidly decreases towards the deep crust like compared to the other sub region. Moreover, the highest Qc is calculated between Adapazari - Yalova. It was interpreted as a result of seismic energy released by 1999 Kocaeli Earthquake. Besides, it couldn't be established a causal relationship between the regional variation of Qc with frequency and lapse time associated to migration of the big earthquakes. These results have been interpreted as the attenuation mechanism is affected by both regional heterogeneity and consist of a single or multi strands of the fault structure.

  5. Kinematic Model for the Sierra Nevada Frontal Fault Zone, California: Paleomagnetism of the Eureka Valley Tuff

    NASA Astrophysics Data System (ADS)

    Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.

    2005-12-01

    We document the geometry, timing, rates, and kinematic style of Late Tertiary deformation between Sonora Pass and Mono Basin, central Sierra Nevada, California. Observed mismatches between geodetic and geologic deformation rates in the western Great Basin may be primarily due to underestimates of true geologic deformation. Relatively little attention has been paid to the role of permanent deformation between faults, i.e. folding or crustal block rotation. Current slip discrepancies may be accounted for if a significant component of off-fault transrotational deformation is present. We use geologic and paleomagnetic data to address the kinematic development of the Sierra Nevada frontal fault zone (SNFFZ), and to quantify both the elastic and inelastic strain accumulated across the Sierra Nevada-Basin and Range transition since ~9 Ma. The complex structure of this transition, between the regions of Sonora Pass and Mono Basin, may be a result of three distinct modes of dextral shear accommodation (transtensional, transpressional, and crustal thinning). The study area is characterized by four important structural elements that lie between the SNFFZ and Walker Lane Belt: (1) N- to NNW-striking normal and oblique faults, dominantly E-dipping, and associated W-tilted fault blocks; (2) NW-striking dextral faults; (3) ENE- to NE-striking left-lateral oblique faults that may accommodate overall dextral shear through clockwise vertical axis rotations of fault blocks; (4) E- to NE-trending folds, which may accommodate N-S shortening at large-scale left steps in the dextral transtensional fault system. Between Bridgeport and Mono Basins, a regional E- to NE-trending fold is present that affects both the Tertiary volcanic strata and a Quaternary glacial outwash surface. To the west, normal faulting rates on the SNFFZ are 1-2 mm/yr (Bursik and Sieh, 1989). This slip decreases to the north, into the folded region of the Bodie Hills. This kinematic relationship suggests that the

  6. Deriving earthquake history of the Knidos Fault Zone, SW Turkey, using cosmogenic 36Cl surface exposure dating of the fault scarp.

    NASA Astrophysics Data System (ADS)

    Yildirim, Cengiz; Ersen Aksoy, Murat; Akif Sarikaya, Mehmet; Tuysuz, Okan; Genc, S. Can; Ertekin Doksanalti, Mustafa; Sahin, Sefa; Benedetti, Lucilla; Tesson, Jim; Aster Team

    2016-04-01

    Formation of bedrock fault scarps in extensional provinces is a result of large and successive earthquakes that ruptured the surface several times. Extraction of seismic history of such faults is critical to understand the recurrence intervals and the magnitude of paleo-earthquakes and to better constrain the regional seismic hazard. Knidos on the Datca Peninsula (SW Turkey) is one of the largest cities of the antique times and sits on a terraced hill slope formed by en-echelon W-SW oriented normal faults. The Datça Peninsula constitutes the southern boundary of the Gulf of Gökova, one of the largest grabens developed on the southernmost part of the Western Anatolian Extensional Province. Our investigation relies on cosmogenic 36Cl surface exposure dating of limestone faults scarps. This method is a powerful tool to reconstruct the seismic history of normal faults (e.g. Schlagenhauf et al 2010, Benedetti et al. 2013). We focus on one of the most prominent fault scarp (hereinafter Mezarlık Fault) of the Knidos fault zone cutting through the antique Knidos city. We collected 128 pieces of tablet size (10x20cm) 3-cm thick samples along the fault dip and opened 4 conventional paleoseismic trenches at the base of the fault scarp. Our 36Cl concentration profile indicates that 3 to 4 seismic events ruptured the Mezarlık Fault since Last Glacial Maximum (LGM). The results from the paleoseismic trenching are also compatible with 36Cl results, indicating 3 or 4 seismic events that disturbed the colluvium deposited at the base of the scarp. Here we will present implications for the seismic history and the derived slip-rate of the Mezarlık Fault based on those results. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 113Y436) and it was conducted with the Decision of the Council of Ministers with No. 2013/5387 on the date 30.09.2013 and was done with the permission of Knidos Presidency of excavation in

  7. Log and data from a trench across the Hubbell Spring Fault Zone, Bernalillo County, New Mexico

    USGS Publications Warehouse

    Personius, S.F.; Eppes, M.C.; Mahan, S.A.; Love, D.W.; Mitchell, D.K.; Murphy, Anne

    2000-01-01

    This report contains field and laboratory data resulting from a trench study of the Hubbell Spring fault zone near Albuquerque, New Mexico. This trench was excavated in September, 1997, as part of earthquake hazards investigations of Quaternary faults in the Albuquerque metropolitan area. The trench was excavated across the youngest of several fault strands near the northern end of the Hubbell Spring fault zone. The site is located on Pueblo of Isleta tribal lands, approximately 1 km south of the southern boundary of Kirtland Air Force Base. Thus the paleoearthquake data derived from investigations at the Hubbell Spring site will be useful in assessing potential earthquake hazards in Isleta Pueblo, Kirtland Air Force Base/Sandia National Laboratories, and the Albuquerque metropolitan area. The purpose of this report is to present a detailed trench log, a scarp profile, soils data (table 1), magnetic susceptibility data (table 2), luminescence and uranium-series ages (tables 3 and 4), and detailed unit descriptions (table 5) obtained in this investigation. S.F. Personius had primary responsibility for siting, excavating, describing, and interpreting the trench; S.A. Mahan did the luminescence dating, and James B. Paces did the uranium-series dating. M.C. Eppes and D.W. Love assisted with trench logging and mapping; and M.C. Eppes, D.K. Mitchell, and A. Murphy did the soils analyses.

  8. Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide and moraine surfaces along the Ecemiş Fault Zone

    NASA Astrophysics Data System (ADS)

    Yildirim, Cengiz; Akif Sarikaya, Mehmet; Ciner, Attila

    2016-04-01

    Late Pleistocene activity of the Ecemiş Fault Zone is integrally tied to ongoing intraplate crustal deformation in the Central Anatolian Plateau. Here we document the vertical displacement, slip rate, extension rate, and geochronology of normal faults within a narrow strip along the main strand of the fault zone. The Kartal, Cevizlik and Lorut faults are normal faults that have evident surface expression within the strip. Terrestrial cosmogenic nuclide geochronology reveals that the Kartal Fault deformed a 104.2 ± 16.5 ka alluvial fan surface and the Cevizlik Fault deformed 21.9 ± 1.8 ka glacial moraine and talus fan surfaces. The Cevizlik Fault delimits mountain front of the Aladaglar and forms >1 km relief. Our topographic surveys indicate 13.1 ± 1.4 m surface breaking vertical displacements along Cevizlik Faults, respectively. Accordingly, we suggest a 0.60 ± 0.08 mm a-1 slip rate and 0.35 ± 0.05 mm a-1 extension rate for the last 21.9 ± 1.8 ka on the Cevizlik Fault. Taken together with other structural observations in the region, we believe that the Cevizlik, Kartal ve Lorut faults are an integral part of intraplate crustal deformation in Central Anatolia. They imply that intraplate structures such as the Ecemiş Fault Zone may change their mode through time; presently, the Ecemiş Fault Zone has been deformed predominantly by normal faults. The presence of steep preserved fault scarps along the Kartal, Cevizlik and Lorut faults point to surface breaking normal faulting away from the main strand and particularly signify that these structures need to be taken into account for regional seismic hazard assessments. This project is supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Grant number: 112Y087).

  9. Features and dimensions of the Hayward Fault Zone in the Strawberry and Blackberry Creek Area, Berkeley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, P.L.

    1995-03-01

    This report presents an examination of the geometry of the Hayward fault adjacent to the Lawrence Berkeley Laboratory and University of California campuses in central Berkeley. The fault crosses inside the eastern border of the UC campus. Most subtle geomorphic (landform) expressions of the fault have been removed by development and by the natural processes of landsliding and erosion. Some clear expressions of the fault remain however, and these are key to mapping the main trace through the campus area. In addition, original geomorphic evidence of the fault`s location was recovered from large scale mapping of the site dating frommore » 1873 to 1897. Before construction obscured and removed natural landforms, the fault was expressed by a linear, northwest-tending zone of fault-related geomorphic features. There existed well-defined and subtle stream offsets and beheaded channels, fault scarps, and a prominent ``shutter ridge``. To improve our confidence in fault locations interpreted from landforms, we referred to clear fault exposures revealed in trenching, revealed during the construction of the Foothill Housing Complex, and revealed along the length of the Lawson Adit mining tunnel. Also utilized were the locations of offset cultural features. At several locations across the study area, distress features in buildings and streets have been used to precisely locate the fault. Recent published mapping of the fault (Lienkaemper, 1992) was principally used for reference to evidence of the fault`s location to the northwest and southeast of Lawrence Berkeley Laboratory.« less

  10. Mechanical Erosion of the Seismogenic Zone by Creep from below on Rate-State Faults

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Rubin, A. M.

    2012-12-01

    The aim of this study is to increase our understanding of how earthquakes nucleate on frictionally-locked fault patches that are loaded by the growing stress concentrations at their boundaries due to aseismic creep. Such mechanical erosion from below of locked patches has previously been invoked by Gillard et al. (1996) to explain accelerating seismicity and increases in maximum earthquake magnitude on a strike-slip streak (a narrow ribbon of tightly clustered seismicity) in Kilauea's East rift, and it might also play a role in the loading of major locked strike-slip faults by creep from below the seismogenic zone. Gillard et al. (1996) provided simple analytical estimates of the size of and of the time-dependence of the moment release within the eroding edge of the locked zone that matched observed seismicity in Kilauea's East rift. However, an obvious, similar signal has not consistently been found before major strike-slip earthquakes on presumably analogous faults. Here, we use simulations to determine to what extent the simple estimates by Gillard et al. survive a wider range of geometric configurations, friction laws and slip histories. We model the boundary between the locked and creeping sections at the base of the seismogenic zone as a transition between steady-state velocity-strengthening behavior at greater depth to velocity-weakening at shallow depth, qualitatively consistent with laboratory estimates of the temperature dependence of (a-b). As we increase the ratio of the size H of the velocity-weakening region over the nucleation length scale L∞ [Rubin & Ampuero, 2005] from tens to more appropriate hundreds and thousands in our 1D model, we observe an increasing number of creep fronts that march into the seismogenic zone from the weakening/strengthening transition between surface-rupturing seismic events. For moderate to large ratios of H/L∞ , these fronts begin to appear while afterslip from large events is still propagating down-dip below the

  11. Active transfer fault zone linking a segmented extensional system (Betics, southern Spain): Insight into heterogeneous extension driven by edge delamination

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, José Miguel; Booth-Rea, Guillermo; Azañón, José Miguel; Torcal, Federico

    2006-08-01

    Pliocene and Quaternary tectonic structures mainly consisting of segmented northwest-southeast normal faults, and associated seismicity in the central Betics do not agree with the transpressive tectonic nature of the Africa-Eurasia plate boundary in the Ibero-Maghrebian region. Active extensional deformation here is heterogeneous, individual segmented normal faults being linked by relay ramps and transfer faults, including oblique-slip and both dextral and sinistral strike-slip faults. Normal faults extend the hanging wall of an extensional detachment that is the active segment of a complex system of successive WSW-directed extensional detachments which have thinned the Betic upper crust since middle Miocene. Two areas, which are connected by an active 40-km long dextral strike-slip transfer fault zone, concentrate present-day extension. Both the seismicity distribution and focal mechanisms agree with the position and regime of the observed faults. The activity of the transfer zone during middle Miocene to present implies a mode of extension which must have remained substantially the same over the entire period. Thus, the mechanisms driving extension should still be operating. Both the westward migration of the extensional loci and the high asymmetry of the extensional systems can be related to edge delamination below the south Iberian margin coupled with roll-back under the Alborán Sea; involving the asymmetric westward inflow of asthenospheric material under the margins.

  12. Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, central Japan

    USGS Publications Warehouse

    Sone, Hiroki; Shimamoto, Toshihiko; Moore, Diane E.

    2012-01-01

    We studied a serpentinite-bearing fault zone in Gokasho-Arashima Tectonic Line, Mie Prefecture, central Japan, characterizing its internal structures, mineral assemblage, permeability, and frictional properties. The fault core situated between the serpentinite breccia and the adjacent sedimentary rocks is characterized by a zone locally altered to saponite. The clayey gouge layer separates fault rocks of serpentinite origin containing talc and tremolite from fault rocks of sedimentary origin containing chlorite but no quartz. The minerals that formed within the fault are the products of metasomatic reaction between the serpentinite and the siliceous rocks. Permeability measurements show that serpentinite breccia and fault gouge have permeability of 10−14–10−17 m2 and 10−15–10−18 m2, respectively, at 5–120 MPa confining pressure. Frictional coefficient of the saponite-rich clayey fault gouge ranged between 0.20 and 0.35 under room-dry condition, but was reduced to 0.06–0.12 when saturated with water. The velocity dependence of friction was strongly positive, mostly ranging between 0.005 and 0.006 in terms of a–b values. The governing friction law is not constrained yet, but we find that the saponite-rich gouge possesses an evolutional behavior in the opposite direction to that suggested by the rate and state friction law, in addition to its direct velocity dependence.

  13. Fluid involvement in normal faulting

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2000-04-01

    Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3-5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if

  14. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  15. Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika

    2011-03-31

    This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.

  16. Is the Vincent fault in southern California the Laramide subduction zone megathrust?

    NASA Astrophysics Data System (ADS)

    Xia, H.; Platt, J. P.

    2016-12-01

    The Vincent fault (VF) in the San Gabriel Mountains, southern California separates a Meso-Proterozoic gneiss complex and Mesozoic granitoid rocks in the upper plate from the ocean-affiliated Late Cretaceous Pelona schist in the lower plate, and it has been widely interpreted as the original Laramide subduction megathrust. A 500 to 1000 m thick mylonite zone, consisting of a low-stress (LS) section at the bottom, a high-stress (HS) section at the top, and a weakly deformed section in between, is developed above the VF. Our kinematic, thermobarometric and geochronological analysis of the mylonite zone indicates that the VF is a normal fault. Shear sense indicators including asymmetric porphyroblasts, quartz new grain fabric, mineral fish, and quartz CPO from the HS and the LS sections exhibit a top-to-SE sense of shear on the SW-dipping mylonitic foliation, which is contrary to what one would expect for the Laramide subduction megathrust. A few samples from the LS section were overprinted by HS microstructure, implying that the LS mylonites predate the HS mylonites. TitaniQ thermometer and Si-in-muscovite barometer show that the P-T conditions are 389 ± 6 °C, 5 kbar for the LS mylonites and 329 ± 6 °C, 2.4 kbar for HS mylonites. Considering the temporal sequence of HS and LS mylonites, they are likely to be formed during exhumation. A comparison with the lower plate leads to the same conclusion. The top 80-100 m of the Pelona schist underneath the VF is folded and also mylonitized, forming the Narrows synform and S3 simultaneously. Our previous study found that S3 of the Pelona schist has a top-to-SE sense of shear and similar P-T conditions as the LS mylonite in the upper plate, so S3 of the Pelona schist is likely to be formed together with the LS mylonites in the upper plate. While mylonitization of Pelona schist (S3) overprinted both the subduction-related S1 fabric and the return-flow-related S2 fabric, it is reasonable to argue that the mylonite zone above

  17. Landforms along transverse faults parallel to axial zone of folded mountain front, north-eastern Kumaun Sub-Himalaya, India

    NASA Astrophysics Data System (ADS)

    Luirei, Khayingshing; Bhakuni, S. S.; Negi, Sanjay S.

    2017-02-01

    The shape of the frontal part of the Himalaya around the north-eastern corner of the Kumaun Sub-Himalaya, along the Kali River valley, is defined by folded hanging wall rocks of the Himalayan Frontal Thrust (HFT). Two parallel faults (Kalaunia and Tanakpur faults) trace along the axial zone of the folded HFT. Between these faults, the hinge zone of this transverse fold is relatively straight and along these faults, the beds abruptly change their attitudes and their widths are tectonically attenuated across two hinge lines of fold. The area is constituted of various surfaces of coalescing fans and terraces. Fans comprise predominantly of sandstone clasts laid down by the steep-gradient streams originating from the Siwalik range. The alluvial fans are characterised by compound and superimposed fans with high relief, which are generated by the tectonic activities associated with the thrusting along the HFT. The truncated fan along the HFT has formed a 100 m high-escarpment running E-W for ˜5 km. Quaternary terrace deposits suggest two phases of tectonic uplift in the basal part of the hanging wall block of the HFT dipping towards the north. The first phase is represented by tilting of the terrace sediments by ˜30 ∘ towards the NW; while the second phase is evident from deformed structures in the terrace deposit comprising mainly of reverse faults, fault propagation folds, convolute laminations, flower structures and back thrust faults. The second phase produced ˜1.0 m offset of stratification of the terrace along a thrust fault. Tectonic escarpments are recognised across the splay thrust near south of the HFT trace. The south facing hill slopes exhibit numerous landslides along active channels incising the hanging wall rocks of the HFT. The study area shows weak seismicity. The major Moradabad Fault crosses near the study area. This transverse fault may have suppressed the seismicity in the Tanakpur area, and the movement along the Moradabad and Kasganj

  18. Late Quaternary paleoseismicity and seismic potential of the Yilan-Yitong Fault Zone in NE China

    NASA Astrophysics Data System (ADS)

    Yu, Zhongyuan; Yin, Na; Shu, Peng; Li, Jincheng; Wei, Qinghai; Min, Wei; Zhang, Peizhen

    2018-01-01

    The Yilan-Yitong Fault Zone (YYFZ), which is composed of two nearly parallel branches with a spacing of 5-30 km and a length of ∼1100 km, is considered to be the key branch of the Tancheng-Lujiang Fault Zone (TLFZ) in NE China. It was traditionally believed that the YYFZ experienced weak activity or was inactive during the Late Quaternary, without the capability to generate strong earthquakes (M ≥ 7), based on the absence of typical outcrops and large historical or instrumental earthquakes (M > 6). However, our paleoseismic study shows that the YYFZ is the primary seismotectonic structure (M ≥ 7) that poses significant earthquake threats to NE China. The synthesis of data collected from geologic investigations, geomorphic mapping, trench logging and the dating of samples indicates that the YYFZ is an active structure that has undergone segmented strong tectonic deformation since the Late Quaternary with a characteristic assemblage of landforms, including linear scarps and troughs, offset or deflected streams, linear sag ponds, small horsts and grabens. The latest ruptures of the YYFZ migrated from previous boundary faults into the basin interior, forming a left-stepping en echelon pattern in plain view, and the kinematics of these events in the Late Quaternary were dominated by reverse dextral slipping. Multi-segment cluster faulting might have occurred during three cluster periods, i.e., ∼34750-35812 a BP, ∼21700-22640 a BP, and ∼4000 a BP-present, which implies that the recurrence interval of large earthquakes along the YYFZ may be as long as tens of thousands of years.

  19. Laboratory Evidence of Strength Recovery of Healed Faults

    NASA Astrophysics Data System (ADS)

    Masuda, K.

    2015-12-01

    Fault zones consist of a fault core and a surrounding damage zone. Fault zones are typically characterized by the presence of many healed surfaces, the strength of which is unknown. If a healed fault recovers its strength such that its cohesion is equal to or greater than that of the host rock, repeated cycles of fracture and healing may be one mechanism producing wide fault zones. I present laboratory evidence supporting the strength recovery of healed fault surface, obtained by AE monitoring, strain measurements and X-ray CT techniques. The loading experiment was performed with a specimen collected from an exhumed fault zone. Healed surfaces of the rock sample were interpreted to be parallel to slip surfaces. The specimen was a cylinder with 50 mm diameter and 100 mm long. The long axis of the specimen was inclined with respect to the orientation of the healed surfaces. The compression test used a constant loading rate under 50 MPa of confining pressure. Macroscopic failure occurred when the applied differential stress reached 439 MPa. The macro-fracture surface created during the experiment was very close to the preexisting plane. The AE hypocenters closely match the locations of the preexisting healed surface and the new fault plane. The experiment also revealed details of the initial stage of fault development. The new fault zone developed near, but not precisely on the preexisting healed fault plane. An area of heterogeneous structure where stress appears to have concentrated, was where the AEs began, and it was also where the fracture started. This means that the healed surface was not a weak surface and that healing strengthened the fault such that its cohesion was equal to or greater than that of the intact host rock. These results suggest that repeated cycles of fracture and healing may be the main mechanism creating wide fault zones with multiple fault cores and damage zones.

  20. Paleogeographic implications of an erosional remnant of Paleogene rocks southwest of the Sur-Nacimiento Fault Zone, southern Coast Ranges, California

    USGS Publications Warehouse

    Vedder, J.G.; McLean, H.; Stanley, R.G.; Wiley, T.J.

    1991-01-01

    A small tract of heretofore-unrecognized Paleogene rocks lies about 30 km northeast of Santa Maria and 1 km southwest of the Sur-Nacimiento fault zone near upper Pine Creek. This poorly exposed assemblage of rocks is less than 50 m thick, lies unconformably on regionally distributed Upper Cretaceous submarine-fan deposits, and consists of three units: fossiliferous lower Eocene mudstone, Oligocene(?) conglomerate, and basaltic andesite that has a radiometric age of 26.6 ?? 0.5 Ma. Both the sedimentary and igneous constituents in the Paleogene sequence are unlike those of known sequences on either side of the Sur-Nacimiento fault zone. The Paleogene sedimentary rocks near upper Pine Creek presumably are remnants of formerly widespread early Eocene bathyal deposits and locally distributed Oligocene(?) fluvial deposits southwest of the fault zone. The 26.6 Ma basaltic andesite, however, may not have extended much beyond its present outcrops. An episode of Oligocene(?) displacement is required by the contrast in thicknesses, depositional patterns, and paleobathymetry of the juxtaposed rock sequences. -from Authors

  1. Geologic map of the Kechumstuk fault zone in the Mount Veta area, Fortymile mining district, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O’Neill, J. Michael; Dusel-Bacon, Cynthia; Aleinikoff, John N.; Siron, Christopher R.

    2014-01-01

    This map was developed by the U.S. Geological Survey Mineral Resources Program to depict the fundamental geologic features for the western part of the Fortymile mining district of east-central Alaska, and to delineate the location of known bedrock mineral prospects and their relationship to rock types and structural features. This geospatial map database presents a 1:63,360-scale geologic map for the Kechumstuk fault zone and surrounding area, which lies 55 km northwest of Chicken, Alaska. The Kechumstuk fault zone is a northeast-trending zone of faults that transects the crystalline basement rocks of the Yukon-Tanana Upland of the western part of the Fortymile mining district. The crystalline basement rocks include Paleozoic metasedimentary and metaigneous rocks as well as granitoid intrusions of Triassic, Jurassic, and Cretaceous age. The geologic units represented by polygons in this dataset are based on new geologic mapping and geochronological data coupled with an interpretation of regional and new geophysical data collected by the Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys. The geochronological data are reported in the accompanying geologic map text and represent new U-Pb dates on zircons collected from the igneous and metaigneous units within the map area.

  2. Structure of the San Andreas Fault Zone in the Salton Trough Region of Southern California: A Comparison with San Andreas Fault Structure in the Loma Prieta Area of Central California

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.

    2016-12-01

    The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active

  3. Net dextral slip, Neogene San Gregorio–Hosgri fault zone, coastal California: Geologic evidence and tectonic implications

    USGS Publications Warehouse

    Dickinson, William R.; Ducea, M.; Rosenberg, Lewis I.; Greene, H. Gary; Graham, Stephan A.; Clark, Joseph C.; Weber, Gerald E.; Kidder, Steven; Ernst, W. Gary; Brabb, Earl E.

    2005-01-01

    Reinterpretation of onshore and offshore geologic mapping, examination of a key offshore well core, and revision of cross-fault ties indicate Neogene dextral strike slip of 156 ± 4 km along the San Gregorio–Hosgri fault zone, a major strand of the San Andreas transform system in coastal California. Delineating the full course of the fault, defining net slip across it, and showing its relationship to other major tectonic features of central California helps clarify the evolution of the San Andreas system.San Gregorio–Hosgri slip rates over time are not well constrained, but were greater than at present during early phases of strike slip following fault initiation in late Miocene time. Strike slip took place southward along the California coast from the western fl ank of the San Francisco Peninsula to the Hosgri fault in the offshore Santa Maria basin without significant reduction by transfer of strike slip into the central California Coast Ranges. Onshore coastal segments of the San Gregorio–Hosgri fault include the Seal Cove and San Gregorio faults on the San Francisco Peninsula, and the Sur and San Simeon fault zones along the flank of the Santa Lucia Range.Key cross-fault ties include porphyritic granodiorite and overlying Eocene strata exposed at Point Reyes and at Point Lobos, the Nacimiento fault contact between Salinian basement rocks and the Franciscan Complex offshore within the outer Santa Cruz basin and near Esalen on the flank of the Santa Lucia Range, Upper Cretaceous (Campanian) turbidites of the Pigeon Point Formation on the San Francisco Peninsula and the Atascadero Formation in the southern Santa Lucia Range, assemblages of Franciscan rocks exposed at Point Sur and at Point San Luis, and a lithic assemblage of Mesozoic rocks and their Tertiary cover exposed near Point San Simeon and at Point Sal, as restored for intrabasinal deformation within the onshore Santa Maria basin.Slivering of the Salinian block by San Gregorio–Hosgri displacements

  4. Late Pleistocene-Holocene Activity of the Strike-slip Xianshuihe Fault Zone, Tibetan Plateau, Inferred from Tectonic Landforms

    NASA Astrophysics Data System (ADS)

    Lin, A.; Yan, B.

    2017-12-01

    Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward

  5. Three-dimensional records of surface displacement on the Superstition Hills fault zone associated with the earthquakes of 24 November 1987

    USGS Publications Warehouse

    Sharp, R.V.; Saxton, J.L.

    1989-01-01

    Seven quadrilaterals, constructed at broadly distributed points on surface breaks within the Superstition Hills fault zone, were repeatedly remeasured after the pair of 24 November 1987 earthquakes to monitor the growing surface displacement. Changes in the dimensions of the quadrilaterals are recalculated to right-lateral and extensional components at millimeter resolution, and vertical components of change are resolved at 0.2mm precision. The displacement component data for four of the seven quadrilaterals record the complete fault movement with respect to an October 1986 base. The three-dimensional motion vectors all describe nearly linear trajectories throughout the observation period, and they indicate smooth shearing on their respective fault surfaces. The inclination of the shear surfaces is generally nearly vertical, except near the south end of the Superstition Hills fault zone where two strands dip northeastward at about 70??. Surface displacement on these strands is right reverse. Another kind of deformation, superimposed on the fault displacements, has been recorded at all quadrilateral sites. It consists of a northwest-southeast contraction or component of contraction that ranged from 0 to 0.1% of the quadrilateral lengths between November 1987 and April 1988. -from Authors

  6. Seismic Velocity and Elastic Properties of Plate Boundary Faults

    NASA Astrophysics Data System (ADS)

    Jeppson, Tamara N.

    The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal

  7. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining

  8. Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays

    NASA Astrophysics Data System (ADS)

    Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.

    2018-04-01

    We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.

  9. Tomographic evidence for enhanced fracturing and permeability within the relatively aseismic Nemaha Fault Zone, Oklahoma

    NASA Astrophysics Data System (ADS)

    Stevens, N. T.; Keranen, K. M.; Lambert, C.

    2017-12-01

    Recent earthquakes in north central Oklahoma are dominantly hosted on unmapped basement faults away from and outside of the largest regional structure, the Nemaha Fault Zone (NFZ) [Lambert, 2016]. The NFZ itself remains largely aseismic, despite the presence of disposal wells and numerous faults. Here we present results from double-difference tomography using TomoDD [Zhang and Thurber, 2003] for the NFZ and the surrounding region, utilizing a seismic catalog of over 10,000 local events acquired by 144 seismic stations deployed between 2013 and 2017. Inversion results for shallow crustal depth, beneath the 2-3 km sedimentary cover, show compressional wavespeeds (Vp) of >6 km/sec and shear wavespeeds (Vs) >4 km/sec outside the NFZ, consistent with crystalline rock. Along the western margin of the NFZ, both Vp and Vs are reduced, and Vp/Vs gradients parallel the trend of major faults, suggesting enhanced fault density and potentially enhanced fluid pressure within the study region. Enhanced fracture density within the NFZ, and associated permeability enhancement, could reduce the effect of regional fluid pressurization from injection wells, contributing to the relative aseismicity of the NFZ.

  10. A broader classification of damage zones

    NASA Astrophysics Data System (ADS)

    Peacock, D. C. P.; Dimmen, V.; Rotevatn, A.; Sanderson, D. J.

    2017-09-01

    Damage zones have previously been classified in terms of their positions at fault tips, walls or areas of linkage, with the latter being described in terms of sub-parallel and synchronously active faults. We broaden the idea of linkage to include structures around the intersections of non-parallel and/or non-synchronous faults. These interaction damage zones can be divided into approaching damage zones, where the faults kinematically interact but are not physically connected, and intersection damage zones, where the faults either abut or cross-cut. The damage zone concept is applied to other settings in which strain or displacement variations are taken up by a range of structures, such as at fault bends. It is recommended that a prefix can be added to a wide range of damage zones, to describe the locations in which they formed, e.g., approaching, intersection and fault bend damage zone. Such interpretations are commonly based on limited knowledge of the 3D geometries of the structures, such as from exposure surfaces, and there may be spatial variations. For example, approaching faults and related damage seen in outcrop may be intersecting elsewhere on the fault planes. Dilation in intersection damage zones can represent narrow and localised channels for fluid flow, and such dilation can be influenced by post-faulting stress patterns.

  11. A general law of fault wear and its implication to gouge zone evolution

    NASA Astrophysics Data System (ADS)

    Boneh, Yuval; Reches, Ze'ev

    2017-04-01

    Fault wear and gouge production are universal components of frictional sliding. Wear models commonly consider fault roughness, normal stress and rock strength, but ignore the effects of gouge presence and slip-velocity. In contrast, our experimental observations indicate that wear continues while gouge layer is fully developed, and that wear-rates vary by orders-of-magnitude during slip along experimental faults made of carbonites, sandstones and granites (Boneh et al., 2013, 2014). We derive here a new universal law for fault wear by incorporating the gouge layer and slip-velocity. Slip between two rock-blocks undergoes a transition from a 'two-body' mode, during which the blocks interact at surface roughness contacts, to 'three-body' mode, during which a gouge layer separates the two blocks. Our wear model considers 'effective roughness' as the mechanism for failure at resisting, interacting sites that control the global wear. The effective roughness is comprised of a time dependent, dynamic asperities which are different in population and scale from original surfaces asperities. The model assumes that the intensity of this failure is proportional to the mechanical impulse, which is the integrated force over loading time at the interacting sites. We use this concept to calculate the wear-rate as function of the impulse-density, which is the ratio [shear-stress/slip-velocity], during fault slip. The compilation of experimental wear-rates in a large range of slip-velocities (10 μm/s - 1 m/s) and normal stresses (0.2 - 200 MPa) reveal very good agreement with the model predictions. The model provides the first explanation why fault slip at seismic velocity, e.g., 1 m/s, generates significantly less wear and gouge than fault slip at creeping velocity. Thus, the model provides a tool to use the gouge thickness of fault-zones for estimation of paleo-velocity. Boneh, Y., Sagy, A., Reches, Z., 2013. Frictional strength and wear-rate of carbonate faults during high

  12. Fault geometries in basement-induced wrench faulting under different initial stress states

    NASA Astrophysics Data System (ADS)

    Naylor, M. A.; Mandl, G.; Supesteijn, C. H. K.

    Scaled sandbox experiments were used to generate models for relative ages, dip, strike and three-dimensional shape of faults in basement-controlled wrench faulting. The basic fault sequence runs from early en échelon Riedel shears and splay faults through 'lower-angle' shears to P shears. The Riedel shears are concave upwards and define a tulip structure in cross-section. In three dimensions, each Riedel shear has a helicoidal form. The sequence of faults and three-dimensional geometry are rationalized in terms of the prevailing stress field and Coulomb-Mohr theory of shear failure. The stress state in the sedimentary overburden before wrenching begins has a substantial influence on the fault geometries and on the final complexity of the fault zone. With the maximum compressive stress (∂ 1) initially parallel to the basement fault (transtension), Riedel shears are only slightly en échelon, sub-parallel to the basement fault, steeply dipping with a reduced helicoidal aspect. Conversely, with ∂ 1 initially perpendicular to the basement fault (transpression), Riedel shears are strongly oblique to the basement fault strike, have lower dips and an exaggerated helicoidal form; the final fault zone is both wide and complex. We find good agreement between the models and both mechanical theory and natural examples of wrench faulting.

  13. Intensity of joints associated with an extensional fault zone: an estimation by poly3d .

    NASA Astrophysics Data System (ADS)

    Minelli, G.

    2003-04-01

    The presence and frequency of joints in sedimentary rocks strongly affects the mechanical and fluid flow properties of the host layers. Joints intensity is evaluated by spacing, S, the distance between neighbouring fractures, or by density, D = 1/S. Joint spacing in layered rocks is often linearly related to layer thickness T, with typical values of 0.5 T < S < 2.0 T . On the other hand, some field cases display very tight joints with S << T and nonlinear relations between spacing and thickness , most of these cases are related to joint system “genetically” related to a nearby fault zone. The present study by using the code Poly3D (Rock Fracture Project at Stanford), numerically explores the effect of the stress distribution in the neighbour of an extensional fault zone with respect to the mapped intensity of joints both in the hanging wall and in the foot wall of it (WILLEMSE, E. J. M., 1997; MARTEL, S. J, AND BOGER, W. A,; 1998). Poly3D is a C language computer program that calculates the displacements, strains and stresses induced in an elastic whole or half-space by planar, polygonal-shaped elements of displacement discontinuity (WILLEMSE, E. J. M., POLLARD, D. D., 2000) Dislocations of varying shapes may be combined to yield complex three-dimensional surfaces well-suited for modeling fractures, faults, and cavities in the earth's crust. The algebraic expressions for the elastic fields around a polygonal element are derived by superposing the solution for an angular dislocation in an elastic half-space. The field data have been collected in a quarry located close to Noci town (Puglia) by using the scan line methodology. In this quarry a platform limestone with a regular bedding with very few shale or marly intercalations displaced by a normal fault are exposed. The comparison between the mapped joints intensity and the calculated stress around the fault displays a good agreement. Nevertheless the intrinsic limitations (isotropic medium and elastic behaviour

  14. Distribution and nature of fault architecture in a layered sandstone and shale sequence: An example from the Moab fault, Utah

    USGS Publications Warehouse

    Davatzes, N.C.; Aydin, A.

    2005-01-01

    We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.

  15. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    NASA Astrophysics Data System (ADS)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  16. Active faults and minor plates in NE Asia

    NASA Astrophysics Data System (ADS)

    Kozhurin, Andrey I.; Zelenin, Egor A.

    2014-05-01

    Stated nearly 40 yr ago the uncertainty with plate boundaries location in NE Asia (Chapman, Solomon, 1976) still remains unresolved. Based on the prepositions that a plate boundary must, first, reveal itself in linear sets of active structures, and, second, be continuous and closed, we have undertaken interpretation of medium-resolution KH-9 Hexagon satellite imageries, mostly in stereoscopic regime, for nearly the entire region of NE Asia. Main findings are as follows. There are two major active fault zones in the region north of the Bering Sea. One of them, the Khatyrka-Vyvenka zone, stretches NE to ENE skirting the Bering Sea from the Kamchatka isthmus to the Navarin Cape. Judging by the kinematics of the Olyutorsky 2006 earthquake fault, the fault zones move both right-laterally and reversely. The second active fault zone, the Lankovaya-Omolon zone, starts close to the NE margin of the Okhotsk Sea and extends NE up to nearly the margin of the Chukcha Sea. The fault zone is mostly right-lateral, with topographically expressed cumulative horizontal offsets amounting to 2.5-2.6 km. There may be a third NE-SW zone between the major two coinciding with the Penzhina Range as several active faults found in the southern termination of the Range indicate. The two active fault zones divide the NE Asia area into two large domains, which both could be parts of the Bering Sea plate internally broken and with uncertain western limit. Another variant implies the Khatyrka-Vyvenka zone as the Bering Sea plate northern limit, and the Lankovaya-Omolon zone as separating an additional minor plate from the North-American plate. The choice is actually not crucial, and more important is that both variants leave the question of where the Bering Sea plate boundary is in Alaska. The Lankovaya-Omolon zone stretches just across the proposed northern boundary of the Okhorsk Sea plate. NW of the zone, there is a prominent left-lateral Ulakhan fault, which is commonly interpreted to be a

  17. Faulting of gas-hydrate-bearing marine sediments - contribution to permeability

    USGS Publications Warehouse

    Dillon, William P.; Holbrook, W.S.; Drury, Rebecca; Gettrust, Joseph; Hutchinson, Deborah; Booth, James; Taylor, Michael

    1997-01-01

    Extensive faulting is observed in sediments containing high concentrations of methane hydrate off the southeastern coast of the United States. Faults that break the sea floor show evidence of both extension and shortening; mud diapirs are also present. The zone of recent faulting apparently extends from the ocean floor down to the base of gas-hydrate stability. We infer that the faulting resulted from excess pore pressure in gas trapped beneath the gas hydrate-beating layer and/or weakening and mobilization of sediments in the region just below the gas-hydrate stability zone. In addition to the zone of surface faults, we identified two buried zones of faulting, that may have similar origins. Subsurface faulted zones appear to act as gas traps.

  18. Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin

    NASA Astrophysics Data System (ADS)

    Pfunt, Helena; Houben, Georg; Himmelsbach, Thomas

    2016-09-01

    Gas production from shale formations by hydraulic fracturing has raised concerns about the effects on the quality of fresh groundwater. The migration of injected fracking fluids towards the surface was investigated in the North German Basin, based on the known standard lithology. This included cases with natural preferential pathways such as permeable fault zones and fracture networks. Conservative assumptions were applied in the simulation of flow and mass transport triggered by a high pressure boundary of up to 50 MPa excess pressure. The results show no significant fluid migration for a case with undisturbed cap rocks and a maximum of 41 m vertical transport within a permeable fault zone during the pressurization. Open fractures, if present, strongly control the flow field and migration; here vertical transport of fracking fluids reaches up to 200 m during hydraulic fracturing simulation. Long-term transport of the injected water was simulated for 300 years. The fracking fluid rises vertically within the fault zone up to 485 m due to buoyancy. Progressively, it is transported horizontally into sandstone layers, following the natural groundwater flow direction. In the long-term, the injected fluids are diluted to minor concentrations. Despite the presence of permeable pathways, the injected fracking fluids in the reported model did not reach near-surface aquifers, either during the hydraulic fracturing or in the long term. Therefore, the probability of impacts on shallow groundwater by the rise of fracking fluids from a deep shale-gas formation through the geological underground to the surface is small.

  19. Geophysical data reveal the crustal structure of the Alaska Range orogen within the aftershock zone of the Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.

    2004-01-01

    Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.

  20. Ground Motion Simulation for a Large Active Fault System using Empirical Green's Function Method and the Strong Motion Prediction Recipe - a Case Study of the Noubi Fault Zone -

    NASA Astrophysics Data System (ADS)

    Kuriyama, M.; Kumamoto, T.; Fujita, M.

    2005-12-01

    The 1995 Hyogo-ken Nambu Earthquake (1995) near Kobe, Japan, spurred research on strong motion prediction. To mitigate damage caused by large earthquakes, a highly precise method of predicting future strong motion waveforms is required. In this study, we applied empirical Green's function method to forward modeling in order to simulate strong ground motion in the Noubi Fault zone and examine issues related to strong motion prediction for large faults. Source models for the scenario earthquakes were constructed using the recipe of strong motion prediction (Irikura and Miyake, 2001; Irikura et al., 2003). To calculate the asperity area ratio of a large fault zone, the results of a scaling model, a scaling model with 22% asperity by area, and a cascade model were compared, and several rupture points and segmentation parameters were examined for certain cases. A small earthquake (Mw: 4.6) that occurred in northern Fukui Prefecture in 2004 were examined as empirical Green's function, and the source spectrum of this small event was found to agree with the omega-square scaling law. The Nukumi, Neodani, and Umehara segments of the 1891 Noubi Earthquake were targeted in the present study. The positions of the asperity area and rupture starting points were based on the horizontal displacement distributions reported by Matsuda (1974) and the fault branching pattern and rupture direction model proposed by Nakata and Goto (1998). Asymmetry in the damage maps for the Noubi Earthquake was then examined. We compared the maximum horizontal velocities for each case that had a different rupture starting point. In the case, rupture started at the center of the Nukumi Fault, while in another case, rupture started on the southeastern edge of the Umehara Fault; the scaling model showed an approximately 2.1-fold difference between these cases at observation point FKI005 of K-Net. This difference is considered to relate to the directivity effect associated with the direction of rupture

  1. Geomechanical effects on CO 2 leakage through fault zones during large-scale underground injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldi, Antonio P.; Rutqvist, Jonny; Cappa, Frédéric

    2013-12-01

    The importance of geomechanics—including the potential for faults to reactivate during large-scale geologic carbon sequestration operations—has recently become more widely recognized. However, notwithstanding the potential for triggering notable (felt) seismic events, the potential for buoyancy-driven CO 2 to reach potable groundwater and the ground surface is actually more important from public safety and storage-efficiency perspectives. In this context, this paper extends the previous studies on the geomechanical modeling of fault responses during underground carbon dioxide injection, focusing on the short-term integrity of the sealing caprock, and hence on the potential for leakage of either brine or CO 2 to reachmore » the shallow groundwater aquifers during active injection. We consider stress/strain-dependent permeability and study the leakage through the fault zone as its permeability changes during a reactivation, also causing seismicity. We analyze several scenarios related to the volume of CO 2 injected (and hence as a function of the overpressure), involving both minor and major faults, and analyze the profile risks of leakage for different stress/strain-permeability coupling functions. We conclude that whereas it is very difficult to predict how much fault permeability could change upon reactivation, this process can have a significant impact on the leakage rate. Moreover, our analysis shows that induced seismicity associated with fault reactivation may not necessarily open up a new flow path for leakage. Results show a poor correlation between magnitude and amount of fluid leakage, meaning that a single event is generally not enough to substantially change the permeability along the entire fault length. Finally, and consequently, even if some changes in permeability occur, this does not mean that the CO 2 will migrate up along the entire fault, breaking through the caprock to enter the overlying aquifer.« less

  2. Upper-Mantel Earthquakes in the Australia-Pacific Plate Boundary Zone and the Roots of the Alpine Fault

    NASA Astrophysics Data System (ADS)

    Boese, C. M.; Warren-Smith, E.; Townend, J.; Stern, T. A.; Lamb, S. H.

    2016-12-01

    Seismicity in the upper mantle in continental collision zones is relatively rare, but observed around the world. Temporary seismometer deployments have repeatedly detected mantle earthquakes at depths of 40-100 km within the Australia-Pacific plate boundary zone beneath the South Island of New Zealand. Here, the transpressive Alpine Fault constitutes the primary plate boundary structure linking subduction zones of opposite polarity farther north and south. The Southern Alps Microearthquake Borehole Array (SAMBA) has been operating continuously since November 2008 along a 50 km-long section of the central Alpine Fault, where the rate of uplift of the Southern Alps is highest. To date it has detected more than 40 small to moderate-sized mantle events (1≤ML≤3.9). The Central Otago Seismic Array (COSA) has been in operation since late 2012 and detected 15 upper mantle events along the sub-vertical southern Alpine Fault. Various mechanisms have been proposed to explain the occurrence of upper mantle seismicity in the South Island, including intra-continental subduction (Reyners 1987, Geology); high shear-strain gradients due to depressed geotherms and viscous deformation of mantle lithosphere (Kohler and Eberhart-Phillips 2003, BSSA); high strain rates resulting from plate bending (Boese et al. 2013, EPSL), and underthrusting of the Australian plate (Lamb et al. 2015, G3). Focal mechanism analysis reveals a variety of mechanisms for the upper mantle events but predominantly strike-slip and reverse faulting. In this study, we apply spectral analysis to better constrain source parameters for these mantle events. These results are interpreted in conjunction with new information about crustal structure and low-frequency earthquakes near the Moho and in light of existing velocity, attenuation and resistivity models.

  3. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    PubMed

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  4. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. Themore » Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be

  5. Wasatch fault zone, Utah - segmentation and history of Holocene earthquakes

    USGS Publications Warehouse

    Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.

    1991-01-01

    The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. The authors have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a-1, recurrence intervals of ???10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ?? 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. Evidence has been found that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval.

  6. The Pliocene-Quaternary tectonic evolution of the Cilicia and Adana basins, eastern Mediterranean: Special reference to the development of the Kozan Fault zone

    NASA Astrophysics Data System (ADS)

    Aksu, A. E.; Walsh-Kennedy, S.; Hall, J.; Hiscott, R. N.; Yaltırak, C.; Akhun, S. D.; Çifçi, G.

    2014-05-01

    A grid of high-resolution multi-channel seismic reflection profiles allows the detailed mapping of the Kozan Fault zone in the Cilicia and Adana basins. The zone is delineated by an arcuate zone consisting of several ENE-WSW and NNE-SSW striking, closely-spaced high-angle extensional faults which define an ~ 300 km long and 15-20 km-wide “lazy-S” shaped structure along the southeastern fringes of the Taurus Mountain and along the northwestern margins of the Cilicia and Adana basins. In the Cilicia Basin the zone consists of several high-angle faults which exhibit small dip separations on the M-reflector and have tip points situated mainly in the lower and middle portion of the Pliocene-Quaternary succession. In the Adana Basin a family of northeast-striking and southeast dipping extensional faults occurs along the western and northwestern margin of the basin. The faults cut down with relatively steep dip into the ~ 700 ms thick Tortonian and older Miocene successions. Multi-channel seismic reflection profiles show that three prominent seismic markers divide the uppermost Messinian-Recent successions in the Cilicia and Adana basins into three subunits: the uppermost Messinian-Lower Pliocene subunit 1C between the M- and A-reflectors, the Upper Pliocene subunit 1B between the A- and P-reflectors and the Quaternary subunit 1A between the P-reflector and the seafloor. Prominent delta lobes are identified in the seismic profiles that are correlated with the ancestral Göksu River. Isopach maps constructed using depth-converted seismic reflection profiles show clear temporal and spatial variations of the delta lobes of the Göksu River during the latest Messinian-Recent. The uppermost Messinian-Lower Pliocene delta lobe is situated furthest to the northeast whereas the youngest Quaternary lobe is situated furthest to the southwest, with 20-35 km displacement along a northeast-southwest line, which suggests a conservative estimate of 0.43-0.75 cm/yr sinistral slip for

  7. Cataclastic rocks of the San Gabriel fault—an expression of deformation at deeper crustal levels in the San Andreas fault zone

    NASA Astrophysics Data System (ADS)

    Anderson, J. Lawford; Osborne, Robert H.; Palmer, Donald F.

    1983-10-01

    The San Gabriel fault, a deeply eroded late Oligocene to middle Pliocene precursor to the San Andreas, was chosen for petrologic study to provide information regarding intrafault material representative of deeper crustal levels. Cataclastic rocks exposed along the present trace of the San Andreas in this area are exclusively a variety of fault gouge that is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote, and Fe-Ti oxide mineralogy representing the milled-down equivalent of the original rock (Anderson and Osborne, 1979; Anderson et al., 1980). Likewise, fault gouge and associated breccia are common along the San Gabriel fault, but only where the zone of cataclasis is several tens of meters wide. At several localities, the zone is extremely narrow (several centimeters), and the cataclastic rock type is cataclasite, a dark, aphanitic, and highly comminuted and indurated rock. The cataclastic rocks along the San Gabriel fault exhibit more comminution than that observed for gouge along the San Andreas. The average grain diameter for the San Andreas gouge ranges from 0.01 to 0.06 mm. For the San Gabriel cataclastic rocks, it ranges from 0.0001 to 0.007 mm. Whereas the San Andreas gouge remains particulate to the smallest grain-size, the ultra-fine grain matrix of the San Gabriel cataclasite is composed of a mosaic of equidimensional, interlocking grains. The cataclastic rocks along the San Gabriel fault also show more mineralogiec changes compared to gouge from the San Andreas fault. At the expense of biotite, amphibole, and feldspar, there is some growth of new albite, chlorite, sericite, laumontite, analcime, mordenite (?), and calcite. The highest grade of metamorphism is laumontite-chlorite zone (zeolite facies). Mineral assemblages and constrained uplift rates allow temperature and depth estimates of 200 ± 30° C and 2-5 km, thus suggesting an approximate geothermal gradient of ~50°C/km. Such elevated temperatures imply a

  8. Overview of SAFOD Phases 1 and 2: Drilling, Sampling and Measurements in the San Andreas Fault Zone at Seismogenic Depth

    NASA Astrophysics Data System (ADS)

    Zoback, M. D.; Hickman, S.; Ellsworth, W.

    2005-12-01

    In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at

  9. The influence of the fault zone width on land surface vibrations after the high-energy tremor in the "Rydułtowy-Anna" hard coal mine

    NASA Astrophysics Data System (ADS)

    Pilecka, Elżbieta; Szwarkowski, Dariusz

    2018-04-01

    In the article, a numerical analysis of the impact of the width of the fault zone on land surface tremors on the area of the "Rydułtowy - Anna" hard coal mine was performed. The analysis covered the dynamic impact of the actual seismic wave after the high-energy tremor of 7 June 2013. Vibrations on the land surface are a measure of the mining damage risk. It is particularly the horizontal components of land vibrations that are dangerous to buildings which is reflected in the Mining Scales of Intensity (GSI) of vibrations. The run of a seismic wave in the rock mass from the hypocenter to the area's surface depends on the lithology of the area and the presence of fault zones. The rock mass network cut by faults of various widths influences the amplitude of tremor reaching the area's surface. The analysis of the impact of the width of the fault zone was done for three alternatives.

  10. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, J.

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the "shear zone." Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension perpendicular to

  11. Three-dimensional models of deformation near strike-slip faults

    USGS Publications Warehouse

    ten Brink, Uri S.; Katzman, Rafael; Lin, Jian

    1996-01-01

    We use three-dimensional elastic models to help guide the kinematic interpretation of crustal deformation associated with strike-slip faults. Deformation of the brittle upper crust in the vicinity of strike-slip fault systems is modeled with the assumption that upper crustal deformation is driven by the relative plate motion in the upper mantle. The driving motion is represented by displacement that is specified on the bottom of a 15-km-thick elastic upper crust everywhere except in a zone of finite width in the vicinity of the faults, which we term the “shear zone.” Stress-free basal boundary conditions are specified within the shear zone. The basal driving displacement is either pure strike slip or strike slip with a small oblique component, and the geometry of the fault system includes a single fault, several parallel faults, and overlapping en echelon faults. We examine the variations in deformation due to changes in the width of the shear zone and due to changes in the shear strength of the faults. In models with weak faults the width of the shear zone has a considerable effect on the surficial extent and amplitude of the vertical and horizontal deformation and on the amount of rotation around horizontal and vertical axes. Strong fault models have more localized deformation at the tip of the faults, and the deformation is partly distributed outside the fault zone. The dimensions of large basins along strike-slip faults, such as the Rukwa and Dead Sea basins, and the absence of uplift around pull-apart basins fit models with weak faults better than models with strong faults. Our models also suggest that the length-to-width ratio of pull-apart basins depends on the width of the shear zone and the shear strength of the faults and is not constant as previously suggested. We show that pure strike-slip motion can produce tectonic features, such as elongate half grabens along a single fault, rotated blocks at the ends of parallel faults, or extension

  12. Major Crustal Fault Zone Trends and Their Relation to Mineral Belts in the North-Central Great Basin, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.; Williams, Jackie M.

    2007-01-01

    The Great Basin physiographic province covers a large part of the western United States and contains one of the world's leading gold-producing areas, the Carlin Trend. In the Great Basin, many sedimentary-rock-hosted disseminated gold deposits occur along such linear mineral-occurrence trends. The distribution and genesis of these deposits is not fully understood, but most models indicate that regional tectonic structures play an important role in their spatial distribution. Over 100 magnetotelluric (MT) soundings were acquired between 1994 and 2001 by the U.S. Geological Survey to investigate crustal structures that may underlie the linear trends in north-central Nevada. MT sounding data were used to map changes in electrical resistivity as a function of depth that are related to subsurface lithologic and structural variations. Two-dimensional (2-D) resistivity modeling of the MT data reveals primarily northerly and northeasterly trending narrow 2-D conductors (1 to 30 ohm-m) extending to mid-crustal depths (5-20 km) that are interpreted to be major crustal fault zones. There are also a few westerly and northwesterly trending 2-D conductors. However, the great majority of the inferred crustal fault zones mapped using MT are perpendicular or oblique to the generally accepted trends. The correlation of strike of three crustal fault zones with the strike of the Carlin and Getchell trends and the Alligator Ridge district suggests they may have been the root fluid flow pathways that fed faults and fracture networks at shallower levels where gold precipitated in favorable host rocks. The abundant northeasterly crustal structures that do not correlate with the major trends may be structures that are open to fluid flow at the present time.

  13. Coulomb Stress evolution and seismic hazard along the Xianshuihe-Xiaojiang Fault Zone of Western Sichuan, China

    NASA Astrophysics Data System (ADS)

    Shan, B.; Xiong, X.; Zheng, Y.

    2009-12-01

    The Xianshuihe-Xiaojiang fault system (XXFS) in southwestern China is a curved left-lateral strike-slip structure extending at least 1400 km in the eastern margin of the Tibetan Plateau. Fieldworks confirm that the XXFS, whose slip motion releases strain that is related to the convergence between the Indian and Eurasian plates, is one of the largest and most seismically active faults in China. The entire fault has experienced at least 35 earthquakes of M>6 since 1700, and almost all segments of the system have been the locus of major earthquakes within the historic record. Since the XXFS region is heavily populated (over 50 million people), understanding the distribution of large earthquakes in space and time in this region is crucial for improving forecasting and reducing catastrophic life and monetary losses. We investigated a sequence of twenty-five earthquakes (M≥6.5) that occurred along the XXFS since 1713, and the interaction between the historical earthquakes and the Mw7.9 Wenchuan earthquake occurred on the Longmenshan Fault last year. The layered model used in the study and relevant parameters were constrained by seismic studies. Fault rupture locations and geometries, as well as slip distributions of earthquakes were taken from field observations and seismic studies. Numerical results showed a good correlation between stress transfer, accumulation and earthquakes. Fourteen of the twenty-four earthquakes occurred after the 1713 Xundian were encouraged by the preceding earthquakes with positive stress loading. Three events occurred in the stress shadow induced by preceding events. And others occurred in the probable area with Coulomb stress increment. The triggering process on the fault zone may exist. According to our results, there are three visible earthquake gaps along the fault zone, which are consistent with the results of historical earthquake study. The seismic activity and tectonic motion on XXFS reduced the shear stress on the epicenter of M8

  14. Mid Carboniferous lamprophyres, Cobequid Fault Zone, eastern Canada, linked to sodic granites, voluminous gabbro, and albitization

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.; Papoutsa, Angeliki

    2018-01-01

    Major intra-continental shear zones developed during the later stages of continental collision in a back-arc setting are sites of prolonged magmatism. Mantle metasomatism results from both melting of subducted sediments and oceanic crust. In the Cobequid Fault Zone of the northern Appalachians, back-arc A-type granites and gabbros dated ca. 360 Ma are locally intruded by lamprophyric dykes dated ca. 335 Ma. All the lamprophyres are kersantites with biotite and albite, lesser ilmenite, titanite and fluorapatite, and minor magmatic calcite, allanite, pyrite, magnetite, quartz and K-feldspar in some samples. The lamprophyres show enrichment in Rb, Ba, K, Th and REE and classify as calc-alkaline lamprophyre on the basis of biotite and whole rock chemistry. Pb isotopes lie on a mixing line between normal mantle-derived gabbro and OIB magma. Nd isotopes range from 1.3-3.5 εNdt, a little lower than in local gabbro. Most lamprophyres have δ18O = 3.8-4.4‰. Country rock is cut by pyrite-(Mg)-chlorite veins with euhedral allanite crystals that resemble the lamprophyres mineralogically, with the Mg-chlorite representing chloritized glass. Early Carboniferous unenriched mafic dykes and minor volcanic rocks are widespread along the major active strike-slip fault zones. The lamprophyres are geographically restricted to within 10 km of a small granitoid pluton with some sodic amphibole and widespread albitization. This was displaced by early Carboniferous strike-slip faulting from its original position close to the large Wentworth Pluton, the site of mantle-derived sodic amphibole granite, a major late gabbro pluton, and a volcanic carapace several kilometres thick, previously demonstrated to be the site of mantle upwelling and metasomatism. The age of the lamprophyres implies that enriched source material in upper lithospheric mantle or lower crust was displaced 50 km by crustal scale strike-slip faulting after enrichment by the mantle upwelling before lamprophyre emplacement

  15. Plate boundary and major fault system in the overriding plate within the Shumagin gap at the Alaska-Aleutian subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Shillington, D. J.; Nedimovic, M. R.; Keranen, K. M.; Li, J.; Webb, S. C.; Kuehn, H.

    2013-12-01

    Structure in the overriding plate is one of the parameters that may increase the tsunamigenic potential of a subduction zone but also influence the seismogenic behavior and segmentation of great earthquake rupture. The Alaska-Aleutian margin is characterized by along-strike changes in plate interface coupling over relatively small distances. Here, we present trench normal multichannel seismic (MCS) profiles acquired across the Shumagin gap that has not broken in many decades and appears to be weakly coupled. The high fold, deep penetration (636 channel, 8-km long streamer, 6600 cu.in airgun source) MCS data were acquired as part of the ALEUT project. This dataset gives us critical new constraints on the interplate boundary that can be traced over ~100 km distance beneath the forearc with high variation in its reflection response with depth. These profiles also reveal the detailed upper plate fault structure and forearc morphology. Clear reflections in the overriding plate appear to delineate one or more large faults that cross the shelf and the upper slope. These faults are observed 75 km back from the trench and seem to branch at depth and connect to the plate interface within this gap at ~11 s twtt. We compare the reflective structure of these faults to that of the plate boundary and examine where it intersects the megathrust with respect of the expected downdip limit of coupling. We also compare this major structure with the seismicity recorded in this sector. The imaged fault system is associated with a large deep basin (~6s twt) that is an inherited structure formed during the pre-Aleutian period. Basins faults appear to have accommodated primarily normal motion, although folding of sediments near the fault and complicated fault geometries in the shallow section may indicate that this fault has accommodated other types of motion during its history that may reflect the stress-state at the megathrust over time. The deformation within the youngest sediment also

  16. Predictive modelling of fault related fracturing in carbonate damage-zones: analytical and numerical models of field data (Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Mannino, Irene; Cianfarra, Paola; Salvini, Francesco

    2010-05-01

    Permeability in carbonates is strongly influenced by the presence of brittle deformation patterns, i.e pressure-solution surfaces, extensional fractures, and faults. Carbonate rocks achieve fracturing both during diagenesis and tectonic processes. Attitude, spatial distribution and connectivity of brittle deformation features rule the secondary permeability of carbonatic rocks and therefore the accumulation and the pathway of deep fluids (ground-water, hydrocarbon). This is particularly true in fault zones, where the damage zone and the fault core show different hydraulic properties from the pristine rock as well as between them. To improve the knowledge of fault architecture and faults hydraulic properties we study the brittle deformation patterns related to fault kinematics in carbonate successions. In particular we focussed on the damage-zone fracturing evolution. Fieldwork was performed in Meso-Cenozoic carbonate units of the Latium-Abruzzi Platform, Central Apennines, Italy. These units represent field analogues of rock reservoir in the Southern Apennines. We combine the study of rock physical characteristics of 22 faults and quantitative analyses of brittle deformation for the same faults, including bedding attitudes, fracturing type, attitudes, and spatial intensity distribution by using the dimension/spacing ratio, namely H/S ratio where H is the dimension of the fracture and S is the spacing between two analogous fractures of the same set. Statistical analyses of structural data (stereonets, contouring and H/S transect) were performed to infer a focussed, general algorithm that describes the expected intensity of fracturing process. The analytical model was fit to field measurements by a Montecarlo-convergent approach. This method proved a useful tool to quantify complex relations with a high number of variables. It creates a large sequence of possible solution parameters and results are compared with field data. For each item an error mean value is

  17. Electrical conductivity of a locked fault: investigation of the Ganos segment of the North Anatolian Fault using three-dimensional magnetotellurics

    NASA Astrophysics Data System (ADS)

    Karaş, Mustafa; Tank, Sabri Bülent; Özaydın, Sinan

    2017-08-01

    This study attempts to reveal the fault zone characteristics of the locked Ganos Fault based on electrical resistivity studies including audio-frequency (AMT: 10,400-1 Hz) and wide-band (MT: 360-0.000538 Hz) magnetotellurics near the epicenter of the last major event, that is, the 1912 Mürefte Earthquake ( M w 7.4). The AMT data were collected at twelve stations, closely spaced from north to south, to resolve the shallow resistivity structure to 1 km depth. Subsequently, 13 wide-band MT stations were arranged to form a grid enclosing the AMT profile to decipher the deeper structure. Three-dimensional inverse modeling indicates highly conductive anomalies representing fault zone conductors along the Ganos Fault. Subsidiary faults around the Ganos Fault, which are conductive structures with individual mechanically weak features, merge into a greater damage zone, creating a wide fluid-bearing environment. This damage zone is located on the southern side of the fault and defines an asymmetry around the main fault strand, which demonstrates distributed conduit behavior of fluid flow. Ophiolitic basement occurs as low-conductivity block beneath younger formations at a depth of 2 km, where the mechanically weak to strong transition occurs. Resistive structures on both sides of the fault beneath this transition suggest that the lack of seismicity might be related to the absence of fluid pathways in the seismogenic zone.[Figure not available: see fulltext.

  18. Resistivity method contribution in determining of fault zone and hydro-geophysical characteristics of carbonate aquifer, eastern desert, Egypt

    NASA Astrophysics Data System (ADS)

    Ammar, A. I.; Kamal, K. A.

    2018-03-01

    Determination of fault zone and hydro-geophysical characteristics of the fractured aquifers are complicated, because their fractures are controlled by different factors. Therefore, 60 VESs were carried out as well as 17 productive wells for determining the locations of the fault zones and the characteristics of the carbonate aquifer at the eastern desert, Egypt. The general curve type of the recorded rock units was QKH. These curves were used in delineating the zones of faults according to the application of the new assumptions. The main aquifer was included at end of the K-curve type and front of the H-curve type. The subsurface layers classified into seven different geoelectric layers. The fractured shaly limestone and fractured limestone layers were the main aquifer and their resistivity changed from low to medium (11-93 Ω m). The hydro-geophysical properties of this aquifer such as the areas of very high, high, and intermediate fracture densities of high groundwater accumulations, salinity, shale content, porosity distribution, and recharging and flowing of groundwater were determined. The statistical analysis appeared that depending of aquifer resistivity on the water salinities (T.D.S.) and water resistivities add to the fracture density and shale content. The T.D.S. increasing were controlled by Na+, Cl-, Ca2+, Mg2+, and then (SO4)2-, respectively. The porosity was calculated and its average value was 19%. The hydrochemical analysis of groundwater appeared that its type was brackish and the arrangements of cation concentrations were Na+ > Ca2+ > Mg2+ > K+ and anion concentrations were Cl- > (SO4)2- > HCO3 - > CO3 -. The groundwater was characterized by sodium-bicarbonate and sodium-sulfate genetic water types and meteoric in origin. Hence, it can use the DC-resistivity method in delineating the fault zone and determining the hydro-geophysical characteristics of the fractured aquifer with taking into account the quality of measurements and interpretation.

  19. Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

    NASA Astrophysics Data System (ADS)

    Hearn, E. H.

    2013-12-01

    Geodetic surface velocity data show that after an energetic but brief phase of postseismic deformation, surface deformation around most major strike-slip faults tends to be localized and stationary, and can be modeled with a buried elastic dislocation creeping at or near the Holocene slip rate. Earthquake-cycle models incorporating an elastic layer over a Maxwell viscoelastic halfspace cannot explain this, even when the earliest postseismic deformation is ignored or modeled (e.g., as frictional afterslip). Models with heterogeneously distributed low-viscosity materials or power-law rheologies perform better, but to explain all phases of earthquake-cycle deformation, Burgers viscoelastic materials with extreme differences between their Maxwell and Kelvin element viscosities seem to be required. I present a suite of earthquake-cycle models to show that postseismic and interseismic deformation may be reconciled for a range of lithosphere architectures and rheologies if finite rupture length is taken into account. These models incorporate high-viscosity lithosphere optionally cut by a viscous shear zone, and a lower-viscosity mantle asthenosphere (all with a range of viscoelastic rheologies and parameters). Characteristic earthquakes with Mw = 7.0 - 7.9 are investigated, with interseismic intervals adjusted to maintain the same slip rate (10, 20 or 40 mm/yr). I find that a high-viscosity lower crust/uppermost mantle (or a high viscosity per unit width viscous shear zone at these depths) is required for localized and stationary interseismic deformation. For Mw = 7.9 characteristic earthquakes, the shear zone viscosity per unit width in the lower crust and uppermost mantle must exceed about 10^16 Pa s /m. For a layered viscoelastic model the lower crust and uppermost mantle effective viscosity must exceed about 10^20 Pa s. The range of admissible shear zone and lower lithosphere rheologies broadens considerably for faults producing more frequent but smaller

  20. Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada

    USGS Publications Warehouse

    Caine, Jonathan S.; Bruhn, R.L.; Forster, C.B.

    2010-01-01

    Outcrop mapping and fault-rock characterization of the Stillwater normal fault zone in Dixie Valley, Nevada are used to document and interpret ancient hydrothermal fluid flow and its possible relationship to seismic deformation. The fault zone is composed of distinct structural and hydrogeological components. Previous work on the fault rocks is extended to the map scale where a distinctive fault core shows a spectrum of different fault-related breccias. These include predominantly clast-supported breccias with angular clasts that are cut by zones containing breccias with rounded clasts that are also clast supported. These are further cut by breccias that are predominantly matrix supported with angular and rounded clasts. The fault-core breccias are surrounded by a heterogeneously fractured damage zone. Breccias are bounded between major, silicified slip surfaces, forming large pod-like structures, systematically oriented with long axes parallel to slip. Matrix-supported breccias have multiply brecciated, angular and rounded clasts revealing episodic deformation and fluid flow. These breccias have a quartz-rich matrix with microcrystalline anhedral, equant, and pervasively conformable mosaic texture. The breccia pods are interpreted to have formed by decompression boiling and rapid precipitation of hydrothermal fluids whose flow was induced by coseismic, hybrid dilatant-shear deformation and hydraulic connection to a geothermal reservoir. The addition of hydrothermal silica cement localized in the core at the map scale causes fault-zone widening, local sealing, and mechanical heterogeneities that impact the evolution of the fault zone throughout the seismic cycle. ?? 2010.

  1. Seismicity of the St. Lawrence paleorift faults overprinted by a meteorite impact crater: Implications for crustal strength based on new earthquake relocations in the Charlevoix Seismic Zone, Eastern Canada

    NASA Astrophysics Data System (ADS)

    Yu, H.; Harrington, R. M.; Liu, Y.; Lamontagne, M.; Pang, M.

    2015-12-01

    The Charlevoix Seismic Zone (CSZ), located along the St. Lawrence River (SLR) ~100 km downstream from Quebec City, is the most active seismic zone in eastern Canada with five historic earthquakes of M 6-7 and ~ 200 events/year reported by the Canadian National Seismograph Network. Cataloged earthquake epicenters outline two broad linear zones along the SLR with little shallow seismicity in between. Earthquakes form diffuse clusters between major dipping faults rather than concentrating on fault planes. Detailed fault geometry in the CSZ is uncertain and the effect on local seismicity of a meteorite impact structure that overprints the paleorift faults remains ambiguous. Here we relocate 1639 earthquakes occurring in the CSZ between 01/1988 - 10/2010 using the double-difference relocation method HypoDD and waveforms primarily from 7 local permanent stations. We use the layered SLR north shore velocity model from Lamontagne (1999), and travel time differences based on both catalog and cross-correlated P and S-phase picks. Of the 1639 relocated earthquakes, 1236 (75.4%) satisfied selection criteria of horizontal and vertical errors less than 2 km and 1 km respectively. Cross-sections of relocated seismicity show hypocenters along distinct active fault segments. Earthquakes located beneath the north shore of the SLR are likely correlated with the NW Gouffre fault, forming a ~10 km wide seismic zone parallel to the river, with dip angle changing to near vertical at the northern edge of the impact zone. In contrast, seismicity beneath the SLR forms a diffuse cloud within the impact structure, likely representing a highly fractured volume. It further implies that faults could be locally weak and subject to high pore-fluid pressures. Seismicity outside the impact structure defines linear structures aligning with the Charlevoix fault. Relocated events of M > 4 all locate outside the impact structure, indicating they nucleated on the NE-SW-oriented paleorift faults.

  2. Frictional and hydraulic behaviour of carbonate fault gouge during fault reactivation - An experimental study

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John

    2016-10-01

    We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional

  3. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-south Colombia oceanic margin

    NASA Astrophysics Data System (ADS)

    Collot, J.-Y.; Agudelo, W.; Ribodetti, A.; Marcaillou, B.

    2008-12-01

    Splay faults within accretionary complexes are commonly associated with the updip limit of the seismogenic zone. Prestack depth migration of a multichannel seismic line across the north Ecuador-south Colombia oceanic margin images a crustal splay fault that correlates with the seaward limit of the rupture zone of the 1958 (Mw 7.7) tsunamogenic subduction earthquake. The splay fault separates 5-6.6 km/s velocity, inner wedge basement rocks, which belong to the accreted Gorgona oceanic terrane, from 4 to 5 km/s velocity outer wedge rocks. The outer wedge is dominated by basal tectonic erosion. Despite a 3-km-thick trench fill, subduction of 2-km-high seamount prevented tectonic accretion and promotes basal tectonic erosion. The low-velocity and poorly reflective subduction channel that underlies the outer wedge is associated with the aseismic, décollement thrust. Subduction channel fluids are expected to migrate upward along splay faults and alter outer wedge rocks. Conversely, duplexes are interpreted to form from and above subducting sediment, at ˜14- to 15-km depths between the overlapping seismogenic part of the splay fault and the underlying aseismic décollement. Coeval basal erosion of the outer wedge and underplating beneath the apex of inner wedge control the margin mass budget, which comes out negative. Intraoceanic basement fossil listric normal faults and a rift zone inverted in a flower structure reflect the evolution of the Gorgona terrane from Cretaceous extension to likely Eocene oblique compression. The splay faults could have resulted from tectonic inversion of listric normal faults, thus showing how inherited structures may promote fluid flow across margin basement and control seismogenesis.

  4. Fault architecture and deformation processes within poorly lithified rift sediments, Central Greece

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Bense, Victor; Turner, Jenni

    2011-11-01

    Deformation mechanisms and resultant fault architecture are primary controls on the permeability of faults in poorly lithified sediments. We characterise fault architecture using outcrop studies, hand samples, thin sections and grain-size data from a minor (1-10 m displacement) normal-fault array exposed within Gulf of Corinth rift sediments, Central Greece. These faults are dominated by mixed zones with poorly developed fault cores and damage zones. In poorly lithified sediment deformation is distributed across the mixed zone as beds are entrained and smeared. We find particulate flow aided by limited distributed cataclasis to be the primary deformation mechanism. Deformation may be localised in more competent sediments. Stratigraphic variations in sediment competency, and the subsequent alternating distributed and localised strain causes complexities within the mixed zone such as undeformed blocks or lenses of cohesive sediment, or asperities at the mixed zone/protolith boundary. Fault tip bifurcation and asperity removal are important processes in the evolution of these fault zones. Our results indicate that fault zone architecture and thus permeability is controlled by a range of factors including lithology, stratigraphy, cementation history and fault evolution, and that minor faults in poorly lithified sediment may significantly impact subsurface fluid flow.

  5. Rapid mapping of ultrafine fault zone topography with structure from motion

    USGS Publications Warehouse

    Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly

    2014-01-01

    Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.

  6. What electrical measurements can say about changes in fault systems.

    PubMed Central

    Madden, T R; Mackie, R L

    1996-01-01

    Earthquake zones in the upper crust are usually more conductive than the surrounding rocks, and electrical geophysical measurements can be used to map these zones. Magnetotelluric (MT) measurements across fault zones that are parallel to the coast and not too far away can also give some important information about the lower crustal zone. This is because the long-period electric currents coming from the ocean gradually leak into the mantle, but the lower crust is usually very resistive and very little leakage takes place. If a lower crustal zone is less resistive it will be a leakage zone, and this can be seen because the MT phase will change as the ocean currents leave the upper crust. The San Andreas Fault is parallel to the ocean boundary and close enough to have a lot of extra ocean currents crossing the zone. The Loma Prieta zone, after the earthquake, showed a lot of ocean electric current leakage, suggesting that the lower crust under the fault zone was much more conductive than normal. It is hard to believe that water, which is responsible for the conductivity, had time to get into the lower crustal zone, so it was probably always there, but not well connected. If this is true, then the poorly connected water would be at a pressure close to the rock pressure, and it may play a role in modifying the fluid pressure in the upper crust fault zone. We also have telluric measurements across the San Andreas Fault near Palmdale from 1979 to 1990, and beginning in 1985 we saw changes in the telluric signals on the fault zone and east of the fault zone compared with the signals west of the fault zone. These measurements were probably seeing a better connection of the lower crust fluids taking place, and this may result in a fluid flow from the lower crust to the upper crust. This could be a factor in changing the strength of the upper crust fault zone. PMID:11607664

  7. A possible source mechanism of the 1946 Unimak Alaska far-field tsunami, uplift of the mid-slope terrace above a splay fault zone

    USGS Publications Warehouse

    von Huene, Roland E.; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter

    2016-01-01

    In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of “tsunami” earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.

  8. A Possible Source Mechanism of the 1946 Unimak Alaska Far-Field Tsunami: Uplift of the Mid-Slope Terrace Above a Splay Fault Zone

    NASA Astrophysics Data System (ADS)

    von Huene, Roland; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter

    2016-12-01

    In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of "tsunami" earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.

  9. Post-Seismic Crustal Deformation Following The 1999 Izmit Earthquake, Western Part Of North Anatolian Fault Zone, Turkey

    NASA Astrophysics Data System (ADS)

    Gurkan, O.; Ozener, H.

    2004-12-01

    The North Anatolian Fault is an about 1500 km long, extending from the Karliova to the North Aegean. Turkey is a natural laboratory with high tectonic activity caused by the relative motion of the Eurasian, Arabian and Anatolian plates. Western part of Turkey and its vicinity is a seismically active area. Since 1972 crustal deformation has been observed by various kinds of geodetic measurements in the area. Three GPS networks were installed in this region by Geodesy Department of Kandilli Observatory and Earthquake Research Institute( KOERI ) of Bogazici University: (1) Iznik Network, installed on the Iznik-Mekece fault zone, seismically low active part, (2) Sapanca Network, installed on the Izmit-Sapanca fault zone, seismically active part, (3) Akyazi Network, installed on their intersection area, the Mudurnu fault zone. First period observations were performed by using terrestrial methods in 1990 and these observations were repeated annually until 1993. Since 1994, GPS measurements have been carried out at the temporary and permanent points in the area and the crustal movements are being monitored. Horizontal deformations, which have not been detected by terrestrial methods, were determined from the results of GPS measurements. A M=7.4 earthquake hit Izmit, northern Turkey, on August 17, 1999. After this earthquake many investigations have been started in the region. An international project has been performed with the collaboration of Massachussets Institute of Technology, Turkish General Command of Mapping, Istanbul Technical University, TUBITAK-Marmara Research Center and Geodesy Department of KOERI. Postseismic movements have been observed by the region-wide network. A GPS network including 49 well spread points in Marmara region was observed twice a year between 1999 and 2003 years. During these surveys, another network with 6 points has been formed by using 2 points from each 3 microgeodetic networks on NAFZ with appropriate coverage and geometry. These

  10. Structural setting and kinematics of Nubian fault system, SE Western Desert, Egypt: An example of multi-reactivated intraplate strike-slip faults

    NASA Astrophysics Data System (ADS)

    Sakran, Shawky; Said, Said Mohamed

    2018-02-01

    Detailed surface geological mapping and subsurface seismic interpretation have been integrated to unravel the structural style and kinematic history of the Nubian Fault System (NFS). The NFS consists of several E-W Principal Deformation Zones (PDZs) (e.g. Kalabsha fault). Each PDZ is defined by spectacular E-W, WNW and ENE dextral strike-slip faults, NNE sinistral strike-slip faults, NE to ENE folds, and NNW normal faults. Each fault zone has typical self-similar strike-slip architecture comprising multi-scale fault segments. Several multi-scale uplifts and basins were developed at the step-over zones between parallel strike-slip fault segments as a result of local extension or contraction. The NNE faults consist of right-stepping sinistral strike-slip fault segments (e.g. Sin El Kiddab fault). The NNE sinistral faults extend for long distances ranging from 30 to 100 kms and cut one or two E-W PDZs. Two nearly perpendicular strike-slip tectonic regimes are recognized in the NFS; an inactive E-W Late Cretaceous - Early Cenozoic dextral transpression and an active NNE sinistral shear.

  11. Probing the frontal deformation zone of the Chihshang Fault with boreholes and high-resolution electrical resistivity imaging methods: A case study at the Dapo site in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Ping-Yu; Huang, Wen-Jeng; Chen, Chien-Chih; Hsu, Han-lun; Yen, I.-Chin; Ho, Gong-Ruei; Lee, Jian-Cheng; Lu, Shih-Ting; Chen, Po-Tsun

    2018-06-01

    Not only direct fault ruptures but also later mass movement may result in complicated frontal deformation of the faults. Consequently, the deformation front or the contacts between the unconsolidated materials from the hanging wall and footwall of the thrust fault may indicate the toe of the mass movement instead of the actual fault zone. In this study, we used a combination of surface electrical resistivity imaging methods and borehole records in order to investigate the geometries of the structures in the frontal deformation zone of the Chihshang Fault at the Dapo elementary school. From the cores, we observed three different geological components at the Dapo site: the conductive Lichi mélange of the hanging wall, the colluvial gravels and the underlying fluvial-gravel layer at the footwall. The resistivity images from two parallel survey lines reveal that the position where the fault trace was thought to be is actually the toe of the slumping body's surface ruptures consisting of materials from the Lichi mélange. On the basis of the resistivity images, we also found that the actual fault plane is located on the southeastern side of the resistivity survey line near the hilltop. As a result, we conclude that mass movement induced by the inter-seismic creeping, not direct faulting, is the main factor affecting the frontal deformation zone of the Chihshang fault at the Dapo site.

  12. Late Quaternary history of the Owens Valley fault zone, eastern California, and surface rupture associated with the 1872 earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beanland, S.; Clark, M.M.

    1993-04-01

    The right-lateral Owens Valley fault zone (OVFZ) in eastern California extends north about 100 km from near the northwest shore of Owens Lake to beyond Big Pine. It passes through Lone Pine near the eastern base of the Alabama Hills and follows the floor of Owens Valley northward to the Poverty Hills, where it steps 3 km to the left and continues northwest across Crater Mountain and through Big Pine. Data from one site suggest an average net slip rate for the OVFZ of 1.5 [+-] 1 mm/yr for the past 300 ky. Several other sites yield an average Holocenemore » net slip rate of 2 [+-] 1 mm/yr. The OVFZ apparently has experienced three major Holocene earthquakes. The minimum average recurrence interval is 5,000 years at the subsidiary Lone Pine fault, whereas it is 3,300 to 5,000 years elsewhere along the OVFZ. The prehistoric earthquakes are not dated, so an average recurrence interval need not apply. However, roughly equal (characteristic) displacement apparently happened during each Holocene earthquake. The Owens Valley fault zone accommodates some of the relative motion (dextral shear) between the North American and Pacific plates along a discrete structure. This shear occurs in the Walker Lane belt of normal and strike-slip faults within the mainly extensional Basin and Range Province. In Owens Valley displacement is partitioned between the OVFZ and the nearby, subparallel, and purely normal range-front faults of the Sierra Nevada. Compared to the OVFZ, these range-front normal faults are very discontinuous and have smaller Holocene slip rates of 0.1 to 0.8 mm/yr, dip slip. Contemporary activity on adjacent faults of such contrasting styles suggests large temporal fluctuations in the relative magnitudes of the maximum and intermediate principal stresses while the extension direction remains consistently east-west.« less

  13. Development of fluid overpressures in crustal faults and implications for earthquakes mechanics

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Cappa, Frédéric; Faulkner, Daniel; Armitage, Peter; Blake, Oshaine; Fabbri, Olivier

    2013-04-01

    The development and maintenance of fluid overpressures strongly influence the mechanical behavior of the crust and especially crustal fault zones. The mechanisms allowing fluid pressure build-up are still open questions, and their influence on tectonic and fault weakening processes remain unclear. The determination of the hydraulic and mechanical properties of crustal fault zone elements is a key aspect to improve our understanding of the fluid-tectonic interactions and more particularly the role of fluids in fault mechanics and earthquake triggering. Here we address this question combining geological observations, laboratory experiments and hydromechanical models of an active crustal fault-zone in the Ubaye-Argentera area (southeastern France). Previous studies showed that the fluids located in the fault zone developed overpressures between 7 and 26 MPa, that triggered intense seismic swarms (i.e. 16,000 events in 2003-2004) (Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012). The fault-zone studied here is located in the Argentera external crystalline massif and is connected to regional NW-SE steeply-dipping dextral strike-slip faults with an offset of several kilometers. The fault zone cuts through migmatitic gneisses composed of quartz, K-feldspar, plagioclase, biotite and minor muscovite. It exposes several anastomosed core zones surrounded by damage zones with a pluri-decametric total width. The core zones are made up of centimetric to pluridecimetric phyllosilicate-rich gouge layers while the damage zones are composed of pluri-metric phyllonitic rock derived from mylonite. The permeability and elastic moduli of the host rock, damage zone and fault core were measured from plugs with a diameter of 20 mm and lengths between 26 to 51 mm, using a high-pressure hydrostatic fluid-flow apparatus. Measurements were made with confining pressures ranging from 30 to 210 MPa and using argon pore fluid pressure of 20 MPa. Data show a variation of the

  14. Deformation and Oil Migration Along the Active Newport-Inglewood Fault Zone, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Sample, J. C.

    2006-12-01

    Deformation bands occur in an outcrop of a petroleum-bearing, sandstone-rich unit of the Monterey Formation along the active Newport-Inglewood fault zone (NIFZ), near Corona del Mar, California. The deformation bands likely developed in a damage zone associated with a strand of the NIFZ. The bands appear to have formed in poorly lithified sandstone. They are relatively oil-free whereas the matrix sandstone contains oil in pore space. The deformation bands acted as baffles to flow, but continuing deformation likely breached permeability barriers over time. Thus the bands did not completely isolate compartments from oil migration, but similar structures in the subsurface would likely slow the rate of production in reservoirs. The network of bands at Corona del Mar forms a mesh with band intersection lines lying parallel to the trend of the NIFZ (northwest). This geometry formed as continuing deformation in the NIFZ rotated early bands into unfavorable orientations for continuing deformation, and new bands formed at high angles to the first set. Permeability in this setting is likely to have been anisotropic, higher parallel to strike of the NIFZ and lower vertically and perpendicular to the strike of the fault zone. One unique type of deformation band found here formed by dilation and early oil migration along fractures, and consequent carbonate cementation along fracture margins. These are thin, planar zones of oil 1 - 2 mm thick sandwiched between parallel, carbonate-cemented, positively weathering ribs. These bands appear to represent early oil migration by hydrofracture. Based on crosscutting relationships between structures and cements, there are three distinct phases of oil migration: early migration along discrete hydrofractures; dominant pore migration associated with periodic breaching of deformation bands; and late migration along open fractures, some several centimeters in width. This sequence may be representative of migration histories along the NIFZ in

  15. Neotectonic reactivation of shear zones and implications for faulting style and geometry in the continental margin of NE Brazil

    NASA Astrophysics Data System (ADS)

    Bezerra, F. H. R.; Rossetti, D. F.; Oliveira, R. G.; Medeiros, W. E.; Neves, B. B. Brito; Balsamo, F.; Nogueira, F. C. C.; Dantas, E. L.; Andrades Filho, C.; Góes, A. M.

    2014-02-01

    The eastern continental margin of South America comprises a series of rift basins developed during the breakup of Pangea in the Jurassic-Cretaceous. We integrated high resolution aeromagnetic, structural and stratigraphic data in order to evaluate the role of reactivation of ductile, Neoproterozoic shear zones in the deposition and deformation of post-rift sedimentary deposits in one of these basins, the Paraíba Basin in northeastern Brazil. This basin corresponds to the last part of the South American continent to be separated from Africa during the Pangea breakup. Sediment deposition in this basin occurred in the Albian-Maastrichtian, Eocene-Miocene, and in the late Quaternary. However, our investigation concentrates on the Miocene-Quaternary, which we consider the neotectonic period because it encompasses the last stress field. This consisted of an E-W-oriented compression and a N-S-oriented extension. The basement of the basin forms a slightly seaward-tilted ramp capped by a late Cretaceous to Quaternary sedimentary cover ~ 100-400 m thick. Aeromagnetic lineaments mark the major steeply-dipping, ductile E-W- to NE-striking shear zones in this basement. The ductile shear zones mainly reactivated as strike-slip, normal and oblique-slip faults, resulting in a series of Miocene-Quaternary depocenters controlled by NE-, E-W-, and a few NW-striking faults. Faulting produced subsidence and uplift that are largely responsible for the present-day morphology of the valleys and tablelands in this margin. We conclude that Precambrian shear zone reactivation controlled geometry and orientation, as well as deformation of sedimentary deposits, until the Neogene-Quaternary.

  16. Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Henrys, S.; Pecher, I.; Wallace, L.; Klaeschen, D.

    2016-12-01

    Prestack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure, and seismic velocities resolved to ˜14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration, and short-term geodetically determined slow slip events. The subduction interface is a shallow dipping thrust at <7 km depth near the trench and steps down to 14 km depth along an ˜18 km long ramp, beneath Porangahau Ridge. This apparent step in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, updip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid-rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip.

  17. CO2/Brine transport into shallow aquifers along fault zones.

    PubMed

    Keating, Elizabeth H; Newell, Dennis L; Viswanathan, Hari; Carey, J W; Zyvoloski, G; Pawar, Rajesh

    2013-01-02

    Unintended release of CO(2) from carbon sequestration reservoirs poses a well-recognized risk to groundwater quality. Research has largely focused on in situ CO(2)-induced pH depression and subsequent trace metal mobilization. In this paper we focus on a second mechanism: upward intrusion of displaced brine or brackish-water into a shallow aquifer as a result of CO(2) injection. Studies of two natural analog sites provide insights into physical and chemical mechanisms controlling both brackish water and CO(2) intrusion into shallow aquifers along fault zones. At the Chimayó, New Mexico site, shallow groundwater near the fault is enriched in CO(2) and, in some places, salinity is significantly elevated. In contrast, at the Springerville, Arizona site CO(2) is leaking upward through brine aquifers but does not appear to be increasing salinity in the shallow aquifer. Using multiphase transport simulations we show conditions under which significant CO(2) can be transported through deep brine aquifers into shallow layers. Only a subset of these conditions favor entrainment of salinity into the shallow aquifer: high aspect-ratio leakage pathways and viscous coupling between the fluid phases. Recognition of the conditions under which salinity is favored to be cotransported with CO(2) into shallow aquifers will be important in environmental risk assessments.

  18. Cold seeps and splay faults on Nankai margin

    NASA Astrophysics Data System (ADS)

    Henry, P.; Ashi, J.; Tsunogai, U.; Toki, T.; Kuramoto, S.; Kinoshita, M.; Lallemant, S. J.

    2003-04-01

    Cold seeps (bacterial mats, specific fauna, authigenic carbonates) are common on the Nankai margin and considered as evidence for seepage of methane bearing fluids. Camera and submersible surveys performed over the years have shown that cold seeps are generally associated with active faults. One question is whether part of the fluids expelled originate from the seismogenic zone and migrate along splay faults to the seafloor. The localisation of most cold seeps on the hanging wall of major thrusts may, however, be interpreted in various ways: (a) footwall compaction and diffuse flow (b) fluid channelling along the fault zone at depths and diffuse flow near the seafloor (c) erosion and channelling along permeable strata. In 2002, new observations and sampling were performed with submersible and ROV (1) on major thrusts along the boundary between the Kumano forearc basin domain and the accretionary wedge domain, (2) on a fault affecting the forearc (Kodaiba fault), (3) on mud volcanoes in the Kumano basin. In area (1) tsunami and seismic inversions indicate that the targeted thrusts are in the slip zone of the To-Nankai 1944 earthquakes. In this area, the largest seep zone, continuous over at least 2 km, coincides with the termination of a thrust trace, indicating local fluid channelling along the edge of the fault zone. Kodaiba fault is part of another splay fault system, which has both thrusting and strike-slip components and terminates westward into an en-echelon fold system. Strong seepage activity with abundant carbonates was found on a fold at the fault termination. One mud volcano, rooted in one of the en-echelon fold, has exceptionally high seepage activity compared with the others and thick carbonate crusts. These observations suggest that fluid expulsion along fault zones is most active at fault terminations and may be enhanced during fault initiation. Preliminary geochemical results indicate signatures differ between seep sites and suggests that the two

  19. Quaternary tectonic faulting in the Eastern United States

    USGS Publications Warehouse

    Wheeler, R.L.

    2006-01-01

    Paleoseismological study of geologic features thought to result from Quaternary tectonic faulting can characterize the frequencies and sizes of large prehistoric and historical earthquakes, thereby improving the accuracy and precision of seismic-hazard assessments. Greater accuracy and precision can reduce the likelihood of both underprotection and unnecessary design and construction costs. Published studies proposed Quaternary tectonic faulting at 31 faults, folds, seismic zones, and fields of earthquake-induced liquefaction phenomena in the Appalachian Mountains and Coastal Plain. Of the 31 features, seven are of known origin. Four of the seven have nontectonic origins and the other three features are liquefaction fields caused by moderate to large historical and Holocene earthquakes in coastal South Carolina, including Charleston; the Central Virginia Seismic Zone; and the Newbury, Massachusetts, area. However, the causal faults of the three liquefaction fields remain unclear. Charleston has the highest hazard because of large Holocene earthquakes in that area, but the hazard is highly uncertain because the earthquakes are uncertainly located. Of the 31 features, the remaining 24 are of uncertain origin. They require additional work before they can be clearly attributed either to Quaternary tectonic faulting or to nontectonic causes. Of these 24, 14 features, most of them faults, have little or no published geologic evidence of Quaternary tectonic faulting that could indicate the likely occurrence of earthquakes larger than those observed historically. Three more features of the 24 were suggested to have had Quaternary tectonic faulting, but paleoseismological and other studies of them found no evidence of large prehistoric earthquakes. The final seven features of uncertain origin require further examination because all seven are in or near urban areas. They are the Moodus Seismic Zone (Hartford, Connecticut), Dobbs Ferry fault zone and Mosholu fault (New York

  20. Late Quaternary Surface Displacement Across a Normal-Fault Structural Boundary on the Northern Lost River Fault Zone (Idaho, USA)

    NASA Astrophysics Data System (ADS)

    DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.

    2017-12-01

    In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have