Sample records for kalda meelis vainu

  1. Occultation of 2UCAC 42376428 by (423) Diotima on 2005 March 06

    NASA Astrophysics Data System (ADS)

    Vasundhara, R.; Kuppuswamy, K.; Ramamoorthy, S.; Velu, C.; Venkataramana, A. K.

    2006-03-01

    Observations of the occultation of the star 2UCAC 42376428 by (423) Diotima on 2005 March 06 at the Vainu Bappu Observatory are reported. The observed mid time of the event at 15:12:25.1 UT occurred 3.4 s later than the predicted time but within the 1 uncertainty of 4.3 s of the predictions by IOTA. The duration of the event of 4.2 s was found to be shorter than the predictions even allowing for a one sigma uncertainty in the impact parameter. This implies a narrower projected width of the asteroid along the occultation track at the time of the event.

  2. VizieR Online Data Catalog: BVR photometry of EPIC 211957146 (Sriram+, 2017)

    NASA Astrophysics Data System (ADS)

    Sriram, K.; Malu, S.; Choi, C. S.; Vivekananda Rao, P.

    2017-08-01

    Photometric observations of the variable EPIC 211957146 in the R band were taken using the IUCAA-Girawali Observatory (IGO) 2m telescope from 2015 February 5-22, for 5 nights (specifications of IGO 2m telescope CCD are as discussed in Sriram et al. 2016AJ....151...69S). An exposure time of 20-30s was given for imaging. B and V band observations were taken from the JCBT 1.3m telescope at Vainu Bappu Observatory (VBO) during 2016 February 3-8 and 2016 March 25-April 3 for a total of 7 nights. The JCBT 1.3m DFM telescope at VBO uses a 2K*4K UKATC CCD having a gain of 0.745e-/ADU and a read out noise of 4.2e-. The plate scale is 0.3arcsec/pixel resulting in an image of 10'*20' and images of the source in the B and V bands were taken with an integration time of 120s. Differential photometry was performed on the variable, with the comparison and check stars (of similar brightness) lying close to the variable. This source was also observed by the Kepler K2 mission Campaign 5, and the data were acquired from the MAST portal and the NASA Exoplanet Archive. K2 campaign 5 monitored the sky for a duration of ~74days and was fixed upon a single boresight position of 08h40m38s, +16°49'47'' starting from 2015 April 27 to July 10. Spectroscopic observation of the variable was performed during the nights of 2016 January 29-30 using the 2m Himalaya Chandra Telescope (HCT, IAO) equipped with the Himalaya Faint Object Spectrograph Camera (HFOSC) having a 2K*4K CCD. Spectra were obtained with an exposure time of 1800-2700s for both variable and spectrophotometric standard stars (BD+08 2015). A few spectra were also taken on 2016 February 1 using the Optomechanics Research spectrograph mounted on the 2.3m Vainu Bappu Telescope using a 1K*1K CCD. A 600lines/mm grating spanning a wavelength range of 2000-8000Å with a dispersion of 2.6Å/pixel and a resolution of ~5.3Å was used. The same spectrophotometric standard as before was used for observation, and an exposure time of 2700s was

  3. Little Ice Age Summer Temperatures on Pindos Mountains, Greece, From a 750 Year Long Pinus Nigra Tree-Ring Chronology

    NASA Astrophysics Data System (ADS)

    Koutavas, A.; Dimitrakopoulos, A. P.

    2015-12-01

    We present a 750-year long tree-ring chronology from black pines (Pinus nigra) in Valia Kalda National Park, Pindos Mountains, Greece. The chronology shows a strong climate signal which consists of significant negative correlation (R=-0.5) with summer temperature (Jun-Jul-Aug-Sep), and positive correlation with summer precipitation. We exploit these relationships to reconstruct summer climate from ~1250 CE to present. In particular we investigate the character of the Little Ice Age (LIA) on mountainous Greece. We find evidence for cooler/wetter summers during the 18th and 19th centuries, but warmer/drier summers during the 14th through 17th centuries, during some of the coldest periods of the LIA in Northern Europe including the Maunder Minimum. This counter-intuitive pattern suggests the LIA had distinct signatures in the Easter Mediterranean, diverging from those of Northern Europe. The temperature pattern reconstructed here is remarkably similar to a recent reconstruction of summer temperatures from maximum latewood density (MXD) of Pinus heldreichii on Mount Olympus, just 150 km east of our site. However, because of the ambivalence of the climate signal with respect to temperature vs. precipitation in both of these reconstructions, there remains uncertainty as to whether the LIA was primarily warm, or dry, or some combination. We advocate for further reconstructions of LIA climate in the Balkan Peninsula and Eastern Mediterranean to explore relationships with Northern Europe and elucidate the broader climatic pattern and dynamical connections.

  4. Asteroseismology of RXJ 2117+3412, the hottest pulsating PG 1159 star

    NASA Astrophysics Data System (ADS)

    Vauclair, G.; Moskalik, P.; Pfeiffer, B.; Chevreton, M.; Dolez, N.; Serre, B.; Kleinman, S. J.; Barstow, M.; Sansom, A. E.; Solheim, J.-E.; Belmonte, J. A.; Kawaler, S. D.; Kepler, S. O.; Kanaan, A.; Giovannini, O.; Winget, D. E.; Watson, T. K.; Nather, R. E.; Clemens, J. C.; Provencal, J.; Dixson, J. S.; Yanagida, K.; Nitta Kleinman, A.; Montgomery, M.; Klumpe, E. W.; Bruvold, A.; O'Brien, M. S.; Hansen, C. J.; Grauer, A. D.; Bradley, P. A.; Wood, M. A.; Achilleos, N.; Jiang, S. Y.; Fu, J. N.; Marar, T. M. K.; Ashoka, B. N.; Meĭstas, E. G.; Chernyshev, A. V.; Mazeh, T.; Leibowitz, E.; Hemar, S.; Krzesiński, J.; Pajdosz, G.; Zoła, S.

    2002-01-01

    The pulsating PG 1159 planetary nebula central star RXJ 2117+3412 has been observed over three successive seasons of a multisite photometric campaign. The asteroseismological analysis of the data, based on the 37 identified l=1 modes among the 48 independent pulsation frequencies detected in the power spectrum, leads to the derivation of the rotational splitting, the period spacing and the mode trapping cycle and amplitude, from which a number of fundamental parameters can be deduced. The average rotation period is 1.16±0.05 days. The trend for the rotational splitting to decrease with increasing periods is incompatible with a solid body rotation. The total mass is 0.56+0.02-0.04 Msolar and the He-rich envelope mass fraction is in the range 0.013-0.078 M*. The luminosity derived from asteroseismology is log(L/Lsolar)= 4.05 +0.23-0.32 and the distance 760 +230-235 pc. At such a distance, the linear size of the planetary nebulae is 2.9±0.9 pc. The role of mass loss on the excitation mechanism and its consequence on the amplitude variations is discussed. Based on data obtained in observing time allocated by the Bernard Lyot Telescope, INSU/CNRS, France, the TCS at Teide Observatory, Tenerife, Spain, the INT and JKT Telescopes at Roque de Los Muchachos Observatory, La Palma, Spain, the Laboratorio Nacional de Astrofisica/CNPq, Brazil, the McDonal Observatory, Texas, USA, the Steward Observatory, Arizona, USA, the Mauna Kea Observatory, University of Hawaii, USA, the Mount Stromlo and Siding Spring Observatory, Australia, the Beijing Observatory, China, the Vainu Bappu Observatory, India, the Maidanak Observatory, Uzbekistan, the Wise Observatory, Israel, and the Suhora Observatory, Poland.

  5. Stakeholder analysis of perceived relevance of connectivity - the implication to your research

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Müller, Eva Nora Nora; Fernández-Getino, Ana Patricia; José Marqués, María; Vericat, Damià; Dugodan, Recep; Kapovic, Marijana; Ljusa, Melisa; Ferreira, Carla Sofia; Cavalli, Marco; Marttila, Hannu; Broja, Manuel Esteban Lucas; Święchowicz, Jolanta; Zumr, David

    2016-04-01

    conducting interview with a stakeholder: Charles Bielders (Catholic University Louvain, Belgium), Frédéric Darboux (Department of Soil Science Orléans, INRA, France), Dragana Dordevic (Centre of Chemistry, University of Belgrade, Serbia), Tobias Heckmann (Catholic University of Eichstätt-Ingolstadt, Germany), Anna Kidová (Institute of Geography, Slovak Academy of Sciences, Slovakia), Tobias Krüger (Integrative Research Institute on Transformations of Human-Environment Systems, Humboldt University, Germany), Carly Maynard (Department of Geography and the Lived Environment, University of Edinburgh, UK), Eva Mockler, (School of Civil, Structural and Environmental Engineering , University College Dublin, Ireland), Tony Parsons, (Department of Geography, University Sheffield, UK), Thorunn Petursdottir (RECARE, Soil Conservation Service of Iceland, Iceland), Ronald Pöppel (Institute of Geography and Regional Research, University Vienna, Austria), Jerzy Rejman (Institute of Agronomy, Polish Academy of Sciences, Poland), Jose López-Tarazón (Institute of Earth and Environmental Sciences, University of Potsdam, Germany), Sophie Tindale (Department of Geography, University, Durham, UK), Brigitta Tóth (Department of Crop Production and Soil Sciences, Pannonian University, Hungary) and Marco Vainu (Institute of Ecology, Tallinn University, Estonia). The project was supported by COST-STSM-ECOST-STSM-ES1306-011215-063624.

  6. Does canopy mean N concentration explain differences in light use efficiency in 14 eddy-covariance sites?

    NASA Astrophysics Data System (ADS)

    Peltoniemi, Mikko; Pulkkinen, Minna; Kolari, Pasi; Mäkelä, Annikki

    2010-05-01

    . Mean growing season VPD was the only climatic variable which correlated significantly with the largest actual LUE; none of them correlated with potential LUE. Inclusion of nitrogen in the Prelued-model structure did not improve the goodness of fit of the model. According to our results LUE correlates with mean canopy N concentration. The correlation of mean VPD with the largest actual LUE can also be explained with the model accounting for daily variation in climate, as was made with Prelued-model for the potential LUE. Further studies utilising seasonal values of canopy N are called upon. *Acknowledgements: Eero Nikinmaa, Pertti Hari, Timo Vesala, Tuomas Laurila, Fredrik Lagergren, Meelis Mölder, Anders Lindroth, Thomas Grünwald, Christian Bernhofer, Denis Loustau, Paul Berbigier, Beverly Law, Alison Dunn, Steve Wofsy, Torbjörn Johansson, Torben Christensen, Terry Callaghan, Hans Verbeeck, Remko Duursma, Leonardo Montagnani, Dario Papale, Andreas Ibrom, Ebba Dellwik, Kim Pilegaard, Kentaro Takagi, Eva van Gorsel, Heather Keith, Sonia Wharton, Matthias Falk, Kya Tha Paw U, Matt Schroeder, Jon Lloyd

  7. Introduction

    NASA Astrophysics Data System (ADS)

    Narlikar, J. V.; Sathyaprakash, B. S.

    2014-03-01

    The ICGC Meetings: 1987-2011 When India became an independent nation in 1947, the presence of Jawaharlal Nehru on the scene, as the Prime Minister was a fortunate circumstance. For, Nehru was a visionary, who believed that the future of the new nation should be guided by science and technology (S & T), and so with like-minded scientists like, Shanti Swarup Bhatnagar, Homi Bhabha, Meghnad Saha, and Daulatsingh Kothari in leading positions, Nehru set about creating an extensive infrastructure for S & T. The initiatives taken in and around 1947 began to yield dividends in a couple of decades, and by the late 60s and early 70s, major S & T organizations and associated trained human resources were making significant contributions to the country's development, both material and intellectual. Amongst these may be included, the creation of various scientific societies devoted to specific subjects. These came in response to the urge of scientists to meet as a group for discussions in their fields of research. So, it was in 1969, a number of research workers in the field of general relativity and gravitation (GRG), who had gathered for a workshop in Ahmedabad, resolved to form a society for GRG. The initiative was taken by P C Vaidya, who pointed out the advantages of forming such a recognized group, mentioning that the international community of workers in GRG had already formed such a society. The Indian Association for General Relativity and Gravitation (IAGRG), thus, came up in 1969 with the veteran relativist V V Narlikar, as its first President. Some three years later, the astronomical community responding to a similar urge, formed the Astronomical Society of India (ASI), under the presidency of Vainu Bappu, the Founder Director of the Indian Institute of Astrophysics, Bangalore. Since the days of discovery of quasars in 1963, there has been an alliance between gravitation theorists and astrophysicists, resulting in the Texas Symposia, which are held once every two