Sample records for kallikrein-related peptidases klks

  1. Overview of tissue kallikrein and kallikrein-related peptidases in breast cancer.

    PubMed

    Figueroa, Carlos D; Molina, Luis; Bhoola, Kanti D; Ehrenfeld, Pamela

    2018-06-19

    The kallikrein family comprises tissue kallikrein and 14 kallikrein-related peptidases (KLKs) recognized as a subgroup of secreted trypsin- or chymotrypsin-like serine proteases. KLKs are expressed in many cellular types where they regulate important physiological activities such as semen liquefaction, immune response, neural development, blood pressure, skin desquamation and tooth enamel formation. Tissue kallikrein, the oldest member and kinin-releasing enzyme, and KLK3/PSA, a tumor biomarker for prostate cancer are the most prominent components of the family. Additionally, other KLKs have shown an abnormal expression in neoplasia, particularly in breast cancer. Thus, increased levels of some KLKs may increase extracellular matrix degradation, invasion and metastasis; other KLKs modulate cell growth, survival and angiogenesis. On the contrary, KLKs can also inhibit angiogenesis and produce tumor suppression. However, there is a lack of knowledge on how KLKs are regulated in tumor microenvironment by molecules present at the site, namely cytokines, inflammatory mediators and growth factors. Little is known about the signaling pathways that control expression/secretion of KLKs in breast cancer, and further how activation of PAR receptors may contribute to functional activity in neoplasia. A better understanding of these molecular events will allow us to consider KLKs as relevant therapeutic targets for breast cancer.

  2. Clinical utility of kallikrein-related peptidases (KLK) in urogenital malignancies.

    PubMed

    Dorn, J; Bayani, J; Yousef, G M; Yang, F; Magdolen, V; Kiechle, M; Diamandis, E P; Schmitt, M

    2013-09-01

    Kallikrein-related peptidases (KLK), which represent a major tissue-associated proteolytic system, stand for a rich source of biomarkers that may allow molecular classification, early diagnosis and prognosis of human malignancies as well as prediction of response or failure to cancer-directed drugs. International research points to an important role of certain KLKs in female and male urogenital tract malignancies, in addition to cancers of the lung, brain, skin, head and neck, and the gastrointestinal tract. Regarding the female/male urogenital tract, remarkably, all of the KLKs are expressed in the normal prostate, testis, and kidney whereas the uterus, the ovary, and the urinary bladder are expressing a limited number of KLKs only. Most of the information regarding KLK expression in tumour-affected organs is available for ovarian cancer; all of the 12 KLKs tested so far were found to be elevated in the malignant state, depicting them as valuable biomarkers to distinguish between the normal and the cancerous phenotype. In contrast, for kidney cancer, a series of KLKs was found to be downregulated, while other KLKs were not expressed. Evidently, depending on the type of cancer or cancer stage, individual KLKs may show characteristics of a Janus-faced behaviour, by either expanding or inhibiting cancer progression and metastasis.

  3. Emerging clinical importance of the cancer biomarkers kallikrein-related peptidases (KLK) in female and male reproductive organ malignancies

    PubMed Central

    Schmitt, Manfred; Magdolen, Viktor; Yang, Feng; Kiechle, Marion; Bayani, Jane; Yousef, George M.; Scorilas, Andreas; Diamandis, Eleftherios P.; Dorn, Julia

    2013-01-01

    Background Tumor tissue-associated KLKs (kallikrein-related peptidases) are clinically important biomarkers that may allow prognosis of the cancer disease and/or prediction of response/failure of cancer patients to cancer-directed drugs. Regarding the female/male reproductive tract, remarkably, all of the fifteen KLKs are expressed in the normal prostate, breast, cervix uteri, and the testis, whereas the uterus/endometrium and the ovary are expressing a limited number of KLKs only. Conclusions Most of the information regarding elevated expression of KLKs in tumor-affected organs is available for ovarian cancer; depicting them as valuable biomarkers in the cancerous phenotype. In contrast, for breast cancer, a series of KLKs was found to be downregulated. However, in breast cancer, KLK4 is elevated which is also true for ovarian and prostate cancer. In such cases, selective synthetic KLK inhibitors that aim at blocking the proteolytic activities of certain KLKs may serve as future candidate therapeutic drugs to interfere with tumor progression and metastasis. PMID:24294176

  4. Discovery of novel transcripts of the human tissue kallikrein (KLK1) and kallikrein-related peptidase 2 (KLK2) in human cancer cells, exploiting Next-Generation Sequencing technology.

    PubMed

    Adamopoulos, Panagiotis G; Kontos, Christos K; Scorilas, Andreas

    2018-03-31

    Tissue kallikrein, kallikrein-related peptidases (KLKs), and plasma kallikrein form the largest group of serine proteases in the human genome, sharing many structural and functional properties. Several KLK transcripts have been found aberrantly expressed in numerous human malignancies, confirming their prognostic or/and diagnostic values. However, the process of alternative splicing can now be studied in-depth due to the development of Next-Generation Sequencing (NGS). In the present study, we used NGS to discover novel transcripts of the KLK1 and KLK2 genes, after nested touchdown PCR. Bioinformatics analysis and PCR experiments revealed a total of eleven novel KLK transcripts (two KLK1 and nine KLK2 transcripts). In addition, the expression profiles of each novel transcript were investigated with nested PCR experiments using variant-specific primers. Since KLKs are implicated in human malignancies, qualifying as potential biomarkers, the quantification of the presented novel transcripts in human samples may have clinical applications in different types of cancer. Copyright © 2018. Published by Elsevier Inc.

  5. Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil.

    PubMed

    Ehrenfeld, Pamela; Bhoola, Kanti D; Matus, Carola E; Figueroa, Carlos D

    2018-06-19

    In the human neutrophil, kallikrein-related peptidases (KLKs) have a significant functional relationship with the classical kinin system as a kinin B1 receptor agonist induces secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the medium. Secretion of KLK1, the kinin-forming enzyme, may perpetuate formation of kinin in the inflammatory milieu by hydrolyzing extravasated kininogens present in tissue edema. Secretion of KLKs into the inflammatory milieu, induced by kinins or other proinflammatory mediators, provides the human neutrophil with a wide range of molecular interactions to hydrolyze different cellular and extracellular matrix components, which may be of critical relevance in different mechanisms involving inflammation.

  6. Kallikreins - The melting pot of activity and function.

    PubMed

    Kalinska, Magdalena; Meyer-Hoffert, Ulf; Kantyka, Tomasz; Potempa, Jan

    2016-03-01

    The human tissue kallikrein and kallikrein-related peptidases (KLKs), encoded by the largest contiguous cluster of protease genes in the human genome, are secreted serine proteases with diverse expression patterns and physiological roles. Because of the broad spectrum of processes that are modulated by kallikreins, these proteases are the subject of extensive investigations. This review brings together basic information about the biochemical properties affecting enzymatic activity, with highlights on post-translational modifications, especially glycosylation. Additionally, we present the current state of knowledge regarding the physiological functions of KLKs in major human organs and outline recent discoveries pertinent to the involvement of kallikreins in cell signaling and in viral infections. Despite the current depth of knowledge of these enzymes, many questions regarding the roles of kallikreins in health and disease remain unanswered. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer

    PubMed Central

    Zheng, Jun; Zhang, Ding; Liu, Wei; Zheng, Wei Hong; Li, Xiao Song; Yao, Ru Cheng; Wang, Fangyu; Liu, Sen; Tan, Xiao

    2018-01-01

    Pancreatic cancer is one of the deadliest cancers with very poor prognosis, and the five-year survival rate of the patients is less than 5% after diagnosis. Kallikrein-related peptidases (KLKs) belong to a serine protease family with 15 members that play important roles in cellular physiological behavior and diseases. The high expression level of KLK7 in pancreatic cancer tissues is considered to be a marker for the poor prognosis of this disease. In this work, we set out to investigate whether KLK7 could be a target for the treatment of pancreatic cancer. Short hairpin RNAs (shRNAs) were designed and constructed in lentivirus to knock down KLK7 in pancreatic cancer cell line PANC-1, and the real time cellular analysis (RTCA) was used to evaluate cell proliferation, migration and invasion abilities. Small molecules inhibiting KLK7 were discovered by computer-aided drug screening and used to inhibit PANC-1 cells. Our results confirmed that KLK7 is significantly up-regulated in pancreatic cancer tissue, and knocking down or inhibiting KLK7 efficiently inhibited the proliferation, migration and invasion of pancreatic cancer cells. This study suggested that KLK7 could be a potential chemotherapy target for treatment of pancreatic cancer, which would provide us a novel strategy for the treatment of this disease. PMID:29560118

  8. Structure-function analyses of human kallikrein-related peptidase 2 establish the 99-loop as master regulator of activity.

    PubMed

    Skala, Wolfgang; Utzschneider, Daniel T; Magdolen, Viktor; Debela, Mekdes; Guo, Shihui; Craik, Charles S; Brandstetter, Hans; Goettig, Peter

    2014-12-05

    Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the "classical" KLKs 1-3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn(2+) concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn(2+), which located the Zn(2+) binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Structure-Function Analyses of Human Kallikrein-related Peptidase 2 Establish the 99-Loop as Master Regulator of Activity*

    PubMed Central

    Skala, Wolfgang; Utzschneider, Daniel T.; Magdolen, Viktor; Debela, Mekdes; Guo, Shihui; Craik, Charles S.; Brandstetter, Hans; Goettig, Peter

    2014-01-01

    Human kallikrein-related peptidase 2 (KLK2) is a tryptic serine protease predominantly expressed in prostatic tissue and secreted into prostatic fluid, a major component of seminal fluid. Most likely it activates and complements chymotryptic KLK3 (prostate-specific antigen) in cleaving seminal clotting proteins, resulting in sperm liquefaction. KLK2 belongs to the “classical” KLKs 1–3, which share an extended 99- or kallikrein loop near their non-primed substrate binding site. Here, we report the 1.9 Å crystal structures of two KLK2-small molecule inhibitor complexes. In both structures discontinuous electron density for the 99-loop indicates that this loop is largely disordered. We provide evidence that the 99-loop is responsible for two biochemical peculiarities of KLK2, i.e. reversible inhibition by micromolar Zn2+ concentrations and permanent inactivation by autocatalytic cleavage. Indeed, several 99-loop mutants of KLK2 displayed an altered susceptibility to Zn2+, which located the Zn2+ binding site at the 99-loop/active site interface. In addition, we identified an autolysis site between residues 95e and 95f in the 99-loop, whose elimination prevented the mature enzyme from limited autolysis and irreversible inactivation. An exhaustive comparison of KLK2 with related structures revealed that in the KLK family the 99-, 148-, and 220-loop exist in open and closed conformations, allowing or preventing substrate access, which extends the concept of conformational selection in trypsin-related proteases. Taken together, our novel biochemical and structural data on KLK2 identify its 99-loop as a key player in activity regulation. PMID:25326387

  10. Identification and molecular cloning of novel transcripts of the human kallikrein-related peptidase 10 (KLK10) gene using next-generation sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamopoulos, Panagiotis G.; Kontos, Christos K.; Scorilas, Andreas

    Tissue kallikrein and kallikrein-related peptidases (KLKs) form the largest group of serine proteases in the human genome, sharing many structural and functional characteristics. Multiple alternative transcripts have been reported for the most human KLK genes, while many of them are aberrantly expressed in various malignancies, thus possessing significant prognostic and/or diagnostic value. Alternative splicing of cancer-related genes is a common cellular mechanism accounting for cancer cell transcriptome complexity, as it affects cell cycle control, proliferation, apoptosis, invasion, and metastasis. In this study, we describe the identification and molecular cloning of eight novel transcripts of the human KLK10 gene using 3′more » rapid amplification of cDNA ends (3′ RACE) and next-generation sequencing (NGS), as well as their expression analysis in a wide panel of cell lines, originating from several distinct cancerous and normal tissues. Bioinformatic analysis revealed that the novel KLK10 transcripts contain new alternative splicing events between already annotated exons as well as novel exons. In addition, investigation of their expression profile in a wide panel of cell lines was performed with nested RT-PCR using variant-specific pairs of primers. Since many KLK mRNA transcripts possess clinical value, these newly discovered alternatively spliced KLK10 transcripts appear as new potential biomarkers for diagnostic and/or prognostic purposes or as targets for therapeutic strategies. - Highlights: • NGS was used to identify novel transcripts of the human KLK10 gene. • 8 novel KLK10 transcripts were identified. • A novel 3′UTR was detected and characterized. • The expression profiles of all 8 novel KLK10 transcripts were identified.« less

  11. Doxycycline Indirectly Inhibits Proteolytic Activation of Tryptic Kallikrein-Related Peptidases and Activation of Cathelicidin

    PubMed Central

    Kanada, Kimberly N.; Nakatsuji, Teruaki; Gallo, Richard L.

    2014-01-01

    The increased abundance and activity of cathelicidin and kallikrein 5 (KLK5), a predominant trypsin-like serine protease (TLSP) in the stratum corneum, have been implicated in the pathogenesis of rosacea, a disorder treated by the use of low-dose doxycycline. Here we hypothesized that doxycycline can inhibit activation of tryptic KLKs through an indirect mechanism by inhibition of matrix metalloproteinases (MMPs) in keratinocytes. The capacity of doxycycline to directly inhibit enzyme activity was measured in surface collections of human facial skin and extracts of cultured keratinocytes by fluorescence polarization assay against fluorogenic substrates specific for MMPs or TLSPs. Doxycycline did inhibit MMP activity but did not directly inhibit serine protease activity against a fluorogenic substrate specific for TLSPs. However, when doxycycline or other MMP inhibitors were added to live keratinocytes during the production of tryptic KLKs, this treatment indirectly resulted in decreased TLSP activity. Furthermore, doxycycline under these conditions inhibited the generation of the cathelicidin peptide LL-37 from its precursor protein hCAP18, a process dependent on KLK activity. These results demonstrate that doxycycline can prevent cathelicidin activation, and suggest a previously unknown mechanism of action for doxycycline through inhibiting generation of active cathelicidin peptides. PMID:22336948

  12. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  13. Characterization of kallikrein-related peptidase 4 glycosylations

    PubMed Central

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C.; Simmer, James P.

    2012-01-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1–6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. PMID:22243251

  14. Characterization of kallikrein-related peptidase 4 glycosylations.

    PubMed

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C; Simmer, James P

    2011-12-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1-6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. © 2011 Eur J Oral Sci.

  15. A Single Glycan at the 99-Loop of Human Kallikrein-related Peptidase 2 Regulates Activation and Enzymatic Activity*

    PubMed Central

    Guo, Shihui; Skala, Wolfgang; Magdolen, Viktor; Briza, Peter; Biniossek, Martin L.; Schilling, Oliver; Kellermann, Josef; Brandstetter, Hans; Goettig, Peter

    2016-01-01

    Human kallikrein-related peptidase 2 (KLK2) is a key serine protease in semen liquefaction and prostate cancer together with KLK3/prostate-specific antigen. In order to decipher the function of its potential N-glycosylation site, we produced pro-KLK2 in Leishmania tarentolae cells and compared it with its non-glycosylated counterpart from Escherichia coli expression. Mass spectrometry revealed that Asn-95 carries a core glycan, consisting of two GlcNAc and three hexoses. Autocatalytic activation was retarded in glyco-pro-KLK2, whereas the activated glyco-form exhibited an increased proteolytic resistance. The specificity patterns obtained by the PICS (proteomic identification of protease cleavage sites) method are similar for both KLK2 variants, with a major preference for P1-Arg. However, glycosylation changes the enzymatic activity of KLK2 in a drastically substrate-dependent manner. Although glyco-KLK2 has a considerably lower catalytic efficiency than glycan-free KLK2 toward peptidic substrates with P2-Phe, the situation was reverted toward protein substrates, such as glyco-pro-KLK2 itself. These findings can be rationalized by the glycan-carrying 99-loop that prefers to cover the active site like a lid. By contrast, the non-glycosylated 99-loop seems to favor a wide open conformation, which mostly increases the apparent affinity for the substrates (i.e. by a reduction of Km). Also, the cleavage pattern and kinetics in autolytic inactivation of both KLK2 variants can be explained by a shift of the target sites due to the presence of the glycan. These striking effects of glycosylation pave the way to a deeper understanding of kallikrein-related peptidase biology and pathology. PMID:26582203

  16. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin

    PubMed Central

    Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee

    2015-01-01

    Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981

  17. Clinical value of protein expression of kallikrein-related peptidase 7 (KLK7) in ovarian cancer.

    PubMed

    Dorn, Julia; Gkazepis, Apostolos; Kotzsch, Matthias; Kremer, Marcus; Propping, Corinna; Mayer, Katharina; Mengele, Karin; Diamandis, Eleftherios P; Kiechle, Marion; Magdolen, Viktor; Schmitt, Manfred

    2014-01-01

    Expression of the kallikrein-related peptidase 7 (KLK7) is dysregulated in ovarian cancer. We assessed KLK7 expression by ELISA and quantitative immunohistochemistry and analyzed its association with clinicopathological parameters and patients' outcome. KLK7 antigen concentrations were determined in tumor tissue extracts of 98 ovarian cancer patients by ELISA. For analysis of KLK7 immunoexpression in ovarian cancer tissue microarrays, a manual quantitative scoring system as well as a software tool for quantitative high-throughput automated image analysis was used. In immunohistochemical analyses, expression levels of KLK7 were not associated with patients' outcome. However, in multivariate analyses, KLK7 antigen levels in tumor tissue extracts were significantly associated with both overall and progression-free survival: ovarian cancer patients with high KLK7 levels had a significantly, 2-fold lower risk of death [hazard ratio (HR)=0.51, 95% confidence interval (CI)=0.29-0.90, p=0.019] or relapse [HR=0.47, 95% CI=0.25-0.91, p=0.024), as compared with patients who displayed low KLK7 levels. Our results indicate that - in contrast to earlier findings - high KLK7 antigen levels in tumor tissue extracts may be associated with a better prognosis of ovarian cancer patients.

  18. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.

    PubMed

    Kryza, Thomas; Silva, Lakmali M; Bock, Nathalie; Fuhrman-Luck, Ruth A; Stephens, Carson R; Gao, Jin; Samaratunga, Hema; Lawrence, Mitchell G; Hooper, John D; Dong, Ying; Risbridger, Gail P; Clements, Judith A

    2017-10-01

    The reciprocal communication between cancer cells and their microenvironment is critical in cancer progression. Although involvement of cancer-associated fibroblasts (CAF) in cancer progression is long established, the molecular mechanisms leading to differentiation of CAFs from normal fibroblasts are poorly understood. Here, we report that kallikrein-related peptidase-4 (KLK4) promotes CAF differentiation. KLK4 is highly expressed in prostate epithelial cells of premalignant (prostatic intraepithelial neoplasia) and malignant lesions compared to normal prostate epithelia, especially at the peristromal interface. KLK4 induced CAF-like features in the prostate-derived WPMY1 normal stromal cell line, including increased expression of alpha-smooth muscle actin, ESR1 and SFRP1. KLK4 activated protease-activated receptor-1 in WPMY1 cells increasing expression of several factors (FGF1, TAGLN, LOX, IL8, VEGFA) involved in prostate cancer progression. In addition, KLK4 induced WPMY1 cell proliferation and secretome changes, which in turn stimulated HUVEC cell proliferation that could be blocked by a VEGFA antibody. Importantly, the genes dysregulated by KLK4 treatment of WPMY1 cells were also differentially expressed between patient-derived CAFs compared to matched nonmalignant fibroblasts and were further increased by KLK4 treatment. Taken together, we propose that epithelial-derived KLK4 promotes tumour progression by actively promoting CAF differentiation in the prostate stromal microenvironment. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  19. Tissue-specific promoter utilisation of the kallikrein-related peptidase genes, KLK5 and KLK7, and cellular localisation of the encoded proteins suggest roles in exocrine pancreatic function.

    PubMed

    Dong, Ying; Matigian, Nick; Harvey, Tracey J; Samaratunga, Hemamali; Hooper, John D; Clements, Judith A

    2008-02-01

    Abstract Tissue kallikrein (kallikrein 1) was first identified in pancreas and is the namesake of the kallikrein-related peptidase (KLK) family. KLK1 and the other 14 members of the human KLK family are encoded by 15 serine protease genes clustered at chromosome 19q13.4. Our Northern blot analysis of 19 normal human tissues for expression of KLK4 to KLK15 identified pancreas as a common expression site for the gene cluster spanning KLK5 to KLK13, as well as for KLK15 which is located adjacent to KLK1. Consistent with previous reports detailing the ability of KLK genes to generate organ- and disease-specific transcripts, detailed molecular and in silico analyses indicated that KLK5 and KLK7 generate transcripts in pancreas variant from those in skin or ovary. Consistently, we identified in the promoters of these KLK genes motifs which conform with consensus binding sites for transcription factors conferring pancreatic expression. In addition, immunohistochemical analysis revealed predominant localisation of KLK5 and KLK7 in acinar cells of the exocrine pancreas, suggesting roles for these enzymes in digestion. Our data also support expression patterns derived from gene duplication events in the human KLK cluster. These findings suggest that, in addition to KLK1, other related KLK enzymes will function in the exocrine pancreas.

  20. Expression of kallikrein-related peptidase 13 is associated with poor prognosis in esophageal squamous cell carcinoma.

    PubMed

    Nohara, Kyoko; Yamada, Kazuhiko; Yamada, Leo; Hagiwara, Teruki; Igari, Toru; Yokoi, Chizu; Soma, Daisuke; Yamashita, Satoshi; Dohi, Taeko; Kawamura, Yuki I

    2018-06-01

    Our previous differential transcriptome analysis between a paired specimen of normal and esophageal squamous cell carcinoma (ESCC) tissues found aberrant expression of kallikrein-related peptidase 13 (KLK13) in tumors. In this study, we evaluated the expression of KLK13 in many ESCC cases in relation with clinical features, and the prognosis. Eighty-eight ESCC cases were subjected to immunohistological staining for KLK13 and classified into KLK13-negative and KLK13-positive groups. Difference of clinical features and the prognosis between the groups was analyzed. In normal esophageal mucosa, KLK13 expression was evident but limited in the stratum granulosum in all cases. By contrast, only 27 of 88 ESCC samples showed KLK13 expression, whereas the remaining 61 tumors showed no KLK13 expression. The KLK13-positive group was significantly associated with pT classification (deeper tumor invasions; P = 0.0282), pN classification (lymph node metastasis; P = 0.0163), and advanced TNM stage (P = 0.0198). In KLK13-positive samples, KLK13-expressing cells often expressed Ki67, a proliferation marker, unlike normal mucosa, in which Ki67-expressing cells were limited to the basal layer and did not express KLK13. Compared with patients with KLK13-negative group, KLK13-positive group showed poorer postoperative prognosis. Relatively high levels of KLK13 expression in ESCC were associated with cell proliferation and correlated with tumor progression, advanced cancer stage, and poor prognosis.

  1. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    PubMed

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  2. Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo

    PubMed Central

    2017-01-01

    Semen liquefaction changes semen from a gel-like to watery consistency and is required for sperm to gain mobility and swim to the fertilization site in the Fallopian tubes. Kallikrein-related peptidases 3 (KLK3) and other kallikrein-related peptidases from male prostate glands are responsible for semen liquefaction by cleaving gel-forming proteins (semenogelin and collagen). In a physiological context, the liquefaction process occurs within the female reproductive tract. How seminal proteins interact with the female reproductive environment is still largely unexplored. We previously reported that conditional genetic ablation of Esr1 (estrogen receptor α) in the epithelial cells of the female reproductive tract (Wnt7aCre/+;Esr1f/f) causes female infertility, partly due to a drastic reduction in the number of motile sperm entering the oviduct. In this study, we found that post-ejaculated semen from fertile wild-type males was solidified and the sperm were entrapped in Wnt7aCre/+;Esr1f/f uteri, compared to the watery semen (liquefied) found in Esr1f/f controls. In addition, semenogelin and collagen were not degraded in Wnt7aCre/+;Esr1f/f uteri. Amongst multiple gene families aberrantly expressed in the absence of epithelial ESR1, we have identified that a lack of Klks in the uterus is a potential cause for the liquefaction defect. Pharmacological inhibition of KLKs in the uterus replicated the phenotype observed in Wnt7aCre/+;Esr1f/f uteri, suggesting that loss of uterine and seminal KLK function causes this liquefaction defect. In human cervical cell culture, expression of several KLKs and their inhibitors (SPINKs) was regulated by estrogen in an ESR1-dependent manner. Our study demonstrates that estrogen/ESR1 signaling in the female reproductive tract plays an indispensable role in normal semen liquefaction, providing fundamental evidence that exposure of post-ejaculated semen to the suboptimal microenvironment in the female reproductive tract leads to faulty

  3. Exploring the active site binding specificity of kallikrein-related peptidase 5 (KLK5) guides the design of new peptide substrates and inhibitors.

    PubMed

    de Veer, Simon J; Swedberg, Joakim E; Brattsand, Maria; Clements, Judith A; Harris, Jonathan M

    2016-12-01

    Kallikrein-related peptidase 5 (KLK5) is a promising therapeutic target in several skin diseases, including Netherton syndrome, and is emerging as a potential target in various cancers. In this study, we used a sparse matrix library of 125 individually synthesized peptide substrates to characterize the binding specificity of KLK5. The sequences most favored by KLK5 were GRSR, YRSR and GRNR, and we identified sequence-specific interactions involving the peptide N-terminus by analyzing kinetic constants (kcat and KM) and performing molecular dynamics simulations. KLK5 inhibitors were subsequently engineered by substituting substrate sequences into the binding loop (P1, P2 and P4 residues) of sunflower trypsin inhibitor-1 (SFTI-1). These inhibitors were effective against KLK5 but showed limited selectivity, and performing a further substitution at P2' led to the design of a new variant that displayed improved activity against KLK5 (Ki=4.2±0.2 nm), weak activity against KLK7 and 12-fold selectivity over KLK14. Collectively, these findings provide new insight into the design of highly favored binding sequences for KLK5 and reveal several opportunities for modulating inhibitor selectivity over closely related proteases that will be useful for future studies aiming to develop therapeutic molecules targeting KLK5.

  4. Developing a novel therapeutic strategy targeting Kallikrein-4 to inhibit prostate cancer growth and metastasis

    DTIC Science & Technology

    Kallikrein-related peptidase 4 (KLK4) is a rational therapeutic target for prostate cancer (PCa) as it is up-regulated in both localised and bone ...in PCa homing to bone . We therefore hypothesize that blockade of KLK4 activity will inhibit PCa growth and prevent metastasis to secondary sites like... bone . This project aims to develop a novel therapeutic strategy targeting KLK4 specifically in PCa. KLK4 siRNA is incorporated into a novel polymeric

  5. Transcriptome reveals the overexpression of a kallikrein gene cluster (KLK1/3/7/8/12) in the Tibetans with high altitude-associated polycythemia.

    PubMed

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2017-02-01

    High altitude-associated polycythemia (HAPC) is a very common disease. However, it the disease is still unmanageable and the related molecular mechanisms remain largely unclear. In the present study, we aimed to explore the molecular mechanisms responsible for the development of HAPC using transcriptome analysis. Transcriptome analysis was conducted in 3 pairs of gastric mucosa tissues from patients with HAPC and healthy residents at a similar altitude. Endoscopy and histopathological analyses were used to examine the injury to gastric tissues. Molecular remodeling was performed for the interaction between different KLK members and cholesterol. HAPC was found to lead to morphological changes and pathological damage to the gastric mucosa of patients. A total of 10,304 differentially expressed genes (DEGs) were identified. Among these genes, 4,941 DEGs were upregulated, while 5,363 DEGs were downregulated in the patients with HAPC (fold change ≥2, P<0.01 and FDR <0.01). In particular, the kallikrein gene cluster (KLK1/3/7/8/12) was upregulated >17-fold. All the members had high-score binding cholesterol, particularly for the polymers of KLK7. The kallikrein gene cluster (KLK1/3/7/8/12) is on chromosome 19q13.3-13.4. The elevated levels of KLK1, KLK3, KLK7, KLK8 and KLK12 may be closely associated with the hypertension, inflammation, obesity and other gastric injuries associated with polycythemia. The interaction of KLKs and cholesterol maybe play an important role in the development of hypertension. The findings of the present study revealed that HAPC induces gastric injury by upregulating the kallikrein gene cluster (KLK1/3/7/8/12), which can bind cholesterol and result in kallikrein hypertension. These findings provide some basic information for understanding the molecular mechanisms responsible for HAPC and HAPC-related diseases.

  6. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression.

    PubMed

    Ramsay, Andrew J; Dong, Ying; Hunt, Melanie L; Linn, MayLa; Samaratunga, Hemamali; Clements, Judith A; Hooper, John D

    2008-05-02

    Kallikrein-related peptidase 4 (KLK4) is one of the 15 members of the human KLK family and a trypsin-like, prostate cancer-associated serine protease. Signaling initiated by trypsin-like serine proteases are transduced across the plasma membrane primarily by members of the protease-activated receptor (PAR) family of G protein-coupled receptors. Here we show, using Ca(2+) flux assays, that KLK4 signals via both PAR-1 and PAR-2 but not via PAR-4. Dose-response analysis over the enzyme concentration range 0.1-1000 nM indicated that KLK4-induced Ca(2+) mobilization via PAR-1 is more potent than via PAR-2, whereas KLK4 displayed greater efficacy via the latter PAR. We confirmed the specificity of KLK4 signaling via PAR-2 using in vitro protease cleavage assays and anti-phospho-ERK1/2/total ERK1/2 Western blot analysis of PAR-2-overexpressing and small interfering RNA-mediated receptor knockdown cell lines. Consistently, confocal microscopy analyses indicated that KLK4 initiates loss of PAR-2 from the cell surface and receptor internalization. Immunohistochemical analysis indicated the co-expression of agonist and PAR-2 in primary prostate cancer and bone metastases, suggesting that KLK4 signaling via this receptor will have pathological relevance. These data provide insight into KLK4-mediated cell signaling and suggest that signals induced by this enzyme via PARs may be important in prostate cancer.

  7. Immunochemical Studies of Plasma Kallikrein

    PubMed Central

    Bagdasarian, Andranik; Lahiri, Biswajit; Talamo, Richard C.; Wong, Pat; Colman, Robert W.

    1974-01-01

    A monospecific antibody against human plasma kallikrein has been prepared in rabbits with kallikrein further purified to remove gamma globulins. The antisera produced contained antikallikrein and also anti-IgG, in spite of only 8% contamination of kallikrein preparation with IgG. The latter antibody was removed by adsorption of antisera with either Fletcher factor-deficient plasma or with purified IgG. Both kallikrein and prekallikrein (in plasma) cross-react with the antibody with no apparent difference between the precipitation arcs developed during immunoelectrophoresis and no significant difference in reactivity when quantified by radial immunodiffusion. Kallikrein antibody partially inhibits the esterolytic and fully inhibits the proteolytic activity of kallikrein. In addition, the antibody inhibits the activation of prekallikrein, as measured by esterase or kinin release. The magnitude of the inhibition is related to the molecular weight of the activator used. Thus, for the four activators tested, the greatest inhibition is observed with kaolin and factor XIIA, while large activator and the low molecular weight prekallikrein activators are less inhibited. With the kallikrein antibody, the incubation of kallikrein with either plasma or partially purified C1 esterase inactivator results in a new precipitin arc, as detected by immunoelectrophoresis. This finding provides physical evidence for the interaction of the enzyme and inhibitor. No new arc could be demonstrated between kallikrein and α2-macroglobulin, or α1-antitrypsin, although the concentration of free kallikrein antigen decreases after interaction with the former inhibitor. By radial immunodiffusion, plasma from healthy individuals contained 103±13 μg/ml prekallikrein antigen. Although in mild liver disease, functional and immunologic kallikrein are proportionally depressed, the levels of prekallikrein antigen in plasma samples from patients with severe liver disease remains 40% of normal, while

  8. Development and immunochemical evaluation of a novel chicken IgY antibody specific for KLK6.

    PubMed

    Sotiropoulou, Georgia; Pampalakis, Georgios; Prosnikli, Evangelia; Evangelatos, Gregory P; Livaniou, Evangelia

    2012-12-05

    Human kallikrein-related peptidase 6 (KLK6) has been implicated in various types of cancer and in neurodegenerative and demyelinating diseases including multiple sclerosis. Further, anti-KLK6 antibodies attenuated disease manifestations in the mouse model of multiple sclerosis. Availability of specific antibodies against KLK6 is fundamental to the development of improved diagnostic and/or immunotherapeutic applications. Here, we exploited the enhanced immunogenicity of mammalian proteins in avian species to generate a polyclonal antibody against KLK6. Chicken were immunized with recombinant KLK6 and antibodies Y (IgYs) were purified from egg yolk with a simple procedure and evaluated for KLK6 detection by ELISA and Western blot using recombinant proteins and human cell lysates and supernatants. The anti-KLK6 Y polyclonal exhibited high affinity for KLK6 with a detection limit of 30 fmol. On the other hand, the widely used rabbit polyclonal antibody that was raised against the same recombinant KLK6 had a detection limit of 300 fmol. Moreover, the IgYs did not display any crossreactivity with recombinant KLKs or endogenous KLKs and other cellular proteins. Based on its high specificity and sensitivity the developed anti-KLK6 IgY is expected to aid the development of improved diagnostic tools for the detection of KLK6 in biological and clinical samples.

  9. Development and immunochemical evaluation of a novel chicken IgY antibody specific for KLK6

    PubMed Central

    2012-01-01

    Background Human kallikrein-related peptidase 6 (KLK6) has been implicated in various types of cancer and in neurodegenerative and demyelinating diseases including multiple sclerosis. Further, anti-KLK6 antibodies attenuated disease manifestations in the mouse model of multiple sclerosis. Availability of specific antibodies against KLK6 is fundamental to the development of improved diagnostic and/or immunotherapeutic applications. Here, we exploited the enhanced immunogenicity of mammalian proteins in avian species to generate a polyclonal antibody against KLK6. Results Chicken were immunized with recombinant KLK6 and antibodies Y (IgYs) were purified from egg yolk with a simple procedure and evaluated for KLK6 detection by ELISA and Western blot using recombinant proteins and human cell lysates and supernatants. The anti-KLK6 Y polyclonal exhibited high affinity for KLK6 with a detection limit of 30 fmol. On the other hand, the widely used rabbit polyclonal antibody that was raised against the same recombinant KLK6 had a detection limit of 300 fmol. Moreover, the IgYs did not display any crossreactivity with recombinant KLKs or endogenous KLKs and other cellular proteins. Conclusions Based on its high specificity and sensitivity the developed anti-KLK6 IgY is expected to aid the development of improved diagnostic tools for the detection of KLK6 in biological and clinical samples. PMID:23216878

  10. Differential roles of kallikrein-related peptidase 6 in malignant transformation and ΔNp63β-mediated epithelial-mesenchymal transition of oral squamous cell carcinoma.

    PubMed

    Kaneko, Naoki; Kawano, Shintaro; Yasuda, Kaori; Hashiguchi, Yuma; Sakamoto, Taiki; Matsubara, Ryota; Goto, Yuichi; Jinno, Teppei; Maruse, Yasuyuki; Morioka, Masahiko; Hattori, Taichi; Tanaka, Shoichi; Tanaka, Hideaki; Kiyoshima, Tamotsu; Nakamura, Seiji

    2017-12-01

    We previously reported that epithelial-to-mesenchymal transition (EMT) was mediated by ΔNp63β in oral squamous cell carcinoma (OSCC). In this study, DNA microarray analyses were performed using ΔNp63β-overexpressing OSCC cells to identify genes associated with ΔNp63β-mediated EMT. Thereby, we focused on kallikrein-related peptidase (KLK) 6, most up-regulated following ΔNp63β-overexpression, that activates protease-activated receptors (PARs). In RT-PCR analyses, ΔNp63 was positively associated with KLK6 and PAR2 and negatively with PAR1 in OSCC cells. By ΔNp63 knockdown, KLK6 and PAR2 expression was decreased and PAR1 was increased. Furthermore, KLK6 knockdown led to enhancing migration and invasion, and inhibiting proliferation, suggesting EMT-phenotypes. Although, in the KLK6 or PAR2 knockdown cells, phosphorylation of ERK was reduced, it was restored in the KLK6 knockdown OSCC cells treated with recombinant KLK6 proteins. Immunohistochemistry showed ΔNp63, KLK6, and PAR2 were more strongly expressed in the epithelial dysplasia and central region of OSCC than normal oral epithelium, whereas PAR1 expression was undetectable. Interestingly, at the invasive front of OSCC, ΔNp63, KLK6, and PAR2 were reduced, but PAR1 was elevated. In addition, the OSCC patients with decreasing KLK6 expression at the invasive front had more unfavourable prognosis. These results suggested differential roles of KLK6 in malignant transformation and EMT; high ΔNp63β expression up-regulates KLK6-PAR2 and down-regulates PAR1, inducing malignant transformation in oral epithelium with stimulating proliferation through ERK signal activation. Moreover, KLK6-PAR2 expression is down-regulated and PAR1 is up-regulated when ΔNp63β expression is decreased, leading to EMT with enhancing migration and invasion through ERK signal reduction at the invasive front. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Crystallization and preliminary crystallographic studies of human kallikrein 7, a serine protease of the multigene kallikrein family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Israel S.; Ständker, Ludger; Hannover Medical School, Center of Pharmacology, 30625 Hannover

    2007-08-01

    The cloning, expression, purification and crystallization of recombinant human kallikrein 7, directly synthesized in the active form in E. coli, is described. Diffraction data were collected to 2.8 Å resolution from native crystals. Human kallikreins are a group of serine proteases of high sequence homology whose genes are grouped as a single cluster at chromosome 19. Although the physiological roles of kallikreins are generally still unknown, members of the kallikrein family have been clearly implicated in pathological situations such as cancer and psoriasis. Human kallikrein 7 (hK7) has been shown to be involved in pathological keratinization, psoriasis and ovarian cancer.more » In order to gain insight into the molecular structure of this protein, hK7 was crystallized after recombinant production in its folded and active form using a periplasmic secretion vector in Escherichia coli. The crystals belonged to the rhombohedral space group H32 and diffracted to 2.8 Å. The phase problem was solved by molecular replacement using the mouse kallikrein-related protein neuropsin. Completion of the model and structure refinement are under way.« less

  12. Expression profile of human tissue kallikrein 15 provides preliminary insights into its roles in the prostate and testis.

    PubMed

    Filippou, Panagiota S; Ren, Annie H; Soosaipillai, Antoninus; Papaioannou, Michail-Dimitrios; Korbakis, Dimitrios; Safar, Roaa; Diamandis, Eleftherios P; Conner, James

    2018-06-26

    Human tissue kallikrein 15 (KLK15) is the latest member of the kallikrein-related peptidase family. Little is known about the pathophysiological roles of KLK15. Previous studies implied a role of KLK15 in prostate cancer. In the present study, we examined KLK15 protein expression using a new immunoassay (ELISA) and immunohistochemistry (IHC). Highest KLK15 levels were detected in the testis and seminal fluid, whereas lower levels were observed in prostate and other tissues. Immunohistochemical analysis of testis suggests that KLK15 is strongly expressed in mature spermatids, but not in immature germ cells. KLK15 displayed predominantly nuclear localization in the basal cell layer of the prostatic epithelium. We also measured KLK15 in supernatants of various cell lines. Highest KLK15 levels were primarily detected in prostate cancer cell lines and KLK15 expression was hormone-independent, in contrast to KLK3. Collectively, our data provide insights into the localization and possible role of KLK15 in human physiology. Copyright © 2018. Published by Elsevier Inc.

  13. Tissue Kallikrein Inhibitors Based on the Sunflower Trypsin Inhibitor Scaffold – A Potential Therapeutic Intervention for Skin Diseases

    PubMed Central

    Chen, Wenjie; Kinsler, Veronica A.

    2016-01-01

    Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS. PMID:27824929

  14. The Kallikrein Inhibitor from Bauhinia bauhinioides (BbKI) shows antithrombotic properties in venous and arterial thrombosis models.

    PubMed

    Brito, Marlon V; de Oliveira, Cleide; Salu, Bruno R; Andrade, Sonia A; Malloy, Paula M D; Sato, Ana C; Vicente, Cristina P; Sampaio, Misako U; Maffei, Francisco H A; Oliva, Maria Luiza V

    2014-05-01

    The Bauhinia bauhinioides Kallikrein Inhibitor (BbKI) is a Kunitz-type serine peptidase inhibitor of plant origin that has been shown to impair the viability of some tumor cells and to feature a potent inhibitory activity against human and rat plasma kallikrein (Kiapp 2.4 nmol/L and 5.2 nmol/L, respectively). This inhibitory activity is possibly responsible for an effect on hemostasis by prolonging activated partial thromboplastin time (aPTT). Because the association between cancer and thrombosis is well established, we evaluated the possible antithrombotic activity of this protein in venous and arterial thrombosis models. Vein thrombosis was studied in the vena cava ligature model in Wistar rats, and arterial thrombosis in the photochemical induced endothelium lesion model in the carotid artery of C57 black 6 mice. BbKI at a concentration of 2.0 mg/kg reduced the venous thrombus weight by 65% in treated rats in comparison to rats in the control group. The inhibitor prolonged the time for total artery occlusion in the carotid artery model mice indicating that this potent plasma kallikrein inhibitor prevented thrombosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Studies of the kallikrein-kinin system and prostaglandins in epithelial ion transport.

    PubMed

    Margolius, H S; Halushka, P V; Chao, J; Miller, D H; Cuthbert, A W; Spayne, J A

    1985-01-01

    Tissue kallikrein of colon mucosa is synthesized rapidly, and this synthetic process can now be examined in relation to hormonal or dietary manipulations or pathological circumstances that affect intestinal ion transport. Although the identical renal tissue enzyme is known to be enriched in membranes of distal convoluted tubular epithelial cells, the precise localization of the intestinal enzyme is uncertain. An understanding of the intestinal cellular locale of kallikrein will help in defining its local role. That tissue kallikreins can be inhibited by monovalent cations and some drugs (e.g., amiloride) and that kallikrein inhibitors affect cation transport across epithelial surfaces containing such enzymes must be reconciled with the new observations of kinin-induced chloride secretion. Extracellular calcium, eicosanoid synthesis, and cyclic nucleotide production are involved in the secretory response to kinins, although an absolute requirement for intact eicosanoid synthesis may not exist.

  16. Exocrine and endocrine release of kallikrein after reflex-induced salivary secretion.

    PubMed

    Berg, T; Johansen, L; Poulsen, K

    1990-05-01

    Exocrine and endocrine release of rat submandibular gland kallikrein has been shown to be low after parasympathetic and beta-adrenergic stimulation but greatly increased after alpha-adrenergic stimulation. In the present study, release of glandular kallikrein was investigated under conditions known to give a reflex-induced salivary gland response. Heat stress induced a rich flow of saliva originating in the submandibular glands. Salivary kallikrein secretory rate was higher than after parasympathetic stimulation but lower than after sympathetic stimulation (P less than 0.005). Only heat stress increased circulating glandular kallikrein (12.7 +/- 0.8 ng ml-1 before heat exposure and 53.3 +/- 14.1 ng ml-1 40 min afterwards, P less than 0.005). There were no indications that the endocrine release of kallikrein was due to non-specific leakage. Atropine abolished heat-induced salivation and endocrine kallikrein secretion, possibly through interference with central pathways (P less than 0.05). However, phentolamine did not, which may indicate as an yet unidentified mediator of endogenous kallikrein release. The salivary gland response to acid and ether was comparable to that observed after parasympathetic nerve stimulation and was abolished by atropine (P less than 0.005). Stimuli known to influence other salivary gland ductal cells, such as aggression and starvation followed by drinking, also did not increase the plasma concentration of glandular kallikrein. The fact that various conditions which induce salivation did not increase circulating glandular kallikrein, coupled with the fact that kallikrein concentration was the highest in animals that died from heat stress, may suggest that the increase in circulating glandular kallikrein seen after heat stress may be pathological and could contribute to the development of heat shock.

  17. Persistent kallikrein 5 activation induces atopic dermatitis-like skin architecture independent of PAR2 activity.

    PubMed

    Zhu, Yanan; Underwood, Joanne; Macmillan, Derek; Shariff, Leila; O'Shaughnessy, Ryan; Harper, John I; Pickard, Chris; Friedmann, Peter S; Healy, Eugene; Di, Wei-Li

    2017-11-01

    Upregulation of kallikreins (KLKs) including KLK5 has been reported in atopic dermatitis (AD). KLK5 has biological functions that include degrading desmosomal proteins and inducing proinflammatory cytokine secretion through protease-activated receptor 2 (PAR2). However, due to the complex interactions between various cells in AD inflamed skin, it is difficult to dissect the precise and multiple roles of upregulated KLK5 in AD skin. We investigated the effect of upregulated KLK5 on the expression of epidermal-related proteins and cytokines in keratinocytes and on skin architecture. Lesional and nonlesional AD skin biopsies were collected for analysis of morphology and protein expression. The relationship between KLK5 and barrier-related molecules was investigated using an ex vivo dermatitis skin model with transient KLK5 expression and a cell model with persistent KLK5 expression. The influence of upregulated KLK5 on epidermal morphology was investigated using an in vivo skin graft model. Upregulation of KLK5 and abnormal expression of desmoglein 1 (DSG1) and filaggrin, but not PAR2 were identified in AD skin. PAR2 was increased in response to transient upregulation of KLK5, whereas persistently upregulated KLK5 did not show this effect. Persistently upregulated KLK5 degraded DSG1 and stimulated secretion of IL-8, IL-10, and thymic stromal lymphopoietin independent of PAR2 activity. With control of higher KLK5 activity by the inhibitor sunflower trypsin inhibitor G, restoration of DSG1 expression and a reduction in AD-related cytokine IL-8, thymic stromal lymphopoietin, and IL-10 secretion were observed. Furthermore, persistently elevated KLK5 could induce AD-like skin architecture in an in vivo skin graft model. Persistently upregulated KLK5 resulted in AD-like skin architecture and secretion of AD-related cytokines from keratinocytes in a PAR2 independent manner. Inhibition of KLK5-mediated effects may offer potential as a therapeutic approach in AD. Copyright

  18. Enhancement of lymphocyte proliferation by mouse glandular kallikrein.

    PubMed

    Hu, Z Q; Murakami, K; Ikigai, H; Shimamura, T

    1992-03-01

    Mouse glandular kallikrein (mGK) strongly enhanced the spontaneous and mitogen-induced proliferation of lymphocytes. Both blast formation and 3H-TdR incorporation were dose-dependently enhanced at the same time many cells were killed. The enhancing activity was independent of EGF, because EGF-binding proteins (mGK-9 in mGK-6,9 mixture and mGK-13), renal kallikrein (mGK-6) and human kallikrein all displayed the same enhancement. A serine proteinase inhibitor, diisopropyl fluorophosphate, could block the enhancement by mGK. The new function suggests that mGK is important in the immune system as a regulatory molecule.

  19. Synthetic peptides and fluorogenic substrates related to the reactive site sequence of Kunitz-type inhibitors isolated from Bauhinia: interaction with human plasma kallikrein.

    PubMed

    Oliva, M L; Santomauro-Vaz, E M; Andrade, S A; Juliano, M A; Pott, V J; Sampaio, M U; Sampaio, C A

    2001-01-01

    We have previously described Kunitz-type serine proteinase inhibitors purified from Bauhinia seeds. Human plasma kallikrein shows different susceptibility to those inhibitors. In this communication, we describe the interaction of human plasma kallikrein with fluorogenic and non-fluorogenic peptides based on the Bauhinia inhibitors' reactive site. The hydrolysis of the substrate based on the B. variegata inhibitor reactive site sequence, Abz-VVISALPRSVFIQ-EDDnp (Km 1.42 microM, kcat 0.06 s(-1), and kcat/Km 4.23 x 10(4) M(-1) s(-1)), is more favorable than that of Abz-VMIAALPRTMFIQ-EDDnp, related to the B. ungulata sequence (Km 0.43 microM, kcat 0.00017 s(-1), and kcat/Km 3.9 x 10(2) M(-1) s(-1)). Human plasma kallikrein does not hydrolyze the substrates Abz-RPGLPVRFESPL-EDDnp and Abz-FESPLRINIIKE-EDDnp based on the B. bauhinioides inhibitor reactive site sequence, the most effective inhibitor of the enzyme. These peptides are competitive inhibitors with Ki values in the nM range. The synthetic peptide containing 19 amino acids based on the B. bauhinioides inhibitor reactive site (RPGLPVRFESPL) is poorly cleaved by kallikrein. The given substrates are highly specific for trypsin and chymotrypsin hydrolysis. Other serine proteinases such as factor Xa, factor XII, thrombin and plasmin do not hydrolyze B. bauhinioides inhibitor related substrates.

  20. Human plasma kallikrein-kinin system: Physiological and biochemical parameters

    PubMed Central

    Bryant, J.W.; Shariat-Madar, z

    2016-01-01

    The plasma kallikrein-kinin system (KKS) plays a critical role in human physiology. The KKS encompasses coagulation factor XII (FXII), the complex of prekallikrein (PK) and high molecular weight kininogen (HK). The conversion of plasma to kallikrein by the activated FXII and in response to numerous different stimuli leads to the generation of bradykinin (BK) and activated HK (HKa, an antiangiogenic peptide). BK is a proinflammatory peptide, a pain mediator and potent vasodilator, leading to robust accumulation of fluid in the interstitium. Systemic production of BK, HKa with the interplay between BK bound-BK receptors and the soluble form of HKa are key to angiogenesis and hemodynamics. KKS has been implicated in the pathogenesis of inflammation, hypertension, endotoxemia, and coagulopathy. In all these cases increased BK levels is the hallmark. In some cases, the persistent production of BK due to the deficiency of the blood protein C1-inhibitor, which controls FXII, is detrimental to the survival of the patients with hereditary angioedema (HAE). In others, the inability of angiotensin converting enzyme (ACE) to degrade BK leads to elevated BK levels and edema in patients on ACE inhibitors. Thus, the mechanisms that interfere with BK liberation or degradation would lead to blood pressure dysfunction. In contrast, anti-kallikrein treatment could have adverse effects in hemodynamic changes induced by vasoconstrictor agents. Genetic models of kallikrein deficiency are needed to evaluate the quantitative role of kallikrein and to validate whether strategies designed to activate or inhibit kallikrein may be important for regulating whole-body BK sensitivity. PMID:19689262

  1. Tripeptidyl-peptidase II: a multi-purpose peptidase.

    PubMed

    Tomkinson, Birgitta; Lindås, Ann-Christin

    2005-10-01

    Tripeptidyl-peptidase II is a high-molecular weight peptidase with a widespread distribution in eukaryotic cells. The enzyme sequentially removes tripeptides from a free N-terminus of longer peptides and also displays a low endopeptidase activity. A role for tripeptidyl-peptidase II in the formation of peptides for antigen presentation has recently become evident, and the enzyme also appears to be important for the degradation of some specific substrates, e.g. the neuropeptide cholecystokinin. However, it is likely that the main biological function of tripeptidyl-peptidase II is to participate in a general intracellular protein turnover. This peptidase may act on oligopeptides generated by the proteasome, or other endopeptidases, and the tripeptides formed would subsequently be good substrates for other exopeptidases. The fact that tripeptidyl-peptidase II activity is increased in sepsis-induced muscle wasting, a situation of enhanced protein turnover, corroborates this biological role.

  2. Gene Expression Profiling in Pachyonychia Congenita Skin

    PubMed Central

    Cao, Yu-An; Hickerson, Robyn P.; Seegmiller, Brandon L.; Grapov, Dmitry; Gross, Maren M.; Bessette, Marc R.; Phinney, Brett S.; Flores, Manuel A.; Speaker, Tycho J.; Vermeulen, Annaleen; Bravo, Albert A.; Bruckner, Anna L.; Milstone, Leonard M.; Schwartz, Mary E.; Rice, Robert H.; Kaspar, Roger L.

    2015-01-01

    Background Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. Objective To better understand PC pathogenesis. Methods RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. Results A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. Conclusion Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics. PMID:25656049

  3. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  4. Activity of human kallikrein-related peptidase 6 (KLK6) on substrates containing sequences of basic amino acids. Is it a processing protease?

    PubMed

    Silva, Roberta N; Oliveira, Lilian C G; Parise, Carolina B; Oliveira, Juliana R; Severino, Beatrice; Corvino, Angela; di Vaio, Paola; Temussi, Piero A; Caliendo, Giuseppe; Santagada, Vincenzo; Juliano, Luiz; Juliano, Maria A

    2017-05-01

    Human kallikrein 6 (KLK6) is highly expressed in the central nervous system and with elevated level in demyelinating disease. KLK6 has a very restricted specificity for arginine (R) and hydrolyses myelin basic protein, protein activator receptors and human ionotropic glutamate receptor subunits. Here we report a previously unreported activity of KLK6 on peptides containing clusters of basic amino acids, as in synthetic fluorogenic peptidyl-Arg-7-amino-4-carbamoylmethylcoumarin (peptidyl-ACC) peptides and FRET peptides in the format of Abz-peptidyl-Q-EDDnp (where Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-(2,4-dinitrophenyl) ethylenediamine), in which pairs or sequences of basic amino acids (R or K) were introduced. Surprisingly, KLK6 hydrolyzed the fluorogenic peptides Bz-A-R ↓ R-ACC and Z-R ↓ R-MCA between the two R groups, resulting in non-fluorescent products. FRET peptides containing furin processing sequences of human MMP-14, nerve growth factor (NGF), Neurotrophin-3 (NT-3) and Neurotrophin-4 (NT-4) were cleaved by KLK6 at the same position expected by furin. Finally, KLK6 cleaved FRET peptides derived from human proenkephalin after the KR, the more frequent basic residues flanking enkephalins in human proenkephalin sequence. This result suggests the ability of KLK6 to release enkephalin from proenkephalin precursors and resembles furin a canonical processing proteolytic enzyme. Molecular models of peptides were built into the KLK6 structure and the marked preference of the cut between the two R of the examined peptides was related to the extended conformation of the substrates. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of glandular kallikrein on distal nephron HCO3- secretion in rats and on HCO3- secretion in MDCK cells.

    PubMed

    Vallés, P; Ebner, S; Manucha, W; Gutierrez, L; Marin-Grez, M

    1997-11-01

    Renal kallikrein is localized in the connecting tubule cells and secreted into the tubular fluid at late distal nephron segments. The present experiments were performed to further test the hypothesis that renal kallikrein reduces bicarbonate secretion of cortical collecting duct (CCD). The effect of orthograde injections of pig pancreatic kallikrein (1 or 3 micrograms/ml) into the renal tubular system was investigated. Urine fractions (Fr) were collected after a 2-min stop flow. Changes in the urine fraction with respect to those in free-flow urine samples (Ff) were related to the respective polyfructosan (Inutest) ratio. Renal kallikrein activity (Fr:Ff kallikrein/ Fr:Ff polyfructosan) increased significantly in the first two urine fractions collected after glandular kallikrein administration (kallikrein, 1 microgram/ml, P < 0.05; kallikrein, 3 micrograms/ml, P < 0.01). HCO3- secretion of collecting ducts was significantly reduced dose dependently by orthograde and also reduced by retrograde pig pancreatic kallikrein administration. Release of kinins into the fractions was not affected by the retrograde kallikrein injection, even though the kallikrein activity increased considerably (2.26 +/- 0.2 vs. 1.55 +/- 0.2, P < 0.05). Adequacy of retrograde injections for delivering substances to the CCD was demonstrated by injecting colloidal mercury and detecting the appearance of this mercury in the renal cortex by transmission electron microscopy. The integrity of the renal tissue after a retrograde ureteral injection was confirmed by scanning electron microscopy. These results confirm and extend previous data (M. Marin-Grez and P. Vallés. Renal Physiol. Biochem. 17: 301-306, 1994; and M. Marin-Grez, P. Vallés, and P. Odigie. J. Physiol. 488: 163-170, 1995) showing that renal kallikrein reduces bicarbonate secretion at the CCD, probably by inhibiting HCO3- transported by a mechanism unrelated to its kininogenase activity. Support for this assessment was obtained in

  6. Peptidase inhibitors in tick physiology.

    PubMed

    Parizi, L F; Ali, A; Tirloni, L; Oldiges, D P; Sabadin, G A; Coutinho, M L; Seixas, A; Logullo, C; Termignoni, C; DA Silva Vaz, I

    2018-06-01

    Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction. © 2017 The Royal Entomological Society.

  7. Activation of Membrane-Bound Kallikrein and Renin in the Kidney.

    DTIC Science & Technology

    1980-05-23

    included repeated washings with hypotonic buffer. Kallikrein activity in the PM fraction (PM-kallikrein) averaged 1.81 nmol of S-2266 hydrolyzed per min...thousand Fig. 1 times more active than lysolecithin on a molar basis. Lecithin and arachidonic acid were active only at a much higher concentration...taglandin E2 (11), arachidonic acid or lecithin . However, melittin, on a molar basis, was about three orders of magnitude more potent than

  8. Mast Cell Peptidases

    PubMed Central

    Trivedi, Neil N.; Caughey, George H.

    2010-01-01

    Mast cells make and secrete an abundance of peptidases, which are stored in such large amounts in granules that they comprise a high fraction of all cellular protein. Perhaps no other immune cell is so generously endowed with peptidases. For many years after the main peptidases were first described, they were best known as markers of degranulation, for they are released locally in response to mast cell stimulation and can be distributed systemically and detected in blood. The principal peptidases are tryptases, chymases, carboxypeptidase A3, and dipeptidylpeptidase I (cathepsin C). Numerous studies suggest that these enzymes are important and even critical for host defense and homeostasis. Endogenous and allergen or pathogen-associated targets have been identified. Belying the narrow notion of peptidases as proinflammatory, several of the peptidases limit inflammation and toxicity of endogenous peptides and venoms. The peptidases are interdependent, so that absence or inactivity of one enzyme can alter levels and activity of others. Mammalian mast cell peptidases—chymases and tryptases especially—vary remarkably in number, expression, biophysical properties, and specificity, perhaps because they hyper-evolved under pressure from the very pathogens they help to repel. Tryptase and chymase involvement in some pathologies stimulated development of therapeutic inhibitors for use in asthma, lung fibrosis, pulmonary hypertension, ulcerative colitis, and cardiovascular diseases. While animal studies support the potential for mast cell peptidase inhibitors to mitigate certain diseases, other studies, as in mice lacking selected peptidases, predict roles in defense against bacteria and parasites and that systemic inactivation may impair host defense. PMID:19933375

  9. Diversity and Phylogenetic Distribution of Extracellular Microbial Peptidases

    NASA Astrophysics Data System (ADS)

    Nguyen, Trang; Mueller, Ryan; Myrold, David

    2017-04-01

    Depolymerization of proteinaceous compounds by extracellular proteolytic enzymes is a bottleneck in the nitrogen cycle, limiting the rate of the nitrogen turnover in soils. Protein degradation is accomplished by a diverse range of extracellular (secreted) peptidases. Our objective was to better understand the evolution of these enzymes and how their functional diversity corresponds to known phylogenetic diversity. Peptidase subfamilies from 110 archaeal, 1,860 bacterial, and 97 fungal genomes were extracted from the MEROPS database along with corresponding SSU sequences for each genome from the SILVA database, resulting in 43,177 secreted peptidases belonging to 34 microbial phyla and 149 peptidase subfamilies. We compared the distribution of each peptidase subfamily across all taxa to the phylogenetic relationships of these organisms based on their SSU gene sequences. The occurrence and abundance of genes coding for secreted peptidases varied across microbial taxa, distinguishing the peptidase complement of the three microbial kingdoms. Bacteria had the highest frequency of secreted peptidase coding genes per 1,000 genes and contributed from 1% to 6% of the gene content. Fungi only had a slightly higher number of secreted peptidase gene content than archaea, standardized by the total genes. The relative abundance profiles of secreted peptidases in each microbial kingdom also varied, in which aspartic family was found to be the greatest in fungi (25%), whereas it was only 12% in archaea and 4% in bacteria. Serine, metallo, and cysteine families consistently contributed widely up to 75% of the secreted peptidase abundance across the three kingdoms. Overall, bacteria had a much wider collection of secreted peptidases, whereas fungi and archaea shared most of their secreted peptidase families. Principle coordinate analysis of the peptidase subfamily-based dissimilarities showed distinguishable clusters for different groups of microorganisms. The distribution of

  10. Matriptase initiates epidermal prokallikrein activation and disease onset in a mouse model of Netherton syndrome

    PubMed Central

    Sales, Katiuchia Uzzun; Masedunskas, Andrius; Bey, Alexandra L.; Rasmussen, Amber; Weigert, Roberto; List, Karin; Szabo, Roman; Overbeek, Paul A.; Bugge, Thomas H.

    2010-01-01

    Deficiency in the serine protease inhibitor LEKTI is the etiological origin of Netherton syndrome. The principal morbidities of the disease are stratum corneum detachment and chronic inflammation. We show that the membrane protease, matriptase, initiates Netherton syndrome in a LEKTI-deficient mouse model by premature activation of a pro-kallikrein-related cascade. Auto-activation of pro-inflammatory and stratum corneum detachment-associated pro-kallikrein-related peptidases was either low or undetectable, but they were efficiently activated by matriptase. Ablation of matriptase from LEKTI-deficient mice dampened inflammation, eliminated aberrant protease activity, prevented stratum corneum detachment, and improved epidermal barrier function. The study uncovers a pathogenic matriptase-pro-kallikrein pathway that could be operative in several human skin and inflammatory diseases. PMID:20657595

  11. Helodermatine, a kallikrein-like, hypotensive enzyme from the venom of Heloderma horridum horridum (Mexican beaded lizard)

    PubMed Central

    1986-01-01

    We have purified and characterized the major N-benzoyl-L-arginine ethyl ester hydrolase from the venom of Heloderma horridum horridum. The enzyme belongs to the serine proteinase family, and its activity vs. peptide amide substrates and human high-molecular-weight kininogen suggests a similarity to the family of kallikreins. This interpretation is corroborated by its reactivity with the natural inhibitors soybean trypsin inhibitor and Kunitz-type bovine pancreatic trypsin inhibitor (aprotinin). Injection of the enzyme (2-16 micrograms/kg) into anesthetized rabbits leads to a rapid dose-dependent transient decrease of the arterial blood pressure. Like glandular kallikrein it specifically converts single-chain tissue type plasminogen activator into its double chain form. In contrast to other kallikrein-like enzymes from snake venoms it shows no thrombin-like or plasminogen activator activity. The enzyme is a single-chain glycoprotein (Mr 63,000). The N-terminal sequence revealed significant homology to pig pancreatic kallikrein and to kallikrein like enzymes from Crotalus atrox and Crotalus adamanteus venom. This enzyme, which we name Helodermatine, is the first purified from Sauria with kallikrein-like properties. PMID:3537191

  12. Prostate-specific antigen kallikrein and acute myocardial infarction: where we are. Where are we going?

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2011-01-07

    Prostate-specific antigen (PSA) is an established marker for the detection of prostate cancer. Both elevated and diminished PSA have been reported during acute myocardial infarction. It seems that when elevation of PSA occurs during acute myocardial infarction (AMI), coronary lesions are frequent and often more severe than when a diminution of PSA occurs. PSA has been identified as a member of the human kallikrein family of serine proteases. In recent years, numerous observations have suggested that the activity of the kallikrein-kinin system is related to inflammation and to cardiovascular diseases. PSA kallikrein, however, does not seem to have kinin-generating activity. The inactive precursor form of PSA, proPSA, is converted rapidly to active PSA by Human kallikrein 2 (hK2), suggesting an important in vivo regulatory function byhK2 on PSA activity. However, it has been reported that hK2 might not alone be able to activate proPSA in vivo, but there are also other protease/proteases involved in this event. Moreover, it seems that when elevation of prostate-specific antigen occurs during AMI, it seems to relate to a higher occurrence of major adverse cardiac events in the first 8 days after AMI than when a diminution of PSA occurs. It confirms a possible new intriguing scenario of the role of the PSA in AMI. Although these preliminary observations are suggestive, large studies need to be done to confirm these preliminary results. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.

  13. Glandular kallikrein in the innate immune system of Atlantic salmon (Salmo salar).

    PubMed

    Haussmann, D; Figueroa, J

    2011-02-15

    Glandular Kallikrein is a serine-protease with trypsin-like activity and is able to generate bioactive peptides from inactive precursors. We have evaluated the presence of this protease in the different organs of the Atlantic salmon (Salmo salar). The results clearly indicate that GK and PRL are generated in the same pituitary cells based on a co-localization by confocal microscopy. Based on probed cross-reactivity between C. striata and C. carpio glandular anti-GK antibodies, we used a homologous antibody to detect the presence of GK in several salmon tissues. We have evaluated the GK expression in healthy and defied fish. P. salmonis and V. ordalii. The GK immunoreaction in organs such as leukocytes, gills and skin is considerably increased in defied fish compared to healthy fish. This increase was present in the cells of the excretory kidney and in the intercellular tissue, where the development of hematopoietic and lymphocytic lines in fish take place. One of the most interesting organs to study was the skin, bearing in mind that this is a primary barrier to all pathogens. The skin of the defied fish exhibited an increase in immunoreactivity for glandular kallikrein similar to the protease found in mucus. An immunoreactive tissue kallikrein-like protein was identified and partially separated by perfusion chromatography. Enzymatic activity of salmon muscle prokallikrein was determined before and after trypsin activation. Kallikrein activity was characterized with respect to their ability to cleave the chromogenic leaving group, p-nitroanilide, from the peptidyl kallikrein and trypsin substrate. These findings constitute a important contribution to reveal the role of kallikrein in the innate immune system of fish. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Dipeptidyl peptidase 4 - An important digestive peptidase in Tenebrio molitor larvae.

    PubMed

    Tereshchenkova, Valeriia F; Goptar, Irina A; Kulemzina, Irina A; Zhuzhikov, Dmitry P; Serebryakova, Marina V; Belozersky, Mikhail A; Dunaevsky, Yakov E; Oppert, Brenda; Filippova, Irina Yu; Elpidina, Elena N

    2016-09-01

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor. Published by Elsevier Ltd.

  15. P-I class metalloproteinase from Bothrops moojeni venom is a post-proline cleaving peptidase with kininogenase activity: insights into substrate selectivity and kinetic behavior.

    PubMed

    Okamoto, Débora N; Kondo, Marcia Y; Oliveira, Lilian C G; Honorato, Rodrigo V; Zanphorlin, Leticia M; Coronado, Monika A; Araújo, Mariana S; da Motta, Guacyara; Veronez, Camila L; Andrade, Sheila S; Oliveira, Paulo S L; Arni, Raghuvir K; Cintra, Adelia C O; Sampaio, Suely V; Juliano, Maria A; Juliano, Luiz; Murakami, Mário T; Gouvea, Iuri E

    2014-03-01

    Snake venom metalloproteinases (SVMPs) belonging to P-I class are able to hydrolyze extracellular matrix proteins and coagulation factors triggering local and systemic reactions by multiple molecular mechanisms that are not fully understood. BmooMPα-I, a P-I class SMVP from Bothrops moojeni venom, was active upon neuro- and vaso-active peptides including angiotensin I, bradykinin, neurotensin, oxytocin and substance P. Interestingly, BmooMPα-I showed a strong bias towards hydrolysis after proline residues, which is unusual for most of characterized peptidases. Moreover, the enzyme showed kininogenase activity similar to that observed in plasma and cells by kallikrein. FRET peptide assays indicated a relative promiscuity at its S2-S'2 subsites, with proline determining the scissile bond. This unusual post-proline cleaving activity was confirmed by the efficient hydrolysis of the synthetic combinatorial library MCA-GXXPXXQ-EDDnp, described as resistant for canonical peptidases, only after Pro residues. Structural analysis of the tripeptide LPL complexed with BmooMPα-I, generated by molecular dynamics simulations, assisted in defining the subsites and provided the structural basis for subsite preferences such as the restriction of basic residues at the S2 subsite due to repulsive electrostatic effects and the steric impediment for large aliphatic or aromatic side chains at the S1 subsite. These new functional and structural findings provided a further understanding of the molecular mechanisms governing the physiological effects of this important class of enzymes in envenomation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Comparison Between the Four-kallikrein Panel and Prostate Health Index for Predicting Prostate Cancer.

    PubMed

    Nordström, Tobias; Vickers, Andrew; Assel, Melissa; Lilja, Hans; Grönberg, Henrik; Eklund, Martin

    2015-07-01

    The four-kallikrein panel and the Prostate Health Index (PHI) have been shown to improve prediction of prostate cancer (PCa) compared with prostate-specific antigen (PSA). No comparison of the four-kallikrein panel and PHI has been presented. To compare the four-kallikrein panel and PHI for predicting PCa in an independent cohort. Participants were from a population-based cohort of PSA-tested men in Stockholm County. We included 531 men with PSA levels between 3 and 15 ng/ml undergoing first-time prostate biopsy during 2010-2012. Models were fitted to case status. We computed calibration curves, the area under the receiver-operating characteristics curve (AUC), decision curves, and percentage of saved biopsies. The four-kallikrein panel showed AUCs of 69.0 when predicting any-grade PCa and 71.8 when predicting high-grade cancer (Gleason score ≥7). Similar values were found for PHI: 70.4 and 71.1, respectively. Both models had higher AUCs than a base model with PSA value and age (p<0.0001 for both); differences between models were not significant. Sensitivity analyses including men with any PSA level or a previous biopsy did not materially affect our findings. Using 10% predicted risk of high-grade PCa by the four-kallikrein panel or PHI of 39 as cut-off for biopsy saved 29% of performed biopsies at a cost of delayed diagnosis for 10% of the men with high-grade cancers. Both models showed limited net benefit in decision analysis. The main study limitation was lack of digital rectal examination data and biopsy decision being based on PSA information. The four-kallikrein panel and PHI similarly improved discrimination when predicting PCa and high-grade PCa. Both are simple blood tests that can reduce the number of unnecessary biopsies compared with screening with total PSA, representing an important new option to reduce harm. Prostate-specific antigen screening is controversial due to limitations of the test. We found that two blood tests, the Prostate Health Index

  17. The Kallikrein-Kinin System in Bartter's Syndrome and Its Response to Prostaglandin Synthetase Inhibition

    PubMed Central

    Vinci, Joseph M.; Gill, John R.; Bowden, Robert E.; Pisano, John J.; Izzo, Joseph L.; Radfar, Nazam; Taylor, Addison A.; Zusman, Randall M.; Bartter, Frederic C.; Keiser, Harry R.

    1978-01-01

    The kallikrein-kinin system was characterized in seven patients with Bartter's syndrome on constant metabolic regimens before, during, and after treatment with prostaglandin synthetase inhibitors. Patients with Bartter's syndrome had high values for plasma bradykinin, plasma renin activity (PRA), urinary kallikrein, urinary immunoreactive prostaglandin E excretion, and urinary aldosterone; urinary kinins were subnormal and plasma prekallikrein was normal. Treatment with indomethacin or ibuprofen which decreased urinary immunoreactive prostaglandin E excretion by 67%, decreased mean PRA (patients recumbent) from 17.3±5.3 (S.E.M.) ng/ml per h to 3.3±1.1 ng/ml per h, mean plasma bradykinin (patients recumbent) from 15.4±4.4 ng/ml to 3.9±0.9 ng/ml, mean urinary kallikrein excretion from 24.8±3.2 tosyl-arginine-methyl ester units (TU)/day to 12.4±2.0 TU/day, but increased mean urinary kinin excretion from 3.8±1.3 μg/day to 8.5±2.5 μg/day. Plasma prekallikrein remained unchanged at 1.4 TU/ml. Thus, with prostaglandin synthetase inhibition, values for urinary kallikrein and kinin and plasma bradykinin returned to normal pari passu with changes in PRA, in aldosterone, and in prostaglandin E. The results suggest that, in Bartter's syndrome, prostaglandins mediate the low urinary kinins and the high plasma bradykinin, and that urinary kallikrein, which is aldosterone dependent, does not control kinin excretion. The high plasma bradykinin may be a cause of the pressor hyporesponsiveness to angiotensin II which characterizes the syndrome. PMID:96139

  18. Evolution of the thermopsin peptidase family (A5).

    PubMed

    Rawlings, Neil D

    2013-01-01

    Thermopsin is a peptidase from Sulfolobus acidocaldarius that is active at low pH and high temperature. From reversible inhibition with pepstatin, thermopsin is thought to be an aspartic peptidase. It is a member of the only family of peptidases to be restricted entirely to the archaea, namely peptidase family A5. Evolution within this family has been mapped, using a taxonomic tree based on the known classification of archaea. Homologues are found only in archaeans that are both hyperthermophiles and acidophiles, and this implies lateral transfer of genes between archaea, because species with homologues are not necessarily closely related. Despite the remarkable stability and activity in extreme conditions, no tertiary structure has been solved for any member of the family, and the catalytic mechanism is unknown. Putative catalytic residues have been predicted here by examination of aligned sequences.

  19. Dipeptidyl peptidase 4 – an important digestive peptidase in Tenebrio molitor larvae

    USDA-ARS?s Scientific Manuscript database

    Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae ...

  20. The global cysteine peptidase landscape in parasites

    PubMed Central

    Atkinson, Holly J; Babbitt, Patricia C; Sajid, Mohammed

    2013-01-01

    The accumulation of sequenced genomes has expanded the already sizeable population of cysteine peptidases from parasites. Characterization of a few of these enzymes has ascribed key roles to peptidases in parasite life cycles and also shed light on mechanisms of pathogenesis. Here, we discuss recent observations on the physiological activities of cysteine peptidases of parasitic organisms, paired with a global view of all cysteine peptidases from the MEROPS database grouped by similarity. This snapshot of the landscape of parasite cysteine peptidases is complex and highly populated, which suggests that expansion of research beyond the few ‘model’ parasite peptidases is now timely. PMID:19854678

  1. Stable and Long-Lasting, Novel Bicyclic Peptide Plasma Kallikrein Inhibitors for the Treatment of Diabetic Macular Edema.

    PubMed

    Teufel, Daniel P; Bennett, Gavin; Harrison, Helen; van Rietschoten, Katerine; Pavan, Silvia; Stace, Catherine; Le Floch, François; Van Bergen, Tine; Vermassen, Elke; Barbeaux, Philippe; Hu, Tjing-Tjing; Feyen, Jean H M; Vanhove, Marc

    2018-04-12

    Plasma kallikrein, a member of the kallikrein-kinin system, catalyzes the release of the bioactive peptide bradykinin, which induces inflammation, vasodilation, vessel permeability, and pain. Preclinical evidence implicates the activity of plasma kallikrein in diabetic retinopathy, which is a leading cause of visual loss in patients suffering from diabetes mellitus. Employing a technology based on phage-display combined with chemical cyclization, we have identified highly selective bicyclic peptide inhibitors with nano- and picomolar potencies toward plasma kallikrein. Stability in biological matrices was either intrinsic to the peptide or engineered via the introduction of non-natural amino acids and nonpeptidic bonds. The peptides prevented bradykinin release in vitro, and in vivo efficacy was demonstrated in both a rat paw edema model and in rodent models of diabetes-induced retinal permeability. With a highly extended half-life of ∼40 h in rabbit eyes following intravitreal administration, the bicyclic peptides are promising novel agents for the treatment of diabetic retinopathy and diabetic macular edema.

  2. A genetically engineered human Kunitz protease inhibitor with increased kallikrein inhibition in an ovine model of cardiopulmonary bypass.

    PubMed

    Ohri, S K; Parratt, R; White, T; Becket, J; Brannan, J J; Hunt, B J; Taylor, K M

    2001-05-01

    A recombinant human serine protease inhibitor known as Kunitz protease inhibitor (KPI) wild type has functional similarities to the bovine Kunitz inhibitor, aprotinin, and had shown a potential to reduce bleeding in an ovine model of cardiopulmonary bypass (CPB). The aim of this study was to assess KPI-185, a modification of KPI-wild type that differs from KPI-wild type in two amino acid residues and which enhances anti-kallikrein activity in a further double-blind, randomized study in an ovine model of CPB, and to compare with our previous study of KPI-wild type and aprotinin in the same ovine model. Post-operative drain losses and subjective assessment of wound 'dryness' showed no significant differences between KPI-185 and KPI-wild type, despite the significant enhancement of kallikrein inhibition using KPI-185 seen in serial kallikrein inhibition assays. These preliminary findings support the hypothesis that kallikrein inhibition is not the major mechanism by which Kunitz inhibitors such as aprotinin reduce perioperative bleeding.

  3. Human plasma kallikrein and tissue kallikrein binding to a substrate based on the reactive site of a factor Xa inhibitor isolated from Bauhinia ungulata seeds.

    PubMed

    Oliva, M L; Andrade, S A; Batista, I F; Sampaio, M U; Juliano, M; Fritz, H; Auerswald, E A; Sampaio, C A

    1999-12-01

    Kunitz type Bauhinia ungulata factor Xa inhibitor (BuXI) was purified from B. ungulata seeds. BuXI inactivates factor Xa and human plasma kallikrein (HuPK) with Ki values of 18.4 and 6.9 nM, respectively. However, Bauhinia variegata trypsin inhibitor (BvTI) which is 70% homologous to BuXI does not inhibit factor Xa and is less efficient on HuPK (Ki = 80 nM). The comparison between BuXI and BvTI reactive site structure indicates differences at Met59, Thr66 and Met67 residues. The hydrolysis rate of quenched fluorescence peptide substrates based on BuXI reactive site sequence, Abz-VMIAALPRTMFIQ-EDDnp (leading peptide), by HuPK and porcine pancreatic kallikrein (PoPK) is low, but hydrolysis is enhanced with Abz-VMIAALPRTMQ-EDDnp, derived from the leading peptide shortened by removing the dipeptide Phe-Ileu from the C-terminal portion, for HuPK (Km = 0.68 microM, k(cat)/Km = 1.3 x 10(6) M(-1) s(-1)), and the shorter substrate Abz-LPRTMQ-EDDnp is better for PoPK (Km = 0.66 microM, k(cat)/Km = 2.2 x 10(3) M(-1) s(-1)). The contribution of substrate methionine residues to HuPK and PoPK hydrolysis differs from that observed with factor Xa. The determined Km and k(cat) values suggest that the substrates interact with kallikreins the same as an enzyme and inhibitor interacts to form complexes.

  4. Inhibitors of tripeptidyl peptidase II. 2. Generation of the first novel lead inhibitor of cholecystokinin-8-inactivating peptidase: a strategy for the design of peptidase inhibitors.

    PubMed

    Ganellin, C R; Bishop, P B; Bambal, R B; Chan, S M; Law, J K; Marabout, B; Luthra, P M; Moore, A N; Peschard, O; Bourgeat, P; Rose, C; Vargas, F; Schwartz, J C

    2000-02-24

    The cholecystokinin-8 (CCK-8)-inactivating peptidase is a serine peptidase which has been shown to be a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10). It cleaves the neurotransmitter CCK-8 sulfate at the Met-Gly bond to give Asp-Tyr(SO(3)H)-Met-OH + Gly-Trp-Met-Asp-Phe-NH(2). In seeking a reversible inhibitor of this peptidase, the enzymatic binding subsites were characterized using a fluorimetric assay based on the hydrolysis of the artificial substrate Ala-Ala-Phe-amidomethylcoumarin. A series of di- and tripeptides having various alkyl or aryl side chains was studied to determine the accessible volume for binding and to probe the potential for hydrophobic interactions. From this initial study the tripeptides Ile-Pro-Ile-OH (K(i) = 1 microM) and Ala-Pro-Ala-OH (K(i) = 3 microM) and dipeptide amide Val-Nvl-NHBu (K(i) = 3 microM) emerged as leads. Comparison of these structures led to the synthesis of Val-Pro-NHBu (K(i) = 0.57 microM) which served for later optimization in the design of butabindide, a potent reversible competitive and selective inhibitor of the CCK-8-inactivating peptidase. The strategy for this work is explicitly described since it illustrates a possible general approach for peptidase inhibitor design.

  5. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observedmore » a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.« less

  6. Astacin Family Metallopeptidases and Serine Peptidase Inhibitors in Spider Digestive Fluid

    PubMed Central

    Foradori, Matthew J.; Tillinghast, Edward K.; Smith, J. Stephen; Townley, Mark A.; Mooney, Robert E.

    2006-01-01

    Digestive fluid of the araneid spider Argiope aurantia is known to contain zinc metallopeptidases. Using anion-exchange chromatography, size-exclusion chromatography, sucrose density gradient centrifugation, and gel electrophoresis, we isolated two lower-molecular-mass peptidases, designated p16 and p18. The N-terminal amino acid sequences of p16 (37 residues) and p18 (20 residues) are 85% identical over the first 20 residues and are most similar to the N-terminal sequences of the fully active form of meprin (β subunits) from several vertebrates (47–52% and 50–60% identical, respectively). Meprin is a peptidase in the astacin (M12A) subfamily of the astacin (M12) family. Additionally, a 66-residue internal sequence obtained from p16 aligns with the conserved astacin subfamily domain. Thus, at least some spider digestive peptidases appear related to astacin of decapod crustaceans. However, important differences between spider and crustacean metallopeptidases with regard to isoelectric point and their susceptibility to hemolymph-borne inhibitors are demonstrated. Anomalous behavior of the lower-molecular-mass Argiope peptidases during certain fractionation procedures indicates that these peptidases may take part in reversible associations with each other or with other proteins. A. aurantia digestive fluid also contains inhibitory activity effective against insect digestive peptidases. Here we present evidence for at least thirteen, heat-stable serine peptidase inhibitors ranging in molecular mass from about 15 to 32 kDa. PMID:16458560

  7. Immunolocalization of tripeptidyl peptidase II, a cholecystokinin-inactivating enzyme, in rat brain.

    PubMed

    Facchinetti, P; Rose, C; Rostaing, P; Triller, A; Schwartz, J C

    1999-01-01

    Tripeptidyl peptidase II (EC 3.4.14.10) is a serine peptidase apparently involved in the inactivation of cholecystokinin octapeptide [Rose C. et al. (1996) Nature 380, 403-409]. We have compared its distribution with that of cholecystokinin in rat brain, using a polyclonal antibody raised against a highly purified preparation for immunohistochemistry at the photon and electron microscope levels. Tripeptidyl peptidase II-like immunoreactivity was mostly detected in neurons, and also in ependymal cells and choroid plexuses, localizations consistent with a possible participation of the peptidase in the inactivation of cholecystokinin circulating in the cerebrospinal fluid. Immunoreactivity was mostly detected in cell bodies, large processes and, to a lesser extent, axons of various neuronal populations. Their localization, relative to that of cholecystokinin terminals, appears to define three distinct situations. The first corresponds to neurons with high immunoreactivity in areas containing cholecystokinin terminals, as in the cerebral cortex or hippocampal formation, where pyramidal cell bodies and processes surrounded by cholecystokinin axons were immunoreactive. A similar situation was encountered in many other areas, namely along the pathways through which cholecystokinin controls satiety, i.e. in sensory vagal neurons, the nucleus tractus solitarius and hypothalamic nuclei. The second situation corresponds to cholecystokinin neuronal populations containing tripeptidyl peptidase II-like immunoreactivity, as in neurons of the supraoptic or paraventricular nuclei, axons in the median eminence or nigral neurons. In both situations, localization of tripeptidyl peptidase II-like immunoreactivity is consistent with a role in cholecystokinin inactivation. The third situation corresponds to areas with mismatches, such as the cerebellum, a region devoid of cholecystokinin, but in which Purkinje cells displayed high tripeptidyl peptidase II-like immunoreactivity, possibly

  8. Characterization and inhibition of a cholecystokinin-inactivating serine peptidase.

    PubMed

    Rose, C; Vargas, F; Facchinetti, P; Bourgeat, P; Bambal, R B; Bishop, P B; Chan, S M; Moore, A N; Ganellin, C R; Schwartz, J C

    1996-04-04

    A cholecystokinin (CCK)-inactivating peptidase was purified and identified as a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10), a cytosolic subtilisin-like peptidase of previously unknown functions. The peptidase was found in neurons responding to cholecystokinin, as well as in non-neuronal cells. Butabindide, a potent and specific inhibitor, was designed and shown to protect endogenous cholecystokinin from inactivation and to display pro-satiating effects mediated by the CCKA receptor.

  9. Bioinformatic flowchart and database to investigate the origins and diversity of Clan AA peptidases

    PubMed Central

    Llorens, Carlos; Futami, Ricardo; Renaud, Gabriel; Moya, Andrés

    2009-01-01

    Background Clan AA of aspartic peptidases relates the family of pepsin monomers evolutionarily with all dimeric peptidases encoded by eukaryotic LTR retroelements. Recent findings describing various pools of single-domain nonviral host peptidases, in prokaryotes and eukaryotes, indicate that the diversity of clan AA is larger than previously thought. The ensuing approach to investigate this enzyme group is by studying its phylogeny. However, clan AA is a difficult case to study due to the low similarity and different rates of evolution. This work is an ongoing attempt to investigate the different clan AA families to understand the cause of their diversity. Results In this paper, we describe in-progress database and bioinformatic flowchart designed to characterize the clan AA protein domain based on all possible protein families through ancestral reconstructions, sequence logos, and hidden markov models (HMMs). The flowchart includes the characterization of a major consensus sequence based on 6 amino acid patterns with correspondence with Andreeva's model, the structural template describing the clan AA peptidase fold. The set of tools is work in progress we have organized in a database within the GyDB project, referred to as Clan AA Reference Database . Conclusion The pre-existing classification combined with the evolutionary history of LTR retroelements permits a consistent taxonomical collection of sequence logos and HMMs. This set is useful for gene annotation but also a reference to evaluate the diversity of, and the relationships among, the different families. Comparisons among HMMs suggest a common ancestor for all dimeric clan AA peptidases that is halfway between single-domain nonviral peptidases and those coded by Ty3/Gypsy LTR retroelements. Sequence logos reveal how all clan AA families follow similar protein domain architecture related to the peptidase fold. In particular, each family nucleates a particular consensus motif in the sequence position

  10. A cytocidal tissue kallikrein isolated from mouse submandibular glands.

    PubMed

    Murakami, K; Ikigai, H; Nagumo, N; Tomita, M; Shimamura, T

    1989-11-06

    A cytocidal factor against mouse thymocytes was purified from the submandibular glands of female BALB/c mice using Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. SDS-PAGE and amino acid sequence analysis revealed that the cytocidal factor was mouse glandular kallikrein (mGK)-6. mGK-6 showed an optimal enzyme activity at pH 10 and a cytocidal activity against thymocytes in a dose-dependent manner.

  11. Peptidomics methods for the identification of peptidase-substrate interactions

    PubMed Central

    Lone, Anna Mari; Kim, Yun-Gon; Saghatelian, Alan

    2013-01-01

    Peptidases have important roles in controlling physiological signaling through their regulation of bioactive peptides. Understanding and controlling bioactive peptide regulation is of great biomedical interest and approaches that elucidate the interplay between peptidases and their substrates are vital for achieving this goal. Here, we highlight the utility of recent peptidomics approaches in identifying endogenous substrates of peptidases. These approaches reveal bioactive substrates and help characterize the biochemical functions of the enzyme. Most recently, peptidomics approaches have been applied to address the challenging question of identifying the peptidases responsible for regulating specific bioactive peptides. Since peptidases are of great biomedical interest, these approaches will begin to impact our ability to identify new drug targets that regulate important bioactive peptides. PMID:23332665

  12. Peptidases in dog-ileum circular and longitudinal smooth-muscle plasma membranes. Their relative contribution to the metabolism of neurotensin.

    PubMed

    Checler, F; Ahmad, S; Kostka, P; Barelli, H; Kitabgi, P; Fox, J A; Kwan, C Y; Daniel, E E; Vincent, J P

    1987-07-15

    We established the content in neuropeptide-metabolizing peptidases present in highly purified plasma membranes prepared from the circular and longitudinal muscles of dog ileum. Activities were measured by the use of fluorigenic substrates and the identities of enzymes were confirmed by the use of specific peptidase inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme, post-proline dipeptidyl aminopeptidase and aminopeptidases were found in both membrane preparations. Proline endopeptidase was only detected in circular smooth muscle plasma membranes while pyroglutamyl-peptide hydrolase was not observed in either tissue. The relative contribution of these peptidases to the inactivation of neurotensin was assessed. The enzymes involved in the primary inactivating cleavages occurring on the neurotensin molecule were as follows. In both membrane preparations, endopeptidase 24.11 was responsible for the formation of neurotensin-(1-11) and contributed to the formation of neurotensin-(1-10); a recently purified neurotensin-degrading neutral metallopeptidase was also involved in the formation of neurotensin-(1-10). A carboxypeptidase-like activity hydrolysed neurotensin at the Ile12-Leu13 peptide bond, leading to the formation of neurotensin-(1-12). Proline endopeptidase and endopeptidase 24.15 only occurred in circular muscle plasma membranes, yielding neurotensin-(1-7) and neurotensin-(1-8), respectively. In addition, the secondary processing of neurotensin degradation products was catalyzed by the following peptidases. In circular and longitudinal muscle membranes, angiotensin-converting enzyme converted neurotensin-(1-10) into neurotensin-(1-8) and tyrosine resulted from the rapid hydrolysis of neurotensin-(11-13) by bestatin-sensitive aminopeptidases. A post-proline dipeptidyl aminopeptidase activity converted neurotensin-(9-13) into neurotensin-(11-13) in circular muscle plasma membranes. The mechanism of neurotensin inactivation occurring in these membranes

  13. Introduction of Peptidase Genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and Controlled Expression

    PubMed Central

    Wegmann, U.; Klein, J. R.; Drumm, I.; Kuipers, O. P.; Henrich, B.

    1999-01-01

    Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (PnisA). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of PnisA::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools. PMID:10543778

  14. Axonal transports of tripeptidyl peptidase II in rat sciatic nerves.

    PubMed

    Chikuma, Toshiyuki; Shimizu, Maki; Tsuchiya, Yukihiro; Kato, Takeshi; Hojo, Hiroshi

    2007-01-01

    Axonal transport of tripeptidyl peptidase II, a putative cholecystokinin inactivating serine peptidase, was examined in the proximal, middle, and distal segments of rat sciatic nerves using a double ligation technique. Enzyme activity significantly increased not only in the proximal segment but also in the distal segment 12-72h after ligation, and the maximal enzyme activity was found in the proximal and distal segments at 72h. Western blot analysis of tripeptidyl peptidase II showed that its immunoreactivities in the proximal and distal segments were 3.1- and 1.7-fold higher than that in the middle segment. The immunohistochemical analysis of the segments also showed an increase in immunoreactive tripeptidyl peptidase II level in the proximal and distal segments in comparison with that in the middle segment, indicating that tripeptidyl peptidase II is transported by anterograde and retrograde axonal flow. The results suggest that tripeptidyl peptidase II may be involved in the metabolism of neuropeptides in nerve terminals or synaptic clefts.

  15. Inhibition of DD-peptidases by a specific trifluoroketone: crystal structure of a complex with the Actinomadura R39 DD-peptidase.

    PubMed

    Dzhekieva, Liudmila; Adediran, S A; Herman, Raphael; Kerff, Frédéric; Duez, Colette; Charlier, Paulette; Sauvage, Eric; Pratt, R F

    2013-03-26

    Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.

  16. Twenty-year Risk of Prostate Cancer Death by Midlife Prostate-specific Antigen and a Panel of Four Kallikrein Markers in a Large Population-based Cohort of Healthy Men.

    PubMed

    Sjoberg, Daniel D; Vickers, Andrew J; Assel, Melissa; Dahlin, Anders; Poon, Bing Ying; Ulmert, David; Lilja, Hans

    2018-06-01

    Prostate-specific antigen (PSA) screening reduces prostate cancer deaths but leads to harm from overdiagnosis and overtreatment. To determine the long-term risk of prostate cancer mortality using kallikrein blood markers measured at baseline in a large population of healthy men to identify men with low risk for prostate cancer death. Study based on the Malmö Diet and Cancer cohort enrolling 11 506 unscreened men aged 45-73 yr during 1991-1996, providing cryopreserved blood at enrollment and followed without PSA screening to December 31, 2014. We measured four kallikrein markers in the blood of 1223 prostate cancer cases and 3028 controls. Prostate cancer death (n=317) by PSA and a prespecified statistical model based on the levels of four kallikrein markers. Baseline PSA predicted prostate cancer death with a concordance index of 0.86. In men with elevated PSA (≥2.0ng/ml), predictive accuracy was enhanced by the four-kallikrein panel compared with PSA (0.80 vs 0.73; improvement 0.07; 95% confidence interval 0.04, 0.10). Nearly half of men aged 60+ yr with elevated PSA had a four-kallikrein panel score of <7.5%, translating into 1.7% risk of prostate cancer death at 15 yr-a similar estimate to that of a man with a PSA of 1.6ng/ml. Men with a four-kallikrein panel score of ≥7.5% had a 13% risk of prostate cancer death at 15 yr. A prespecified statistical model based on four kallikrein markers (commercially available as the 4Kscore) reclassified many men with modestly elevated PSA, to have a low long-term risk of prostate cancer death. Men with elevated PSA but low scores from the four-kallikrein panel can be monitored rather than being subject to biopsy. Men with elevated prostate-specific antigen (PSA) are often referred for prostate biopsy. However, men with elevated PSA but low scores from the four-kallikrein panel can be monitored rather than being subject to biopsy. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights

  17. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae.

    PubMed

    Vyas, Ishan K; Jamerson, Melissa; Cabral, Guy A; Marciano-Cabral, Francine

    2015-01-01

    Naegleria fowleri, a free-living ameba, is the causative agent of Primary Amebic Meningoencephalitis. Highly pathogenic mouse-passaged amebae (Mp) and weakly pathogenic axenically grown (Ax) N. fowleri were examined for peptidase activity. Zymography and azocasein peptidase activity assays demonstrated that Mp and Ax N. fowleri exhibited a similar peptidase pattern. Prominent for whole cell lysates, membranes and conditioned medium (CM) from Mp and Ax amebae was the presence of an activity band of approximately 58 kDa that was sensitive to E64, a cysteine peptidase inhibitor. However, axenically grown N. fowleri demonstrated a high level of this peptidase activity in membrane preparations. The inhibitor E64 also reduced peptidase activity in ameba-CM consistent with the presence of secreted cysteine peptidases. Exposure of Mp amebae to E64 reduced their migration through matrigel that was used as an extracellular matrix, suggesting a role for cysteine peptidases in invasion of the central nervous system (CNS). The collective results suggest that the profile of peptidases is not a discriminative marker for distinguishing Mp from Ax N. fowleri. However, the presence of a prominent level of activity for cysteine peptidases in N. fowleri membranes and CM, suggests that these enzymes may serve to facilitate passage of the amebae into the CNS. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  18. Altered peptidase activities in thyroid neoplasia and hyperplasia.

    PubMed

    Larrinaga, Gorka; Blanco, Lorena; Errarte, Peio; Beitia, Maider; Sanz, Begoña; Perez, Itxaro; Irazusta, Amaia; Sánchez, Clara E; Santaolalla, Francisco; Andrés, Leire; López, José I

    2013-01-01

    Papillary thyroid carcinoma (PTC), follicular thyroid adenoma (FTA), and thyroid nodular hyperplasia (TNH) are the most frequent diseases of the thyroid gland. Previous studies described the involvement of dipeptidyl-peptidase IV (DPPIV/CD26) in the development of thyroid neoplasia and proposed it as an additional tool in the diagnosis/prognosis of these diseases. However, very little is known about the involvement of other peptidases in neoplastic and hyperplastic processes of this gland. The catalytic activity of 10 peptidases in a series of 30 PTC, 10 FTA, and 14 TNH was measured fluorimetrically in tumour and nontumour adjacent tissues. The activity of DPPIV/CD26 was markedly higher in PTC than in FTA, TNH, and nontumour tissues. Aspartyl aminopeptidase (AspAP), alanyl aminopeptidase (AlaAP), prolyl endopeptidase, pyroglutamyl peptidase I, and aminopeptidase B activities were significantly increased in thyroid neoplasms when compared to nontumour tissues. AspAP and AlaAP activities were also significantly higher in PTC than in FTA and TNH. These data suggest the involvement of DPPIV/CD26 and some cytosolic peptidases in the neoplastic development of PTC and FTA. Further studies will help to define the possible clinical usefulness of AlaAP and AspAP in the diagnosis/prognosis of thyroid neoplasms.

  19. Prostate-specific antigen kallikrein: from prostate cancer to cardiovascular system.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2009-05-01

    Prostate-specific antigen (PSA), considered only an established marker for the detection of prostate cancer, has been identified as a member (hK3) of the human kallikrein family of serine proteases and now, it is known that PSA is not specific to prostate, semen, and gender. Increased PSA serum levels have been reported also in cardiovascular patients and both elevated as well as diminished PSA have been reported during acute myocardial infarction (AMI). Preliminary observations have concluded that when elevation of prostate-specific antigen occurs during AMI, it seems to relate to a higher occurrence of major adverse cardiac events and that coronary lesions are frequent and often more severe than when a diminution of PSA occurs. Large studies need to be done to confirm these preliminary results but the journey of PSA could be longer than expected.

  20. Cysteine peptidases from Phytomonas serpens: biochemical and immunological approaches.

    PubMed

    Elias, Camila G R; Aor, Ana Carolina; Valle, Roberta S; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S

    2009-12-01

    Phytomonas serpens, a phytoflagellate trypanosomatid, shares common antigens with Trypanosoma cruzi. In the present work, we compared the hydrolytic capability of cysteine peptidases in both trypanosomatids. Trypanosoma cruzi epimastigotes presented a 10-fold higher efficiency in hydrolyzing the cysteine peptidase substrate Z-Phe-Arg-AMC than P. serpens promastigotes. Moreover, two weak cysteine-type gelatinolytic activities were detected in P. serpens, while a strong 50-kDa cysteine peptidase was observed in T. cruzi. Cysteine peptidase activities were detected at twofold higher levels in the cytoplasmic fraction when compared with the membrane-rich or the content released from P. serpens. The cysteine peptidase secreted by P. serpens cleaved several proteinaceous substrates. Corroborating these findings, the cellular distribution of the cruzipain-like molecules in P. serpens was attested through immunocytochemistry analysis. Gold particles were observed in all cellular compartments, including the cytoplasm, plasma membrane, flagellum, flagellar membrane and flagellar pocket. Interestingly, some gold particles were visualized free in the flagellar pocket, suggesting the release of the cruzipain-like molecule. The antigenic properties of the cruzipain-like molecules of P. serpens were also analyzed. Interestingly, sera from chagasic patients recognized both cellular and extracellular antigens of P. serpens, including the cruzipain-like molecule. These results point to the use of P. serpens antigens, especially the cruzipain-like cysteine-peptidases, as an alternative vaccination approach to T. cruzi infection.

  1. The Kallikrein-Kinin System as a Regulator of Cardiovascular and Renal Function

    PubMed Central

    Rhaleb, Nour-Eddine; Yang, Xiao-Ping; Carretero, Oscar A.

    2015-01-01

    Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardiovascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (†PA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR

  2. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE PAGES

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi; ...

    2016-06-21

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t 1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy ofmore » trelagliptin.« less

  3. Trelagliptin (SYR-472, Zafatek), novel once-weekly treatment for type 2 diabetes, inhibits dipeptidyl peptidase-4 (DPP-4) via a non-covalent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimshaw, Charles E.; Jennings, Andy; Kamran, Ruhi

    Trelagliptin (SYR-472), a novel dipeptidyl peptidase-4 inhibitor, shows sustained efficacy by once-weekly dosing in type 2 diabetes patients. In this study, we characterized in vitro properties of trelagliptin, which exhibited approximately 4-and 12-fold more potent inhibition against human dipeptidyl peptidase-4 than alogliptin and sitagliptin, respectively, and >10,000-fold selectivity over related proteases including dipeptidyl peptidase-8 and dipeptidyl peptidase-9. Kinetic analysis revealed reversible, competitive and slow-binding inhibition of dipeptidyl peptidase-4 by trelagliptin (t 1/2 for dissociation ≈ 30 minutes). X-ray diffraction data indicated a non-covalent interaction between dipeptidyl peptidase and trelagliptin. Altogether, potent dipeptidyl peptidase inhibitionmay partially contribute to sustained efficacy ofmore » trelagliptin.« less

  4. Role of peptidases of the intestinal microflora and prey in temperature adaptations of the digestive system in planktivorous and benthivorous fish.

    PubMed

    Kuz'mina, V V; Skvortsova, E G; Shalygin, M V; Kovalenko, K E

    2015-12-01

    Many fish enzymatic systems possess limited adaptations to low temperature; however, little data are available to judge whether enzymes of fish prey and intestinal microbiota can mitigate this deficiency. In this study, the activity of serine peptidases (casein-lytic, mainly trypsin and hemoglobin-lytic, mainly chymotrypsin) of intestinal mucosa, chyme and intestinal microflora in four species of planktivorous (blue bream) and benthivorous (roach, crucian carp, perch) was investigated across a wide temperature range (0-70 °C) to identify adaptations to low temperature. At 0 °C, the relative activity of peptidases of intestinal mucosa (<13%) and usually intestinal microflora (5-12.6%) is considerably less than that of chyme peptidases (up to 40% of maximal activity). The level of peptidase relative activity in crucian carp intestinal microflora was 45% of maximal activity. The shape of t°-function curves of chyme peptidase also differs in fish from different biotopes. Fish from the littoral group are characterized by a higher degree of adaptation of chyme casein-lytic peptidases to functioning at low temperatures as compared to fish from the pelagic group. The role of intestinal microbiota and prey peptidases in digestive system adaptations of planktivorous and benthivorous fish to low temperatures is discussed.

  5. Activation of tissue kallikrein-kininogen-kinin system in rabbit skin by a fraction isolated from Phoneutria nigriventer (armed spider) venom.

    PubMed

    Antunes, E; Marangoni, R A; Giglio, J R; Brain, S D; de Nucci, G

    1993-11-01

    Phoneutria nigriventer venom was fractionated by gel filtration followed by ion-exchange chromatography from which 16 fractions (I-XVI) were obtained and assayed in rabbit skin in order to identify those responsible for the increased vascular permeability observed with the whole venom. The fractions, and control mediators (tissue kallikrein, bradykinin and histamine) were intradermally injected in male New Zealand white rabbits. Local oedema formation was measured as the local accumulation of i.v. injected 125I-human serum albumin into skin sites. Fraction XIII was the only fraction assayed which significantly induced oedema formation. Fraction XIII-induced oedema was greatly reduced by either the protease inhibitor aprotinin or the bradykinin B2 receptor antagonist D-Arg,[Hyp3,Thi5,8D-Phe7]-Bk, whereas the plasma kallikrein inhibitor soybean trypsin inhibitor failed to significantly affect this oedematogenic response. The kininase II inhibitor captopril markedly potentiated fraction XIII-induced oedema. Our results indicate that the increased vascular permeability induced by fraction XIII is due to local generation of kinins in response to tissue (but not plasma) kallikrein-kinin system activation.

  6. Is there a tripeptidyl peptidase in the renal brush-border membrane?

    PubMed Central

    Kenny, A J; Ingram, J

    1988-01-01

    A recent claim that the renal brush border contains a tripeptidyl peptidase [Andersen & McDonald (1987) Am. J. Physiol. 253, F649-F655] was examined. In a fluorescent assay, the hydrolysis of Gly-Pro-Met-2-naphthylamide (-NH-Nap) and Gly-Pro-Leu-NH-Nap by pig kidney microvilli was strongly inhibited by amastatin or di-isopropyl phosphorofluoridate (inhibitors of aminopeptidases and dipeptidyl peptidase IV). The products formed were shown to be Gly-Pro and Met-NH-Nap (or Leu-NH-Nap) and free 2-naphthylamine. Specific antibodies to pig and rat aminopeptidase N abolished the apparent tripeptidyl peptidase activity. We conclude that these substrates are hydrolysed by the sequential attack of dipeptidyl peptidase IV and aminopeptidase N and that pig and rat brush borders lack a detectable tripeptidyl peptidase. Images Fig. 1. PMID:3058122

  7. Peptidase activity as a determinant of agonist potencies in some smooth muscle preparations.

    PubMed

    Hall, J M; Fox, A J; Morton, I K

    1990-02-06

    The influence of degradation by peptidases on concentration-response relationships for peptide agonists of the tachykinin and bombesin-like families was investigated. The combined presence of three peptidase inhibitors, phosphoramidon (1 microM), captopril (1 microM) and bestatin (100 microM), had no significant effect on the onset rates or peak contractile responses to these peptides in the rat urinary bladder and guinea-pig taenia caeci preparations, or on their peak potentiation of the contractile response to field-stimulation in the guinea-pig vas deferens preparation. However, rates of offset of the response to tachykinins were markedly prolonged in tissues treated with peptidase inhibitors. In experiments designed to estimate clearance of applied peptide from the organ bath, there was an initial rate of loss with the guinea-pig vas deferens and taenia caeci which, measured over the first 5 min, had a half-time of 2-3 min which was then prolonged to 6-8 min in the presence of peptidase inhibitors. These results show that although peptide breakdown can be demonstrated in these systems, it seems not to be an important determinant of relative pharmacological activity measured in terms of peak response.

  8. Active kallikrein response to changes in sodium-chloride intake in essential hypertensive patients.

    PubMed

    Ferri, C; Bellini, C; Carlomagno, A; Desideri, G; Santucci, A

    1996-03-01

    To evaluate the behavior of active kallikrein excretion in salt-sensitive and salt-resistant hypertensive patients during changes in sodium-chloride (NaCl) intake, 61 male, nonobese, nondiabetic outpatients affected by uncomplicated essential hypertension were given a diet that contained 140 mmol NaCl per day for 2 wk. Patients then received either a low- (20 mmol NaCl/day) or a high- (320 mmol NaCl/day) sodium diet for 2 wk, according to a randomized, double-blind, cross-over protocol. Hypertensive patients were classified as salt sensitive when their diastolic blood pressure rose by at least 10 mm Hg after the high-sodium diet, and decreased by at least 10 mm Hg after the low-sodium diet, considering as baseline blood pressure values those that were taken at the end of the 140 mmol NaCl/day intake period. The remaining patients were classified as salt resistant or, when diastolic blood pressure increased by 10 mm Hg or more after low-sodium intake, as counter-regulating. Twenty-three patients were therefore classified as salt sensitive, 28 as salt resistant, and 10 as counter-regulating. The baseline active kallikrein excretion was significantly lower (P < 0.0001) in salt-sensitive (0.62 +/- 0.31 U/24 h) patients than in salt-resistant (1.39 +/- 0.44 U/24 h) and counter-regulating patients (1.27 +/- 0.38 U/24 h). Surprisingly, the kallikrein response to changes in sodium intake was similar in all subgroups, although enzyme excretion was always at the lowest level in salt-sensitive hypertensive patients. This latter group also showed the highest plasma atrial natriuretic peptide levels (28.2 +/- 8.5 fmol/mL, P < 0.0001 versus salt-resistant and counter-regulating patients), and the greatest peptide increment with sodium load (P < 0.0001 versus salt-resistant and counter-regulating patients). Counter-regulating patients showed the steepest increase in plasma renin activity (from 0.24 +/- 0.18 to 0.83 +/- 0.21 ng/L per s, P < 0.001) and decrease of plasma atrial

  9. Specificity studies on Kallikrein-related peptidase 7 (KLK7) and effects of osmolytes and glycosaminoglycans on its peptidase activity.

    PubMed

    Oliveira, Juliana R; Bertolin, Thiago C; Andrade, Douglas; Oliveira, Lilian C G; Kondo, Marcia Y; Santos, Jorge A N; Blaber, Michael; Juliano, Luiz; Severino, Beatrice; Caliendo, Giuseppe; Santagada, Vincenzo; Juliano, Maria A

    2015-01-01

    KLK7 substrate specificity was evaluated by families of fluorescence resonance energy transfer (FRET) peptides derived from Abz-KLFSSK-Q-EDDnp (Abz=ortho-aminobenzoic acid and Q-EDDnp=glutaminyl-N-[2,4-dinitrophenyl] ethylenediamine), by one bead-one peptide FRET peptide library in PEGA resin, and by the FRET peptide libraries Abz-GXX-Z-XX-Q-EDDnp (Z and X are fixed and random natural amino acids, respectively). KLK7 hydrolyzed preferentially F, Y or M, and its S1' and S2' subsites showed selectivity for hydrophilic amino acids, particularly R and K. This set of specificities was confirmed by the efficient kininogenase activity of KLK7 on Abz-MISLM(↓)KRPPGFSPF(↓)RSSRI-NH2 ((↓)indicates cleavage), hydrolysis of somatostatin and substance P and inhibition by kallistatin. The peptide Abz-NLY(↓)RVE-Q-EDDnp is the best synthetic substrate so far described for KLK7 [kcat/Km=455 (mMs)(-1)] that was designed from the KLK7 substrate specificity analysis. It is noteworthy that the NLYRVE sequence is present in human semaphorin 6B. KLK7 is activated by GAGs, inhibited by neutral salts, and activated by high concentration of kosmotropic salt. Pyroglutamic acid inhibited KLK7 (Ki=33mM) and is present in skin moisturizing factor (124mM). The KLK7 specificity described here and elsewhere reflects its participation in patho-physiological events in skin, the gastrointestinal tract and central nervous system, where KLK7 is significantly expressed. Copyright © 2014. Published by Elsevier B.V.

  10. Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins).

    PubMed

    Pratt, R F

    2008-07-01

    The DD-peptidase enzymes (penicillin-binding proteins) catalyze the final transpeptidation reaction of bacterial cell wall (peptidoglycan) biosynthesis. Although there is now much structural information available about these enzymes, studies of their activity as enzymes lag. It is now established that representatives of two low-molecular-mass classes of DD-peptidases recognize elements of peptidoglycan structure and rapidly react with substrates and inhibitors incorporating these elements. No members of other DD-peptidase classes, including the high-molecular-mass enzymes, essential for bacterial growth, appear to interact strongly with any particular elements of peptidoglycan structure. Rational design of inhibitors for these enzymes is therefore challenging.

  11. Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia

    PubMed Central

    2012-01-01

    Background Cerebral inflammation is a hallmark of neuronal degeneration. Dipeptidyl peptidase IV, aminopeptidase N as well as the dipeptidyl peptidases II, 8 and 9 and cytosolic alanyl-aminopeptidase are involved in the regulation of autoimmunity and inflammation. We studied the expression, localisation and activity patterns of these proteases after endothelin-induced occlusion of the middle cerebral artery in rats, a model of transient and unilateral cerebral ischemia. Methods Male Sprague-Dawley rats were used. RT-PCR, immunohistochemistry and protease activity assays were performed at different time points, lasting from 2 h to 7 days after cerebral ischemia. The effect of protease inhibitors on ischemia-dependent infarct volumes was quantified 7 days post middle cerebral artery occlusion. Statistical analysis was conducted using the t-test. Results Qualitative RT-PCR revealed these proteases in ipsilateral and contralateral cortices. Dipeptidyl peptidase II and aminopeptidase N were up-regulated ipsilaterally from 6 h to 7 days post ischemia, whereas dipeptidyl peptidase 9 and cytosolic alanyl-aminopeptidase were transiently down-regulated at day 3. Dipeptidyl peptidase 8 and aminopeptidase N immunoreactivities were detected in cortical neurons of the contralateral hemisphere. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were identified in activated microglia and macrophages in the ipsilateral cortex. Seven days post artery occlusion, dipeptidyl peptidase IV immunoreactivity was found in the perikarya of surviving cortical neurons of the ipsilateral hemisphere, whereas their nuclei were dipeptidyl peptidase 8- and amino peptidase N-positive. At the same time point, dipeptidyl peptidase IV, 8 and aminopeptidase N were targeted in astroglial cells. Total dipeptidyl peptidase IV, 8 and 9 activities remained constant in both hemispheres until day 3 post experimental ischemia, but were increased (+165%) in the ipsilateral cortex at day 7

  12. Role of inhibitors of serine peptidases in protecting Leishmania donovani against the hydrolytic peptidases of sand fly midgut.

    PubMed

    Verma, Sudha; Das, Sushmita; Mandal, Abhishek; Ansari, Md Yousuf; Kumari, Sujata; Mansuri, Rani; Kumar, Ajay; Singh, Ruby; Saini, Savita; Abhishek, Kumar; Kumar, Vijay; Sahoo, Ganesh Chandra; Das, Pradeep

    2017-06-23

    In vector-borne diseases such as leishmaniasis, the sand fly midgut is considered to be an important site for vector-parasite interaction. Digestive enzymes including serine peptidases such as trypsin and chymotrypsin, which are secreted in the midgut are one of the obstacles for Leishmania in establishing a successful infection. The presence of some natural inhibitors of serine peptidases (ISPs) has recently been reported in Leishmania. In the present study, we deciphered the role of these ISPs in the survival of Leishmania donovani in the hostile sand fly midgut environment. In silico and co-immunoprecipitation studies were performed to observe the interaction of L. donovani ISPs with trypsin and chymotrypsin. Zymography and in vitro enzyme assays were carried out to observe the inhibitory effect of purified recombinant ISPs of L. donovani (rLdISPs) on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of ISPs in the amastigote to promastigote transition stages were studied by semi-quantitative RT-PCR and Western blot. The role of LdISP on the survival of ISP overexpressed (OE) and ISP knocked down (KD) Leishmania parasites inside the sand fly gut was investigated by in vitro and in vivo cell viability assays. We identified two ecotin-like genes in L. donovani, LdISP1 and LdISP2. In silico and co-immunoprecipitation results clearly suggest a strong interaction of LdISP molecules with trypsin and chymotrypsin. Zymography and in vitro enzyme assay confirmed the inhibitory effect of rLdISP on trypsin, chymotrypsin and the sand fly midgut peptidases. The expression of LdISP2 was found to be strongly associated with the amastigote to promastigote phase transition. The activities of the digestive enzymes were found to be significantly reduced in the infected sand flies when compared to uninfected. To our knowledge, our study is the first report showing the possible reduction of chymotrypsin activity in L. donovani infected sand flies compared to

  13. The Enigma of Tripeptidyl-Peptidase II: Dual Roles in Housekeeping and Stress

    PubMed Central

    Preta, Giulio; de Klark, Rainier; Gavioli, Riccardo; Glas, Rickard

    2010-01-01

    The tripeptidyl-peptidase II complex consists of repeated 138 kDa subunits, assembled into two twisted strands that form a high molecular weight complex (>5 MDa). TPPII, like many other cytosolic peptidases, plays a role in the ubiquitin-proteasome pathway downstream of the proteasome as well as in the production and destruction of MHC class I antigens and degradation of neuropeptides. Tripeptidyl-peptidase II activity is increased in cells with an increased demand for protein degradation, but whether degradation of cytosolic peptides is the only cell biological role for TPPII has remained unclear. Recent data indicated that TPPII translocates into the nucleus to control DNA damage responses in malignant cells, supporting that cytosolic “housekeeping peptidases” may have additional roles in cell biology, besides their contribution to protein turnover. Overall, TPPII has an emerging importance in several cancer-related fields, such as metabolism, cell death control, and control of genome integrity; roles that are not understood in detail. The present paper reviews the cell biology of TPPII and discusses distinct roles for TPPII in the nucleus and cytosol. PMID:20847939

  14. Dipeptidyl peptidase IV in angiotensin-converting enzyme inhibitor associated angioedema.

    PubMed

    Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J

    2008-01-01

    Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor-associated angioedema. This case-control study tested the hypothesis that dipeptidyl peptidase IV activity and antigen are decreased in sera of patients with a history of angiotensin-converting enzyme inhibitor-associated angioedema. Fifty subjects with a history of angiotensin-converting enzyme inhibitor-associated angioedema and 176 angiotensin-converting enzyme inhibitor-exposed control subjects were ascertained. Sera were assayed for angiotensin-converting enzyme activity, aminopeptidase P activity, aminopeptidase N activity, dipeptidyl peptidase IV activity, and antigen and the ex vivo degradation half-lives of bradykinin, des-Arg(9)-bradykinin, and substance P in a subset. The prevalence of smoking was increased and of diabetes decreased in case versus control subjects. Overall, dipeptidyl peptidase IV activity (26.6+/-7.8 versus 29.6+/-7.3 nmol/mL per minute; P=0.026) and antigen (465.8+/-260.8 versus 563.1+/-208.6 ng/mL; P=0.017) were decreased in sera from individuals with angiotensin-converting enzyme inhibitor-associated angioedema compared with angiotensin-converting enzyme inhibitor-exposed control subjects without angioedema. Dipeptidyl peptidase IV activity (21.5+/-4.9 versus 29.8+/-6.7 nmol/mL per minute; P=0.001) and antigen (354.4+/-124.7 versus 559.8+/-163.2 ng/mL; P=0.003) were decreased in sera from cases collected during angiotensin-converting enzyme inhibition but not in the absence of angiotensin-converting enzyme inhibition. The degradation half-life of substance P correlated inversely with dipeptidyl peptidase

  15. Dipeptidyl Peptidase IV in Angiotensin-Converting Enzyme Inhibitor–Associated Angioedema

    PubMed Central

    Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V.; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J.

    2009-01-01

    Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor–associated angioedema. This case-control study tested the hypothesis that dipeptidyl peptidase IV activity and antigen are decreased in sera of patients with a history of angiotensin-converting enzyme inhibitor–associated angioedema. Fifty subjects with a history of angiotensin-converting enzyme inhibitor–associated angioedema and 176 angiotensin-converting enzyme inhibitor–exposed control subjects were ascertained. Sera were assayed for angiotensin-converting enzyme activity, aminopeptidase P activity, aminopeptidase N activity, dipeptidyl peptidase IV activity, and antigen and the ex vivo degradation half-lives of bradykinin, des-Arg9-bradykinin, and substance P in a subset. The prevalence of smoking was increased and of diabetes decreased in case versus control subjects. Overall, dipeptidyl peptidase IV activity (26.6±7.8 versus 29.6±7.3 nmol/mL per minute; P=0.026) and antigen (465.8±260.8 versus 563.1±208.6 ng/mL; P=0.017) were decreased in sera from individuals with angiotensin-converting enzyme inhibitor–associated angioedema compared with angiotensin-converting enzyme inhibitor–exposed control subjects without angioedema. Dipeptidyl peptidase IV activity (21.5±4.9 versus 29.8±6.7 nmol/mL per minute; P=0.001) and antigen (354.4±124.7 versus 559.8±163.2 ng/mL; P=0.003) were decreased in sera from cases collected during angiotensin-converting enzyme inhibition but not in the absence of angiotensin-converting enzyme inhibition. The degradation half-life of substance P correlated inversely with dipeptidyl

  16. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships.

    PubMed

    Bland, Nicholas D; Pinney, John W; Thomas, Josie E; Turner, Anthony J; Isaac, R Elwyn

    2008-01-23

    The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13 peptidases to fulfil a

  17. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships

    PubMed Central

    2008-01-01

    Background The neprilysin (M13) family of endopeptidases are zinc-metalloenzymes, the majority of which are type II integral membrane proteins. The best characterised of this family is neprilysin, which has important roles in inactivating signalling peptides involved in modulating neuronal activity, blood pressure and the immune system. Other family members include the endothelin converting enzymes (ECE-1 and ECE-2), which are responsible for the final step in the synthesis of potent vasoconstrictor endothelins. The ECEs, as well as neprilysin, are considered valuable therapeutic targets for treating cardiovascular disease. Other members of the M13 family have not been functionally characterised, but are also likely to have biological roles regulating peptide signalling. The recent sequencing of animal genomes has greatly increased the number of M13 family members in protein databases, information which can be used to reveal evolutionary relationships and to gain insight into conserved biological roles. Results The phylogenetic analysis successfully resolved vertebrate M13 peptidases into seven classes, one of which appears to be specific to mammals, and insect genes into five functional classes and a series of expansions, which may include inactive peptidases. Nematode genes primarily resolved into groups containing no other taxa, bar the two nematode genes associated with Drosophila DmeNEP1 and DmeNEP4. This analysis reconstructed only one relationship between chordate and invertebrate clusters, that of the ECE sub-group and the DmeNEP3 related genes. Analysis of amino acid utilisation in the active site of M13 peptidases reveals a basis for their biochemical properties. A relatively invariant S1' subsite gives the majority of M13 peptidases their strong preference for hydrophobic residues in P1' position. The greater variation in the S2' subsite may be instrumental in determining the specificity of M13 peptidases for their substrates and thus allows M13

  18. Sequence variation at KLK and WFDC clusters and its association to semen hyperviscosity and other male infertility phenotypes.

    PubMed

    Marques, Patrícia Isabel; Fonseca, Filipa; Carvalho, Ana Sofia; Puente, Diana A; Damião, Isabel; Almeida, Vasco; Barros, Nuno; Barros, Alberto; Carvalho, Filipa; Azkargorta, Mikel; Elortza, Felix; Osório, Hugo; Matthiesen, Rune; Quesada, Victor; Seixas, Susana

    2016-12-01

    Are kallikreins (KLKs), the whey-acidic-protein four-disulfide core domain (WFDCs) and their neighbors, semenogelins (SEMGs), known to play a role in the cascade of semen coagulation and liquefaction, associated with male infertility? Several KLK and SEMG variants are overrepresented among hyperviscosity, asthenozoospermia and oligozoospermia, supporting an effect of abnormal semen liquefaction on the loss of semen quality and in lowering male reproductive fitness. In the cascade of semen coagulation and liquefaction the spermatozoa coated by EPPIN (a protease inhibitor of the WFDC family) are entrapped in a cross-linked matrix established by SEMGs. After ejaculation, the SEMG matrix is hydrolyzed by KLK3/2 in a fine-tuned process regulated by other KLKs that allows the spermatozoa to increase motility. This study includes a cohort of 238 infertility-related cases and 91 controls with normal spermiogram analysis. The remaining 126 controls are healthy males with unknown semen parameters. Sample collection was carried out from June 2011 to January 2015 and variant screening from May 2013 to August 2015. We performed a screening by massive parallel sequencing in a pooled sample (N = 222) covering approximately 93 kb of KLK (19q13.3-13.4) and WFDC (20q13) clusters, followed by the genotyping of most promising variants in the full cohort. Overall, 160 common and 296 low-frequency variants passed the quality control filtering. Statistical tests disclosed an association with hyperviscosity of a KLK7 regulatory variant (P = 0.0035), and unveiled a higher burden of deleterious mutations in KLKs than expected by chance (P = 0.0106). KLK variants found to be overrepresented in cases included two substitutions likely affecting the substrate binding pocket, two nonsynonymous variants overlapping in the three-dimensional structure and two mutations mapping in consecutive N-terminal residues. Other variants identified in SEMGs possibly contributing to hyperviscosity and

  19. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  20. Selective chromogenic and fluorogenic peptide substrates for the assay of cysteine peptidases in complex mixtures.

    PubMed

    Semashko, Tatiana A; Vorotnikova, Elena A; Sharikova, Valeriya F; Vinokurov, Konstantin S; Smirnova, Yulia A; Dunaevsky, Yakov E; Belozersky, Mikhail A; Oppert, Brenda; Elpidina, Elena N; Filippova, Irina Y

    2014-03-15

    This study describes the design, synthesis, and use of selective peptide substrates for cysteine peptidases of the C1 papain family, important in many biological processes. The structure of the newly synthesized substrates is Glp-Xaa-Ala-Y (where Glp=pyroglutamyl; Xaa=Phe or Val; and Y=pNA [p-nitroanilide], AMC [4-amino-7-methylcoumaride], or AFC [4-amino-7-trifluoromethyl-coumaride]). Substrates were synthesized enzymatically to guarantee selectivity of the reaction and optical purity of the target compounds, simplifying the scheme of synthesis and isolation of products. The hydrolysis of the synthesized substrates was evaluated by C1 cysteine peptidases from different organisms and with different functions, including plant enzymes papain, bromelain, ficin, and mammalian lysosomal cathepsins B and L. The new substrates were selective for C1 cysteine peptidases and were not hydrolyzed by serine, aspartic, or metallo peptidases. We demonstrated an application of the selectivity of the synthesized substrates during the chromatographic separation of a multicomponent set of digestive peptidases from a beetle, Tenebrio molitor. Used in combination with the cysteine peptidase inhibitor E-64, these substrates were able to differentiate cysteine peptidases from peptidases of other classes in midgut extracts from T. molitor larvae and larvae of the genus Tribolium; thus, they are useful in the analysis of complex mixtures containing peptidases from different classes. Published by Elsevier Inc.

  1. Purification and characterization of a novel neurotensin-degrading peptidase from rat brain synaptic membranes.

    PubMed

    Checler, F; Vincent, J P; Kitabgi, P

    1986-08-25

    A peptidase that cleaved neurotensin at the Pro10-Tyr11 peptide bond, leading to the formation of neurotensin-(1-10) and neurotensin-(11-13), was purified nearly to homogeneity from rat brain synaptic membranes. The enzyme appeared to be monomeric with a molecular weight of about 70,000-75,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography filtration. Isoelectrofocusing indicated a pI of 5.9-6. The purified peptidase could be classified as a neutral metallopeptidase with respect to its sensitivity to pH and metal chelators. Thiol-blocking agents and acidic and serine protease inhibitors had no effect. Studies with specific peptidase inhibitors clearly indicated that the purified enzyme was distinct from enzymes capable of cleaving neurotensin at the Pro10-Tyr11 bond such as proline endopeptidase and endopeptidase 24-11. The enzyme was also distinct from other neurotensin-degrading peptidases such as angiotensin-converting enzyme and a recently purified rat brain soluble metalloendopeptidase. The peptidase displayed a high affinity for neurotensin (Km = 2.6 microM). Studies on its specificity revealed that neurotensin-(9-13) was the shortest neurotensin partial sequence that was able to fully inhibit [3H]neurotensin degradation. Shortening the C-terminal end of the neurotensin molecule as well as substitutions in positions 8, 9, and 11 by D-amino acids strongly decreased the inhibitory potency of neurotensin. Among 20 natural peptides, only angiotensin I and the neurotensin-related peptides (xenopsin and neuromedin N) were found as potent as unlabeled neurotensin.

  2. Establishment and optimization of a wheat germ cell-free protein synthesis system and its application in venom kallikrein.

    PubMed

    Wang, Yunpeng; Xu, Wentao; Kou, Xiaohong; Luo, Yunbo; Zhang, Yanan; Ma, Biao; Wang, Mengsha; Huang, Kunlun

    2012-08-01

    Wheat germ cell-free protein synthesis systems have the potential to synthesize functional proteins safely and with high accuracy, but the poor energy supply and the instability of mRNA templates reduce the productivity of this system, which restricts its applications. In this report, phosphocreatine and pyruvate were added to the system to supply ATP as a secondary energy source. After comparing the protein yield, we found that phosphocreatine is more suitable for use in the wheat germ cell-free protein synthesis system. To stabilize the mRNA template, the plasmid vector, SP6 RNA polymerase, and Cu(2+) were optimized, and a wheat germ cell-free protein synthesis system with high yield and speed was established. When plasmid vector (30 ng/μl), SP6 RNA polymerase (15 U), phosphocreatine (25 mM), and Cu(2+) (5 mM) were added to the system and incubated at 26°C for 16 h, the yield of venom kallikrein increased from 0.13 to 0.74 mg/ml. The specific activity of the recombinant protein was 1.3 U/mg, which is only slightly lower than the crude venom kallikrein (1.74 U/mg) due to the lack of the sugar chain. In this study, the yield of venom kallikrein was improved by optimizing the system, and a good foundation has been laid for industrial applications and for further studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Strategies in the design of small-molecule fluorescent probes for peptidases.

    PubMed

    Chen, Laizhong; Li, Jing; Du, Lupei; Li, Minyong

    2014-11-01

    Peptidases, which can cleave specific peptide bonds in innumerable categories of substrates, usually present pivotal positions in protein activation, cell signaling and regulation as well as in the origination of amino acids for protein generation or application in other metabolic pathways. They are also involved in many pathological conditions, such as cancer, atherosclerosis, arthritis, and neurodegenerative disorders. This review article aims to conduct a wide-ranging survey on the development of small-molecule fluorescent probes for peptidases, as well as to realize the state of the art in the tailor-made probes for diverse types of peptidases. © 2014 Wiley Periodicals, Inc.

  4. Protection by serine peptidase inhibitors of endogenous cholecystokinin released from brain slices.

    PubMed

    Rose, C; Camus, A; Schwartz, J C

    1989-01-01

    Endogenous cholecystokinin immunoreactivity released by depolarization of slices of rat cerebral cortex undergoes extensive degradation (85% of released immunoreactivity) before reaching the incubation medium. In order to identify the responsible peptidases, a large number of inhibitors of the four catalytic classes were tested for their protective effects. Inhibitors of metallopeptidases (bestatin, amastatin, puromycin, Thiorphan, captopril, o-phenantroline), thiol-peptidases, (leupeptin, antipain, p-hydroxymercuribenzoate) or carboxyl-peptidases (pepstatin) had generally low if any protective effect. By contrast, several serine peptidase inhibitors, i.e. diisopropyl-fluorophosphate, phenylmethylsulphonylfluoride or the chloromethylketone Ala-Ala-Pro-Val-CH2Cl, doubled the recovery of cholecystokinin immunoreactivity and the effect was amplified in the co-presence of bestatin, an aminopeptidase inhibitor and/or Thiorphan, an enkephalinase inhibitor. High-performance liquid chromatographic analysis of the cholecystokinin immunoreactivity recovered in medium in the absence of any inhibitor showed cholecystokinin-8 to be the major peak, representing 8% of the released immunoreactive material. Non-sulphated cholecystokinin-8 represented less than 1%, indicating that desulphation does not constitute a major inactivation pathway for the endogenous octapeptide. Cholecystokinin-5 was the major clearly identifiable immunoreactive fragment, representing 9% of released immunoreactivity in the absence of inhibitors. Its formation was decreased by about 50% in the presence of either diisopropyl-fluorophosphate or bestatin and Thiorphan and abolished when they were associated, suggesting that it resulted from the actions of a serine peptidase(s) and an aminopeptidase(s). Cholecystokinin-6 (or cholecystokinin-7) was less abundant, representing 4% of the released immunoreactivity, and its level was augmented in the presence of diisopropyl-fluorophosphate. Hence a serine

  5. Is the renal kallikrein-kinin system a factor that modulates calciuria?

    PubMed

    Negri, Armando Luis

    Renal tubular calcium reabsorption is one of the principal factors that determine serum calcium concentration and calcium excretion. Calcium excretion is regulated by the distal convoluted tubule and connecting tubule, where the epithelial calcium channel TRPV5 can be found, which limits the rate of transcellular calcium transport. The dynamic presence of the TRPV5 channel on the surface of the tubular cell is mediated by an endosomal recycling process. Different intrarenal factors are involved in calcium channel fixation in the apical membrane, including the anti-ageing hormone klotho and tissue kallikrein (TK). Both proteins are synthesised in the distal tubule and secreted in the tubular fluid. TK stimulates active calcium reabsorption through the bradykinin receptor B2 that compromises TRPV5 activation through the protein kinase C pathway. TK-deficient mice show hypercalciuria of renal origin comparable to that seen in TRPV5 knockout mice. There is a polymorphism with loss of function of the human TK gene R53H (allele H) that causes a marked decrease in enzymatic activity. The presence of the allele H seems to be common at least in the Japanese population (24%). These individuals have a tendency to greater calcium and sodium excretion in urine that is more evident during furosemide infusion. Future studies should analyse if manipulating the renal kallikrein-kinin system can correct idiopathic hypercalciuria with drugs other than thiazide diuretics. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  6. S46 Peptidases are the First Exopeptidases to be Members of Clan PA

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Masaki, Mika; Ohta, Kazunori; Okada, Hirofumi; Nonaka, Takamasa; Morikawa, Yasushi; Nakamura, Kazuo T.; Ogasawara, Wataru; Tanaka, Nobutada

    2014-01-01

    The dipeptidyl aminopeptidase BII (DAP BII) belongs to a serine peptidase family, S46. The amino acid sequence of the catalytic unit of DAP BII exhibits significant similarity to those of clan PA endopeptidases, such as chymotrypsin. However, the molecular mechanism of the exopeptidase activity of family S46 peptidase is unknown. Here, we report crystal structures of DAP BII. DAP BII contains a peptidase domain including a typical double β-barrel fold and previously unreported α-helical domain. The structures of peptide complexes revealed that the α-helical domain covers the active-site cleft and the side chain of Asn330 in the domain forms hydrogen bonds with the N-terminus of the bound peptide. These observations indicate that the α-helical domain regulates the exopeptidase activity of DAP BII. Because S46 peptidases are not found in mammals, we expect that our study will be useful for the design of specific inhibitors of S46 peptidases from pathogens. PMID:24827749

  7. Kallikrein and Renin in the Membrane Fractions of the Rat Kidney.

    DTIC Science & Technology

    1980-05-23

    Zingg, E.A. and Hedlin, A.H.: Kallikrein and plasmin as activators of inactive renin. Lancet 11:1375, 1978 32. Inagami, T ., Yokosawa , N., Takahashi, N...FRACTIONS Technical Report to 8/15/60 OF THE RAT KIDNEY, t 8/15/- 0 6 PEOPORMINS~1.RPOTNME 7/. 1 AuTN’OR/f’) B CoNfrt*C; OW ; R^R NT NJ4S._R...E’ T PSJ’ , TASK . :) A DA RE AR 5W S. UNIT 10 ELE E 4 POI~f-r University of Texas Health Science Center AREA ORKUNIT sMBES 5323 Harry Hines Blvd

  8. Dipeptidyl peptidase-4: A key player in chronic liver disease

    PubMed Central

    Itou, Minoru; Kawaguchi, Takumi; Taniguchi, Eitaro; Sata, Michio

    2013-01-01

    Dipeptidyl peptidase-4 (DPP-4) is a membrane-associated peptidase, also known as CD26. DPP-4 has widespread organ distribution throughout the body and exerts pleiotropic effects via its peptidase activity. A representative target peptide is glucagon-like peptide-1, and inactivation of glucagon-like peptide-1 results in the development of glucose intolerance/diabetes mellitus and hepatic steatosis. In addition to its peptidase activity, DPP-4 is known to be associated with immune stimulation, binding to and degradation of extracellular matrix, resistance to anti-cancer agents, and lipid accumulation. The liver expresses DPP-4 to a high degree, and recent accumulating data suggest that DPP-4 is involved in the development of various chronic liver diseases such as hepatitis C virus infection, non-alcoholic fatty liver disease, and hepatocellular carcinoma. Furthermore, DPP-4 occurs in hepatic stem cells and plays a crucial role in hepatic regeneration. In this review, we described the tissue distribution and various biological effects of DPP-4. Then, we discussed the impact of DPP-4 in chronic liver disease and the possible therapeutic effects of a DPP-4 inhibitor. PMID:23613622

  9. Altered levels of acid, basic, and neutral peptidase activity and expression in human clear cell renal cell carcinoma.

    PubMed

    Varona, Adolfo; Blanco, Lorena; López, José I; Gil, Javier; Agirregoitia, Ekaitz; Irazusta, Jon; Larrinaga, Gorka

    2007-02-01

    Peptides play important roles in cell regulation and signaling in many tissues and are regulated by peptidases, most of which are highly expressed in the kidney. Several peptide convertases have a function in different tumor stages, and some have been clearly characterized as diagnostic and prognostic markers for solid tumors, including renal cancer; however, little is known about their in vivo role in kidney tumors. The present study compares the activity of a range of peptidases in human tumor samples and nontumor tissue obtained from clear cell renal cell carcinoma (CCRCC) patients. To cover the complete spectrum and subcellular distribution of peptide-converting activity, acid, neutral, basic, and omega activities were selected. CCRCC displays a selective and restricted pattern of peptidase activities. Puromycin-sensitive aminopeptidase activity in the tumor increases [tumor (t) = 10,775 vs. nontumor (n) = 7,635 units of peptidase (UP)/mg protein; P < 0.05], whereas aminopeptidase N decreases (t = 6,664 vs. n = 33,381 UP/mg protein; P < 0.001). Aminopeptidase B activity of the particulate fraction in tumors decreases (t = 2,399 vs. n = 13,536 UP/mg protein; P < 0.001) compared with nontumor tissues, and aspartyl-aminopeptidase activity decreases significantly in CCRCC (t = 137 vs. n = 223 UP/mg protein; P < 0.05). Soluble and particulate pyroglutamyl peptidase I activities, aminopeptidase A activity, and soluble aminopeptidase B activity do not vary in renal cancer. The relative expression for the aforementioned peptidases, assayed using quantitative RT-PCR, increases in CCRCC for aminopeptidases B (1.5-fold) and A (19-fold), aspartyl-aminopeptidase (3.9-fold), puromycin-sensitive aminopeptidase (2.5-fold), and pyroglutamyl peptidase I (7.6-fold). Only aminopeptidase N expression decreases in tumors (1.3-fold). This peptidase activity profile in the neoplastic kidney suggests a specific role for the studied convertases and the possible involvement of an

  10. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkinson, B.; Wernstedt, C.; Hellman, U.

    1987-11-01

    The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with (/sup 3/H)diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residuesmore » 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases.« less

  11. Active site of tripeptidyl peptidase II from human erythrocytes is of the subtilisin type.

    PubMed Central

    Tomkinson, B; Wernstedt, C; Hellman, U; Zetterqvist, O

    1987-01-01

    The present report presents evidence that the amino acid sequence around the serine of the active site of human tripeptidyl peptidase II is of the subtilisin type. The enzyme from human erythrocytes was covalently labeled at its active site with [3H]diisopropyl fluorophosphate, and the protein was subsequently reduced, alkylated, and digested with trypsin. The labeled tryptic peptides were purified by gel filtration and repeated reversed-phase HPLC, and their amino-terminal sequences were determined. Residue 9 contained the radioactive label and was, therefore, considered to be the active serine residue. The primary structure of the part of the active site (residues 1-10) containing this residue was concluded to be Xaa-Thr-Gln-Leu-Met-Asx-Gly-Thr-Ser-Met. This amino acid sequence is homologous to the sequence surrounding the active serine of the microbial peptidases subtilisin and thermitase. These data demonstrate that human tripeptidyl peptidase II represents a potentially distinct class of human peptidases and raise the question of an evolutionary relationship between the active site of a mammalian peptidase and that of the subtilisin family of serine peptidases. PMID:3313395

  12. Phytomonas serpens: cysteine peptidase inhibitors interfere with growth, ultrastructure and host adhesion.

    PubMed

    Santos, André L S; d'Avila-Levy, Claudia M; Dias, Felipe A; Ribeiro, Rachel O; Pereira, Fernanda M; Elias, Camila G R; Souto-Padrón, Thaïs; Lopes, Angela H C S; Alviano, Celuta S; Branquinha, Marta H; Soares, Rosangela M A

    2006-01-01

    In this study, we report the ultrastructural and growth alterations caused by cysteine peptidase inhibitors on the plant trypanosomatid Phytomonas serpens. We showed that the cysteine peptidase inhibitors at 10 microM were able to arrest cellular growth as well as promote alterations in the cell morphology, including the parasites becoming short and round. Additionally, iodoacetamide induced ultrastructural alterations, such as disintegration of cytoplasmic organelles, swelling of the nucleus and kinetoplast-mitochondrion complex, which culminated in parasite death. Leupeptin and antipain induced the appearance of microvillar extensions and blebs on the cytoplasmic membrane, resembling a shedding process. A 40 kDa cysteine peptidase was detected in hydrophobic and hydrophilic phases of P. serpens cells after Triton X-114 extraction. Additionally, we have shown through immunoblotting that anti-cruzipain polyclonal antibodies recognised two major polypeptides in P. serpens, including a 40 kDa component. Flow cytometry analysis confirmed that this cruzipain-like protein has a location on the cell surface. Ultrastructural immunocytochemical analysis demonstrated the presence of the cruzipain-like protein on the surface and in small membrane fragments released from leupeptin-treated parasites. Furthermore, the involvement of cysteine peptidases of P. serpens in the interaction with explanted salivary glands of the phytophagous insect Oncopeltus fasciatus was also investigated. When P. serpens cells were pre-treated with either cysteine peptidase inhibitors or anti-cruzipain antibody, a significant reduction of the interaction process was observed. Collectively, these results suggest that cysteine peptidases participate in several biological processes in P. serpens including cell growth and interaction with the invertebrate vector.

  13. Tissue kallikrein deficiency, insulin resistance, and diabetes in mouse and man.

    PubMed

    Potier, Louis; Waeckel, Ludovic; Fumeron, Fréderic; Bodin, Sophie; Fysekidis, Marinos; Chollet, Catherine; Bellili, Naima; Bonnet, Fabrice; Gusto, Gaëlle; Velho, Gilberto; Marre, Michel; Alhenc-Gelas, François; Roussel, Ronan; Bouby, Nadine

    2014-05-01

    The kallikrein-kinin system has been suggested to participate in the control of glucose metabolism. Its role and the role of angiotensin-I-converting enzyme, a major kinin-inactivating enzyme, are however the subject of debate. We have evaluated the consequence of deficiency in tissue kallikrein (TK), the main kinin-forming enzyme, on the development of insulin resistance and diabetes in mice and man. Mice with inactivation of the TK gene were fed a high-fat diet (HFD) for 3 months, or crossed with obese, leptin-deficient (ob/ob) mice to generate double ob/ob-TK-deficient mutants. In man, a loss-of-function polymorphism of the TK gene (R53H) was studied in a large general population cohort tested for insulin resistance, the DESIR study (4843 participants, 9 year follow-up). Mice deficient in TK gained less weight on the HFD than their WT littermates. Fasting glucose level was increased and responses to glucose (GTT) and insulin (ITT) tolerance tests were altered at 10 and 16 weeks on the HFD compared with standard on the diet, but TK deficiency had no influence on these parameters. Likewise, ob-TK⁻/⁻ mice had similar GTT and ITT responses to those of ob-TK⁺/⁺ mice. TK deficiency had no effect on blood pressure in either model. In humans, changes over time in BMI, fasting plasma glucose, insulinemia, and blood pressure were not influenced by the defective 53H-coding TK allele. The incidence of diabetes was not influenced by this allele. These data do not support a role for the TK-kinin system, protective or deleterious, in the development of insulin resistance and diabetes.

  14. Rat liver mitochondrial intermediate peptidase (MIP): purification and initial characterization.

    PubMed Central

    Kalousek, F; Isaya, G; Rosenberg, L E

    1992-01-01

    A number of nuclearly encoded mitochondrial protein precursors that are transported into the matrix and inner membrane are cleaved in two sequential steps by two distinct matrix peptidases, mitochondrial processing peptidase (MPP) and mitochondrial intermediate peptidase (MIP). We have isolated and purified MIP from rat liver mitochondrial matrix. The enzyme, purified 2250-fold, is a monomer of 75 kDa and cleaves all tested mitochondrial intermediate proteins to their mature forms. About 20% of the final MIP preparation consists of equimolar amounts of two peptides of 47 kDa and 28 kDa, which are apparently the products of a single cleavage of the 75 kDa protein. These peptides are not separable from the 75 kDa protein, nor from each other, under any conditions used in the purification. The peptidase has a broad pH optimum between pH 6.6 and 8.9 and is inactivated by N-ethylmaleimide (NEM) and other sulfhydryl group reagents. The processing activity is divalent cation-dependent; it is stimulated by manganese, magnesium or calcium ions and reversibly inhibited by EDTA. Zinc, cobalt and iron strongly inhibit MIP activity. This pattern of cation dependence and inhibition is not clearly consistent with that of any known family of proteases. Images PMID:1322290

  15. Endothelin-1 inactivating peptidase in the human kidney and urine.

    PubMed

    Janas, J; Sitkiewicz, D; Januszewicz, A; Szczesniak, C; Grenda, R; Janas, R M

    2000-04-01

    Recently, an apparently novel, specific endothelin-1 inactivating metalloendopeptidase (ET-1 peptidase) has been isolated from the rat kidney. In this study we attempted to determine whether the same or a similar peptidase is present in the human kidney, and whether the enzyme is excreted into the urine. The urinary ET-1 peptidase could serve as an indirect index of the renal endothelin system, both in physiology and pathophysiology. Kidney specimens were obtained from part of nephrectomized kidneys unaffected by any neoplastic process from six adult patients. The enzyme was purified using differential centrifugation, detergent solubilization of the membrane proteins, ultrafiltration and nondenaturing gel electrophoresis. The enzyme activity assays were performed at pH 5.5 and 37 degrees C in the presence of increasing concentrations of unlabelled peptides and inhibitors using a fixed amount of [125I]ET-1 as substrate. The degradation extent was quantified with trichloroacetic acid precipitation and high performance liquid chromatography. The degrading activity of ET-1 was determined in urine samples from adult patients with hypertension, children with chronic renal failure and those with stable renal allograft ET-1 peptidase from the human kidney displays characteristics close to that of the rat ET-1 peptidase we have recently described (J. Hypertens 1994; 12:1155-1162). The enzyme, a membrane-bound metalloendopeptidase, exhibits low electro- phoretical mobility on nondenaturing gel (Rf 0.08); it is an apparently heterologous structure comprising three enzymatically inactive subunits, it has a pH optimum at 5.5, a nanomolar range affinity to the ET-1 (KM 180 nmol/l) that is hydrolysed to two main degradation products, and a 10-100-fold lower affinity to big ET-1 (KM 11.5 micromol/l), endothelin 11 21 fragment (KM 15.3 micromol/l), endothelin antagonist Trp-Leu-Asp-Ile-Ile-Trp (KM 3.1 micromol/I), gastrin (KM 2.2 micromol/l) and cholecystokinin (KM 4.0 micromol

  16. [Changes in proline-specific peptidase activity in experimental model of retrograde amnesia].

    PubMed

    Nazarova, G A; Zolotov, N N; Krupina, N A; Kraĭneva, V A; Garibova, T L; Voronina, T A

    2007-01-01

    Changes in proline-specific peptidase activity in the frontal cortex and hippocampus were studied using the experimental model of retrograde amnesia in rats. In one group, the amnesia was produced by a single injection of M-cholinergic antagonist scopolamine and the other group received the maximal electroconvulsive stimulation (MES). The amnesic effect was evaluated in passive avoidance test. In the amnesia models under consideration, the activity of prolylendopeptidase was significantly increased in both frontal cortex and hippocampus. The activity of dipeptidyl peptidase IV was significantly decreased in the cortex, whereas in the hippocampus it remained unchanged. Pyracetam inhibited prolylendopeptidase in the cortex and hippocampus, whereas dipeptidyl peptidase IV activity remained unchanged.

  17. Role of plasma kallikrein in diabetes and metabolism.

    PubMed

    Feener, E P; Zhou, Q; Fickweiler, W

    2013-09-01

    Plasma kallikrein (PK) is a serine protease generated from plasma prekallikrein, an abundant circulating zymogen expressed by the Klkb1 gene. The physiological actions of PK have been primarily attributed to its production of bradykinin and activation of coagulation factor XII, which promotes inflammation and the intrinsic coagulation pathway. Recent genetic, molecular, and pharmacological studies of PK have provided further insight into its role in physiology and disease. Genetic analyses have revealed common Klkb1 variants that are association with blood metabolite levels, hypertension, and coagulation. Characterisation of animal models with Klkb1 deficiency and PK inhibition have demonstrated effects on inflammation, vascular function, blood pressure regulation, thrombosis, haemostasis, and metabolism. These reports have also identified a host of PK substrates and interactions, which suggest an expanded physiological role for this protease beyond the bradykinin system and coagulation. The review summarises the mechanisms that contribute to PK activation and its emerging role in diabetes and metabolism.

  18. Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Helena; Kiss, András L.; Szeltner, Zoltán

    2005-10-01

    Acylaminoacyl peptidase from porcine liver has been crystallized. Data were collected to 3.4 Å from native crystals and a search for heavy-atom derivatives is in progress. Acylaminoacyl peptidase (also known as acylamino-acid-releasing enzyme or acylpeptide hydrolase; EC 3.4.19.1) is an unusual member of the prolyl oligopeptidase family catalysing the hydrolysis of an N-acylated peptide to an acylamino acid and a peptide with a free N-terminus. Acylaminoacyl peptidase purified from porcine liver has been crystallized in mother liquor containing 0.1 M Tris–HCl pH 7.0, 10%(w/v) polyethylene glycol 8000, 50 mM MgCl{sub 2} and 1%(w/v) CHAPS using the hanging-drop vapour-diffusion technique. Amore » full data set to 3.4 Å resolution was collected at ESRF beamline ID14-4 and space group C222 was assigned, with unit-cell parameters a = 84.8, b = 421.1, c = 212.0 Å and four molecules in the asymmetric unit.« less

  19. Dipeptidyl peptidase-4 inhibitor induced angioedema - an overlooked and potentially lethal adverse drug reaction?

    PubMed

    Scott, Susanne Irene; Andersen, Michelle Fog; Aagaard, Lise; Buchwald, Christian Von; Rasmussen, Eva Rye

    2017-02-14

    Introduction Angioedema is a potentially fatal adverse drug reaction of some medications, as swellings of the upper airways can cause death by asphyxiation. Angiotensin converting enzyme-inhibitors are widely known to cause angioedema but less is known about the association between dipeptidyl peptidase-4 inhibitors (gliptins) and angioedema. Dipeptidyl peptidase-4 inhibitors are anti-diabetic drugs used to improve glycaemic control. They, as a class effect, inadvertently affect the degradation of the vasoactive kinins bradykinin and substance P, both of which can cause angioedema due to vasodilatation and increase in vascular permeability in the capillaries. Objective To assess the risk and pathomechanism of angioedema due to inhibition of dipeptidyl peptidase-4 inhibitors when used as monotherapy and in combination with angiotensin converting enzyme-inhibitors. Method PubMed, Embase, the Cochrane Library, PubMed Central, Web of Science, Google Scholar and clinicaltrials.gov were searched using different combinations of keywords "angioedema", "dipeptidyl peptidase 4", "dipeptidyl peptidase 4 inhibitors", "gliptins", "bradykinin", "substance P" and "angiotensin converting enzyme-inhibitors". Original research papers were preferably used as references and their bibliographies were used to further the search for original research results. Results Both angiotensin converting enzyme and dipeptidyl peptidase-4 are major enzymes in the degradation pathway of bradykinin and substance P, and when inhibited pharmacologically - especially at the same time - the theoretical risk of angioedema is increased due to accumulation of vasoactive kinins. Conclusion Treatment with dipeptidyl peptidase-4 inhibitors must be carefully considered and monitored especially during concurrent treatment with angiotensin converting enzyme-inhibitors or when treating patients with a known predisposition to angioedema. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Catabolism of gastrin releasing peptide and substance P by gastric membrane-bound peptidases.

    PubMed

    Bunnett, N W; Kobayashi, R; Orloff, M S; Reeve, J R; Turner, A J; Walsh, J H

    1985-01-01

    The catabolism of two gastric neuropeptides, the C-terminal decapeptide of gastrin releasing peptide-27 (GRP10) and substance P (SP), by membrane-bound peptidases of the porcine gastric corpus and by porcine endopeptidase-24.11 ("enkephalinase") has been investigated. GRP10 was catabolized by gastric muscle peptidases (specific activity 1.8 nmol min-1 mg-1 protein) by hydrolysis of the His8-Leu9 bond and catabolism was inhibited by phosphoramidon (I50 approx. 10(-8) M), a specific inhibitor of endopeptidase-24.11. The same bond in GRP10 was cleaved by purified endopeptidase-24.11, and hydrolysis was equally sensitive to inhibition by phosphoramidon. SP was catabolized by gastric muscle peptidases (specific activity 1.7 nmol min-1 mg-1 protein) by hydrolysis of the Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10 bonds, which is identical to the cleavage of SP by purified endopeptidase-24.11. The C-terminal cleavage of GRP10 and SP would inactivate the peptides. It is concluded that a membrane-bound peptidase in the stomach wall catabolizes and inactivates GRP10 and SP and that, in its specificity and sensitivity to phosphoramidon, this peptidase resembles endopeptidase-24.11.

  1. Membrane peptidases in the pig choroid plexus and on other cell surfaces in contact with the cerebrospinal fluid.

    PubMed Central

    Bourne, A; Barnes, K; Taylor, B A; Turner, A J; Kenny, A J

    1989-01-01

    A comprehensive survey of 11 peptidases, all of which are markers for renal microvillar membranes, has been made in membrane fractions prepared from pig choroid plexus. Two fractionation schemes were explored, both depending on a MgCl2-precipitation step, the preferred one having advantages in speed and yield of the activities. The specific activities of the peptidases in the choroid-plexus membranes were, with the exception of carboxypeptidase M, lower than in renal microvillar membranes: those of aminopeptidase N, peptidyl dipeptidase A ('angiotensin-converting enzyme') and gamma-glutamyltransferase were 3-5-fold lower, those of aminopeptidase A and endopeptidase-24.11 were 12-15 fold lower, and those of dipeptidyl peptidase IV and aminopeptidase W were 50-70-fold lower. Carboxypeptidase M had a similar activity in both membranes. Alkaline phosphatase and (Na+ + K+)-activated ATPase were more active in the choroid-plexus membranes. No activity for microsomal dipeptidase, aminopeptidase P and carboxypeptidase P could be detected. Six of the peptidases and (Na+ + K+)-activated ATPase were also studied by immunoperoxidase histochemistry at light- and electron-microscopic levels. Endopeptidase-24.11 and (Na+ + K+)-activated ATPase were uniquely located on the brush border, and the other two peptidases appeared to be much more abundant on the endothelial lining of microvessels. Dipeptidyl peptidase IV and aminopeptidase W were also detected in microvasculature. Pial membranes associated with the brain and spinal cord also stained positively for endopeptidase-24.11, aminopeptidase N and peptidyl dipeptidase A. The immunohistochemical studies indicated the subcellular fractionation did not discriminate between membranes derived from epithelial cells (i.e. microvilli) and those from endothelial cells. The possible significance of these studies in relation to neuropeptide metabolism and the control of cerebrospinal fluid production is discussed. Images Fig. 1. Fig. 2. Fig

  2. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European Randomized Study of Prostate Cancer Screening in Göteborg, Sweden

    PubMed Central

    Vickers, Andrew J; Cronin, Angel M; Aus, Gunnar; Pihl, Carl-Gustav; Becker, Charlotte; Pettersson, Kim; Scardino, Peter T; Hugosson, Jonas; Lilja, Hans

    2008-01-01

    Background Prostate-specific antigen (PSA) is widely used to detect prostate cancer. The low positive predictive value of elevated PSA results in large numbers of unnecessary prostate biopsies. We set out to determine whether a multivariable model including four kallikrein forms (total, free, and intact PSA, and human kallikrein 2 (hK2)) could predict prostate biopsy outcome in previously unscreened men with elevated total PSA. Methods The study cohort comprised 740 men in Göteborg, Sweden, undergoing biopsy during the first round of the European Randomized study of Screening for Prostate Cancer. We calculated the area-under-the-curve (AUC) for predicting prostate cancer at biopsy. AUCs for a model including age and PSA (the 'laboratory' model) and age, PSA and digital rectal exam (the 'clinical' model) were compared with those for models that also included additional kallikreins. Results Addition of free and intact PSA and hK2 improved AUC from 0.68 to 0.83 and from 0.72 to 0.84, for the laboratory and clinical models respectively. Using a 20% risk of prostate cancer as the threshold for biopsy would have reduced the number of biopsies by 424 (57%) and missed only 31 out of 152 low-grade and 3 out of 40 high-grade cancers. Conclusion Multiple kallikrein forms measured in blood can predict the result of biopsy in previously unscreened men with elevated PSA. A multivariable model can determine which men should be advised to undergo biopsy and which might be advised to continue screening, but defer biopsy until there was stronger evidence of malignancy. PMID:18611265

  3. Chymotryptic specificity determinants in the 1.0 Å structure of the zinc-inhibited human tissue kallikrein 7

    PubMed Central

    Debela, Mekdes; Hess, Petra; Magdolen, Viktor; Schechter, Norman M.; Steiner, Thomas; Huber, Robert; Bode, Wolfram; Goettig, Peter

    2007-01-01

    hK7 or human stratum corneum chymotryptic enzyme belongs to the human tissue kallikrein (hKs) serine proteinase family and is strongly expressed in the upper layers of the epidermis. It participates in skin desquamation but is also implicated in diverse skin diseases and is a potential biomarker of ovarian cancer. We have solved x-ray structures of recombinant active hK7 at medium and atomic resolution in the presence of the inhibitors succinyl-Ala-Ala-Pro-Phe-chloromethyl ketone and Ala-Ala-Phe-chloromethyl ketone. The most distinguishing features of hK7 are the short 70–80 loop and the unique S1 pocket, which prefers P1 Tyr residues, as shown by kinetic data. Similar to several other kallikreins, the enzyme activity is inhibited by Zn2+ and Cu2+ at low micromolar concentrations. Biochemical analyses of the mutants H99A and H41F confirm that only the metal-binding site at His99 close to the catalytic triad accounts for the noncompetitive Zn2+ inhibition type. Additionally, hK7 exhibits large positively charged surface patches, representing putative exosites for prime side substrate recognition. PMID:17909180

  4. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts.

    PubMed

    Oppert, Brenda; Martynov, Alexander G; Elpidina, Elena N

    2012-09-01

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the Bacillus thuringiensis (Bt) Cry3Aa toxin. As digestive peptidases are a determining factor in Cry toxicity and resistance, we evaluated the expression of peptidase transcripts in the midgut of T. molitor larvae fed either a control or Cry3Aa protoxin diet for 24 h (RNA-Seq), or in larvae exposed to the protoxin for 6, 12, or 24 h (microarrays). Cysteine peptidase transcripts (9) were similar to cathepsins B, L, and K, and their expression did not vary more than 2.5-fold in control and Cry3Aa-treated larvae. Serine peptidase transcripts (48) included trypsin, chymotrypsin and chymotrypsin-like, elastase 1-like, and unclassified serine peptidases, as well as homologs lacking functional amino acids. Highly expressed trypsin and chymotrypsin transcripts were severely repressed, and most serine peptidase transcripts were expressed 2- to 15-fold lower in Cry3Aa-treated larvae. Many serine peptidase and homolog transcripts were found only in control larvae. However, expression of a few serine peptidase transcripts was increased or found only in Cry3Aa-treated larvae. Therefore, Bt intoxication significantly impacted the expression of serine peptidases, potentially important in protoxin processing, while the insect maintained the production of critical digestive cysteine peptidases. Published by Elsevier Inc.

  5. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis.

    PubMed

    Yang, Aizhen; Zhou, Junsong; Wang, Bo; Dai, Jihong; Colman, Robert W; Song, Wenchao; Wu, Yi

    2017-12-01

    The plasma kallikrein-kinin system (KKS) consists of serine proteases, prekallikrein (pKal) and factor XII (FXII), and a cofactor, high-MW kininogen (HK). Upon activation, activated pKal and FXII cleave HK to release bradykinin. Activation of this system has been noted in patients with rheumatoid arthritis, and its pathogenic role has been characterized in animal arthritic models. In this study, we generated 2 knockout mouse strains that lacked pKal and HK and determined the role of KKS in autoantibody-induced arthritis. In a K/BxN serum transfer-induced arthritis (STIA) model, mice that lacked HK, pKal, or bradykinin receptors displayed protective phenotypes in joint swelling, histologic changes in inflammation, and cytokine production; however, FXII-deficient mice developed normal arthritis. Inhibition of Kal ameliorated arthritis severity and incidence at early stage STIA and reduced the levels of major cytokines in joints. In addition to releasing bradykinin from HK, Kal directly activated monocytes to produce proinflammatory cytokines, up-regulated their C5aR and FcRIII expression, and released C5a. Immune complex increased pKal activity, which led to HK cleavage. The absence of HK is associated with a decrease in joint vasopermeability. Thus, we identify a critical role for Kal in autoantibody-induced arthritis with pleiotropic effects, which suggests that it is a new target for the inhibition of arthritis.-Yang, A., Zhou, J., Wang, B., Dai, J., Colman, R. W., Song, W., Wu, Y. A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis. © FASEB.

  6. Functional roles of cell surface peptidases in reproductive organs

    PubMed Central

    2004-01-01

    A number of biologically active peptides have been proposed to regulate function and differentiation of reproductive organs in an autocrine and/or paracrine fashion. Regulation of the local concentrations of these peptides is one of the important factors influencing their physiological effects on target cells. Membrane‐bound cell surface peptidases can activate or inactivate biologically active peptides before peptide factors access their receptors on the cell surface. Aminopeptidase A (EC 3.4.11.7), placental leucine aminopeptidase (EC 3.4.11.3), aminopeptidase‐N/CD13 (EC 3.4.11.2), dipeptidyl peptidases IV/CD26 (EC.3.4.14.5), carboxypeptidase‐M (EC 3.4.17.12), neutral endopeptidase/CD10 (EC 3.4.24.11) and endothelin converting enzyme‐1 (EC 3.4.23) are differentially expressed on the ovary, endometrium and placenta. The inhibition of enzyme activity affects steroid hormone production by granulosa and thecal cells, decidualization of endometrium and migration of extravillous trophoblasts. These findings suggest that membrane‐bound cell surface peptidases are local regulators for cellular growth and differentiation in reproductive organs by controlling extracellular concentration of peptide factors. (Reprod Med Biol 2004; 3: 165 –176) PMID:29662383

  7. Processing, stability, and kinetic parameters of C5a peptidase from Streptococcus pyogenes.

    PubMed

    Anderson, Elizabeth T; Wetherell, Michael G; Winter, Laurie A; Olmsted, Stephen B; Cleary, Patrick P; Matsuka, Yury V

    2002-10-01

    A recombinant streptococcal C5a peptidase was expressed in Escherichia coli and its catalytic properties and thermal stability were subjected to examination. It was shown that the NH2-terminal region of C5a peptidase (Asn32-Asp79/Lys90) forms the pro-sequence segment. Upon maturation the propeptide is hydrolyzed either via an autocatalytic intramolecular cleavage or by exogenous protease streptopain. At pH 7.4 the enzyme exhibited maximum activity in the narrow range of temperatures between 40 and 43 degrees C. The process of heat denaturation of C5a peptidase investigated by fluorescence and circular dichroism spectroscopy revealed that the protein undergoes biphasic unfolding transition with Tm of 50 and 70 degrees C suggesting melting of different parts of the molecule with different stability. Unfolding of the less stable structures was accompanied by the loss of proteolytic activity. Using synthetic peptides corresponding to the COOH-terminus of human complement C5a we demonstrated that in vitro peptidase catalyzes hydrolysis of two His67-Lys68 and Ala58-Ser59 peptide bonds. The high catalytic efficiency obtained for the SQLRANISHKDMQLGR extended peptide compared to the poor hydrolysis of its derivative Ac-SQLRANISH-pNA that lacks residues at P2'-P7' positions, suggest the importance of C5a peptidase interactions with the P' side of the substrate.

  8. Crystal structure and activity studies of the C11 cysteine peptidase from Parabacteroides merdae in the human gut microbiome

    DOE PAGES

    McLuskey, Karen; Grewal, Jaspreet S.; Das, Debanu; ...

    2016-03-03

    Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other familiesmore » in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys 147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys 147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca 2+ for activity. Altogether, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.« less

  9. Evaluation of the catalytic specificity, biochemical properties, and milk clotting abilities of an aspartic peptidase from Rhizomucor miehei.

    PubMed

    da Silva, Ronivaldo Rodrigues; Souto, Tatiane Beltramini; de Oliveira, Tássio Brito; de Oliveira, Lilian Caroline Gonçalves; Karcher, Daniel; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rodrigues, André; Rosa, Jose C; Cabral, Hamilton

    2016-08-01

    In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C. The peptidase was stable at pH values ranging from 3 to 5 and temperatures of up 45 °C for 60 min. Dramatic reductions in proteolytic activity were observed with exposure to sodium dodecyl sulfate, and aluminum and copper (II) chloride. Peptidase was inhibited by pepstatin A, and mass spectrometry analysis identified four peptide fragments (TWSISYGDGSSASGILAK, ASNGGGGEYIFGGYDSTK, GSLTTVPIDNSR, and GWWGITVDRA), similar to rhizopuspepsin. The analysis of catalytic specificity showed that the coagulant activity of the peptidase was higher than the proteolytic activity and that there was a preference for aromatic, basic, and nonpolar amino acids, particularly methionine, with specific cleavage of the peptide bond between phenylalanine and methionine. Thus, this peptidase may function as an important alternative enzyme in milk clotting during the preparation of cheese.

  10. Deacylation transition states of a bacterial DD-peptidase.

    PubMed

    Adediran, S A; Kumar, I; Pratt, R F

    2006-10-31

    Beta-lactam antibiotics restrict bacterial growth by inhibiting DD-peptidases. These enzymes catalyze the final transpeptidation step in bacterial cell wall biosynthesis. Although much structural information is now available for these enzymes, the mechanism of the actual transpeptidation reaction has not been studied in detail. The reaction is known to involve a double-displacement mechanism with an acyl-enzyme intermediate, which can be attacked by water, specific amino acids, peptides, and other acyl acceptors. We describe in this paper an investigation of acyl acceptor specificity and assess the need for general base catalysis in the deacylation transition state of the Streptomyces R61 DD-peptidase. We show, by the criterion of solvent deuterium kinetic isotope effect measurements and proton inventories, that the transition states of specific and nonspecific substrates are very similar, at least with respect to proton motion. The transition states for attack (tetrahedral intermediate formation) by d-amino acids and Gly-l-Xaa dipeptides do not include a general base catalyst, while such catalysis is essential for reaction with water and d-alpha-hydroxy acids. D-Alpha-hydroxy acids act as acyl acceptors for glycyl substrates but not for more specific d-alanyl substrates; hydroxy acids actually behave, more generally, as mixed inhibitors of the DD-peptidase. The structural and mechanistic bases of these observations are discussed; they should inform transition state analogue design.

  11. Degradation Paradigm of the Gut Hormone, Pancreatic Polypeptide, by Hepatic and Renal Peptidases

    PubMed Central

    Minnion, James; Tan, Tricia; Scott, Rebecca; Germain, Natacha; Ling, Yiin; Chen, Rong; Ghatei, Mohammad; Bloom, Stephen

    2017-01-01

    Pancreatic polypeptide (PP) is a gut hormone that acts on Y4 receptors to reduce appetite. Obese humans display a reduced postprandial increase in PP and remain fully sensitive to the anorectic effects of exogenous PP. The utility of PP as an anti-obesity treatment is limited by its short circulating half-life. Insight into the mechanisms by which PP is degraded could aid in the design of long-acting PP analogs. We investigated the role of peptidases in PP degradation to determine whether inhibition of these enzymes enhanced PP plasma levels and bioactivity in vivo. Dipeptidyl peptidase IV (DPPIV) and neprilysin (NEP) were two peptidase found to cleave PP. Limiting the effect of both peptidases improved the in vivo anorectic effect of PP and PP-based analogs. These findings suggest that inhibiting the degradation of PP using specific inhibitors and/or the design of analogs resistant to cleavage by DPPIV and NEP might be useful in the development of PP as an anti-obesity pharmacotherapy. PMID:28323997

  12. Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of akt and increased angiogenesis.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2013-05-01

    Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by

  13. Effect of Kallikrein 4 Loss on Enamel Mineralization

    PubMed Central

    Smith, Charles E.; Richardson, Amelia S.; Hu, Yuanyuan; Bartlett, John D.; Hu, Jan C-C.; Simmer, James P.

    2011-01-01

    Enamel formation depends on a triad of tissue-specific matrix proteins (amelogenin, ameloblastin, and enamelin) to help initiate and stabilize progressively elongating, thin mineral ribbons of hydroxyapatite formed during an appositional growth phase. Subsequently, these proteins are eradicated to facilitate lateral expansion of the hydroxyapatite crystallites. The purpose of this study was to investigate changes in enamel mineralization occurring in mice unable to produce kallikrein 4 (Klk4), a proteinase associated with terminal extracellular degradation of matrix proteins during the maturation stage. Mice lacking functional matrix metalloproteinase 20 (Mmp20), a proteinase associated with early cleavage of matrix proteins during the secretory stage, were also analyzed as a frame of reference. The results indicated that mice lacking Klk4 produce enamel that is normal in thickness and overall organization in terms of layers and rod/inter-rod structure, but there is a developmental defect in enamel rods where they first form near the dentinoenamel junction. Mineralization is normal up to early maturation after which the enamel both retains and gains additional proteins and is unable to mature beyond 85% mineral by weight. The outmost enamel is hard, but inner regions are soft and contain much more protein than normal. The rate of mineral acquisition overall is lower by 25%. Mice lacking functional Mmp20 produce enamel that is thin and structurally abnormal. Relatively high amounts of protein remain throughout maturation, but the enamel is able to change from 67 to 75% mineral by weight during maturation. These findings reaffirm the importance of secreted proteinases to enamel mineral acquisition. PMID:21454549

  14. Substance P increases sympathetic activity during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition.

    PubMed

    Devin, Jessica K; Pretorius, Mias; Nian, Hui; Yu, Chang; Billings, Frederic T; Brown, Nancy J

    2014-05-01

    Dipeptidyl peptidase-4 inhibitors prevent the degradation of incretin hormones and reduce postprandial hyperglycemia in patients with type 2 diabetes mellitus. Dipeptidyl peptidase-4 degrades other peptides with a penultimate proline or alanine, including bradykinin and substance P, which are also substrates of angiotensin-converting enzyme (ACE). During ACE inhibition, substance P is inactivated primarily by dipeptidyl peptidase-4, whereas bradykinin is first inactivated by aminopeptidase P. This study tested the hypothesis that dipeptidyl peptidase-4 inhibition potentiates vasodilator and fibrinolytic responses to substance P when ACE is inhibited. Twelve healthy subjects participated in this randomized, double-blinded, placebo-controlled crossover study. On each study day, subjects received sitagliptin 200 mg by mouth or placebo. Substance P and bradykinin were infused via brachial artery before and during intra-arterial enalaprilat. Sitagliptin and enalaprilat each reduced forearm vascular resistance and increased forearm blood flow without affecting mean arterial pressure, but there was no interactive effect of the inhibitors. Enalaprilat increased bradykinin-stimulated vasodilation and tissue plasminogen activator release; sitagliptin did not affect these responses to bradykinin. The vasodilator response to substance P was unaffected by sitagliptin and enalaprilat; however, substance P increased heart rate and vascular release of norepinephrine during combined ACE and dipeptidyl peptidase-4 inhibition. In women, sitagliptin diminished tissue plasminogen activator release in response to substance P both alone and during enalaprilat. Substance P increases sympathetic activity during combined ACE and dipeptidyl peptidase-4 inhibition. - URL: http://www.clinicaltrials.gov. Unique identifier: NCT01413542.

  15. Substance P increases Sympathetic Activity during Combined Angiotensin Converting Enzyme and Dipeptidyl Peptidase-4 Inhibition

    PubMed Central

    Devin, Jessica K.; Pretorius, Mias; Nian, Hui; Yu, Chang; Billings, Frederic T.; Brown, Nancy J.

    2014-01-01

    Dipeptidyl peptidase-4 inhibitors prevent the degradation of incretin hormones and reduce post-prandial hyperglycemia in patients with type 2 diabetes mellitus. Dipeptidyl peptidase-4 degrades other peptides with a penultimate proline or alanine, including bradykinin and substance P, which are also substrates of angiotensin-converting enzyme. During angiotensin-converting enzyme inhibition, substance P is inactivated primarily by dipeptidyl peptidase-4, while bradykinin is first inactivated by aminopeptidase P. This study tested the hypothesis that dipeptidyl peptidase-4 inhibition potentiates vasodilator and fibrinolytic responses to substance P when angiotensin-converting enzyme is inhibited. Twelve healthy subjects participated in this randomized, double-blinded, placebo-controlled crossover study. On each study day, subjects received sitagliptin 200 mg p.o. or placebo. Substance P and bradykinin were infused via brachial artery before and during intra-arterial enalaprilat. Sitagliptin and enalaprilat each reduced forearm vascular resistance and increased forearm blood flow without affecting mean arterial pressure, but there was no interactive effect of the inhibitors. Enalaprilat increased bradykinin-stimulated vasodilation and tissue plasminogen activator release; sitagliptin did not affect these responses to bradykinin. The vasodilator response to substance P was unaffected by sitagliptin and enalaprilat, however, substance P increased heart rate and vascular release of norepinephrine during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition. In women, sitagliptin diminished tissue plasminogen activator release in response to substance P both alone and during enalaprilat. Substance P increases sympathetic activity during combined angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibition. PMID:24516103

  16. Cysteine peptidases in the tomato trypanosomatid Phytomonas serpens: influence of growth conditions, similarities with cruzipain and secretion to the extracellular environment.

    PubMed

    Elias, Camila G R; Pereira, Fernanda M; Dias, Felipe A; Silva, Thiago L A; Lopes, Angela H C S; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S

    2008-12-01

    We have characterized the cysteine peptidase production by Phytomonas serpens, a tomato trypanosomatid. The parasites were cultivated in four distinct media, since growth conditions could modulate the synthesis of bioactive molecules. The proteolytic profile has not changed qualitatively regardless the media, showing two peptidases of 38 and 40kDa; however, few quantitative changes were observed including a drastic reduction (around 70%) on the 40 and 38kDa peptidase activities when parasites were grown in yeast extract and liver infusion trypticase medium, respectively, in comparison with parasites cultured in Warren medium. The time-span of growth did not significantly alter the protein and peptidase expression. The proteolytic activities were blocked by classical cysteine peptidase inhibitors (E-64, leupeptin, and cystatin), being more active at pH 5.0 and showing complete dependence to reducing agents (dithiothreitol and l-cysteine) for full activity. The cysteine peptidases were able to hydrolyze several proteinaceous substrates, including salivary gland proteins from Oncopeltus fasciatus, suggesting broad substrate utilization. By means of agglutination, fluorescence microscopy, flow cytometry and Western blotting analyses we showed that both cysteine peptidases produced by P. serpens share common epitopes with cruzipain, the major cysteine peptidase of Trypanosoma cruzi. Moreover, our data suggest that the 40kDa cysteine peptidase was located at the P. serpens cell surface, attached to membrane domains via a glycosylphosphatidylinositol anchor. The 40kDa peptidase was also detected in the cell-free culture supernatant, in an active form, which suggests secretion of this peptidase to the extracellular environment.

  17. Structure and function studies on enzymes with a catalytic carboxyl group(s): from ribonuclease T1 to carboxyl peptidases

    PubMed Central

    TAKAHASHI, Kenji

    2013-01-01

    A group of enzymes, mostly hydrolases or certain transferases, utilize one or a few side-chain carboxyl groups of Asp and/or Glu as part of the catalytic machinery at their active sites. This review follows mainly the trail of studies performed by the author and his colleagues on the structure and function of such enzymes, starting from ribonuclease T1, then extending to three major types of carboxyl peptidases including aspartic peptidases, glutamic peptidases and serine-carboxyl peptidases. PMID:23759941

  18. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.

    PubMed

    Fang, Xingang; Bagui, Sikha; Bagui, Subhash

    2017-08-01

    The readily available high throughput screening (HTS) data from the PubChem database provides an opportunity for mining of small molecules in a variety of biological systems using machine learning techniques. From the thousands of available molecular descriptors developed to encode useful chemical information representing the characteristics of molecules, descriptor selection is an essential step in building an optimal quantitative structural-activity relationship (QSAR) model. For the development of a systematic descriptor selection strategy, we need the understanding of the relationship between: (i) the descriptor selection; (ii) the choice of the machine learning model; and (iii) the characteristics of the target bio-molecule. In this work, we employed the Signature descriptor to generate a dataset on the Human kallikrein 5 (hK 5) inhibition confirmatory assay data and compared multiple classification models including logistic regression, support vector machine, random forest and k-nearest neighbor. Under optimal conditions, the logistic regression model provided extremely high overall accuracy (98%) and precision (90%), with good sensitivity (65%) in the cross validation test. In testing the primary HTS screening data with more than 200K molecular structures, the logistic regression model exhibited the capability of eliminating more than 99.9% of the inactive structures. As part of our exploration of the descriptor-model-target relationship, the excellent predictive performance of the combination of the Signature descriptor and the logistic regression model on the assay data of the Human kallikrein 5 (hK 5) target suggested a feasible descriptor/model selection strategy on similar targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Prolyl oligopeptidase and dipeptidyl peptidase II/dipeptidyl peptidase IV ratio in the cerebrospinal fluid in Parkinson's disease: historical overview and future prospects.

    PubMed

    Nagatsu, Toshiharu

    2017-06-01

    Prolyl oligopeptidase (also named prolyl endopeptidase; PREP) hydrolyzes the Pro-Xaa bonds of biologically active oligopeptides on their carboxyl side. In 1987, we detected PREP activity in human cerebrospinal fluid (CSF) using highly sensitive liquid chromatography-fluorometry with succinyl-Gly-Pro-4-methyl-coumarin amide as a new synthetic substrate, and found a marked decrease in its activity in the cerebrospinal fluid (CSF) from patients with Parkinson's disease (PD) as compared with its level in control patients without neurological diseases. In 2013, Hannula et al. found co-localization of PREP with α-synuclein in the postmortem PD brain. Several recent studies also suggest that the level of PREP in the brain of PD patients may be related to dopamine (DA) cell death via promotion of α-synuclein oligomerization and that inhibitors of PREP may play a neuroprotective role in PD. Although the relationship between another family of prolyl oligopeptidase enzymes, dipeptidyl peptidase II (DPP II) and dipeptidyl peptidase IV (DPP IV), and α-synuclein in the PD brain is not yet clear, we found that the DPP II activity/DPP IV activity ratio in the CSF was significantly increased in PD patients. This review discusses the possibility of PREP as well as the DPP II/DPP IV ratio in the CSF as potential biomarkers of PD.

  20. Can one blood draw replace transrectal ultrasonography-estimated prostate volume to predict prostate cancer risk?

    PubMed

    Carlsson, Sigrid V; Peltola, Mari T; Sjoberg, Daniel; Schröder, Fritz H; Hugosson, Jonas; Pettersson, Kim; Scardino, Peter T; Vickers, Andrew J; Lilja, Hans; Roobol, Monique J

    2013-09-01

    To explore whether a panel of kallikrein markers in blood: total, free and intact prostate-specific antigen (PSA) and kallikrein-related peptidase 2, could be used as a non-invasive alternative for predicting prostate cancer on biopsy in a screening setting. The study cohort comprised previously unscreened men who underwent sextant biopsy owing to elevated PSA (≥3 ng/mL) in two different centres of the European Randomized Study of Screening for Prostate Cancer, Rotterdam (n = 2914) and Göteborg (n = 740). A statistical model, based on kallikrein markers, was compared with one based on established clinical factors for the prediction of biopsy outcome. The clinical tests were found to be no better than blood markers, with an area under the curve in favour of the blood measurements of 0.766 vs. 0.763 in Rotterdam and 0.809 vs. 0.774 in Göteborg. Adding digital rectal examination (DRE) or DRE plus transrectal ultrasonography (TRUS) volume to the markers improved discrimination, although the increases were small. Results were similar for predicting high-grade cancer. There was a strong correlation between the blood measurements and TRUS-estimated prostate volume (Spearman's correlation 0.60 in Rotterdam and 0.57 in Göteborg). In previously unscreened men, each with indication for biopsy, a statistical model based on kallikrein levels was similar to a clinical model in predicting prostate cancer in a screening setting, outside the day-to-day clinical practice. Whether a clinical approach can be replaced by laboratory analyses or used in combination with decision models (nomograms) is a clinical judgment that may vary from clinician to clinician depending on how they weigh the different advantages and disadvantages (harms, costs, time, invasiveness) of both approaches. © 2013 BJU International.

  1. Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function

    PubMed Central

    Kantyka, Tomasz; Rawlings, Neil D.; Potempa, Jan

    2010-01-01

    In metazoan organisms protein inhibitors of peptidases are important factors essential for regulation of proteolytic activity. In vertebrates genes encoding peptidase inhibitors constitute up to 1% of genes reflecting a need for tight and specific control of proteolysis especially in extracellular body fluids. In stark contrast unicellular organisms, both prokaryotic and eukaryotic consistently contain only few, if any, genes coding for putative peptidase inhibitors. This may seem perplexing in the light of the fact that these organisms produce large numbers of proteases of different catalytic classes with the genes constituting up to 6% of the total gene count with the average being about 3%. Apparently, however, a unicellular life-style is fully compatible with other mechanisms of regulation of proteolysis and does not require protein inhibitors to control their intracellular and extracellular proteolytic activity. So in prokaryotes occurrence of genes encoding different types of peptidase inhibitors is infrequent and often scattered among phylogenetically distinct orders or even phyla of microbiota. Genes encoding proteins homologous to alpha-2-macroglobulin (family I39), serine carboxypeptidase Y inhibitor (family I51), alpha-1-peptidase inhibitor (family I4) and ecotin (family I11) are the most frequently represented in Bacteria. Although several of these gene products were shown to possess inhibitory activity, with an exception of ecotin and staphostatins, the biological function of microbial inhibitors is unclear. In this review we present distribution of protein inhibitors from different families among prokaryotes, describe their mode of action and hypothesize on their role in microbial physiology and interactions with hosts and environment. PMID:20558234

  2. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles.

    PubMed

    Ekdahl, Kristina N; Davoodpour, Padideh; Ekstrand-Hammarström, Barbro; Fromell, Karin; Hamad, Osama A; Hong, Jaan; Bucht, Anders; Mohlin, Camilla; Seisenbaeva, Gulaim A; Kessler, Vadim G; Nilsson, Bo

    2018-04-01

    Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe 2 O 3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe 2 O 3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe 2 O 3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The degradation of bioactive peptides and proteins by dipeptidyl peptidase IV from human placenta.

    PubMed

    Nausch, I; Mentlein, R; Heymann, E

    1990-11-01

    The degradation of several bioactive peptides and proteins by purified human dipeptidyl peptidase IV is reported. It was hitherto unknown that human gastrin-releasing peptide, human chorionic gonadotropin, human pancreatic polypeptide, sheep prolactin, aprotinin, corticotropin-like intermediate lobe peptide and (Tyr-)melanostatin are substrates of this peptidase. Kinetic constants were determined for the degradation of a number of other natural peptides, including substance P, the degradation of which has been described earlier in a qualitative manner. Generally, small peptides are degraded much more rapidly than proteins. However, the Km-values seem to be independent of the peptide chain length. The influence of the action of dipeptidyl peptidase IV on the biological function of peptides and proteins is discussed.

  4. Recurrent angioedema associated with pharmacological inhibition of dipeptidyl peptidase IV.

    PubMed

    Hermanrud, Thorbjørn; Bygum, Anette; Rasmussen, Eva Rye

    2017-01-10

    Angioedema (AE) of the upper airways is a severe and potentially life-threatening condition. The incidence has been increasing in the past two decades, primarily due to increased use of medications inhibiting the degradation of vasoactive peptides. Acquired angioedema related to angiotensin-converting enzyme inhibitors (ACEI-AAE) is well known, but other pharmaceutical agents also affect the degradation of bradykinin and substance P. We present a middle-aged man with recurrent episodes of severe AE of the oral cavity, hypopharynx and larynx due to pharmacological inhibition of dipeptidyl peptidase IV. 2017 BMJ Publishing Group Ltd.

  5. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    PubMed

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases

  6. Plasma Kallikrein-Kinin system mediates immune-mediated renal injury in trichloroethylene-sensitized mice.

    PubMed

    Wang, Hui; Zhang, Jia-Xiang; Ye, Liang-Ping; Li, Shu-Long; Wang, Feng; Zha, Wan-Sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-Xing

    2016-07-01

    Trichloroethylene (TCE) is a major environmental pollutant. An immunological response is a newly-recognized mechanism for TCE-induced kidney damage. However, the role of the plasma kallikrein-kinin system (KKS) in immune-mediated kidney injury has never been examined. This study aimed to explore the role of the key components of the KKS, i.e. plasma kallikrein (PK), bradykinin (BK) and its receptors B1R and B2R, in TCE-induced kidney injury. A mouse model of skin sensitization was used to explore the mechanism of injury with or without a PK inhibitor PKSI. Kidney function was evaluated by measuring blood urea nitrogen (BUN) and creatinine (Cr) in conjunction with histopathologic characterization. Plasma BK was determined by ELISA; Renal C5b-9 membrane attack complex was evaluated by immunohistochemistry. Expression of BK and PK in the kidney was detected by immunofluorescence. mRNA and protein levels of B1R and B2R were assessed by real-time qPCR and Western blot. As expected, numerous inflammatory cell infiltration and tubular epithelial cell vacuolar degeneration were observed in TCE-sensitized mice. Moreover, serum BUN and Cr and plasma BK were increased. In addition, deposition of BK, PK and C5b-9 were observed and B1R and B2R mRNA and proteins levels were up-regulated. Pre-treatment with PKSI, a highly selective inhibitor of PK, alleviated TCE-induced renal damage. In addition, PKSI attenuated TCE-induced up-regulation of BK, PK and its receptors and C5b-9. These results provided the first evidence that activation of the KKS contributed to immune-mediated renal injury induced by TCE and also helped to identify the KKS as a potential therapeutic target for mitigating chemical sensitization-induced renal damage.

  7. Thyroid hormone and COUP-TF1 regulate kallikrein-binding protein (KBP) gene expression.

    PubMed

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen; Brent, Gregory A

    2011-03-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T(3) and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5' flanking region (-53 to -29) and nTRE2, located in the first intron (104-132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T(3). COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T(3) repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T(3). Nuclear corepressor knockdown resulted in loss of T(3) repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T(3) induction of positive thyroid hormone response elements, reverses T(3) repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T(3) and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T(3).

  8. Thyroid Hormone and COUP-TF1 Regulate Kallikrein-Binding Protein (KBP) Gene Expression

    PubMed Central

    Liu, Yan-Yun; Nakatani, Teruyo; Kogai, Takahiko; Mody, Kaizeen

    2011-01-01

    Kallikrein-binding protein (KBP) is a component of the kallikrein-kinin system that mediates vasodilation and inhibits tumor growth by antagonizing vascular endothelial growth factor-mediated angiogenesis. We demonstrate that KBP gene expression is repressed by T3 and modulated by the orphan nuclear receptor, chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1). In hypothyroid mice, KBP mRNA expression in the testis was increased 2.1-fold compared with euthyroid mice. We have identified two negative thyroid hormone response elements (nTREs) in the mouse KBP gene, nTRE1 located in the 5′ flanking region (−53 to −29) and nTRE2, located in the first intron (104–132). We used functional assays, cofactor knockdown, and chromatin immunoprecipitation assays to characterize nTRE1 and nTRE2 in hepatic (HepG2) and testes (GC-1spg) cell lines. Reporter expression directed by both elements was enhanced with addition of thyroid hormone receptor and repressed with the addition of T3. COUP-TF1 enhanced basal expression of both elements but blunted unliganded thyroid hormone receptor enhancement and T3 repression of nTRE1 but not nTRE2. Both nTREs bound nuclear corepressor and binding increased in response to T3. Nuclear corepressor knockdown resulted in loss of T3 repression of both nTRE1 and nTRE2. COUP-TF1, which usually represses T3 induction of positive thyroid hormone response elements, reverses T3 repression mediated by nTRE1 in the mouse KBP gene. Endogenous KBP expression is repressed by T3 and two functional nTREs, both of which are required, have been characterized in the KBP gene. COUP-TF1 may be an important factor to modulate expression of genes that are repressed by T3. PMID:21266512

  9. The Crude Skin Secretion of the Pepper Frog Leptodactylus labyrinthicus Is Rich in Metallo and Serine Peptidases

    PubMed Central

    Libério, Michelle da Silva; Bastos, Izabela M. D.; Pires Júnior, Osmindo R.; Fontes, Wagner; Santana, Jaime M.; Castro, Mariana S.

    2014-01-01

    Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology. PMID:24906116

  10. Processing of two latent membrane protein 1 MHC class I epitopes requires tripeptidyl peptidase II involvement.

    PubMed

    Diekmann, Jan; Adamopoulou, Eleni; Beck, Olaf; Rauser, Georg; Lurati, Sarah; Tenzer, Stefan; Einsele, Hermann; Rammensee, Hans-Georg; Schild, Hansjörg; Topp, Max S

    2009-08-01

    The EBV Ag latent membrane protein 1 (LMP1) has been described as a potential target for T cell immunotherapy in EBV-related malignancies. However, only a few CD8(+) T cell epitopes are known, and the benefit of LMP1-specific T cell immunotherapy has not yet been proven. In this work, we studied the processing of the two LMP1 HLA-A02-restricted epitopes, YLLEMLRWL and YLQQNWWTL. We found that target cells endogenously expressing the native LMP1 are not recognized by CTLs specific for these epitopes because the N-terminal part of LMP1 limits the efficiency of epitope generation. We further observed that the proteasome is not required for the generation of both epitopes and that the YLLEMLRWL epitope seems to be destroyed by the proteasome, because blocking of proteasomal activities enhanced specific CTL activation. Activation of LMP1-specific CTLs could be significantly reduced after inhibition of the tripeptidyl peptidase II, suggesting a role for this peptidase in the processing of both epitopes. Taken together, our results demonstrate that the MHC class I-restricted LMP1 epitopes studied in this work are two of very few epitopes known to date to be processed proteasome independently by tripeptidyl peptidase II.

  11. A model of tripeptidyl-peptidase I (CLN2), a ubiquitous and highly conserved member of the sedolisin family of serine-carboxyl peptidases

    PubMed Central

    Wlodawer, Alexander; Durell, Stewart R; Li, Mi; Oyama, Hiroshi; Oda, Kohei; Dunn, Ben M

    2003-01-01

    Background Tripeptidyl-peptidase I, also known as CLN2, is a member of the family of sedolisins (serine-carboxyl peptidases). In humans, defects in expression of this enzyme lead to a fatal neurodegenerative disease, classical late-infantile neuronal ceroid lipofuscinosis. Similar enzymes have been found in the genomic sequences of several species, but neither systematic analyses of their distribution nor modeling of their structures have been previously attempted. Results We have analyzed the presence of orthologs of human CLN2 in the genomic sequences of a number of eukaryotic species. Enzymes with sequences sharing over 80% identity have been found in the genomes of macaque, mouse, rat, dog, and cow. Closely related, although clearly distinct, enzymes are present in fish (fugu and zebra), as well as in frogs (Xenopus tropicalis). A three-dimensional model of human CLN2 was built based mainly on the homology with Pseudomonas sp. 101 sedolisin. Conclusion CLN2 is very highly conserved and widely distributed among higher organisms and may play an important role in their life cycles. The model presented here indicates a very open and accessible active site that is almost completely conserved among all known CLN2 enzymes. This result is somehow surprising for a tripeptidase where the presence of a more constrained binding pocket was anticipated. This structural model should be useful in the search for the physiological substrates of these enzymes and in the design of more specific inhibitors of CLN2. PMID:14609438

  12. Identifying neuropeptide Y (NPY) as the main stress-related substrate of dipeptidyl peptidase 4 (DPP4) in blood circulation.

    PubMed

    Wagner, Leona; Kaestner, Florian; Wolf, Raik; Stiller, Harald; Heiser, Ulrich; Manhart, Susanne; Hoffmann, Torsten; Rahfeld, Jens-Ulrich; Demuth, Hans-Ulrich; Rothermundt, Matthias; von Hörsten, Stephan

    2016-06-01

    Dipeptidyl peptidase 4 (DPP4; EC 3.4.14.5; CD26) is a membrane-bound or shedded serine protease that hydrolyzes dipeptides from the N-terminus of peptides with either proline or alanine at the penultimate position. Substrates of DPP4 include several stress-related neuropeptides implicated in anxiety, depression and schizophrenia. A decline of DPP4-like activity has been reported in sera from depressed patient, but not fully characterized regarding DPP4-like enzymes, therapeutic interventions and protein. Sera from 16 melancholic- and 16 non-melancholic-depressed patients were evaluated for DPP4-like activities and the concentration of soluble DPP4 protein before and after treatment by anti-depressive therapies. Post-translational modification of DPP4-isoforms and degradation of NPY, Peptide YY (PYY), Galanin-like peptide (GALP), Orexin B (OrxB), OrxA, pituitary adenylate cyclase-activating polypeptide (PACAP) and substance P (SP) were studied in serum and in ex vivo human blood. N-terminal truncation of biotinylated NPY by endothelial membrane-bound DPP4 versus soluble DPP4 was determined in rat brain perfusates and spiked sera. Lower DPP4 activities in depressed patients were reversed by anti-depressive treatment. In sera, DPP4 contributed to more than 90% of the overall DPP4-like activity and correlated with its protein concentration. NPY displayed equal degradation in serum and blood, and was equally truncated by serum and endothelial DPP4. In addition, GALP and rat OrxB were identified as novel substrates of DPP4. NPY is the best DPP4-substrate in blood, being truncated by soluble and membrane DPP4, respectively. The decline of soluble DPP4 in acute depression could be reversed upon anti-depressive treatment. Peptidases from three functional compartments regulate the bioactivity of NPY in blood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods

    NASA Astrophysics Data System (ADS)

    Novinec, Marko; Korenč, Matevž; Caflisch, Amedeo; Ranganathan, Rama; Lenarčič, Brigita; Baici, Antonio

    2014-02-01

    Allosteric modifiers have the potential to fine-tune enzyme activity. Therefore, targeting allosteric sites is gaining increasing recognition as a strategy in drug design. Here we report the use of computational methods for the discovery of the first small-molecule allosteric inhibitor of the collagenolytic cysteine peptidase cathepsin K, a major target for the treatment of osteoporosis. The molecule NSC13345 is identified by high-throughput docking of compound libraries to surface sites on the peptidase that are connected to the active site by an evolutionarily conserved network of residues (protein sector). The crystal structure of the complex shows that NSC13345 binds to a novel allosteric site on cathepsin K. The compound acts as a hyperbolic mixed modifier in the presence of a synthetic substrate, it completely inhibits collagen degradation and has good selectivity for cathepsin K over related enzymes. Altogether, these properties qualify our methodology and NSC13345 as promising candidates for allosteric drug design.

  14. Crystallization and preliminary crystallographic analysis of porcine acylaminoacyl peptidase.

    PubMed

    Wright, Helena; Kiss, András L; Szeltner, Zoltán; Polgár, László; Fülöp, Vilmos

    2005-10-01

    Acylaminoacyl peptidase (also known as acylamino-acid-releasing enzyme or acylpeptide hydrolase; EC 3.4.19.1) is an unusual member of the prolyl oligopeptidase family catalysing the hydrolysis of an N-acylated peptide to an acylamino acid and a peptide with a free N-terminus. Acylaminoacyl peptidase purified from porcine liver has been crystallized in mother liquor containing 0.1 M Tris-HCl pH 7.0, 10%(w/v) polyethylene glycol 8000, 50 mM MgCl2 and 1%(w/v) CHAPS using the hanging-drop vapour-diffusion technique. A full data set to 3.4 A resolution was collected at ESRF beamline ID14-4 and space group C222 was assigned, with unit-cell parameters a = 84.8, b = 421.1, c = 212.0 A and four molecules in the asymmetric unit.

  15. Purification and characterization of a tripeptidyl peptidase I from human osteoclastomas: evidence for its role in bone resorption.

    PubMed

    Page, A E; Fuller, K; Chambers, T J; Warburton, M J

    1993-11-01

    Tripeptidyl peptidase I (EC 3.4.14.9), which cleaves tripeptides from the N-terminus of synthetic substrates, has been purified from human osteoclastomas (a bone tumor containing large numbers of normal osteoclasts). The enzyme has an M(r) of 48 kDa but forms aggregates with an M(r) of about 700 kDa. The tripeptidyl peptidase has an acidic pH optimum (approximately pH 5.0), suggesting that it has a lysosomal localization and prefers substrates with a hydrophobic amino acid in the P1 position. There is an absolute requirement for a nonsubstituted N-terminus. The enzyme is inhibited by reagents which modify serine and histidine residues. Lysosomal tripeptidyl peptidase is known to be capable of cleaving Gly-Pro-X triplets from synthetic collagen-like polypeptides. Ala-Ala-Phe-CH2Cl, a potent inhibitor of osteoclastoma tripeptidyl peptidase, inhibits osteoclastic bone resorption in an in vitro test system. This suggests that tripeptidyl peptidase I, secreted by osteoclasts, is involved at some stage in the degradation of bone collagen.

  16. Peptidases prevent mu-opioid receptor internalization in dorsal horn neurons by endogenously released opioids.

    PubMed

    Song, Bingbing; Marvizón, Juan Carlos G

    2003-03-01

    To evaluate the effect of peptidases on mu-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and alpha-neoendorphin, but not endomorphins or beta-endorphin. The omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 microm) or 50 mm KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and were Ca(2+) dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are primarily cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, because the potencies of endomorphin-1 and endomorphin-2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons.

  17. Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids

    PubMed Central

    Song, Bingbing; Marvizón, Juan Carlos G.

    2008-01-01

    To evaluate the effect of peptidases on μ-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and α-neoendorphin, but not endomorphins or β-endorphin. Omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 μM) or 50 mM KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP and were Ca2+-dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are mainly cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, since the potencies of endomorphin-1 and -2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons. PMID:12629189

  18. Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2*

    PubMed Central

    Wiemhoefer, Anne; Stargardt, Anita; van der Linden, Wouter A.; Renner, Maria C.; van Kesteren, Ronald E.; Stap, Jan; Raspe, Marcel A.; Tomkinson, Birgitta; Kessels, Helmut W.; Ovaa, Huib; Overkleeft, Herman S.; Florea, Bogdan; Reits, Eric A.

    2015-01-01

    Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function. PMID:26041847

  19. Three extracellular dipeptidyl peptidases found in Aspergillus oryzae show varying substrate specificities.

    PubMed

    Maeda, Hiroshi; Sakai, Daisuke; Kobayashi, Takuji; Morita, Hiroto; Okamoto, Ayako; Takeuchi, Michio; Kusumoto, Ken-Ichi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei

    2016-06-01

    Three extracellular dipeptidyl peptidase genes, dppB, dppE, and dppF, were unveiled by sequence analysis of the Aspergillus oryzae genome. We investigated their differential enzymatic profiles, in order to gain an understanding of the diversity of these genes. The three dipeptidyl peptidases were expressed using Aspergillus nidulans as the host. Each recombinant enzyme was purified and subsequently characterized. The enzymes displayed similar optimum pH values, but optimum temperatures, pH stabilities, and substrate specificities varied. DppB was identified as a Xaa-Prolyl dipeptidyl peptidase, while DppE scissile substrates were similar to the substrates for Aspergillus fumigatus DPPV (AfDPPV). DppF was found to be a novel enzyme that could digest both substrates for A. fumigatus DPPIV and AfDPPV. Semi-quantitative PCR revealed that the transcription of dppB in A. oryzae was induced by protein substrates and repressed by the addition of an inorganic nitrogen source, despite the presence of protein substrates. The transcription of dppE depended on its growth time, while the transcription of dppF was not affected by the type of the nitrogen source in the medium, and it started during the early stage of the fungal growth. Based on these results, we conclude that these enzymes may represent the nutrition acquisition enzymes. Additionally, DppF may be one of the sensor peptidases responsible for the detection of the protein substrates in A. oryzae environment. DppB may be involved in nitrogen assimilation control, since the transcription of dppB was repressed by NaNO3, despite the presence of protein substrates.

  20. Activation by Phoneutria nigriventer (armed spider) venom of tissue kallikrein-kininogen-kinin system in rabbit skin in vivo.

    PubMed

    Marangoni, R A; Antunes, E; Brain, S D; de Nucci, G

    1993-06-01

    1. The purpose of the present study was to investigate the mechanisms by which venom from Phoneutria nigriventer spider induces increases in vascular permeability in rabbit skin. 2. Local oedema formation, in response to intradermally-injected agents, was measured in male New Zealand white rabbits as the local accumulation of i.v. injected 125I-labelled human serum albumin into skin sites. 3. Phoneutria nigriventer venom (10-30 micrograms/site) increased vascular permeability, which was inhibited by trasylol (10 micrograms/site) and the bradykinin B2 receptor antagonists D-Arg,[Hyp3,Thi5,8,D-Phe7]-BK (3 nmol/site) and Hoe 140 (0.3 nmol/site). In addition, the oedema induced by the venom was potentiated by the kinase II inhibitor, captopril (1 nmol/site). The lipoxygenase inhibitor, BWA4C (10 nmol/site) and the PAF antagonist, WEB 2086 (100 nmol/site) had no effect on the venom-induced increase in vascular permeability. 4. Incubation of rabbit plasma with Phoneutria nigriventer venom in vitro did not cause bradykinin formation. Further, the plasma kallikrein inhibitor, soybean trypsin inhibitor (10 micrograms/site), had no effect on the venom-induced increase in vascular permeability in rabbit skin. 5. These results indicate that the oedema produced by Phoneutria nigriventer venom is dependent on the activation of the tissue kallikrein-kinin system.

  1. Activation by Phoneutria nigriventer (armed spider) venom of tissue kallikrein-kininogen-kinin system in rabbit skin in vivo.

    PubMed Central

    Marangoni, R. A.; Antunes, E.; Brain, S. D.; de Nucci, G.

    1993-01-01

    1. The purpose of the present study was to investigate the mechanisms by which venom from Phoneutria nigriventer spider induces increases in vascular permeability in rabbit skin. 2. Local oedema formation, in response to intradermally-injected agents, was measured in male New Zealand white rabbits as the local accumulation of i.v. injected 125I-labelled human serum albumin into skin sites. 3. Phoneutria nigriventer venom (10-30 micrograms/site) increased vascular permeability, which was inhibited by trasylol (10 micrograms/site) and the bradykinin B2 receptor antagonists D-Arg,[Hyp3,Thi5,8,D-Phe7]-BK (3 nmol/site) and Hoe 140 (0.3 nmol/site). In addition, the oedema induced by the venom was potentiated by the kinase II inhibitor, captopril (1 nmol/site). The lipoxygenase inhibitor, BWA4C (10 nmol/site) and the PAF antagonist, WEB 2086 (100 nmol/site) had no effect on the venom-induced increase in vascular permeability. 4. Incubation of rabbit plasma with Phoneutria nigriventer venom in vitro did not cause bradykinin formation. Further, the plasma kallikrein inhibitor, soybean trypsin inhibitor (10 micrograms/site), had no effect on the venom-induced increase in vascular permeability in rabbit skin. 5. These results indicate that the oedema produced by Phoneutria nigriventer venom is dependent on the activation of the tissue kallikrein-kinin system. PMID:8395291

  2. Acid, basic, and neutral peptidases present different profiles in chromophobe renal cell carcinoma and in oncocytoma.

    PubMed

    Blanco, Lorena; Larrinaga, Gorka; Pérez, Itxaro; López, José I; Gil, Javier; Agirregoitia, Ekaitz; Varona, Adolfo

    2008-04-01

    Renal cell carcinomas (RCCs) are neoplasias with high prevalence and mortality. We previously reported that several peptidases may be involved in the pathophysiology of clear cell renal cell carcinoma (CCRCC). Now, to gain insight into the reasons that lead the various RCC types to behave very differently with regard to aggressiveness and response to anticancer treatments, we analyzed subsets of chromophobe renal cell carcinoma (ChRCC), and renal oncocytoma (RO), a benign tumor; as well as different grades and stages of CCRCCs. Particulate APN, APB, and APA activities were decreased in both ChRCC and RO (tumor vs. nontumor tissues). Interestingly, activities were downregulated in a tumor-type specific way and the intensities of the decreases were stronger in the benign tumor than in the malignant type. Moreover, when two key histopathological parameters for tumor prognosis (high vs. low stage and grade) were analyzed, increases of activity were also observed in several of these cell surface peptidases (APN, APB). Some soluble activities (APB, Asp-AP) were also downregulated in the RCCs. With respect to genetic expression, PSA and APN were in a positive correlation related to their activities in both ChRCC and RO; but not APB, Asp-AP, APA, and PGI. These results may suggest an involvement of several peptidases in the pathophysiology of renal cancer, since they presented different patterns of activity and expression in tumors with different behaviors.

  3. A four-kallikrein panel for the prediction of repeat prostate biopsy: data from the European Randomized Study of Prostate Cancer screening in Rotterdam, Netherlands.

    PubMed

    Gupta, A; Roobol, M J; Savage, C J; Peltola, M; Pettersson, K; Scardino, P T; Vickers, A J; Schröder, F H; Lilja, H

    2010-08-24

    Most men with elevated levels of prostate-specific antigen (PSA) do not have prostate cancer, leading to a large number of unnecessary biopsies. A statistical model based on a panel of four kallikreins has been shown to predict the outcome of a first prostate biopsy. In this study, we apply the model to an independent data set of men with previous negative biopsy but persistently elevated PSA. The study cohort consisted of 925 men with a previous negative prostate biopsy and elevated PSA (>or=3 ng ml(-1)), with 110 prostate cancers detected (12%). A previously published statistical model was applied, with recalibration to reflect the lower positive biopsy rates on rebiopsy. The full-kallikrein panel had higher discriminative accuracy than PSA and DRE alone, with area under the curve (AUC) improving from 0.58 (95% confidence interval (CI): 0.52, 0.64) to 0.68 (95% CI: 0.62, 0.74), P<0.001, and high-grade cancer (Gleason >or=7) at biopsy with AUC improving from 0.76 (95% CI: 0.64, 0.89) to 0.87 (95% CI: 0.81, 0.94), P=0.003). Application of the panel to 1000 men with persistently elevated PSA after initial negative biopsy, at a 15% risk threshold would reduce the number of biopsies by 712; would miss (or delay) the diagnosis of 53 cancers, of which only 3 would be Gleason 7 and the rest Gleason 6 or less. Our data constitute an external validation of a previously published model. The four-kallikrein panel predicts the result of repeat prostate biopsy in men with elevated PSA while dramatically decreasing unnecessary biopsies.

  4. The Urine Proteome as a Biomarker of Radiation Injury

    PubMed Central

    Sharma, Mukut; Halligan, Brian D.; Wakim, Bassam T.; Savin, Virginia J.; Cohen, Eric P.; Moulder, John E.

    2009-01-01

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury. PMID:19746194

  5. The Urine Proteome as a Biomarker of Radiation Injury: Submitted to Proteomics- Clinical Applications Special Issue: "Renal and Urinary Proteomics (Thongboonkerd)"

    PubMed

    Sharma, Mukut; Halligan, Brian D; Wakim, Bassam T; Savin, Virginia J; Cohen, Eric P; Moulder, John E

    2008-06-18

    Terrorist attacks or nuclear accidents could expose large numbers of people to ionizing radiation, and early biomarkers of radiation injury would be critical for triage, treatment and follow-up of such individuals. However, no such biomarkers have yet been proven to exist. We tested the potential of high throughput proteomics to identify protein biomarkers of radiation injury after total body X-ray irradiation in a rat model. Subtle functional changes in the kidney are suggested by an increased glomerular permeability for macromolecules measured within 24 hours after TBI. Ultrastructural changes in glomerular podocytes include partial loss of the interdigitating organization of foot processes. Analysis of urine by LC-MS/MS and 2D-GE showed significant changes in the urine proteome within 24 hours after TBI. Tissue kallikrein 1-related peptidase, cysteine proteinase inhibitor cystatin C and oxidized histidine were found to be increased while a number of proteinase inhibitors including kallikrein-binding protein and albumin were found to be decreased post-irradiation. Thus, TBI causes immediately detectable changes in renal structure and function and in the urinary protein profile. This suggests that both systemic and renal changes are induced by radiation and it may be possible to identify a set of biomarkers unique to radiation injury.

  6. Tripeptidyl Peptidase II Mediates Levels of Nuclear Phosphorylated ERK1 and ERK2.

    PubMed

    Wiemhoefer, Anne; Stargardt, Anita; van der Linden, Wouter A; Renner, Maria C; van Kesteren, Ronald E; Stap, Jan; Raspe, Marcel A; Tomkinson, Birgitta; Kessels, Helmut W; Ovaa, Huib; Overkleeft, Herman S; Florea, Bogdan; Reits, Eric A

    2015-08-01

    Tripeptidyl peptidase II (TPP2) is a serine peptidase involved in various biological processes, including antigen processing, cell growth, DNA repair, and neuropeptide mediated signaling. The underlying mechanisms of how a peptidase can influence this multitude of processes still remain unknown. We identified rapid proteomic changes in neuroblastoma cells following selective TPP2 inhibition using the known reversible inhibitor butabindide, as well as a new, more potent, and irreversible peptide phosphonate inhibitor. Our data show that TPP2 inhibition indirectly but rapidly decreases the levels of active, di-phosphorylated extracellular signal-regulated kinase 1 (ERK1) and ERK2 in the nucleus, thereby down-regulating signal transduction downstream of growth factors and mitogenic stimuli. We conclude that TPP2 mediates many important cellular functions by controlling ERK1 and ERK2 phosphorylation. For instance, we show that TPP2 inhibition of neurons in the hippocampus leads to an excessive strengthening of synapses, indicating that TPP2 activity is crucial for normal brain function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Profiling of proteolytic enzymes in the gut of the tick Ixodes ricinus reveals an evolutionarily conserved network of aspartic and cysteine peptidases

    PubMed Central

    Sojka, Daniel; Franta, Zdeněk; Horn, Martin; Hajdušek, Ondřej; Caffrey, Conor R; Mareš, Michael; Kopáček, Petr

    2008-01-01

    Background Ticks are vectors for a variety of viral, bacterial and parasitic diseases in human and domestic animals. To survive and reproduce ticks feed on host blood, yet our understanding of the intestinal proteolytic machinery used to derive absorbable nutrients from the blood meal is poor. Intestinal digestive processes are limiting factors for pathogen transmission since the tick gut presents the primary site of infection. Moreover, digestive enzymes may find practical application as anti-tick vaccine targets. Results Using the hard tick, Ixodes ricinus, we performed a functional activity scan of the peptidase complement in gut tissue extracts that demonstrated the presence of five types of peptidases of the cysteine and aspartic classes. We followed up with genetic screens of gut-derived cDNA to identify and clone genes encoding the cysteine peptidases cathepsins B, L and C, an asparaginyl endopeptidase (legumain), and the aspartic peptidase, cathepsin D. By RT-PCR, expression of asparaginyl endopeptidase and cathepsins B and D was restricted to gut tissue and to those developmental stages feeding on blood. Conclusion Overall, our results demonstrate the presence of a network of cysteine and aspartic peptidases that conceivably operates to digest host blood proteins in a concerted manner. Significantly, the peptidase components of this digestive network are orthologous to those described in other parasites, including nematodes and flatworms. Accordingly, the present data and those available for other tick species support the notion of an evolutionary conservation of a cysteine/aspartic peptidase system for digestion that includes ticks, but differs from that of insects relying on serine peptidases. PMID:18348719

  8. The identification and biochemical properties of the catalytic specificity of a serine peptidase secreted by Aspergillus fumigatus Fresenius.

    PubMed

    da Silva, Ronivaldo Rodrigues; Caetano, Renato Cesar; Okamoto, Debora Nona; de Oliveira, Lilian Caroline Goncalves; Bertolin, Thiago Carlos; Juliano, Maria Aparecida; Juliano, Luiz; de Oliveira, Arthur H C; Rosae, Jose C; Cabral, Hamilton

    2014-07-01

    Aspergillus fumigatus is a saprophytic fungus as well as a so-called opportunist pathogen. Its biochemical potential and enzyme production justify intensive studies about biomolecules secreted by this microorganism. We describe the alkaline serine peptidase production, with optimum activity at 50°C and a pH of 7.5 and a reduction in proteolytic activity in the presence of the Al(+3) ions. When using intramolecularly quenched fluorogenic substrates, the highest catalytic efficiency was observed with the amino acid leucine on subsite S'(3) (60,000 mM(-1)s(-1)) and preference to non-polar amino acids on subsite S(3). In general, however, the peptidase shows non-specificity on other subsites studied. According to the biochemical characteristics, this peptidase may be an important biocatalyst for the hydrolysis of an enormous variety of proteins and can constitute an essential molecule for the saprophytic lifestyle or invasive action of the opportunistic pathogen. The peptidase described herein exhibits an estimated molecular mass of 33 kDa. Mass spectrometry analysis identified the sequence GAPWGLGSISHK displaying similarities to that of serine peptidase from Aspergillus fumigatus. These data may lead to a greater understanding of the advantageous biochemical potential, biotechnological interest, and trends of this fungus in spite of being an opportunist pathogen.

  9. Interactions of "bora-penicilloates" with serine β-lactamases and DD-peptidases.

    PubMed

    Dzhekieva, Liudmila; Adediran, S A; Pratt, R F

    2014-10-21

    Specific boronic acids are generally powerful tetrahedral intermediate/transition state analogue inhibitors of serine amidohydrolases. This group of enzymes includes bacterial β-lactamases and DD-peptidases where there has been considerable development of boronic acid inhibitors. This paper describes the synthesis, determination of the inhibitory activity, and analysis of the results from two α-(2-thiazolidinyl) boronic acids that are closer analogues of particular tetrahedral intermediates involved in β-lactamase and DD-peptidase catalysis than those previously described. One of them, 2-[1-(dihydroxyboranyl)(2-phenylacetamido)methyl]-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid, is a direct analogue of the deacylation tetrahedral intermediates of these enzymes. These compounds are micromolar inhibitors of class C β-lactamases but, very unexpectedly, not inhibitors of class A β-lactamases. We rationalize the latter result on the basis of a new mechanism of boronic acid inhibition of the class A enzymes. A stable inhibitory complex is not accessible because of the instability of an intermediate on its pathway of formation. The new boronic acids also do not inhibit bacterial DD-peptidases (penicillin-binding proteins). This result strongly supports a central feature of a previously proposed mechanism of action of β-lactam antibiotics, where deacylation of β-lactam-derived acyl-enzymes is not possible because of unfavorable steric interactions.

  10. Production and partial characterization of serine and metallo peptidases secreted by Aspergillus fumigatus Fresenius in submerged and solid state fermentation.

    PubMed

    da Silva, Ronivaldo Rodrigues; de Freitas Cabral, Tatiana Pereira; Rodrigues, André; Cabral, Hamilton

    2013-01-01

    Enzyme production varies in different fermentation systems. Enzyme expression in different fermentation systems yields important information for improving our understanding of enzymatic production induction. Comparative studies between solid-state fermentation (SSF) using agro-industrial waste wheat bran and submerged fermentation (SmF) using synthetic media were carried out to determinate the best parameters for peptidase production by the fungus Aspergillus fumigatus Fresen. Variables tested include: the concentration of carbon and protein nitrogen sources, the size of the inoculum, the pH of the media, temperature, and the length of the fermentation process. The best peptidase production during SSF was obtained after 96 hours using wheat bran at 30 °C with an inoculum of 1 × 10(6) spores and yielded 1500 active units (U/mL). The best peptidase production using SmF was obtained after periods of 72 and 96 hours of fermentation in media containing 0.5% and 0.25% of casein, respectively, at a pH of 6.0 and at 30 °C and yielded 40 U/mL. We also found examples of catabolite repression of peptidase production under SmF conditions. Biochemical characterization of the peptidases produced by both fermentative processes showed optimum activity at pH 8.0 and 50 °C, and also showed that their proteolytic activity is modulated by surfactants. The enzymatic inhibition profile using phenylmethylsulfonyl fluoride (PMSF) in SmF and SSF indicated that both fermentative processes produced a serine peptidase. Additionally, the inhibitory effect of the ethylene-diaminetetraacetic acid (EDTA) chelating agent on the peptidase produced by SmF indicated that this fermentative process also produced a metallopeptidase.

  11. Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells.

    PubMed

    Les, Francisco; Arbonés-Mainar, José Miguel; Valero, Marta Sofía; López, Víctor

    2018-06-28

    Pomegranate fruit is considered an antidiabetic medicine in certain systems of traditional medicine. In addition, pomegranate polyphenols are known as powerful antioxidants with beneficial effects such as the reduction of oxidative / inflammatory stress and the increase of protective signalling such as antioxidant enzymes, neurotrophic factors and cytoprotective proteins. This work evaluates the effects of pomegranate juice, its main polyphenols known as ellagic acid and punicalagin, as well as its main metabolite urolithin A, on physiological and pharmacological targets of metabolic diseases such as obesity and diabetes. For this purpose, enzyme inhibition bioassays of lipase, α-glucosidase and dipeptidyl peptidase-4 were carried out in cell-free systems. Similarly, adipocytes derived from 3T3-L1 cells were employed to study the effects of ellagic acid, punicalagin and urolithin A on adipocyte differentiation and triglyceride (TG) accumulation. Pomegranate juice, ellagic acid, punicalagin and urolithin A were able to inhibit lipase, α-glucosidase and dipeptidyl peptidase-4. Furthermore, all tested compounds but significantly the metabolite urolithin A displayed anti-adipogenic properties in a dose-dependent manner as they significantly reduced TG accumulation and gene expression related to adipocyte formation such as adiponectin, PPARγ, GLUT4, and FABP4 in 3T3-L1 adipocytes. These results may explain from a molecular perspective the beneficial effects and traditional use of pomegranate in the prevention of metabolic-associated disorders such as obesity, diabetes and related complications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Combined panel of serum human tissue kallikreins and CA-125 for the detection of epithelial ovarian cancer.

    PubMed

    Koh, Stephen Chee Liang; Huak, Chan Yiong; Lutan, Delfi; Marpuang, Johny; Ketut, Suwiyoga; Budiana, Nyoma Gede; Saleh, Agustria Zainu; Aziz, Mohamad Farid; Winarto, Hariyono; Pradjatmo, Heru; Hoan, Nguyen Khac Han; Thanh, Pham Viet; Choolani, Mahesh

    2012-07-01

    To determine the predictive accuracy of the combined panels of serum human tissue kallikreins (hKs) and CA-125 for the detection of epithelial ovarian cancer. Serum specimens collected from 5 Indonesian centers and 1 Vietnamese center were analyzed for CA-125, hK6, and hK10 levels. A total of 375 specimens from patients presenting with ovarian tumors, which include 156 benign cysts, 172 epithelial ovarian cancers (stage I/II, n=72; stage III/IV, n=100), 36 germ cell tumors and 11 borderline tumors, were included in the study analysis. Receiver operating characteristic analysis were performed to determine the cutoffs for age, CA-125, hK6, and hK10. Sensitivity, specificity, negative, and positive predictive values were determined for various combinations of the biomarkers. The levels of hK6 and hK10 were significantly elevated in ovarian cancer cases compared to benign cysts. Combination of 3 markers, age/CA-125/hk6 or CA-125/hk6/hk10, showed improved specificity (100%) and positive predictive value (100%) for prediction of ovarian cancer, when compared to the performance of single markers having 80-92% specificity and 74-87% positive predictive value. Four-marker combination, age/CA-125/hK6/hK10 also showed 100% specificity and 100% positive predictive value, although it demonstrated low sensitivity (11.9%) and negative predictive value (52.8%). The combination of human tissue kallikreins and CA-125 showed potential for improving prediction of epithelial ovarian cancer in patients presenting with ovarian tumors.

  13. Neurotensin-metabolizing peptidases in rat fundus plasma membranes.

    PubMed

    Checler, F; Barelli, H; Kwan, C Y; Kitabgi, P; Vincent, J P

    1987-08-01

    The mechanisms by which neurotensin (NT) was inactivated by rat fundus plasma membranes were characterized. Primary inactivating cleavages occurred at the Arg8-Arg9, Pro10-Tyr11, and Ile12-Leu13 peptidyl bonds. Hydrolysis at the Arg8-Arg9 bond was fully abolished by the use of N-[1(R,S)-carboxy-2-phenylethyl]-alanyl-alanyl-phenylalanine-p- aminobenzoate, a result indicating the involvement at this site of a recently purified soluble metallopeptidase. Hydrolysis of the Pro10-Tyr11 bond was totally resistant to N-benzyloxycarbonyl-prolyl-prolinal and thiorphan, an observation suggesting that the peptidase responsible for this cleavage was different from proline endopeptidase and endopeptidase 24.11 and might correspond to a NT-degrading neutral metallopeptidase recently isolated from rat brain synaptic membranes. The enzyme acting at the Ile12-Leu13 bond has not yet been identified. Secondary cleavages occurring on NT degradation products were mainly generated by bestatin-sensitive aminopeptidases and post-proline dipeptidyl aminopeptidase. The content in NT-metabolizing peptidases present in rat fundus plasma membranes is compared with that previously established for purified rat brain synaptic membranes.

  14. Interactive hemodynamic effects of dipeptidyl peptidase-IV inhibition and angiotensin-converting enzyme inhibition in humans.

    PubMed

    Marney, Annis; Kunchakarra, Siri; Byrne, Loretta; Brown, Nancy J

    2010-10-01

    Dipeptidyl peptidase-IV inhibitors improve glucose homeostasis in type 2 diabetics by inhibiting degradation of the incretin hormones. Dipeptidyl peptidase-IV inhibition also prevents the breakdown of the vasoconstrictor neuropeptide Y and, when angiotensin-converting enzyme (ACE) is inhibited, substance P. This study tested the hypothesis that dipeptidyl peptidase-IV inhibition would enhance the blood pressure response to acute ACE inhibition. Subjects with the metabolic syndrome were treated with 0 mg of enalapril (n=9), 5 mg of enalapril (n=8), or 10 mg enalapril (n=7) after treatment with sitagliptin (100 mg/day for 5 days and matching placebo for 5 days) in a randomized, cross-over fashion. Sitagliptin decreased serum dipeptidyl peptidase-IV activity (13.08±1.45 versus 30.28±1.76 nmol/mL/min during placebo; P≤0.001) and fasting blood glucose. Enalapril decreased ACE activity in a dose-dependent manner (P<0.001). Sitagliptin lowered blood pressure during enalapril (0 mg; P=0.02) and augmented the hypotensive response to 5 mg of enalapril (P=0.05). In contrast, sitagliptin attenuated the hypotensive response to 10 mg of enalapril (P=0.02). During sitagliptin, but not during placebo, 10 mg of enalapril significantly increased heart rate and plasma norepinephrine concentrations. There was no effect of 0 or 5 mg of enalapril on heart rate or norepinephrine after treatment with either sitagliptin or placebo. Sitagliptin enhanced the dose-dependent effect of enalapril on renal blood flow. In summary, sitagliptin lowers blood pressure during placebo or submaximal ACE inhibition; sitagliptin activates the sympathetic nervous system to diminish hypotension when ACE is maximally inhibited. This study provides the first evidence for an interactive hemodynamic effect of dipeptidyl peptidase-IV and ACE inhibition in humans.

  15. Peptidases released by necrotic cells control CD8+ T cell cross-priming

    PubMed Central

    Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P.; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O.; Citrin, Deborah E.; Korangy, Firouzeh; Greten, Tim F.

    2013-01-01

    Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells. PMID:24216478

  16. Peptidases released by necrotic cells control CD8+ T cell cross-priming.

    PubMed

    Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O; Citrin, Deborah E; Korangy, Firouzeh; Greten, Tim F

    2013-11-01

    Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells.

  17. Biochemical properties and evaluation of washing performance in commercial detergent compatibility of two collagenolytic serine peptidases secreted by Aspergillus fischeri and Penicillium citrinum.

    PubMed

    Ida, Érika Lika; da Silva, Ronivaldo Rodrigues; de Oliveira, Tássio Brito; Souto, Tatiane Beltramini; Leite, Juliana Abigail; Rodrigues, André; Cabral, Hamilton

    2017-03-16

    Filamentous fungi secrete diverse peptidases with different biochemical properties, which is of considerable importance for application in various commercial sectors. In this study, we describe the isolation of two fungal species collected from the soil of decayed organic matter: Aspergillus fischeri and Penicillium citrinum. In a submerged bioprocess, we observed better peptidase production with the fungus P. citrinum, which reached a peak production at 168 h with 760 U/mL, in comparison with the fungus A. fischeri, which reached a peak production at 72 h with 460 U/mL. In both situations, the fermentative medium contained 0.5% crushed feathers as a source of nitrogen. On performing biochemical characterization, we detected two alkaline serine peptidases: The one secreted by P. citrinum had optimal activity at pH 7.0 and at 45°C, while the one secreted by A. fischeri had optimal activity in pH 6.5-8 and at 55-60°C. Metallic ions were effective in modulating these peptidases; in particular, Cu 2+ promoted negative modulation of both peptidases. The peptidases were stable and functional under conditions of nonionic surfactants, temperatures up to 45°C for 1 h, and incubation over a wide pH range. In addition, it was observed that both peptidases had the capacity to hydrolyze collagen and performed well in removing an egg protein stain when supplemented into a commercial powder detergent; this was especially true for the peptidase from P. citrinum.

  18. Molecular cloning of a cDNA encoding the glycoprotein of hen oviduct microsomal signal peptidase.

    PubMed Central

    Newsome, A L; McLean, J W; Lively, M O

    1992-01-01

    Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common. Images Fig. 1. PMID:1546959

  19. The plastid and mitochondrial peptidase network in Arabidopsis thaliana: a foundation for testing genetic interactions and functions in organellar proteostasis

    USDA-ARS?s Scientific Manuscript database

    Plant plastids and mitochondria have dynamic proteomes. To maintain their protein homeostasis, a proteostasis network containing protein chaperones, peptidases and their substrate recognition factors exists, but many peptidases, their functional connections and substrates are poorly characterized. T...

  20. Identification of peptidase substrates in human plasma by FTMS based differential mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yates, Nathan A.; Deyanova, Ekaterina G.; Geissler, Wayne; Wiener, Matthew C.; Sachs, Jeffrey R.; Wong, Kenny K.; Thornberry, Nancy A.; Sinha Roy, Ranabir; Settlage, Robert E.; Hendrickson, Ronald C.

    2007-01-01

    Approximately 2% of the human genome encodes for proteases. Unfortunately, however, the biological roles of most of these enzymes remain poorly defined, since the physiological substrates are typically unknown and are difficult to identify using traditional methods. We have developed a proteomics experiment based on FTMS profiling and differential mass spectrometry (dMS) to identify candidate endogenous substrates of proteases using fractionated human plasma as the candidate substrate pool. Here we report proof-of-concept experiments for identifying in vitro substrates of aminopeptidase P2, (APP2) and dipeptidyl peptidase 4 (DPP-4), a peptidase of therapeutic interest for the treatment of type 2 diabetes. For both proteases, previously validated peptide substrates spiked into the human plasma pool were identified. Of note, the differential mass spectrometry experiments also identified novel substrates for each peptidase in the subfraction of human plasma. Targeted MS/MS analysis of these peptides in the complex human plasma pool and manual confirmation of the amino acid sequences led to the identification of these substrates. The novel DPP-4 substrate EPLGRQLTSGP was chemically synthesized and cleavage kinetics were determined in an in vitro DPP-4 enzyme assay. The apparent second order rate constant (kcat/KM) for DPP-4-mediated cleavage was determined to be 2.3 x 105 M-1 s-1 confirming that this peptide is efficiently processed by the peptidase in vitro. Collectively, these results demonstrate that differential mass spectrometry has the potential to identify candidate endogenous substrates of target proteases from a human plasma pool. Importantly, knowledge of the endogenous substrates can provide useful insight into the biology of these enzymes and provides useful biomarkers for monitoring their activity in vivo.

  1. Use of a dehydroalanine-containing peptide as an efficient inhibitor of tripeptidyl peptidase II.

    PubMed

    Tomkinson, B; Grehn, L; Fransson, B; Zetterqvist, O

    1994-11-01

    Tripeptidyl peptidase II is an intracellular exopeptidase, which has been purified from rat liver and human erythrocytes. An efficient specific inhibitor was obtained through beta-elimination of phosphate from the phosphopeptide Arg-Ala-Ser(P)-Val-Ala. The dehydroalanine-containing peptide formed was a competitive inhibitor with a Ki of 0.02 +/- 0.01 microM. This study demonstrated that replacing a serine residue in a good inhibitor with a dehydroalanine residue reduced the Ki 45 times. It is proposed that dehydroalanine-containing peptides could be of interest in the development of inhibitors for other peptidases as well.

  2. A genetic study of various enzyme polymorphisms in Pleurodeles waltlii (Urodele Amphibian). II. Peptidases: demonstration of sex linkage.

    PubMed

    Ferrier, V; Gasser, F; Jaylet, A; Cayrol, C

    1983-06-01

    The existence of four peptidases was demonstrated by starch gel electrophoresis in Pleurodeles waltlii: PEP-1, PEP-2, PEP-3, and PEP-4. Peptidases-3 and -4 are monomorphic, and peptidases-1 and -2 are polymorphic. The heredity of the polymorphisms was studied using individuals arising from crosses or of gynogenetic origin. Peptidase-1 is dimeric; its polymorphism depends on a pair of codominant alleles, Pep-1A and Pep-1B, which are situated on the Z and W sex chromosomes, respectively, in close proximity to, or even within, the sex differential segment. As the differential segment is very close to the centromere, the PEP-1 locus therefore also appears to be closely linked to it. Expression of the PEP-1 locus was shown to be independent of the sex hormone environment. This locus is the first case reported in amphibians of an enzyme marker linked to the genetic sex. It allows the sex of PLeurodeles to be determined before they reach sexual maturity. Peptidase-2 is monomeric. Its polymorphism depends on a pair of codominant alleles on an autosomal PEP-2 locus. The high proportion of heterozygous animals in the gynogenetic offspring of females heterozygous for the PEP-2 locus indicates segregation which is independent of the centromere. Analysis of the offspring of doubly heterozygous females (i.e., for two of the loci--LDH-B, G6PDH, PEP-1, and PEP-2) shows that the four loci are independent.

  3. Expression of six peptidases from Lactobacillus helveticus in Lactococcus lactis.

    PubMed

    Luoma, S; Peltoniemi, K; Joutsjoki, V; Rantanen, T; Tamminen, M; Heikkinen, I; Palva, A

    2001-03-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration.

  4. Expression of Six Peptidases from Lactobacillus helveticus in Lactococcus lactis

    PubMed Central

    Luoma, Susanna; Peltoniemi, Kirsi; Joutsjoki, Vesa; Rantanen, Terhi; Tamminen, Marja; Heikkinen, Inka; Palva, Airi

    2001-01-01

    For development of novel starter strains with improved proteolytic properties, the ability of Lactococcus lactis to produce Lactobacillus helveticus aminopeptidase N (PepN), aminopeptidase C (PepC), X-prolyl dipeptidyl aminopeptidase (PepX), proline iminopeptidase (PepI), prolinase (PepR), and dipeptidase (PepD) was studied by introducing the genes encoding these enzymes into L. lactis MG1363 and its derivatives. According to Northern analyses and enzyme activity measurements, the L. helveticus aminopeptidase genes pepN, pepC, and pepX are expressed under the control of their own promoters in L. lactis. The highest expression level, using a low-copy-number vector, was obtained with the L. helveticus pepN gene, which resulted in a 25-fold increase in PepN activity compared to that of wild-type L. lactis. The L. helveticus pepI gene, residing as a third gene in an operon in its host, was expressed in L. lactis under the control of the L. helveticus pepX promoter. The genetic background of the L. lactis derivatives tested did not affect the expression level of any of the L. helveticus peptidases studied. However, the growth medium used affected both the recombinant peptidase profiles in transformant strains and the resident peptidase activities. The levels of expression of the L. helveticus pepD and pepR clones under the control of their own promoters were below the detection limit in L. lactis. However, substantial amounts of recombinant pepD and PepR activities were obtained in L. lactis when pepD and pepR were expressed under the control of the inducible lactococcal nisA promoter at an optimized nisin concentration. PMID:11229915

  5. Detection of tripeptidyl peptidase I activity in living cells by fluorogenic substrates.

    PubMed

    Steinfeld, Robert; Fuhrmann, Jens C; Gärtner, Jutta

    2006-09-01

    Tripeptidyl peptidase I (TPP-I) is a lysosomal peptidase with unclear physiological function. TPP-I deficiency is associated with late-infantile neuronal ceroid lipofuscinosis (NCL), a fatal neurodegenerative disease of childhood that is characterized by loss of neurons and photoreceptor cells. We have developed two novel fluorogenic substrates, [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110, that are cleaved by TPP-I in living cells. Fluorescence of liberated rhodamine 110 was detected by flow cytometry and was dependent on the level of TPP-I expression. Rhodamine-related fluorescence could be suppressed by preincubation with a specific inhibitor of TPP-I. When investigated by fluorescent confocal microscopy, rhodamine signals colocalized with lysosomal markers. Thus, cleavage of these rhodamide-derived substrates is a marker for mature enzymatically active TPP-I. In addition, TPP-I-induced cleavage of [Ala-Ala-Phe]2-rhodamine 110 could be visualized in primary neurons. We conclude that [Ala-Ala-Phe]2-rhodamine 110 and [Arg-Nle-Nle]2-rhodamine 110 are specific substrates for determining TPP-I activity and intracellular localization in living cells. Further, these substrates could be a valuable tool for studying the neuronal pathology underlying classical late-infantile NCL. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.

  6. Inhibition of DD-Peptidases by a Specific Trifluoroketone: Crystal Structure of a Complex with the Actinomadura R39 DD-Peptidase†

    PubMed Central

    Dzhekieva, Liudmila; Adediran, S. A.; Herman, Raphael; Kerff, Frédéric; Duez, Colette; Charlier, Paulette; Sauvage, Eric; Pratt, R.F.

    2013-01-01

    Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures on reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter include a boronic acid, two alcohols, an aldehyde and a trifluoroketone. The compounds were tested against two low molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but, rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl-(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates, as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics. PMID:23484909

  7. Human dipeptidyl peptidase III acts as a post-proline-cleaving enzyme on endomorphins.

    PubMed

    Barsun, Marina; Jajcanin, Nina; Vukelić, Bojana; Spoljarić, Jasminka; Abramić, Marija

    2007-03-01

    Dipeptidyl peptidase III (DPP III) is a zinc exopeptidase with an implied role in the mammalian pain-modulatory system owing to its high affinity for enkephalins and localisation in the superficial laminae of the spinal cord dorsal horn. Our study revealed that this human enzyme hydrolyses opioid peptides belonging to three new groups, endomorphins, hemorphins and exorphins. The enzymatic hydrolysis products of endomorphin-1 were separated and quantified by capillary electrophoresis and the kinetic parameters were determined for human DPP III and rat DPP IV. Both peptidases cleave endomorphin-1 at comparable rates, with liberation of the N-terminal Tyr-Pro. This is the first evidence of DPP III acting as an endomorphin-cleaving enzyme.

  8. Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis.

    PubMed

    Ezaki, J; Takeda-Ezaki, M; Oda, K; Kominami, E

    2000-02-24

    Endopeptidase activities of the CLN2 gene product (Cln2p)/tripeptidyl peptidase I (TPP-I), purified from rat spleen, were studied using the synthetic fluorogenic substrates. We designed and constructed decapeptides, based on the known sequence cleavage specificities of bacterial pepstatin-insensitive carboxyl proteases (BPICP). MOCAc-Gly-Lys-Pro-Ile-Pro-Phe-Phe-Arg-Leu-Lys(Dnp)r-NH(2) is readily hydrolyzed by Cln2p/TPP-I (K(cat)/K(m) = 7.8 s(-1) mM(-1)). The enzyme had a maximal activity at pH 3.0 for an endopeptidase substrate, but at pH 4.5 with respect to tripeptidyl peptidase activity. Both endopeptidase and tripeptidyl peptidase activities were strongly inhibited by Ala-Ala-Phe-CH(2)Cl, but not inhibited by tyrostatin, an inhibitor of bacterial pepstatin-insensitive carboxyl proteases, pepstatin, or inhibitors of serine proteases. Fibroblasts from classical late infantile neuronal ceroid lipofuscinosis patients have less than 5% of the normal tripeptidyl peptidase activity and pepstatin-insensitive endopeptidase activity. Cln2p/TPP-I is a unique enzyme with both tripeptidyl peptidase and endopeptidase activities for certain substrate specificity. Copyright 2000 Academic Press.

  9. Virtual Screening and X-ray Crystallography for Human Kallikrein 6 Inhibitors with an Amidinothiophene P1 Group.

    PubMed

    Liang, Guyan; Chen, Xin; Aldous, Suzanne; Pu, Su-Fen; Mehdi, Shujaath; Powers, Elaine; Giovanni, Andrew; Kongsamut, Sathapana; Xia, Tianhui; Zhang, Ying; Wang, Rachel; Gao, Zhongli; Merriman, Gregory; McLean, Larry R; Morize, Isabelle

    2012-02-09

    A series of compounds with an amidinothiophene P1 group and a pyrrolidinone-sulphonamide scaffold linker was identified as potent inhibitors of human kallikrein 6 by structure-based virtual screening based on the union accessible binding space of serine proteases. As the first series of potent nonmechanism-based hK6 inhibitors, they may be used as tool compounds for target validation. An X-ray structure of a representative compound complexed with hK6, resolved at a resolution of 1.88 Å, revealed that the amidinothiophene moiety bound in the S1 pocket and the pyrrolidinone-sulphonamide linker projected the aromatic tail into the S' pocket.

  10. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit.more » Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.« less

  11. Bacillus thuringiensis Cry3Aa protoxin intoxication of Tenebrio molitor induces widespread changes in the expression of serine peptidase transcripts

    USDA-ARS?s Scientific Manuscript database

    The yellow mealworm, Tenebrio molitor, is a pest of stored grain products and is sensitive to the coleopteran-specific Cry3Aa toxin from Bacillus thuringiensis (Bt). Larvae digest protein initially with cysteine peptidases in the anterior midgut and further with serine peptidases in middle and poste...

  12. Neuromedin N: high affinity interaction with brain neurotensin receptors and rapid inactivation by brain synaptic peptidases.

    PubMed

    Checler, F; Vincent, J P; Kitabgi, P

    1986-07-31

    Neuromedin N (NN) is a novel neurotensin (NT)-like hexapeptide recently isolated from porcine spinal cord. NN competitively inhibited the binding of monoiodinated [Trp11]NT to rat brain synaptic membranes with a 19-fold lower potency than NT. In the presence of 1 mM 1,10-phenanthroline or 10 microM bestatin, the potency of NN relative to NT was increased about 5-fold. NN was readily degraded by rat brain synaptic membranes, and NN-(2-6) was the major degradation product. NN-(2-6) did not bind to NT receptors at concentrations up to 1 microM whether or not peptidase inhibitors were present in the binding assay. The rate of degradation by synaptic membranes was nearly 2.5 times higher for NN than for NT. NN degradation by membranes was totally prevented by 1,10-phenanthroline and markedly inhibited by bestatin. The presence of NN in the central nervous system, its high potency to interact with brain NT receptors and its rapid inactivation by brain synaptic peptidases make it a potential neurotransmitter candidate acting at the NT receptor.

  13. A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis.

    PubMed

    Cai, Dongbo; Wang, Hao; He, Penghui; Zhu, Chengjun; Wang, Qin; Wei, Xuetuan; Nomura, Christopher T; Chen, Shouwen

    2017-04-24

    Signal peptide peptidases play an important role in the removal of remnant signal peptides in the cell membrane, a critical step for extracellular protein production. Although these proteins are likely a central component for extracellular protein production, there has been a lack of research on whether protein secretion could be enhanced via overexpression of signal peptide peptidases. In this study, both nattokinase and α-amylase were employed as prototypical secreted target proteins to evaluate the function of putative signal peptide peptidases (SppA and TepA) in Bacillus licheniformis. We observed dramatic decreases in the concentrations of both target proteins (45 and 49%, respectively) in a sppA deficient strain, while the extracellular protein yields of nattokinase and α-amylase were increased by 30 and 67% respectively in a strain overexpressing SppA. In addition, biomass, specific enzyme activities and the relative gene transcriptional levels were also enhanced due to the overexpression of sppA, while altering the expression levels of tepA had no effect on the concentrations of the secreted target proteins. Our results confirm that SppA, but not TepA, plays an important functional role for protein secretion in B. licheniformis. Our results indicate that the sppA overexpression strain, B. licheniformis BL10GS, could be used as a promising host strain for the industrial production of heterologous secreted proteins.

  14. Functional analysis of C1 family cysteine peptidases in the larval gut of Тenebrio molitor and Tribolium castaneum.

    PubMed

    Martynov, Alexander G; Elpidina, Elena N; Perkin, Lindsey; Oppert, Brenda

    2015-02-14

    Larvae of the tenebrionids Tenebrio molitor and Tribolium castaneum have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anterior midgut that contribute to the early stages of protein digestion. High throughput sequencing was used to quantify and characterize transcripts encoding cysteine peptidases from the C1 papain family in the gut of tenebrionid larvae. For T. castaneum, 25 genes and one questionable pseudogene encoding cysteine peptidases were identified, including 11 cathepsin L or L-like, 11 cathepsin B or B-like, and one each F, K, and O. The majority of transcript expression was from two cathepsin L genes on chromosome 10 (LOC659441 and LOC659502). For cathepsin B, the major expression was from genes on chromosome 3 (LOC663145 and LOC663117). Some transcripts were expressed at lower levels or not at all in the larval gut, including cathepsins F, K, and O. For T. molitor, there were 29 predicted cysteine peptidase genes, including 14 cathepsin L or L-like, 13 cathepsin B or B-like, and one each cathepsin O and F. One cathepsin L and one cathepsin B were also highly expressed, orthologous to those in T. castaneum. Peptidases lacking conservation in active site residues were identified in both insects, and sequence analysis of orthologs indicated that changes in these residues occurred prior to evolutionary divergence. Sequences from both insects have a high degree of variability in the substrate binding regions, consistent with the ability of these enzymes to degrade a variety of cereal seed storage proteins and inhibitors. Predicted cathepsin B peptidases from both insects included some with a shortened occluding loop without active site residues in the middle, apparently lacking exopeptidase activity and unique to tenebrionid insects. Docking of specific substrates with models of T. molitor cysteine peptidases indicated that some insect cathepsins B and L bind substrates with affinities similar to human cathepsin L, while

  15. Purification, substrate specificity, and classification of tripeptidyl peptidase II.

    PubMed

    Bålöw, R M; Tomkinson, B; Ragnarsson, U; Zetterqvist, O

    1986-02-15

    An extralysosomal tripeptide-releasing aminopeptidase was recently discovered in rat liver (Bålöw, R.-M., Ragnarsson, U., and Zetterqvist, O. (1983) J. Biol. Chem. 258, 11622-11628). In the present work this tripeptidyl peptidase is shown to occur in several rat tissues and in human erythrocytes. The erythrocyte enzyme was purified about 80,000-fold from a hemolysate while the rat liver enzyme was purified about 4,000-fold from a homogenate. Upon polyacrylamide gel electrophoresis in sodium dodecyl sulfate under reducing conditions more than 90% of the protein was represented by a polypeptide of Mr 135,000 in both cases. In addition, the two enzymes eluted at similar positions in the various chromatographic steps, showed similar specific activity, and had a pH optimum around 7.5. A tryptic pentadecapeptide from the alpha-chain of human hemoglobin, Val-Gly-Ala-His-Ala-Gly-Glu-Tyr-Gly-Ala-Glu-Ala-Leu-Glu-Arg, i.e. residues 17-31, was found to be sequentially cleaved by the erythrocyte enzyme into five tripeptides, beginning from the NH2 terminus. Chromogenic tripeptidylamides showed various rates of hydrolysis at pH 7.5. With Ala-Ala-Phe-4-methyl-7-coumarylamide, Km was 16 microM and Vmax 13 mumol min-1 . mg-1, comparable to the standard substrate Arg-Arg-Ala-Ser(32P)-Val-Ala values (Km 13 microM and Vmax 24 mumol . min-1 . mg-1). The tripeptidyl peptidase of human erythrocytes was classified as a serine peptidase from its irreversible inhibition by phenylmethanesulfonyl fluoride and diisopropyl fluorophosphate. The rate of inhibition was decreased by the presence of an efficient competitive inhibitor, Val-Leu-Arg-Arg-Ala-Ser-Val-Ala (Ki 1.5 microM). [3H]Diisopropylphosphate was incorporated to the extent of 0.7-0.9 mol/mol of Mr 135,000 subunit, which confirms the high purity of the enzyme.

  16. Elevated fecal peptidase D at onset of colitis in Galphai2-/- mice, a mouse model of IBD.

    PubMed

    Bergemalm, Daniel; Kruse, Robert; Sapnara, Maria; Halfvarson, Jonas; Hörnquist, Elisabeth Hultgren

    2017-01-01

    The identification of novel fecal biomarkers in inflammatory bowel disease (IBD) is hampered by the complexity of the human fecal proteome. On the other hand, in experimental mouse models there is probably less variation. We investigated the fecal protein content in mice to identify possible biomarkers and pathogenic mechanisms. Fecal samples were collected at onset of inflammation in Galphai2-/- mice, a well-described spontaneous model of chronic colitis, and from healthy littermates. The fecal proteome was analyzed by two-dimensional electrophoresis and quantitative mass spectrometry and results were then validated in a new cohort of mice. As a potential top marker of disease, peptidase D was found at a higher ratio in Galphai2-/- mouse feces relative to controls (fold change 27; p = 0.019). Other proteins found to be enriched in Gαi2-/- mice were mainly pancreatic proteases, and proteins from plasma and blood cells. A tendency of increased calprotectin, subunit S100-A8, was also observed (fold change 21; p = 0.058). Proteases are potential activators of inflammation in the gastrointestinal tract through their interaction with the proteinase-activated receptor 2 (PAR2). Accordingly, the level of PAR2 was found to be elevated in both the colon and the pancreas of Galphai2-/- mice at different stages of disease. These findings identify peptidase D, an ubiquitously expressed intracellular peptidase, as a potential novel marker of colitis. The elevated levels of fecal proteases may be involved in the pathogenesis of colitis and contribute to the clinical phenotype, possibly by activation of intestinal PAR2.

  17. Endothelial Cell Permeability during Hantavirus Infection Involves Factor XII-Dependent Increased Activation of the Kallikrein-Kinin System

    PubMed Central

    Taylor, Shannon L.; Wahl-Jensen, Victoria; Copeland, Anna Maria; Jahrling, Peter B.; Schmaljohn, Connie S.

    2013-01-01

    Hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) are diseases caused by hantavirus infections and are characterized by vascular leakage due to alterations of the endothelial barrier. Hantavirus-infected endothelial cells (EC) display no overt cytopathology; consequently, pathogenesis models have focused either on the influx of immune cells and release of cytokines or on increased degradation of the adherens junction protein, vascular endothelial (VE)-cadherin, due to hantavirus-mediated hypersensitization of EC to vascular endothelial growth factor (VEGF). To examine endothelial leakage in a relevant in vitro system, we co-cultured endothelial and vascular smooth muscle cells (vSMC) to generate capillary blood vessel-like structures. In contrast to results obtained in monolayers of cultured EC, we found that despite viral replication in both cell types as well as the presence of VEGF, infected in vitro vessels neither lost integrity nor displayed evidence of VE-cadherin degradation. Here, we present evidence for a novel mechanism of hantavirus-induced vascular leakage involving activation of the plasma kallikrein-kinin system (KKS). We show that incubation of factor XII (FXII), prekallikrein (PK), and high molecular weight kininogen (HK) plasma proteins with hantavirus-infected EC results in increased cleavage of HK, higher enzymatic activities of FXIIa/kallikrein (KAL) and increased liberation of bradykinin (BK). Measuring cell permeability in real-time using electric cell-substrate impedance sensing (ECIS), we identified dramatic increases in endothelial cell permeability after KKS activation and liberation of BK. Furthermore, the alterations in permeability could be prevented using inhibitors that directly block BK binding, the activity of FXIIa, or the activity of KAL. Lastly, FXII binding and autoactivation is increased on the surface of hantavirus-infected EC. These data are the first to demonstrate KKS activation during

  18. An angiotensin-(1–7) peptidase in the kidney cortex, proximal tubules, and human HK-2 epithelial cells that is distinct from insulin-degrading enzyme

    PubMed Central

    Wilson, Bryan A.; Cruz-Diaz, Nildris; Marshall, Allyson C.; Pirro, Nancy T.; Su, Yixin; Gwathmey, TanYa M.; Rose, James C.

    2015-01-01

    Angiotensin 1–7 [ANG-(1–7)] is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic, and pro-oxidant effects of ANG II. We previously identified an peptidase that preferentially metabolized ANG-(1–7) to ANG-(1–4) in the brain medulla and cerebrospinal fluid (CSF) of sheep (Marshall AC, Pirro NT, Rose JC, Diz DI, Chappell MC. J Neurochem 130: 313–323, 2014); thus the present study established the expression of the peptidase in the kidney. Utilizing a sensitive HPLC-based approach, we demonstrate a peptidase activity that hydrolyzed ANG-(1–7) to ANG-(1–4) in the sheep cortex, isolated tubules, and human HK-2 renal epithelial cells. The peptidase was markedly sensitive to the metallopeptidase inhibitor JMV-390; human HK-2 cells expressed subnanomolar sensitivity (IC50 = 0.5 nM) and the highest specific activity (123 ± 5 fmol·min−1·mg−1) compared with the tubules (96 ± 12 fmol·min−1·mg−1) and cortex (107 ± 9 fmol·min−1·mg−1). The peptidase was purified 41-fold from HK-2 cells; the activity was sensitive to JMV-390, the chelator o-phenanthroline, and the mercury-containing compound p-chloromercuribenzoic acid (PCMB), but not to selective inhibitors against neprilysin, neurolysin and thimet oligopeptidase. Both ANG-(1–7) and its endogenous analog [Ala1]-ANG-(1–7) (alamandine) were preferentially hydrolyzed by the peptidase compared with ANG II, [Asp1]-ANG II, ANG I, and ANG-(1–12). Although the ANG-(1–7) peptidase and insulin-degrading enzyme (IDE) share similar inhibitor characteristics of a metallothiolendopeptidase, we demonstrate marked differences in substrate specificity, which suggest these peptidases are distinct. We conclude that an ANG-(1–7) peptidase is expressed within the renal proximal tubule and may play a potential role in the renal renin-angiotensin system to regulate ANG-(1–7) tone. PMID:25568136

  19. The purification and characterisation of novel dipeptidyl peptidase IV-like activity from bovine serum.

    PubMed

    Buckley, Seamus J; Collins, Patrick J; O'Connor, Brendan F

    2004-07-01

    The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S-300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158kDa while size exclusion chromatography generated a native molecular mass of 328kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and isoelectric focusing (IEF) revealed the enzyme's isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by bestatin. Substrate specificity studies proved that the enzyme is capable of sequential cleavage of bovine beta-Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a K(M) of 38.4 microM, while Lys-Pro-MCA was hydrolysed with a K(M) of 103 microM. The DPIV-like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a K(i) of 1.4 x 10(-4) M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7 x 10(-7) and 7.5 x 10(-7) M, respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation.

  20. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains.

    PubMed

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J; Steen, Andrew D

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N -terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases.

  1. Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains

    PubMed Central

    Mullen, Lauren; Boerrigter, Kim; Ferriero, Nicholas; Rosalsky, Jeff; Barrett, Abigail van Buren; Murray, Patrick J.; Steen, Andrew D.

    2018-01-01

    Proteins constitute a particularly bioavailable subset of organic carbon and nitrogen in aquatic environments but must be hydrolyzed by extracellular enzymes prior to being metabolized by microorganisms. Activities of extracellular peptidases (protein-degrading enzymes) have frequently been assayed in freshwater systems, but such studies have been limited to substrates for a single enzyme [leucyl aminopeptidase (Leu-AP)] out of more than 300 biochemically recognized peptidases. Here, we report kinetic measurements of extracellular hydrolysis of five substrates in 28 freshwater bodies in the Delaware Water Gap National Recreation Area in the Pocono Mountains (PA, United States) and near Knoxville (TN, United States), between 2013 and 2016. The assays putatively test for four aminopeptidases (arginyl aminopeptidase, glyclyl aminopeptidase, Leu-AP, and pyroglutamyl aminopeptidase), which cleave N-terminal amino acids from proteins, and trypsin, an endopeptidase, which cleaves proteins mid-chain. Aminopeptidase and the trypsin-like activity were observed in all water bodies, indicating that a diverse set of peptidases is typical in freshwater. However, ratios of peptidase activities were variable among sites: aminopeptidases dominated at some sites and trypsin-like activity at others. At a given site, the ratios remained fairly consistent over time, indicating that they are driven by ecological factors. Studies in which only Leu-AP activity is measured may underestimate the total peptidolytic capacity of an environment, due to the variable contribution of endopeptidases. PMID:29559961

  2. Substrate specificity of mitochondrial intermediate peptidase analysed by a support-bound peptide library

    PubMed Central

    Marcondes, M.F.M.; Alves, F.M.; Assis, D.M.; Hirata, I.Y.; Juliano, L.; Oliveira, V.; Juliano, M.A.

    2015-01-01

    The substrate specificity of recombinant human mitochondrial intermediate peptidase (hMIP) using a synthetic support-bound FRET peptide library is presented. The collected fluorescent beads, which contained the hydrolysed peptides generated by hMIP, were sequenced by Edman degradation. The results showed that this peptidase presents a remarkable preference for polar uncharged residues at P1 and P1′ substrate positions: Ser = Gln > Thr at P1 and Ser > Thr at P1′. Non-polar residues were frequent at the substrate P3, P2, P2′ and P3′ positions. Analysis of the predicted MIP processing sites in imported mitochondrial matrix proteins shows these cleavages indeed occur between polar uncharged residues. Previous analysis of these processing sites indicated the importance of positions far from the MIP cleavage site, namely the presence of a hydrophobic residue (Phe or Leu) at P8 and a polar uncharged residue (Ser or Thr) at P5. To evaluate this, additional kinetic analyses were carried out, using fluorogenic substrates synthesized based on the processing sites attributed to MIP. The results described here underscore the importance of the P1 and P1′ substrate positions for the hydrolytic activity of hMIP. The information presented in this work will help in the design of new substrate-based inhibitors for this peptidase. PMID:26082885

  3. Peptidase inhibitors potentiate the effects of neurotensin and neuromedin N on self-stimulation of the medial prefrontal cortex.

    PubMed

    Fernández, R; Alba, F; Ferrer, J M

    1996-02-29

    The purpose of this study was to examine the possible role of endogenous peptidases in the inhibition of intracranial self-stimulation (ICSS) produced by injections of neurotensin (NT) and neuromedin N (NN) into the medial prefrontal cortex (MPC) of the rat. We studied the effects on ICSS of the MPC of the administration of thiorphan and bestatin, two specific inhibitors of the peptidases that inactivate NT and NN respectively. Microinjections into MPC of thiorphan (10 micrograms) and bestatin (25 micrograms) potentiated in inhibition of ICSS produced by the intracortical administration of NT (10 nmol) and NN (20 nmol) respectively. This potentiation affected both the amplitude and the duration of the inhibition of ICSS produced by the neuropeptides. Our data indicate that endogenous peptidases are involved in the inactivation of NT and NN in the prefrontal cortex.

  4. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; Longenecker, Kenton; von Geldern, Thomas W; Wiedeman, Paul E; Lubben, Thomas H; Zinker, Bradley A; Stewart, Kent; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Long, Michelle; Wells, Heidi; Kempf-Grote, Anita J; Madar, David J; McDermott, Todd S; Bhagavatula, Lakshmi; Fickes, Michael G; Pireh, Daisy; Solomon, Larry R; Lake, Marc R; Edalji, Rohinton; Fry, Elizabeth H; Sham, Hing L; Trevillyan, James M

    2006-06-15

    A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.

  5. Structural Basis for Specificity of Propeptide-Enzyme Interaction in Barley C1A Cysteine Peptidases

    PubMed Central

    Cambra, Inés; Hernández, David; Diaz, Isabel; Martinez, Manuel

    2012-01-01

    C1A cysteine peptidases are synthesized as inactive proenzymes. Activation takes place by proteolysis cleaving off the inhibitory propeptide. The inhibitory capacity of propeptides from barley cathepsin L and B-like peptidases towards commercial and barley cathepsins has been characterized. Differences in selectivity have been found for propeptides from L-cathepsins against their cognate and non cognate enzymes. Besides, the propeptide from barley cathepsin B was not able to inhibit bovine cathepsin B. Modelling of their three-dimensional structures suggests that most propeptide inhibitory properties can be explained from the interaction between the propeptide and the mature cathepsin structures. Their potential use as biotechnological tools is discussed. PMID:22615948

  6. Alpha Alumina Nanoparticle Conjugation to Cysteine Peptidase A and B: An Efficient Method for Autophagy Induction

    PubMed Central

    Beyzay, Fatemeh; Zavaran Hosseini, Ahmad; Soudi, Sara

    2017-01-01

    Background: Autophagy as a cellular pathway facilitates several immune responses against infection. It also eliminates invading pathogens through transferring content between the cytosol and the lysosomal vesicles and contributes to the cross-presentation of exogenous antigens to T lymphocytes via MHC class I pathway. Autophagy induction is one of the main targets for new drugs and future vaccine formulations. Nanoparticles are one of the candidates for autophagy induction. Cysteine Peptidase A (CPA) and Cysteine Peptidase B (CPB) are two members of papain family (Clan CA, family C1) enzyme that have been considered as a virulence factor of Leishmania (L.) major, making them suitable vaccine candidates. In this research, Leishmania major cysteine peptidase A and B (CPA and CPB) conjugation to alpha alumina nanoparticle was the main focus and their entrance efficacy to macrophages was assessed. Methods: For this purpose, CPA and CPB genes were cloned in expression vectors. Related proteins were extracted from transformed Escherichia coli (E. coli) and purified using Ni affinity column. Alpha alumina nanoparticles were conjugated to CPA/CPB proteins using Aldehyde/Hydrazine Reaction. Autophagy induction in macrophages was assessed using acridine orange staining. Results: CPA/CPB protein loading to nanoparticles was confirmed by Fourier Transform Infrared Spectroscopy. α-alumina conjugated CPA/CPB antigen uptake by macrophages at different concentrations was confirmed using fluorescence microscope and flowcytometry. Highly efficient CPA/CPB protein loading to α-alumina nanoparticles and rapid internalization to macrophages introduced these nanocarriers as a delivery tool. Acridine orange staining demonstrated higher autophagy induction in CPA/CPB protein conjugated with α-alumina nanoparticles. Conclusion: α-alumina nanoparticles may be a promising adjuvant in the development of therapeutic leishmania vaccines through antigen delivery to intracellular compartments

  7. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis.

    PubMed

    Zhu, Jie; Wang, Hui; Chen, Jingyu; Wei, Wei

    2018-04-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.

  8. The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH.

    PubMed

    Lin, L; Sohar, I; Lackland, H; Lobel, P

    2001-01-19

    The CLN2 gene mutated in the fatal hereditary neurodegenerative disease late infantile neuronal ceroid lipofuscinosis encodes a lysosomal protease with tripeptidyl-peptidase I activity. To understand the enzymological properties of the protein, we purified and characterized C-terminal hexahistidine-tagged human CLN2p/tripeptidyl-peptidase I produced from insect cells transfected with a baculovirus vector. The N terminus of the secreted 66-kDa protein corresponds to residue 20 of the primary CLN2 gene translation product, indicating removal of a 19-residue signal peptide. The purified protein is enzymatically inactive; however, upon acidification, it is proteolytically processed and concomitantly acquires enzymatic activity. The N terminus of the final 46-kDa processed form (Leu196) corresponds to that of mature CLN2p/tripeptidyl-peptidase I purified from human brain. The activity of the mature enzyme is irreversibly inhibited by the serine esterase inhibitor diisopropyl fluorophosphate, which specifically and stoichiometrically reacts with CLN2p/tripeptidyl-peptidase I at Ser475, demonstrating that this residue represents the active site nucleophile. Expression of wild type and mutant proteins in CHO cells indicate that Ser475, Asp360, Asp517, but not His236 are essential for activity. These data indicate that the CLN2 gene product is synthesized as an inactive proenzyme that is autocatalytically converted to an active serine protease.

  9. Crystal Structure of a Bacterial Signal Peptide Peptidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim,A.; Oliver, D.; Paetzel, M.

    2008-01-01

    Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppAEC). SppAEC forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well asmore » characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.« less

  10. High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase.

    PubMed

    Cai, D; Wei, X; Qiu, Y; Chen, Y; Chen, J; Wen, Z; Chen, S

    2016-09-01

    Nattokinase is an enzyme produced by Bacillus licheniformis and has potential to be used as a drug for treating cardiovascular disease due to its beneficial effects of preventing fibrin clots etc. However, the low activity and titre of this protein produced by B. licheniformis often hinders its application of commercial production. The aim of this work is to improve the nattokinase production by manipulating signal peptides and signal peptidases in B. licheniformis. The P43 promoter, amyL terminator and AprN target gene were used to form the nattokinase expression vector, pHY-SP-NK, which was transformed into B. licheniformis and nattokinase was expressed successfully. A library containing 81 predicted signal peptides was constructed for nattokinase expression in B. licheniformis, with the maximum activity being obtained under the signal peptide of AprE. Among four type I signal peptidases genes (sipS, sipT, sipV, sipW) in B. licheniformis, the deletion of sipV resulted in a highest decrease in nattokinase activity. Overexpression of sipV in B. licheniformis led to a nattokinase activity of 35·60 FU ml(-1) , a 4·68-fold improvement over activity produced by the initial strain. This work demonstrates the potential of B. licheniformis for industrial production of nattokinase through manipulation of signal peptides and signal peptidases expression. This study has screened the signal peptides of extracellular proteins of B. licheniformis for nattokinase production. Four kinds of Type I signal peptidases genes have been detected respectively in B. licheniformis to identify which one played the vital role for nattokinase production. This study provided a promising strain for industry production of nattokinase. © 2016 The Society for Applied Microbiology.

  11. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study

    PubMed Central

    Abrahami, Devin; Douros, Antonios; Yin, Hui; Yu, Oriana Hoi Yun; Renoux, Christel; Bitton, Alain

    2018-01-01

    Abstract Objective To assess whether the use of dipeptidyl peptidase-4 inhibitors is associated with the incidence of inflammatory bowel disease in patients with type 2 diabetes. Design Population based cohort study. Setting More than 700 general practices contributing data to the United Kingdom Clinical Practice Research Datalink. Participants A cohort of 141 170 patients, at least 18 years of age, starting antidiabetic drugs between 1 January 2007 and 31 December 2016, with follow-up until 30 June 2017. Main outcome measures Adjusted hazard ratios for incident inflammatory bowel disease associated with use of dipeptidyl peptidase-4 inhibitors overall, by cumulative duration of use, and by time since initiation, estimated using time dependent Cox proportional hazards models. Use of dipeptidyl peptidase-4 inhibitors was modelled as a time varying variable and compared with use of other antidiabetic drugs, with exposures lagged by six months to account for latency and diagnostic delays. Results During 552 413 person years of follow-up, 208 incident inflammatory bowel disease events occurred (crude incidence rate of 37.7 (95% confidence interval 32.7 to 43.1) per 100 000 person years). Overall, use of dipeptidyl peptidase-4 inhibitors was associated with an increased risk of inflammatory bowel disease (53.4 v 34.5 per 100 000 person years; hazard ratio 1.75, 95% confidence interval 1.22 to 2.49). Hazard ratios gradually increased with longer durations of use, reaching a peak after three to four years of use (hazard ratio 2.90, 1.31 to 6.41) and decreasing after more than four years of use (1.45, 0.44 to 4.76). A similar pattern was observed with time since starting dipeptidyl peptidase-4 inhibitors. These findings remained consistent in several sensitivity analyses. Conclusions In this first population based study, the use of dipeptidyl peptidase-4 inhibitors was associated with an increased risk of inflammatory bowel disease. Although these findings need to

  12. The catalytic mechanism of DD-peptidases: unexpected importance of tyrosine 280 in the transpeptidation reaction catalysed by the Streptomyces R61 DD-peptidase.

    PubMed

    Wilkin, J M; Lamotte-Brasseur, J; Frère, J M

    1998-07-01

    The study of the interactions between the Tyr280Phe mutant of the Streptomyces R61 DD-peptidase, various substrates and beta-lactam antibiotics shows that Tyr280 is involved not only in the formation of the acylenzyme with the peptide substrate and beta-lactam antibiotics, but also and specifically in the catalysis of the transpeptidation reaction. Surprisingly, this residue does not belong to the conserved structural and functional elements which characterise the penicillin-recognising enzymes.

  13. Expression, purification and characterisation of two variant cysteine peptidases from Trypanosoma congolense with active site substitutions.

    PubMed

    Pillay, Davita; Boulangé, Alain F; Coetzer, Theresa H T

    2010-12-01

    Congopain, the major cysteine peptidase of Trypanosoma congolense is an attractive candidate for an anti-disease vaccine and target for the design of specific inhibitors. A complicating factor for the inclusion of congopain in a vaccine is that multiple variants of congopain are present in the genome of the parasite. In order to determine whether the variant congopain-like genes code for peptidases with enzymatic activities different to those of congopain, two variants were cloned and expressed. Two truncated catalytic domain variants were recombinantly expressed in Pichia pastoris. The two expressed catalytic domain variants differed slightly from one another in substrate preferences and also from that of C2 (the recombinant truncated form of congopain). Surprisingly, a variant with the catalytic triad Ser(25), His(159) and Asn(175) was shown to be active against classical cysteine peptidase substrates and inhibited by E-64, a class-specific cysteine protease inhibitor. Both catalytic domain clones and C2 had pH optima of either 6.0 or 6.5 implying that these congopain-like proteases are likely to be expressed and active in the bloodstream of the host animal. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Effect of bauhinia bauhinioides kallikrein inhibitor on endothelial proliferation and intracellular calcium concentration.

    PubMed

    Bilgin, M; Burgazli, K M; Rafiq, A; Mericliler, M; Neuhof, C; Oliva, M L; Parahuleva, M; Soydan, N; Doerr, O; Abdallah, Y; Erdogan, A

    2014-01-01

    Proteinase inhibitors act as a defensive system against predators e.g. insects, in plants. Bauhinia bauhinioides kallikrein inhibitor (BbKI) is a serine proteinase inhibitor, isolated from seeds of Bauhinia bauhinioides and is structurally similar to plant Kunitz-type inhibitors but lacks disulfide bridges. In this study we evaluated the antiproliferative effect of BbKI on endothelial cells and its impact on changes in membrane potential and intracellular calcium. HUVEC proliferation was significantly reduced by incubation with BbKI 50 and 100 µM 12% and 13%. Furthermore, BbKI (100 µM) exposure caused a significant increase in intracellular Ca2+ concentration by 35% as compared to untreated control. The intracellular rise in calcium was not affected by the absence of extracellular calcium. BBKI also caused a significant change in the cell membrane potential but the antiproliferative effect was independent of changes in membrane potential. BBKI has an antiproliferative effect on HUVEC, which is independent of the changes in membrane potential, and it causes an increase in intracellular Ca2+.

  15. Kinetics and stereochemistry of hydrolysis of an N-(phenylacetyl)-α-hydroxyglycine ester catalyzed by serine β-lactamases and DD-peptidases.

    PubMed

    Pelto, Ryan B; Pratt, R F

    2012-09-28

    The α-hydroxydepsipeptide 3-carboxyphenyl N-(phenylacetyl)-α-hydroxyglycinate (5) is a quite effective substrate of serine β-lactamases and low molecular mass DD-peptidases. The class C P99 and ampC β-lactamases catalyze the hydrolysis of both enantiomers of 5, although they show a strong preference for one of them. The class A TEM-2 and class D OXA-1 β-lactamases and the Streptomyces R61 and Actinomadura R39 DD-peptidases catalyze hydrolysis of only one enantiomer of at any significant rate. Experiments show that all of the above enzymes strongly prefer the same enantiomer, a surprising result since β-lactamases usually prefer L(S) enantiomers and DD-peptidases D(R). Product analysis, employing peptidylglycine α-amidating lyase, showed that the preferred enantiomer is D(R). Thus, it is the β-lactamases that have switched preference rather than the DD-peptidases. Molecular modeling of the P99 β-lactamase active site suggests that the α-hydroxyl 5 of may interact with conserved Asn and Lys residues. Both α-hydroxy and α-amido substituents on a glycine ester substrate can therefore enhance its productive interaction with the β-lactamase active site, although their effects are not additive; this may also be true for inhibitors.

  16. Inhibition of dipeptidyl-peptidase IV catalyzed peptide truncation by Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile).

    PubMed

    Brandt, Inger; Joossens, Jurgen; Chen, Xin; Maes, Marie-Berthe; Scharpé, Simon; De Meester, Ingrid; Lambeir, Anne-Marie

    2005-07-01

    Vildagliptin (NVP-LAF237/(2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl}-pyrrolidine-2-carbonitrile) was described as a potent, selective and orally bio-available dipeptidyl-peptidase IV (DPP IV, EC 3.4.14.5) inhibitor [Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, et al.1-[[(3-Hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J Med Chem 2003;46:2774-89]. Phase III clinical trials for the use of this compound in the treatment of Type 2 diabetes were started in the first quarter of 2004. In this paper, we report on (1) the kinetics of binding, (2) the type of inhibition, (3) the selectivity with respect to other peptidases, and (4) the inhibitory potency on the DPP IV catalyzed degradation of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and substance P. Vildagliptin behaved as a slow-binding DPP IV inhibitor with an association rate constant of 1.4x10(5)M(-1)s(-1) and a K(i) of 17nM. It is a micromolar inhibitor for dipeptidyl-peptidase 8 and does not significantly inhibit dipeptidyl-peptidase II (EC 3.4.11.2), prolyl oligopeptidase (EC 3.4.21.26), aminopeptidase P (EC 3.4.11.9) or aminopeptidase M (EC 3.4.11.2). There was no evidence for substrate specific inhibition of DPP IV by Vildagliptin or for important allosteric factors affecting the inhibition constant in presence of GIP and GLP-1.

  17. Isolation and purification of Bacillus thuringiensis var. israelensis IМV В-7465 peptidase with specificity toward elastin and collagen.

    PubMed

    Nidialkova, N A; Varbanets, L D; Chernyshenko, V O

    2016-01-01

    Peptidase of Bacillus thuringiensis var. israelensis IМV В-7465 was isolated from culture supernatant using consecutive fractionations by an ammonium sulphate (60% saturation), ion-exchange chromatography and gel-filtration on the TSK-gels Toyoperl HW-55 and DEAE 650(M). Specific elastase (442 U∙mg of protein-1) and collagenase (212.7 U∙mg of protein-1) activities of the purified enzyme preparation were 8.0- and 6.1-fold, respectively higher than ones of the culture supernatant. Peptidase yields were 33.5% for elastase activity and 30.1% for collagenase activity. It was established that the enzyme is serine metal-dependent alkaline peptidase with Mr about 37 kDa. Maximal hydrolysis of elastin and collagen occurs at the optimum pH 8.0 and t° – 40 and 50 °С, respectively. The purified preparation has high stability at pH in the range of 7.0 to 10.0 and 40-50 °С.

  18. Digestive peptidase evolution in holometabolous insects led to a divergent group of enzymes in Lepidoptera.

    PubMed

    Dias, Renata O; Via, Allegra; Brandão, Marcelo M; Tramontano, Anna; Silva-Filho, Marcio C

    2015-03-01

    Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic L-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Complementary Proteomic and Biochemical Analysis of Peptidases in Lobster Gastric Juice Uncovers the Functional Role of Individual Enzymes in Food Digestion.

    PubMed

    Bibo-Verdugo, Betsaida; O'Donoghue, Anthony J; Rojo-Arreola, Liliana; Craik, Charles S; García-Carreño, Fernando

    2016-04-01

    Crustaceans are a diverse group, distributed in widely variable environmental conditions for which they show an equally extensive range of biochemical adaptations. Some digestive enzymes have been studied by purification/characterization approaches. However, global analysis is crucial to understand how digestive enzymes interplay. Here, we present the first proteomic analysis of the digestive fluid from a crustacean (Homarus americanus) and identify glycosidases and peptidases as the most abundant classes of hydrolytic enzymes. The digestion pathway of complex carbohydrates was predicted by comparing the lobster enzymes to similar enzymes from other crustaceans. A novel and unbiased substrate profiling approach was used to uncover the global proteolytic specificity of gastric juice and determine the contribution of cysteine and aspartic acid peptidases. These enzymes were separated by gel electrophoresis and their individual substrate specificities uncovered from the resulting gel bands. This new technique is called zymoMSP. Each cysteine peptidase cleaves a set of unique peptide bonds and the S2 pocket determines their substrate specificity. Finally, affinity chromatography was used to enrich for a digestive cathepsin D1 to compare its substrate specificity and cold-adapted enzymatic properties to mammalian enzymes. We conclude that the H. americanus digestive peptidases may have useful therapeutic applications, due to their cold-adaptation properties and ability to hydrolyze collagen.

  20. Characterization of cDNA for human tripeptidyl peptidase II: The N-terminal part of the enzyme is similar to subtilisin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkinson, B.; Jonsson, A-K

    1991-01-01

    Tripeptidyl peptidase II is a high molecular weight serine exopeptidase, which has been purified from rat liver and human erythrocytes. Four clones, representing 4453 bp, or 90{percent} of the mRNA of the human enzyme, have been isolated from two different cDNA libraries. One clone, designated A2, was obtained after screening a human B-lymphocyte cDNA library with a degenerated oligonucleotide mixture. The B-lymphocyte cDNA library, obtained from human fibroblasts, were rescreened with a 147 bp fragment from the 5{prime} part of the A2 clone, whereby three different overlapping cDNA clones could be isolated. The deduced amino acid sequence, 1196 amino acidmore » residues, corresponding to the longest open rading frame of the assembled nucleotide sequence, was compared to sequences of current databases. This revealed a 56{percent} similarity between the bacterial enzyme subtilisin and the N-terminal part of tripeptidyl peptidase II. The enzyme was found to be represented by two different mRNAs of 4.2 and 5.0 kilobases, respectively, which probably result from the utilziation of two different polyadenylation sites. Futhermore, cDNA corresponding to both the N-terminal and C-terminal part of tripeptidyl peptidase II hybridized with genomic DNA from mouse, horse, calf, and hen, even under fairly high stringency conditions, indicating that tripeptidyl peptidase II is highly conserved.« less

  1. Evaluation of avoralstat, an oral kallikrein inhibitor, in a Phase 3 hereditary angioedema prophylaxis trial: the OPUS-2 study.

    PubMed

    Riedl, Marc A; Aygören-Pürsün, Emel; Baker, James; Farkas, Henriette; Anderson, John; Bernstein, Jonathan A; Bouillet, Laurence; Busse, Paula; Manning, Michael; Magerl, Markus; Gompels, Mark; Huissoon, Aarnoud P; Longhurst, Hillary; Lumry, William; Ritchie, Bruce; Shapiro, Ralph; Soteres, Daniel; Banerji, Aleena; Cancian, Mauro; Johnston, Douglas T; Craig, Timothy J; Launay, David; Li, H Henry; Liebhaber, Myron; Nickel, Timothy; Offenberger, Jacob; Rae, William; Schrijvers, Rik; Triggiani, Massimo; Wedner, H James; Dobo, Sylvia; Cornpropst, Melanie; Clemons, Desiree; Fang, Lei; Collis, Phil; Sheridan, William P; Maurer, Marcus

    2018-04-24

    Effective inhibition of plasma kallikrein may have significant benefits for patients with hereditary angioedema due to deficiency of C1 inhibitor (C1-INH-HAE) by reducing the frequency of angioedema attacks. Avoralstat is a small molecule inhibitor of plasma kallikrein. This study (OPuS-2) evaluated the efficacy and safety of prophylactic avoralstat 300 or 500 mg compared with placebo. OPuS-2 was a Phase 3, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Subjects were administered avoralstat 300 mg, avoralstat 500 mg, or placebo orally 3 times per day for 12 weeks. The primary efficacy endpoint was the angioedema attack rate based on adjudicator-confirmed attacks. A total of 110 subjects were randomized and dosed. The least squares (LS) mean attack rates per week were 0.589, 0.675, and 0.593 for subjects receiving avoralstat 500 mg, avoralstat 300 mg, and placebo, respectively. Overall, 1 subject in each of the avoralstat groups and no subjects in the placebo group were attack-free during the 84-day treatment period. The LS mean duration of all confirmed attacks was 25.4, 29.4 and 31.4 hours for the avoralstat 500 mg, avoralstat 300 mg and placebo groups respectively. Using the Angioedema Quality of Life Questionnaire (AE-QoL), improved QoL was observed for the avoralstat 500 mg group compared with placebo. Avoralstat was generally safe and well tolerated. Although this study did not demonstrate efficacy of avoralstat in preventing angioedema attacks in C1-INH-HAE, it provided evidence of shortened angioedema episodes and improved QoL in the avoralstat 500 mg treatment group compared with placebo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Structural and mutational analyses of dipeptidyl peptidase 11 from Porphyromonas gingivalis reveal the molecular basis for strict substrate specificity

    PubMed Central

    Sakamoto, Yasumitsu; Suzuki, Yoshiyuki; Iizuka, Ippei; Tateoka, Chika; Roppongi, Saori; Fujimoto, Mayu; Inaka, Koji; Tanaka, Hiroaki; Yamada, Mitsugu; Ohta, Kazunori; Gouda, Hiroaki; Nonaka, Takamasa; Ogasawara, Wataru; Tanaka, Nobutada

    2015-01-01

    The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to the S46 family of serine peptidases and preferentially cleaves substrates with Asp/Glu at the P1 position. The molecular mechanism underlying the substrate specificity of PgDPP11, however, is unknown. Here, we report the crystal structure of PgDPP11. The enzyme contains a catalytic domain with a typical double β-barrel fold and a recently identified regulatory α-helical domain. Crystal structure analyses, docking studies, and biochemical studies revealed that the side chain of Arg673 in the S1 subsite is essential for recognition of the Asp/Glu side chain at the P1 position of the bound substrate. Because S46 peptidases are not found in mammals and the Arg673 is conserved among DPP11s, we anticipate that DPP11s could be utilised as targets for antibiotics. In addition, the present structure analyses could be useful templates for the design of specific inhibitors of DPP11s from pathogenic organisms. PMID:26057589

  3. Diabetes and cardiovascular risk: are dipeptidyl peptidase-4 inhibitors beneficial?

    PubMed

    Howard, Patricia A

    2014-09-01

    Cardiovascular (CV) disease is a major cause of morbidity and mortality in patients with diabetes. Whereas the link between glycemic control and reducing microvascular disease is firmly established, the evidence for macrovascular risk reduction remains unclear. Despite a host of available drugs for lowering serum glucose, none to date have been shown to substantially reduce CV risk and some have been associated with adverse effects. Recent trials have examined the CV effects of the dipeptidyl peptidase 4 (DPP-4) inhibitors or "gliptins."

  4. A Target-Based Whole Cell Screen Approach To Identify Potential Inhibitors of Mycobacterium tuberculosis Signal Peptidase

    PubMed Central

    2016-01-01

    The general secretion (Sec) pathway is a conserved essential pathway in bacteria and is the primary route of protein export across the cytoplasmic membrane. During protein export, the signal peptidase LepB catalyzes the cleavage of the signal peptide and subsequent release of mature proteins into the extracellular space. We developed a target-based whole cell assay to screen for potential inhibitors of LepB, the sole signal peptidase in Mycobacterium tuberculosis, using a strain engineered to underexpress LepB (LepB-UE). We screened 72,000 compounds against both the Lep-UE and wild-type (wt) strains. We identified the phenylhydrazone (PHY) series as having higher activity against the LepB-UE strain. We conducted a limited structure–activity relationship determination around a representative PHY compound with differential activity (MICs of 3.0 μM against the LepB-UE strain and 18 μM against the wt); several analogues were less potent against the LepB overexpressing strain. A number of chemical modifications around the hydrazone moiety resulted in improved potency. Inhibition of LepB activity was observed for a number of compounds in a biochemical assay using cell membrane fraction derived from M. tuberculosis. Compounds did not increase cell permeability, dissipate membrane potential, or inhibit an unrelated mycobacterial enzyme, suggesting a specific mode of action related to the LepB secretory mechanism. PMID:27642770

  5. Cysteine digestive peptidases function as post-glutamine cleaving enzymes in tenebrionid stored product pests

    USDA-ARS?s Scientific Manuscript database

    Cereals have storage proteins with high amounts of the amino acids glutamine and proline. Therefore, storage pests need to have digestive enzymes that are efficient in hydrolyzing these types of proteins. Post-glutamine cleaving peptidases (PGP) were isolated from the midgut of the stored product pe...

  6. Peptidase inhibitors reduce opiate narcotic withdrawal signs, including seizure activity, in the rat.

    PubMed

    Pinsky, C; Dua, A K; LaBella, F S

    1982-07-15

    Narcotic withdrawal was precipitated by administration of naloxone in a low dose at 2 h after the final dose of morphine in a 9-day dependency-inducing schedule. Withdrawal was characterized by leaps, increased nocifensor activity and by cerebral cortical epileptiform activity, the latter not generally reported to be prominent in narcotic withdrawal. Single large doses of morphine did not provoke epileptiform activity at 2 h postinjection but did induce an acute opioid dependency wherein a moderately high dose of naloxone, ineffective in non-dependent rats, provoked upward leaping and electrocortical epileptiform activity. Pretreatment of the 9-day dependent rats with peptidase inhibitors, administered intracerebroventricularly, significantly reduced withdrawal severity including the epileptiform activity. We propose that peptidase inhibitors protect certain species of endogenous opioids and/or other neuropeptides that tend to suppress expression of the narcotic withdrawal syndrome. Furthermore, our findings suggest that epileptiform activity is a nascent form of cerebral activity hitherto largely unnoticed in narcotic withdrawal and that neuropeptides may be involved in certain epileptic states.

  7. Dipeptidyl peptidase (DP) 6 and DP10: novel brain proteins implicated in human health and disease.

    PubMed

    McNicholas, Kym; Chen, Tong; Abbott, Catherine A

    2009-01-01

    Dipeptidyl peptidase (DP) 6 and DP10 are non-enzyme members of the dipeptidyl peptidase IV family, which includes fibroblast activation protein, DP8, and DP9. DP6 and DP10 proteins have been shown to be critical components of voltage-gated potassium (Kv) channels important in determining cellular excitability. The aim of this paper was to review the research to date on DP6 and DP10 structure, expression, and functions. To date, the protein region responsible for modulating Kv4 channels has not been conclusively identified and the significance of the splice variants has not been resolved. Resolution of these issues will improve our overall knowledge of DP6 and DP10 and lead to a better understanding of their role in diseases, such as asthma and Alzheimer's disease.

  8. Chymotrypsin-like peptidases from Tribolium castaneum: A role in molting revealed by RNA interference

    USDA-ARS?s Scientific Manuscript database

    Chymotrypsin-like peptidases (CTLPs) of insects are primarily secreted into the gut lumen where they act as digestive enzymes. We studied the gene family encoding CTLPs in the genome of the red flour beetle, Tribolium castaneum. Using an extended search pattern, we identified 14 TcCTLP genes that e...

  9. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo.

    PubMed

    Törmä, Hans; Lindberg, Magnus; Berne, Berit

    2008-05-01

    Detergents are skin irritants affecting keratinocytes. In this study, healthy volunteers were exposed to water (vehicle) and 1% sodium lauryl sulfate (SLS) under occlusive patch tests for 24 hours. The messenger RNA (mRNA) expression of keratinocyte differentiation markers and of enzymes involved in corneodesmosome degradation was examined in skin biopsies (n=8) during the repair phase (6 hours to 7 days postexposure) using real-time reverse-transcription PCR. It was found that the expression of involucrin was increased at 6 hours, but then rapidly normalized. The expression of transglutaminase 1 exhibited a twofold increase after 24 hours in the SLS-exposed skin. Profilaggrin was decreased after 6 hours. Later (4-7 days), the expression in SLS-exposed areas was >50% above than in control areas. An increased and altered immunofluorescence pattern of involucrin, transglutaminase 1, and filaggrin was also found (n=4). At 6 hours post-SLS exposure, the mRNA expression of kallikrein-7 (KLK-7) and kallikrein-5 (KLK-5) was decreased by 50 and 75%, respectively, as compared with control and water-exposed areas. Thereafter, the expression pattern of KLK-7 and KLK-5 was normalized. Changes in protein expression of KLK-5 were also found. In conclusion, SLS-induced skin barrier defects induce altered mRNA expression of keratinocyte differentiation markers and enzymes degrading corneodesmosomes.

  10. Perfluorohexadecanoic acid increases paracellular permeability in endothelial cells through the activation of plasma kallikrein-kinin system.

    PubMed

    Liu, Qian S; Hao, Fang; Sun, Zhendong; Long, Yanmin; Zhou, Qunfang; Jiang, Guibin

    2018-01-01

    Per- and polyfluoroalkyl substances (PFASs) are ubiquitous and high persistent in human blood, thus potentially inducing a myriad of deleterious consequences. Plasma kallikrein-kinin system (KKS), which physiologically regulates vascular permeability, is vulnerable to exogenous stimulators, like PFASs with long-chain alkyl backbone substituted by electronegative fluorine. The study on the interactions of PFASs with the KKS and the subsequent effects on vascular permeability would be helpful to illustrate how the chemicals penetrate the biological vascular barriers to reach different tissues. In present study, three representative PFASs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexadecanoic acid (PFHxDA), were investigated for their effects on the activation of the KKS, paracellular permeability in human retina endothelial cells (HRECs) and integrity of the adherens junctions. In contrast to either PFOS or PFOA, PFHxDA efficiently triggered KKS activation in a concentration-dependent manner based on protease activity assays. The plasma activated by PFHxDA significantly increased paracellular permeability of HRECs through the degradation of adherens junctions. As evidenced by the antagonistic effect of aprotinin, PFHxDA-involved effects on vascular permeability were mediated by KKS activation. The results herein firstly revealed the mechanistic pathway for PFHxDA induced effects on vascular endothelial cells. Regarding the possible structure-related activities of the chemicals, this finding would be of great help in the risk assessment of PFASs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Puromycin-sensitive aminopeptidase is the major peptidase responsible for digesting polyglutamine sequences released by proteasomes during protein degradation

    PubMed Central

    Bhutani, N; Venkatraman, P; Goldberg, A L

    2007-01-01

    Long stretches of glutamine (Q) residues are found in many cellular proteins. Expansion of these polyglutamine (polyQ) sequences is the underlying cause of several neurodegenerative diseases (e.g. Huntington's disease). Eukaryotic proteasomes have been found to digest polyQ sequences in proteins very slowly, or not at all, and to release such potentially toxic sequences for degradation by other peptidases. To identify these key peptidases, we investigated the degradation in cell extracts of model Q-rich fluorescent substrates and peptides containing 10–30 Q's. Their degradation at neutral pH was due to a single aminopeptidase, the puromycin-sensitive aminopeptidase (PSA, cytosol alanyl aminopeptidase). No other known cytosolic aminopeptidase or endopeptidase was found to digest these polyQ peptides. Although tripeptidyl peptidase II (TPPII) exhibited limited activity, studies with specific inhibitors, pure enzymes and extracts of cells treated with siRNA for TPPII or PSA showed PSA to be the rate-limiting activity against polyQ peptides up to 30 residues long. (PSA digests such Q sequences, shorter ones and typical (non-repeating) peptides at similar rates.) Thus, PSA, which is induced in neurons expressing mutant huntingtin, appears critical in preventing the accumulation of polyQ peptides in normal cells, and its activity may influence susceptibility to polyQ diseases. PMID:17318184

  12. Mechanism of Peptide Binding and Cleavage by the Human Mitochondrial Peptidase Neurolysin.

    PubMed

    Teixeira, Pedro F; Masuyer, Geoffrey; Pinho, Catarina M; Branca, Rui M M; Kmiec, Beata; Wallin, Cecilia; Wärmländer, Sebastian K T S; Berntsson, Ronnie P-A; Ankarcrona, Maria; Gräslund, Astrid; Lehtiö, Janne; Stenmark, Pål; Glaser, Elzbieta

    2018-02-02

    Proteolysis plays an important role in mitochondrial biogenesis, from the processing of newly imported precursor proteins to the degradation of mitochondrial targeting peptides. Disruption of peptide degradation activity in yeast, plant and mammalian mitochondria is known to have deleterious consequences for organism physiology, highlighting the important role of mitochondrial peptidases. In the present work, we show that the human mitochondrial peptidase neurolysin (hNLN) can degrade mitochondrial presequence peptides as well as other fragments up to 19 amino acids long. The crystal structure of hNLN E475Q in complex with the products of neurotensin cleavage at 2.7Å revealed a closed conformation with an internal cavity that restricts substrate length and highlighted the mechanism of enzyme opening/closing that is necessary for substrate binding and catalytic activity. Analysis of peptide degradation in vitro showed that hNLN cooperates with presequence protease (PreP or PITRM1) in the degradation of long targeting peptides and amyloid-β peptide, Aβ1-40, associated with Alzheimer disease, particularly cleaving the hydrophobic fragment Aβ35-40. These findings suggest that a network of proteases may be required for complete degradation of peptides localized in mitochondria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability.

    PubMed

    Ketnawa, Sunantha; Benjakul, Soottawat; Martínez-Alvarez, Oscar; Rawdkuen, Saroat

    2017-01-15

    The peptidase from the viscera of farmed giant catfish was used for producing gelatin hydrolysates (HG) and compared with those produced from commercial bovine trypsin (HB). The degree of hydrolysis (DH) observed suggests that proteolytic cleavage rapidly occurred within the first 120min of incubation, and there was higher DH in HG than in HB. HG demonstrated the highest ACE-inhibitory activity, DPPH, ABTS radical scavenging activity, and FRAP. HB showed the highest FRAP activity. The DPPH radical scavenging activity of HG was quite stable over the pH range of 1-11, but it increased slightly when the heating duration time reached 240min at 100°C. The ACE-inhibitory activity of HG showed the highest stability at a pH of 7, and it remained very stable at 100°C for over 15-240min. The visceral peptidase from farmed giant catfish could be an alternative protease for generating protein hydrolysates with desirable bioactivities. The resulting hydrolysates showed good stability, making them potential functional ingredients for food formulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Characterization and cloning of tripeptidyl peptidase II from the fruit fly, Drosophila melanogaster.

    PubMed

    Renn, S C; Tomkinson, B; Taghert, P H

    1998-07-24

    We describe the characterization, cloning, and genetic analysis of tripeptidyl peptidase II (TPP II) from Drosophila melanogaster. Mammalian TPP II removes N-terminal tripeptides, has wide distribution, and has been identified as the cholecystokinin-degrading peptidase in rat brain. Size exclusion and ion exchange chromatography produced a 70-fold purification of dTPP II activity from Drosophila tissue extracts. The substrate specificity and the inhibitor sensitivity of dTPP II is comparable to that of the human enzyme. In particular, dTPP II is sensitive to butabindide, a specific inhibitor of the rat cholecystokinin-inactivating activity. We isolated a 4309-base pair dTPP II cDNA which predicts a 1354-amino acid protein. The deduced human and Drosophila TPP II proteins display 38% overall identity. The catalytic triad, its spacing, and the sequences that surround it are highly conserved; the C-terminal end of dTPP II contains a 100-amino acid insert not found in the mammalian proteins. Recombinant dTPP II displays the predicted activity following expression in HEK cells. TPP II maps to cytological position 49F4-7; animals deficient for this interval show reduced TPP II activity.

  15. Biased expression, under the control of single promoter, of human interferon α-2b and Escherichia coli methionine amino peptidase genes in E. coli, irrespective of their distance from the promoter.

    PubMed

    Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad

    2016-03-01

    Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them.

  16. Beneficial Effects of HIV Peptidase Inhibitors on Fonsecaea pedrosoi: Promising Compounds to Arrest Key Fungal Biological Processes and Virulence

    PubMed Central

    Palmeira, Vanila F.; Kneipp, Lucimar F.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.

    2008-01-01

    Background Fonsecaea pedrosoi is the principal etiologic agent of chromoblastomycosis, a fungal disease whose pathogenic events are poorly understood. Current therapy for chromoblastomycosis is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the fact that endemic countries and regions are economically poor. Purpose and Principal Findings In the present work, we have investigated the effect of human immunodeficiency virus (HIV) peptidase inhibitors (PIs) on the F. pedrosoi conidial secreted peptidase, growth, ultrastructure and interaction with different mammalian cells. All the PIs impaired the acidic conidial-derived peptidase activity in a dose-dependent fashion, in which nelfinavir produced the best inhibitory effect. F. pedrosoi growth was also significantly reduced upon exposure to PIs, especially nelfinavir and saquinavir. PIs treatment caused profound changes in the conidial ultrastructure as shown by transmission electron microscopy, including invaginations in the cytoplasmic membrane, disorder and detachment of the cell wall, enlargement of fungi cytoplasmic vacuoles, and abnormal cell division. The synergistic action on growth ability between nelfinavir and amphotericin B, when both were used at sub-inhibitory concentrations, was also observed. PIs reduced the adhesion and endocytic indexes during the interaction between conidia and epithelial cells (CHO), fibroblasts or macrophages, in a cell type-dependent manner. Moreover, PIs interfered with the conidia into mycelia transformation when in contact with CHO and with the susceptibility killing by macrophage cells. Conclusions/Significance Overall, by providing the first evidence that HIV PIs directly affects F. pedrosoi development and virulence, these data add new insights on the wide-spectrum efficacy of HIV PIs, further arguing for the potential chemotherapeutic targets for aspartyl-type peptidase produced by this human

  17. THE INHIBITION OF PLASMIN, PLASMA KALLIKREIN, PLASMA PERMEABILITY FACTOR, AND THE C'1r SUBCOMPONENT OF THE FIRST COMPONENT OF COMPLEMENT BY SERUM C'1 ESTERASE INHIBITOR

    PubMed Central

    Ratnoff, Oscar D.; Pensky, Jack; Ogston, Derek; Naff, George B.

    1969-01-01

    The fraction of human serum designated as C'1 esterase inhibitor is known to inhibit the action of C'1 esterase, a plasma kallikrein, and PF/Dil, an enzyme in plasma enhancing cutaneous vascular permeability. In the present study, C'1 esterase inhibitor has been found to block the actions of plasmin and the C'1r subcomponent of the first component of complement, and to retard the generation of PF/Dil. No inhibition of blood clotting or of the generation of plasmin was demonstrable. PMID:4178758

  18. PNT1 is a C11 cysteine peptidase essential for replication of the Trypanosome Kinetoplast

    DOE PAGES

    Grewal, Jaspreet S.; McLuskey, Karen; Das, Debanu; ...

    2016-03-03

    The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His 99 and Cys 136), and an Asp (Asp 134) in the potential S 1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, anmore » organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. Furthermore, these data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.« less

  19. S28 peptidases: lessons from a seemingly 'dysfunctional' family of two.

    PubMed

    Kozarich, John W

    2010-06-28

    A recent paper in BMC Structural Biology reports the crystal structure of human prolylcarboxypeptidase (PRCP), one of the two members of the S28 peptidase family. Comparison of the substrate-binding site of PRCP with that of its family partner, dipeptidyl dipeptidase 7 (DPP7), helps to explain the different enzymatic activities of these structurally similar proteins, and also reveals a novel apparent charge-relay system in PRCP involving the active-site catalytic histidine. See research article: http://www.biomedcentral.com/1472-6807/10/16/

  20. Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases.

    PubMed

    Hargis, Jacqueline C; Vankayala, Sai Lakshmana; White, Justin K; Woodcock, H Lee

    2014-02-11

    Bacterial resistance to standard (i.e., β-lactam-based) antibiotics has become a global pandemic. Simultaneously, research into the underlying causes of resistance has slowed substantially, although its importance is universally recognized. Key to unraveling critical details is characterization of the noncovalent interactions that govern binding and specificity (DD-peptidases, antibiotic targets, versus β-lactamases, the evolutionarily derived enzymes that play a major role in resistance) and ultimately resistance as a whole. Herein, we describe a detailed investigation that elicits new chemical insights into these underlying intermolecular interactions. Benzylpenicillin and a novel β-lactam peptidomimetic complexed to the Stremptomyces R61 peptidase are examined using an arsenal of computational techniques: MD simulations, QM/MM calculations, charge perturbation analysis, QM/MM orbital analysis, bioinformatics, flexible receptor/flexible ligand docking, and computational ADME predictions. Several key molecular level interactions are identified that not only shed light onto fundamental resistance mechanisms, but also offer explanations for observed specificity. Specifically, an extended π-π network is elucidated that suggests antibacterial resistance has evolved, in part, due to stabilizing aromatic interactions. Additionally, interactions between the protein and peptidomimetic substrate are identified and characterized. Of particular interest is a water-mediated salt bridge between Asp217 and the positively charged N-terminus of the peptidomimetic, revealing an interaction that may significantly contribute to β-lactam specificity. Finally, interaction information is used to suggest modifications to current β-lactam compounds that should both improve binding and specificity in DD-peptidases and their physiochemical properties.

  1. Adipose Dipeptidyl Peptidase-4 and Obesity

    PubMed Central

    Sell, Henrike; Blüher, Matthias; Klöting, Nora; Schlich, Raphaela; Willems, Miriam; Ruppe, Florian; Knoefel, Wolfram Trudo; Dietrich, Arne; Fielding, Barbara A.; Arner, Peter; Frayn, Keith N.; Eckel, Jürgen

    2013-01-01

    OBJECTIVE To study expression of the recently identified adipokine dipeptidyl peptidase-4 (DPP4) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) of patients with various BMIs and insulin sensitivities, as well as to assess circulating DPP4 in relation to obesity and insulin sensitivity. RESEARCH DESIGN AND METHODS DPP4 expression was measured in SAT and VAT from 196 subjects with a wide range of BMIs and insulin sensitivities. DPP4 release was measured ex vivo in paired biopsies from SAT and VAT as well as in vivo from SAT of lean and obese patients. Circulating DPP4 was measured in insulin-sensitive and insulin-resistant BMI-matched obese patients. RESULTS DPP4 expression was positively correlated with BMI in both SAT and VAT, with VAT consistently displaying higher expression than SAT. Ex vivo release of DPP4 from adipose tissue explants was higher in VAT than in SAT in both lean and obese patients, with obese patients displaying higher DPP4 release than lean controls. Net release of DPP4 from adipose tissue was also demonstrated in vivo with greater release in obese subjects than in lean subjects and in women than in men. Insulin-sensitive obese patients had significantly lower circulating DPP4 than did obesity-matched insulin-resistant patients. In this experiment, DPP4 positively correlated with the amount of VAT, adipocyte size, and adipose tissue inflammation. CONCLUSIONS DPP4, a novel adipokine, has a higher release from VAT that is particularly pronounced in obese and insulin-resistant patients. Our data suggest that DPP4 may be a marker for visceral obesity, insulin resistance, and the metabolic syndrome. PMID:24130353

  2. The use of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes & chronic kidney disease

    PubMed Central

    Bittle, Polly A.

    2017-01-01

    Abstract: There is a need for treatment options in patients with type 2 diabetes mellitus and kidney disease to achieve glucose targets without risk of hypoglycemia. This article describes management options for these patients using glucose-lowering therapies, in particular dipeptidyl peptidase-4 inhibitors. PMID:28225432

  3. [Purification and physicochemical properties of Bacillus thuringiensis IMB B-7324 peptidase with elastolytic and fibrinolytic activity].

    PubMed

    Matseliukh, O V; Nidialkova, N A; Varbanets', L D

    2012-01-01

    The scheme of isolation and purification of Bacillus thuringiensis IMV B-7324 peptidase has been developed. This scheme includes ammonium sulfate precipitation and chromatography on neutral and charged TSK-gels. It was found that the enzyme hydrolyzes elastin and fibrin. The molecular weight is 26 kDa. It was shown that the enzyme is an alkaline serine peptidase. The optimal pH of hydrolysis of elastin and fibrin were 9.0 and 10.0, respectively. The optimal temperature of elastin and fibrin hydrolysis are 40 and 50 degrees C, respectively. The high stability of the purified preparation in the studied range of pH and temperature was shown. The stabilizing effect of zinc at a concentration of 1 mM on the elastase activity, and the inhibitory effect of other divalent cations under study have been established. The investigated chloride and acetate anions reduced activity by 20%, while phosphate anions increased activity by 15-30%.

  4. Identification and characterization of a dipeptidyl peptidase IV inhibitor from aronia juice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozuka, Miyuki; Yamane, Takuya, E-mail: t-yamane@pharm.hokudai.ac.jp; Nakano, Yoshihisa

    Aronia berries have many potential effects on health, including an antioxidant effect, effect for antimutagenesis, hepatoprotection and cardioprotection, an antidiabetic effect and inhibition of cancer cell proliferation. Previous human studies have shown that aronia juice may be useful for treatment of obesity disorders. In this study, we found that aronia juice has an inhibitory effect against dipeptidyl peptidase IV (DPP IV) (EC 3.4.14.5). DPP IV is a peptidase that cleaves the N-terminal region of incretins such as glucagon-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Inactivation of incretins by DPP IV induces reduction of insulin secretion. Furthermore, we identified thatmore » cyanidin 3, 5-diglucoside as the DPP IV inhibitor in aronia juice. DPP IV was inhibited more strongly by cyanidin 3, 5-diglucoside than by cyanidin and cyanidin 3-glucoside. The results suggest that DPP IV is inhibited by cyanidin 3, 5-diglucoside present in aronia juice. The antidiabetic effect of aronia juice may be mediated through DPP IV inhibition by cyanidin 3, 5-diglucoside. - Highlights: • DPP IV activity is inhibited by aronia juice. • DPP IV inhibitor is cyanidin 3, 5-diglucoside in aronia juice. • DPP IV is inhibited by cyanidin 3, 5-diglucoside more than cyanidin and cyanidin 3-glucoside.« less

  5. Synthesis, kinetic evaluation, and utilization of a biotinylated dipeptide proline diphenyl phosphonate for the disclosure of dipeptidyl peptidase IV-like serine proteases.

    PubMed

    Gilmore, Brendan F; Carson, Louise; McShane, Laura L; Quinn, Derek; Coulter, Wilson A; Walker, Brian

    2006-08-18

    In this study, we report on the synthesis, kinetic characterisation, and application of a novel biotinylated and active site-directed inactivator of dipeptidyl peptidase IV (DPP-IV). Thus, the dipeptide-derived proline diphenyl phosphonate NH(2)-Glu(biotinyl-PEG)-Pro(P)(OPh)(2) has been prepared by a combination of classical solution- and solid-phase methodologies and has been shown to be an irreversible inhibitor of porcine DPP-IV, exhibiting an over all second-order rate constant (k(i)/K(i)) for inhibition of 1.57 x 10(3) M(-1) min(-1). This value compares favourably with previously reported rates of inactivation of DPP-IV by dipeptides containing a P(1) proline diphenyl phosphonate grouping [B. Boduszek, J. Oleksyszyn, C.M. Kam, J. Selzler, R.E. Smith, J.C. Powers, Dipeptide phophonates as inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 37 (1994) 3969-3976; B.F. Gilmore, J.F. Lynas, C.J. Scott, C. McGoohan, L. Martin, B. Walker, Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha), Biochem, Biophys. Res. Commun. 346 (2006) 436-446.], thus demonstrating that the incorporation of the side-chain modified (N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl) glutamic acid residue at the P(2) position is compatible with inhibitor efficacy. The utilisation of this probe for the detection of both purified dipeptidyl peptidase IV and the disclosure of a dipeptidyl peptidase IV-like activity from a clinical isolate of Porphyromonas gingivalis, using established electrophoretic and Western blotting techniques previously developed by our group, is also demonstrated.

  6. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments.

    PubMed

    Gomes, Fernando; Palma, Flávio Romero; Barros, Mario H; Tsuchida, Eduardo T; Turano, Helena G; Alegria, Thiago G P; Demasi, Marilene; Netto, Luis E S

    2017-10-13

    Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H 2 O 2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Arrabidaea chica hexanic extract induces mitochondrion damage and peptidase inhibition on Leishmania spp.

    PubMed

    Rodrigues, Igor A; Azevedo, Mariana M B; Chaves, Francisco C M; Alviano, Celuta S; Alviano, Daniela S; Vermelho, Alane B

    2014-01-01

    Currently available leishmaniasis treatments are limited due to severe side effects. Arrabidaea chica is a medicinal plant used in Brazil against several diseases. In this study, we investigated the effects of 5 fractions obtained from the crude hexanic extract of A. chica against Leishmania amazonensis and L. infantum, as well as on the interaction of these parasites with host cells. Promastigotes were treated with several concentrations of the fractions obtained from A. chica for determination of their minimum inhibitory concentration (MIC). In addition, the effect of the most active fraction (B2) on parasite's ultrastructure was analyzed by transmission electron microscopy. To evaluate the inhibitory activity of B2 fraction on Leishmania peptidases, parasites lysates were treated with the inhibitory and subinhibitory concentrations of the B2 fraction. The minimum inhibitory concentration of B2 fraction was 37.2 and 18.6 μg/mL for L. amazonensis and L. infantum, respectively. Important ultrastructural alterations as mitochondrial swelling with loss of matrix content and the presence of vesicles inside this organelle were observed in treated parasites. Moreover, B2 fraction was able to completely inhibit the peptidase activity of promastigotes at pH 5.5. The results presented here further support the use of A. chica as an interesting source of antileishmanial agents.

  8. Inhibition of bacterial DD-peptidases (penicillin-binding proteins) in membranes and in vivo by peptidoglycan-mimetic boronic acids.

    PubMed

    Dzhekieva, Liudmila; Kumar, Ish; Pratt, R F

    2012-04-03

    The DD-peptidases or penicillin-binding proteins (PBPs) catalyze the final steps of bacterial peptidoglycan biosynthesis and are inhibited by the β-lactam antibiotics. There is at present a question of whether the active site structure and activity of these enzymes is the same in the solubilized (truncated) DD-peptidase constructs employed in crystallographic and kinetics studies as in membrane-bound holoenzymes. Recent experiments with peptidoglycan-mimetic boronic acids have suggested that these transition state analogue-generating inhibitors may be able to induce reactive conformations of these enzymes and thus inhibit strongly. We have now, therefore, measured the dissociation constants of peptidoglycan-mimetic boronic acids from Escherichia coli and Bacillus subtilis PBPs in membrane preparations and, in the former case, in vivo, by means of competition experiments with the fluorescent penicillin Bocillin Fl. The experiments showed that the boronic acids bound measurably (K(i) < 1 mM) to the low-molecular mass PBPs but not to the high-molecular mass enzymes, both in membrane preparations and in whole cells. In two cases, E. coli PBP2 and PBP5, the dissociation constants obtained were very similar to those obtained with the pure enzymes in homogeneous solution. The boronic acids, therefore, are unable to induce tightly binding conformations of these enzymes in vivo. There is no evidence from these experiments that DD-peptidase inhibitors are more or less effective in vivo than in homogeneous solution.

  9. Recent progress of the development of dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus.

    PubMed

    Li, Ning; Wang, Li-Jun; Jiang, Bo; Li, Xiang-Qian; Guo, Chuan-Long; Guo, Shu-Ju; Shi, Da-Yong

    2018-05-10

    Diabetes is a fast growing chronic metabolic disorder around the world. Dipeptidyl peptidase-4 (DPP-4) is a new promising target during type 2 diabetes glycemic control. Thus, a number of potent DPP-4 inhibitors were developed and play a rapidly evolving role in the management of type 2 diabetes in recent years. This article reviews the development of synthetic and natural DPP-4 inhibitors from 2012 to 2017 and provides their physico-chemical properties, biological activities against DPP-4 and selectivity over dipeptidyl peptidase-8/9. Moreover, the glucose-lowering mechanisms and the active site of DPP-4 are also discussed. We also discuss strategies and structure-activity relationships for identifying potent DPP-4 inhibitors, which will provide useful information for developing potent DPP-4 drugs as type 2 diabtes treatments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Effect of peptidase inhibition on the pattern of intraspinally released immunoreactive substance P detected with antibody microprobes.

    PubMed

    Duggan, A W; Schaible, H G; Hope, P J; Lang, C W

    1992-05-08

    Antibody microprobes bearing antibodies to the C-terminus of substance P (SP) were used to measure release of immunoreactive (ir) SP in the dorsal horn of barbiturate anaesthetized spinal cats. Electrical stimulation of unmyelinated primary afferents of the ipsilateral tibial nerve produced a relatively localised release of ir SP in the superficial dorsal horn. Prior microinjection of the peptidase inhibitors kelatorphan and enalaprilat in the dorsal horn resulted in ir SP being detected over the whole of the dorsal horn and the overlying dorsal column. This pattern had previously been observed with evoked release of ir neurokinin A and supports the proposal that a slow degradation results in a neuropeptide accessing many sites remote from sites of release.

  11. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  12. Functional analysis of C1 family cysteine peptidases in the larval gut of Tenebrio molitor and Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    We studied protein digestion the tenebrionids Tenebrio molitor and Tribolium castaneum, pests of stored grains and grain products, to identify potential targets for biopesticide development. Tenebrionid larvae have highly compartmentalized guts, with primarily cysteine peptidases in the acidic anter...

  13. Hydrolysis of Sequenced β-Casein Peptides Provides New Insight into Peptidase Activity from Thermophilic Lactic Acid Bacteria and Highlights Intrinsic Resistance of Phosphopeptides

    PubMed Central

    Deutsch, Stéphanie-Marie; Molle, Daniel; Gagnaire, Valérie; Piot, Michel; Atlan, Danièle; Lortal, Sylvie

    2000-01-01

    The peptidases of thermophilic lactic acid bacteria have a key role in the proteolysis of Swiss cheeses during warm room ripening. To compare their peptidase activities toward a dairy substrate, a tryptic/chymotryptic hydrolysate of purified β-casein was used. Thirty-four peptides from 3 to 35 amino acids, including three phosphorylated peptides, constitute the β-casein hydrolysate, as shown by tandem mass spectrometry. Cell extracts prepared from Lactobacillus helveticus ITG LH1, ITG LH77, and CNRZ 32, Lactobacillus delbrueckii subsp. lactis ITG LL14 and ITG LL51, L. delbrueckii subsp. bulgaricus CNRZ 397 and NCDO 1489, and Streptococcus thermophilus CNRZ 385, CIP 102303, and TA 060 were standardized in protein. The peptidase activities were assessed with the β-casein hydrolysate as the substrate at pH 5.5 and 24°C (conditions of warm room ripening) by (i) free amino acid release, (ii) reverse-phase chromatography, and (iii) identification of undigested peptides by mass spectrometry. Regardless of strain, L. helveticus was the most efficient in hydrolyzing β-casein peptides. Interestingly, cell extracts of S. thermophilus were not able to release a significant level of free proline from the β-casein hydrolysate, which was consistent with the identification of numerous dipeptides containing proline. With the three lactic acid bacteria tested, the phosphorylated peptides remained undigested or weakly hydrolyzed indicating their high intrinsic resistance to peptidase activities. Finally, several sets of peptides differing by a single amino acid in a C-terminal position revealed the presence of at least one carboxypeptidase in the cell extracts of these species. PMID:11097915

  14. Functional diversity of secreted cestode Kunitz proteins: Inhibition of serine peptidases and blockade of cation channels

    PubMed Central

    Fló, Martín; Margenat, Mariana; Pellizza, Leonardo; Durán, Rosario; Salceda, Emilio; Alvarez, Beatriz

    2017-01-01

    We previously reported a multigene family of monodomain Kunitz proteins from Echinococcus granulosus (EgKU-1-EgKU-8), and provided evidence that some EgKUs are secreted by larval worms to the host interface. In addition, functional studies and homology modeling suggested that, similar to monodomain Kunitz families present in animal venoms, the E. granulosus family could include peptidase inhibitors as well as channel blockers. Using enzyme kinetics and whole-cell patch-clamp, we now demonstrate that the EgKUs are indeed functionally diverse. In fact, most of them behaved as high affinity inhibitors of either chymotrypsin (EgKU-2-EgKU-3) or trypsin (EgKU-5-EgKU-8). In contrast, the close paralogs EgKU-1 and EgKU-4 blocked voltage-dependent potassium channels (Kv); and also pH-dependent sodium channels (ASICs), while showing null (EgKU-1) or marginal (EgKU-4) peptidase inhibitory activity. We also confirmed the presence of EgKUs in secretions from other parasite stages, notably from adult worms and metacestodes. Interestingly, data from genome projects reveal that at least eight additional monodomain Kunitz proteins are encoded in the genome; that particular EgKUs are up-regulated in various stages; and that analogous Kunitz families exist in other medically important cestodes, but not in trematodes. Members of this expanded family of secreted cestode proteins thus have the potential to block, through high affinity interactions, the function of host counterparts (either peptidases or cation channels) and contribute to the establishment and persistence of infection. From a more general perspective, our results confirm that multigene families of Kunitz inhibitors from parasite secretions and animal venoms display a similar functional diversity and thus, that host-parasite co-evolution may also drive the emergence of a new function associated with the Kunitz scaffold. PMID:28192542

  15. Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis.

    PubMed

    Book, Adam J; Yang, Peizhen; Scalf, Mark; Smith, Lloyd M; Vierstra, Richard D

    2005-06-01

    The breakdown of most nuclear and cytoplasmic proteins involves their partial cleavage by the 26S proteasome followed by further disassembly to free amino acids by the combined action of endo- and exopeptidases. In animals, one important intermediate exopeptidase is tripeptidyl peptidase (TPP)II, which digests peptide products of the 26S proteasome and other endopeptidases into tripeptides. Here, we describe the purification and characterization of TPPII from Arabidopsis (Arabidopsis thaliana). Like its animal counterparts, Arabidopsis TPPII exists as a soluble, approximately 5- to 9-MD complex. Two related species of 153 and 142 kD are present in the purified preparations that are derived from a single TPP2 gene. Sequencing by Edman degradation of the intact polypeptides and mass spectrometry of proteolytic fragments demonstrated that the 142-kD form mainly differs from the 153-kD form by a truncation at the C-terminal end. This serine protease is a member of the subtilisin superfamily and is sensitive to the inhibitors alanine-alanine-phenylalanine-chloromethylketone and butabindide, which are diagnostic for the TPPII subfamily. The Arabidopsis TPP2 gene is widely expressed in many tissue types with related genes evident in other plant genomes. Whereas the 26S proteasome is essential, TPPII appears not as important for plant physiology. An Arabidopsis T-DNA mutant defective in TPP2 expression displays no phenotypic abnormalities and is not hypersensitive to either amino acid analogs or the 26S proteasome inhibitor MG132. As a consequence, plants likely contain other intermediate exopeptidases that assist in amino acid recycling.

  16. Inhibitors of peptidases: how they influence the biological activities of substance P, neurokinins, kinins and angiotensins in isolated vessels.

    PubMed

    Rouissi, N; Nantel, F; Drapeau, G; Rhaleb, N E; Dion, S; Regoli, D

    1990-01-01

    Myotropic effects of various peptides were measured in three isolated vessels, the dog carotid artery, the rabbit pulmonary artery and the rat portal vein in the absence and in presence of several peptidase inhibitors, in order to evaluate the interference by metabolism with the peptides' biological activities. After adequate controls, captopril (4.6 x 10(-6) mol/l), thiorphan (1.0 x 10(-6) mol/l), phosphoramidon (4.6 x 10(-6) mol/l), chymostatin (1 mg/l), bestatin (8.1 x 10(-6) mol/l) or bacitracin (1.4 x 10(-5) mol/l) were left in contact with the tissues for 20-40 min to inhibit tissue peptidases before measuring again the biological effects of the various peptides. In some experiments, mergetpa (5.4 x 10(-6) mol/l) was used. All peptidase inhibitors were inactive on their own and only captopril potentiated the effects of substance P, neurokinins, bradykinin and inhibited angiotensin I in two preparations, the dog carotid artery, the rat portal vein, and, excluding bradykinin, also in the rabbit pulmonary artery. Captopril and thiorphan significantly potentiated the maximal response of the rat portal vein to substance P and mergetpa inhibited completely the effect of bradykinin on the rabbit pulmonary artery. The present findings suggest that the most active proteolytic enzyme interfering with the biological effects of vasoactive peptides on three isolated vessels is the angiotensin-converting enzyme (kininase II).

  17. Is substance P released from slices of the rat spinal cord inactivated by peptidase(s) distinct from both 'enkephalinase' and 'angiotensin-converting enzyme'?

    PubMed

    Mauborgne, A; Bourgoin, S; Benoliel, J J; Hamon, M; Cesselin, F

    1991-02-25

    Studies on the effects of peptidase inhibitors on substance P-like immunoreactive material (SPLI) released by K(+)-induced depolarization from slices of the rat spinal cord showed that bacitracin was the most potent agent to protect SPLI from degradation. Captopril and thiorphan which inhibit, respectively, angiotensin I converting enzyme and endopeptidase-24.11 also protected SPLI from degradation. However other inhibitors of these two enzymes, kelatorphan for endopeptidase-24.11 and enalaprilat for angiotensin I converting enzyme were essentially inactive, indicating that both enzymes are probably not involved in the degradation of endogenous substance P. Instead, the non-additive protecting effect of bacitracin, captopril and thiorphan might be due to the blockade of some 'bacitracin-sensitive enzyme' playing a key role in the catabolism of SP within the rat spinal cord.

  18. Inhibitors of tripeptidyl peptidase II. 3. Derivation of butabindide by successive structure optimizations leading to a potential general approach to designing exopeptidase inhibitors.

    PubMed

    Ganellin, C Robin; Bishop, Paul B; Bambal, Ramesh B; Chan, Suzanne M T; Leblond, Bertrand; Moore, Andrew N J; Zhao, Lihua; Bourgeat, Pierre; Rose, Christiane; Vargas, Froylan; Schwartz, Jean-Charles

    2005-11-17

    The cholecystokinin-8 (CCK-8)-inactivating peptidase is a serine peptidase that has been shown to be a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10). It cleaves the neurotransmitter CCK-8 sulfate at the Met-Gly bond to give Asp-Tyr(SO3H)-Met-OH + Gly-Trp-Met-Asp-Phe-NH2. Starting from Val-Pro-NHBu, a dipeptide of submicromolar affinity that had previously been generated to serve as a lead, successive optimization at P3, P1, and then P2 gave Abu-Pro-NHBu (18, Ki = 80 nM). Further transformation (by making a benzologue) gave the indoline analogue, butabindide (33) as a reversible inhibitor having nanomolar affinity (Ki = 7 nM). Retrospective analysis suggested the possibility of a general approach to designing exopeptidase inhibitors starting from the structure of the first hydrolysis product. Application of this approach to CCK-8 led to Abu-Phe-NHBu (37), but this only had Ki = 9.4 microM. Molecular modeling, to determine the minimum energy conformations and explain the 1000-fold better affinity of butabindide, indicated that 37 cannot access the likely active conformation of butabindide.

  19. Peptidase modulation of the pulmonary effects of tachykinins.

    PubMed

    Martins, M A; Shore, S A; Drazen, J M

    1991-01-01

    The physiological effects of the tachykinin peptides substance P (SP) and neurokinin A (NKA) are limited by their microenvironmental degradation. We used the isolated tracheally superfused guinea pig lung to examine the importance of various degradative enzymes in limiting the physiological effects of exogenously administered and endogenously released tachykinins. When SP and NKA are administered via the airway epithelium, neutral endopeptidase (NEP; EC 3.4.24.11) is the major degradative enzyme as indicated by the effects of NEP inhibitors alone compared to the effects of a NEP inhibitor along with a cocktail of other peptidase inhibitors. The effects of enzyme inhibitors on physiological responses is mirrored in the amounts of peptide recovered from lung perfusates as determined using an enzyme-linked immunosorbent assay. We found similar effects when SP and NKA were released endogenously by the acute infusion of capsaicin. These data indicate that NEP is the predominant degradative enzyme modulating the effects of SP and NKA administered via the airways.

  20. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses.

    PubMed

    Preta, Giulio; de Klark, Rainier; Glas, Rickard

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to gamma-irradiation, and that nuclear expression of TPPII was present in most gamma-irradiated transformed cell lines. We used a panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after gamma-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following gamma-irradiation (at 1-4h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in gamma-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.

  1. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium.

    PubMed

    Morikawa, Toshio; Ninomiya, Kiyofumi; Akaki, Junji; Kakihara, Namiko; Kuramoto, Hiroyuki; Matsumoto, Yurie; Hayakawa, Takao; Muraoka, Osamu; Wang, Li-Bo; Wu, Li-Jun; Nakamura, Seikou; Yoshikawa, Masayuki; Matsuda, Hisashi

    2015-10-01

    A methanol extract of everlasting flowers of Helichrysum arenarium L. Moench (Asteraceae) was found to inhibit the increase in blood glucose elevation in sucrose-loaded mice at 500 mg/kg p.o. The methanol extract also inhibited the enzymatic activity against dipeptidyl peptidase-IV (DPP-IV, IC50 = 41.2 μg/ml), but did not show intestinal α-glucosidase inhibitory activities. From the extract, three new dimeric dihydrochalcone glycosides, arenariumosides V-VII (2-4), were isolated, and the stereostructures were elucidated based on their spectroscopic properties and chemical evidence. Of the constituents, several flavonoid constituents, including 2-4, were isolated, and these isolated constituents were investigated for their DPP-IV inhibitory effects. Among them, chalconaringenin 2'-O-β-D-glucopyranoside (16, IC50 = 23.1 μM) and aureusidin 6-O-β-D-glucopyranoside (35, 24.3 μM) showed relatively strong inhibitory activities.

  2. Peptidases of the peripheral chemoreceptors: biochemical, immunological, in vitro hydrolytic studies and electron microscopic analysis of neutral endopeptidase-like activity of the carotid body.

    PubMed

    Kumar, G K

    1997-02-14

    The purposes of the present study are to identify and characterize the major peptidase(s) that may be involved in the inactivation of neuropeptides in the mammalian carotid body. Measurements of a number of peptidase activities in the cell-free extract of the cat carotid body using specific substrates and inhibitors indicated that the previously identified neutral endopeptidase (NEP)-like activity [Kumar et al., Brain Res., 517 (1990) 341-343] is the major peptidase in the chemoreceptor tissue. The NEP-like activity of the carotid body was further characterized using a monoclonal antibody to human neutral endopeptidase, EC 3.4.24.11. Immune blot analysis indicated strong immunoreactivity toward the cat and calf carotid bodies but a weak cross-reactivity with the rabbit carotid body. Furthermore, western blot analysis of the cat carotid body extract revealed the presence of a major 97-kDa protein and a minor 200-kDa protein. The 97-kDa NEP form of the carotid body was comparable to EC 3.4.24.11 and was consistent with its reported molecular weight suggesting NEP-like activity of the carotid body is structurally similar to the neutral endopeptidase, EC 3.4.24.11. In order to assess whether NEP is the primary peptide degrading activity in the cat carotid body in vitro hydrolysis studies using substance P (SP) as a model peptide were performed. HPLC analysis showed that SP is hydrolyzed maximally at pH 7.0 by carotid body peptidases with the formation of SP(1-7) and SP(1-8) as stable intermediates. Inhibitors specific to NEP also inhibited the SP-hydrolyzing activity of the carotid body. Analyses of the cell-free extracts showed the occurrence of both NEP and SP-hydrolyzing activities in the rabbit and rat carotid bodies although at 2- and 4-fold lower levels respectively than that observed in the cat carotid body. Immunoelectron microscopy showed that NEP-specific immunoreactivity is associated with the intercellular region between the type I cells and cell clusters

  3. Extracellular proteases as targets for drug development

    PubMed Central

    Cudic, Mare

    2015-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354

  4. Suppression of Food Intake by Glucagon-Like Peptide-1 Receptor Agonists: Relative Potencies and Role of Dipeptidyl Peptidase-4

    PubMed Central

    Jessen, Lene; Aulinger, Benedikt A.; Hassel, Jonathan L.; Roy, Kyle J.; Smith, Eric P.; Greer, Todd M.; Woods, Stephen C.; Seeley, Randy J.

    2012-01-01

    Administration of the glucagon-like peptide-1 (GLP-1) receptor agonists GLP-1 and exendin-4 (Ex-4) directly into the central nervous system decreases food intake. But although Ex-4 potently suppresses food intake after peripheral administration, the effects of parenteral GLP-1 are variable and not as strong. A plausible explanation for these effects is the rapid inactivation of circulating GLP-1 by dipeptidyl peptidase-4 (DPP-4), an enzyme that does not alter Ex-4 activity. To test this hypothesis, we assessed the relative potency of Ex-4 and GLP-1 under conditions in which DPP-4 activity was reduced. Outbred rats, wild-type mice, and mice with a targeted deletion of DPP-4 (Dpp4−/−) were treated with GLP-1 alone or in combination with the DPP-4 inhibitor vildagliptin, Ex-4, or saline, and food intake was measured. GLP-1 alone, even at high doses, did not affect feeding in wild-type mice or rats but did reduce food intake when combined with vildagliptin or given to Dpp4−/− mice. Despite plasma clearance similar to DPP-4-protected GLP-1, equimolar Ex-4 caused greater anorexia than vildagliptin plus GLP-1. To determine whether supraphysiological levels of endogenous GLP-1 would suppress food intake if protected from DPP-4, rats with Roux-en-Y gastric bypass and significantly elevated postprandial plasma GLP-1 received vildagliptin or saline. Despite 5-fold greater postprandial GLP-1 in these animals, vildagliptin did not affect food intake in Roux-en-Y gastric bypass rats. Thus, in both mice and rats, peripheral GLP-1 reduces food intake significantly less than Ex-4, even when protected from DPP-4. These findings suggest distinct potencies of GLP-1 receptor agonists on food intake that cannot be explained by plasma pharmacokinetics. PMID:23033273

  5. Crystal and Solution Structures of a Prokaryotic M16B Peptidase: an Open and Shut Case

    PubMed Central

    Aleshin, Alexander E.; Gramatikova, Svetlana; Hura, Gregory L.; Bobkov, Andrey; Strongin, Alex Y.; Stec, Boguslaw; Tainer, John A.; Liddington, Robert C.; Smith, Jeffrey W.

    2013-01-01

    SUMMARY The M16 family of zinc peptidases comprises a pair of homologous domains that form two halves of a ‘‘clam-shell’’ surrounding the active site. The M16A and M16C subfamilies form one class (‘‘peptidasomes’’): they degrade 30–70 residue peptides, and adopt both open and closed conformations. The eukaryotic M16B subfamily forms a second class (‘‘processing proteases’’): they adopt a single partly-open conformation that enables them to cleave signal sequences from larger proteins. Here, we report the solution and crystal structures of a prokaryotic M16B peptidase, and demonstrate that it has features of both classes: thus, it forms stable ‘‘open’’ homodimers in solution that resemble the processing proteases; but the clam-shell closes upon binding substrate, a feature of the M16A/C peptidasomes. Moreover, clam-shell closure is required for proteolytic activity. We predict that other prokaryotic M16B family members will form dimeric peptidasomes, and propose a model for the evolution of the M16 family. PMID:19913481

  6. Peptidases involved in the catabolism of neurotensin: inhibitor studies using superfused rat hypothalamic slices.

    PubMed

    McDermott, J R; Virmani, M A; Turner, J D; Kidd, A M

    1986-01-01

    In order to identify which peptidases are involved in the catabolism of neurotensin in the CNS, [3H-Tyr3,11]-neurotensin was superfused over rat hypothalamic slices in the presence and absence of peptidase inhibitors. The degree of degradation of the peptide was determined by reverse phase HPLC separation of 3H-labelled neurotensin from 3H-labelled products. Very little degrading activity was released from the slice into the medium during the superfusion. In the absence of inhibitors, 20 to 50% of 3H-neurotensin was degraded giving mainly 3H-Tyr along with other unidentified 3H-labelled products. Inhibitors of endopeptidase 24.11 (phosphoramidon) and proline endopeptidase (antibody) had no effect on the degradation. Captopril, an inhibitor of angiotensin converting enzyme, had a small inhibitory effect. In contrast, dynorphin(1-13), an inhibitor of a soluble, thiol dependent metallopeptidase which hydrolyses neurotensin at Arg8-Arg9, gave greater than 80% inhibition of 3H-neurotensin degradation in the slice preparation. 1,10-Phenanthroline, an inhibitor of metallopeptidases, was also an effective inhibitor. The dynorphin sequence responsible for the inhibition contains the Arg6-Arg7 bond. Other peptides (bradykinin and angiotensin) which are substrates of the soluble metallopeptidase also inhibited neurotensin breakdown by the slice. This evidence suggests that this thiol dependent metalloendopeptidase is the major neurotensin catabolizing enzyme in hypothalamic slices.

  7. Induction of Protective Immune Responses Against Schistosomiasis haematobium in Hamsters and Mice Using Cysteine Peptidase-Based Vaccine

    PubMed Central

    Tallima, Hatem; Dalton, John P.; El Ridi, Rashika

    2015-01-01

    One of the major lessons we learned from the radiation-attenuated cercariae vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th)1-/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune response-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here, we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 μg active papain, 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium, led to highly significant (P < 0.005) reduction of >50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 μg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH) and 20 μg 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP) together with papain (20 μg/hamster), as adjuvant led to considerable (64%) protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1) and Fasciola hepatica cathepsin L1 (FhCL1) led to highly significant (P < 0.005) reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/rSG3PDH mixture and challenged with S. haematobium cercariae 3 weeks after the second immunization displayed highly significant (P < 0.005) reduction of 72% in challenge worm burden and no eggs in liver of 8–10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1- and type 2-related cytokines and antibody responses. PMID:25852696

  8. Tripeptidyl Peptidase II. An Oligomeric Protease Complex from Arabidopsis1

    PubMed Central

    Book, Adam J.; Yang, Peizhen; Scalf, Mark; Smith, Lloyd M.; Vierstra, Richard D.

    2005-01-01

    The breakdown of most nuclear and cytoplasmic proteins involves their partial cleavage by the 26S proteasome followed by further disassembly to free amino acids by the combined action of endo- and exopeptidases. In animals, one important intermediate exopeptidase is tripeptidyl peptidase (TPP)II, which digests peptide products of the 26S proteasome and other endopeptidases into tripeptides. Here, we describe the purification and characterization of TPPII from Arabidopsis (Arabidopsis thaliana). Like its animal counterparts, Arabidopsis TPPII exists as a soluble, approximately 5- to 9-MD complex. Two related species of 153 and 142 kD are present in the purified preparations that are derived from a single TPP2 gene. Sequencing by Edman degradation of the intact polypeptides and mass spectrometry of proteolytic fragments demonstrated that the 142-kD form mainly differs from the 153-kD form by a truncation at the C-terminal end. This serine protease is a member of the subtilisin superfamily and is sensitive to the inhibitors alanine-alanine-phenylalanine-chloromethylketone and butabindide, which are diagnostic for the TPPII subfamily. The Arabidopsis TPP2 gene is widely expressed in many tissue types with related genes evident in other plant genomes. Whereas the 26S proteasome is essential, TPPII appears not as important for plant physiology. An Arabidopsis T-DNA mutant defective in TPP2 expression displays no phenotypic abnormalities and is not hypersensitive to either amino acid analogs or the 26S proteasome inhibitor MG132. As a consequence, plants likely contain other intermediate exopeptidases that assist in amino acid recycling. PMID:15908606

  9. Structures of Human DPP7 Reveal the Molecular Basis of Specific Inhibition and the Architectural Diversity of Proline-Specific Peptidases

    PubMed Central

    Dong, Aiping; Seitova, Almagul; Crombett, Lissete; Shewchuk, Lisa M.; Hassell, Annie M.; Sweitzer, Sharon M.; Sweitzer, Thomas D.; McDevitt, Patrick J.; Johanson, Kyung O.; Kennedy-Wilson, Karen M.; Cossar, Doug; Bochkarev, Alexey; Gruber, Karl; Dhe-Paganon, Sirano

    2012-01-01

    Proline-specific dipeptidyl peptidases (DPPs) are emerging targets for drug development. DPP4 inhibitors are approved in many countries, and other dipeptidyl peptidases are often referred to as DPP4 activity- and/or structure-homologues (DASH). Members of the DASH family have overlapping substrate specificities, and, even though they share low sequence identity, therapeutic or clinical cross-reactivity is a concern. Here, we report the structure of human DPP7 and its complex with a selective inhibitor Dab-Pip (L-2,4-diaminobutyryl-piperidinamide) and compare it with that of DPP4. Both enzymes share a common catalytic domain (α/β-hydrolase). The catalytic pocket is located in the interior of DPP7, deep inside the cleft between the two domains. Substrates might access the active site via a narrow tunnel. The DPP7 catalytic triad is completely conserved and comprises Ser162, Asp418 and His443 (corresponding to Ser630, Asp708 and His740 in DPP4), while other residues lining the catalytic pockets differ considerably. The “specificity domains” are structurally also completely different exhibiting a β-propeller fold in DPP4 compared to a rare, completely helical fold in DPP7. Comparing the structures of DPP7 and DPP4 allows the design of specific inhibitors and thus the development of less cross-reactive drugs. Furthermore, the reported DPP7 structures shed some light onto the evolutionary relationship of prolyl-specific peptidases through the analysis of the architectural organization of their domains. PMID:22952628

  10. Cytokine and estrogen stimulation of endothelial cells augments activation of the prekallikrein-high molecular weight kininogen complex: Implications for hereditary angioedema.

    PubMed

    Joseph, Kusumam; Tholanikunnel, Baby G; Kaplan, Allen P

    2017-07-01

    When the prekallikrein-high molecular weight kininogen complex is bound to endothelial cells, prekallikrein is stoichiometrically converted to kallikrein because of release of heat shock protein-90 (Hsp90). Although bradykinin formation is typically initiated by factor XII autoactivation, it is also possible to activate factor XII either by kallikrein, thus formed, or by plasmin. Because attacks of hereditary angioedema can be related to infection and/or exposure to estrogen, we questioned whether estrogen or cytokine stimulation of endothelial cells could augment release of Hsp90 and prekallikrein activation. We also tested release of profibrinolytic enzymes, urokinase, and tissue plasminogen activator (TPA) as a source for plasmin formation. Cells were stimulated with agonists, and secretion of Hsp90, urokinase, and TPA was measured in the culture supernatants by ELISA. Activation of the prekallikrein-HK complex was measured by using pro-phe-arg-p-nitroanilide reflecting kallikrein formation. Hsp90 release was stimulated with optimal doses of estradiol, IL-1, and TNF-α (10 ng/mL) from 15 minutes to 120 minutes. TPA release was not augmented by any of the agonists tested but urokinase was released by IL-1, TNF-α, and thrombin (positive control), but not estrogen. Augmented activation of the prekallikrein-HK complex to generate kallikrein was seen with each agonist that releases Hsp90. Addition of 0.1% factor XII relative to prekallikrein-HK leads to rapid formation of kallikrein; factor XII alone does not autoactivate. IL-1, TNF-α, and estrogen stimulate release of Hsp90 and augment activation of the prekallikrein-HK complex to generate kallikrein and bradykinin. IL-1 and TNF-α stimulate release of urokinase, which can convert plasminogen to plasmin and represents a possible source for plasmin generation in all types of hereditary angioedema, but particularly hereditary angioedema with normal C1 inhibitor with a factor XII mutation. Both kallikrein and

  11. A role for nuclear translocation of tripeptidyl-peptidase II in reactive oxygen species-dependent DNA damage responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preta, Giulio; Klark, Rainier de; Glas, Rickard, E-mail: rickard.glas@ki.se

    2009-11-27

    Responses to DNA damage are influenced by cellular metabolism through the continuous production of reactive oxygen species (ROS), of which most are by-products of mitochondrial respiration. ROS have a strong influence on signaling pathways during responses to DNA damage, by relatively unclear mechanisms. Previous reports have shown conflicting data on a possible role for tripeptidyl-peptidase II (TPPII), a large cytosolic peptidase, within the DNA damage response. Here we show that TPPII translocated into the nucleus in a p160-ROCK-dependent fashion in response to {gamma}-irradiation, and that nuclear expression of TPPII was present in most {gamma}-irradiated transformed cell lines. We used amore » panel of nine cell lines of diverse tissue origin, including four lymphoma cell lines (T, B and Hodgkins lymphoma), a melanoma, a sarcoma, a colon and two breast carcinomas, where seven out of nine cell lines showed nuclear TPPII expression after {gamma}-irradiation. Further, this required cellular production of ROS; treatment with either N-acetyl-Cysteine (anti-oxidant) or Rotenone (inhibitor of mitochondrial respiration) inhibited nuclear accumulation of TPPII. The local density of cells was important for nuclear accumulation of TPPII at early time-points following {gamma}-irradiation (at 1-4 h), indicating a bystander effect. Further, we showed that the peptide-based inhibitor Z-Gly-Leu-Ala-OH, but not its analogue Z-Gly-(D)-Leu-Ala-OH, excluded TPPII from the nucleus. This correlated with reduced nuclear expression of p53 as well as caspase-3 and -9 activation in {gamma}-irradiated lymphoma cells. Our data suggest a role for TPPII in ROS-dependent DNA damage responses, through alteration of its localization from the cytosol into the nucleus.« less

  12. Metabolic half-life of somatostatin and peptidase activities are altered in Alzheimer's disease.

    PubMed

    Weber, S J; Louis, R B; Trombley, L; Bissette, G; Davies, P; Davis, T P

    1992-01-01

    Several reports have described decreased immunoreactive somatostatin levels in specific regions of post-mortem brain tissue from patients diagnosed with senile dementia of the Alzheimer type (SDAT). In an attempt to determine if the metabolism of somatostatin is also altered as a result of SDAT, we examined the regional metabolic half-life of somatostatin-28 (SS-28) and somatostatin-14 (SS-14). The activity of the following peptidases was also determined: neutral endopeptidase E.C. 3.4.24.11; metalloendopeptidase E.C. 3.4.24.15; carboxypeptidase E (E.C. 3.4.17.10); and trypsin-like serine protease. The metabolic half-life of SS-28 was significantly reduced in post-mortem Brodmann Area 22 of SDAT tissue. This decrease in SS-28 metabolic half-life was correlated with a significant increase in trypsin-like serine protease activity in the same SDAT brain region. The formation rate of SS-14 from SS-28 incubated with Brodmann Area 22 homogenates was also increased in SDAT tissues as compared to controls. A regional variation in neutral endopeptidase E.C. 3.4.24.11 was also noted in both controls and SDAT samples. Although postmortem intervals of samples varied significantly, no effect was seen on any biochemical parameter measured. Results from this study provide evidence that a correlation can be made between changes in metabolic half-life somatostatin and alterations in neuropeptidase activities due to SDAT. As these data show alterations in both proteolytic metabolism and peptidase activities, many other biologically active peptide substrates could also be affected in SDAT.

  13. Increased collagenase and dipeptidyl peptidase I activity in leucocytes from healthy elderly people

    PubMed Central

    Llorente, L; Richaud-Patin, Y; Díaz-Borjón, A; Jakez-Ocampo, J; Alvarado-De La Barrera, C

    1999-01-01

    The incidence of infectious diseases increases with ageing. The enzymatic activity of leucocytes may have a relevant role in the morbidity and mortality due to infections in the elderly. In this study we have compared the activity of enzymes involved in the inflammatory response in leucocytes from young and elderly women. A total of 35 healthy females was studied, 20 volunteers aged 78–98 years (mean 89.1 years) and 15 young controls aged 19–34 years (mean 26 years). All of them were in good clinical condition, without any acute or chronic disease. Intracellular enzyme activity was analysed by flow cytometry in leucocytes from young and elderly women. The enzyme substrates employed were for oxidative burst, l-aminopeptidase, collagenase, cathepsin B, C, D and, G and dipeptidyl peptidase I. The intracellular enzyme activity assessed by flow cytometry in leucocytes from young and elderly women was similar, as far as oxidative burst, l-aminopeptidase, cathepsin B, C, D and G are concerned. An increased collagenase activity was detected in granulocytes from elders. The mean fluorescence channels for this enzyme corresponded to 86 ± 23 and 60 ± 15 in cells from elders and controls, respectively (P = 0.01224). An increased dipeptidyl peptidase I activity was detected in lymphocytes from elderly women. The corresponding values for this enzyme in elders and the young were 65.9 ± 43.3 and 17.3 ± 5, respectively (P = 0.0036). The proper functional activity of intracellular enzymes involved in inflammatory responses is likely to be determinant for successful ageing. PMID:10361229

  14. Mechanisms of Intramolecular Communication in a Hyperthermophilic Acylaminoacyl Peptidase: A Molecular Dynamics Investigation

    PubMed Central

    Papaleo, Elena; Renzetti, Giulia; Tiberti, Matteo

    2012-01-01

    Protein dynamics and the underlying networks of intramolecular interactions and communicating residues within the three-dimensional (3D) structure are known to influence protein function and stability, as well as to modulate conformational changes and allostery. Acylaminoacyl peptidase (AAP) subfamily of enzymes belongs to a unique class of serine proteases, the prolyl oligopeptidase (POP) family, which has not been thoroughly investigated yet. POPs have a characteristic multidomain three-dimensional architecture with the active site at the interface of the C-terminal catalytic domain and a β-propeller domain, whose N-terminal region acts as a bridge to the hydrolase domain. In the present contribution, protein dynamics signatures of a hyperthermophilic acylaminoacyl peptidase (AAP) of the prolyl oligopeptidase (POP) family, as well as of a deletion variant and alanine mutants (I12A, V13A, V16A, L19A, I20A) are reported. In particular, we aimed at identifying crucial residues for long range communications to the catalytic site or promoting the conformational changes to switch from closed to open ApAAP conformations. Our investigation shows that the N-terminal α1-helix mediates structural intramolecular communication to the catalytic site, concurring to the maintenance of a proper functional architecture of the catalytic triad. Main determinants of the effects induced by α1-helix are a subset of hydrophobic residues (V16, L19 and I20). Moreover, a subset of residues characterized by relevant interaction networks or coupled motions have been identified, which are likely to modulate the conformational properties at the interdomain interface. PMID:22558199

  15. Tripeptidyl-peptidase II (TPP II) inhibitory activity of (S)-2,3-dihydro-2-(1H-imidazol-2-yl)-1H-indoles, a systematic SAR evaluation. Part 2.

    PubMed

    Breslin, Henry J; Miskowski, Tamara A; Kukla, Michael J; De Winter, Hans L; Somers, Maria V F; Roevens, Peter W M; Kavash, Robert W

    2003-12-15

    We have systematically explored the structure-activity relationship (SAR) for a series of compounds 2 as inhibitors of tripeptidyl-peptidase II (TPP II), a serine protease responsible for the degradation of cholecystokinin-8 (CCK-8). This SAR evaluation of the core structure 2 suggest a fairly restrictive pharmacophore for such related structures, but has yielded a limited set of compounds (2b, 2c, 2d, 2s, and 2t) with potent TPP II inhibitory activity (IC(50) 4-11 nM).

  16. Peptidase-3 (Pep-3), dipeptidase variant in the rat homologous to mouse pep-3 (Dip-1) and human PEP-c.

    PubMed

    Womack, J E; Cramer, D V

    1980-10-01

    Starch gel electrophoresis and histochemical staining with L-leucyl-L-tyrosine have revealed genetic variation for dipeptidase in Rattus norvegicus. The tissue distribution, substrate specificity, and heterozygous expression as a monmeric protein suggest homology of the variant peptidase to human PEP-C and mouse Pep-3 (Dip-1). We propose Peptidase-3 (Pep-3) as a name for this autosomal locus in the rat. The allele responsible for slower (less anodal) electrophoretic migration is designated Pep-3a and is characteristic of strain ACI/Pit. A faster (more anodal) electrophoretic mobility is the product of the Pep-3b allele in strain F344/Pit. Twenty-five additional inbred strains carry Pep-3a and 16 others carry Pep-3b. Wild rats trapped in Pittsburgh were polymorphic for this locus. Alleles at Pep-3 segregated independently of c (linkage group I), a (linkage group IV), RT2 and Es-1 (linkage group V), h (linkage group VI), and RTI (linkage group VIII).

  17. [A novel dipeptidyl peptidase IV inhibitors developed through scaffold hopping and drug splicing strategy].

    PubMed

    Wang, Shan-Chun; Zeng, Li-Li; Ding, Yu-Yang; Zeng, Shao-Gao; Song, Hong-Rui; Hu, Wen-Hui; Xie, Hui

    2014-01-01

    Though all the marketed drugs of dipeptidyl peptidase IV inhibitors are structurally different, their inherent correlation is worthy of further investigation. Herein we rapidly discovered a novel DPP-IV inhibitor 8g (IC50 = 4.9 nmol.L-1) which exhibits as good activity and selectivity as the market drugs through scaffold hopping and drug splicing strategies based on alogliptin and linagliptin. This study demonstrated that the employment of classic medicinal chemistry strategy to the marketed drugs with specific target is an efficient approach to discover novel bioactive molecules.

  18. Chymotrypsin C (Caldecrin) Is Associated with Enamel Development

    PubMed Central

    Lacruz, R.S.; Smith, C.E.; Smith, S.M.; Hu, P.; Bringas, P.; Sahin-Tóth, M.; Moradian-Oldak, J.; Paine, M.L.

    2011-01-01

    Two main proteases cleave enamel extracellular matrix proteins during amelogenesis. Matrix metalloprotease-20 (Mmp20) is the predominant enzyme expressed during the secretory stage, while kallikrein-related peptidase-4 (Klk4) is predominantly expressed during maturation. Mutations to both Mmp20 and Klk4 result in abnormal enamel phenotypes. During a recent whole-genome microarray analysis of rat incisor enamel organ cells derived from the secretory and maturation stages of amelogenesis, the serine protease chymotrypsin C (caldecrin, Ctrc) was identified as significantly up-regulated (> 11-fold) during enamel maturation. Prior reports indicate that Ctrc expression is pancreas-specific, albeit low levels were also noted in brain. We here report on the expression of Ctrc in the enamel organ. Quantitative PCR (qPCR) and Western blot analysis were used to confirm the expression of Ctrc in the developing enamel organ. The expression profile of Ctrc is similar to that of Klk4, increasing markedly during the maturation stage relative to the secretory stage, although levels of Ctrc mRNA are lower than for Klk4. The discovery of a new serine protease possibly involved in enamel development has important implications for our understanding of the factors that regulate enamel biomineralization. PMID:21828354

  19. Biological and Pathological Implications of an Alternative ATP-Powered Proteasomal Assembly With Cdc48 and the 20S Peptidase.

    PubMed

    Esaki, Masatoshi; Johjima-Murata, Ai; Islam, Md Tanvir; Ogura, Teru

    2018-01-01

    The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding. AAA superfamily proteins (ATPases associated with diverse cellular activities) are mostly located at these openings and regulate protein degradation appropriately. The 26S proteasome, comprising 20S peptidase and 19S regulatory particles, is the major ATP-powered protein degradation machinery in eukaryotes. The 19S particles are composed of six AAA proteins and 13 regulatory proteins, and bind to both ends of a barrel-shaped proteolytic chamber formed by the 20S peptidase. Several recent studies have reported that another AAA protein, Cdc48, can replace the 19S particles to form an alternative ATP-powered proteasomal complex, i.e., the Cdc48-20S proteasome. This review focuses on our current knowledge of this alternative proteasome and its possible linkage to amyotrophic lateral sclerosis.

  20. Receptor-selective, peptidase-resistant agonists at neurokinin NK-1 and NK-2 receptors: new tools for investigating neurokinin function.

    PubMed

    Hagan, R M; Ireland, S J; Jordan, C C; Beresford, I J; Deal, M J; Ward, P

    1991-06-01

    The pharmacological profiles of two novel neurokinin agonists have been investigated. delta Ava[L-Pro9,N-MeLeu10]SP(7-11) (GR73632) and [Lys3,Gly8-R-gamma-lactam-Leu9] NKA(3-10) (GR64349) are potent and selective agonists at NK-1 and NK-2 receptors respectively. In the guinea-pig isolated trachea preparation, contractions induced by these agonists were largely unaffected by inclusion of peptidase inhibitors in the bathing medium, indicating that these agonists are resistant to metabolism by peptidases. In the anaesthetised guinea-pig, both agonists were more potent bronchoconstrictor agents than either NKA or the SP analogue, SP methylester. In the anaesthetised rat, the NK-1 agonist, GR73632 was more potent than SP, NKA or NKB at causing the histamine-independent extravasation of plasma proteins into the skin after intradermal administration. The NK-2 agonist, GR64349 and the NK-3 agonist, senktide were without significant effect in this model. These agonists are useful tools for characterizing neurokinin receptor-mediated actions both in vitro and in vivo.

  1. Improved heterologous protein production by a tripeptidyl peptidase gene (AosedD) disruptant of the filamentous fungus Aspergillus oryzae.

    PubMed

    Zhu, Lin; Nemoto, Takeshi; Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2012-01-01

    Proteolytic degradation is one of the serious bottlenecks limiting the yields of heterologous protein production by Aspergillus oryzae. In this study, we selected a tripeptidyl peptidase gene AosedD (AO090166000084) as a candidate potentially degrading the heterologous protein, and performed localization analysis of the fusion protein AoSedD-EGFP in A. oryzae. As a result, the AoSedD-EGFP was observed in the septa and cell walls as well as in the culture medium, suggesting that AoSedD is a secretory enzyme. An AosedD disruptant was constructed to investigate an effect of AoSedD on the production level of heterologous proteins and protease activity. Both of the total protease and tripeptidyl peptidase activities in the culture medium of the AosedD disruptant were decreased as compared to those of the control strain. The maximum yields of recombinant bovine chymosin (CHY) and human lysozyme (HLY) produced by the AosedD disruptants showed approximately 2.9- and 1.7-fold increases, respectively, as compared to their control strains. These results suggest that AoSedD is one of the major proteases involved in the proteolytic degradation of recombinant proteins in A. oryzae.

  2. Response of the kallikrein-kinin and renin-angiotensin systems to saline infusion and upright posture.

    PubMed Central

    Wong, P Y; Talamo, R C; Williams, G H; Colman, R W

    1975-01-01

    The possibility that bradykinin, a potent vasodilator, might be a physiological antagonist of the renin-angiotensin system was investigated. 11 norman subjects, ranging in age from 21 to 33 yr were studied. Seven of the subjects were given a 10 meq sodium, 100 meq potassium, 2500 ml isocaloric diet. After metabolic balance was achieved, they were infused with either 1 liter of 5 per cent glucose over 2 h or 2 liters of 0.9 per cent saline over 4 h. During the infusions, plasma renin activity (PRA), angiotensin II (A II), prekallikrein, bradykinin, and aldosterone levels were frequently determined. Plasma prekallikrein and kallikrein inhibitor did not change during the infusion of either glucose or saline. In subjects receiving saline, plasma bradykinin fell from 3.9 plus or minus 1.5 (SEM) ng/ml at 0 min to 0.93 plus or minus 0.2 at 30 min and 0.95 plus or minus 0.3 at 120 min. These changes paralleled the decrease in PRA over the same period (7.9 plus or minus 1.3 ng/ml/h to 5.6 plus or minus 0.8 at 30 min and 3.5 plus or minus 0.7 at 120 min). Similarly, A II fell from 113 plus or minus 12 pg/ml to 62 plus or minus 10 and 48 plus or minus 5, respectively, at 30 and 120 min. In contrast, the control group infused with glucose showed no change in bradykinin, A II, or PRA. Another four subjects were given a constant 200 meq sodium/100 meq potassium isocaloric diet. After metabolic balance was achieved, they were kept supine and fasting overnight. At 9 a.m. they assumed an upright position and began walking a fixed distance (200 ft) at a normal rate (3-4 ft/s). Plasma prekallikrein and kallikrein inhibitor did not change during the posture study. The plasma bradykinin rose from a base line of 0.54 plus or minus 0.01 (SEM) ng/ml to 0.96 plus or minus 0.13 at 20 min. 0.77 plus or minus 0.18 at 60 min, and 0.96 plus or minus 0.07 at 120 min. These changes parallel the increase in PRA over the same period (1.65 plus or minus 3.3 ng/ml/h to 3.6 plus or minus 0.85 at 20

  3. Dipeptidyl peptidase IV deficiency increases susceptibility to angiotensin-converting enzyme inhibitor-induced peritracheal edema.

    PubMed

    Byrd, James Brian; Shreevatsa, Ajai; Putlur, Pradeep; Foretia, Denis; McAlexander, Laurie; Sinha, Tuhin; Does, Mark D; Brown, Nancy J

    2007-08-01

    Serum dipeptidyl peptidase IV (DPPIV) activity is decreased in some individuals with ACE inhibitor-associated angioedema. ACE and DPPIV degrade substance P, an edema-forming peptide. The contribution of impaired degradation of substance P by DPPIV to the pathogenesis of ACE inhibitor-associated angioedema is unknown. We sought to determine whether DPPIV deficiency results in increased edema formation during ACE inhibition. We also sought to develop an animal model using magnetic resonance imaging to quantify ACE inhibitor-induced edema. The effect of genetic DPPIV deficiency on peritracheal edema was assessed in F344 rats after treatment with saline, captopril (2.5 mg/kg), or captopril plus the neurokinin receptor antagonist spantide (100 mug/kg) by using serial T2-weighted magnetic resonance imaging. Serum dipeptidyl peptidase activity was dramatically decreased in DPPIV-deficient rats (P < .001). The volume of peritracheal edema was significantly greater in captopril-treated DPPIV-deficient rats than in saline-treated DPPIV-deficient rats (P = .001), saline-treated rats of the normal substrain (P < .001), or captopril-treated rats of the normal substrain (P = .001). Cotreatment with spantide attenuated peritracheal edema in captopril-treated DPPIV-deficient rats (P = .005 vs captopril-treated DPPIV-deficient rats and P = .57 vs saline-treated DPPIV-deficient rats). DPPIV deficiency predisposes to peritracheal edema formation when ACE is inhibited through a neurokinin receptor-dependent mechanism. Magnetic resonance imaging is useful for modeling ACE inhibitor-associated angioedema in rats. Genetic or environmental factors that decrease DPPIV activity might increase the risk of ACE inhibitor-associated angioedema.

  4. Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II

    PubMed Central

    Chuang, Crystal K.; Rockel, Beate; Seyit, Gönül; Walian, Peter J.; Schönegge, Anne–Marie; Peters, Jürgen; Zwart, Petrus H.; Baumeister, Wolfgang; Jap, Bing K.

    2010-01-01

    Tripeptidyl peptidase II (TPP II) is the largest known eukaryotic protease (6MDa). It is believed to act downstream of the 26S proteasome cleaving tripeptides from the N– termini of longer peptides and it is implicated in numerous cellular processes. Here we report the structure of Drosophila TPP II determined by a hybrid approach: The structure of the dimer was solved by x–ray crystallography and docked into the three– dimensional map of the holocomplex obtained by single-particle cryo-electron microscopy. The resulting structure reveals the compartmentalization of the active sites inside a system of chambers and suggests the existence of a molecular ruler determining the size of the cleavage products. Furthermore, the structure suggests a model for activation of TPP II involving the relocation of a flexible loop and a repositioning of the active–site serine, coupling it to holocomplex assembly and active site sequestration. PMID:20676100

  5. Purification and Characterization of an X-Prolyl-Dipeptidyl Peptidase from Lactobacillus sakei

    PubMed Central

    Sanz, Yolanda; Toldrá, Fidel

    2001-01-01

    An X-prolyl-dipeptidyl peptidase has been purified from Lactobacillus sakei by ammonium sulfate fractionation and five chromatographic steps, which included hydrophobic interaction, anion-exchange chromatography, and gel filtration chromatography. This procedure resulted in a recovery yield of 7% and an increase in specificity of 737-fold. The enzyme appeared to be a dimer with a subunit molecular mass of approximately 88 kDa. Optimal activity was shown at pH 7.5 and 55°C. The enzyme was inhibited by serine proteinase inhibitors and several divalent cations (Cu2+, Hg2+, and Zn2+). The enzyme almost exclusively hydrolyzed X-Pro from the N terminus of each peptide as well as fluorescent and colorimetric substrates; it also hydrolyzed X-Ala at the N terminus, albeit at lower rates. Km s for Gly-Pro- and Lys-Ala-7-amido-4-methylcoumarin were 29 and 88 μM, respectively; those for Gly-Pro- and Ala-Pro-p-nitroanilide were 192 and 50 μM, respectively. Among peptides, β-casomorphin 1-3 was hydrolyzed at the highest rates, while the relative hydrolysis of the other tested peptides was only 1 to 12%. The potential role of the purified enzyme in the proteolytic pathway by catalyzing the hydrolysis of peptide bonds involving proline is discussed. PMID:11282638

  6. A peptidase in human platelets that deamidates tachykinins. Probable identity with the lysosomal "protective protein".

    PubMed

    Jackman, H L; Tan, F L; Tamei, H; Beurling-Harbury, C; Li, X Y; Skidgel, R A; Erdös, E G

    1990-07-05

    We discovered an enzyme in human platelets that deamidates substance P and other tachykinins. Because an amidated carboxyl terminus is important for biological activity, we purified and characterized this deamidase. The enzyme, released from human platelets by thrombin, was purified to homogeneity by ammonium sulfate precipitation, followed by chromatography on an octyl-Sepharose column and chromatofocusing on PBE 94. The purified enzyme exhibits esterase, peptidase, and deamidase activities. The peptidase activity (with furylacryloyl-Phe-Phe) is optimal at pH 5.0 while the esterase (benzoyl-tyrosine ethyl ester) and deamidase (D-Ala2-Leu5-enkephalinamide) activities are optimal at pH 7.0. With biologically important peptides, the enzyme acts both as a deamidase (substance P, neurokinin A, and eledoisin) and a carboxy-peptidase (with bradykinin, angiotensin I, substance P-free acid, oxytocin-free acid) at neutrality, although the carboxypeptidase action is faster at pH 5.5. Enkephalins, released upon deamidation of enkephalinamides, were not cleaved. Gly9-NH2 of oxytocin was released without deamidation. Peptides with a penultimate Arg residue were not hydrolyzed. Some properties of the deamidase are similar to those reported for cathepsin A. The deamidase is inhibited by diisopropylfluorophosphate, inhibitors of chymotrypsin-type enzymes, and mercury compounds while other inhibitors of catheptic enzymes, trypsin-like enzymes, and metalloproteases were ineffective. In gel filtration, the native enzyme has an Mr = 94,000 while in non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis the Mr = 52,000 indicating it exists as a dimer. After reduction, deamidase dissociates into two chains of Mr = 33,000 and 21,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. [3H]diisopropylfluorophosphate labeled the active site serine in the Mr = 33,000 chain. The first 25 amino acids of both chains were sequenced. They are identical with

  7. A novel plant enzyme with dual activity: an atypical Nudix hydrolase and a dipeptidyl peptidase III

    PubMed Central

    Karačić, Zrinka; Vukelić, Bojana; Ho, Gabrielle H.; Jozić, Iva; Sučec, Iva; Salopek-Sondi, Branka; Kozlović, Marija; Brenner, Steven E.; Ludwig-Müller, Jutta; Abramić, Marija

    2017-01-01

    In a search for plant homologues of dipeptidyl peptidase III (DPP III) family, we found a predicted protein from the moss Physcomitrella patens (UniProt entry: A9TLP4), which shared 61% sequence identity with the Arabidopsis thaliana uncharacterized protein, designated Nudix hydrolase 3. Both proteins contained all conserved regions of the DPP III family, but instead of the characteristic hexapeptide HEXXGH zinc-binding motif, they possessed a pentapeptide HEXXH, and at the N-terminus, a Nudix box, a hallmark of Nudix hydrolases, known to act upon a variety of nucleoside diphosphate derivatives. To investigate their biochemical properties, we expressed heterologously and purified Physcomitrella (PpND) and Arabidopsis (AtND) protein. Both hydrolyzed, with comparable catalytic efficiency, the isopentenyl diphosphate (IPP), a universal precursor for the biosynthesis of isoprenoid compounds. In addition, PpND dephosphorylated four purine nucleotides (ADP, dGDP, dGTP, and 8-oxo-dATP) with strong preference for oxidized dATP. Furthermore, PpND and AtND showed DPP III activity against dipeptidyl-2-arylamide substrates, which they cleaved with different specificity. This is the first report of a dual activity enzyme, highly conserved in land plants, which catalyses the hydrolysis of a peptide bond and of a phosphate bond, acting both as a dipeptidyl peptidase III and an atypical Nudix hydrolase. PMID:27467751

  8. Effect of peptidases on the ability of exogenous and endogenous neurokinins to produce neurokinin 1 receptor internalization in the rat spinal cord.

    PubMed

    Marvizon, Juan Carlos G; Wang, Xueren; Lao, Li-Jun; Song, Bingbing

    2003-12-01

    The ability of peptidases to restrict neurokinin 1 receptor (NK1R) activation by exogenously applied or endogenously released neurokinins was investigated by measuring NK1R internalization in rat spinal cord slices. Concentration-response curves for substance P and neurokinin A were obtained in the presence and absence of 10 microm thiorphan, an inhibitor of neutral endopeptidase (EC 3.4.24.11), plus 10 microm captopril, an inhibitor of dipeptidyl carboxypeptidase (EC 3.4.15.1). These inhibitors significantly decreased the EC50 of substance P to produce NK1R internalization from 32 to 9 nm, and the EC50 of neurokinin A from 170 to 60 nm. Substance P was significantly more potent than neurokinin A, both with and without these peptidase inhibitors. In the presence of peptidase inhibitors, neurokinin B was 10 times less potent than neurokinin A and 64 times less potent than substance P (EC50=573 nm). Several aminopeptidase inhibitors (actinonin, amastatin, bacitracin, bestatin and puromycin) failed to further increase the effect of thiorphan plus captopril on the NK1R internalization produced by 10 nm substance P. Electrical stimulation of the dorsal root produced NK1R internalization by releasing endogenous neurokinins. Thiorphan plus captopril increased NK1R internalization produced by 1 Hz stimulation, but not by 30 Hz stimulation. Therefore, NEN and DCP restrict NK1R activation by endogenous neurokinins when they are gradually released by low-frequency firing of primary afferents, but become saturated or inhibited when primary afferents fire at a high frequency.

  9. (2S,4S)-4-Fluoro-1-{[(2-hydroxy-1,1-dimethylethyl)amino]acetyl}-pyrrolidine-2-carbonitrile monobenzenesulfonate (TS-021) is a selective and reversible dipeptidyl peptidase IV inhibitor.

    PubMed

    Tajima, Atsushi; Yamamoto, Koji; Kozakai, Akinori; Okumura-Kitajima, Lisa; Mita, Yasuo; Kitano, Kiyokazu; Jingu, Shigeji; Nakaike, Shiro

    2011-03-25

    The incretin hormone glucagon-like peptide-1 (GLP-1) has significant roles in the regulation of postprandial glucose metabolism, and the active form of GLP-1 is rapidly degraded by dipeptidyl peptidase (DPP)-IV. Therefore, DPP-IV inhibition is a promising approach for the treatment of type 2 diabetes. In the present study, we investigated the character of a DPP-IV inhibitor, TS-021, (2S, 4S)-4-fluoro-1-{[(2-hydroxy-1,1-dimethylethyl)amino]acetyl}-pyrrolidine-2-carbonitrile monobenzenesulfonate both in vitro and in vivo. TS-021 inhibits DPP-IV activity in human plasma with an IC(50) value of 5.34nM. In kinetics experiments, TS-021 had a relatively higher dissociation rate constant, with a k(off) value of 1.09×10(-3)s, despite exhibiting a potent human plasma DPP-IV inhibition activity with a K(i) value of 4.96nM. TS-021 exhibited significant inhibition selectivity against DPP-8 (>600 fold), DPP-9 (>1200 fold) and other peptidases examined (>15,000 fold). In normal rats, dogs and monkeys, a single oral dose of TS-021 exhibited favorable pharmacokinetic profiles. In Zucker fatty (fa/fa) rats, a rat model of obesity and impaired glucose tolerance, the oral administration of TS-021 resulted in the suppression of plasma DPP-IV activity and an increase in the active form of GLP-1. Furthermore, TS-021 exhibited a significant improvement in glucose tolerance by increasing the plasma insulin level during oral glucose tolerance tests at doses of 0.02-0.5mg/kg. These results suggest that TS-021 is a selective and reversible dipeptidyl peptidase IV inhibitor and has excellent characteristics as an oral anti-diabetic agent for postprandial hyperglycemia in patients with impaired glucose tolerance or type 2 diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Inhibitor-based validation of a homology model of the active-site of tripeptidyl peptidase II.

    PubMed

    De Winter, Hans; Breslin, Henry; Miskowski, Tamara; Kavash, Robert; Somers, Marijke

    2005-04-01

    A homology model of the active site region of tripeptidyl peptidase II (TPP II) was constructed based on the crystal structures of four subtilisin-like templates. The resulting model was subsequently validated by judging expectations of the model versus observed activities for a broad set of prepared TPP II inhibitors. The structure-activity relationships observed for the prepared TPP II inhibitors correlated nicely with the structural details of the TPP II active site model, supporting the validity of this model and its usefulness for structure-based drug design and pharmacophore searching experiments.

  11. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel

    PubMed Central

    Coda, Alvin B.; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C.; Del Rosso, James Q.; Gallo, Richard L.

    2014-01-01

    Background Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. Objective We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Methods Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. Results AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Limitations Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. Conclusions These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. PMID:23871720

  12. Active Plasma Kallikrein Localizes to Mast Cells and Regulates Epithelial Cell Apoptosis, Adipocyte Differentiation, and Stromal Remodeling during Mammary Gland Involution*

    PubMed Central

    Lilla, Jennifer N.; Joshi, Ravi V.; Craik, Charles S.; Werb, Zena

    2009-01-01

    The plasminogen cascade of serine proteases directs both development and tumorigenesis in the mammary gland. Plasminogen can be activated to plasmin by urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), and plasma kallikrein (PKal). The dominant plasminogen activator for mammary involution is PKal, a serine protease that participates in the contact activation system of blood coagulation. We observed that the prekallikrein gene (Klkb1) is expressed highly in the mammary gland during stromal remodeling periods including puberty and postlactational involution. We used a variant of ecotin (ecotin-PKal), a macromolecular inhibitor of serine proteases engineered to be highly specific for active PKal, to demonstrate that inhibition of PKal with ecotin-PKal delays alveolar apoptosis, adipocyte replenishment, and stromal remodeling in the involuting mammary gland, producing a phenotype resembling that resulting from plasminogen deficiency. Using biotinylated ecotin-PKal, we localized active PKal to connective tissue-type mast cells in the mammary gland. Taken together, these results implicate PKal as an effector of the plasminogen cascade during mammary development. PMID:19297327

  13. Differential processing of substance P and neurokinin A by plasma dipeptidyl(amino)peptidase IV, aminopeptidase M and angiotensin converting enzyme.

    PubMed

    Wang, L H; Ahmad, S; Benter, I F; Chow, A; Mizutani, S; Ward, P E

    1991-01-01

    In addition to plasma metabolism of substance P (SP) by angiotensin converting enzyme (ACE; EC 3.4.15.1) (less than 1.0 nmol/min/ml), the majority of SP hydrolysis by rat and human plasma was due to dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5) (3.15-5.91 nmol/min/ml), which sequentially converted SP to SP(3-11) and SP(5-11). In turn, the SP(5-11) metabolite was rapidly hydrolyzed by rat and human plasma aminopeptidase M (AmM; EC 3.4.11.2) (24.2-25.5 nmol/min/ml). The Km values of SP for DAP IV and of SP(5-11) for AmM ranged from 32.7 to 123 microM. In contrast, neurokinin A (NKA) was resistant to both ACE and DAP IV but was subject to N-terminal hydrolysis by AmM (3.76-10.8 nmol/min/ml; Km = 90.7 microM). These data demonstrate differential processing of SP and NKA by specific peptidases in rat and human plasma.

  14. Structural and Molecular Basis for the Novel Catalytic Mechanism and Evolution of DddP, an Abundant Peptidase-Like Bacterial Dimethylsulfoniopropionate Lyase: A New Enzyme from an Old Fold

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Z.; Wang, P.; Chen, X. L.; Li, C. Y.; Gao, X.; Zhu, D.; Xie, B. B.; Qin, Q. L.; Zhang, X. Y.; Su, H. N.; Zhou, B. C.; Xun, L.

    2015-12-01

    The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile dimethyl sulfide (DMS) and is an important step in global sulfur and carbon cycles. DddP is a DMSP lyase in marine bacteria and the deduced dddP gene product is abundant in marine metagenomic data sets. However, DddP belongs to the M24 peptidase family according to sequence alignment. Peptidases hydrolyze C-N bonds but DddP is deduced to cleave C-S bonds. Mechanisms responsible for this striking functional shift are currently unknown. We determined the structures of DMSP lyase RlDddP (the DddP from Ruegeria lacuscaerulensis ITI_1157) bound to inhibitory 2-(N-morpholino) ethanesulfonic acid or PO43- and of two mutants of RlDddP bound to acrylate. Based on structural, mutational and biochemical analyses, we characterized a new ion-shift catalytic mechanism of RlDddP for DMSP cleavage. Further, we suggested the structural mechanism leading to the loss of peptidase activity and the subsequent development of DMSP lyase activity in DddP. This study sheds light on the catalytic mechanism and the divergent evolution of DddP, leading to a better understanding of marine bacterial DMSP catabolism and global DMS production.

  15. Tissue kallikrein promotes cardiac neovascularization by enhancing endothelial progenitor cell functional capacity.

    PubMed

    Yao, Yuyu; Sheng, Zulong; Li, Yefei; Yan, Fengdi; Fu, Cong; Li, Yongjun; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee

    2012-08-01

    Tissue kallikrein (TK) has been demonstrated to improve neovasculogenesis after myocardial infarction (MI). In the present study, we examined the role and underlying mechanisms of TK in peripheral endothelial progenitor cell (EPC) function. Peripheral blood-derived mononuclear cells containing EPCs were isolated from rat. The in vitro effects of TK on EPC differentiation, apoptosis, migration, and vascular tube formation capacity were studied in the presence or absence of TK, kinin B(2) receptor antagonist (icatibant), and phosphatidylinositol-3 kinase inhibitor (LY294002). Apoptosis was evaluated by flow-cytometry analysis using Annexin V-FITC/PI staining, as well as western-blot analysis of Akt phosphorylation and cleaved caspase-3. Using an MI mouse model, we then examined the in vivo effects of human TK gene adenoviral vector (Ad.hTK) administration on the number of CD34(+)Flk-1(+) progenitors in the peripheral circulation, heart tissue, extent of vasculogenesis, and heart function. Administration of TK significantly increased the number of Dil-LDL/UEA-lectin double-positive early EPCs, as well as their migration and tube formation properties in vitro. Transduction of TK in cultured EPCs attenuated apoptosis induced by hypoxia and led to an increase in Akt phosphorylation and a decrease in cleaved caspase-3 levels. The beneficial effects of TK were blocked by pretreatment with icatibant and LY294002. The expression of recombinant human TK in the ischemic mouse heart significantly improved cardiac contractility and reduced infarct size 7 days after gene delivery. Compared with the Ad.Null group, Ad.hTK reduced mortality and preserved left ventricular function by increasing the number of CD34(+)Flk-1(+) EPCs and promoting the growth of capillaries and arterioles in the peri-infarct myocardium. These data provide direct evidence that TK promotes vessel growth by increasing the number of EPCs and enhancing their functional properties through the kinin B(2) receptor

  16. Thrombin-stimulated platelet aggregation is inhibited by kallikrein in a time- and concentration-dependent manner.

    PubMed

    Veloso, D

    2003-01-01

    Many in vitro studies have shown that activation of prekallikrein (PK) to kallikrein (KAL) in normal plasma triggers rapid activation of the coagulation cascade. In agreement, the coagulation activation is impaired in PK-deficient plasma. Paradoxically, PK-deficient patients show a tendency to thrombosis. To investigate the discrepancy between the in vitro and in vivo findings, we analyzed the effect of KAL on the rate of platelet aggregation. For this research, physiologic concentrations of washed human platelets were incubated for 5 and/or 10 min with approximately 2.2 to 88 nM human plasma KAL (< 1/100 to approximately 1/3 of PK concentrations in plasma) prior to the addition of high concentrations of alpha-thrombin (54 nM) or fibrinogen plus ADP. KAL concentrations were arbitrarily selected on the assumption that concentrations of free KAL (the enzymatically active species) were minute in normal plasma and higher when KAL production was enhanced, and/or inhibitors were depleted. Full platelet aggregation was that seen in the absence of KAL or PK. Inhibition of platelet aggregation stimulated by thrombin was markedly increased with increased KAL concentrations and incubation times. The degree of inhibition by KAL was smaller when ADP was the agonist. The data suggest that KAL may play a role in the modulation of platelet aggregation in vivo under normal conditions as well as when prolonged, high concentrations of KAL occur in blood. The data may also help to explain the intriguing observation that PK-deficient patients show a tendency to thrombotic episodes and myocardial infarction whereas in vitro assays predict bleeding.

  17. Tripeptidyl peptidase II promotes fat formation in a conserved fashion.

    PubMed

    McKay, Renée M; McKay, James P; Suh, Jae Myoung; Avery, Leon; Graff, Jonathan M

    2007-12-01

    Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner.

  18. Exosome-like vesicles with dipeptidyl peptidase IV in human saliva.

    PubMed

    Ogawa, Yuko; Kanai-Azuma, Masami; Akimoto, Yoshihiro; Kawakami, Hayato; Yanoshita, Ryohei

    2008-06-01

    Saliva contains a large number of proteins that participate in the protection of oral tissue. We found, for the first time, small vesicles (30-130 nm in diameter) in human whole saliva. Vesicles from saliva were identified by electron microscopy after isolation by gel-filtration on Sepharose CL-4B. They resemble exosomes, which are vesicles with an endosome-derived limiting membrane that are secreted by a diverse range of cell types. We performed a biochemical characterization of these vesicles by amino acid sequence analysis and Western blot analysis. We found that they contain dipeptidyl peptidase IV (DPP IV), galectin-3 and immunoglobulin A, which have potential to influence immune response. The DPP IV in the vesicles was metabolically active in cleaving substance P and glucose-dependent insulinotropic polypeptide to release N-terminal dipeptides. Our results demonstrate that human whole saliva contains exosome-like vesicles; they might participate in the catabolism of bioactive peptides and play a regulatory role in local immune defense in the oral cavity.

  19. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    PubMed Central

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  20. Sequencing and characterization of asclepain f: the first cysteine peptidase cDNA cloned and expressed from Asclepias fruticosa latex.

    PubMed

    Trejo, Sebastián A; López, Laura M I; Caffini, Néstor O; Natalucci, Claudia L; Canals, Francesc; Avilés, Francesc X

    2009-07-01

    Asclepain f is a papain-like protease previously isolated and characterized from latex of Asclepias fruticosa. This enzyme is a member of the C1 family of cysteine proteases that are synthesized as preproenzymes. The enzyme belongs to the alpha + beta class of proteins, with two disulfide bridges (Cys22-Cys63 and Cys56-Cys95) in the alpha domain, and another one (Cys150-Cys201) in the beta domain, as was determined by molecular modeling. A full-length 1,152 bp cDNA was cloned by RT-RACE-PCR from latex mRNA. The sequence was predicted as an open reading frame of 340 amino acid residues, of which 16 residues belong to the signal peptide, 113 to the propeptide and 211 to the mature enzyme. The full-length cDNA was ligated to pPICZalpha vector and expressed in Pichia pastoris. Recombinant asclepain f showed endopeptidase activity on pGlu-Phe-Leu-p-nitroanilide and was identified by PMF-MALDI-TOF MS. Asclepain f is the first peptidase cloned and expressed from mRNA isolated from plant latex, confirming the presence of the preprocysteine peptidase in the latex.

  1. A second gene for type I signal peptidase in Bradyrhizobium japonicum, sipF, is located near genes involved in RNA processing and cell division.

    PubMed

    Bairl, A; Müller, P

    1998-11-01

    The TnphoA-induced Bradyrhizobium japonicum mutant 184 shows slow growth and aberrant colonization of soybean nodules. Using a DNA fragment adjacent to the transposon insertion site as a probe, a 3.4-kb BglII fragment of B. japonicum 110spc4 DNA was identified and cloned. Sequence analysis indicated that two truncated ORFs and three complete ORFs were encoded on this fragment. A database search revealed homologies to several other prokaryotic proteins: PdxJ (an enzyme involved in vitamin B6 biosynthesis), AcpS (acyl carrier protein synthase), Lep or Sip (prokaryotic type I signal peptidase), RNase III (an endoribonuclease which processes double-stranded rRNA precursors and mRNA) and Era (a GTP-binding protein required for cell division). The mutation in strain 184 was found to lie within the signal peptidase gene, which was designated sipF. Therefore, sipF is located in a region that encodes gene products involved in posttranscriptional and posttranslational processing processes. By complementation of the lep(ts) E. coli mutant strain IT41 it was demonstrated that sipF indeed encodes a functional signal peptidase, and genetic complementation of B. japonicum mutant 184 by a 2.8-kb SalI fragment indicated that sipF is expressed from a promoter located directly upstream of sipF. Using a non-polar kanamycin resistance cassette, a specific sipF mutant was constructed which exhibited defects in symbiosis similar to those of the original mutant 184.

  2. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    NASA Technical Reports Server (NTRS)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  3. Involvement of DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP Pathways in Human Tissue Kallikrein 1 Protecting Erectile Function in Aged Rats

    PubMed Central

    Tang, Zhe; Rao, Ke; Wang, Tao; Chen, Zhong; Wang, Shaogang; Liu, Jihong; Wang, Daowen

    2017-01-01

    Our previous studies had reported that Human Tissue Kallikrein 1 (hKLK1) preserved erectile function in aged transgenic rats, while the detailed mechanism of hKLK1 protecting erectile function in aged rats through activation of cGMP and cAMP was not mentioned. To explore the latent mechanism, male wild-type Sprague-Dawley rats (WTR) and transgenic rats harboring the hKLK1 gene (TGR) were fed to 4 and 18 months old and divided into four groups: young WTR (yWTR) as the control, aged WTR (aWTR), aged TGR (aTGR) and aged TGRs with HOE140 (aTGRH). Erectile function of all rats was evaluated by cavernous nerve electrostimulation method and measured by the ratio of intracavernous pressure/ mean arterial pressure (ICP/MAP) in rats. Expression levels of cAMP and cGMP were assessed, and related signaling pathways were detected by western blot, immunohistochemistry and RT-PCR. Our experiment results showed erectile function of the aWTR group and aTGRH group was lower compared with those of other two groups. Also, expression levels of cAMP and cGMP were significantly lower than those of other two groups. Moreover, expressions of related signaling pathways including DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP were also downregulated in the corpus cavernosum of rats in aWTR group. Our finding revealed hKLK1 played a protective role in age-related ED. The DDAH/ADMA/NOS/cGMP and COX-2/PTGIS/cAMP pathways that were linked to the mechanism hKLK1 could increase the levels of cGMP and cAMP, which might provide novel therapy targets for age-related ED. PMID:28103290

  4. A novel N-terminal motif of dipeptidyl peptidase-like proteins produces rapid inactivation of KV4.2 channels by a pore-blocking mechanism.

    PubMed

    Jerng, Henry H; Dougherty, Kevin; Covarrubias, Manuel; Pfaffinger, Paul J

    2009-11-01

    The somatodendritic subthreshold A-type K(+) current in neurons (I(SA)) depends on its kinetic and voltage-dependent properties to regulate membrane excitability, action potential repetitive firing, and signal integration. Key functional properties of the K(V)4 channel complex underlying I(SA) are determined by dipeptidyl peptidase-like proteins known as dipeptidyl peptidase 6 (DPP6) and dipeptidyl peptidase 10 (DPP10). Among the multiple known DPP10 isoforms with alternative N-terminal sequences, DPP10a confers exceptionally fast inactivation to K(V)4.2 channels. To elucidate the molecular basis of this fast inactivation, we investigated the structure-function relationship of the DPP10a N-terminal region and its interaction with the K(V)4.2 channel. Here, we show that DPP10a shares a conserved N-terminal sequence (MNQTA) with DPP6a (aka DPP6-E), which also induces fast inactivation. Deletion of the NQTA sequence in DPP10a eliminates this dramatic fast inactivation, and perfusion of MNQTA peptide to the cytoplasmic face of inside-out patches inhibits the K(V)4.2 current. DPP10a-induced fast inactivation exhibits competitive interactions with internally applied tetraethylammonium (TEA), and elevating the external K(+) concentration accelerates recovery from DPP10a-mediated fast inactivation. These results suggest that fast inactivation induced by DPP10a or DPP6a is mediated by a common N-terminal inactivation motif via a pore-blocking mechanism. This mechanism may offer an attractive target for novel pharmacological interventions directed at impairing I(SA) inactivation and reducing neuronal excitability.

  5. The high molecular weight dipeptidyl peptidase IV Pol d 3 is a major allergen of Polistes dominula venom.

    PubMed

    Schiener, Maximilian; Hilger, Christiane; Eberlein, Bernadette; Pascal, Mariona; Kuehn, Annette; Revets, Dominique; Planchon, Sébastien; Pietsch, Gunilla; Serrano, Pilar; Moreno-Aguilar, Carmen; de la Roca, Federico; Biedermann, Tilo; Darsow, Ulf; Schmidt-Weber, Carsten B; Ollert, Markus; Blank, Simon

    2018-01-22

    Hymenoptera venom allergy can cause severe anaphylaxis in untreated patients. Polistes dominula is an important elicitor of venom allergy in Southern Europe as well as in the United States. Due to its increased spreading to more moderate climate zones, Polistes venom allergy is likely to gain importance also in these areas. So far, only few allergens of Polistes dominula venom were identified as basis for component-resolved diagnostics. Therefore, this study aimed to broaden the available panel of important Polistes venom allergens. The 100 kDa allergen Pol d 3 was identified by mass spectrometry and found to be a dipeptidyl peptidase IV. Recombinantly produced Pol d 3 exhibited sIgE-reactivity with approximately 66% of Polistes venom-sensitized patients. Moreover, its clinical relevance was supported by the potent activation of basophils from allergic patients. Cross-reactivity with the dipeptidyl peptidases IV from honeybee and yellow jacket venom suggests the presence of exclusive as well as conserved IgE epitopes. The obtained data suggest a pivotal role of Pol d 3 as sensitizing component of Polistes venom, thus supporting its status as a major allergen of clinical relevance. Therefore, Pol d 3 might become a key element for proper diagnosis of Polistes venom allergy.

  6. Effect of peptidases on the ability of exogenous and endogenous neurokinins to produce neurokinin 1 receptor internalization in the rat spinal cord

    PubMed Central

    Marvizón, Juan Carlos G; Wang, Xueren; Lao, Li-Jun; Song, Bingbing

    2003-01-01

    The ability of peptidases to restrict neurokinin 1 receptor (NK1R) activation by exogenously applied or endogenously released neurokinins was investigated by measuring NK1R internalization in rat spinal cord slices. Concentration–response curves for substance P and neurokinin A were obtained in the presence and absence of 10 μM thiorphan, an inhibitor of neutral endopeptidase (EC 3.4.24.11), plus 10 μM captopril, an inhibitor of dipeptidyl carboxypeptidase (EC 3.4.15.1). These inhibitors significantly decreased the EC50 of substance P to produce NK1R internalization from 32 to 9 nM, and the EC50 of neurokinin A from 170 to 60 nM. Substance P was significantly more potent than neurokinin A, both with and without these peptidase inhibitors. In the presence of peptidase inhibitors, neurokinin B was 10 times less potent than neurokinin A and 64 times less potent than substance P (EC50=573 nM). Several aminopeptidase inhibitors (actinonin, amastatin, bacitracin, bestatin and puromycin) failed to further increase the effect of thiorphan plus captopril on the NK1R internalization produced by 10 nM substance P. Electrical stimulation of the dorsal root produced NK1R internalization by releasing endogenous neurokinins. Thiorphan plus captopril increased NK1R internalization produced by 1 Hz stimulation, but not by 30 Hz stimulation. Therefore, NEN and DCP restrict NK1R activation by endogenous neurokinins when they are gradually released by low-frequency firing of primary afferents, but become saturated or inhibited when primary afferents fire at a high frequency. PMID:14623771

  7. Plasmodium falciparum signal peptide peptidase cleaves malaria heat shock protein 101 (HSP101). Implications for gametocytogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Michael; Russo, Crystal; Li, Xuerong

    Highlights: • PfSPP is an ER resident protease. • PfSPP is expressed both as a monomer and dimer. • The signal peptide of HSP101 is the first known substrate of PfSPP. • Reduced PfSPP activity may significantly affect ER homeostasis. - Abstract: Previously we described the identification of a Plasmodium falciparum signal peptide peptidase (PfSPP) functioning at the blood stage of malaria infection. Our studies also demonstrated that mammalian SPP inhibitors prevent malaria parasite growth at the late-ring/early trophozoite stage of intra-erythrocytic development. Consistent with its role in development, we tested the hypothesis that PfSPP functions at the endoplasmic reticulummore » of P.falciparum where it cleaves membrane-bound signal peptides generated following the enzyme activity of signal peptidase. The localization of PfSPP to the endoplasmic reticulum was confirmed by immunofluorescence microscopy and immunogold electron microscopy. Biochemical analysis indicated the existence of monomer and dimer forms of PfSPP in the parasite lysate. A comprehensive bioinformatics screen identified several candidate PfSPP substrates in the parasite genome. Using an established transfection based in vivo luminescence assay, malaria heat shock protein 101 (HSP101) was identified as a substrate of PfSPP, and partial inhibition of PfSPP correlated with the emergence of gametocytes. This finding unveils the first known substrate of PfSPP, and provides new perspectives for the function of intra-membrane proteolysis at the erythrocyte stage of malaria parasite life cycle.« less

  8. Neurotensin analogs [D-TYR11] and [D-PHE11]neurotensin resist degradation by brain peptidases in vitro and in vivo.

    PubMed

    Checler, F; Vincent, J P; Kitabgi, P

    1983-12-01

    The present study was designed to compare the susceptibility of neurotensin (NT), [3H]NT, [D-Tyr11]NT and [D-Phe11]NT to degradation by 1) rat brain synaptic membranes in vitro and 2) after i.c.v. administration in the rat in vivo. Degradation was assessed by purifying the peptides using reverse phase high-performance liquid chromatography and by measuring the amount of radioactive or absorbing (OD 230) material under each peptide peak. In contrast to NT, [D-Tyr11]NT and [D-Phe11]NT were resistant to degradation by brain synaptic peptidases in vitro. Furthermore, NT was rapidly metabolized in brain tissues after i.c.v. administration, whereas [D-Tyr11]NT was metabolically stable. The present data confirm the central role of NT residue Tyr11 in the mechanisms of NT inactivation by brain synaptic peptidases. They account for the higher in vivo potency of [D-Tyr11]NT as compared with its in vitro potency. Finally, they explain, at least in part, the need to administer large doses of NT in the brain in order to observe neurobehavioral and neuropharmacological effects.

  9. Identification of Dipeptidyl-Peptidase (DPP)5 and DPP7 in Porphyromonas endodontalis, Distinct from Those in Porphyromonas gingivalis.

    PubMed

    Nishimata, Haruka; Ohara-Nemoto, Yuko; Baba, Tomomi T; Hoshino, Tomonori; Fujiwara, Taku; Shimoyama, Yu; Kimura, Shigenobu; Nemoto, Takayuki K

    2014-01-01

    Dipeptidyl peptidases (DPPs) that liberate dipeptides from the N-terminal end of oligopeptides are crucial for the growth of Porphyromonas species, anaerobic asaccharolytic gram negative rods that utilize amino acids as energy sources. Porphyromonas endodontalis is a causative agent of periapical lesions with acute symptoms and Asp/Glu-specific DPP11 has been solely characterized in this organism. In this study, we identified and characterized two P. endodontalis DPPs, DPP5 and DPP7. Cell-associated DPP activity toward Lys-Ala-4-methylcoumaryl-7-amide (MCA) was prominent in P. endodontalis ATCC 35406 as compared with the Porphyromonas gingivalis strains ATCC 33277, 16-1, HW24D1, ATCC 49417, W83, W50, and HNA99. The level of hydrolysis of Leu-Asp-MCA by DPP11, Gly-Pro-MCA by DPP4, and Met-Leu-MCA was also higher than in the P. gingivalis strains. MER236725 and MER278904 are P. endodontalis proteins belong to the S9- and S46-family peptidases, respectively. Recombinant MER236725 exhibited enzymatic properties including substrate specificity, and salt- and pH-dependence similar to P. gingivalis DPP5 belonging to the S9 family. However, the kcat/Km figure (194 µM-1·sec-1) for the most potent substrate (Lys-Ala-MCA) was 18.4-fold higher as compared to the P. gingivalis entity (10.5 µM-1·sec-1). In addition, P. endodontalis DPP5 mRNA and protein contents were increased several fold as compared with those in P. gingivalis. Recombinant MER278904 preferentially hydrolyzed Met-Leu-MCA and exhibited a substrate specificity similar to P. gingivalis DPP7 belonging to the S46 family. In accord with the deduced molecular mass of 818 amino acids, a 105-kDa band was immunologically detected, indicating that P. endodontalis DPP7 is an exceptionally large molecule in the DPP7/DPP11/S46 peptidase family. The enhancement of four DPP activities was conclusively demonstrated in P. endodontalis, and remarkable Lys-Ala-MCA-hydrolysis was achieved by qualitative and quantitative

  10. Identification of Dipeptidyl-Peptidase (DPP)5 and DPP7 in Porphyromonas endodontalis, Distinct from Those in Porphyromonas gingivalis

    PubMed Central

    Nishimata, Haruka; Ohara-Nemoto, Yuko; Baba, Tomomi T.; Hoshino, Tomonori; Fujiwara, Taku; Shimoyama, Yu; Kimura, Shigenobu; Nemoto, Takayuki K.

    2014-01-01

    Dipeptidyl peptidases (DPPs) that liberate dipeptides from the N-terminal end of oligopeptides are crucial for the growth of Porphyromonas species, anaerobic asaccharolytic gram negative rods that utilize amino acids as energy sources. Porphyromonas endodontalis is a causative agent of periapical lesions with acute symptoms and Asp/Glu-specific DPP11 has been solely characterized in this organism. In this study, we identified and characterized two P. endodontalis DPPs, DPP5 and DPP7. Cell-associated DPP activity toward Lys-Ala-4-methylcoumaryl-7-amide (MCA) was prominent in P. endodontalis ATCC 35406 as compared with the Porphyromonas gingivalis strains ATCC 33277, 16-1, HW24D1, ATCC 49417, W83, W50, and HNA99. The level of hydrolysis of Leu-Asp-MCA by DPP11, Gly-Pro-MCA by DPP4, and Met-Leu-MCA was also higher than in the P. gingivalis strains. MER236725 and MER278904 are P. endodontalis proteins belong to the S9- and S46-family peptidases, respectively. Recombinant MER236725 exhibited enzymatic properties including substrate specificity, and salt- and pH-dependence similar to P. gingivalis DPP5 belonging to the S9 family. However, the k cat/K m figure (194 µM−1·sec−1) for the most potent substrate (Lys-Ala-MCA) was 18.4-fold higher as compared to the P. gingivalis entity (10.5 µM−1·sec−1). In addition, P. endodontalis DPP5 mRNA and protein contents were increased several fold as compared with those in P. gingivalis. Recombinant MER278904 preferentially hydrolyzed Met-Leu-MCA and exhibited a substrate specificity similar to P. gingivalis DPP7 belonging to the S46 family. In accord with the deduced molecular mass of 818 amino acids, a 105-kDa band was immunologically detected, indicating that P. endodontalis DPP7 is an exceptionally large molecule in the DPP7/DPP11/S46 peptidase family. The enhancement of four DPP activities was conclusively demonstrated in P. endodontalis, and remarkable Lys-Ala-MCA-hydrolysis was achieved by qualitative and

  11. Aspartate 496 from the subsite S2 drives specificity of human dipeptidyl peptidase III.

    PubMed

    Abramić, Marija; Karačić, Zrinka; Šemanjski, Maja; Vukelić, Bojana; Jajčanin-Jozić, Nina

    2015-04-01

    Human dipeptidyl peptidase III (hDPP III) is a member of the M49 metallopeptidase family, which is involved in intracellular protein catabolism and oxidative stress response. To investigate the structural basis of hDPP III preference for diarginyl arylamide, using site-directed mutagenesis, we altered its S2 subsite to mimic the counterpart in yeast enzyme. Kinetic studies revealed that the single mutant D496G lost selectivity due to the increase of the Km value. The D496G, but not S504G, showed significantly decreased binding of peptides with N-terminal arginine, and of tynorphin. The results obtained identify Asp496 as an important determinant of human DPP III substrate specificity.

  12. Tripeptidyl peptidase II promotes fat formation in a conserved fashion

    PubMed Central

    McKay, Renée M; McKay, James P; Suh, Jae Myoung; Avery, Leon; Graff, Jonathan M

    2007-01-01

    Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner. PMID:17932511

  13. Mechanism of degradation of LH-RH and neurotensin by synaptosomal peptidases.

    PubMed

    McDermott, J R; Smith, A I; Dodd, P R; Hardy, J A; Edwardson, J A

    1983-01-01

    The products of degradation of LH-RH and neurotensin by synaptosomes isolated from rat hypothalamus and cortex have been identified. LH-RH is cleaved at Tyr5-Gly6 and Pro9-Gly10 giving rise to LH-RH (1-5), LH-RH (6-10) and LH-RH (1-9). Neurotensin is cleaved at Arg8-Arg9, Pro10-Tyr11 and Ile12-Leu13, giving neurotensin (1-8), neurotensin (1-10), neurotensin (1-12) and neurotensin (9-13) as major products. While most of the peptidase activity is localized in the cytoplasmic fraction, a small but significant proportion is membrane bound. For LH-RH, the specificity of the membrane-bound activity is similar to that in the cytosol fraction; for neurotensin, the membrane fraction preferentially gives rise to the (1-10) and (1-11) peptides. The most potent inhibitors of the LH-RH and neurotensin degrading enzymes in synaptosomes are heavy metal ions (mercury and copper), p-chloromercuribenzoate and 1,10 phenanthroline.

  14. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromova, T. Yu., E-mail: duk@img.ras.ru; Demidyuk, I. V.; Kostrov, S. V.

    2008-09-15

    A protealysin precursor (the enzyme of the peptidase family M4) was crystallized for the first time. The crystal-growth conditions were found, and single crystals of the protein with dimensions of 0.3-0.5 mm were grown. The preliminary X-ray diffraction study of the enzyme was performed. The protealysin precursor was shown to crystallize in two crystal modifications suitable for the X-ray diffraction study of the three-dimensional structure of the protein molecule at atomic resolution.

  15. Degradation of substance P by membrane peptidases in the rat substantia nigra: effect of selective inhibitors.

    PubMed

    Oblin, A; Danse, M J; Zivkovic, B

    1988-01-11

    The hydrolysis of substance P by membrane peptidases prepared from the rat substantia nigra was studied in the presence of selective inhibitors. Substance P degradation by synaptic and mitochondrial membranes was completely inhibited by 1,10-phenanthroline (1 mM), a non-specific metallopeptidase inhibitor. Captopril and bestatine, selective inhibitors of angiotensin converting enzyme and aminopeptidases respectively, were without effects. However, phosphoramidon (1 microM), a putative 'enkephalinase' inhibitor, selectively inhibited substance P degradation by synaptic membranes. These results suggest that a phosphoramidon-sensitive endopeptidase may be the principal enzyme responsible for substance P degradation in substantia nigra.

  16. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    PubMed Central

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. PMID:24159389

  17. Sarcopenia in Elderly Diabetic Patients: Role of Dipeptidyl Peptidase 4 Inhibitors.

    PubMed

    Rizzo, Maria Rosaria; Barbieri, Michelangela; Fava, Ilaria; Desiderio, Manuela; Coppola, Carla; Marfella, Raffaele; Paolisso, Giuseppe

    2016-10-01

    Our study aimed to investigate the effect of dipeptidyl peptidase 4 inhibitors (DPP4-I) on sarcopenic parameters in elderly type 2 diabetic patients. All elderly diabetic patients were invited to present themselves at our outpatient Geriatric Centre to undergo to evaluation of glycemic, inflammatory, and sarcopenic parameters and to perform a meal test for glucagon-like peptide-1 analogue (GLP-1) activity evaluation. According to European Working Group on Sarcopenia in Older People (EWGSOP) criteria, sarcopenic parameters were assessed by bioelectrical impedance analysis (BIA) and Kern dynamometer and 4-m gait speed tests. All patients received standardized meals for the assessment of postprandial levels of GLP-1 activity. Data of 80 elderly diabetic patients treated with oral glucose-lowering drugs (DPP4-I or Sulfonylureas Group) for at least 24 months before enrollment were analyzed. The DPP4-I Group showed appropriate glycemic control, lower levels of inflammatory parameters, a significant and greater increase, during interprandial periods, of GLP-1 activity, and better sarcopenic parameters (fat-free mass, skeletal muscle mass, and related indices, muscle strength, and gait speed) compared with the Sulfonylureas Group. Univariate analysis showed that sarcopenic parameters correlated with glycemic control and with GLP-1 area under the curve values. Multivariate analysis confirms these relationships. The results are consistent with the hypothesis that DPP4-I use might have a positive effect on the loss of muscle mass and its function. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  18. Cathelicidin, kallikrein 5, and serine protease activity is inhibited during treatment of rosacea with azelaic acid 15% gel.

    PubMed

    Coda, Alvin B; Hata, Tissa; Miller, Jeremiah; Audish, David; Kotol, Paul; Two, Aimee; Shafiq, Faiza; Yamasaki, Kenshi; Harper, Julie C; Del Rosso, James Q; Gallo, Richard L

    2013-10-01

    Excess cathelicidin and kallikrein 5 (KLK5) have been hypothesized to play a role in the pathophysiology of rosacea. We sought to evaluate the effects of azelaic acid (AzA) on these elements of the innate immune system. Gene expression and protease activity were measured in laboratory models and patients with rosacea during a 16-week multicenter, prospective, open-label study of 15% AzA gel. AzA directly inhibited KLK5 in cultured keratinocytes and gene expression of KLK5, Toll-like receptor-2, and cathelicidin in mouse skin. Patients with rosacea showed reduction in cathelicidin and KLK5 messenger RNA after treatment with AzA gel. Subjects without rosacea had lower serine protease activity (SPA) than patients with rosacea. Distinct subsets of patients with rosacea who had high and low baseline SPA were identified, and patients with high baseline exhibited a statistically significant reduction of SPA with 15% AzA gel treatment. Study size was insufficient to predict clinical efficacy based on the innate immune response to AzA. These results show that cathelicidin and KLK5 decrease in association with AZA exposure. Our observations suggest a new mechanism of action for AzA and that SPA may be a useful biomarker for disease activity. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  19. LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis.

    PubMed

    Hara, Mitsuko; Kirita, Akiko; Kondo, Wakako; Matsuura, Tomokazu; Nagatsuma, Keisuke; Dohmae, Naoshi; Ogawa, Shinji; Imajoh-Ohmi, Shinobu; Friedman, Scott L; Rifkin, Daniel B; Kojima, Soichi

    2014-01-01

    Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R(58) and L(59) residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R(58) (R(58) LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L(59) (L(59) LAP-DP) was not detectable. The R(58) LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.

  20. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhengyu; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437; Yang, Qi

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depletedmore » of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.« less

  1. Peptidase activity in various species of dairy thermophilic lactobacilli.

    PubMed

    Gatti, M; Fornasari, M E; Lazzi, C; Mucchetti, G; Neviani, E

    2004-01-01

    The aim of the present work was to evaluate the enzymatic potential manifested by aminopeptidase activity of different thermophilic Lactobacillus biotypes and to measure the influence of cell growth phase on enzyme expression. The activities were evaluated by the hydrolysis of beta-naphthylamide substrates for both whole and mechanically disrupted cells of L. helveticus, L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis strains, collected from both the exponential and the stationary growth phase. In general, activities were higher for cells in the exponential rather than in the stationary phase and the disrupted cells showed higher activities than the whole cells. The highest activity expressed by all strains corresponded to X-prolyl-dipeptidyl aminopeptidase while a moderate activity was observed towards Arg-betaNa, Lys-betaNa and Leu-betaNa. The lowest activity was observed for Pro-betaNa. It may be inferred that the cell structure and the cell physiology are crucial to define the level of efficiency of expression for aminopeptidase activity. The two species may be characterized by a different enzymatic system that hydrolyses N-terminal leucine. The differences of peptidase activities in L. helveticus and L. delbrueckii species acquires an importance to comprehend their role in the biochemical events occurring in cheese ripening.

  2. The Kallikrein-Kinin System: A Novel Mediator of IL-17-Driven Anti-Candida Immunity in the Kidney

    PubMed Central

    Ramani, Kritika; Garg, Abhishek V.; Jawale, Chetan V.; Jackson, Edwin K.; Shiva, Sruti S.; Horne, William; Kolls, Jay K.; Gaffen, Sarah L.; Biswas, Partha S.

    2016-01-01

    The incidence of life-threatening disseminated Candida albicans infections is increasing in hospitalized patients, with fatalities as high as 60%. Death from disseminated candidiasis in a significant percentage of cases is due to fungal invasion of the kidney, leading to renal failure. Treatment of candidiasis is hampered by drug toxicity, the emergence of antifungal drug resistance and lack of vaccines against fungal pathogens. IL-17 is a key mediator of defense against candidiasis. The underlying mechanisms of IL-17-mediated renal immunity have so far been assumed to occur solely through the regulation of antimicrobial mechanisms, particularly activation of neutrophils. Here, we identify an unexpected role for IL-17 in inducing the Kallikrein (Klk)-Kinin System (KKS) in C. albicans-infected kidney, and we show that the KKS provides significant renal protection in candidiasis. Microarray data indicated that Klk1 was upregulated in infected kidney in an IL-17-dependent manner. Overexpression of Klk1 or treatment with bradykinin rescued IL-17RA-/- mice from candidiasis. Therapeutic manipulation of IL-17-KKS pathways restored renal function and prolonged survival by preventing apoptosis of renal cells following C. albicans infection. Furthermore, combining a minimally effective dose of fluconazole with bradykinin markedly improved survival compared to either drug alone. These results indicate that IL-17 not only limits fungal growth in the kidney, but also prevents renal tissue damage and preserves kidney function during disseminated candidiasis through the KKS. Since drugs targeting the KKS are approved clinically, these findings offer potential avenues for the treatment of this fatal nosocomial infection. PMID:27814401

  3. Structures and mechanism of dipeptidyl peptidases 8 and 9, important players in cellular homeostasis and cancer.

    PubMed

    Ross, Breyan; Krapp, Stephan; Augustin, Martin; Kierfersauer, Reiner; Arciniega, Marcelino; Geiss-Friedlander, Ruth; Huber, Robert

    2018-02-13

    Dipeptidyl peptidases 8 and 9 are intracellular N-terminal dipeptidyl peptidases (preferentially postproline) associated with pathophysiological roles in immune response and cancer biology. While the DPP family member DPP4 is extensively characterized in molecular terms as a validated therapeutic target of type II diabetes, experimental 3D structures and ligand-/substrate-binding modes of DPP8 and DPP9 have not been reported. In this study we describe crystal and molecular structures of human DPP8 (2.5 Å) and DPP9 (3.0 Å) unliganded and complexed with a noncanonical substrate and a small molecule inhibitor, respectively. Similar to DPP4, DPP8 and DPP9 molecules consist of one β-propeller and α/β hydrolase domain, forming a functional homodimer. However, they differ extensively in the ligand binding site structure. In intriguing contrast to DPP4, where liganded and unliganded forms are closely similar, ligand binding to DPP8/9 induces an extensive rearrangement at the active site through a disorder-order transition of a 26-residue loop segment, which partially folds into an α-helix (R-helix), including R160/133, a key residue for substrate binding. As vestiges of this helix are also seen in one of the copies of the unliganded form, conformational selection may contributes to ligand binding. Molecular dynamics simulations support increased flexibility of the R-helix in the unliganded state. Consistently, enzyme kinetics assays reveal a cooperative allosteric mechanism. DPP8 and DPP9 are closely similar and display few opportunities for targeted ligand design. However, extensive differences from DPP4 provide multiple cues for specific inhibitor design and development of the DPP family members as therapeutic targets or antitargets.

  4. Sarcoid-like lung granulomas in a hemodialysis patient treated with a dipeptidyl peptidase-4 inhibitor.

    PubMed

    Sada, Ken-Ei; Wada, Jun; Morinaga, Hiroshi; Tuchimochi, Shigeyuki; Uka, Mayu; Makino, Hirofumi

    2014-04-01

    It has been reported that the inhibition of dipeptidyl peptidase-4 (DPP-4)/CD26 on T-cells by DPP-4 enzymatic inhibitors suppresses lymphocyte proliferation and reduces the production of various cytokines, including tumor necrosis factor (TNF)-α. A 72-year-old female with diabetic nephropathy on hemodialysis developed multiple lung nodules following the administration of vildagliptin. A biopsy demonstrated the histology of granulomas without caseous necrosis. The discontinuation of vildagliptin resulted in the disappearance of the granulomas within 4 months. As granulomatosis often develops in patients under anti-TNF-α therapy, the accumulation of DPP-4 inhibitors or its metabolites is possibly linked to unrecognized complications, such as sarcoid-like lung granulomas.

  5. Sarcoid-like lung granulomas in a hemodialysis patient treated with a dipeptidyl peptidase-4 inhibitor

    PubMed Central

    Sada, Ken-ei; Wada, Jun; Morinaga, Hiroshi; Tuchimochi, Shigeyuki; Uka, Mayu; Makino, Hirofumi

    2014-01-01

    It has been reported that the inhibition of dipeptidyl peptidase-4 (DPP-4)/CD26 on T-cells by DPP-4 enzymatic inhibitors suppresses lymphocyte proliferation and reduces the production of various cytokines, including tumor necrosis factor (TNF)-α. A 72-year-old female with diabetic nephropathy on hemodialysis developed multiple lung nodules following the administration of vildagliptin. A biopsy demonstrated the histology of granulomas without caseous necrosis. The discontinuation of vildagliptin resulted in the disappearance of the granulomas within 4 months. As granulomatosis often develops in patients under anti-TNF-α therapy, the accumulation of DPP-4 inhibitors or its metabolites is possibly linked to unrecognized complications, such as sarcoid-like lung granulomas. PMID:25852868

  6. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress.

    PubMed

    Preta, Giulio; de Klark, Rainier; Chakraborti, Shankhamala; Glas, Rickard

    2010-08-27

    Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to gamma-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer gamma-hexa-chloro-cyclohexane (gamma-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon gamma-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of gamma-H2AX in gamma-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Impact of microencapsulated peptidase (Aspergillus oryzae) on cheddar cheese proteolysis and its biologically active peptide profile.

    PubMed

    Seneweera, Saman; Kailasapathy, Kaila

    2011-07-01

    We investigated the delivery of calcium-alginate encapsulated peptidase (Flavourzyme(®), Aspergillus oryzae) on proteolysis of Cheddar cheese. Physical and chemical characteristics such as moisture, pH and fat content were measured, and no differences were found between control and experimental cheese at day 0. SDS-PAGE analysis clearly showed that proteolysis of α and k casein was significantly accelerated after three months of maturity in the experimental cheese. A large number of low molecular weight peptides were found in the water soluble fraction of the experimental cheeses and some of these peptides were new. N-terminal amino acid sequence analysis identified these as P(1), Leu-Thu-Glu; P(3), Asp-Val-Pro-Ser-Glu) and relatively abundant stable peptides P(2), P(4), Arg-Pro-Lys-His-Pro-Ile; P(5), Arg-Pro-Lys-His-Pro-Ile-Lys and P(6). These peptides were mainly originated from αs1-CN and β-CN. Three of the identified peptides (P(1), P(2), P(3) and P(4)) are known to biologically active and P(1) and P(3) were only present in experimental cheese suggesting that experimental cheese has improved health benefits.

  8. The MAPK Signaling Cascade is a Central Hub in the Regulation of Cell Cycle, Apoptosis and Cytoskeleton Remodeling by Tripeptidyl-Peptidase II

    PubMed Central

    Sompallae, Ramakrishna; Stavropoulou, Vaia; Houde, Mathieu; Masucci, Maria G.

    2008-01-01

    Tripeptidyl-peptidase II (TPPII) is a serine peptidase highly expressed in malignant Burkitt’s lymphoma cells (BL). We have previously shown that overexpression of TPPII correlates with chromosomal instability, centrosomal and mitotic spindle abnormalities and resistance to apoptosis induced by spindle poisons. Furthermore, TPPII knockdown by RNAi was associated with endoreplication and the accumulation of polynucleated cells that failed to complete cell division, indicating a role of TPPII in the cell cycle. Here we have applied a global approach of gene expression analysis to gain insights on the mechanism by which TPPII regulates this phenotype. mRNA profiling of control and TPPII knockdown BL cells identified one hundred and eighty five differentially expressed genes. Functional categorization of these genes highlighted major physiological functions such as apoptosis, cell cycle progression, cytoskeleton remodeling, proteolysis, and signal transduction. Pathways and protein interactome analysis revealed a significant enrichment in components of MAP kinases signaling. These findings suggest that TPPII influences a wide network of signaling pathways that are regulated by MAPKs and exerts thereby a pleiotropic effect on biological processes associated with cell survival, proliferation and genomic instability. PMID:19787088

  9. The P1 and P1' residue specificities of physarolisin I, a serine-carboxyl peptidase from the true slime mold Physarum polycephalum.

    PubMed

    Nishii, Wataru; Kubota, Keiko; Takahashi, Kenji

    2009-05-01

    The P1 and P1' residue specificities of physarolisin I were investigated using combinatorial peptide substrates. The results indicated that certain hydrophobic residues and acidic residues are preferred at the P1 position and some hydrophobic residues at the P1' position. This P1 specificity, different from other serine-carboxyl peptidases, appears to be explained partially by the nature of the S1 subsite residues.

  10. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase

    PubMed Central

    Schmitz, Karl R.; Sauer, Robert T.

    2014-01-01

    Summary Mycobacterial Clp-family proteases function via collaboration of the heteromeric ClpP1P2 peptidase with a AAA+ partner, ClpX or ClpC1. These enzymes are essential for M. tuberculosis viability and are validated antibacterial drug targets, but the requirements for assembly and regulation of functional proteolytic complexes are poorly understood. Here, we report the reconstitution of protein degradation by mycobacterial Clp proteases in vitro and describe novel features of these enzymes that distinguish them from orthologs in other bacteria. Both ClpX and ClpC1 catalyze ATP-dependent unfolding and degradation of native protein substrates in conjunction with ClpP1P2, but neither mediates protein degradation with just ClpP1 or ClpP2. ClpP1P2 alone has negligible peptidase activity, but is strongly stimulated by translocation of protein substrates into ClpP1P2 by either AAA+ partner. Interestingly, our results support a model in which both binding of a AAA+ partner and protein-substrate delivery are required to stabilize active ClpP1P2. Our model has implications for therapeutically targeting ClpP1P2 in dormant M. tuberculosis, and our reconstituted systems should facilitate identification of novel Clp protease inhibitors and activators. PMID:24976069

  11. Drug-induced bullous pemphigoid in diabetes mellitus patients receiving dipeptidyl peptidase-IV inhibitors plus metformin.

    PubMed

    Skandalis, K; Spirova, M; Gaitanis, G; Tsartsarakis, A; Bassukas, I D

    2012-02-01

    Preclinical data and reports of adverse skin reactions in patients treated with dipeptidyl peptidase-IV inhibitors (gliptins) have increased awareness towards skin-targeting side-effects of these anti-hyperglycaemic drugs. Bullous pemphigoid (BP), sometimes drug-induced, is the most commonly acquired autoimmune blistering dermatosis in western countries, typically a disease of the elderly people with significant morbidity and excess mortality. To report the development of BP in five diabetics under gliptin (4 vildagliptin, 1 sitagliptin) plus metformin in fixed-dose drug combinations. From March to August 2010 six out of nine newly diagnosed BP patients in our Department were type 2 diabetics. Five of them were on gliptin plus metformin (three different trade preparations) for 2-13 months prior to BP onset. In all cases BP was controlled after withdrawal of the suspected medication and relatively mild therapeutic interventions. In two cases the eliciting role of the preceding treatment is supported by evidence at the level 'probable/likely' according to the WHO-UMC algorithm. This is the first report of drug-induced BP as a group adverse event of the gliptins plus metformin combination therapy for glycaemia control in type 2 diabetes mellitus patients. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  12. Macrocarpal C isolated from Eucalyptus globulus inhibits dipeptidyl peptidase 4 in an aggregated form.

    PubMed

    Kato, Eisuke; Kawakami, Kazuhiro; Kawabata, Jun

    2018-12-01

    Dipeptidyl peptidase 4 (DPP-4) inhibitors are used for the treatment of type-2 diabetes mellitus. Various synthetic inhibitors have been developed to date, and plants containing natural DPP-4 inhibitors have also been identified. Here, 13 plant samples were tested for their DPP-4 inhibitory activity. Macrocarpals A-C were isolated from Eucalyptus globulus through activity-guided fractionation and shown to be DPP-4 inhibitors. Of these, macrocarpal C showed the highest inhibitory activity, demonstrating an inhibition curve characterised by a pronounced increase in activity within a narrow concentration range. Evaluation of macrocarpal C solution by turbidity, nuclear magnetic resonance spectroscopy and mass spectrometry indicated its aggregation, which may explain the characteristics of the inhibition curve. These findings will be valuable for further study of potential small molecule DPP-4 inhibitors.

  13. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi

    PubMed Central

    Palmeira, Vanila F.; Alviano, Daniela S.; Braga-Silva, Lys A.; Goulart, Fátima R. V.; Granato, Marcela Q.; Rozental, Sonia; Alviano, Celuta S.; Santos, André L. S.; Kneipp, Lucimar F.

    2017-01-01

    Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics. PMID:28579986

  14. HIV Aspartic Peptidase Inhibitors Modulate Surface Molecules and Enzyme Activities Involved with Physiopathological Events in Fonsecaea pedrosoi.

    PubMed

    Palmeira, Vanila F; Alviano, Daniela S; Braga-Silva, Lys A; Goulart, Fátima R V; Granato, Marcela Q; Rozental, Sonia; Alviano, Celuta S; Santos, André L S; Kneipp, Lucimar F

    2017-01-01

    Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti- F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 μM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi . In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.

  15. A Glutathione Peroxidase, Intracellular Peptidases and the TOR Complexes Regulate Peptide Transporter PEPT-1 in C. elegans

    PubMed Central

    Benner, Jacqueline; Daniel, Hannelore; Spanier, Britta

    2011-01-01

    The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H+-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2. PMID:21980510

  16. Neutral aminopeptidase and dipeptidyl peptidase IV activities in plasma of monosodium glutamate obese and food-deprived rats.

    PubMed

    Alponti, Rafaela F; Silveira, Paulo F

    2010-07-01

    Biometric parameters, glycemia and activity levels of plasma neutral aminopeptidase (APN) and dipeptidyl peptidase IV (DPPIV) were measured in monosodium glutamate obese and food-deprived rats (MSG-FD), to analyze the involvement of these enzymes in such situations. Plasma APN was distinguished as sensitive (PSA) (K(m) = 7.8 x 10(-5) mol/l) and predominantly insensitive (APM) (K(m) = 21.6 x 10(-5) mol/l) to puromycin, whereas DPPIV was sensitive (DPPIV-DS) (K(m) = 0.24 x 10(-5) mol/l) and predominantly insensitive (DPPIV-DI) (K(m) = 7.04 x 10(-5) mol/l) to diprotin A. Although unchanged in the MSG and food-deprived animals, APM activity levels were closely correlated with body mass, Lee index, and mass of retroperitoneal fat pad in the food deprived, but not in the MSG animals. DPPIV-DI activity levels decreased by 33% and were correlated with body mass, Lee index, and mass of periepididymal fat pad in the food-deprived MSG rats. These data suggest that APM and DPPIV-DI are respectively related to the downregulation of somatostatin in food-deprived rats, and to the recovery of energy balance in MSG obese rats during food deprivation.

  17. Differential expression of cancer associated proteins in breast milk based on age at first full term pregnancy.

    PubMed

    Qin, Wenyi; Zhang, Ke; Kliethermes, Beth; Ruhlen, Rachel L; Browne, Eva P; Arcaro, Kathleen F; Sauter, Edward R

    2012-03-21

    First full term pregnancy (FFTP) completed at a young age has been linked to low long term breast cancer risk, whereas late FFTP pregnancy age confers high long term risk, compared to nulliparity. Our hypothesis was that proteins linked to breast cancer would be differentially expressed in human milk collected at three time points during lactation based on age at FFTP. We analyzed breast milk from 72 lactating women. Samples were collected within 10 days of the onset of lactation (baseline-BL), two months after lactation started and during breast weaning (W). We measured 16 proteins (11 kallikreins (KLKs), basic fibroblast growth factor, YKL-40, neutrophil gelatinase-associated lipocalin and transforming growth factor (TGF) β-1 and -2) associated with breast cancer, most known to be secreted into milk. During lactation there was a significant change in the expression of 14 proteins in women < 26 years old and 9 proteins in women > = 26 at FFTP. The most significant (p < .001) changes from BL to W in women divided by FFTP age (< 26 vs. > = 26) were in KLK3,6, 8, and TGFβ2 in women < 26; and KLK6, 8, and TGFβ2 in women > = 26. There was a significant increase (p = .022) in KLK8 expression from BL to W depending on FFTP age. Examination of DNA methylation in the promoter region of KLK6 revealed high levels of methylation that did not explain the observed changes in protein levels. On the other hand, KLK6 and TGFβ1 expression were significantly associated (r2 = .43, p = .0050). The expression profile of milk proteins linked to breast cancer is influenced by age at FFTP. These proteins may play a role in future cancer risk.

  18. Enhancement of neurokinin A-induced smooth muscle contraction in human urinary bladder by mucosal removal and phosphoramidon: relationship to peptidase inhibition.

    PubMed

    Warner, Fiona J; Shang, Fei; Millard, Richard J; Burcher, Elizabeth

    2002-03-08

    Neurokinin A (NKA) is potent in contracting the human detrusor muscle. Here, we have investigated whether these contractile responses are influenced by the presence of the mucosa, by the peptidase inhibitor phosphoramidon or by possible modulators, prostaglandins and nitric oxide. Contractile responses to neurokinin A were unaffected by indomethacin or N-omega-nitro-L-arginine, but were significantly reduced in strips containing mucosa. Phosphoramidon, an inhibitor of neutral endopeptidase 24.11 (neprilysin, CD10), was ineffective at 10 microM, but at 100 microM, significant increase in the maximum response was achieved by neurokinin A in detrusor strips with and without mucosa. In immunohistochemical studies, neutral endopeptidase immunoreactivity occurred in peripheral nerve trunks in the detrusor and in a fibrous meshwork in the subepithelial lamina propria. Our data indicate that neutral endopeptidase is present in bladder mucosa and detrusor, and support the concept that this metalloprotease and/or related enzymes are important in regulating the actions of tachykinins.

  19. Myxobacterium-Produced Antibiotic TA (Myxovirescin) Inhibits Type II Signal Peptidase

    PubMed Central

    Xiao, Yao; Gerth, Klaus; Müller, Rolf

    2012-01-01

    Antibiotic TA is a macrocyclic secondary metabolite produced by myxobacteria that has broad-spectrum bactericidal activity. The structure of TA is unique, and its molecular target is unknown. Here, we sought to elucidate TA's mode of action (MOA) through two parallel genetic approaches. First, chromosomal Escherichia coli TA-resistant mutants were isolated. One mutant that showed specific resistance toward TA was mapped and resulted from an IS4 insertion in the lpp gene, which encodes an abundant outer membrane (Braun's) lipoprotein. In a second approach, the comprehensive E. coli ASKA plasmid library was screened for overexpressing clones that conferred TAr. This effort resulted in the isolation of the lspA gene, which encodes the type II signal peptidase that cleaves signal sequences from prolipoproteins. In whole cells, TA was shown to inhibit Lpp prolipoprotein processing, similar to the known LspA inhibitor globomycin. Based on genetic evidence and prior globomycin studies, a block in Lpp expression or prevention of Lpp covalent cell wall attachment confers TAr by alleviating a toxic buildup of mislocalized pro-Lpp. Taken together, these data argue that LspA is the molecular target of TA. Strikingly, the giant ta biosynthetic gene cluster encodes two lspA paralogs that we hypothesize play a role in producer strain resistance. PMID:22232277

  20. Discovery and structure-activity relationships of piperidinone- and piperidine-constrained phenethylamines as novel, potent, and selective dipeptidyl peptidase IV inhibitors.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; von Geldern, Thomas W; Longenecker, Kenton; Pireh, Daisy; Stewart, Kent D; Backes, Bradley J; Lai, Chunqiu; Lubben, Thomas H; Ballaron, Stephen J; Beno, David W A; Kempf-Grote, Anita J; Sham, Hing L; Trevillyan, James M

    2007-04-19

    Dipeptidyl peptidase IV (DPP4) inhibitors are emerging as a new class of therapeutic agents for the treatment of type 2 diabetes. They exert their beneficial effects by increasing the levels of active glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are two important incretins for glucose homeostasis. Starting from a high-throughput screening hit, we were able to identify a series of piperidinone- and piperidine-constrained phenethylamines as novel DPP4 inhibitors. Optimized compounds are potent, selective, and have good pharmacokinetic profiles.

  1. Does estradiol have an impact on the dipeptidyl peptidase IV enzyme activity of the Prevotella intermedia group bacteria?

    PubMed

    Fteita, Dareen; Könönen, Eija; Gürsoy, Mervi; Söderling, Eva; Gürsoy, Ulvi Kahraman

    2015-12-01

    Initiation and development of pregnancy-associated gingivitis is seemingly related to the microbial shift towards specific gram-negative anaerobes in subgingival biofilms. It is known that Prevotella intermedia sensu lato is able to use estradiol as an alternative source of growth instead of vitamin K. The aim of the present study was to investigate the impact of estradiol on the bacterial dipeptidyl peptidase IV (DPPIV) enzyme activity in vitro as a virulent factor of the Prevotella intermedia group bacteria, namely P. intermedia, Prevotella nigrescens, Prevotella pallens, and Prevotella aurantiaca. In all experiments, 2 strains of each Prevotella species were used. Bacteria were incubated with the concentrations of 0, 30, 90, and 120 nmol/L of estradiol and were allowed to build biofilms at an air-solid interface. DPPIV activities of biofilms were measured kinetically during 20 min using a fluorometric assay. The enzyme activity was later related to the amount of protein produced by the same biofilm, reflecting the biofilm mass. Estradiol significantly increased DPPIV activities of the 8 Prevotella strains in a strain- and dose-dependent manner. In conclusion, our in vitro experiments indicate that estradiol regulates the DPPIV enzyme activity of P. intermedia, P. nigrescens, P. pallens, and P. aurantiaca strains differently. Our results may, at least partly, explain the role of estradiol to elicit a virulent state which contributes to the pathogenesis of pregnancy-related gingivitis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    PubMed

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The structure of human tripeptidyl peptidase II as determined by a hybrid approach.

    PubMed

    Schönegge, Anne-Marie; Villa, Elizabeth; Förster, Friedrich; Hegerl, Reiner; Peters, Jürgen; Baumeister, Wolfgang; Rockel, Beate

    2012-04-04

    Tripeptidyl-peptidase II (TPPII) is a high molecular mass (∼5 MDa) serine protease, which is thought to act downstream of the 26S proteasome, cleaving peptides released by the latter. Here, the structure of human TPPII (HsTPPII) has been determined to subnanometer resolution by cryoelectron microscopy and single-particle analysis. The complex is built from two strands forming a quasihelical structure harboring a complex system of inner cavities. HsTPPII particles exhibit some polymorphism resulting in complexes consisting of nine or of eight dimers per strand. To obtain deeper insights into the architecture and function of HsTPPII, we have created a pseudoatomic structure of the HsTPPII spindle using a comparative model of HsTPPII dimers and molecular dynamics flexible fitting. Analyses of the resulting hybrid structure of the HsTPPII holocomplex provide new insights into the mechanism of maturation and activation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Ghiasi, Homayon

    2014-01-01

    Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology. PMID:24768597

  5. Dipeptidyl peptidase-4 independent cardiac dysfunction links saxagliptin to heart failure.

    PubMed

    Koyani, Chintan N; Kolesnik, Ewald; Wölkart, Gerald; Shrestha, Niroj; Scheruebel, Susanne; Trummer, Christopher; Zorn-Pauly, Klaus; Hammer, Astrid; Lang, Petra; Reicher, Helga; Maechler, Heinrich; Groschner, Klaus; Mayer, Bernd; Rainer, Peter P; Sourij, Harald; Sattler, Wolfgang; Malle, Ernst; Pelzmann, Brigitte; von Lewinski, Dirk

    2017-12-01

    Saxagliptin treatment has been associated with increased rate of hospitalization for heart failure in type 2 diabetic patients, though the underlying mechanism(s) remain elusive. To address this, we assessed the effects of saxagliptin on human atrial trabeculae, guinea pig hearts and cardiomyocytes. We found that the primary target of saxagliptin, dipeptidyl peptidase-4, is absent in cardiomyocytes, yet saxagliptin internalized into cardiomyocytes and impaired cardiac contractility via inhibition of the Ca 2+ /calmodulin-dependent protein kinase II-phospholamban-sarcoplasmic reticulum Ca 2+ -ATPase 2a axis and Na + -Ca 2+ exchanger function in Ca 2+ extrusion. This resulted in reduced sarcoplasmic reticulum Ca 2+ content, diastolic Ca 2+ overload, systolic dysfunction and impaired contractile force. Furthermore, saxagliptin reduced protein kinase C-mediated delayed rectifier K + current that prolonged action potential duration and consequently QTc interval. Importantly, saxagliptin aggravated pre-existing cardiac dysfunction induced by ischemia/reperfusion injury. In conclusion, our novel results provide mechanisms for the off-target deleterious effects of saxagliptin on cardiac function and support the outcome of SAVOR-TIMI 53 trial that linked saxagliptin with the risk of heart failure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation

    PubMed Central

    Lee, Seong-Ok; Cho, Kwangmin; Cho, Sunglim; Kim, Ilkwon; Oh, Changhoon; Ahn, Kwangseog

    2010-01-01

    The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown of protein disulphide isomerase (PDI) by RNA-mediated interference inhibited the degradation of MHC class I molecules catalysed by US2 but not by its functional homolog US11. Overexpression of the substrate-binding mutant of PDI, but not the catalytically inactive mutant, dominant-negatively inhibited US2-mediated dislocation of MHC class I molecules by preventing their release from US2. Furthermore, PDI associated with SPP independently of US2 and knockdown of PDI inhibited SPP-mediated degradation of CD3δ but not Derlin-1-dependent degradation of CFTR DeltaF508. Together, our data suggest that PDI is a component of the SPP-mediated ER-associated degradation machinery. PMID:19942855

  7. Protein disulphide isomerase is required for signal peptide peptidase-mediated protein degradation.

    PubMed

    Lee, Seong-Ok; Cho, Kwangmin; Cho, Sunglim; Kim, Ilkwon; Oh, Changhoon; Ahn, Kwangseog

    2010-01-20

    The human cytomegalovirus glycoprotein US2 induces dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol and targets them for proteasomal degradation. Signal peptide peptidase (SPP) has been shown to be integral for US2-induced dislocation of MHC class I heavy chains although its mechanism of action remains poorly understood. Here, we show that knockdown of protein disulphide isomerase (PDI) by RNA-mediated interference inhibited the degradation of MHC class I molecules catalysed by US2 but not by its functional homolog US11. Overexpression of the substrate-binding mutant of PDI, but not the catalytically inactive mutant, dominant-negatively inhibited US2-mediated dislocation of MHC class I molecules by preventing their release from US2. Furthermore, PDI associated with SPP independently of US2 and knockdown of PDI inhibited SPP-mediated degradation of CD3delta but not Derlin-1-dependent degradation of CFTR DeltaF508. Together, our data suggest that PDI is a component of the SPP-mediated ER-associated degradation machinery.

  8. NAAG Peptidase Inhibitors Act via mGluR3: Animal Models of Memory, Alzheimer's, and Ethanol Intoxication.

    PubMed

    Olszewski, Rafal T; Janczura, Karolina J; Bzdega, Tomasz; Der, Elise K; Venzor, Faustino; O'Rourke, Brennen; Hark, Timothy J; Craddock, Kirsten E; Balasubramanian, Shankar; Moussa, Charbel; Neale, Joseph H

    2017-09-01

    Glutamate carboxypeptidase II (GCPII) inactivates the peptide neurotransmitter N-acetylaspartylglutamate (NAAG) following synaptic release. Inhibitors of GCPII increase extracellular NAAG levels and are efficacious in animal models of clinical disorders via NAAG activation of a group II metabotropic glutamate receptor. mGluR2 and mGluR3 knock-out (ko) mice were used to test the hypothesis that mGluR3 mediates the activity of GCPII inhibitors ZJ43 and 2-PMPA in animal models of memory and memory loss. Short- (1.5 h) and long- (24 h) term novel object recognition tests were used to assess memory. Treatment with ZJ43 or 2-PMPA prior to acquisition trials increased long-term memory in mGluR2, but not mGluR3, ko mice. Nine month-old triple transgenic Alzheimer's disease model mice exhibited impaired short-term novel object recognition memory that was rescued by treatment with a NAAG peptidase inhibitor. NAAG peptidase inhibitors and the group II mGluR agonist, LY354740, reversed the short-term memory deficit induced by acute ethanol administration in wild type mice. 2-PMPA also moderated the effect of ethanol on short-term memory in mGluR2 ko mice but failed to do so in mGluR3 ko mice. LY354740 and ZJ43 blocked ethanol-induced motor activation. Both GCPII inhibitors and LY354740 also significantly moderated the loss of motor coordination induced by 2.1 g/kg ethanol treatment. These data support the conclusion that inhibitors of glutamate carboxypeptidase II are efficacious in object recognition models of normal memory and memory deficits via an mGluR3 mediated process, actions that could have widespread clinical applications.

  9. Unravelling the immunological roles of dipeptidyl peptidase 4 (DPP4) activity and/or structure homologue (DASH) proteins

    PubMed Central

    Klemann, C.; Stephan, M.

    2016-01-01

    Summary Dipeptidyl peptidase (DPP) 4 (CD26, DPP4) is a multi‐functional protein involved in T cell activation by co‐stimulation via its association with adenosine deaminase (ADA), caveolin‐1, CARMA‐1, CD45, mannose‐6‐phosphate/insulin growth factor‐II receptor (M6P/IGFII‐R) and C‐X‐C motif receptor 4 (CXC‐R4). The proline‐specific dipeptidyl peptidase also modulates the bioactivity of several chemokines. However, a number of enzymes displaying either DPP4‐like activities or representing structural homologues have been discovered in the past two decades and are referred to as DPP4 activity and/or structure homologue (DASH) proteins. Apart from DPP4, DASH proteins include fibroblast activation protein alpha (FAP), DPP8, DPP9, DPP4‐like protein 1 (DPL1, DPP6, DPPX L, DPPX S), DPP4‐like protein 2 (DPL2, DPP10) from the DPP4‐gene family S9b and structurally unrelated enzyme DPP2, displaying DPP4‐like activity. In contrast, DPP6 and DPP10 lack enzymatic DPP4‐like activity. These DASH proteins play important roles in the immune system involving quiescence (DPP2), proliferation (DPP8/DPP9), antigen‐presenting (DPP9), co‐stimulation (DPP4), T cell activation (DPP4), signal transduction (DPP4, DPP8 and DPP9), differentiation (DPP4, DPP8) and tissue remodelling (DPP4, FAP). Thus, they are involved in many pathophysiological processes and have therefore been proposed for potential biomarkers or even drug targets in various cancers (DPP4 and FAP) and inflammatory diseases (DPP4, DPP8/DPP9). However, they also pose the challenge of drug selectivity concerning other DASH members for better efficacy and/or avoidance of unwanted side effects. Therefore, this review unravels the complex roles of DASH proteins in immunology. PMID:26671446

  10. Tripeptidyl peptidase-I is essential for the degradation of sulphated cholecystokinin-8 (CCK-8S) by mouse brain lysosomes.

    PubMed

    Warburton, Michael J; Bernardini, Francesca

    2002-10-11

    Tripeptidyl peptidase-I (TPP-I) is a lysosomal exopeptidase which removes tripeptides from the N-terminus of small proteins. Mutations in the TPP-I gene result in a lethal neurodegenerative disease, late infantile neuronal ceroid lipofuscinosis. The pathological consequences of loss of activity are only manifested in neuronal cells suggesting that TPP-I may be involved in the lysosomal degradation of neuropeptides. We have investigated the degradation of the C-terminal octapeptide of sulphated cholecystokinin (CCK-8S) by a lysosomal fraction purified from mouse brain. Degradation products were characterised by reversed phase HPLC and mass spectrometry. Incubation of CCK-8S with brain lysosomes results in the sequential removal of the tripeptides DY(SO(3)H)M and Glycl-Tryptophanyl-Methionine from the N-terminus of CCK-8S. Degradation of CCK-8S in the isolated lysosomal fraction is completely prevented by Ala-Ala-Phe-chloromethyl ketone, an inhibitor of TPP-I. Butabindide, a specific inhibitor of TPP-II, a cell surface peptidase which also cleaves CCK-8S, inhibits TPP-I but kinetic studies indicate that the Ki for inhibition of TPP-I is 1000-fold higher than the Ki for the inhibition of TPP-II. Consequently, higher concentrations of butabindide are required for the inhibition of CCK-8S degradation by TPP-I than by TPP-II. These results indicate that whereas cell surface TPP-II is responsible for regulating extracellular CCK-8S levels, lysosomal TPP-I is largely responsible for the degradation of CCK-8S which enters the cell by receptor-mediated endocytosis.

  11. Dipeptidyl peptidase IV activity and/or structure homologs: Contributing factors in the pathogenesis of rheumatoid arthritis?

    PubMed Central

    Sedo, Aleksi; Duke-Cohan, Jonathan S; Balaziova, Eva; Sedova, Liliana R

    2005-01-01

    Several of the proinflammatory peptides involved in rheumatoid arthritis pathogenesis, including peptides induced downstream of tumor necrosis factor-α as well as the monocyte/T cell-attracting chemokines RANTES and stromal cell-derived factor (SDF)-1α and the neuropeptides vasoactive intestinal peptide (VIP) and substance P, have their biological half-lives controlled by dipeptidyl peptidase IV (DPPIV). Proteolysis by DPPIV regulates not only the half-life but also receptor preference and downstream signaling. In this article, we examine the role of DPPIV homologs, including CD26, the canonical DPPIV, and their substrates in the pathogenesis of rheumatoid arthritis. The differing specific activities of the DPPIV family members and their differential inhibitor response provide new insights into therapeutic design. PMID:16277701

  12. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Yang, Shun-Fa; Yeh, Chao-Bin; Chou, Ying-Erh; Lee, Hsiang-Lin; Liu, Yu-Fan

    2016-05-01

    Hepatocellular carcinoma (HCC) represents the second leading cause of cancer-related death worldwide. The serpin peptidase inhibitor SERPINB5 is a tumour-suppressor gene that promotes the development of various cancers in humans. However, whether SERPINB5 gene variants play a role in HCC susceptibility remains unknown. In this study, we genotyped 6 SNPs of the SERPINB5 gene in an independent cohort from a replicate population comprising 302 cases and 590 controls. Additionally, patients who had at least one rs2289520 C allele in SERPINB5 tended to exhibit better liver function than patients with genotype GG (Child-Pugh grade A vs. B or C; P = 0.047). Next, haplotype blocks were reconstructed according to the linkage disequilibrium structure of the SERPINB5 gene. A haplotype “C-C-C” (rs17071138 + rs3744941 + rs8089204) in SERPINB5-correlated promoter showed a significant association with an increased HCC risk (AOR = 1.450 P = 0.031). Haplotypes “T-C-A” and “C-C-C” (rs2289519 + rs2289520 + rs1455555) located in the SERPINB5 coding region had a decreased (AOR = 0.744 P = 0.031) and increased (AOR = 1.981 P = 0.001) HCC risk, respectively. Finally, an additional integrated in silico analysis confirmed that these SNPs affected SERPINB5 expression and protein stability, which significantly correlated with tumour expression and subsequently with tumour development and aggressiveness. Taken together, our findings regarding these biomarkers provide a prediction model for risk assessment.

  13. Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues

    PubMed Central

    Kawaguchi, Makiko; Kataoka, Hiroaki

    2014-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases. PMID:25268161

  14. Transition to an Aquatic Habitat Permitted the Repeated Loss of the Pleiotropic KLK8 Gene in Mammals

    PubMed Central

    Hecker, Nikolai; Sharma, Virag

    2017-01-01

    Abstract Kallikrein related peptidase 8 (KLK8; also called neuropsin) is a serine protease that plays distinct roles in the skin and hippocampus. In the skin, KLK8 influences keratinocyte proliferation and desquamation, and activates antimicrobial peptides in sweat. In the hippocampus, KLK8 affects memory acquisition. Here, we examined the evolution of KLK8 in mammals and discovered that, out of 70 placental mammals, KLK8 is exclusively lost in three independent fully-aquatic lineages, comprising dolphin, killer whale, minke whale, and manatee. In addition, while the sperm whale has an intact KLK8 reading frame, the gene evolves neutrally in this species. We suggest that the distinct functions of KLK8 likely became obsolete in the aquatic environment, leading to the subsequent loss of KLK8 in several fully-aquatic mammalian lineages. First, the cetacean and manatee skin lacks sweat glands as an adaptation to the aquatic environment, which likely made the epidermal function of KLK8 obsolete. Second, cetaceans and manatees exhibit a proportionally small hippocampus, which may have rendered the hippocampal functions of KLK8 obsolete. Together, our results shed light on the genomic changes that correlate with skin and neuroanatomical differences of aquatic mammals, and show that even pleiotropic genes can be lost during evolution if an environmental change nullifies the need for the different functions of such genes. PMID:29145610

  15. Circadian Rhythms Regulate Amelogenesis

    PubMed Central

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A.; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-01-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24h) intervals both at RNA and protein levels. This study also reveals that two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stage of amelogenesis might be under circadian control. Changes in clock genes expression patterns might result in significant alterations of enamel apposition and mineralization. PMID:23486183

  16. Regulation and impairments of dynamic desmosome and corneodesmosome remodeling.

    PubMed

    Kitajima, Yasuo

    2013-04-30

    Desmosomes and corneodesmosomes are the most important adhering junctions to provide strength for the epidermal sheet structure made of living keratinocytes and enucleated corneocytes, respectively. These junctions are connected directly with transmembrane desmosomal cadherins, desmogleins (Dsgs) and desmocollins (Dscs), mainly Dsg1/Dsc1 and Dsg3/Dsc3 in desmosomes and Dsg1/Dsc1 with corneodesmosin in corneodesmosomes. Dsgs and Dscs are associated with several proteins at their inner cytoplasmic domains to anchor keratin intermediate filaments. Desmosomes are not static, but dynamic units that undergo regular remodeling to allow for keratinocyte outward-migration in the epidermis. Recently, two mutually-reversible desmosomal adhesion states have been recognized, i.e., "stable hyper-adhesion (Ca 2+ -independent)" and "dynamic weak-adhesion (Ca 2+ -dependent)". A remarkable impairment of this remodeling is observed in pemphigus vulgaris (an autoimmune blistering disease), caused by anti-Dsg3 antibodies, generating a weak-adhesion desmosome state. Immediately after formation, corneodesmosomes normally commit to degradation, which is complicatedly regulated by proteolytic cleavage of their respective extracellular portion(s), via kallikrein-regulated peptidases and cathepsins. This proteolytic activity is in turn controlled by a variety of inhibitory agents, including protease inhibitors, cholesterol sulfate, and an acidic gradient. The impairment of protease control causes keratinization disorders. This review focuses on the dynamic regulation of desmosomes and corneodesmosomes in relation to keratinization disorders.

  17. Stearoyl CoA Desaturase (SCD) Facilitates Proliferation of Prostate Cancer Cells through Enhancement of Androgen Receptor Transactivation

    PubMed Central

    Kim, Seung-Jin; Choi, Hojung; Park, Sung-Soo; Chang, Chawnshang; Kim, Eungseok

    2011-01-01

    Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids, is highly expressed in prostate cancer although the SCD protein has been known to be rapidly turned over by proteolytic cleavage. The present data demonstrate that SCD can promote proliferation of androgen receptor (AR)-positive LNCaP prostate cancer cells and enhance dihydrotestosterone (DHT)-induced AR transcriptional activity, resulting in increased expression of prostatespecific antigen (PSA) and kallikrein-related peptidase 2 (KLK2). Interestingly, among the previously reported SCDderived peptides produced by proteolytic cleavage of SCD, a peptide spanning amino acids 130-162 of SCD (SCDCoRNR) contained the CoRNR box motif (LFLII) and enhanced AR transcriptional activity. In contrast, a mutant SCD-CoRNR in which Leu136 was replaced by Ala had no effect on AR transcriptional activity. Moreover, SCDCoRNR directly interacted with AR and inhibited RIP140 suppression of AR transactivation. Knockdown of the SCD gene by SCD microRNA suppressed AR transactivation with decreased cell proliferation, suggesting that SCD may regulate the proliferation of LNCaP cells via modulation of AR transcriptional activity. Moreover, ectopic expression of SCD in LNCaP cells facilitated LNCaP tumor formation and growth in nude mice. Together, the data indicate that SCD plays a key role in the regulation of AR transcriptional activity in prostate cancer cells. PMID:21331774

  18. Synthesis, QSAR, and Molecular Dynamics Simulation of Amidino-substituted Benzimidazoles as Dipeptidyl Peptidase III Inhibitors.

    PubMed

    Rastija, Vesna; Agić, Dejan; Tomiš, Sanja; Nikolič, Sonja; Hranjec, Marijana; Grace, Karminski-Zamola; Abramić, Marija

    2015-01-01

    A molecular modeling study is performed on series of benzimidazol-based inhibitors of human dipeptidyl peptidase III (DPP III). An eight novel compounds were synthesized in excellent yields using green chemistry approach. This study is aimed to elucidate the structural features of benzimidazole derivatives required for antagonism of human DPP III activity using Quantitative Structure-Activity Relationship (QSAR) analysis, and to understand the mechanism of one of the most potent inhibitor binding into the active site of this enzyme, by molecular dynamics (MD) simulations. The best model obtained includes S3K and RDF045m descriptors which have explained 89.4 % of inhibitory activity. Depicted moiety for strong inhibition activity matches to the structure of most potent compound. MD simulation has revealed importance of imidazolinyl and phenyl groups in the mechanism of binding into the active site of human DPP III.

  19. Identification of Dh/+ and Dh/Dh embryos through close linkage of Dh and peptidase-3.

    PubMed

    Holmes, L B

    1986-12-01

    The close linkage between the genes Dominant hemimelia (Dh) and peptidase-3 (Pep-3) has been determined in 65 informative matings with the recombination frequency of 3.8%. Progeny testing showed that nonpenetrance does occur in Dh/+ adults. The presence of the "slow" and "fast" variants of Pep-3 can be determined in homogenates of kidney tissue as well as in a portion of the day 10 and 11 embryos. In a litter of embryos born to an informative mating, those which are Dh/Dh, Dh/+, and +/+ can be distinguished by the presence of the Pep-3 allele known to be in coupling with the Dh gene. This technique makes it possible to identify and to study the limb malformations and other phenotypic effects of Dh during their development and before the limb deformity is visible.

  20. Ostertagia circumcincta: isolation of a partial cDNA encoding an unusual member of the mitochondrial processing peptidase subfamily of M16 metallopeptidases.

    PubMed

    Walker, J; Tait, A

    1997-11-01

    A reverse-transcriptase polymerase chain reaction (PCR) procedure was used to isolate an Ostertagia circumcincta partial cDNA encoding a protein with general primary sequence features characteristic of members of the mitochondrial processing peptidase (MPP) subfamily of M16 metallopeptidases. The structural relationships of the predicted protein (Oc MPPX) with MPP subfamily proteins from other species (including the model free-living nematode Caenorhabditis elegans) were examined, and Northern analysis confirmed the expression of the Oc mppx gene in adult nematodes.

  1. Inhibitors of peptidases: how they influence the biological activities of substance P, neurokinins, bradykinin and angiotensin in guinea pig, hamster and rat urinary bladders.

    PubMed

    Rouissi, N; Nantel, F; Drapeau, G; Rhaleb, N E; Dion, S; Regoli, D

    1990-01-01

    Neurokinins, bradykinin and angiotensins were tested in isolated urinary bladder of the guinea pig, the hamster and the rat, in the absence and in presence of a variety of peptidase inhibitors in order to establish if peptide degradation interferes with the bladder contractions elicited by the three types of peptides. Indeed, the effects of neurokinins, bradykinin and angiotensin I in the guinea pig bladder were significantly enhanced by captopril (4.6 x 10(-6) mol/l), chymostatin (1 mg/l), phosphoramidon (4.6 x 10(-6) mol/l) and thiorphan (1.0 x 10(-6) mol/l), while only captopril was found to potentiate the effects of the same peptides in the rat bladder. The four peptidase inhibitors, as well as bacitracin were found to modify the responses of the hamster urinary bladder to one or another or to all three groups of peptides and to DiMeC7. The present results suggest that the urinary bladders of various species have different types of active proteolytic enzymes: only the angiotensin-converting enzyme appears to be present in the rat bladder, while the same enzyme and possibly two additional endopeptidases interfere with the myotropic effects of neurokinins, kinins and angiotensins in the guinea pig and the hamster bladder.

  2. Entropy-driven binding of opioid peptides induces a large domain motion in human dipeptidyl peptidase III

    PubMed Central

    Bezerra, Gustavo A.; Dobrovetsky, Elena; Viertlmayr, Roland; Dong, Aiping; Binter, Alexandra; Abramić, Marija; Macheroux, Peter; Dhe-Paganon, Sirano; Gruber, Karl

    2012-01-01

    Opioid peptides are involved in various essential physiological processes, most notably nociception. Dipeptidyl peptidase III (DPP III) is one of the most important enkephalin-degrading enzymes associated with the mammalian pain modulatory system. Here we describe the X-ray structures of human DPP III and its complex with the opioid peptide tynorphin, which rationalize the enzyme's substrate specificity and reveal an exceptionally large domain motion upon ligand binding. Microcalorimetric analyses point at an entropy-dominated process, with the release of water molecules from the binding cleft (“entropy reservoir”) as the major thermodynamic driving force. Our results provide the basis for the design of specific inhibitors that enable the elucidation of the exact role of DPP III and the exploration of its potential as a target of pain intervention strategies. PMID:22493238

  3. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an eventmore » that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.« less

  4. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice.

    PubMed

    Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid

    2016-02-01

    Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.

  5. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion.

    PubMed

    Lambeir, A M; Durinx, C; Proost, P; Van Damme, J; Scharpé, S; De Meester, I

    2001-11-02

    Dipeptidyl-peptidase IV (DPPIV/CD26) metabolizes neuropeptides regulating insulin secretion. We studied the in vitro steady-state kinetics of DPPIV/CD26-mediated truncation of vasoactive intestinal peptide (VIP), pituitary adenylyl cyclase-activating peptide (PACAP27 and PACAP38), gastrin-releasing peptide (GRP) and neuropeptide Y (NPY). DPPIV/CD26 sequentially cleaves off two dipeptides of VIP, PACAP27, PACAP38 and GRP. GRP situates between the best DPPIV/CD26 substrates reported, comparable to NPY. Surprisingly, the C-terminal extension of PACAP38, distant from the scissile bond, improves both PACAP38 binding and turnover. Therefore, residues remote from the scissile bond can modulate DPPIV/CD26 substrate selectivity as well as residues flanking it.

  6. Metabolic stability of some tachykinin analogues to cell-surface peptidases: roles for endopeptidase-24.11 and aminopeptidase N.

    PubMed

    Medeiros, M D; Turner, A J

    1995-01-01

    The metabolism of several tachykinin antagonists by membrane peptidases has been examined. [beta Ala8]NKA(4-10) was not stabilized against degradation by endopeptidase-24.11 and this was the major activity in renal brush border membranes hydrolyzing this peptide. The antagonist MEN 10263 was much more resistant to hydrolysis by endopeptidase-24.11, although hydrolysis of the C-terminal Leu-Phe bond was detectable. Three other tachykinin receptor antagonists (MEN 10208, MEN 10207, and MEN 10376), by virtue of D-Trp substitutions, were rendered resistant to endopeptidase-24.11 but were still susceptible to aminopeptidase action. These studies provide further insight into design features necessary to produce metabolically stable peptide analogues.

  7. Core protein cleavage by signal peptide peptidase is required for hepatitis C virus-like particle assembly

    PubMed Central

    Ait-Goughoulte, Malika; Hourioux, Christophe; Patient, Romuald; Trassard, Sylvie; Brand, Denys; Roingeard, Philippe

    2006-01-01

    SUMMARY Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LP) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV assembly and morphogenesis by electron microscopy. We used this model to investigate whether the processing of the HCV core protein by the signal peptide peptidase (SPP) is required for the HCV-LP assembly. We designed several mutants as there are conflicting reports concerning the cleavage of mutant proteins by SPP. Production of the only core mutant protein that escaped SPP processing led to the formation of multiple layers of electron-dense ER membrane, with no evidence of HCV-LP assembly. Our data shed light on the HCV core residues involved in SPP cleavage and suggest that this cleavage is essential for HCV assembly. PMID:16528035

  8. Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor.

    PubMed

    Dasari, Suvarna; Kölling, Ralf

    2016-07-01

    We studied presequence processing of the mitochondrial-matrix targeted acetohydroxyacid synthase (Ilv2). C-terminal 3HA-tagging altered the cleavage pattern from a single step to sequential two-step cleavage, giving rise to two Ilv2-3HA forms (A and B). Both cleavage events were dependent on the mitochondrial processing peptidase (MPP). We present evidence for the involvement of three AAA ATPases, m- and i-AAA proteases, and Mcx1, in Ilv2-3HA processing. Both, precursor to A-form and A-form to B-form cleavage were strongly affected in a ∆yme1 mutant. These defects could be suppressed by overexpression of MPP, suggesting that MPP activity is limiting in the ∆yme1 mutant. Our data suggest that for some substrates AAA ATPases could play an active role in the translocation of matrix-targeted proteins.

  9. Characterization of the tachykinin neurokinin-2 receptor in the human urinary bladder by means of selective receptor antagonists and peptidase inhibitors.

    PubMed

    Giuliani, S; Patacchini, R; Barbanti, G; Turini, D; Rovero, P; Quartara, L; Giachetti, A; Maggi, C A

    1993-11-01

    The tachykinin (NK2) receptor-mediating contraction of the human isolated bladder to NKA was investigated by studying the affinities of eight structurally different receptor-selective antagonists (linear peptides, cyclic peptides and pseudopeptides, nonpeptide NK2 receptor antagonists). The affinities of the antagonists were compared to those measured for the same ligands at the NK2 receptors previously characterized in the rabbit pulmonary artery and hamster trachea. In the presence of a cocktail of peptidase inhibitors (bestatin captopril and thiorphan, 1 microM each) no significant correlation was found between pA2 values measured in the human bladder vs. those measured in the other two NK2 receptor-bearing preparation. In the presence of the aminopeptidase inhibitor amastatin, however, pA2 values of linear antagonists bearing an N-terminal Asp residue MEN 10,207 and MEN 10,376 were significantly enhanced and these pA2 values were used for analysis; a significant correlation was found between pA2 values measured in the human urinary bladder and rabbit pulmonary artery. The pseudopeptide analog of NKA (4-10), MDL 28,564 which also bears a N-terminal Asp residue behaved as an agonist and its action was enhanced by amastatin. We conclude that the NK2 receptor-mediating contraction of the human urinary bladder smooth muscle is similar to that previously characterized in the rabbit pulmonary artery (NK2A receptor category); in the human bladder smooth muscle an amastatin-sensitive peptidase (possibly aminopeptidase A) limits biological activity of linear peptide derivatives of NKA bearing a N-terminal Asp residue.

  10. Type 2 diabetes elicits lower nitric oxide, bradykinin concentration and kallikrein activity together with higher DesArg(9)-BK and reduced post-exercise hypotension compared to non-diabetic condition.

    PubMed

    Simões, Herbert Gustavo; Asano, Ricardo Yukio; Sales, Marcelo Magalhães; Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg(9)-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg(9)-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15 min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg(9)-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg(9)-BK production and reduced PEH in relation to ND participants after a single exercise session.

  11. Type 2 Diabetes Elicits Lower Nitric Oxide, Bradykinin Concentration and Kallikrein Activity Together with Higher DesArg9-BK and Reduced Post-Exercise Hypotension Compared to Non-Diabetic Condition

    PubMed Central

    Browne, Rodrigo Alberto Vieira; Arsa, Gisela; Motta-Santos, Daisy; Puga, Guilherme Morais; Lima, Laila Cândida de Jesus; Campbell, Carmen Sílvia Grubert; Franco, Octavio Luiz

    2013-01-01

    This study compared the plasma kallikrein activity (PKA), bradykinin concentration (BK), DesArg9-BK production, nitric oxide release (NO) and blood pressure (BP) response after moderate-intensity aerobic exercise performed by individuals with and without type 2 diabetes. Ten subjects with type 2 diabetes (T2D) and 10 without type 2 diabetes (ND) underwent three sessions: 1) maximal incremental test on cycle ergometer to determine lactate threshold (LT); 2) 20-min of constant-load exercise on cycle ergometer, at 90% LT and; 3) control session. BP and oxygen uptake were measured at rest and at 15, 30 and 45 min post-exercise. Venous blood samples were collected at 15 and 45 minutes of the recovery period for further analysis of PKA, BK and DesArg9-BK. Nitrite plus nitrate (NOx) was analyzed at 15 minutes post exercise. The ND group presented post-exercise hypotension (PEH) of systolic blood pressure and mean arterial pressure on the 90% LT session but T2D group did not. Plasma NOx increased ~24.4% for ND and ~13.8% for T2D group 15min after the exercise session. Additionally, only ND individuals showed increases in PKA and BK in response to exercise and only T2D group showed increased DesArg9-BK production. It was concluded that T2D individuals presented lower PKA, BK and NOx release as well as higher DesArg9-BK production and reduced PEH in relation to ND participants after a single exercise session. PMID:24265812

  12. Albumin Redhill (-1 Arg, 320 Ala yields Thr): A glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, S.O.; Myles, T.; Peach, R.J.

    1990-01-01

    Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind {sup 63}Ni{sup 2+} and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni{sup 2+} was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala {yields} Thr. Thismore » introduces as Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg {yields} Cys. The authors propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase.« less

  13. Tachykinin-induced nasal fluid secretion and plasma exudation in the rat: effects of peptidase inhibition.

    PubMed

    Lindell, E; Svensjö, M E; Malm, L; Petersson, G

    1995-05-01

    Substance P (SP) evokes fluid secretion and plasma extravasation when applied to the nasal mucosa of rats. SP and another tachykinin, neurokinin A (NKA), are degraded in vitro by neutral endopeptidase (NEP) and angiotensin-1-converting enzyme (ACE). In this study, NKA or SP were applied locally to the nasal mucosa of rats. Subsequent fluid secretion was measured by a filter paper technique. Plasma exudation was derived as the recovery of intravenous (i.v.) administered 125I-albumin from the fluid-containing filter papers. In order to inhibit enzymatic degradation of the tachykinins by NEP and ACE, the rats were treated with i.v. administered phosphoramidon or captopril respectively or their combination. SP evoked fluid secretion that was augmented by phosphoramidon and further enhanced by adding captopril. NKA evoked nasal fluid secretion less effectively than SP and the effect was unaffected by peptidase inhibition. SP, but not NKA, evoked increased plasma exudation but only after pre-treatment with phosphoramidon.

  14. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells.

    PubMed

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-03-16

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 ( FGF1 and FGF12 ), bone morphogenetic factor-1 ( BMP1 ), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 ( SMARCA4 ), Matrix extracellular phosphoglycoprotein ( MEPE ), Integrin, β4 ( ITGBP4 ), Matrix Metalloproteinase -1, -28 ( MMP1 and MMP28 ), and signal transducer and activator of transcription-4 ( STAT4 ) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1 , MMP28 and kallikrein related peptidase-7 ( KLK7 ), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology.

  15. Vitamin D Impacts the Expression of Runx2 Target Genes and Modulates Inflammation, Oxidative Stress and Membrane Vesicle Biogenesis Gene Networks in 143B Osteosarcoma Cells

    PubMed Central

    Garimella, Rama; Tadikonda, Priyanka; Tawfik, Ossama; Gunewardena, Sumedha; Rowe, Peter; Van Veldhuizen, Peter

    2017-01-01

    Osteosarcoma (OS) is an aggressive malignancy of bone affecting children, adolescents and young adults. Understanding vitamin D metabolism and vitamin D regulated genes in OS is an important aspect of vitamin D/cancer paradigm, and in evaluating vitamin D as adjuvant therapy for human OS. Vitamin D treatment of 143B OS cells induced significant and novel changes in the expression of genes that regulate: (a) inflammation and immunity; (b) formation of reactive oxygen species, metabolism of cyclic nucleotides, sterols, vitamins and mineral (calcium), quantity of gap junctions and skeletogenesis; (c) bone mineral density; and (d) cell viability of skeletal cells, aggregation of bone cancer cells and exocytosis of secretory vesicles. Ingenuity pathway analysis revealed significant reduction in Runx2 target genes such as fibroblast growth factor -1, -12 (FGF1 and FGF12), bone morphogenetic factor-1 (BMP1), SWI/SNF related, matrix associated actin dependent regulator of chromatin subfamily a, member 4 (SMARCA4), Matrix extracellular phosphoglycoprotein (MEPE), Integrin, β4 (ITGBP4), Matrix Metalloproteinase -1, -28 (MMP1 and MMP28), and signal transducer and activator of transcription-4 (STAT4) in vitamin D treated 143B OS cells. These genes interact with the inflammation, oxidative stress and membrane vesicle biogenesis gene networks. Vitamin D not only inhibited the expression of Runx2 target genes MMP1, MMP28 and kallikrein related peptidase-7 (KLK7), but also migration and invasion of 143B OS cells. Vitamin D regulated Runx2 target genes or their products represent potential therapeutic targets and laboratory biomarkers for applications in translational oncology. PMID:28300755

  16. Diversity of neuropsin (KLK8)-dependent synaptic associativity in the hippocampal pyramidal neuron

    PubMed Central

    Ishikawa, Yasuyuki; Tamura, Hideki; Shiosaka, Sadao

    2011-01-01

    Abstract Hippocampal early (E-) long-term potentiation (LTP) and long-term depression (LTD) elicited by a weak stimulus normally fades within 90 min. Late (L-) LTP and LTD elicited by strong stimuli continue for >180 min and require new protein synthesis to persist. If a strong tetanus is applied once to synaptic inputs, even a weak tetanus applied to another synaptic input can evoke persistent LTP. A synaptic tag is hypothesized to enable the capture of newly synthesized synaptic molecules. This process, referred to as synaptic tagging, is found between not only the same processes (i.e. E- and L-LTP; E- and L-LTD) but also between different processes (i.e. E-LTP and L-LTD; E-LTD and L-LTP) induced at two independent synaptic inputs (cross-tagging). However, the mechanisms of synaptic tag setting remain unclear. In our previous study, we found that synaptic associativity in the hippocampal Schaffer collateral pathway depended on neuropsin (kallikrein-related peptidase 8 or KLK8), a plasticity-related extracellular protease. In the present study, we investigated how neuropsin participates in synaptic tagging and cross-tagging. We report that neuropsin is involved in synaptic tagging during LTP at basal and apical dendritic inputs. Moreover, neuropsin is involved in synaptic tagging and cross-tagging during LTP at apical dendritic inputs via integrin β1 and calcium/calmodulin-dependent protein kinase II signalling. Thus, neuropsin is a candidate molecule for the LTP-specific tag setting and regulates the transformation of E- to L-LTP during both synaptic tagging and cross-tagging. PMID:21646406

  17. In vitro selection of Phytomonas serpens cells resistant to the calpain inhibitor MDL28170: alterations in fitness and expression of the major peptidases and efflux pumps.

    PubMed

    Oliveira, Simone S C; Gonçalves, Inês C; Ennes-Vidal, Vitor; Lopes, Angela H C S; Menna-Barreto, Rubem F S; D'Ávila-Levy, Claudia M; Santos, André L S; Branquinha, Marta H

    2018-03-01

    The species Phytomonas serpens is known to express some molecules displaying similarity to those described in trypanosomatids pathogenic to humans, such as peptidases from Trypanosoma cruzi (cruzipain) and Leishmania spp. (gp63). In this work, a population of P. serpens resistant to the calpain inhibitor MDL28170 at 70 µ m (MDLR population) was selected by culturing promastigotes in increasing concentrations of the drug. The only relevant ultrastructural difference between wild-type (WT) and MDLR promastigotes was the presence of microvesicles within the flagellar pocket of the latter. MDLR population also showed an increased reactivity to anti-cruzipain antibody as well as a higher papain-like proteolytic activity, while the expression of calpain-like molecules cross-reactive to anti-Dm-calpain (from Drosophila melanogaster) antibody and calcium-dependent cysteine peptidase activity were decreased. Gp63-like molecules also presented a diminished expression in MDLR population, which is probably correlated to the reduction in the parasite adhesion to the salivary glands of the insect vector Oncopeltus fasciatus. A lower accumulation of Rhodamine 123 was detected in MDLR cells when compared with the WT population, a phenotype that was reversed when MDLR cells were treated with cyclosporin A and verapamil. Collectively, our results may help in the understanding of the roles of calpain inhibitors in trypanosomatids.

  18. Involvement of skeletal renin-angiotensin system and kallikrein-kinin system in bone deteriorations of type 1 diabetic mice with estrogen deficiency.

    PubMed

    Zhang, Yan; Wang, Liang; Liu, Jin-Xin; Wang, Xin-Luan; Shi, Qi; Wang, Yong-Jun

    This study was aimed to investigate the involvement of skeletal renin-angiotensin system (RAS) and kallikrein-kinin system (KKS) in bone deteriorations of mice in response to the combination treatment of estrogen deficiency and hyperglycemia. The female C57BL/6J mice were sham-operated or ovariectomized with vehicle or streptozotocin (STZ) treatment. Two weeks later, the biochemistries in serum and urine were determined by standard colorimetric methods or ELISA. The H&E and TRAP staining were performed at the tibial proximal metaphysis. The polymerase chain reaction and immunoblotting were applied for molecular analysis on mRNA and protein expression. The mice after treating with ovariectomy and STZ showed the decreased level of serum Ca and the increased level of serum PTH and urine Ca. The H&E staining showed trabecular bone abnormalities as demonstrated by the loss, disconnection and separation of trabecular bone network as well as the loss of chondrocytes and appearance of chondrocyte cluster at growth plate of tibia. The significant increase of matured osteoclast number was shown in group with double treatments. The combination treatment significantly up-regulated mRNA expression of AGT, ACE, renin receptor, MMP-9 and CAII, and protein expression of renin, and decreased the ratio of OPG/RANKL and the expression of bradykinin receptors in bone tissue. Ovariectomy combined with STZ induction produced more detrimental actions on bone through the activation of local bone RAS and the down-regulation of bradykinin receptors, as compared to the respective single treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Classical late infantile neuronal ceroid lipofuscinosis fibroblasts are deficient in lysosomal tripeptidyl peptidase I.

    PubMed

    Vines, D J; Warburton, M J

    1999-01-25

    Tripeptidyl peptidase I (TPP-I) is a lysosomal enzyme that cleaves tripeptides from the N-terminus of polypeptides. A comparison of TPP-I amino acid sequences with sequences derived from an EST database suggested that TPP-I is identical to a pepstatin-insensitive carboxyl proteinase of unknown specificity which is mutated in classical late infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal storage disease. Both TPP-I and the carboxyl proteinase have an M(r) of about 46 kDa and are, or are predicted to be, resistant to inhibitors of the four major classes of proteinases. Fibroblasts from LINCL patients have less than 5% of the normal TPP-I activity. The activities of other lysosomal enzymes, including proteinases, are in the normal range. LINCL fibroblasts are also defective at degrading short polypeptides and this defect can be induced in normal fibroblasts by treatment with a specific inhibitor or TPP-I. These results suggest that the cell damage, especially neuronal, observed in LINCL results from the defective degradation and consequent lysosomal storage of small peptides.

  20. Dipeptidyl peptidase-IV inhibitor use associated with increased risk of ACE inhibitor-associated angioedema.

    PubMed

    Brown, Nancy J; Byiers, Stuart; Carr, David; Maldonado, Mario; Warner, Barbara Ann

    2009-09-01

    Dipeptidyl peptidase-IV (DPP-IV) inhibitors decrease degradation of the incretins. DPP-IV inhibitors also decrease degradation of peptides, such as substance P, that may be involved in the pathogenesis of angiotensin-converting enzyme (ACE) inhibitor-associated angioedema. This study tested the hypothesis that DPP-IV inhibition affects risk of clinical angioedema, by comparing the incidence of angioedema in patients treated with the DPP-IV inhibitor vildagliptin versus those treated with comparator in Phase III randomized clinical trials. Prospectively defined angioedema-related events were adjudicated in a blinded fashion by an internal medicine adjudication committee and expert reviewer. Concurrent ACE inhibitor or angiotensin receptor blocker exposure was ascertained from case report forms. Study drug exposure was ascertained from unblinded data from phase III studies. Odds ratios and 95% confidence intervals comparing angioedema risk in vildagliptin-treated and comparator-treated patients were calculated for the overall population and for patients taking ACE inhibitors or angiotensin receptor blockers, using both an analysis of pooled data and a meta-analysis (Peto method). Overall, there was no association between vildagliptin use and angioedema. Among individuals taking an ACE inhibitor, however, vildagliptin use was associated with an increased risk of angioedema (14 confirmed cases among 2754 vildagliptin users versus 1 case among 1819 comparator users: odds ratio 4.57 [95% confidence interval 1.57 to 13.28]) in the meta-analysis. Vildagliptin use may be associated with increased risk of angioedema among patients taking ACE inhibitors, although absolute risk is small. Physicians confronted with angioedema in a patient taking an ACE inhibitor and DPP-IV inhibitor should consider this possible drug-drug interaction.

  1. Proctolin degradation by membrane peptidases from nervous tissues of the desert locust (Schistocerca gregaria).

    PubMed Central

    Isaac, R E

    1987-01-01

    The hydrolysis of the insect neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) by enzyme preparations from the nervous tissue of the desert locust (Schistocerca gregaria) was investigated. Neural homogenate degraded proctolin (100 microM) at neutral pH by cleavage of the Arg-Tyr and Tyr-Leu bonds to yield Tyr-Leu-Pro-Thr, Arg-Tyr and free tyrosine. Arg-Tyr was detected as a major metabolite when the aminopeptidase inhibitors amastatin and bestatin were present to prevent Arg-Tyr breakdown. Around 50% of the proctolin-degrading activity was isolated in a 30,000 g membrane fraction and was shown to be almost entirely due to aminopeptidase activity. The aminopeptidase had an apparent Km of 23 microM, a pH optimum of 7.0 and was inhibited by 1 mM-EDTA and amastatin [IC50 = 0.3 microM], but was relatively insensitive to bestatin, actinonin and puromycin. Phenylmethanesulphonyl fluoride (1 mM) and p-chloromercuriphenylsulphonic acid (1 mM) had no effect on this enzyme activity. Although the bulk of the Tyr-Leu hydrolytic activity was located in the 30,000 g supernatant, some weak activity was detected in a washed membrane preparation. This peptidase displayed a high affinity for proctolin (Km = 0.35 microM) and optimal activity at around pH 7.0. Synaptosome- and mitochondria-rich fractions were prepared from crude neural membranes. The aminopeptidase activity was concentrated in the synaptic-membrane preparation, whereas activity giving rise to Arg-Tyr was predominantly localized in the mitochondrial fraction. The subcellular localization of the membrane aminopeptidase is consistent with a possible physiological role for this enzyme in the inactivation of synaptically released proctolin. PMID:2889451

  2. Dermasence refining gel modulates pathogenetic factors of rosacea in vitro.

    PubMed

    Borelli, C; Becker, B; Thude, S; Fehrenbacher, B; Isermann, D

    2017-12-01

    Over the counter cosmetics sold for local treatment of slight to moderate rosacea often state the claim of actively modulating rosacea pathogenesis. Factors involved in the pathogenesis of this common yet complex skin disorder include kallikrein-related peptidase 5 (KLK5), LL-37, as well as protease-activated receptor 2 (PAR2) and vascular endothelial growth factor (VEGF). The objective was to prove the modulating effect of the cosmetic skin care agent Dermasence Refining Gel (DRG) on factors involved in rosacea pathogenesis. We analyzed the effect of DRG on the expression of KLK5, LL-37, PAR2, and VEGF in an in vitro skin model of human reconstituted epidermis. The expression of CAMP (LL-37 gene, fold change -4.19 [±0.11]), VEGFA (fold change -2.55 [±0.12]) and PAR2 (-1.33 [±0.12]) was reduced, KLK5 expression increased (fold change 2.06 (±0.08)) after 18 h of treatment with DRG in comparison to treatment with the matrix gel only. The reduction in CAMP expression was significant (P<.01). The protein expression of all four inflammatory markers was markedly reduced after 18 hours of DRG treatment in comparison to baseline (0 hour), by measure of fluorescence intensity. We show evidence explaining the anti-inflammatory effect of Dermasence Refining Gel in rosacea pathogenesis in vitro. The adjunctive use of DRG in mild to moderate rosacea as a topical cosmetic seems medically reasonable. © 2017 Wiley Periodicals, Inc.

  3. Diagnostic value of KLK6 as an ovarian cancer biomarker: A meta-analysis.

    PubMed

    Yang, Fan; Hu, Zhi-DE; Chen, Yingjian; Hu, Cheng-Jin

    2016-06-01

    Kallikrein-related peptidase 6 (KLK6) is a new potential serum biomarker of ovarian cancer. The aim of the present study was to assess the diagnostic value of KLK6 systematically for ovarian cancer. All the selected studies regarding the changes of KLK6 in ovarian cancer were published prior to April 2015. Five studies involving 485 patients with ovarian cancer, 420 benign cysts and 245 healthy controls met the inclusion criteria. The value of sensitivity, specificity, positive-likelihood ratio (LR+), negative-likelihood ratio (LR-) and area under the receiver operating characteristic curve (ROC) were obtained. All these indices were used to evaluate the diagnostic value of KLK6 for ovarian cancer. The values of sensitivity, specificity, LR+ and LR- (95% confidence interval) of KLK6 were 0.50 (0.47-0.54), 0.91 (0.89-0.93), 7.20 (3.34-15.52) and 0.51 (0.43-0.62), respectively. The area under the summary ROC of KLK6 was 0.86. The index of Q* was 0.79. In conclusion, KLK6 showed high specificity for the diagnosis of ovarian cancer. It can improve the diagnostic accuracy of cancer antigen 125 (CA125). A combined panel of CA125 and KL K6 shows a high diagnostic efficiency for advanced ovarian cancer. Owing to the small number of studies and lack of samples, additional studies meeting the inclusion criteria are required to further analyze the diagnostic value of KLK6 for ovarian cancer.

  4. Poly(adenylic acid) complementary DNA real-time polymerase chain reaction in pancreatic ductal juice in patients undergoing pancreaticoduodenectomy.

    PubMed

    Oliveira-Cunha, Melissa; Byers, Richard J; Siriwardena, Ajith K

    2010-03-01

    There is a need to develop methods of early diagnosis for pancreatic cancer. Pancreatic juice is easily collected by endoscopic retrograde cholangiopancreatography and may facilitate diagnosis using molecular markers. The aim of this work was to explore the feasibility of measurement of gene expression in RNA isolated from ductal juice. Intraoperative sampling of pancreatic juice was undertaken in 27 patients undergoing pancreaticoduodenectomy for suspected tumor. Total RNA was extracted and used as template for poly(adenylic acid) (poly[A]) polymerase chain reaction (PCR) to generate a globally amplified complementary DNA pool representative of all expressed messenger RNAs. Real-time PCR was performed for trefoil factor 2 (TFF2), carboxypeptidase B1 (CPB1), and kallikrein-related peptidase 3 (KLK3) in a subset of samples; all samples were normalized for 3 reference genes (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], PSMB6, and beta-2-microglobulin [B2M]). The median volume of the pancreatic juice obtained was 1245 microL (range, 50-5000 microL). The RNA integrity number ranged from 1.9 to 10. Reverse transcriptase PCR was positive for pancreas-specific genes (TFF2 and CPB1) and negative for prostatic-specific antigen in all samples. These results demonstrate that RNA analysis of pancreatic juice is feasible using a combination of poly(A) PCR and real-time PCR. In addition, the poly(A) complementary DNA generated can be probed for multiple genes and is indefinitely renewable, thereby representing a molecular block of importance for future research.

  5. Target gene analyses of 39 amelogenesis imperfecta kindreds

    PubMed Central

    Chan, Hui-Chen; Estrella, Ninna M. R. P.; Milkovich, Rachel N.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C-C.

    2012-01-01

    Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred. PMID:22243262

  6. Circadian rhythms regulate amelogenesis.

    PubMed

    Zheng, Li; Seon, Yoon Ji; Mourão, Marcio A; Schnell, Santiago; Kim, Doohak; Harada, Hidemitsu; Papagerakis, Silvana; Papagerakis, Petros

    2013-07-01

    Ameloblasts, the cells responsible for making enamel, modify their morphological features in response to specialized functions necessary for synchronized ameloblast differentiation and enamel formation. Secretory and maturation ameloblasts are characterized by the expression of stage-specific genes which follows strictly controlled repetitive patterns. Circadian rhythms are recognized as key regulators of the development and diseases of many tissues including bone. Our aim was to gain novel insights on the role of clock genes in enamel formation and to explore the potential links between circadian rhythms and amelogenesis. Our data shows definitive evidence that the main clock genes (Bmal1, Clock, Per1 and Per2) oscillate in ameloblasts at regular circadian (24 h) intervals both at RNA and protein levels. This study also reveals that the two markers of ameloblast differentiation i.e. amelogenin (Amelx; a marker of secretory stage ameloblasts) and kallikrein-related peptidase 4 (Klk4, a marker of maturation stage ameloblasts) are downstream targets of clock genes. Both, Amelx and Klk4 show 24h oscillatory expression patterns and their expression levels are up-regulated after Bmal1 over-expression in HAT-7 ameloblast cells. Taken together, these data suggest that both the secretory and the maturation stages of amelogenesis might be under circadian control. Changes in clock gene expression patterns might result in significant alterations of enamel apposition and mineralization. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Proteolytic Activity of Prostate-Specific Antigen (PSA) towards Protein Substrates and Effect of Peptides Stimulating PSA Activity

    PubMed Central

    Mattsson, Johanna M.; Ravela, Suvi; Hekim, Can; Jonsson, Magnus; Malm, Johan; Närvänen, Ale; Stenman, Ulf-Håkan; Koistinen, Hannu

    2014-01-01

    Prostate-specific antigen (PSA or kallikrein-related peptidase-3, KLK3) exerts chymotrypsin-like proteolytic activity. The main biological function of PSA is the liquefaction of the clot formed after ejaculation by cleavage of semenogelins I and II in seminal fluid. PSA also cleaves several other substrates, which may explain its putative functions in prostate cancer and its antiangiogenic activity. We compared the proteolytic efficiency of PSA towards several protein and peptide substrates and studied the effect of peptides stimulating the activity of PSA with these substrates. An endothelial cell tube formation model was used to analyze the effect of PSA-degraded protein fragments on angiogenesis. We showed that PSA degrades semenogelins I and II much more efficiently than other previously identified protein substrates, e.g., fibronectin, galectin-3 and IGFBP-3. We identified nidogen-1 as a new substrate for PSA. Peptides B2 and C4 that stimulate the activity of PSA towards small peptide substrates also enhanced the proteolytic activity of PSA towards protein substrates. Nidogen-1, galectin-3 or their fragments produced by PSA did not have any effect on endothelial cell tube formation. Although PSA cleaves several other protein substrates, in addition to semenogelins, the physiological importance of this activity remains speculative. The PSA levels in prostate are very high, but several other highly active proteases, such as hK2 and trypsin, are also expressed in the prostate and may cleave protein substrates that are weakly cleaved by PSA. PMID:25237904

  8. Transition to an Aquatic Habitat Permitted the Repeated Loss of the Pleiotropic KLK8 Gene in Mammals.

    PubMed

    Hecker, Nikolai; Sharma, Virag; Hiller, Michael

    2017-11-01

    Kallikrein related peptidase 8 (KLK8; also called neuropsin) is a serine protease that plays distinct roles in the skin and hippocampus. In the skin, KLK8 influences keratinocyte proliferation and desquamation, and activates antimicrobial peptides in sweat. In the hippocampus, KLK8 affects memory acquisition. Here, we examined the evolution of KLK8 in mammals and discovered that, out of 70 placental mammals, KLK8 is exclusively lost in three independent fully-aquatic lineages, comprising dolphin, killer whale, minke whale, and manatee. In addition, while the sperm whale has an intact KLK8 reading frame, the gene evolves neutrally in this species. We suggest that the distinct functions of KLK8 likely became obsolete in the aquatic environment, leading to the subsequent loss of KLK8 in several fully-aquatic mammalian lineages. First, the cetacean and manatee skin lacks sweat glands as an adaptation to the aquatic environment, which likely made the epidermal function of KLK8 obsolete. Second, cetaceans and manatees exhibit a proportionally small hippocampus, which may have rendered the hippocampal functions of KLK8 obsolete. Together, our results shed light on the genomic changes that correlate with skin and neuroanatomical differences of aquatic mammals, and show that even pleiotropic genes can be lost during evolution if an environmental change nullifies the need for the different functions of such genes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Involvement of signal peptidase I in Streptococcus sanguinis biofilm formation

    PubMed Central

    Ge, Xiuchun; Stone, Victoria; Zhu, Bin; Kitten, Todd

    2017-01-01

    Biofilm accounts for 65–80 % of microbial infections in humans. Considerable evidence links biofilm formation by oral microbiota to oral disease and consequently systemic infections. Streptococcus sanguinis, a Gram-positive bacterium, is one of the most abundant species of the oral microbiota and it contributes to biofilm development in the oral cavity. Due to its altered biofilm formation, we investigated a biofilm mutant, ΔSSA_0351, that is deficient in type I signal peptidase (SPase) in this study. Although the growth curve of the ΔSSA_0351 mutant showed no significant difference from that of the wild-type strain SK36, biofilm assays using both microtitre plate assay and confocal laser scanning microscopy (CLSM) confirmed a sharp reduction in biofilm formation in the mutant compared to the wild-type strain and the paralogous mutant ΔSSA_0849. Scanning electron microscopy (SEM) revealed remarkable differences in the cell surface morphologies and chain length of the ΔSSA_0351 mutant compared with those of the wild-type strain. Transcriptomic and proteomic assays using RNA sequencing and mass spectrometry, respectively, were conducted on the ΔSSA_0351 mutant to evaluate the functional impact of SPase on biofilm formation. Subsequently, bioinformatics analysis revealed a number of proteins that were differentially regulated in the ΔSSA_0351 mutant, narrowing down the list of SPase substrates involved in biofilm formation to lactate dehydrogenase (SSA_1221) and a short-chain dehydrogenase (SSA_0291). With further experimentation, this list defined the link between SSA_0351-encoded SPase, cell wall biosynthesis and biofilm formation. PMID:28869408

  10. Potencies of agonists acting at tachykinin receptors in the oestrogen-primed rat uterus: effects of peptidase inhibitors.

    PubMed

    Fisher, L; Pennefather, J N

    1997-09-24

    The uterotonic potencies of the naturally occurring mammalian tachykinins and the synthetic subtype-selective agonist analogues of these agents [Lys5,MeLeu9,Nlel0]neurokinin A-(4-10) and [Nle10]neurokinin A-(4-10) (tachykinin NK2 receptor-selective), [Sar9,Met(O2)11]substance P (tachykinin NK1 receptor-selective) and senktide (tachykinin NK3 receptor-selective) were determined using preparations from oestradiol-treated rats. The endopeptidase 24.11 inhibitor, N-[N-[1-(S)-carboxyl-3-phenylpropyl]-(S)-phenyl-alanyl-(S)-isoserine+ ++ (SCH 39370), potentiated responses to neurokinin A, neurokinin B and substance P, but not to [Lys5,MeLeu9,Nle10)]neurokinin A-(4-10) or senktide. [Nle10]neurokinin A-(4-10) effects were potentiated by SCH 39370 with amastatin and those to [Sar9,Met(O2)11]substance P were potentiated by SCH 39370 and captopril in combination. In the presence of optimal concentrations of peptidase inhibitors the relative order of agonist potency was: neurokinin A > substance P > neurokinin B for the naturally occurring mammalian tachykinins and [Lys5,MeLeu9,Nle10]neurokinin A-(4-10) > [Nle10]neurokinin A-(4-10) > [Sar9,Met(O2)11]substance P > senktide for the synthetic tachykinin analogues. Thus, while a tachykinin NK2 receptor predominates in the oestrogen-primed uterus, a tachykinin NK1 receptor may also be present. The non-peptide tachykinin NK3 receptor antagonist, SR 142801, did not antagonise the effects of senktide suggesting that tachykinin NK3 receptors do not mediate its relatively minor effect on the uterus of the oestrogen-primed rat.

  11. Pharmacokinetics of the dipeptidyl peptidase 4 inhibitor saxagliptin in rats, dogs, and monkeys and clinical projections.

    PubMed

    Fura, Aberra; Khanna, Ashish; Vyas, Viral; Koplowitz, Barry; Chang, Shu-Ying; Caporuscio, Christian; Boulton, David W; Christopher, Lisa J; Chadwick, Kristina D; Hamann, Lawrence G; Humphreys, W Griffith; Kirby, Mark

    2009-06-01

    Saxagliptin is a potent, selective, reversible dipeptidyl peptidase 4 (DPP4) inhibitor specifically designed for extended inhibition of the DPP4 enzyme and is currently under development for the treatment of type-2 diabetes. The pharmacokinetics of saxagliptin were evaluated in rats, dogs, and monkeys and used to predict its human pharmacokinetics. Saxagliptin was rapidly absorbed and had good bioavailability (50-75%) in the species tested. The plasma clearance of saxagliptin was higher in rats (115 ml/min/kg) than in dogs (9.3 ml/min/kg) and monkeys (14.5 ml/min/kg) and was predicted to be low to moderate in humans. The plasma elimination half-life was between 2.1 and 4.4 h in rats, dogs, and monkeys, and both metabolism and renal excretion contributed to the overall elimination. The primary metabolic clearance pathway involved the formation of a significant circulating, pharmacologically active hydroxylated metabolite, M2. The volume of distribution values observed in rats, dogs, and monkeys (1.3-5.2 l/kg) and predicted for humans (2.7 l/kg) were greater than those for total body water, indicating extravascular distribution. The in vitro serum protein binding was low (< or =30%) in rats, dogs, monkeys, and humans. After intra-arterial administration of saxagliptin to Sprague-Dawley and Zucker diabetic fatty rats, higher levels of saxagliptin and M2 were observed in the intestine (a proposed major site of drug action) relative to that in plasma. Saxagliptin has prolonged pharmacodynamic properties relative to its plasma pharmacokinetic profile, presumably due to additional contributions from M2, distribution of saxagliptin and M2 to the intestinal tissue, and prolonged dissociation of both saxagliptin and M2 from DPP4.

  12. A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca(2+)-signaling factor for mammalian cells.

    PubMed

    Burleigh, B A; Andrews, N W

    1995-03-10

    Trypomastigotes, the infective stages of the intracellular parasite Trypanosoma cruzi, induce rapid and repetitive cytosolic free Ca2+ transients in fibroblasts. Buffering or depletion of intracellular free Ca2+ inhibits cell entry by trypomastigotes, indicating a role for this signaling event in invasion. We show here that the majority of the Ca(2+)-signaling activity is associated with the soluble fraction of parasites disrupted by sonication. Distinct cell types from different species are responsive to this soluble factor, and intracellular free Ca2+ transients occur rapidly and reach concentrations comparable to responses induced by thrombin and bombesin. The Ca(2+)-signaling activity does not bind concanavalin A and is strongly inhibited by a specific subset of protease inhibitors. The only detectable protease in the fractions with Ca(2+)-signaling activity is an unusual alkaline peptidase of 120 kDa, to which no function had been previously assigned. The activity of the protease and cell invasion by trypomastigotes are blocked by the same specific inhibitors that impair Ca(2+)-signaling, suggesting that the enzyme is required for generating the response leading to infection. We demonstrate that the 120-kDa peptidase is not sufficient for triggering Ca(2+)-signaling, possibly being involved in the processing of precursors present only in infective trypomastigotes. These findings indicate a biological function for a previously identified unusual protozoan protease and provide the first example of a proteolytically generated parasite factor with characteristics of a mammalian hormone.

  13. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2.

    PubMed

    Qin, Chen-Jie; Zhao, Ling-Hao; Zhou, Xu; Zhang, Hui-Lu; Wen, Wen; Tang, Liang; Zeng, Min; Wang, Ming-Da; Fu, Gong-Bo; Huang, Shuai; Huang, Wei-Jian; Yang, Yuan; Bao, Zhi-Jun; Zhou, Wei-Ping; Wang, Hong-Yang; Yan, He-Xin

    2018-04-28

    Obesity is a major risk factor for hepatocellular carcinoma (HCC) and is typically accompanied by higher levels of serum dipeptidyl peptidase 4 (DPP4). However, the role of DPP4 in obesity-promoted HCC is unclear. Here, we found that consumption of a high-fat diet (HFD) promoted HCC cell proliferation and metastasis and led to poor survival in a carcinogen-induced model of HCC in rats. Notably, genetic ablation of DPP4 or treatment with a DPP4 inhibitor (vildagliptin) prevented HFD-induced HCC. Moreover, HFD-induced DPP4 activity facilitated angiogenesis and cancer cell metastasis in vitro and in vivo, and vildagliptin prevented tumor progression by mediating the pro-angiogenic role of chemokine ligand 2 (CCL2). Loss of DPP4 effectively reversed HFD-induced CCL2 production and angiogenesis, indicating that the DPP4/CCL2/angiogenesis cascade had key roles in HFD-associated HCC progression. Furthermore, concomitant changes in serum DPP4 and CCL2 were observed in 210 patients with HCC, and high serum DPP4 activity was associated with poor clinical prognosis. These results revealed a link between obesity-related high serum DPP4 activity and HCC progression. Inhibition of DPP4 may represent a novel therapeutic intervention for patients with HCC. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Inadequate Triglyceride Management Worsens the Durability of Dipeptidyl Peptidase-4 Inhibitor in Subjects with Type 2 Diabetes Mellitus.

    PubMed

    Shimoda, Masashi; Miyoshi-Takai, Maiko; Irie, Shintaro; Tanabe, Akihito; Obata, Atsushi; Okauchi, Seizo; Hirukawa, Hidenori; Kimura, Tomohiko; Kohara, Kenji; Kamei, Shinji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki

    2017-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are often used all over the world and exert various beneficial effects including glucose-lowering effect in many subjects with type 2 diabetes. It is poorly understood, however, which factors are closely related with the durability of glucose-lowering effect by DPP-4 inhibitor. In this study, we examined retrospectively which factors could mainly influence the durability of DPP-4 inhibitor. We enrolled 212 participants with type 2 diabetes to whom DPP-4 inhibitor was administered for over 1 year without an addition or increase of other hypoglycemic agents. Age and baseline HbA1c level were significantly higher in the effective group than those in the ineffective group. The effective group had a tendency of smaller amounts of weight change, average total cholesterol, and average triglyceride compared with the ineffective group. Multiple logistic regression analysis showed that average triglyceride and baseline HbA1c were independent predictors associated with the durability of DPP-4 inhibitor. Moreover, an average triglyceride level contributed to the durability of DPP-4 inhibitor in the obese group (BMI ≥ 25 kg/m 2 ) but not in the nonobese group (BMI < 25 kg/m 2 ). These results suggest the importance of strict triglyceride management to maintain the durability of glucose-lowering effect by DPP-4 inhibitor, especially in obese subjects with type 2 diabetes.

  15. Glucose-independent renoprotective mechanisms of the tissue dipeptidyl peptidase-4 inhibitor, saxagliptin, in Dahl salt-sensitive hypertensive rats.

    PubMed

    Uchii, Masako; Kimoto, Naoya; Sakai, Mariko; Kitayama, Tetsuya; Kunori, Shunji

    2016-07-15

    Although previous studies have shown an important role of renal dipeptidyl peptidase-4 (DPP-4) inhibition in ameliorating kidney injury in hypertensive rats, the renal distribution of DPP-4 and mechanisms of renoprotective action of DPP-4 inhibition remain unclear. In this study, we examined the effects of the DPP-4 inhibitor saxagliptin on DPP-4 activity in renal cells (using in situ DPP-4 staining) and on renal gene expression related to inflammation and fibrosis in the renal injury in hypertensive Dahl salt-sensitive (Dahl-S) rats. Male rats fed a high-salt (8% NaCl) diet received vehicle (water) or saxagliptin (12.7mg/kg/day) for 4 weeks. Blood pressure (BP), serum glucose and 24-h urinary albumin and sodium excretions were measured, and renal histopathology was performed. High salt-diet increased BP and urinary albumin excretion, consequently resulting in glomerular sclerosis and tubulointerstitial fibrosis. Although saxagliptin did not affect BP and blood glucose levels, it significantly ameliorated urinary albumin excretion. In situ staining showed DPP-4 activity in glomerular and tubular cells. Saxagliptin significantly suppressed DPP-4 activity in renal tissue extracts and in glomerular and tubular cells. Saxagliptin also significantly attenuated the increase in inflammation and fibrosis-related gene expressions in the kidney. Our results demonstrate that saxagliptin inhibited the development of renal injury independent of its glucose-lowering effect. Glomerular and tubular DPP-4 inhibition by saxagliptin was associated with improvements in albuminuria and the suppression of inflammation and fibrosis-related genes. Thus, local glomerular and tubular DPP-4 inhibition by saxagliptin may play an important role in its renoprotective effects in Dahl-S rats. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Lower dipeptidyl peptidase-4 following exercise training plus weight loss is related to increased insulin sensitivity in adults with metabolic syndrome.

    PubMed

    Malin, Steven K; Huang, Hazel; Mulya, Anny; Kashyap, Sangeeta R; Kirwan, John P

    2013-09-01

    Dipeptidyl peptidase-4 (DPP-4) is a circulating glycoprotein that impairs insulin-stimulated glucose uptake and is linked to obesity and metabolic syndrome. However, the effect of exercise on plasma DPP-4 in adults with metabolic syndrome is unknown. Therefore, we determined the effect of exercise on DPP-4 and its role in explaining exercise-induced improvements in insulin sensitivity. Fourteen obese adults (67.9±1.2 years, BMI: 34.2±1.1kg/m(2)) with metabolic syndrome (ATP III criteria) underwent a 12-week supervised exercise intervention (60min/day for 5 days/week at ∼85% HRmax). Plasma DPP-4 was analyzed using an enzyme-linked immunosorbent assay. Insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp (40mU/m(2)/min) and estimated by HOMA-IR. Visceral fat (computerized tomography), 2-h glucose levels (75g oral glucose tolerance), and basal fat oxidation as well as aerobic fitness (indirect calorimetry) were also determined before and after exercise. The intervention reduced visceral fat, lowered blood pressure, glucose and lipids, and increased aerobic fitness (P<0.05). Exercise improved clamp-derived insulin sensitivity by 75% (P<0.001) and decreased HOMA-IR by 15% (P<0.05). Training decreased plasma DPP-4 by 10% (421.8±30.1 vs. 378.3±32.5ng/ml; P<0.04), and the decrease in DPP-4 was associated with clamp-derived insulin sensitivity (r=-0.59; P<0.04), HOMA-IR (r=0.59; P<0.04) and fat oxidation (r=-0.54; P<0.05). Increased fat oxidation also correlated with lower 2-h glucose levels (r=-0.64; P<0.02). Exercise training reduces plasma DPP-4, which may be linked to elevated insulin sensitivity and fat oxidation. Maintaining low plasma DPP-4 concentrations is a potential mechanism whereby exercise plus weight loss prevents/delays the onset of type 2 diabetes in adults with metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Drug development from the bench to the pharmacy: with special reference to dipeptidyl peptidase-4 inhibitor development.

    PubMed

    Carr, R D

    2016-06-01

    The dipeptidyl peptidase-4 (DPP-4) inhibitor concept is an example of prospective drug design and development based upon a distinct endocrine hypothesis. The design of enzyme inhibitors is a pragmatic approach to drug design; being compatible with the identification and optimization of small molecules that have properties commensurate with oral administration, as well as acceptable drug metabolism, distribution and elimination characteristics. Glucagon-like peptide 1 (GLP-1), a hormone with a spectrum of favourable metabolic actions, including glucose-dependent stimulation of insulin and inhibition of glucagon secretion, provided the endocrine basis from which the idea of using DPP-4 inhibitors as anti-diabetic agents was developed. The origin of the DPP-4 inhibitor concept was inspired by the angiotensin-converting enzyme inhibitor approach, which succeeded in establishing a class of extensively used therapeutic agents for the treatment of cardiovascular disorders. © 2016 Diabetes UK.

  18. Inhibition of serine-peptidase activity enhances the generation of a survivin-derived HLA-A2-presented CTL epitope in colon-carcinoma cells.

    PubMed

    Preta, G; Marescotti, D; Fortini, C; Carcoforo, P; Castelli, C; Masucci, M; Gavioli, R

    2008-12-01

    Cytotoxic T lymphocytes eliminate tumor cells expressing antigenic peptides in the context of MHC-I molecules. Peptides are generated during protein degradation by the proteasome and resulting products, surviving cytosolic amino-peptidases activity, may be presented by MHC-I molecules. The MHC-I processing pathway is altered in a large number of malignancies and modulation of antigen generation is one strategy employed by cells to evade immune control. In this study we analyzed the generation and presentation of a survivin-derived CTL epitope in HLA-A2-positive colon-carcinoma cells. Although all cell lines expressed the anti-apoptotic protein survivin, some tumors were poorly recognized by ELTLGEFLKL (ELT)-specific CTL cultures. The expression of MHC-I or TAP molecules was similar in all cell lines suggesting that tumors not recognized by CTLs may present defects in the generation of the ELT-epitope which could be due either to lack of generation or to subsequent degradation of the epitope. The cells were analyzed for the expression and the activity of extra-proteasomal peptidases. A significant overexpression and higher activity of TPPII was observed in colon-carcinoma cells which are not killed by ELT-specific CTLs, suggesting a possible role of TPPII in the degradation of the ELT-epitope. To confirm the role of TPPII in the degradation of the ELT-peptide, we showed that treatment of colon-carcinoma cells with a TPPII inhibitor resulted in a dose-dependent increased sensitivity to ELT-specific CTLs. These results suggest that TPPII is involved in degradation of the ELT-peptide, and its overexpression may contribute to the immune escape of colon-carcinoma cells.

  19. Dipeptidyl peptidase III is a zinc metallo-exopeptidase. Molecular cloning and expression.

    PubMed Central

    Fukasawa, K; Fukasawa, K M; Kanai, M; Fujii, S; Hirose, J; Harada, M

    1998-01-01

    We have purified dipeptidyl peptidase III (EC 3.4.14.4) from human placenta. It had a pH optimum of 8.8 and readily hydrolysed Arg-Arg-beta-naphthylamide. Monoamino acid-, Gly-Phe-, Gly-Pro- and Bz-Arg-beta-naphthylamides were not hydrolysed at all. The enzyme was inhibited by p-chloromercuriphenylsulphonic acid, metal chelators and 3,4-dichloroisocoumarin and contained 1 mol of zinc per mol of enzyme. The zinc dissociation constant was 250 fM at pH 7. 4 as determined by the zinc binding study. We isolated, by immunological screening of a Uni-ZAP XR cDNA library constructed from rat liver mRNA species, a cDNA clone with 2633 bp encoding the rat enzyme. The longest open reading frame encodes a 827-residue protein with a theoretical molecular mass of 92790 Da. Escherichia coli SOLR cells were infected with the pBluescript phagemid containing the cloned cDNA and established the overexpression of a protein that hydrolysed Arg-Arg-beta-naphthylamide. The recombinant protein was purified and the amino acid sequence of the protein was confirmed. We presumed that the putative zinc-binding domain involved in catalysis was present in the recombinant enzyme. It was a novel zinc-binding motif in that one amino acid residue was inserted into the conserved HEXXH motif characteristic of the metalloproteinases. PMID:9425109

  20. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    PubMed

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Computational Analysis of Gynura bicolor Bioactive Compounds as Dipeptidyl Peptidase-IV Inhibitor

    PubMed Central

    Abdullah Zawawi, Muhammad Redha; Ahmad, Muhamad Aizuddin; Jaganath, Indu Bala

    2017-01-01

    The inhibition of dipeptidyl peptidase-IV (DPPIV) is a popular route for the treatment of type-2 diabetes. Commercially available gliptin-based drugs such as sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin were specifically developed as DPPIV inhibitors for diabetic patients. The use of Gynura bicolor in treating diabetes had been reported in various in vitro experiments. However, an understanding of the inhibitory actions of G. bicolor bioactive compounds on DPPIV is still lacking and this may provide crucial information for the development of more potent and natural sources of DPPIV inhibitors. Evaluation of G. bicolor bioactive compounds for potent DPPIV inhibitors was computationally conducted using Lead IT and iGEMDOCK software, and the best free-binding energy scores for G. bicolor bioactive compounds were evaluated in comparison with the commercial DPPIV inhibitors, sitagliptin, anagliptin, linagliptin, saxagliptin, and alogliptin. Drug-likeness and absorption, distribution, metabolism, and excretion (ADME) analysis were also performed. Based on molecular docking analysis, four of the identified bioactive compounds in G. bicolor, 3-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,4-dicaffeoylquinic acid, and trans-5-p-coumaroylquinic acid, resulted in lower free-binding energy scores when compared with two of the commercially available gliptin inhibitors. The results revealed that bioactive compounds in G. bicolor are potential natural inhibitors of DPPIV. PMID:28932239

  2. Asymmetric synthesis of a potent, aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV inhibitor.

    PubMed

    Xu, Feng; Corley, Edward; Zacuto, Michael; Conlon, David A; Pipik, Brenda; Humphrey, Guy; Murry, Jerry; Tschaen, David

    2010-03-05

    A practical asymmetric synthesis of a novel aminopiperidine-fused imidazopyridine dipeptidyl peptidase IV (DPP-4) inhibitor 1 has been developed. Application of a unique three-component cascade coupling with chiral nitro diester 7, which is easily accessed via a highly enantioselective Michael addition of dimethyl malonate to a nitrostyrene, allows for the assembly of the functionalized piperidinone skeleton in one pot. Through a base-catalyzed, dynamic crystallization-driven process, the cis-piperidionone 16a is epimerized to the desired trans isomer 16b, which is directly crystallized from the crude reaction stream in high yield and purity. Isomerization of the allylamide 16b in the presence of RhCl(3) is achieved without any epimerization of the acid/base labile stereogenic center adjacent to the nitro group on the piperidinone ring, while the undesired enamine intermediate is consumed to <0.5% by utilizing a trace amount of HCl generated from RhCl(3). The amino lactam 4, obtained through hydrogenation and hydrolysis, is isolated as its crystalline pTSA salt from the reaction solution directly, as such intramolecular transamidation has been dramatically suppressed via kinetic control. Finally, a Cu(I) catalyzed coupling-cyclization allows for the formation of the tricyclic structure of the potent DPP-4 inhibitor 1. The synthesis, which is suitable for large scale preparation, is accomplished in 23% overall yield.

  3. Dipeptidyl peptidase IV inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes.

    PubMed

    Wiedeman, Paul E; Trevillyan, James M

    2003-04-01

    Glucagon-like peptide-1 (GLP-1 (7-36) amide) is a gut hormone released from L-cells in the small intestine in response to the ingestion of nutrients and enhances the glucose-dependent secretion of insulin from pancreatic beta-cells. In type 2 diabetic patients, the continuous infusion of GLP-1 (7-36) amide decreases plasma glucose and hemoglobin A1c concentrations and improves beta-cell function. Hormone action is rapidly terminated by the N-terminal cleavage of GLP-1 at Ala2 by the aminopeptidase, dipeptidyl peptidase IV (DPPIV). The short in vivo half-life of GLP-1 (< 3 min) poses challenges to the development of exogenous GLP-1-based therapy. The inhibition of endogenous GLP-1 degradation by reducing DPPIV activity is an alternative strategy for improving the incretin action of GLP-1 in vivo. This review summarizes recent advances in the design of potent and selective small molecule inhibitors of DPPIV and the potential challenges to the development of DPPIV inhibitors for the treatment of impaired glucose tolerance and type 2 diabetes.

  4. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates.

    PubMed

    Nongonierma, Alice B; Paolella, Sara; Mudgil, Priti; Maqsood, Sajid; FitzGerald, Richard J

    2018-04-01

    Nine novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides (FLQY, FQLGASPY, ILDKEGIDY, ILELA, LLQLEAIR, LPVP, LQALHQGQIV, MPVQA and SPVVPF) were identified in camel milk proteins hydrolysed with trypsin. This was achieved using a sequential approach combining liquid chromatography tandem mass spectrometry (LC-MS/MS), qualitative/quantitative structure activity relationship (QSAR) and confirmatory studies with synthetic peptides. The most potent camel milk protein-derived DPP-IV inhibitory peptides, LPVP and MPVQA, had DPP-IV half maximal inhibitory concentrations (IC 50 ) of 87.0 ± 3.2 and 93.3 ± 8.0 µM, respectively. DPP-IV inhibitory peptide sequences identified within camel and bovine milk protein hydrolysates generated under the same hydrolysis conditions differ. This was linked to differences in enzyme selectivity for peptide bond cleavage of camel and bovine milk proteins as well as dissimilarities in their amino acid sequences. Camel milk proteins contain novel DPP-IV inhibitory peptides which may play a role in the regulation of glycaemia in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. High expression of ubiquitin-specific peptidase 39 is associated with the development of vascular remodeling

    PubMed Central

    He, Shuai; Zhong, Wei; Yin, Li; Wang, Yifei; Qiu, Zhibing; Song, Gang

    2017-01-01

    Vascular remodeling is the primary cause underlying the failure of angioplasty surgeries, including vascular stenting, transplant vasculopathy and vein grafts. Multiple restenosis-associated proteins and genes have been identified to account for this. In the present study, the functions of ubiquitin-specific peptidase 39 (USP39) were investigated in the context of two vascular remodeling models (a mouse common carotid artery ligation and a pig bilateral saphenous vein-carotid artery interposition graft). USP39 has previously been observed to be upregulated in ligated arteries, and this result was confirmed in the pig vein graft model. In addition, Transwell assay results demonstrated that vascular smooth muscle cell (VSMC) migration was suppressed by lentiviral vector-mediated downregulation of USP39 and enhanced by upregulation of USP39. Furthermore, knockdown of USP39 inhibited VSMC cell proliferation and the expression of cyclin D1 and cyclin-dependent kinase 4, as analyzed via cell counting, MTT assay and western blotting. These results suggest that USP39 may represent a novel therapeutic target for treating vascular injury and preventing vein-graft failure. PMID:28447728

  6. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I.

    PubMed

    Walus, Mariusz; Kida, Elizabeth; Golabek, Adam A

    2010-06-01

    There are 35 missense mutations among 68 different mutations in the TPP1 gene, which encodes tripeptidyl peptidase I (TPPI), a lysosomal aminopeptidase associated with classic late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). To elucidate the molecular mechanisms underlying TPPI deficiency in patients carrying missense mutations and to test the amenability of mutant proteins to chemical chaperones and permissive temperature treatment, we introduced individually 14 disease-associated missense mutations into human TPP1 cDNA and analyzed the cell biology of these TPPI variants expressed in Chinese hamster ovary cells. Most TPPI variants displayed obstructed transport to the lysosomes, prolonged half-life of the proenzyme, and residual or no enzymatic activity, indicating folding abnormalities. Protein misfolding was produced by mutations located in both the prosegment (p.Gly77Arg) and throughout the length of the mature enzyme. However, the routes of removal of misfolded proteins by the cells varied, ranging from their efficient degradation by the ubiquitin/proteasome system to abundant secretion. Two TPPI variants demonstrated enhanced processing in response to folding improvement treatment, and the activity of one of them, p.Arg447His, showed a fivefold increase under permissive temperature conditions, which suggests that folding improvement strategies may ameliorate the function of some misfolding TPPI mutant proteins.

  7. The Binding Site of Human Adenosine Deaminase for Cd26/Dipeptidyl Peptidase IV

    PubMed Central

    Richard, Eva; Arredondo-Vega, Francisco X.; Santisteban, Ines; Kelly, Susan J.; Patel, Dhavalkumar D.; Hershfield, Michael S.

    2000-01-01

    Human, but not murine, adenosine deaminase (ADA) forms a complex with the cell membrane protein CD26/dipeptidyl peptidase IV. CD26-bound ADA has been postulated to regulate extracellular adenosine levels and to modulate the costimulatory function of CD26 on T lymphocytes. Absence of ADA–CD26 binding has been implicated in causing severe combined immunodeficiency due to ADA deficiency. Using human–mouse ADA hybrids and ADA point mutants, we have localized the amino acids critical for CD26 binding to the helical segment 126–143. Arg142 in human ADA and Gln142 in mouse ADA largely determine the capacity to bind CD26. Recombinant human ADA bearing the R142Q mutation had normal catalytic activity per molecule, but markedly impaired binding to a CD26+ ADA-deficient human T cell line. Reduced CD26 binding was also found with ADA from red cells and T cells of a healthy individual whose only expressed ADA has the R142Q mutation. Conversely, ADA with the E217K active site mutation, the only ADA expressed by a severely immunodeficient patient, showed normal CD26 binding. These findings argue that ADA binding to CD26 is not essential for immune function in humans. PMID:11067872

  8. Drug fever and acute inflammation from hypercytokinemia triggered by dipeptidyl peptidase-4 inhibitor vildagliptin.

    PubMed

    Anno, Takatoshi; Kaneto, Hideaki; Kawasaki, Fumiko; Shigemoto, Ryo; Aoyama, Yumi; Kaku, Kohei; Okimoto, Niro

    2018-04-01

    A 69-year-old man started taking the dipeptidyl peptidase-4 inhibitor, vildagliptin. One week later, C-reactive protein and plasma immunoglobulin E levels were markedly elevated, and the vildagliptin was stopped. After the patient's laboratory findings were normalized, we decided to restart vildagliptin with the patient's agreement. The next day, he had a high fever, and C-reactive protein and procalcitonin levels were elevated. Although we failed to find a focus of infection, we started antibiotics therapy. Two days later, the high fever had improved, and the C-reactive protein level had decreased. A drug lymphocyte stimulation test showed a positive result for vildagliptin. We examined various kinds of cytokine and infection markers just before and after the treatment with vildagliptin. Finally, we diagnosed the patient with vildagliptin-induced drug fever, probably based on the increase of various inflammatory cytokine levels and the response to this. Taken together, we should be aware of the possibility of vildagliptin inducing drug fever and/or acute inflammation. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  9. [Research progress of dipeptidyl peptidase 4 inhibitors on healing of chronic diabetic foot ulcers].

    PubMed

    Gao, Yunyi; Liang, Yujie; Ran, Xingwu

    2018-05-01

    To review the effect of dipeptidyl peptidase 4 (DPP-4) inhibitors on the wound healing and its mechanisms in chronic diabetic foot ulcers. The latest literature concerning DPP-4 inhibitors for chronic diabetic foot ulcers was extensively reviewed, as well as the potential benefit and mechanism of DPP-4 inhibitors on wound healing of diabetic foot ulcers was analyzed thoroughly. DPP-4 inhibitors can accelerated the ulcer healing. The mechanisms probably include inhibiting the expression of the matrix metalloproteinase (MMP) and restoring the balance of the wound MMP and the tissue inhibitors of MMP; promoting recruitment of endothelial progenitor cells and augmenting angiogenesis; optimizing extracellular matrix construction and the immune response to persistent hypoxia in chronic diabetes wounds, and so on. At present, clinical researches show that DPP-4 inhibitors may be considered as an adjuvant treatment for chronic diabetic foot ulcers. DPP-4 inhibitors show promise in the local wound healing of chronic diabetic foot ulcers. However, more strictly designed, adequately powered, long-term follow-up, and high-quality randomized control trials are needed to further verify their efficacy and safety for chronic diabetic foot ulcers.

  10. Tripeptidyl peptidase II promotes maturation of caspase-1 in Shigella flexneri-induced macrophage apoptosis.

    PubMed

    Hilbi, H; Puro, R J; Zychlinsky, A

    2000-10-01

    The invasive enteropathogenic bacterium Shigella flexneri activates apoptosis in macrophages. Shigella-induced apoptosis requires caspase-1. We demonstrate here that tripeptidyl peptidase II (TPPII), a cytoplasmic, high-molecular-weight protease, participates in the apoptotic pathway triggered by Shigella. The TPPII inhibitor Ala-Ala-Phe-chloromethylketone (AAF-cmk) and clasto-lactacystin beta-lactone (lactacystin), an inhibitor of both TPPII and the proteasome, protected macrophages from Shigella-induced apoptosis. AAF-cmk was more potent than lactacystin and irreversibly blocked Shigella-induced apoptosis by 95% at a concentration of 1 microM. Conversely, peptide aldehyde and peptide vinylsulfone proteasome inhibitors had little effect on Shigella-mediated cytotoxicity. Both AAF-cmk and lactacystin prevented the maturation of pro-caspase-1 and its substrate pro-interleukin 1beta in Shigella-infected macrophages, indicating that TPPII is upstream of caspase-1. Neither of these compounds directly inhibited caspase-1. AAF-cmk and lactacystin did not impair macrophage phagocytosis or the ability of Shigella to escape the macrophage phagosome. TPPII was also found to be involved in apoptosis induced by ATP and the protein kinase inhibitor staurosporine. We propose that TPPII participates in apoptotic pathways.

  11. Tripeptidyl Peptidase II Promotes Maturation of Caspase-1 in Shigella flexneri-Induced Macrophage Apoptosis

    PubMed Central

    Hilbi, Hubert; Puro, Robyn J.; Zychlinsky, Arturo

    2000-01-01

    The invasive enteropathogenic bacterium Shigella flexneri activates apoptosis in macrophages. Shigella-induced apoptosis requires caspase-1. We demonstrate here that tripeptidyl peptidase II (TPPII), a cytoplasmic, high-molecular-weight protease, participates in the apoptotic pathway triggered by Shigella. The TPPII inhibitor Ala-Ala-Phe-chloromethylketone (AAF-cmk) and clasto-lactacystin β-lactone (lactacystin), an inhibitor of both TPPII and the proteasome, protected macrophages from Shigella-induced apoptosis. AAF-cmk was more potent than lactacystin and irreversibly blocked Shigella-induced apoptosis by 95% at a concentration of 1 μM. Conversely, peptide aldehyde and peptide vinylsulfone proteasome inhibitors had little effect on Shigella-mediated cytotoxicity. Both AAF-cmk and lactacystin prevented the maturation of pro-caspase-1 and its substrate pro-interleukin 1β in Shigella-infected macrophages, indicating that TPPII is upstream of caspase-1. Neither of these compounds directly inhibited caspase-1. AAF-cmk and lactacystin did not impair macrophage phagocytosis or the ability of Shigella to escape the macrophage phagosome. TPPII was also found to be involved in apoptosis induced by ATP and the protein kinase inhibitor staurosporine. We propose that TPPII participates in apoptotic pathways. PMID:10992446

  12. The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain.

    PubMed Central

    Braun, H P; Emmermann, M; Kruft, V; Schmitz, U K

    1992-01-01

    The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Images PMID:1324169

  13. Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: Rationale and design of the MARLINA-T2D™ trial.

    PubMed

    Groop, Per-Henrik; Cooper, Mark E; Perkovic, Vlado; Sharma, Kumar; Schernthaner, Guntram; Haneda, Masakazu; Hocher, Berthold; Gordat, Maud; Cescutti, Jessica; Woerle, Hans-Juergen; von Eynatten, Maximilian

    2015-11-01

    Efficacy, Safety & Modification of Albuminuria in Type 2 Diabetes Subjects with Renal Disease with LINAgliptin (MARLINA-T2D™), a multicentre, multinational, randomized, double-blind, placebo-controlled, parallel-group, phase 3b clinical trial, aims to further define the potential renal effects of dipeptidyl peptidase-4 inhibition beyond glycaemic control. A total of 350 eligible individuals with inadequately controlled type 2 diabetes and evidence of renal disease are planned to be randomized in a 1:1 ratio to receive either linagliptin 5 mg or placebo in addition to their stable glucose-lowering background therapy for 24 weeks. Two predefined main endpoints will be tested in a hierarchical manner: (1) change from baseline in glycated haemoglobin and (2) time-weighted average of percentage change from baseline in urinary albumin-to-creatinine ratio. Both endpoints are sufficiently powered to test for superiority versus placebo after 24 weeks with α = 0.05. MARLINA-T2D™ is the first of its class to prospectively explore both the glucose- and albuminuria-lowering potential of a dipeptidyl peptidase-4 inhibitor in patients with type 2 diabetes and evidence of renal disease. © The Author(s) 2015.

  14. (2R)-4-Oxo-4[3-(Trifluoromethyl)-5,6-diihydro:1,2,4}triazolo[4,3-a}pyrazin-7(8H)-y1]-1-(2,4,5-trifluorophenyl)butan-2-amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D.; Wang, L.; Beconi, M.

    2010-11-10

    A novel series of {beta}-amino amides incorporating fused heterocycles, i.e., triazolopiperazines, were synthesized and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV) for the treatment of type 2 diabetes. (2R)-4-Oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine (1) is a potent, orally active DPP-IV inhibitor (IC{sub 50} = 18 nM) with excellent selectivity over other proline-selective peptidases, oral bioavailability in preclinical species, and in vivo efficacy in animal models. MK-0431, the phosphate salt of compound 1, was selected for development as a potential new treatment for type 2 diabetes.

  15. Dipeptidyl peptidase-II from probiotic Pediococcus acidilactici: Purification and functional characterization.

    PubMed

    Gandhi, Dimpi; Chanalia, Preeti; Attri, Pooja; Dhanda, Suman

    2016-12-01

    Dipeptidylpeptidase-II (DPP-II, E.C. 3.4.14.2), an exopeptidase was purified 15.4 fold with specific activity and yield of 15.4U/mg/mL and 14.68% respectively by a simple two step procedure from a probiotic Pediococcus acidilactici. DPP-II is 38.7KDa homodimeric serine peptidase with involvement of His and subunit mass of 18.9KDa. The enzyme exhibited optimal activity at pH 7.0 and 37°C with activation energy of 24.97kJ/mol. The enzyme retained more than 90% activity upto 50°C thus adding industrial importance. DPP-II hydrolysed Lys-Ala-4mβNA with K M of 50μM and V max of 30.8nmol/mL/min. In-silico characterization studies of DPP-II on the basis of peptide fragments obtained by MALDI-TOF revealed an evolutionary relationship between DPP-II of prokaryotes and phosphate binding proteins. Secondary and three-dimensional structure of enzyme was also deduced by in-silico approach. Functional studies of DPP-II by TLC and HPLC-analysis of collagen degraded products revealed that enzyme action released free amino acids and other metabolites. Microscopic and SDS-PAGE analysis of enzyme treated analysis of chicken's chest muscle (meat) hydrolysis revealed change and hydrolysis of myofibrils. This may affect the flavor and texture of meat thereby suggesting its role in meat tenderization. Being a protein of LAB (Lactic acid bacteria), it is also expected to be safe. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure.

    PubMed

    Schnapp, Gisela; Klein, Thomas; Hoevels, Yvette; Bakker, Remko A; Nar, Herbert

    2016-08-25

    The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.

  17. Albumin Redhill (-1 Arg, 320 Ala----Thr): a glycoprotein variant of human serum albumin whose precursor has an aberrant signal peptidase cleavage site.

    PubMed

    Brennan, S O; Myles, T; Peach, R J; Donaldson, D; George, P M

    1990-01-01

    Albumin Redhill is an electrophoretically slow genetic variant of human serum albumin that does not bind 63Ni2+ and has a molecular mass 2.5 kDa higher than normal albumin. Its inability to bind Ni2+ was explained by the finding of an additional residue of Arg at position -1. This did not explain the molecular basis of the genetic variation (since proalbumin contains adjacent Arg residues at -1 and -2) or the increase in apparent molecular mass. Fractionation of tryptic digests on concanavalin A-Sepharose followed by peptide mapping of the bound and unbound fractions and sequence analysis of the glycopeptides identified a mutation of 320 Ala----Thr. This introduces an Asn-Tyr-Thr oligosaccharide attachment sequence centered on Asn-318 and explains the increase in molecular mass. This, however, did not satisfactorily explain the presence of the additional Arg residue at position -1. DNA sequencing of polymerase chain reaction-amplified genomic DNA encoding the prepro sequence of albumin indicated an additional mutation of -2 Arg----Cys. This introduces a prepro sequence, Met-Lys-Trp-Val-Thr-Phe-Ile-Ser-Leu-Leu-Phe-Leu-Phe-Ser-Ser-Ala-Tyr- Ser-Arg-Gly-Val-Phe-Cys-Arg (cf.-Tyr-Ser-Arg-Gly-Val-Phe-Arg-Arg- in normal human pre-proalbumin). We propose that the new Phe-Cys-Arg sequence in the propeptide is an aberrant signal peptidase cleavage site and that the signal peptidase cleaves the propeptide of albumin Redhill in the lumen of the endoplasmic reticulum before it reaches the Golgi vesicles, the site of the diarginyl-specific proalbumin convertase.

  18. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis.

    PubMed Central

    Bernardini, Francesca; Warburton, Michael J

    2002-01-01

    Tripeptidyl peptidase-I (TPP-I) is a lysosomal exopeptidase which removes tripeptides from the N-terminus of small peptides. Mutations in the TPP-I gene result in a lethal neurodegenerative disease, classical late-infantile neuronal ceroid lipofuscinosis (CLN2). This disease is characterized by the accumulation of proteinaceous and autofluorescent material within the lysosomes of neurons, which undergo massive cell death during the course of the disease. The absence of TPP-I may result in the lysosomal accumulation of small peptides and proteins, which eventually compromises lysosomal functions critical to the survival of neurons. To investigate the metabolism of small peptides, we have studied the degradation of cholecystokinin-(29-33)-amide (GWMDF-NH2; cholecystokinin C-terminal pentapeptide) by lysosomal fractions isolated from mouse brain and several other tissues. GWMDF-NH2 is cleaved at only one peptide bond by brain lysosomes, to produce GWM and DF-NH2. Inhibitor studies demonstrate that this reaction is catalysed by TPP-I. In contrast, lysosomal fractions from other mouse tissues additionally cleave a second peptide bond to produce GW and MDF-NH2. Inhibitor studies indicate that this reaction is catalysed by dipeptidyl peptidase-I (DPP-I; cathepsin C). Inhibitors of TPP-I are sufficient to completely block the degradation of GWMDF-NH2 by brain, but inhibitors of both TPP-I and DPP-I are required to completely inhibit the degradation of GWMDF-NH2 by other mouse tissues. Enzyme assays confirm the low activity of DPP-I in brain. An unrelated neuropeptide, neuromedin B, is degraded by a pathway that is partially dependent on TPP-I. These results indicate that TPP-I is required for the partial or complete digestion of certain neuropeptides by brain lysosomes. In the absence of TPP-I, neuropeptides or their degradation products will accumulate in brain lysosomes and may contribute to the pathogenesis of CLN2. Other tissues are spared because they express another

  19. Lysosomal degradation of cholecystokinin-(29-33)-amide in mouse brain is dependent on tripeptidyl peptidase-I: implications for the degradation and storage of peptides in classical late-infantile neuronal ceroid lipofuscinosis.

    PubMed

    Bernardini, Francesca; Warburton, Michael J

    2002-09-01

    Tripeptidyl peptidase-I (TPP-I) is a lysosomal exopeptidase which removes tripeptides from the N-terminus of small peptides. Mutations in the TPP-I gene result in a lethal neurodegenerative disease, classical late-infantile neuronal ceroid lipofuscinosis (CLN2). This disease is characterized by the accumulation of proteinaceous and autofluorescent material within the lysosomes of neurons, which undergo massive cell death during the course of the disease. The absence of TPP-I may result in the lysosomal accumulation of small peptides and proteins, which eventually compromises lysosomal functions critical to the survival of neurons. To investigate the metabolism of small peptides, we have studied the degradation of cholecystokinin-(29-33)-amide (GWMDF-NH2; cholecystokinin C-terminal pentapeptide) by lysosomal fractions isolated from mouse brain and several other tissues. GWMDF-NH2 is cleaved at only one peptide bond by brain lysosomes, to produce GWM and DF-NH2. Inhibitor studies demonstrate that this reaction is catalysed by TPP-I. In contrast, lysosomal fractions from other mouse tissues additionally cleave a second peptide bond to produce GW and MDF-NH2. Inhibitor studies indicate that this reaction is catalysed by dipeptidyl peptidase-I (DPP-I; cathepsin C). Inhibitors of TPP-I are sufficient to completely block the degradation of GWMDF-NH2 by brain, but inhibitors of both TPP-I and DPP-I are required to completely inhibit the degradation of GWMDF-NH2 by other mouse tissues. Enzyme assays confirm the low activity of DPP-I in brain. An unrelated neuropeptide, neuromedin B, is degraded by a pathway that is partially dependent on TPP-I. These results indicate that TPP-I is required for the partial or complete digestion of certain neuropeptides by brain lysosomes. In the absence of TPP-I, neuropeptides or their degradation products will accumulate in brain lysosomes and may contribute to the pathogenesis of CLN2. Other tissues are spared because they express another

  20. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells

    PubMed Central

    Cerqueira, Carla; Samperio Ventayol, Pilar; Vogeley, Christian

    2015-01-01

    ABSTRACT The entry of human papillomaviruses into host cells is a complex process. It involves conformational changes at the cell surface, receptor switching, internalization by a novel endocytic mechanism, uncoating in endosomes, trafficking of a subviral complex to the Golgi complex, and nuclear entry during mitosis. Here, we addressed how the stabilizing contacts in the capsid of human papillomavirus 16 (HPV16) may be reversed to allow uncoating of the viral genome. Using biochemical and cell-biological analyses, we determined that the major capsid protein L1 underwent proteolytic cleavage during entry. In addition to a dispensable cathepsin-mediated proteolysis that occurred likely after removal of capsomers from the subviral complex in endosomes, at least two further proteolytic cleavages of L1 were observed, one of which was independent of the low-pH environment of endosomes. This cleavage occurred extracellularly. Further analysis showed that the responsible protease was the secreted trypsin-like serine protease kallikrein-8 (KLK8) involved in epidermal homeostasis and wound healing. Required for infection, the cleavage was facilitated by prior interaction of viral particles with heparan sulfate proteoglycans. KLK8-mediated cleavage was crucial for further conformational changes exposing an important epitope of the minor capsid protein L2. Occurring independently of cyclophilins and of furin that mediate L2 exposure, KLK8-mediated cleavage of L1 likely facilitated access to L2, located in the capsid lumen, and potentially uncoating. Since HPV6 and HPV18 also required KLK8 for entry, we propose that the KLK8-dependent entry step is conserved. IMPORTANCE Our analysis of the proteolytic processing of incoming HPV16, an etiological agent of cervical cancer, demonstrated that the capsid is cleaved extracellularly by a serine protease active during wound healing and that this cleavage was crucial for infection. The cleavage of L1 is one of at least four structural

  1. Recombinant human tripeptidyl peptidase-1 infusion to the monkey CNS: Safety, pharmacokinetics, and distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuillemenot, Brian R., E-mail: bvuillemenot@bmrn.com; Kennedy, Derek; Reed, Randall P.

    CLN2 disease is caused by deficiency in tripeptidyl peptidase-1 (TPP1), leading to neurodegeneration and death. The safety, pharmacokinetics (PK), and CNS distribution of recombinant human TPP1 (rhTPP1) were characterized following a single intracerebroventricular (ICV) or intrathecal-lumbar (IT-L) infusion to cynomolgus monkeys. Animals received 0, 5, 14, or 20 mg rhTPP1, ICV, or 14 mg IT-L, in artificial cerebrospinal fluid (aCSF) vehicle. Plasma and CSF were collected for PK analysis. Necropsies occurred at 3, 7, and 14 days post-infusion. CNS tissues were sampled for rhTPP1 distribution. TPP1 infusion was well tolerated and without effect on clinical observations or ECG. A mildmore » increase in CSF white blood cells (WBCs) was detected transiently after ICV infusion. Isolated histological changes related to catheter placement and infusion were observed in ICV treated animals, including vehicle controls. The CSF and plasma exposure profiles were equivalent between animals that received an ICV or IT-L infusion. TPP1 levels peaked at the end of infusion, at which point the enzyme was present in plasma at 0.3% to 0.5% of CSF levels. TPP1 was detected in brain tissues with half-lives of 3–14 days. CNS distribution between ICV and IT-L administration was similar, although ICV resulted in distribution to deep brain structures including the thalamus, midbrain, and striatum. Direct CNS infusion of rhTPP1 was well tolerated with no drug related safety findings. The favorable nonclinical profile of ICV rhTPP1 supports the treatment of CLN2 by direct administration to the CNS. - Highlights: • TPP1 enzyme replacement therapy to the CNS is in development for CLN2 disease. • Toxicology, pharmacokinetics, and CNS distribution were assessed in monkeys. • TPP1 infusion directly to the brain did not result in any safety concerns. • A positive pharmacokinetic and distribution profile resulted from TPP1 infusion. • This study demonstrates the feasibility of ICV

  2. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    PubMed

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. © 2016 American Heart Association, Inc.

  3. Pyrrolidine-constrained phenethylamines: The design of potent, selective, and pharmacologically efficacious dipeptidyl peptidase IV (DPP4) inhibitors from a lead-like screening hit.

    PubMed

    Backes, Bradley J; Longenecker, Kenton; Hamilton, Gregory L; Stewart, Kent; Lai, Chunqiu; Kopecka, Hana; von Geldern, Thomas W; Madar, David J; Pei, Zhonghua; Lubben, Thomas H; Zinker, Bradley A; Tian, Zhenping; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Kempf-Grote, Anita J; Black-Schaefer, Candace; Sham, Hing L; Trevillyan, James M

    2007-04-01

    A novel series of pyrrolidine-constrained phenethylamines were developed as dipeptidyl peptidase IV (DPP4) inhibitors for the treatment of type 2 diabetes. The cyclohexene ring of lead-like screening hit 5 was replaced with a pyrrolidine to enable parallel chemistry, and protein co-crystal structural data guided the optimization of N-substituents. Employing this strategy, a >400x improvement in potency over the initial hit was realized in rapid fashion. Optimized compounds are potent and selective inhibitors with excellent pharmacokinetic profiles. Compound 30 was efficacious in vivo, lowering blood glucose in ZDF rats that were allowed to feed freely on a mixed meal.

  4. Hepatic Dipeptidyl Peptidase-4 Controls Pharmacokinetics of Vildagliptin In Vivo.

    PubMed

    Asakura, Mitsutoshi; Fukami, Tatsuki; Nakajima, Miki; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2017-02-01

    The main route of elimination of vildagliptin, which is an inhibitor of dipeptidyl peptidase-4 (DPP-4), in humans is cyano group hydrolysis to produce a carboxylic acid metabolite M20.7. Our in vitro study previously demonstrated that DPP-4 itself greatly contributed to the hydrolysis of vildagliptin in mouse, rat, and human livers. To investigate whether hepatic DPP-4 contributes to the hydrolysis of vildagliptin in vivo, in the present study, we conducted in vivo pharmacokinetics studies of vildagliptin in mice coadministered with vildagliptin and sitagliptin, which is another DPP-4 inhibitor, and also in streptozotocin (STZ)-induced diabetic mice. The area under the plasma concentration-time curve (AUC) value of M20.7 in mice coadministered with vildagliptin and sitagliptin was significantly lower than that in mice administered vildagliptin alone (P < 0.01). Although plasma DPP-4 expression level was increased 1.9-fold, hepatic DPP-4 activity was decreased in STZ-induced diabetic mice. The AUC values of M20.7 in STZ-induced diabetic mice were lower than those in control mice (P < 0.01). Additionally, the AUC values of M20.7 significantly positively correlated with hepatic DPP-4 activities in the individual mice (Rs = 0.943, P < 0.05). These findings indicated that DPP-4 greatly contributed to the hydrolysis of vildagliptin in vivo and that not plasma, but hepatic DPP-4 controlled pharmacokinetics of vildagliptin. Furthermore, enzyme assays of 23 individual human liver samples showed that there was a 3.6-fold interindividual variability in vildagliptin-hydrolyzing activities. Predetermination of the interindividual variability of hepatic vildagliptin-hydrolyzing activity might be useful for the prediction of blood vildagliptin concentrations in vivo. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed

    Rose, C; Camus, A; Schwartz, J C

    1988-11-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide.

  6. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed Central

    Rose, C; Camus, A; Schwartz, J C

    1988-01-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide. PMID:3186727

  7. Tripeptidyl Peptidase II Regulates Sperm Function by Modulating Intracellular Ca2+ Stores via the Ryanodine Receptor

    PubMed Central

    Zhou, Yuchuan; Ru, Yanfei; Wang, Chunmei; Wang, Shoulin; Zhou, Zuomin; Zhang, Yonglian

    2013-01-01

    Recent studies have identified Ca2+ stores in sperm cells; however, it is not clear whether these Ca2+ stores are functional and how they are mobilized. Here, in vitro and in vivo, we determined that tripeptidyl peptidase II antagonists strongly activated the cAMP/PKA signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation. We demonstrated that in the absence of Ca2+, TPIII antagonists elevated the intracellular Ca2+ levels in sperm, resulting in a marked improvement in sperm movement, capacitation, acrosome reaction, and the in vitro fertilizing ability. This antagonist-induced release of intracellular Ca2+ could be blocked by the inhibitors of ryanodine receptors (RyRs) which are the main intracellular Ca2+ channels responsible for releasing stored Ca2+. Consistent with these results, indirect immunofluorescence assay using anti-RyR antibodies further validated the presence of RyR3 in the acrosomal region of mature sperm. Thus, TPPII can regulate sperm maturation by modulating intracellular Ca2+ stores via the type 3 RyR. PMID:23818952

  8. Discovery of Potent and Selective Dipeptidyl Peptidase IV Inhibitors Derived from [beta]-Aminoamides Bearing Subsituted Triazolopiperazines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dooseop; Kowalchick, Jennifer E.; Brockunier, Linda L.

    2008-06-30

    A series of {beta}-aminoamides bearing triazolopiperazines have been discovered as potent, selective, and orally active dipeptidyl peptidase IV (DPP-4) inhibitors by extensive structure-activity relationship (SAR) studies around the triazolopiperazine moiety. Among these, compound 34b with excellent in vitro potency (IC{sub 50} = 4.3 nM) against DPP-4, high selectivity over other enzymes, and good pharmacokinetic profiles exhibited pronounced in vivo efficacy in an oral glucose tolerance test (OGTT) in lean mice. On the basis of these properties, compound 34b has been profiled in detail. Further refinement of the triazolopiperazines resulted in the discovery of a series of extremely potent compounds withmore » subnanomolar activity against DPP-4 (42b-49b), that is, 4-fluorobenzyl-substituted compound 46b, which is notable for its superior potency (IC{sub 50} = 0.18 nM). X-ray crystal structure determination of compounds 34b and 46b in complex with DPP-4 enzyme revealed that (R)-stereochemistry at the 8-position of triazolopiperazines is strongly preferred over (S) with respect to DPP-4 inhibition.« less

  9. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease.

    PubMed

    Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-09-01

    Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P 2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of <600 Da. In addition, the gluten hydrolysate contained substantial amounts of tripeptides, including Gln-Pro-Gln, Gln-Pro-Gly, Gln-Pro-Phe, Leu-Pro-Gln, and Ser-Pro-Gln (e.g. 40.7 mg/g at pH 5.2). These gluten-derived tripeptides showed high inhibitory activity on dipeptidyl peptidase-IV with IC 50 values of 79.8, 70.9, 71.7, 56.7, and 78.9 μM, respectively, suggesting that the novel gluten hydrolysate prepared using ginger protease can be used as a functional food for patients with type 2 diabetes.

  10. Substrate complexes of human dipeptidyl peptidase III reveal the mechanism of enzyme inhibition

    PubMed Central

    Kumar, Prashant; Reithofer, Viktoria; Reisinger, Manuel; Wallner, Silvia; Pavkov-Keller, Tea; Macheroux, Peter; Gruber, Karl

    2016-01-01

    Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or “slow” substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors. PMID:27025154

  11. Deciphering defective amelogenesis using in vitro culture systems.

    PubMed

    Arinawati, Dian Yosi; Miyoshi, Keiko; Tanimura, Ayako; Horiguchi, Taigo; Hagita, Hiroko; Noma, Takafumi

    2018-04-01

    The conventional two-dimensional (2D) in vitro culture system is frequently used to analyze the gene expression with or without extracellular signals. However, the cells derived from primary culture and cell lines frequently deviate the gene expression profile compared to the corresponding in vivo samples, which sometimes misleads the actual gene regulation in vivo. To overcome this gap, we developed the comparative 2D and 3D in vitro culture systems and applied them to the genetic study of amelogenesis imperfecta (AI) as a model. Recently, we found specificity protein 6 (Sp6) mutation in an autosomal-recessive AI rat that was previously named AMI. We constructed 3D structure of ARE-B30 cells (AMI-derived rat dental epithelial cells) or G5 (control wild type cells) combined with RPC-C2A cells (rat pulp cell line) separated by the collagen membrane, while in 2D structure, ARE-B30 or G5 was cultured with or without the collagen membrane. Comparative analysis of amelogenesis-related gene expression in ARE-B30 and G5 using our 2D and 3D in vitro systems revealed distinct expression profiles, showing the causative outcomes. Bone morphogenetic protein 2 and follistatin were reciprocally expressed in G5, but not in ARE-B30 cells. All-or-none expression of amelotin, kallikrein-related peptidase 4, and nerve growth factor receptor was observed in both cell types. In conclusion, our in vitro culture systems detected the phenotypical differences in the expression of the stage-specific amelogenesis-related genes. Parallel analysis with 2D and 3D culture systems may provide a platform to understand the molecular basis for defective amelogenesis caused by Sp6 mutation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Competitive Inhibition of the Endoplasmic Reticulum Signal Peptidase by Non-cleavable Mutant Preprotein Cargos*

    PubMed Central

    Cui, Jingqiu; Chen, Wei; Sun, Jinhong; Guo, Huan; Madley, Rachel; Xiong, Yi; Pan, Xingyi; Wang, Hongliang; Tai, Andrew W.; Weiss, Michael A.; Arvan, Peter; Liu, Ming

    2015-01-01

    Upon translocation across the endoplasmic reticulum (ER) membrane, secretory proteins are proteolytically processed to remove their signal peptide by signal peptidase (SPase). This process is critical for subsequent folding, intracellular trafficking, and maturation of secretory proteins. Prokaryotic SPase has been shown to be a promising antibiotic target. In contrast, to date, no eukaryotic SPase inhibitors have been reported. Here we report that introducing a proline immediately following the natural signal peptide cleavage site not only blocks preprotein cleavage but also, in trans, impairs the processing and maturation of co-expressed preproteins in the ER. Specifically, we find that a variant preproinsulin, pPI-F25P, is translocated across the ER membrane, where it binds to the catalytic SPase subunit SEC11A, inhibiting SPase activity in a dose-dependent manner. Similar findings were obtained with an analogous variant of preproparathyroid hormone, demonstrating that inhibition of the SPase does not depend strictly on the sequence or structure of the downstream mature protein. We further show that inhibiting SPase in the ER impairs intracellular processing of viral polypeptides and their subsequent maturation. These observations suggest that eukaryotic SPases (including the human ortholog) are, in principle, suitable therapeutic targets for antiviral drug design. PMID:26446786

  13. Histoplasma capsulatum encodes a dipeptidyl peptidase active against the mammalian immunoregulatory peptide, substance P.

    PubMed

    Cooper, Kendal G; Zarnowski, Robert; Woods, Jon P

    2009-01-01

    The pathogenic fungus Histoplasma capsulatum secretes dipeptidyl peptidase (Dpp) IV enzyme activity and has two putative DPPIV homologs (HcDPPIVA and HcDPPIVB). We previously showed that HcDPPIVB is the gene responsible for the majority of secreted DppIV activity in H. capsulatum culture supernatant, while we could not detect any functional contribution from HcDPPIVA. In order to determine whether HcDPPIVA encodes a functional DppIV enzyme, we expressed HcDPPIVA in Pichia pastoris and purified the recombinant protein. The recombinant enzyme cleaved synthetic DppIV substrates and had similar biochemical properties to other described DppIV enzymes, with temperature and pH optima of 42 degrees C and 8, respectively. Recombinant HcDppIVA cleaved the host immunoregulatory peptide substance P, indicating the enzyme has the potential to affect the immune response during infection. Expression of HcDPPIVA under heterologous regulatory sequences in H. capsulatum resulted in increased secreted DppIV activity, indicating that the encoded protein can be expressed and secreted by its native organism. However, HcDPPIVA was not required for virulence in a murine model of histoplasmosis. This work reports a fungal enzyme that can function to cleave the immunomodulatory host peptide substance P.

  14. Histoplasma capsulatum Encodes a Dipeptidyl Peptidase Active against the Mammalian Immunoregulatory Peptide, Substance P

    PubMed Central

    Cooper, Kendal G.; Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    The pathogenic fungus Histoplasma capsulatum secretes dipeptidyl peptidase (Dpp) IV enzyme activity and has two putative DPPIV homologs (HcDPPIVA and HcDPPIVB). We previously showed that HcDPPIVB is the gene responsible for the majority of secreted DppIV activity in H. capsulatum culture supernatant, while we could not detect any functional contribution from HcDPPIVA. In order to determine whether HcDPPIVA encodes a functional DppIV enzyme, we expressed HcDPPIVA in Pichia pastoris and purified the recombinant protein. The recombinant enzyme cleaved synthetic DppIV substrates and had similar biochemical properties to other described DppIV enzymes, with temperature and pH optima of 42°C and 8, respectively. Recombinant HcDppIVA cleaved the host immunoregulatory peptide substance P, indicating the enzyme has the potential to affect the immune response during infection. Expression of HcDPPIVA under heterologous regulatory sequences in H. capsulatum resulted in increased secreted DppIV activity, indicating that the encoded protein can be expressed and secreted by its native organism. However, HcDPPIVA was not required for virulence in a murine model of histoplasmosis. This work reports a fungal enzyme that can function to cleave the immunomodulatory host peptide substance P. PMID:19384411

  15. Localization of the human tripeptidyl peptidase II gene (TPP2) to 13q32-q33 by nonradioactive in situ hybridization and somatic cell hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinsson, T.; Vujic, M.; Tomkinson, B.

    1993-08-01

    The authors have assigned the human tripeptidyl peptidase II (TPP2) gene to chromosome region 13q32-q33 using two different methods. First, a full-length TPP2 cDNA was used as a probe on Southern blots of DNA from a panel of human/rodent somatic cell hybrids. The TPP2 sequences were found to segregate with the human chromosome 13. Second, fluorescence in situ hybridization analysis was performed with the same probe. This analysis supported the chromosome 13 localization and further refined it to region 13q32-q33. 20 refs., 2 figs.

  16. Purification, structural characterization, and myotropic activity of a peptide related to des-Arg(9)-bradykinin from an elasmobranch fish, the little skate, Leucoraja erinacea.

    PubMed

    Anderson, W Gary; Leprince, Jérôme; Conlon, J Michael

    2008-08-01

    A bradykinin (BK)-related peptide was isolated from heat-denaturated plasma from an elasmobranch fish, the little skate, Leucoraja erinacea after incubation with porcine pancreatic kallikrein. The primary structure of the peptide (H-Gly-Ile-Thr-Ser-Trp-Leu-Pro-Phe-OH; skate BK) shows limited structural similarity to the mammalian B1 receptor agonist, des-Arg(9)-BK. The myotropic activities of synthetic skate BK, and the analog skate [Arg(9)]BK, were examined in isolated skate vascular and intestinal smooth muscle preparations. Skate BK produced a concentration-dependent constriction of the mesenteric artery (EC(50)=4.37x10(-8)M; maximum response=103.4+/-10.23% of the response to 60mM KCl) but the response to skate [Arg(9)]BK was appreciably weaker (response to 10(-6)M=73.0+/-23.4% of the response to 60mM KCl). Neither the first branchial gill arch nor the ventral aorta responded to either purified peptide. Skate BK also produced a concentration-dependent constriction of intestinal smooth muscle preparations (EC(50)=2.74x10(-7)M; maximum response 31.0+/-12.2% of the response to 10(-5)M acetylcholine). Skate [Arg(9)]BK was without effect on the intestinal preparation. The data provide evidence for the existence of the kallikrein-kinin system in a phylogenetically ancient vertebrate group and the greater potency of skate BK compared with the analog skate [Arg(9)]BK suggests that the receptor mediating vascular responses resembles the mammalian B1 receptor more closely than the B2 receptor.

  17. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations

    PubMed Central

    Blázquez-Medela, Ana M.; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M.; Romero, Miguel; Duarte, Juan M.; López-Hernández, Francisco J.; López-Novoa, José M.; Martínez-Salgado, Carlos

    2015-01-01

    Abstract Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys. We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage. Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments. The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening. KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage. PMID:26469898

  18. Increased Klk9 Urinary Excretion Is Associated to Hypertension-Induced Cardiovascular Damage and Renal Alterations.

    PubMed

    Blázquez-Medela, Ana M; García-Sánchez, Omar; Quirós, Yaremi; Blanco-Gozalo, Victor; Prieto-García, Laura; Sancho-Martínez, Sandra M; Romero, Miguel; Duarte, Juan M; López-Hernández, Francisco J; López-Novoa, José M; Martínez-Salgado, Carlos

    2015-10-01

    Early detection of hypertensive end-organ damage and secondary diseases are key determinants of cardiovascular prognosis in patients suffering from arterial hypertension. Presently, there are no biomarkers for the detection of hypertensive target organ damage, most outstandingly including blood vessels, the heart, and the kidneys.We aimed to validate the usefulness of the urinary excretion of the serine protease kallikrein-related peptidase 9 (KLK9) as a biomarker of hypertension-induced target organ damage.Urinary, plasma, and renal tissue levels of KLK9 were measured by the Western blot in different rat models of hypertension, including angiotensin-II infusion, DOCA-salt, L-NAME administration, and spontaneous hypertension. Urinary levels were associated to cardiovascular and renal injury, assessed by histopathology. The origin of urinary KLK9 was investigated through in situ renal perfusion experiments.The urinary excretion of KLK9 is increased in different experimental models of hypertension in rats. The ACE inhibitor trandolapril significantly reduced arterial pressure and the urinary level of KLK9. Hypertension did not increase kidney, heart, liver, lung, or plasma KLK9 levels. Hypertension-induced increased urinary excretion of KLK9 results from specific alterations in its tubular reabsorption, even in the absence of overt nephropathy. KLK9 urinary excretion strongly correlates with cardiac hypertrophy and aortic wall thickening.KLK9 appears in the urine in the presence of hypertension as a result of subtle renal handling alterations. Urinary KLK9 might be potentially used as an indicator of hypertensive cardiac and vascular damage.

  19. Clinical Pharmacokinetics and Pharmacodynamics of Saxagliptin, a Dipeptidyl Peptidase-4 Inhibitor.

    PubMed

    Boulton, David W

    2017-01-01

    Saxagliptin is an orally active, highly potent, selective and competitive dipeptidyl peptidase (DPP)-4 inhibitor used in the treatment of type 2 diabetes mellitus at doses of 2.5 or 5 mg once daily. DPP-4 is responsible for degrading the intestinally derived hormones glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic polypeptide (GIP). Inhibition of DPP-4 increases intact plasma GLP-1 and GIP concentrations, augmenting glucose-dependent insulin secretion. Both saxagliptin and its major active metabolite, 5-hydroxy saxagliptin, demonstrate high degrees of selectivity for DPP-4 compared with other DPP enzymes. Saxagliptin is orally absorbed and can be administered with or without food. The half-life of plasma DPP-4 inhibition with saxagliptin 5 mg is ~27 h, which supports a once-daily dosing regimen. Saxagliptin is metabolized by cytochrome P450 (CYP) 3A4/5 and is eliminated by a combination of renal and hepatic clearance. No clinically meaningful differences in saxagliptin or 5-hydroxy saxagliptin pharmacokinetics have been detected in patients with hepatic impairment. No clinically meaningful differences in saxagliptin or 5-hydroxy saxagliptin pharmacokinetics have been detected in patients with mild renal impairment, whereas dose reduction is recommended in patients with moderate or severe renal impairment because of greater systemic exposure [the area under the plasma concentration-time curve (AUC)] to saxagliptin total active moieties. Clinically relevant drug-drug interactions have not been detected; however, limiting the dose to 2.5 mg once daily is recommended in the USA when saxagliptin is coadministered with strong CYP inhibitors, because of increased saxagliptin exposure. In summary, saxagliptin has a predictable pharmacokinetic and pharmacodynamic profile.

  20. Bovine pancreatic trypsin inhibitor immobilized onto sepharose as a new strategy to purify a thermostable alkaline peptidase from cobia (Rachycentron canadum) processing waste.

    PubMed

    França, Renata Cristina da Penha; Assis, Caio Rodrigo Dias; Santos, Juliana Ferreira; Torquato, Ricardo José Soares; Tanaka, Aparecida Sadae; Hirata, Izaura Yoshico; Assis, Diego Magno; Juliano, Maria Aparecida; Cavalli, Ronaldo Olivera; Carvalho, Luiz Bezerra de; Bezerra, Ranilson Souza

    2016-10-15

    A thermostable alkaline peptidase was purified from the processing waste of cobia (Rachycentron canadum) using bovine pancreatic trypsin inhibitor (BPTI) immobilized onto Sepharose. The purified enzyme had an apparent molecular mass of 24kDa by both sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry. Its optimal temperature and pH were 50°C and 8.5, respectively. The enzyme was thermostable until 55°C and its activity was strongly inhibited by the classic trypsin inhibitors N-ρ-tosyl-l-lysine chloromethyl ketone (TLCK) and benzamidine. BPTI column allowed at least 15 assays without loss of efficacy. The purified enzyme was identified as a trypsin and the N-terminal amino acid sequence of this trypsin was IVGGYECTPHSQAHQVSLNSGYHFC, which was highly homologous to trypsin from cold water fish species. Using Nα-benzoyl-dl-arginine ρ-nitroanilide hydrochloride (BApNA) as substrate, the apparent km value of the purified trypsin was 0.38mM, kcat value was 3.14s(-1), and kcat/km was 8.26s(-1)mM(-1). The catalytic proficiency of the purified enzyme was 2.75×10(12)M(-1) showing higher affinity for the substrate at the transition state than other fish trypsin. The activation energy (AE) of the BApNA hydrolysis catalyzed by this enzyme was estimated to be 11.93kcalmol(-1) while the resulting rate enhancement of this reaction was found to be approximately in a range from 10(9) to 10(10)-fold evidencing its efficiency in comparison to other trypsin. This new purification strategy showed to be appropriate to obtain an alkaline peptidase from cobia processing waste with high purification degree. According with N-terminal homology and kinetic parameters, R. canadum trypsin may gathers desirable properties of psychrophilic and thermostable enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing.

    PubMed

    Ferrara, Taíse Fernanda da Silva; Schneider, Vanessa Karine; Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.

  2. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing

    PubMed Central

    Kishi, Luciano Takeshi; Carmona, Adriana Karaoglanovic; Alves, Marcio Fernando Madureira; Belasque-Júnior, Jose; Rosa, José César; Hunter, Wayne Brian; Henrique-Silva, Flávio; Soares-Costa, Andrea

    2015-01-01

    Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (K m = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (K m = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control. PMID:26717484

  3. Design, synthesis, and tripeptidyl peptidase II inhibitory activity of a novel series of (S)-2,3-dihydro-2-(4-alkyl-1H-imidazol-2-yl)-1H-indoles.

    PubMed

    Breslin, Henry J; Miskowski, Tamara A; Kukla, Michael J; Leister, William H; De Winter, Hans L; Gauthier, Diane A; Somers, Maria V F; Peeters, Daniëlle C G; Roevens, Peter W M

    2002-11-21

    Butabindide, 1, was previously reported as a potent inhibitor (IC50 = 7 nM) of the serine protease enzyme tripeptidyl peptidase II (TPPII), an endogenous protease that degrades cholecystokinin-8 (CCK-8). We found that 1 has some inherent chemical instability, yielding diketopiperazine 2 fairly readily under mimicked physiological conditions. We therefore prepared imidazoles 3, which are void of 1's inherent instability, and have found that our novel analogues maintained comparable TPPII inhibitory activity (e.g.,for 3c, IC50 = 4 nM) as 1.

  4. A Highly Sensitive Porous Silicon (P-Si)-Based Human Kallikrein 2 (hK2) Immunoassay Platform toward Accurate Diagnosis of Prostate Cancer

    PubMed Central

    Lee, Sang Wook; Hosokawa, Kazuo; Kim, Soyoun; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas; Maeda, Mizuo

    2015-01-01

    Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10−4 to 102 ng/mL). PMID:26007739

  5. A Highly Sensitive Porous Silicon (P-Si)-Based Human Kallikrein 2 (hK2) Immunoassay Platform toward Accurate Diagnosis of Prostate Cancer.

    PubMed

    Lee, Sang Wook; Hosokawa, Kazuo; Kim, Soyoun; Jeong, Ok Chan; Lilja, Hans; Laurell, Thomas; Maeda, Mizuo

    2015-05-22

    Levels of total human kallikrein 2 (hK2), a protein involved the pathology of prostate cancer (PCa), could be used as a biomarker to aid in the diagnosis of this disease. In this study, we report on a porous silicon antibody immunoassay platform for the detection of serum levels of total hK2. The surface of porous silicon has a 3-dimensional macro- and nanoporous structure, which offers a large binding capacity for capturing probe molecules. The tailored pore size of the porous silicon also allows efficient immobilization of antibodies by surface adsorption, and does not require chemical immobilization. Monoclonal hK2 capture antibody (6B7) was dispensed onto P-Si chip using a piezoelectric dispenser. In total 13 × 13 arrays (169 spots) were spotted on the chip with its single spot volume of 300 pL. For an optimization of capture antibody condition, we firstly performed an immunoassay of the P-Si microarray under a titration series of hK2 in pure buffer (PBS) at three different antibody densities (75, 100 and 145 µg/mL). The best performance of the microarray platform was seen at 100 µg/mL of the capture antibody concentration (LOD was 100 fg/mL). The platform then was subsequently evaluated for a titration series of serum-spiked hK2 samples. The developed platform utilizes only 15 µL of serum per test and the total assay time is about 3 h, including immobilization of the capture antibody. The detection limit of the hK2 assay was 100 fg/mL in PBS buffer and 1 pg/mL in serum with a dynamic range of 106 (10(-4) to 10(2) ng/mL).

  6. Complement, Kinins, and Hereditary Angioedema: Mechanisms of Plasma Instability when C1 Inhibitor is Absent.

    PubMed

    Kaplan, Allen P; Joseph, Kusumam

    2016-10-01

    Plasma of patients with types I and II hereditary angioedema is unstable if incubated in a plastic (i.e., inert) vessel at 37 °C manifested by progressively increasing formation of bradykinin. There is also a persistent low level of C4 in 95 % of patients even when they are symptomatic. These phenomena are due to the properties of the C1r subcomponent of C1, factor XII, and the bimolecular complex of prekallikrein with high molecular weight kininogen (HK). Purified C1r auto-activates in physiologic buffers, activates C1s, which in turn depletes C4. This occurs when C1 inhibitor is deficient. The complex of prekallikrein-HK acquires an inducible active site not present in prekallikrein which in Tris-type buffers cleaves HK stoichiometrically to release bradykinin, or in phosphate buffer auto-activates to generate kallikrein and bradykinin. Thus immunologic depletion of C1 inhibitor from factor XII-deficient plasma (phosphate is the natural buffer) auto-activates on incubation to release bradykinin. Normal C1 inhibitor prevents this from occurring. During attacks of angioedema, if factor XII auto-activates on surfaces, the initial factor XIIa formed converts prekallikrein to kallikrein, and kallikrein cleaves HK to release bradykinin. Kallikrein also rapidly activates most remaining factor XII to factor XIIa. Additional cleavages convert factor XIIa to factor XIIf and factor XIIf activates C1r enzymatically so that C4 levels approach zero, and C2 is depleted. There is also a possibility that kallikrein is generated first as a result of activation of the prekallikrein-HK complex by heat shock protein 90 released from endothelial cells, followed by kallikrein activation of factor XII.

  7. Neural peptidase endothelin-converting enzyme 1 regulates endothelin 1–induced pruritus

    PubMed Central

    Kido-Nakahara, Makiko; Buddenkotte, Jörg; Kempkes, Cordula; Ikoma, Akihiko; Cevikbas, Ferda; Akiyama, Tasuku; Nunes, Frank; Seeliger, Stephan; Hasdemir, Burcu; Mess, Christian; Buhl, Timo; Sulk, Mathias; Müller, Frank-Ulrich; Metze, Dieter; Bunnett, Nigel W.; Bhargava, Aditi; Carstens, Earl; Furue, Masutaka; Steinhoff, Martin

    2014-01-01

    In humans, pruritus (itch) is a common but poorly understood symptom in numerous skin and systemic diseases. Endothelin 1 (ET-1) evokes histamine-independent pruritus in mammals through activation of its cognate G protein–coupled receptor endothelin A receptor (ETAR). Here, we have identified neural endothelin–converting enzyme 1 (ECE-1) as a key regulator of ET-1–induced pruritus and neural signaling of itch. We show here that ETAR, ET-1, and ECE-1 are expressed and colocalize in murine dorsal root ganglia (DRG) neurons and human skin nerves. In murine DRG neurons, ET-1 induced internalization of ETAR within ECE-1–containing endosomes. ECE-1 inhibition slowed ETAR recycling yet prolonged ET-1–induced activation of ERK1/2, but not p38. In a murine itch model, ET-1–induced scratching behavior was substantially augmented by pharmacological ECE-1 inhibition and abrogated by treatment with an ERK1/2 inhibitor. Using iontophoresis, we demonstrated that ET-1 is a potent, partially histamine-independent pruritogen in humans. Immunohistochemical evaluation of skin from prurigo nodularis patients confirmed an upregulation of the ET-1/ETAR/ECE-1/ERK1/2 axis in patients with chronic itch. Together, our data identify the neural peptidase ECE-1 as a negative regulator of itch on sensory nerves by directly regulating ET-1–induced pruritus in humans and mice. Furthermore, these results implicate the ET-1/ECE-1/ERK1/2 pathway as a therapeutic target to treat pruritus in humans. PMID:24812665

  8. Novel N-substituted aminobenzamide scaffold derivatives targeting the dipeptidyl peptidase-IV enzyme.

    PubMed

    Al-Balas, Qosay A; Sowaileh, Munia F; Hassan, Mohammad A; Qandil, Amjad M; Alzoubi, Karem H; Mhaidat, Nizar M; Almaaytah, Ammar M; Khabour, Omar F

    2014-01-01

    The dipeptidyl peptidase-IV (DPP-IV) enzyme is considered a pivotal target for controlling normal blood sugar levels in the body. Incretins secreted in response to ingestion of meals enhance insulin release to the blood, and DPP-IV inactivates these incretins within a short period and stops their action. Inhibition of this enzyme escalates the action of incretins and induces more insulin to achieve better glucose control in diabetic patients. Thus, inhibition of this enzyme will lead to better control of blood sugar levels. In this study, computer-aided drug design was used to help establish a novel N-substituted aminobenzamide scaffold as a potential inhibitor of DPP-IV. CDOCKER software available from Discovery Studio 3.5 was used to evaluate a series of designed compounds and assess their mode of binding to the active site of the DPP-IV enzyme. The designed compounds were synthesized and tested against a DPP-IV enzyme kit provided by Enzo Life Sciences. The synthesized compounds were characterized using proton and carbon nuclear magnetic resonance, mass spectrometry, infrared spectroscopy, and determination of melting point. Sixty-nine novel compounds having an N-aminobenzamide scaffold were prepared, with full characterization. Ten of these compounds showed more in vitro activity against DPP-IV than the reference compounds, with the most active compounds scoring 38% activity at 100 μM concentration. The N-aminobenzamide scaffold was shown in this study to be a valid scaffold for inhibiting the DPP-IV enzyme. Continuing work could unravel more active compounds possessing the same scaffold.

  9. [Construction of Plasmodium falciparum signal peptide peptidase-GFP mutant and its expression analysis in the malaria parasite].

    PubMed

    Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti

    2014-08-01

    To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.

  10. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility

    PubMed Central

    Price, Paul A.; Tanner, Houston R.; Dillon, Brett A.; Shabab, Mohammed; Walker, Graham C.; Griffitts, Joel S.

    2015-01-01

    Legume–rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes. PMID:26401024

  11. Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.

    PubMed

    Price, Paul A; Tanner, Houston R; Dillon, Brett A; Shabab, Mohammed; Walker, Graham C; Griffitts, Joel S

    2015-12-08

    Legume-rhizobium pairs are often observed that produce symbiotic root nodules but fail to fix nitrogen. Using the Sinorhizobium meliloti and Medicago truncatula symbiotic system, we previously described several naturally occurring accessory plasmids capable of disrupting the late stages of nodule development while enhancing bacterial proliferation within the nodule. We report here that host range restriction peptidase (hrrP), a gene found on one of these plasmids, is capable of conferring both these properties. hrrP encodes an M16A family metallopeptidase whose catalytic activity is required for these symbiotic effects. The ability of hrrP to suppress nitrogen fixation is conditioned upon the genotypes of both the host plant and the hrrP-expressing rhizobial strain, suggesting its involvement in symbiotic communication. Purified HrrP protein is capable of degrading a range of nodule-specific cysteine-rich (NCR) peptides encoded by M. truncatula. NCR peptides are crucial signals used by M. truncatula for inducing and maintaining rhizobial differentiation within nodules, as demonstrated in the accompanying article [Horváth B, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1500777112]. The expression pattern of hrrP and its effects on rhizobial morphology are consistent with the NCR peptide cleavage model. This work points to a symbiotic dialogue involving a complex ensemble of host-derived signaling peptides and bacterial modifier enzymes capable of adjusting signal strength, sometimes with exploitative outcomes.

  12. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is amore » key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.« less

  13. Identification and Characterization of Prokaryotic Dipeptidyl-peptidase 5 from Porphyromonas gingivalis *

    PubMed Central

    Ohara-Nemoto, Yuko; Rouf, Shakh M. A.; Naito, Mariko; Yanase, Amie; Tetsuo, Fumi; Ono, Toshio; Kobayakawa, Takeshi; Shimoyama, Yu; Kimura, Shigenobu; Nakayama, Koji; Saiki, Keitarou; Konishi, Kiyoshi; Nemoto, Takayuki K.

    2014-01-01

    Porphyromonas gingivalis, a Gram-negative asaccharolytic anaerobe, is a major causative organism of chronic periodontitis. Because the bacterium utilizes amino acids as energy and carbon sources and incorporates them mainly as dipeptides, a wide variety of dipeptide production processes mediated by dipeptidyl-peptidases (DPPs) should be beneficial for the organism. In the present study, we identified the fourth P. gingivalis enzyme, DPP5. In a dpp4-7-11-disrupted P. gingivalis ATCC 33277, a DPP7-like activity still remained. PGN_0756 possessed an activity indistinguishable from that of the mutant, and was identified as a bacterial orthologue of fungal DPP5, because of its substrate specificity and 28.5% amino acid sequence identity with an Aspergillus fumigatus entity. P. gingivalis DPP5 was composed of 684 amino acids with a molecular mass of 77,453, and existed as a dimer while migrating at 66 kDa on SDS-PAGE. It preferred Ala and hydrophobic residues, had no activity toward Pro at the P1 position, and no preference for hydrophobic P2 residues, showed an optimal pH of 6.7 in the presence of NaCl, demonstrated Km and kcat/Km values for Lys-Ala-MCA of 688 μm and 11.02 μm−1 s−1, respectively, and was localized in the periplasm. DPP5 elaborately complemented DPP7 in liberation of dipeptides with hydrophobic P1 residues. Examinations of DPP- and gingipain gene-disrupted mutants indicated that DPP4, DPP5, DPP7, and DPP11 together with Arg- and Lys-gingipains cooperatively liberate most dipeptides from nutrient oligopeptides. This is the first study to report that DPP5 is expressed not only in eukaryotes, but also widely distributed in bacteria and archaea. PMID:24398682

  14. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  15. Reciprocal influence of protein domains in the cold-adapted acyl aminoacyl peptidase from Sporosarcina psychrophila.

    PubMed

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution.

  16. Effect of acute hypoxic shock on the rat brain morphology and tripeptidyl peptidase I activity.

    PubMed

    Petrova, Emilia B; Dimitrova, Mashenka B; Ivanov, Ivaylo P; Pavlova, Velichka G; Dimitrova, Stella G; Kadiysky, Dimitar S

    2016-06-01

    Hypoxic events are known to cause substantial damage to the hippocampus, cerebellum and striatum. The impact of hypoxic shock on other brain parts is not sufficiently studied. Recent studies show that tripeptidyl peptidase I (TPPI) activity in fish is altered after a hypoxic stress pointing out at a possible enzyme involvement in response to hypoxia. Similar studies are not performed in mammals. In this work, the effect of sodium nitrite-induced acute hypoxic shock on the rat brain was studied at different post-treatment periods. Morphological changes in cerebral cortex, cerebellum, medulla oblongata, thalamus, mesencephalon and pons were assessed using silver-copper impregnation for neurodegeneration. TPPI activity was biochemically assayed and localized by enzyme histochemistry. Although less vulnerable to oxidative stress, the studied brain areas showed different histopathological changes, such as neuronal loss and tissue vacuolization, dilatation of the smallest capillaries and impairment of neuronal processes. TPPI activity was strictly regulated following the hypoxic stress. It was found to increase 12-24h post-treatment, then decreased followed by a slow process of recovery. The enzyme histochemistry revealed a temporary enzyme deficiency in all types of neurons. These findings indicate a possible involvement of the enzyme in rat brain response to hypoxic stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Prosegment of tripeptidyl peptidase I is a potent, slow-binding inhibitor of its cognate enzyme.

    PubMed

    Golabek, Adam A; Dolzhanskaya, Natalia; Walus, Marius; Wisniewski, Krystyna E; Kida, Elizabeth

    2008-06-13

    Tripeptidyl peptidase I (TPP I) is the first mammalian representative of a family of pepstatin-insensitive serine-carboxyl proteases, or sedolisins. The enzyme acts in lysosomes, where it sequentially removes tripeptides from the unmodified N terminus of small, unstructured polypeptides. Naturally occurring mutations in TPP I underlie a neurodegenerative disorder of childhood, classic late infantile neuronal ceroid lipofuscinosis (CLN2). Generation of mature TPP I is associated with removal of a long prosegment of 176 amino acid residues from the zymogen. Here we investigated the inhibitory properties of TPP I prosegment expressed and isolated from Escherichia coli toward its cognate protease. We show that the TPP I prosegment is a potent, slow-binding inhibitor of its parent enzyme, with an overall inhibition constant in the low nanomolar range. We also demonstrate the protective effect of the prosegment on alkaline pH-induced inactivation of the enzyme. Interestingly, the inhibitory properties of TPP I prosegment with the introduced classic late infantile neuronal ceroid lipofuscinosis disease-associated mutation, G77R, significantly differed from those revealed by wild-type prosegment in both the mechanism of interaction and the inhibitory rate. This is the first characterization of the inhibitory action of the sedolisin prosegment.

  18. Prosegment of Tripeptidyl Peptidase I Is a Potent, Slow-binding Inhibitor of Its Cognate Enzyme*

    PubMed Central

    Golabek, Adam A.; Dolzhanskaya, Natalia; Walus, Marius; Wisniewski, Krystyna E.; Kida, Elizabeth

    2008-01-01

    Tripeptidyl peptidase I (TPP I) is the first mammalian representative of a family of pepstatin-insensitive serine-carboxyl proteases, or sedolisins. The enzyme acts in lysosomes, where it sequentially removes tripeptides from the unmodified N terminus of small, unstructured polypeptides. Naturally occurring mutations in TPP I underlie a neurodegenerative disorder of childhood, classic late infantile neuronal ceroid lipofuscinosis (CLN2). Generation of mature TPP I is associated with removal of a long prosegment of 176 amino acid residues from the zymogen. Here we investigated the inhibitory properties of TPP I prosegment expressed and isolated from Escherichia coli toward its cognate protease. We show that the TPP I prosegment is a potent, slow-binding inhibitor of its parent enzyme, with an overall inhibition constant in the low nanomolar range. We also demonstrate the protective effect of the prosegment on alkaline pH-induced inactivation of the enzyme. Interestingly, the inhibitory properties of TPP I prosegment with the introduced classic late infantile neuronal ceroid lipofuscinosis disease-associated mutation, G77R, significantly differed from those revealed by wild-type prosegment in both the mechanism of interaction and the inhibitory rate. This is the first characterization of the inhibitory action of the sedolisin prosegment. PMID:18411270

  19. Trypsin-like Proteins of the Fungi as Possible Markers of Phytopathogenicity

    USDA-ARS?s Scientific Manuscript database

    Sequences of peptidases with conserved motifs around the active site residues that are characteristic of trypsins (similar to trypsin peptidases, STP) were obtained from publicly available fungal genomes and related databases. Among the 74 fungal genomes, 30 species of parasitic Ascomycota contained...

  20. CD26 modulates nociception in mice via its dipeptidyl-peptidase IV activity.

    PubMed

    Guieu, Regis; Fenouillet, Emmanuel; Devaux, Christiane; Fajloun, Ziad; Carrega, Louis; Sabatier, Jean-Marc; Sauze, Nicole; Marguet, Didier

    2006-01-30

    CD26 is a multifunctional cell surface glycoprotein expressed by T and B cells. It exhibits a dipeptidyl-peptidase activity (DPP-IV) that cleaves the penultimate proline from the N-terminus of polypeptides, thereby regulating their activity and concentration. Using CD26-/- mice resulting from targeted inactivation of the gene, we examined the consequences of a DPP-IV defect on behavioural response to nociceptive stimuli and concentration of the pain modulator peptides substance P (SP) and endomorphin 2, two DPP-IV substrates. CD26 inactivation induced a three-fold decrease in circulating endopeptidase activity while that found in brain extracts was normal, albeit very weak. CD26-/- mice had high SP concentrations in plasma (3.4+/-1 pg/ml versus 1.5+/-0.3 pg/ml, P<10(-3)) but not in brain extracts (35+/-12 pg/ml versus 32+/-9 pg/ml, P>0.05). Endomorphin-2 levels in the two groups were in the same range for plasma and brain extracts. CD26-/- mice displayed short latencies to nociceptive stimuli (hot plate test: 6.6+/-1.2 s versus 8.6+/-1.5 s, P<10(-4); tail pinch test: 3.1+/-0.6 s versus 4.2+/-0.8 s, P<10(-3)). Administration of an SP (NK1) receptor antagonist or DPP-IV to CD26-/- mice normalised latencies. DPP-IV inhibitors decreased latencies only in CD26+/+ mice. Our observations represent the first fundamental evidence showing that DPP-IV influences pain perception via modulation of the peripheral SP concentration. Our work also highlights the role of peripheral NK1 receptors in nociception.

  1. Genome-Wide Meta-Analyses of Plasma Renin Activity and Concentration Reveal Association with the Kininogen 1 and Prekallikrein Genes

    PubMed Central

    Lieb, Wolfgang; Chen, Ming-Huei; Teumer, Alexander; de Boer, Rudolf A.; Lin, Honghuang; Fox, Ervin R.; Musani, Solomon K.; Wilson, James G.; Wang, Thomas J.; Völzke, Henry; Petersen, Ann-Kristin; Meisinger, Christine; Nauck, Matthias; Schlesinger, Sabrina; Li, Yong; Menard, Jöel; Hercberg, Serge; Wichmann, H.-Erich; Völker, Uwe; Rawal, Rajesh; Bidlingmaier, Martin; Hannemann, Anke; Dörr, Marcus; Rettig, Rainer; van Gilst, Wiek H.; van Veldhuisen, Dirk J.; Bakker, Stephan J.L.; Navis, Gerjan; Wallaschofski, Henri; Meneton, Pierre; van der Harst, Pim; Reincke, Martin; Vasan, Ramachandran S.; Consortium, CKDGen

    2015-01-01

    Background The renin-angiotensin-aldosterone-system (RAAS) is critical for regulation of blood pressure and fluid balance and influences cardiovascular remodeling. Dysregulation of the RAAS contributes to cardiovascular and renal morbidity. The genetic architecture of circulating RAAS components is incompletely understood. Methods and Results We meta-analyzed genome-wide association data for plasma renin activity (n=5,275), plasma renin concentrations (n=8,014) and circulating aldosterone (n=13,289) from up to four population-based cohorts of European and European-American ancestry, and assessed replication of the top results in an independent sample (n=6,487). Single nucleotide polymorphisms (SNPs) in two independent loci displayed associations with plasma renin activity atgenome-wide significance (p<5×10-8). A third locus was close to this threshold (rs4253311 in kallikrein B [KLKB1], p=5.5×10-8). Two of these loci replicated in an independent sample for both plasma renin and aldosterone concentrations (SNP rs5030062 in kininogen 1 [KNG1]: p=0.001 for plasma renin, p=0.024 for plasma aldosterone concentration; rs4253311 with p<0.001 for both plasma renin and aldosterone concentration). SNPs in the NEBL gene reached genome-wide significance for plasma renin concentration in the discovery sample (top SNP rs3915911, p= 8.81×10-9), but did not replicate (p=0.81). No locus reached genome-wide significance for aldosterone. SNPs rs5030062 and rs4253311 were not related to blood pressure or renal traits; in a companion study, variants in the kallikrein B locus were associated with B-type natriuretic peptide concentrations in African-Americans. Conclusions We identified two genetic loci (kininogen 1 and kallikrein B) influencing key components of the RAAS, consistent with the close interrelation between the kallikrein-kinin system and the RAAS. PMID:25477429

  2. Critical role of renal dipeptidyl peptidase-4 in ameliorating kidney injury induced by saxagliptin in Dahl salt-sensitive hypertensive rats.

    PubMed

    Sakai, Mariko; Uchii, Masako; Myojo, Kensuke; Kitayama, Tetsuya; Kunori, Shunji

    2015-08-15

    Saxagliptin, a potent dipeptidyl peptidase-4 (DPP-4) inhibitor, is currently used to treat type 2 diabetes mellitus, and it has been reported to exhibit a slower rate of dissociation from DPP-4 compared with another DPP-4 inhibitor, sitagliptin. In this study, we compared the effects of saxagliptin and sitagliptin on hypertension-related renal injury and the plasma and renal DPP-4 activity levels in Dahl salt-sensitive hypertensive (Dahl-S) rats. The high-salt diet (8% NaCl) significantly increased the blood pressure and quantity of urinary albumin excretion and induced renal glomerular injury in the Dahl-S rats. Treatment with saxagliptin (14mg/kg/day via drinking water) for 4 weeks significantly suppressed the increase in urinary albumin excretion and tended to ameliorate glomerular injury without altering the blood glucose levels and systolic blood pressure. On the other hand, the administration of sitagliptin (140mg/kg/day via drinking water) did not affect urinary albumin excretion and glomerular injury in the Dahl-S rats. Meanwhile, the high-salt diet increased the renal DPP-4 activity but did not affect the plasma DPP-4 activity in the Dahl-S rats. Both saxagliptin and sitagliptin suppressed the plasma DPP-4 activity by 95% or more. Although the renal DPP-4 activity was also inhibited by both drugs, the inhibitory effect of saxagliptin was more potent than that of sitagliptin. These results indicate that saxagliptin has a potent renoprotective effect in the Dahl-S rats, independent of its glucose-lowering actions. The inhibition of the renal DPP-4 activity induced by saxagliptin may contribute to ameliorating renal injury in hypertension-related renal injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Inhibitory effect of linalool-rich essential oil from Lippia alba on the peptidase and keratinase activities of dermatophytes.

    PubMed

    Costa, Danielle Cristina Machado; Vermelho, Alane Beatriz; Almeida, Catia Amancio; de Souza Dias, Edilma Paraguai; Cedrola, Sabrina Martins Lage; Arrigoni-Blank, Maria de Fátima; Blank, Arie Fitzgerald; Alviano, Celuta Sales; Alviano, Daniela Sales

    2014-02-01

    Abstract Lippia alba (Miller) N.E. Brown is an aromatic plant known locally as "Erva-cidreira-do-campo" that has great importance in Brazilian folk medicine. The aim of our study was to evaluate the antidermatophytic potential of linalool-rich essential oil (EO) from L. alba and analyze the ability of this EO to inhibit peptidase and keratinase activities, which are important virulence factors in dermatophytes. The minimum inhibitory concentrations (MICs) of L. alba EO were 39, 156 and 312 µg/mL against Trichophyton rubrum, Epidermophyton floccosum and Microsporum gypseum, respectively. To evaluate the influence of L. alba EO on the proteolytic and keratinolytic activities of these dermatophytes, specific inhibitory assays were performed. The results indicated that linalool-rich EO from L. alba inhibited the activity of proteases and keratinases secreted from dermatophytes, and this inhibition could be a possible mechanism of action against dermatophytes. Due to the effective antidermatophytic activity of L. alba EO, further experiments should be performed to explore the potential of this linalool-rich EO as an alternative antifungal therapy.

  4. Dipeptidyl Peptidase-4 Inhibitor-Associated Pancreatic Carcinoma: A Review of the FAERS Database.

    PubMed

    Nagel, Angela K; Ahmed-Sarwar, Nabila; Werner, Paul M; Cipriano, Gabriela C; Van Manen, Robbert P; Brown, Jack E

    2016-01-01

    To date, there is limited literature regarding the association between dipeptidyl peptidase-4 (DPP-4) inhibitors and pancreatic carcinoma. To describe the comparative incidence of DPP-4 inhibitors and pancreatic carcinoma as reportedly available in the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. The goal was to provide health care practitioners a general understanding of the drug-disease occurrence. This is a case/noncase study utilizing Empirica Signal software to query FAERS from November 1968 to December 31, 2013. The software was used to calculate a disproportionality statistic--namely, the empirical Bayesian geometric mean (EBGM)--for reports of DPP-4 inhibitors-associated pancreatic carcinoma. The FDA considers an EBGM significant if the fifth percentile of the distribution is at least 2, defined as an EB05 ≥ 2. With use of a disproportionality analysis, DPP-4 inhibitors were compared with all agents listed in FAERS. A total of 156 patients experienced pancreatic carcinoma while receiving DPP-4 inhibitor therapy. An EB05 of 10.3 was determined for sitagliptin, 7.1 for saxagliptin, 4.9 for linagliptin, and 1.4 for alogliptin, compared with all other agents included in FAERS. Although an EB05 > 2 was achieved in 2 other antihyperglycemic agents, the findings were not consistent within their medication classes. There appears to be a statistical association between DPP-4 inhibitor use and pancreatic carcinoma. Causality cannot be inferred from the data provided. Additional clinical studies are needed to further explore this statistical association. © The Author(s) 2015.

  5. combination effect of hypertonic disease with chronic pancreatitis on the processes maintain homeostasis.

    PubMed

    Babinets, Liliya S; Medvid, Igor I; Herasymets, Iryna I; Borovyk, Iryna O; Migenko, Liudmyla M; Migenko, Bogdan O; Ryabokon, Svitlana S; Korylchuk, Neonila I; Botcyk, Natalia E; Tvorko, Vadym M

    Introduction: Abnormalities comorbidity - a frequent phenomenon in medical practice. This determines the relevance of research processes maintaining homeostasis with a combination of various diseases. The aim of this study was to examine and compare the character of vegetative, antioxidant, kallikrein-kinin system and parameters of endogenous intoxication disorders in the patients with isolated essential hypertension and with combination of hypertonic disease and chronic pancreatitis. Materials and Methods: Cardiointervalography was used in the research with definition of standard statistical and spectral heart rate variability. Determination of superoxide dismutase, glutathione, catalase, middle molecular peptides, total proteolytic activity of plasma by the hydrolysis of protamine sulfate, prekallikrein, kallikrein, α1 -proteinase inhibitor, α2 -macroglobulin and kininase II was conducted by laboratory methods. Results: Sympathicotonia with the moderate tension of adaptation processes, violation of antioxidant protection, kallikrein-kinin system and displays of endogenous intoxication were found in the patients with isolated hypertension. Reduction of sympathicotonia, reducing total power spectrum, increasing the share of humoral-metabolic effects on heart rate, tendency to asympathicotonia autonomic reactivity, lower levels of superoxide dismutase, glutathione, prekallikrein, α2 -macroglobulin, kininase II, higher levels of catalase, middle molecular peptides, total proteolytic activity of plasma kallikrein were observed upon accession the concomitant chronic pancreatitis. Conclusions: The signs of compensatory mechanisms disruption and increased autonomic nervous system imbalance with a decrease in ductility autonomous processes in the load were determined upon accession the concomitant chronic pancreatitis. The combination of pathologies also accompanied by more severe manifestations of endogenous intoxication, significant violations of antioxidant and

  6. Uric acid inhibition of dipeptidyl peptidase IV in vitro is dependent on the intracellular formation of triuret.

    PubMed

    Mohandas, Rajesh; Sautina, Laura; Beem, Elaine; Schuler, Anna; Chan, Wai-Yan; Domsic, John; McKenna, Robert; Johnson, Richard J; Segal, Mark S

    2014-08-01

    Uric acid affects endothelial and adipose cell function and has been linked to diseases such as hypertension, metabolic syndrome, and cardiovascular disease. Interestingly uric acid has been shown to increase endothelial progenitor cell (EPC) mobilization, a potential mechanism to repair endothelial injury. Since EPC mobilization is dependent on activity of the enzyme CD26/dipeptidyl peptidase (DPP)IV, we examined the effect uric acid will have on CD26/DPPIV activity. Uric acid inhibited the CD26/DPPIV associated with human umbilical vein endothelial cells but not human recombinant (hr) CD26/DPPIV. However, triuret, a product of uric acid and peroxynitrite, could inhibit cell associated and hrCD26/DPPIV. Increasing or decreasing intracellular peroxynitrite levels enhanced or decreased the ability of uric acid to inhibit cell associated CD26/DPPIV, respectively. Finally, protein modeling demonstrates how triuret can act as a small molecule inhibitor of CD26/DPPIV activity. This is the first time that uric acid or a uric acid reaction product has been shown to affect enzymatic activity and suggests a novel avenue of research in the role of uric acid in the development of clinically important diseases. Published by Elsevier Inc.

  7. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, andmore » enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.« less

  8. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-04-09

    Myostatin (MSTN), a member of the transforming growth factor-β superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition.

  9. Early-onset Evans syndrome, immunodeficiency, and premature immunosenescence associated with tripeptidyl-peptidase II deficiency

    PubMed Central

    Stepensky, Polina; Rensing-Ehl, Anne; Gather, Ruth; Revel-Vilk, Shoshana; Fischer, Ute; Nabhani, Schafiq; Beier, Fabian; Brümmendorf, Tim H.; Fuchs, Sebastian; Zenke, Simon; Firat, Elke; Pessach, Vered Molho; Borkhardt, Arndt; Rakhmanov, Mirzokhid; Keller, Bärbel; Warnatz, Klaus; Eibel, Hermann; Niedermann, Gabriele; Elpeleg, Orly

    2015-01-01

    Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8+ T-cells had a senescent CCR7-CD127−CD28−CD57+ phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21− CD11c+ phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias. PMID:25414442

  10. Deletion of epithelial cell-specific Cdc42 leads to enamel hypermaturation in a conditional knockout mouse model.

    PubMed

    Tian, Zhihui; Lv, Xiaolin; Zhang, Min; Wang, Xueer; Chen, Yinghua; Tang, Pei; Xu, Pengcheng; Zhang, Lu; Wu, Buling; Zhang, Lin

    2018-04-21

    Recent evidence suggests that GTPases Rho family plays an important role in tooth development; however, the role of Cdc42 in tooth development remains unclear. We aimed to investigate the function of Cdc42 in tooth development and amelogenesis. We generated an epithelial cell-specific K5-Cdc42 knockout (KO) mouse to evaluate post-eruption dental phenotypes using a K5-Cre driver line. This model overcomes the previously reported perinatal lethality. Tooth phenotypes were analyzed by micro X-ray, micro-computed tomography (CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), wear rate, shear strength, and a microhardness test. Enamel matrix protein expression was determined by immunohistochemistry. KO mice displayed a hypomaturation phenotype, including incisors that lacked yellow pigmentation and were abnormally white, rapid attrition of molars following eruption, and decreased micro-hardness and shearing strength. Micro-CT data revealed that of incisor and molar enamel volumes were smaller in the KO than in wild-type (WT) mice. SEM analysis showed that the enamel prism structure was disordered. In addition, HE staining indicated a remarkable difference in the ameloblast morphology and function between KO and WT mice, and immunohistochemistry showed increased expression of amelogenin, ameloblastin, matrix metallopeptidase 20, kallikrein-related peptidase 4 and amelotin in the KO mice teeth. Our results suggest epithelium cell-specific Cdc42 deletion leads to tooth hypomaturation and transformation of the enamel prism structure that is likely due to altered ameloblast morphology and the secretion of enamel matrix proteins and proteases. This is the first in vivo evidence suggesting that Cdc42 is essential for proper tooth development and amelogenesis. Copyright © 2018. Published by Elsevier B.V.

  11. A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site

    PubMed Central

    Straus, Marco R.; Whittaker, Gary R.

    2017-01-01

    Cleavage activation of the hemagglutinin (HA) protein by host proteases is a crucial step in the infection process of influenza A viruses (IAV). However, IAV exists in eighteen different HA subtypes in nature and their cleavage sites vary considerably. There is uncertainty regarding which specific proteases activate a given HA in the human respiratory tract. Understanding the relationship between different HA subtypes and human-specific proteases will be valuable in assessing the pandemic potential of circulating viruses. Here we utilized fluorogenic peptides mimicking the HA cleavage motif of representative IAV strains causing disease in humans or of zoonotic/pandemic potential and tested them with a range of proteases known to be present in the human respiratory tract. Our results show that peptides from the H1, H2 and H3 subtypes are cleaved efficiently by a wide range of proteases including trypsin, matriptase, human airway tryptase (HAT), kallikrein-related peptidases 5 (KLK5) and 12 (KLK12) and plasmin. Regarding IAVs currently of concern for human adaptation, cleavage site peptides from H10 viruses showed very limited cleavage by respiratory tract proteases. Peptide mimics from H6 viruses showed broader cleavage by respiratory tract proteases, while H5, H7 and H9 subtypes showed variable cleavage; particularly matriptase appeared to be a key protease capable of activating IAVs. We also tested HA substrate specificity of Factor Xa, a protease required for HA cleavage in chicken embryos and relevant for influenza virus production in eggs. Overall our data provide novel tool allowing the assessment of human adaptation of IAV HA subtypes. PMID:28358853

  12. Berry and Citrus Phenolic Compounds Inhibit Dipeptidyl Peptidase IV: Implications in Diabetes Management

    PubMed Central

    Fan, Junfeng; Lila, Mary Ann; Yousef, Gad

    2013-01-01

    Beneficial health effects of fruits and vegetables in the diet have been attributed to their high flavonoid content. Dipeptidyl peptidase IV (DPP-IV) is a serine aminopeptidase that is a novel target for type 2 diabetes therapy due to its incretin hormone regulatory effects. In this study, well-characterized anthocyanins (ANC) isolated from berry wine blends and twenty-seven other phenolic compounds commonly present in citrus, berry, grape, and soybean, were individually investigated for their inhibitory effects on DPP-IV by using a luminescence assay and computational modeling. ANC from blueberry-blackberry wine blends strongly inhibited DPP-IV activity (IC50, 0.07 ± 0.02 to >300 μM). Of the twenty-seven phenolics tested, the most potent DPP-IV inhibitors were resveratrol (IC50, 0.6 ± 0.4 nM), luteolin (0.12 ± 0.01 μM), apigenin (0.14 ± 0.02 μM), and flavone (0.17 ± 0.01 μM), with IC50 values lower than diprotin A (4.21 ± 2.01 μM), a reference standard inhibitory compound. Analyses of computational modeling showed that resveratrol and flavone were competitive inhibitors which could dock directly into all three active sites of DPP-IV, while luteolin and apigenin docked in a noncompetitive manner. Hydrogen bonding was the main binding mode of all tested phenolic compounds with DPP-IV. These results indicate that flavonoids, particularly luteolin, apigenin, and flavone, and the stilbenoid resveratrol can act as naturally occurring DPP-IV inhibitors. PMID:24069048

  13. Defense-related proteins involved in sugarcane responses to biotic stress

    PubMed Central

    Souza, Thais P.; Dias, Renata O.; Silva-Filho, Marcio C.

    2017-01-01

    Abstract Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives. PMID:28222203

  14. Tripeptidyl Peptidase II Is Required for c-MYC-Induced Centriole Overduplication and a Novel Therapeutic Target in c-MYC-Associated Neoplasms.

    PubMed

    Duensing, Stefan; Darr, Sebastian; Cuevas, Rolando; Melquiot, Nadja; Brickner, Anthony G; Duensing, Anette; Münger, Karl

    2010-09-01

    Centrosome aberrations are frequently detected in c-MYC-associated human malignancies. Here, we show that c-MYC-induced centrosome and centriole overduplication critically depend on the protease tripeptidyl peptidase II (TPPII). We found that TPPII localizes to centrosomes and that overexpression of TPPII, similar to c-MYC, can disrupt centriole duplication control and cause centriole multiplication, a process during which maternal centrioles nucleate the formation of more than a single daughter centriole. We report that inactivation of TPPII using chemical inhibitors or siRNA-mediated protein knockdown effectively reduced c-MYC-induced centriole overduplication. Remarkably, the potent and selective TPPII inhibitor butabindide not only potently suppressed centriole aberrations but also caused significant cell death and growth suppression in aggressive human Burkitt lymphoma cells with c-MYC overexpression. Taken together, these results highlight the role of TPPII in c-MYC-induced centriole overduplication and encourage further studies to explore TPPII as a novel antineoplastic drug target.

  15. Tripeptidyl Peptidase II Is Required for c-MYC–Induced Centriole Overduplication and a Novel Therapeutic Target in c-MYC–Associated Neoplasms

    PubMed Central

    Duensing, Stefan; Darr, Sebastian; Cuevas, Rolando; Melquiot, Nadja; Brickner, Anthony G.; Duensing, Anette; Münger, Karl

    2010-01-01

    Centrosome aberrations are frequently detected in c-MYC–associated human malignancies. Here, we show that c-MYC–induced centrosome and centriole overduplication critically depend on the protease tripeptidyl peptidase II (TPPII). We found that TPPII localizes to centrosomes and that overexpression of TPPII, similar to c-MYC, can disrupt centriole duplication control and cause centriole multiplication, a process during which maternal centrioles nucleate the formation of more than a single daughter centriole. We report that inactivation of TPPII using chemical inhibitors or siRNA-mediated protein knockdown effectively reduced c-MYC–induced centriole overduplication. Remarkably, the potent and selective TPPII inhibitor butabindide not only potently suppressed centriole aberrations but also caused significant cell death and growth suppression in aggressive human Burkitt lymphoma cells with c-MYC overexpression. Taken together, these results highlight the role of TPPII in c-MYC–induced centriole overduplication and encourage further studies to explore TPPII as a novel antineoplastic drug target. PMID:21647238

  16. Bradykinin-forming components in Kuwaiti patients with type 2 diabetes.

    PubMed

    Sharma, J N; Al-Shoumer, K A S; Matar, K M; Al-Gharee, H Y; Madathil, N V

    2013-01-01

    Diabetes is the most common risk factor in inducing hypertension, nephropathy and retinopathy. The bradykinin (BK)-forming system has been proposed to protect cardiovascular and renal functions. We therefore evaluated urinary active and proactive kallikrein, total kininogen, plasma tissue kallikrein, plasma creatinine, plasma glucose and plasma HbA1c in newly diagnosed untreated type 2 diabetic patients and healthy subjects. In diabetic patients, urinary and plasma tissue kallikrein concentrations were significantly increased. In addition, plasma prekallikrein levels were also significantly higher. However, urinary kininogen values were significantly reduced in diabetic patients when compared with healthy subjects. This is the first investigation among Kuwaiti Arab patients with type 2 diabetes showing abnormal activities in the BK-forming system. High levels of plasma prekallikrein may be a risk factor for developing high blood pressure as well as nephropathy. The urinary and plasma tissue kallikrein concentrations were higher in diabetic patients, which could indicate the hyperactivities of these components, and may result in increased levels of plasma glucose to induce diabetes. Furthermore, the urinary kininogen levels were reduced in diabetic patients. These alterations might reflect the utilization of urinary kininogen to form BK, a potent inflammatory agent. However, this hypothesis needs further investigation.

  17. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells.

    PubMed

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American Type Culture Collection; FBS: fetal bovine serum; PBS: phosphate

  18. Trichosanthes kirilowii Exerts Androgenic Activity via Regulation of PSA and KLK2 in 22Rv1 Prostate Cancer Cells

    PubMed Central

    Jeong, Soo-Jin; Choi, Ji-Yoon; Dong, Mi-Sook; Seo, Chang-Seob; Shin, Hyeun-Kyoo

    2017-01-01

    Background: The androgen comprises a group of hormones that play roles in male reproductive activity as well as personal characteristics. Objective: We investigated the androgenic activity of various herbal medicines in human prostate cancer 22Rv1 cells. Materials and Methods: Herbal extracts of Trichosanthes kirilowii (TK), Asarum sieboldii (AS), Sanguisorba officinalis (SO), and Xanthium strumarium (XS) were selected to have androgenic effects based on a preliminary in vitro screening system. Results: TK, AS, SO, and XS enhanced the proliferation of 22Rv1 cells without having cytotoxic effects. All tested herbal extracts increased androgen receptor (AR)-induced transcriptional activity in the absence or presence of dihydrotestosterone (DHT). In an AR-binding assay, TK, but not AS, SO, or XS, produced a significant inhibition of AR binding activity, indicating it has androgenic activity. Additionally, TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen (PSA) and kallikrein 2 (KLK2) compared with untreated control. Conclusion: Taken together, TK-enhanced AR-mediated transcriptional activity might be an attractive candidate drug for treating androgen-related diseases. SUMMARY Trichosantheskirilowii (TK), Asarumsieboldii (AS), Sanguisorbaofficinalis (SO), and Xanthium strumarium (XS) enhanced the proliferation of 22Rv1 cells without having cytotoxic effects.TK, AS, SO, and XS increased androgen receptor (AR)-induced transcriptional activity.TK, but not AS, SO, or XS, produced a significant inhibition against AR-binding activity.TK treatment positively regulated mRNA expression of the AR-related molecular targets prostate-specific antigen and kallikrein 2. Abbreviations used: BPH: benign prostatic hyperplasia; AR: androgen receptor; DHT: dihydrotestosterone; PSA: prostate-specific antigen; TK: Trichosanthes kirilowii; AS: Asarum sieboldii; SO: Sanguisorba officinalis; XS: Xanthium strumarium; ATCC: American

  19. Dipeptidyl peptidase IV (DPP-IV) inhibition prevents fibrosis in adipose tissue of obese mice.

    PubMed

    Marques, Ana Patrícia; Cunha-Santos, Janete; Leal, Helena; Sousa-Ferreira, Lígia; Pereira de Almeida, Luís; Cavadas, Cláudia; Rosmaninho-Salgado, Joana

    2018-03-01

    During the development of obesity the expansion of white adipose tissue (WAT) leads to a dysregulation and an excessive remodeling of extracellular matrix (ECM), leading to fibrosis formation. These ECM changes have high impact on WAT physiology and may change obesity progression. Blocking WAT fibrosis may have beneficial effects on the efficacy of diet regimen or therapeutical approaches in obesity. Since dipeptidyl peptidase IV (DPP-IV) inhibitors prevent fibrosis in tissues, such as heart, liver and kidney, the objective of this study was to assess whether vildagliptin, a DPP-IV inhibitor, prevents fibrosis in WAT in a mouse model of obesity, and to investigate the mechanisms underlying this effect. We evaluated the inhibitory effect of vildagliptin on fibrosis markers on WAT of high-fat diet (HFD)-induced obese mice and on 3T3-L1 cell line of mouse adipocytes treated with a fibrosis inducer, transforming growth factor beta 1 (TGFβ1). Vildagliptin prevents the increase of fibrosis markers in WAT of HFD-fed mice and reduces blood glucose, serum triglycerides, total cholesterol and leptin levels. In the in vitro study, the inhibition of DPP-IV with vildagliptin, neuropeptide Y (NPY) treatment and NPY Y 1 receptor activation prevents ECM deposition and fibrosis markers increase induced by TGFβ1 treatment. Vildagliptin prevents fibrosis formation in adipose tissue in obese mice, at least partially through NPY and NPY Y 1 receptor activation. This study highlights the importance of vildagliptin in the treatment of fibrosis that occur in obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris

    PubMed Central

    Siegel, Sara D.

    2016-01-01

    ABSTRACT The Gram-positive bacterium Actinomyces oris, a key colonizer in the development of oral biofilms, contains 18 LPXTG motif-containing proteins, including fimbrillins that constitute two fimbrial types critical for adherence, biofilm formation, and polymicrobial interactions. Export of these protein precursors, which harbor a signal peptide, is thought to be mediated by the Sec machine and require cleavage of the signal peptide by type I signal peptidases (SPases). Like many Gram-positive bacteria, A. oris expresses two SPases, named LepB1 and LepB2. The latter has been linked to suppression of lethal “glyco-stress,” caused by membrane accumulation of the LPXTG motif-containing glycoprotein GspA when the housekeeping sortase srtA is genetically disrupted. Consistent with this finding, we show here that a mutant lacking lepB2 and srtA was unable to produce high levels of glycosylated GspA and hence was viable. However, deletion of neither lepB1 nor lepB2 abrogated the signal peptide cleavage and glycosylation of GspA, indicating redundancy of SPases for GspA. In contrast, the lepB2 deletion mutant failed to assemble the wild-type levels of type 1 and 2 fimbriae, which are built by the shaft fimbrillins FimP and FimA, respectively; this phenotype was attributed to aberrant cleavage of the fimbrillin signal peptides. Furthermore, the lepB2 mutants, including the catalytically inactive S101A and K169A variants, exhibited significant defects in polymicrobial interactions and biofilm formation. Conversely, lepB1 was dispensable for the aforementioned processes. These results support the idea that LepB2 is specifically utilized for processing of fimbrial proteins, thus providing an experimental model with which to study the basis of type I SPase specificity. IMPORTANCE Sec-mediated translocation of bacterial protein precursors across the cytoplasmic membrane involves cleavage of their signal peptide by a signal peptidase (SPase). Like many Gram

  1. A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris.

    PubMed

    Siegel, Sara D; Wu, Chenggang; Ton-That, Hung

    2016-08-01

    The Gram-positive bacterium Actinomyces oris, a key colonizer in the development of oral biofilms, contains 18 LPXTG motif-containing proteins, including fimbrillins that constitute two fimbrial types critical for adherence, biofilm formation, and polymicrobial interactions. Export of these protein precursors, which harbor a signal peptide, is thought to be mediated by the Sec machine and require cleavage of the signal peptide by type I signal peptidases (SPases). Like many Gram-positive bacteria, A. oris expresses two SPases, named LepB1 and LepB2. The latter has been linked to suppression of lethal "glyco-stress," caused by membrane accumulation of the LPXTG motif-containing glycoprotein GspA when the housekeeping sortase srtA is genetically disrupted. Consistent with this finding, we show here that a mutant lacking lepB2 and srtA was unable to produce high levels of glycosylated GspA and hence was viable. However, deletion of neither lepB1 nor lepB2 abrogated the signal peptide cleavage and glycosylation of GspA, indicating redundancy of SPases for GspA. In contrast, the lepB2 deletion mutant failed to assemble the wild-type levels of type 1 and 2 fimbriae, which are built by the shaft fimbrillins FimP and FimA, respectively; this phenotype was attributed to aberrant cleavage of the fimbrillin signal peptides. Furthermore, the lepB2 mutants, including the catalytically inactive S101A and K169A variants, exhibited significant defects in polymicrobial interactions and biofilm formation. Conversely, lepB1 was dispensable for the aforementioned processes. These results support the idea that LepB2 is specifically utilized for processing of fimbrial proteins, thus providing an experimental model with which to study the basis of type I SPase specificity. Sec-mediated translocation of bacterial protein precursors across the cytoplasmic membrane involves cleavage of their signal peptide by a signal peptidase (SPase). Like many Gram-positive bacteria, A. oris expresses

  2. Understanding the interactions of different substrates with wild-type and mutant acylaminoacyl peptidase using molecular dynamics simulations.

    PubMed

    Zhu, Jingxuan; Wang, Yan; Li, Xin; Han, Weiwei; Zhao, Li

    2017-12-20

    Acylaminoacylpeptidase (AAP) belongs to peptidase protein family, which can degrade amyloid β-peptide forms in the brains of patients, and hence leads to Alzheimer's disease. And so, AAP is considered to be a novel target in the design of drugs against Alzheimer's disease. In this investigation, six molecular dynamics simulations were used to find that the interaction between the wild-type and R526V AAP with two different substrates (p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide). Our results were as follows: firstly, Ac-Leu-p-nitroanilide bound to R526V AAP to form a more disordered loop (residues 552-562) in the α/β-hydrolase fold like of AAP, which caused an open and inactive AAP domain form, secondly, binding p-nitrophenylcaprylate and Ac-Leu-p-nitroanilide to AAP can decrease the flexibility of residues 225-250, 260-270, and 425-450, in which the ordered secondary structures may contain the suitable geometrical structure and so it is useful to serine attack. Our theoretical results showed that the binding of the two substrates can induce specific conformational changes responsible for the diverse AAP catalytic specificity. These theoretical substrate-induced structural diversities can help explain the abilities of AAPs to recognize and hydrolyze extremely different substrates.

  3. Lowered serum dipeptidyl peptidase IV activity is associated with depressive symptoms and cytokine production in cancer patients receiving interleukin-2-based immunotherapy.

    PubMed

    Maes, M; Capuron, L; Ravaud, A; Gualde, N; Bosmans, E; Egyed, B; Dantzer, R; Neveu, P J

    2001-02-01

    There is some evidence that treatment with interleukin-2 (IL-2) and interferon-alpha (IFNalpha) frequently induces depressive symptoms and activation of the inflammatory response system (IRS). There is evidence that major depression is accompanied by lowered serum activity of dipeptidyl peptidase IV (DPP IV; EC 3.4.14.5), a membrane-bound serine protease which catalyses the cleavage of some cytokines and neuro-active peptides and which modulates T cell activation and the production of cytokines, such as IL-2. This study was carried out to examine the effects of immunochemotherapy with IL-2 and IFNalpha, alone and together, in cancer patients on serum DPP IV activity in relation to changes in depressive symptoms and the IRS. The Montgomery and Asberg Rating Scale (MADRS), serum DPP IV activity, and the serum IL-6, and IL-2 receptor (IL-2R) concentrations were measured in 26 patients with metastatic cancers before and three and five days after treatment with IL-2 and IFNalpha, alone or together. Treatment with IL-2 with or without IFNalpha significantly suppressed serum DPP IV activity. The MADRS scores were significantly elevated by treatment with IL-2 with or without IFNalpha, but not IFNalpha alone. The immunochemotherapy-induced decreases in serum DPP IV were significantly and inversely correlated with the increases in the MADRS. Treatment with IL-2 alone or combined with IFNalpha also elevated serum IL-6 and IL-2R. There were significant and inverse correlations between the immuchemotherapy-induced decreases in serum DPP IV and the elevations in serum IL-6 or IL-2R. In conclusion, treatment with IL-2/IFNalpha decreases serum DPP IV activity within 3-5 days and the immunochemotherapy-induced decreases in serum DPP IV activity are significantly and inversely related to treatment-induced increases in severity of depression and signs of activation of the IRS.

  4. Expression of the rat CD26 antigen (dipeptidyl peptidase IV) on subpopulations of rat lymphocytes.

    PubMed

    Gorrell, M D; Wickson, J; McCaughan, G W

    1991-04-15

    The T cell activation antigen CD26 has been recently identified as the cell surface ectopeptidase dipeptidyl peptidase IV (DPP-IV). DPP-IV is found on many cell types, including lymphocytes, epithelial cells, and certain endothelial cells. The MRC OX61 monoclonal antibody (MAb) which specifically recognises rat DPP-IV was used to examine the expression of CD26/DPP-IV on rat lymphocytes. The molecular nature of the antigen was examined by immunoprecipitation from thymocytes, splenocytes, and hepatocytes. Analysis by one- and two-dimensional gel electrophoresis indicated that the native form of CD26 includes a 220-kDa homodimer. On tissue sections MRC OX61 MAb stained nearly all thymocytes and in the spleen and lymph nodes predominantly stained the T cell areas. However, in immunofluorescence experiments OX61 stained 80 to 87% of lymph node cells and 78 to 85% of spleen cells. Furthermore, two-colour immunofluorescence analysis of the CD4+, CD8+, and Ig+ lymphocyte subsets indicated that only 2 to 5% of each of these subsets lacked OX61 staining. Spleen cells and thymocytes of both CD4+ and CD8+ subsets stained much more intensely with OX61 after these cells were stimulated with phytohemagglutinin. These findings indicate that rat CD26 antigen expression is not confined to the T cell population as has been suggested, but also occurs on B cells, and is increased on T cells following their activation.

  5. Modulation of substance P signaling by dipeptidyl peptidase-IV enzymatic activity in human glioma cell lines.

    PubMed

    Busek, P; Stremenová, J; Krepela, E; Sedo, A

    2008-01-01

    Dipeptidyl peptidase-IV (DPP-IV, CD26) is a serine protease almost ubiquitously expressed on cell surface and present in body fluids. DPP-IV has been suggested to proteolytically modify a number of biologically active peptides including substance P (SP) and the chemokine stromal cell derived factor-1alpha (SDF-1alpha, CXCL12). SP and SDF-1alpha have been implicated in the regulation of multiple biological processes and also induce responses that may be relevant for glioma progression. Both SP and SDF-1alpha are signaling through cell surface receptors and use intracellular calcium as a second messenger. The effect of DPP-IV on intracellular calcium mobilization mediated by SP and SDF-1alpha was monitored in suspension of wild type U373 and DPP-IV transfected U373DPPIV glioma cells using indicator FURA-2. Nanomolar concentrations of SP triggered a transient dose dependent increase in intracellular calcium rendering the cells refractory to repeated stimulation, while SDF-1 had no measurable effect. SP signaling in DPP-IV overexpressing U373DPPIV cells was not substantially different from that in wild type cells. However, preincubation of SP with the DPP-IV overexpressing cells lead to the loss of its signaling potential, which could be prevented with DPP-IV inhibitors. Taken together, DPP-IV may proteolytically inactivate local mediators involved in gliomagenesis.

  6. Dipeptidyl Peptidase-4 Inhibitors and Heart Failure Exacerbation in the Veteran Population: An Observational Study.

    PubMed

    Cobretti, Michael R; Bowman, Benjamin; Grabarczyk, Ted; Potter, Emily

    2018-03-01

    The dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors) are effective modulators of fasting and postprandial hyperglycemia in patients with type 2 diabetes mellitus (T2DM). In 2013 the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53 (SAVOR-TIMI 53) clinical trial found an increased risk of heart failure exacerbation, as a secondary outcome, among patients treated with saxagliptin. This study examines the safety of DPP-4 inhibitors as a class in T2DM in relation to risk of heart failure exacerbations. Retrospective cohort study of two groups of patients using data from the national Department of Veteran's Affairs (VA) Health Care System: patients initially prescribed DPP-4 inhibitors with or without second-generation sulfonylureas and/or metformin (exposed group) compared with patients initially prescribed only second-generation sulfonylureas and/or metformin (unexposed group) between August 1, 2013, and August 30, 2016. The primary aim of this study was to determine the difference in 1-year heart failure exacerbation rate in patients with T2DM between the exposed and unexposed groups. Data were analyzed using the χ 2 Student t test and Kaplan-Meier analysis. Significance was set at p<0.05. The study evaluated 672,265 patients: 33,614 patients in the exposed group and 638,651 patients in the unexposed group. Overall, 130 (0.38%) heart failure exacerbations were documented in the exposed group, and 2222 (0.34%) heart failure exacerbations were documented in the unexposed group; the difference in exacerbation rate was nonsignificant between groups (p=0.24). In a subgroup analysis of patients with a baseline diagnosis of heart failure, the difference in rate of heart failure exacerbations remained nonsignificant (p=0.334). Patients in the veteran population with T2DM treated with DPP-4 inhibitors did not demonstrate a significant increase in risk for heart failure exacerbation

  7. A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Prostate Health Index and 4-Kallikrein Panel Score in Predicting Overall and High-grade Prostate Cancer.

    PubMed

    Russo, Giorgio Ivan; Regis, Federica; Castelli, Tommaso; Favilla, Vincenzo; Privitera, Salvatore; Giardina, Raimondo; Cimino, Sebastiano; Morgia, Giuseppe

    2017-08-01

    Markers for prostate cancer (PCa) have progressed over recent years. In particular, the prostate health index (PHI) and the 4-kallikrein (4K) panel have been demonstrated to improve the diagnosis of PCa. We aimed to review the diagnostic accuracy of PHI and the 4K panel for PCa detection. We performed a systematic literature search of PubMed, EMBASE, Cochrane, and Academic One File databases until July 2016. We included diagnostic accuracy studies that used PHI or 4K panel for the diagnosis of PCa or high-grade PCa. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Twenty-eight studies including 16,762 patients have been included for the analysis. The pooled data showed a sensitivity of 0.89 and 0.74 for PHI and 4K panel, respectively, for PCa detection and a pooled specificity of 0.34 and 0.60 for PHI and 4K panel, respectively. The derived area under the curve (AUC) from the hierarchical summary receiver operating characteristic (HSROC) showed an accuracy of 0.76 and 0.72 for PHI and 4K panel respectively. For high-grade PCa detection, the pooled sensitivity was 0.93 and 0.87 for PHI and 4K panel, respectively, whereas the pooled specificity was 0.34 and 0.61 for PHI and 4K panel, respectively. The derived AUC from the HSROC showed an accuracy of 0.82 and 0.81 for PHI and 4K panel, respectively. Both PHI and the 4K panel provided good diagnostic accuracy in detecting overall and high-grade PCa. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Left ventricular diastolic function in patients with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor- a pilot study.

    PubMed

    Nogueira, Katia Camarano; Furtado, Meive; Fukui, Rosa Tsuneshiro; Correia, Marcia Regina Silva; Dos Santos, Rosa Ferreira; Andrade, José Lázaro; Rossi da Silva, Maria Elizabeth

    2014-01-01

    Blood glucose control is fundamental albeit not enough to prevent diabetic macrovascular complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective in improving metabolic parameters in patients with type 2 diabetes mellitus (T2DM) but little is known about its cardiovascular effects. We compared the DPP-4 inhibitor sitagliptin with bedtime NPH insulin (NPH) as add-on therapy in patients with T2DM, aiming to ascertain which drug would have additional cardioprotective effects. Thirty-five T2DM patients inadequately controlled with metformin plus glyburide were randomized to receive sitagliptin (n = 18) or NPH (n = 17) for 24 weeks. Fasting plasma glucose, HbA1c, lipid profile, C-reactive protein, active glucagon-like peptide (aGLP-1) levels, 24-hour ambulatory blood pressure measurement and comprehensive 2-dimensional echocardiogram were determined before and after treatments. Both sitagliptin and NPH therapies decreased HbA1c levels after 24 weeks. Fasting plasma glucose and triglyceride levels decreased in the NPH group whereas only sitagliptin increased aGLP-1 levels. Left ventricular diastolic dysfunction (LVDD) was detected in 58.6% of twenty-nine patients evaluated. Beneficial effects in LVDD were observed in 75% and 11% of patients treated with sitagliptin and NPH, respectively (p = 0.015). Neither therapy changed C-reactive protein or blood pressure. Sitagliptin and bedtime NPH were similarly effective on glucose control. Improvement in LVDD in T2DM patients treated with sitagliptin was suggested, probably related to the increase of aGLP-1 levels. Therefore, DPP-4 inhibitor seems to have cardioprotective effects independent of glucose control and may have a role in the prevention of diabetic cardiomyopathy.

  9. Dipeptidyl peptidase-4 greatly contributes to the hydrolysis of vildagliptin in human liver.

    PubMed

    Asakura, Mitsutoshi; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2015-04-01

    The major metabolic pathway of vildagliptin in mice, rats, dogs, and humans is hydrolysis at the cyano group to produce a carboxylic acid metabolite M20.7 (LAY151), whereas the major metabolic enzyme of vildagliptin has not been identified. In the present study, we determined the contribution rate of dipeptidyl peptidase-4 (DPP-4) to the hydrolysis of vildagliptin in the liver. We performed hydrolysis assay of the cyano group of vildagliptin using mouse, rat, and human liver samples. Additionally, DPP-4 activities in each liver sample were assessed by DPP-4 activity assay using the synthetic substrate H-glycyl-prolyl-7-amino-4-methylcoumarin (Gly-Pro-AMC). M20.7 formation rates in liver microsomes were higher than those in liver cytosol. M20.7 formation rate was significantly positively correlated with the DPP-4 activity using Gly-Pro-AMC in liver samples (r = 0.917, P < 0.01). The formation of M20.7 in mouse, rat, and human liver S9 fraction was inhibited by sitagliptin, a selective DPP-4 inhibitor. These findings indicate that DPP-4 is greatly involved in vildagliptin hydrolysis in the liver. Additionally, we established stable single expression systems of human DPP-4 and its R623Q mutant, which is the nonsynonymous single-nucleotide polymorphism of human DPP-4, in human embryonic kidney 293 (HEK293) cells to investigate the effect of R623Q mutant on vildagliptin-hydrolyzing activity. M20.7 formation rate in HEK293 cells expressing human DPP-4 was significantly higher than that in control HEK293 cells. Interestingly, R623Q mutation resulted in a decrease of the vildagliptin-hydrolyzing activity. Our findings might be useful for the prediction of interindividual variability in vildagliptin pharmacokinetics. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Kinetics of reactions of the Actinomadura R39 DD-peptidase with specific substrates.

    PubMed

    Adediran, S A; Kumar, Ish; Nagarajan, Rajesh; Sauvage, Eric; Pratt, R F

    2011-01-25

    The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.

  11. Effect of different alcohols on stratum corneum kallikrein 5 and phospholipase A2 together with epidermal keratinocytes and skin irritation.

    PubMed

    Cartner, T; Brand, N; Tian, K; Saud, A; Carr, T; Stapleton, P; Lane, M E; Rawlings, A V

    2017-04-01

    The aim of this exploratory study was to investigate the effect of ethanol, isopropanol and n-propanol on stratum corneum (SC) enzymes and keratinocytes in vitro together with their effects on skin condition and function. Activities of kallikrein 5 (KLK5) and phospholipase A2 (PLA2) as well as keratinocyte metabolic activity, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α) were measured in vitro in the presence and absence of the different alcohols. We also measured transepidermal water loss (TEWL), skin capacitance, visual dryness and visual redness on the volar forearms of 25 Caucasian women following application of the alcohols 20 and 100 times per day over a period of 14 days in a clinical study. Reduced activities of KLK5 and PLA2 were observed in the presence of the alcohols. The greatest denaturing effect was always observed for n-propanol (P < 0.001), and in the case of PLA2, the effect of isopropanol was greater than ethanol (P < 0.001). Equally, ethanol had the mildest effects on keratinocyte metabolic activity and cytokine secretion (P < 0.001) and n-propanol always produced the most severe changes in normal and differentiated keratinocytes. These in vitro findings supported the clinical results where the major effects were on the induction of skin irritation (increased dropout rates) and ranked the intolerance of the different alcohols as follows: n-propanol > isopropanol > ethanol. At the high application frequencies, the effect of the different alcohols on transepidermal water loss (TEWL) and skin capacitance was similar, but at the low application frequencies, n-propanol had a significant effect on TEWL and capacitance values (P < 0.05). Equally, n-propanol and isopropanol produced significantly more skin redness at the low application frequencies. Clearly, isopropanol and n-propanol caused significant SC and keratinocyte perturbation in vitro together with damage to skin condition and function in vivo whereas ethanol

  12. A novel mutation of the high-temperature requirement A serine peptidase 1 (HTRA1) gene in a Chinese family with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL).

    PubMed

    Chen, Yan; He, Zhiyi; Meng, Su; Li, Lei; Yang, Hua; Zhang, Xiaotang

    2013-10-01

    Mutations in the high-temperature requirement A serine peptidase 1 (HTRA1) gene were studied in a Chinese family with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Exons 1-9 of the HTRA1 gene were amplified and bidirectionally sequenced in a Chinese family with CARASIL. Mutation effects were analysed by three-dimensional modelling of the serine protease HTRA1 protein. The proband was found to be homozygous for a novel missense mutation (c.854 C > T) identified in exon 4 of the HTRA1 gene; the parents of the proband were heterozygous for the same missense mutation. This c.854 C > T mutation resulted in a change from proline to leucine (p.P285L) in serine protease HTRA1, and was absent in 260 control chromosomes. Three-dimensional models showed that the change from proline to leucine (p.P285L) could attenuate the hydrogen bond between S284 and S287 residues, which might affect function of serine protease HTRA1. Discovery of a novel missense mutation (c.854C>T) associated with CARASIL expands the known CARASIL-related mutations in HTRA1.

  13. Reduction of soluble dipeptidyl peptidase 4 levels in plasma of patients infected with Middle East respiratory syndrome coronavirus.

    PubMed

    Inn, Kyung-Soo; Kim, Yuri; Aigerim, Abdimadiyeva; Park, Uni; Hwang, Eung-Soo; Choi, Myung-Sik; Kim, Yeon-Sook; Cho, Nam-Hyuk

    2018-05-01

    Dipeptidyl peptidase 4 (DPP4) is a receptor for MERS-CoV. The soluble form of DPP4 (sDPP4) circulates systematically and can competitively inhibit MERS-CoV entry into host cells. Here, we measured the concentration of sDPP4 in the plasma and sputa of 14 MERS-CoV-infected patients of various degrees of disease severity. The concentration of sDPP4 in the plasma of MERS patients (474.76 ± 108.06 ng/ml) was significantly lower than those of healthy controls (703.42 ± 169.96 ng/ml), but there were no significant differences among the patient groups. Interestingly, plasma levels of IL-10 and EGF were negatively and positively correlated with sDPP4 concentrations, respectively. The sDPP4 levels in sputa were less than 300 ng/ml. Viral infection was inhibited by 50% in the presence of more than 8000 ng/ml of sDPP4. Therefore, sDPP4 levels in the plasma of MERS patients are significantly reduced below the threshold needed to exert an antiviral effect against MERS-CoV infection. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Insights into the Hypertensive Effects of Tityus serrulatus Scorpion Venom: Purification of an Angiotensin-Converting Enzyme-Like Peptidase.

    PubMed

    Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Duzzi, Bruno; Iwai, Leo Kei; Oliveira, Úrsula Castro de; Junqueira de Azevedo, Inácio de Loiola Meirelles; Kodama, Roberto Tadashi; Portaro, Fernanda Vieira

    2016-11-24

    The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension.

  15. Insights into the Hypertensive Effects of Tityus serrulatus Scorpion Venom: Purification of an Angiotensin-Converting Enzyme-Like Peptidase

    PubMed Central

    Cajado-Carvalho, Daniela; Kuniyoshi, Alexandre Kazuo; Duzzi, Bruno; Iwai, Leo Kei; de Oliveira, Úrsula Castro; Junqueira de Azevedo, Inácio de Loiola Meirelles; Kodama, Roberto Tadashi; Portaro, Fernanda Vieira

    2016-01-01

    The number of cases of envenomation by scorpions has grown significantly in Brazil since 2007, with the most severe cases being caused by the Tityus serrulatus scorpion. Although envenomed patients mostly suffer neurotoxic manifestations, other symptoms, such as hypertension, cannot be exclusively attributed to neurotoxins. Omics analyses have detected plentiful amounts of metalloproteases in T. serrulatus venom. However, the roles played by these enzymes in envenomation are still unclear. Endeavoring to investigate the functions of scorpion venom proteases, we describe here for the first time an Angiotensin I-Converting Enzyme-like peptidase (ACE-like) purified from T. serrulatus venom. The crude venom cleaved natural and fluorescent substrates and these activities were inhibited by captopril. Regarding the serum neutralization, the scorpion antivenom was more effective at blocking the ACE-like activity than arachnid antivenom, although neither completely inhibited the venom cleavage action, even at higher doses. ACE-like was purified from the venom after three chromatographic steps and its identity was confirmed by mass spectrometric and transcriptomic analyses. Bioinformatics analysis showed homology between the ACE-like transcript sequences from Tityus spp. and human testis ACE. These findings advance our understanding of T. serrulatus venom components and may improve treatment of envenomation victims, as ACE-like may contribute to envenomation symptoms, especially the resulting hypertension. PMID:27886129

  16. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation.

    PubMed

    Brocca, Stefania; Ferrari, Cristian; Barbiroli, Alberto; Pesce, Alessandra; Lotti, Marina; Nardini, Marco

    2016-12-01

    Life in cold environments requires an overall increase in the flexibility of macromolecular and supramolecular structures to allow biological processes to take place at low temperature. Conformational flexibility supports high catalytic rates of enzymes in the cold but in several cases is also a cause of instability. The three-dimensional structure of the psychrophilic acyl aminoacyl peptidase from Sporosarcina psychrophila (SpAAP) reported in this paper highlights adaptive molecular changes resulting in a fine-tuned trade-off between flexibility and stability. In its functional form SpAAP is a dimer, and an increase in flexibility is achieved through loosening of intersubunit hydrophobic interactions. The release of subunits from the quaternary structure is hindered by an 'arm exchange' mechanism, in which a tiny structural element at the N terminus of one subunit inserts into the other subunit. Mutants lacking the 'arm' are monomeric, inactive and highly prone to aggregation. Another feature of SpAAP cold adaptation is the enlargement of the tunnel connecting the exterior of the protein with the active site. Such a wide channel might compensate for the reduced molecular motions occurring in the cold and allow easy and direct access of substrates to the catalytic site, rendering transient movements between domains unnecessary. Thus, cold-adapted SpAAP has developed a molecular strategy unique within this group of proteins: it is able to enhance the flexibility of each functional unit while still preserving sufficient stability. Structural data are available in the Protein Data Bank under the accession number 5L8S. © 2016 Federation of European Biochemical Societies.

  17. Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide

    PubMed Central

    1991-01-01

    Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re- inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility. PMID:1672532

  18. Analysis of the role of tripeptidyl peptidase II in MHC class I antigen presentation in vivo1

    PubMed Central

    Kawahara, Masahiro; York, Ian A.; Hearn, Arron; Farfan, Diego; Rock, Kenneth L.

    2015-01-01

    Previous experiments using enzyme inhibitors and RNAi in cell lysates and cultured cells have suggested that tripeptidyl peptidase II (TPPII) plays a role in creating and destroying MHC class I-presented peptides. However, its precise contribution to these processes has been controversial. To elucidate the importance of TPPII in MHC class I antigen presentation, we analyzed TPPII-deficient gene-trapped mice and cell lines from these animals. In these mice, the expression level of TPPII was reduced by >90% compared to wild-type mice. Thymocytes from TPPII gene-trapped mice displayed more MHC class I on the cell surface, suggesting that TPPII normally limits antigen presentation by destroying peptides overall. TPPII gene-trapped mice responded as well as did wild-type mice to four epitopes from lymphocytic choriomeningitis virus (LCMV). The processing and presentation of peptide precursors with long N-terminal extensions in TPPII gene-trapped embryonic fibroblasts was modestly reduced, but in vivo immunization with recombinant lentiviral or vaccinia virus vectors revealed that such peptide precursors induced an equivalent CD8 T cell response in wild type and TPPII-deficient mice. These data indicate while TPPII contributes to the trimming of peptides with very long N-terminal extensions, TPPII is not essential for generating most MHC class I-presented peptides or for stimulating CTL responses to several antigens in vivo. PMID:19841172

  19. Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila.

    PubMed

    Isaac, R Elwyn; Johnson, Erik C; Audsley, Neil; Shirras, Alan D

    2007-12-01

    Recent studies have firmly established pigment dispersing factor (PDF), a C-terminally amidated octodecapeptide, as a key neurotransmitter regulating rhythmic circadian locomotory behaviours in adult Drosophila melanogaster. The mechanisms by which PDF functions as a circadian peptide transmitter are not fully understood, however; in particular, nothing is known about the role of extracellular peptidases in terminating PDF signalling at synapses. In this study we show that PDF is susceptible to hydrolysis by neprilysin, an endopeptidase that is enriched in synaptic membranes of mammals and insects. Neprilysin cleaves PDF at the internal Ser7-Leu8 peptide bond to generate PDF1-7 and PDF8-18. Neither of these fragments were able to increase intracellular cAMP levels in HEK293 cells cotransfected with the Drosophila PDF receptor cDNA and a firefly luciferase reporter gene, confirming that such cleavage results in PDF inactivation. The Ser7-Leu8 peptide bond was also the principal cleavage site when PDF was incubated with membranes prepared from heads of adult Drosophila. This endopeptidase activity was inhibited by the neprilysin inhibitors phosphoramidon (IC(50,) 0.15 micromol l(-1)) and thiorphan (IC(50,) 1.2 micromol l(-1)). We propose that cleavage by a member of the Drosophila neprilysin family of endopeptidases is the most likely mechanism for inactivating synaptic PDF and that neprilysin might have an important role in regulating PDF signals within circadian neural circuits.

  20. Accumulation of polyubiquitylated proteins in response to Ala-Ala-Phe-chloromethylketone is independent of the inhibition of Tripeptidyl peptidase II.

    PubMed

    Villasevil, Eugenia M; Guil, Sara; López-Ferreras, Lorena; Sánchez, Carlos; Del Val, Margarita; Antón, Luis C

    2010-09-01

    In the present study we have addressed the issue of proteasome independent cytosolic protein degradation. Tripeptidyl peptidase II (TPPII) has been suggested to compensate for a reduced proteasome activity, partly based on evidence using the inhibitor Ala-Ala-Phe-chloromethylketone (AAF-cmk). Here we show that AAF-cmk induces the formation of polyubiquitin-containing accumulations in osteosarcoma and Burkitt's lymphoma cell lines. These accumulations meet many of the landmarks of the aggresomes that form after proteasome inhibition. Using a combination of experiments with chemical inhibitors and interference of gene expression, we show that TPPII inhibition is not responsible for these accumulations. Our evidence suggests that the relevant target(s) is/are in the ubiquitin-proteasome pathway, most likely upstream the proteasome. We obtained evidence supporting this model by inhibition of Hsp90, which also acts upstream the proteasome. Although our data suggest that Hsp90 is not a target of AAF-cmk, its inhibition resulted in accumulations similar to those obtained with AAF-cmk. Therefore, our results question the proposed role for TPPII as a prominent alternative to the proteasome in cellular proteolysis. Copyright 2010 Elsevier B.V. All rights reserved.