Science.gov

Sample records for kansuru kenkyu chosa

  1. Effect of oral intake of choline-stabilized orthosilicic acid on skin, nails and hair in women with photodamaged skin.

    PubMed

    Barel, A; Calomme, M; Timchenko, A; De Paepe, K; Paepe, K De; Demeester, N; Rogiers, V; Clarys, P; Vanden Berghe, D

    2005-10-01

    Chronic exposure of the skin to sunlight causes damage to the underlying connective tissue with a loss of elasticity and firmness. Silicon (Si) was suggested to have an important function in the formation and maintenance of connective tissue. Choline-stabilized orthosilicic acid ("ch-OSA") is a bioavailable form of silicon which was found to increase the hydroxyproline concentration in the dermis of animals. The effect of ch-OSA on skin, nails and hair was investigated in a randomized, double blind, placebo-controlled study. Fifty women with photodamaged facial skin were administered orally during 20 weeks, 10 mg Si/day in the form of ch-OSA pellets (n=25) or a placebo (n=25). Noninvasive methods were used to evaluate skin microrelief (forearm), hydration (forearm) and mechanical anisotropy (forehead). Volunteers evaluated on a virtual analog scale (VAS, "none=0, severe=3") brittleness of hair and nails. The serum Si concentration was significantly higher after a 20-week supplementation in subjects with ch-OSA compared to the placebo group. Skin roughness parameters increased in the placebo group (Rt:+8%; Rm: +11%; Rz: +6%) but decreased in the ch-OSA group (Rt: -16%; Rm: -19%; Rz: -8%). The change in roughness from baseline was significantly different between ch-OSA and placebo groups for Rt and Rm. The difference in longitudinal and lateral shear propagation time increased after 20 weeks in the placebo group but decreased in the ch-OSA group suggesting improvement in isotropy of the skin. VAS scores for nail and hair brittleness were significantly lower after 20 weeks in the ch-OSA group compared to baseline scores. Oral intake of ch-OSA during the 20 weeks results in a significant positive effect on skin surface and skin mechanical properties, and on brittleness of hair and nails.

  2. The Role of Community Studies in the Makiguchian Pedagogy

    ERIC Educational Resources Information Center

    Gebert, Andrew

    2009-01-01

    This article focuses on two of the earlier works in the Makiguchi corpus, "Kyoju no togo chushin toshiteno kyodoka kenkyu" ("Research into Community Studies as the Integrating Focus of Instruction," 1912/1987; hereafter "Community Studies"), and "Chiri kyoju no hoho oyobi naiyo no kenkyu" ("Research…

  3. Ethnography for Teachers' Professional Development: Japanese Approach of Investigation on Classroom Activities

    ERIC Educational Resources Information Center

    Matoba, Masami; Sarkar Arani Mohammed Reza

    2006-01-01

    In this paper, we examine how journal and ethnography field notes in Jugyou Kenkyu (lesson study) help teachers to understand the diverse range of talents and abilities of their students. Especially, we focus on how ethnography field note and reflective papers (karate) help teachers to change their assumptions about student learning. The data…

  4. Technological Issues and High Gradient Test Results on X-Band Molybdenum Accelerating Structures

    SciTech Connect

    Spataro, B.; Alesini, D.; Chimenti, V.; Dolgashev, V.; Haase, A.; Tantawi, S.G.; Higashi, Y.; Marrelli, C.; Mostacci, A.; Parodi, R.; Yeremian, A.D.; /SLAC

    2012-04-24

    Two 11.424 GHz single cell standing wave accelerating structures have been fabricated for high gradient RF breakdown studies. Both are brazed structures: one made from copper and the other from sintered molybdenum bulk. The tests results are presented and compared to those of similar devices constructed at SLAC (Stanford Linear Accelerator Center) and KEK (Ko Enerugi Kasokuki Kenkyu Kiko). The technological issues to build both sections are discussed.

  5. Importance of Interaction between Integrin and Actin Cytoskeleton in Suspension Adaptation of CHO cells.

    PubMed

    Walther, Christa G; Whitfield, Robert; James, David C

    2016-04-01

    The biopharmaceutical production process relies upon mammalian cell technology where single cells proliferate in suspension in a chemically defined synthetic environment. This environment lacks exogenous growth factors, usually contributing to proliferation of fibroblastic cell types such as Chinese hamster ovary (CHO) cells. Use of CHO cells for production hence requires a lengthy 'adaptation' process to select clones capable of proliferation as single cells in suspension. The underlying molecular changes permitting proliferation in suspension are not known. Comparison of the non-suspension-adapted clone CHO-AD and a suspension-adapted propriety cell line CHO-SA by flow cytometric analysis revealed a highly variable bi-modal expression pattern for cell-to-cell contact proteins in contrast to the expression pattern seen for integrins. Those have a uni-modal expression on suspension and adherent cells. Integrins showed a conformation distinguished by regularly distributed clusters forming a sphere on the cell membrane of suspension-adapted cells. Actin cytoskeleton analysis revealed reorganisation from the typical fibrillar morphology found in adherent cells to an enforced spherical subcortical actin sheath in suspension cells. The uni-modal expression and specific clustering of integrins could be confirmed for CHO-S, another suspension cell line. Cytochalasin D treatment resulted in breakdown of the actin sheath and the sphere-like integrin conformation demonstrating the link between integrins and actin in suspension-adapted CHO cells. The data demonstrates the importance of signalling changes, leading to an integrin rearrangement on the cell surface, and the necessity of the reinforcement of the actin cytoskeleton for proliferation in suspension conditions.

  6. Effects of Potassium Mineral Fertilization on Potato (Solanum tuberosum L.) Yield on a Chernozem Soil in Hungary

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    varieties, estimated at 85-100 t/ha for potato, 75-85 t/ha for beet and 12-15 t/ha for wheat (Evans 1977). These are far higher than the yields commonly obtained in practice. World average yields were only 1/6th of the potential for potato, 1/6th for wheat and 2/5th for sugar beet in 1995. Utilization of the crop The major part of potato production is usually used for human consumption. Human consumption of potatoes however has declined in the industrialised countries as the standard of living has increased. In these countries an increasing proportion of the crop is used for manufacturing products such as crisp, oven-ready chips, dehydrated potato powder. Thus, in Hungary the consumption of potatoes per person decreased from 110 kg in 1951/1960 to 60 kg in 1995, whereas the consumption of processed potatoes increased from 1 to 15 kg/person during this period. Uptake of potassium Potassium is the nutrient taken up by potato in the greatest quantity, it also takes up much nitrogen and appreciable amounts of phosphorus, calcium, magnesium and sulphur (Perrenoud 1993). Maximum uptakes by different varieties in Japan range between 140 and 267 K2O (Kali Kenkyu Kai 1980). In England, potatoes grown on the " blueprint" system and giving the very high yield of 77.7 t/ha took up 450 kg/ha K2O (Anderson and Hewgill 1978). Brazílian experiments with 6 varieties showed the following uptakes (kg/ha): potassium 207-367 (Motta 1976). Removal of potassium by tubers 23 experimental crops in France (Loué 1977), -with a mean yield of 37.3 t/ha tubers removed: 196 kg K2O, respectively. It is equal to 5.3 kg K2O per 1 tonne tuber. Motta Macedo (1976) reports the following removals in kg/ha for 6 varieties grown in Brazíl: K2O: 118-192. In 14 experiments in India (Grewal and Singh 1979) a mean yield of 28.8 t/ha tuber was obtained which removed an average of 91 kg/ha K2O. At very high yield level, nutrient removal in tuber is very high. Anderson and Hewgill (1978) report a yield of 90 t