Sample records for kanuti gildi saalis

  1. Geologic implications of topographic, gravity, and aeromagnetic data in the northern Yukon-Koyukuk Province and its borderlands, Alaska

    NASA Astrophysics Data System (ADS)

    Cady, John W.

    1989-11-01

    The northern Yukon-Koyukuk province is characterized by low elevation and high Bouguer gravity and aeromagnetic anomalies in contrast to the adjacent Brooks Range and Ruby geanticline. Using newly compiled digital topographic, gravity, and aeromagnetic maps, I have divided the province into three geophysical domains. The Koyukuk domain, which is nearly equivalent to the Koyukuk lithotectonic terrane, is a horseshoe-shaped area, open to the south, of low topography, high gravity, and high-amplitude magnetic anomalies caused by an intraoceanic magmatic arc. The Angayucham and Kanuti domains are geophysical subdivisions of the Angayucham lithotectonic terrane that occur along the northern and southeastern margins of the Yukon-Koyukuk province, where oceanic rocks have been thrust over continental rocks of the Brooks Range and Ruby geanticline. Basalt of the Angayucham domain causes strong gravity highs and weak magnetic highs. The Kanuti domain is distinguished from the Angayucham domain by intense magnetic highs caused by cumulus mafic and ultramafic plutonic rocks, abundant ultramafic mantle tectonites, and magnetic syenite and monzonite. Long-wavelength, low-intensity magnetic highs and undulating gravity anomalies indicate an undulating basement surface of varied lithology beneath the Kobuk-Koyukuk and Lower Yukon basins. Modeling of gravity and magnetic anomalies shows that oceanic rocks of the Angayucham and Kanuti domains dip inward beneath the Kobuk-Koyukuk basin. The modeling supports, but does not prove, the hypothesis that the crust of the Kobuk-Koyukuk basin is 32-35 km thick, consisting of a tectonically thickened section of Cretaceous volcanic and sedimentary rocks and older oceanic crust. Plutons of the Brooks Range and the southern Ruby geanticline are nonmagnetic, ilmenite series, S-type granites that cause magnetic lows. Plutons of the northern Ruby geanticline are variable in their magnetic properties and cause both highs and lows. Plutons of both

  2. Flooding in the middle Koyukuk River basin, Alaska, August 1994

    USGS Publications Warehouse

    Meyer, David F.

    1995-01-01

    During August 1994, a flood on the Koyukuk River, Alaska, inundated the villages of Allakaket and Alatna and parts of Hughes. Topographic maps of the inundated areas, showing peak water-surface elevations and depths of water, indicate that flooding ranged from 2 to more than 10 feet deep in Allakaket, from 8 to more than 10 feet deep in Alatna, and from 0 to more than 10 feet deep in Hughes. Severe damage to buildings occurred in Allakaket and Alatna; minor damage occurred in Hughes, although some homes were irreparably damaged by inundation. Between the mouth of the Kanuti River, about 10 miles downstream from Allakaket, to Hughes, the peak discharge was about 330,000 cubic feet per second. A flow of that magnitude at Hughes has an annual probability of occurrence of 1 percent.

  3. Reconnaissance from Fort Hamlin to Kotzebue Sound, Alaska, by way of Dall, Kanuti, Allen, and Kowak rivers

    USGS Publications Warehouse

    Mendenhall, W.C.

    1902-01-01

    The reconnaissance described in the following pages was carried out in pursuance of a plan which has been followed for some years by the United States Geological Survey in the topographic and geologic exploration of the little-known parts of Alaska and in the collection of such information as will be of value not only to the scientific world, but to the prospector, the miner, and the trader. Capital disappears and years are wasted by prospectors who push out beyond the shifting frontier and pursue their search for gold where gold is not to be expected, and lives are being continually lost because the location and character of trails, drainage ways, and mountain ranges and passes are unknown, or because the knowledge which a few possess is not in a form available for the use of others.

  4. Geologic implications of topographic, gravity, and aeromagnetic data in the northern Yukon-Koyukuk province and its borderlands, Alaska

    USGS Publications Warehouse

    Cady, J.W.

    1989-01-01

    The northern Yukon-Koyukuk province is characterized by low elevation and high Bouguer gravity and aeromagnetic anomalies in contrast to the adjacent Brooks Range and Ruby geanticline. Using newly compiled digital topographic, gravity, and aeromagnetic maps, the province is divided into three geophysical domains. The Koyukuk domain, which is nearly equivalent to the Koyukuk lithotectonic terrane, is a horseshoe-shaped area, open to the south, of low topography, high gravity, and high-amplitude magnetic anomalies caused by an intraoceanic magmatic arc. The Angayucham and Kanuti domains are geophysical subdivisions of the Angayucham lithotectonic terrane that occur along the northern and southeastern margins of the Yukon-Koyukuk province, where oceanic rocks have been thrust over continental rocks of the Brooks Range and Ruby geanticline. The modeling supports, but does not prove, the hypothesis that the crust of the Kobuk-Koyukuk basin is 32-35 km thick, consisting of a tectonically thickened section of Cretaceous volcanic and sedimentary rocks and older oceanic crust. -from Author

  5. Isotopic and trace element variations in the Ruby Batholith, Alaska, and the nature of the deep crust beneath the Ruby and Angayucham Terranes

    USGS Publications Warehouse

    Arth, Joseph G.; Zmuda, Clara C.; Foley, Nora K.; Criss, Robert E.; Patton, W.W.; Miller, T.P.

    1989-01-01

    Thirty-six samples from plutons of the Ruby batholith of central Alaska were collected and analyzed for 22 trace elements, and many were analyzed for the isotopic compositions of Sr, Nd, O, and Pb in order to delimit the processes that produced the diversity of granodioritic to granitic compositions, to deduce the nature of the source of magmas at about 110 Ma, and to characterize the deep crust beneath the Ruby and Angayucham terranes. Plutons of the batholith show a substantial range in initial 87Sr/86Sr (SIR) of 0.7055–0.7235 and a general decrease from southwest to northeast. Initial 143Nd/144Nd (NIR) have a range of 0.51150–0.51232 and generally increase from southwest to northeast. The δ18O values for most whole rocks have a range of +8.4 to +11.8 and an average of +10.3‰. Rb, Cs, U, and Th show large ranges of concentration, generally increase as SiO2 increases, and are higher in southwest than in northeast plutons. Sr, Ba, Zr, Hf, Ta, Sc, Cr, Co, and Zr show large ranges of concentration and generally decrease as SiO2 increases. Rare earth elements (REE) show fractionated patterns and negative Eu anomalies. REE concentrations and anomalies are larger in the southwest than in the northeast plutons. Uniformity of SIR and NIR in Sithylemenkat and Jim River plutons suggests a strong role for fractional crystallization or melting of uniform magma sources at depth. Isotopic variability in Melozitna, Ray Mountains, Hot Springs, and Kanuti plutons suggests complex magmatic processes such as magma mixing and assimilation, probably combined with fractional crystallization, or melting of a complex source at depth. The large variations in SIR and NIR in the batholith require a variation in source materials at depth. The southwestern plutons probably had dominantly siliceous sources composed of metamorphosed Proterozoic and Paleozoic upper crustal rocks. The northeastern plutons probably had Paleozoic sources that were mixtures of siliceous and intermediate