Sample records for kaonic nuclear state

  1. Ground-state properties of light kaonic nuclei signaling symmetry energy at high densities

    NASA Astrophysics Data System (ADS)

    Yang, Rongyao; Wei, Sina; Jiang, Weizhou

    2018-01-01

    A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaon-nucleon interaction. It is found that the 1{S}1/2 state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future. Supported by National Natural Science Foundation of China (11775049, 11275048) and the China Jiangsu Provincial Natural Science Foundation (BK20131286)

  2. Exotic nuclear systems with strangeness: Hypernuclei and Kaonic nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dote, Akinobu

    2010-05-12

    Nuclear systems with strangeness, hypernuclei and kaonic nuclei, are expected to have lots of interesting properties. In this article, after the recent development of hypernuclear study is reviewed, we report two results of our study of hypernuclei with antisymmetrized molecular dynamics; 1) impurity effect of LAMBDA on {sub L}AMBDA{sup 20}Ne, and 2){sub X}I{sup 12}Be studied with three kinds of XIN potentials. The current status of studies of kaonic nuclei is also introduced and our study with a phenomenological and a chiral-based K-barN potential are reported.

  3. Are there any narrow K--nuclear states?

    NASA Astrophysics Data System (ADS)

    Hrtánková, Jaroslava; Mareš, Jiří

    2017-07-01

    We performed self-consistent calculations of K--nuclear quasi-bound states using a single-nucleon K- optical potential derived from chiral meson-baryon coupled-channel interaction models, supplemented by a phenomenological K- multinucleon potential introduced recently to achieve good fits to kaonic atom data [1]. Our calculations show that the effect of K- multinucleon interactions on K- widths in nuclei is decisive. The resulting widths are considerably larger than corresponding binding energies. Moreover, when the density dependence of the K--multinucleon interactions derived in the fits of kaonic atoms is extended to the nuclear interior, the only two models acceptable after imposing as additional constraint the single-nucleon fraction of K- absorption at rest do not yield any kaonic nuclear bound state in majority of considered nuclei.

  4. Measurements of the strong-interaction widths of the kaonic 3He and 4He 2p levels

    PubMed Central

    Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A.M.; Cargnelli, M.; Curceanu (Petrascu), C.; dʼUffizi, A.; Fiorini, C.; Frizzi, T.; Ghio, F.; Guaraldo, C.; Hayano, R.S.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Levi Sandri, P.; Longoni, A.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Rizzo, A.; Romero Vidal, A.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.L.; Sirghi, F.; Tatsuno, H.; Tudorache, A.; Tudorache, V.; Vazquez Doce, O.; Wünschek, B.; Widmann, E.; Zmeskal, J.

    2012-01-01

    The kaonic 3He and 4He X-rays emitted in the 3d→2p transitions were measured in the SIDDHARTA experiment. The widths of the kaonic 3He and 4He 2p states were determined to be Γ2p(He3)=6±6(stat.)±7 (syst.) eV, and Γ2p(He4)=14±8 (stat.)±5 (syst.) eV, respectively. Both results are consistent with the theoretical predictions. The width of kaonic 4He is much smaller than the value of 55±34 eV determined by the experiments performed in the 70ʼs and 80ʼs, while the width of kaonic 3He was determined for the first time. PMID:22876000

  5. Preliminary study of kaonic deuterium X-rays by the SIDDHARTA experiment at DAΦNE.

    PubMed

    Bazzi, M; Beer, G; Berucci, C; Bombelli, L; Bragadireanu, A M; Cargnelli, M; Curceanu Petrascu, C; Dʼuffizi, A; Fiorini, C; Frizzi, T; Ghio, F; Guaraldo, C; Hayano, R; Iliescu, M; Ishiwatari, T; Iwasaki, M; Kienle, P; Levi Sandri, P; Longoni, A; Marton, J; Okada, S; Pietreanu, D; Ponta, T; Romero Vidal, A; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Tatsuno, H; Tudorache, A; Tudorache, V; Vazquez Doce, O; Widmann, E; Zmeskal, J

    2013-06-03

    The study of the [Formula: see text] system at very low energies plays a key role for the understanding of the strong interaction between hadrons in the strangeness sector. At the DAΦNE electron-positron collider of Laboratori Nazionali di Frascati we studied kaonic atoms with [Formula: see text] and [Formula: see text], taking advantage of the low-energy charged kaons from Φ -mesons decaying nearly at rest. The SIDDHARTA experiment used X-ray spectroscopy of the kaonic atoms to determine the transition yields and the strong interaction induced shift and width of the lowest experimentally accessible level (1s for H and D and 2p for He). Shift and width are connected to the real and imaginary part of the scattering length. To disentangle the isospin dependent scattering lengths of the antikaon-nucleon interaction, measurements of [Formula: see text] and of [Formula: see text] are needed. We report here on an exploratory deuterium measurement, from which a limit for the yield of the K-series transitions was derived: [Formula: see text] and [Formula: see text] (CL 90%). Also, the upcoming SIDDHARTA-2 kaonic deuterium experiment is introduced.

  6. Probing Strong Interaction with Kaonic Atoms — from DAΦNE to J-PARC

    NASA Astrophysics Data System (ADS)

    Zmeskal, J.; Sato, M.; Bazzi, M.; Beer, G.; Berucci, C.; Bosnar, D.; Bragadireanu, M.; Buehler, P.; Cargnelli, M.; Clozza, A.; Curceanu, C.; D'uffizi, A.; Fabbietti, L.; Fiorini, C.; Ghio, F.; Golser, R.; Guaraldo, C.; Hashimoto, T.; Hayano, R. S.; Iliescu, M.; Itahashi, K.; Iwasaki, M.; Levi Sandri, P.; Marton, J.; Moskal, P.; Ohnishi, H.; Okada, S.; Outa, H.; Pietreanu, D.; Piscicchia, K.; Poli Lener, M.; Romero Vidal, A.; Sakuma, F.; Sbardella, E.; Scordo, A.; Shi, H.; Sirghi, D.; Sirghi, F.; Suzuki, K.; Tucakovic, I.; Vazquez Doce, O.; Widmann, E.

    The study of the antikaon nucleon system at very low energies plays a key role to study strong interaction with strangeness, touching one of the fundamental problems in hadron physic today — the still unsolved question of how hadron masses are generated. Exotic atoms offer a unique possibility to determine s-wave kaon-nucleon scattering lengths at vanishing energy. At the DAΦNE electron positron collider of Laboratori Nazionali di Frascati in the SIDDHARTA experiment kaonic atoms were formed with Z = 1 (K-p) and Z = 2 (K-He), which were measured with up to now unrivalled precision. This experiment is taking advantage of the low-energy charged kaons from ϕ-mesons decaying nearly at rest. Finally, using the experience gained with SIDDHARTA, a proposal to measure kaonic deuterium for the first time was submitted to J-PARC with the goal to determine the isospin dependent scattering lengths, which is only possible by combining the K-p and the upcoming K-d results.

  7. On Mass Polarization Effect in Three-Body Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Filikhin, I.; Kezerashvili, R. Ya.; Suslov, V. M.; Vlahovic, B.

    2018-05-01

    The mass polarization effect is considered for different three-body nuclear AAB systems having a strongly bound AB and unbound AA subsystems. We employ the Faddeev equations for calculations and the Schrödinger equation for analysis of the contribution of the mass polarization term of the kinetic-energy operator. For a three-boson system the mass polarization effect is determined by the difference of the doubled binding energy of the AB subsystem 2E2 and the three-body binding energy E3(V_{AA}=0) when the interaction between the identical particles is omitted. In this case: | E3(V_{AA}=0)| >2| E2| . In the case of a system complicated by isospins(spins), such as the kaonic clusters K-K-p and ppK-, a similar evaluation is impossible. For these systems it is found that | E3(V_{AA}=0)| <2| E2| . A model with an AB potential averaged over spin(isospin) variables transforms the latter case to the first one. The mass polarization effect calculated within this model is essential for the kaonic clusters. In addition we have obtained the relation |E_3|≤|2E_2| for the binding energy of the kaonic clusters.

  8. SIDDHARTA results and implications of the results on antikaon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Marton, J.; Bazzi, M.; Beer, G.; Berucci, C.; Bellotti, G.; Bosnar, D.; Bragadireanu, A. M.; Cargnelli, M.; Clozza, A.; Curceanu, C.; Butt, A. Dawood; Fiorini, C.; Ghio, F.; Guaraldo, C.; Hayano, R.; Iliescu, M.; Iwasaki, M.; Sandri, P. Levi; Okada, S.; Pietreanu, D.; Piscicchia, K.; Vidal, A. Romero; Scordo, A.; Shi, H.; Sirghi, D. L.; Sirghi, F.; Tatsuno, H.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.

    2016-05-01

    The interaction of antikaons (K-) with nucleons and nuclei in the low-energy regime represents an active research field in hadron physics. There are important open questions like the existence of antikaon nuclear bound states like the prototype system being K- pp. Unique and rather direct experimental access to the antikaon-nucleon scattering lengths is provided by precision X-ray spectroscopy of transitions in low-lying states in light kaonic atoms like kaonic hydrogen and helium isotopes. In the SIDDHARTA experiment at the electron-positron collider DAΦNE of LNF-INFN we measured the most precise values of the strong interaction observables, i.e. the strong interaction on the 1s ground state of the electromagnetically bound K-p atom leading to energy shift and broadening of the 1s state. The SIDDHARTA result triggered new theoretical work, which achieved major progress in the understanding of the low-energy strong interaction with strangeness reflected by the antikaon-nucleon scattering lengths calculated with the K--proton amplitudes constrained by the SIDDHARTA data. The most important open question is the experimental determination of the hadronic energy shift and width of kaonic deuterium which is planned by the SIDDHARTA-2 Collaboration.

  9. High-density kaonic-proton matter (KPM) composed of Λ* ≡ K-p multiplets and its astrophysical connections

    NASA Astrophysics Data System (ADS)

    Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2017-11-01

    We propose and examine a new form of high-density neutral composite of Λ* ≡K- p = (s u bar) ⊗ (uud), which may be called anti-Kaonic Proton Matter (KPM), or simply, Λ*-Matter, where substantial shrinkage of baryonic bound systems originating from the strong attraction of the (K bar N) I = 0 interaction takes place, providing a ground-state neutral baryonic system with a large energy gap. The mass of an ensemble of (K-p)m, where m, the number of the K- p pair, becomes larger than m ≈ 10, is predicted to drop down below that of its corresponding neutron ensemble, (n)m, since the attractive interaction is further increased by the Heitler-London type molecular covalency as well as by chiral symmetry restoration of the QCD vacuum. Since the seed clusters (K- p, K- pp and K-K- pp) are short-lived, the formation of such a stabilized relic ensemble, (K-p)m, may be conceived during the Big-Bang Quark Gluon Plasma (QGP) period in the early universe. At the final stage of baryogenesis a substantial amount of primordial (u bar , d bar)'s are transferred and captured into KPM, where the anti-quarks find places to survive forever. The expected KPM state may be cold, dense and neutral q bar q-hybrid (Quark Gluon Bound (QGB)) states,[ s (u bar ⊗ u) ud ] m, to which the relic of the disappearing anti-quarks plays an essential role as hidden components. KPM may also be produced during the formation and decay of neutron stars in connections with supernova explosions, and other forms may exist as strange quark matter in cosmic dusts.

  10. Calculations of kaonic nuclei based on chiral meson-baryon amplitudes

    NASA Astrophysics Data System (ADS)

    Gazda, Daniel; Mareš, Jiří

    2013-09-01

    In-medium KbarN scattering amplitudes developed within a chirally motivated coupled-channel model are used to construct K- nuclear potentials for calculations of K- nuclear quasi-bound states. Self-consistent evaluations yield K- potential depths -Re VK(ρ0) of order 100 MeV. Dynamical polarization effects and two-nucleon KbarNN→YN absorption modes are discussed. The widths ΓK of allK- nuclear quasi-bound states are comparable or even larger than the corresponding binding energies BK, exceeding considerably the energy level spacing.

  11. The state of nuclear forensics

    NASA Astrophysics Data System (ADS)

    Kristo, Michael J.; Tumey, Scott J.

    2013-01-01

    Nuclear terrorism has been identified as one of the most serious security threats facing the world today. Many countries, including the United States, have incorporated nuclear forensic analysis as a component of their strategy to prevent nuclear terrorism. Nuclear forensics involves the laboratory analysis of seized illicit nuclear materials or debris from a nuclear detonation to identify the origins of the material or weapon. Over the years, a number of forensic signatures have been developed to improve the confidence with which forensic analysts can draw conclusions. These signatures are validated and new signatures are discovered through research and development programs and in round-robin exercises among nuclear forensic laboratories. The recent Nuclear Smuggling International Technical Working Group Third Round Robin Exercise and an on-going program focused on attribution of uranium ore concentrate provide prime examples of the current state of nuclear forensics. These case studies will be examined and the opportunities for accelerator mass spectrometry to play a role in nuclear forensics will be discussed.

  12. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  13. State regulation of nuclear power and national energy policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, J.W.

    1992-12-31

    In April 1983 and January 1984, the United States Supreme Court rendered two decisions that redefined the metes and bounds of federal preemption of commercial nuclear power plant regulation. In Pacific Gas & Electric Co. v. State Energy Resources Conservation and Development Commission (PG&E), the court decided that the Atomic Energy Act of 1954, as amended (the Act), did not preempt a California state law that established a moratorium on commercial nuclear power plant construction. In Silkwood v. Kerr-McGee Corporation, the Court also decided that the Act did not preempt a claim for damages under state tort law for radiologicalmore » injuries suffered in a nuclear fuel facility regulated by the United States Nuclear Regulatory Commission (NRC). The two decisions redefined the extent of federal preemption, under the Act and other federal law, of nuclear plant regulation as well as the extend of state regulation of nuclear plants. In the eight years since PG&E and Silkwood, numerous other developments have eroded further the breadth of federal preemption of commercial nuclear power plant regulation. This Article explores the developments, since PG&E and Silkwood, that have expanded further the scope of state and local regulation of commercial nuclear power plants. Specifically, the Article first identifies the extent of state and local participation in nuclear power regulation provided by the Act and other federal loan relevant to commercial nuclear power. Second, it discusses in detail the PG&E and Silkwood decisions. The Article also considers the impact of seven specific developments on the legislative implementation of a national energy policy that contemplates a role for nuclear power.« less

  14. Nuclear equation of state from ground and collective excited state properties of nuclei

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Paar, N.

    2018-07-01

    This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.

  15. Nuclear Threshold States: Yesterday, Today, Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogloblin, A. A.; Danilov, A. N.; Demyanova, A. S.

    2010-04-30

    50 years ago exotic nuclear states with abnormally large radii located close to the thresholds of emission of nucleons or clusters were predicted. Recently a hypothesis of possible existence of alpha-particle Bose condensation was proposed. The 0{sup +}{sub 2}(7.65 MeV) state of {sup 12}C(so-called Hoyle state) is considered to be the prototype of such condensed state and have a dilute structure. We propose two methods for searching the alpha-condensate signatures in the Hoyle state and some other ones near the alpha-thresholds by using inelastic diffractive and rainbow scattering. Inelastic scattering of {sup 2}H, {sup 3}He, {sup 4}He, {sup 6}Li, andmore » {sup 12}C on {sup 12}C was studied and the enhancement of the {sup 12}C radius in the Hoyle state relatively the ground state radius by a factor of 1.2 was demonstrated. Another signature of the condensate structure, 70% probability of all three alpha-particles to be in the s-state, was observed for the Hoyle state by studying the {sup 8}Be transfer reaction. The analogs of the Hoyle state with enhanced radii were identified in {sup 11}B and {sup 13}C. The proposed methods of measuring the nuclear radii allowed observation of neutron halos in the excited states of {sup 9}Be and {sup 13}C. The conception of abnormal dimensions of the threshold states finds its confirmation in many nuclear phenomena both well-known and new ones. One of the perspective domains of its manifestation are the nuclei heavier than {sup 100}Sn with N = Z, which are able to emit several alpha particles.« less

  16. Strong binding and shrinkage of single and double nuclear systems (K−pp, K−ppn, K−K−p and K−K−pp) predicted by Faddeev-Yakubovsky calculations

    PubMed Central

    MAEDA, Shuji; AKAISHI, Yoshinori; YAMAZAKI, Toshimitsu

    2013-01-01

    Non-relativistic Faddeev and Faddeev-Yakubovsky calculations were made for K−pp, K−ppn, K−K−p and K−K−pp kaonic nuclear clusters, where the quasi bound states were treated as bound states by employing real separable potential models for the K−-K− and the K−-nucleon interactions as well as for the nucleon-nucleon interaction. The binding energies and spatial shrinkages of these states, obtained for various values of the interaction, were found to increase rapidly with the interaction strength. Their behaviors are shown in a reference diagram, where possible changes by varying the interaction in the dense nuclear medium are given. Using the Λ(1405) ansatz with a PDG mass of 1405 MeV/c2 for K−p, the following ground-state binding energies together with the wave functions were obtained: 51.5 MeV (K−pp), 69 MeV (K−ppn), 30.4 MeV (K−K−p) and 93 MeV (K−K−pp), which are in good agreement with previous results of variational calculation based on the Akaishi-Yamazaki coupled-channel potential. The K−K−pp state has a significantly increased density where the two nucleons are located very close to each other, in spite of the inner NN repulsion. Relativistic corrections on the calculated non-relativistic results indicate substantial lowering of the bound-state masses, especially of K−K−pp, toward the kaon condensation regime. The fact that the recently observed binding energy of K−pp is much larger (by a factor of 2) than the originally predicted one may infer an enhancement of the interaction in dense nuclei by about 25% possibly due to chiral symmetry restoration. In this respect some qualitative accounts are given based on “clearing QCD vacuum” model of Brown, Kubodera and Rho. PMID:24213206

  17. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  18. Nuclear States with Abnormally Large Radii (size Isomers)

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Demyanova, A. S.; Danilov, A. N.; Belyaeva, T. L.; Goncharov, S. A.

    2015-06-01

    Application of the methods of measuring the radii of the short-lived excited states (Modified diffraction model MDM, Inelastic nuclear rainbow scattering method INRS, Asymptotic normalization coefficients method ANC) to the analysis of some nuclear reactions provide evidence of existing in 9Be, 11B, 12C, 13C the excited states whose radii exceed those of the corresponding ground states by ~ 30%. Two types of structure of these "size isomers" were identified: neutron halo an α-clusters.

  19. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  20. Chromatin states and nuclear organization in development--a view from the nuclear lamina.

    PubMed

    Mattout, Anna; Cabianca, Daphne S; Gasser, Susan M

    2015-08-25

    The spatial distribution of chromatin domains in interphase nuclei changes dramatically during development in multicellular organisms. A crucial question is whether nuclear organization is a cause or a result of differentiation. Genetic perturbation of lamina-heterochromatin interactions is helping to reveal the cross-talk between chromatin states and nuclear organization.

  1. Nuclear threats from small states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahan, J.H.

    1994-06-13

    What are the policy implications regarding proliferation and counter proliferation of nuclear weapons among Third World states. How does deterrence operate outside the parameters of superpower confrontation as defined by the cold war elaborate system of constraints enforced by concepts like mutual assured destruction, and counter-value and counter-force targeting. How can US policymakers devise contingencies for dealing with nuclear threats posed by countries like North Korea, Libya, Iraq, Iran, and Syria. These are some of the unsettling but nevertheless important questions addressed by the author in this monograph. In his analysis, Mr. Jerome Kahan examines the likelihood that one ormore » more of these countries will use nuclear weapons before the year 2000. He also offers a framework that policymakers and planners might use in assessing US interests in preempting the use of nuclear weapons or in retaliating for their use. Ironically, with the end of the cold war, it is imperative that defense strategists, policymakers, and military professionals think about the `unthinkable`. In the interest of fostering debate on this important subject, the Strategic Studies Institute commends this insightful monograph.« less

  2. The doctrine of the nuclear-weapon states and the future of non-proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panofsky, W.K.H.; Bunn, G.

    Less than a year remains before the critical conference in April 1995 to review and extend the nuclear Non-Proliferation Treaty (NPT), the main international barrier to the proliferation of nuclear weapons. This is a critical moment for the United States. With the end of the Cold War, the likelihood of nuclear war with the states of the former Soviet Union has been radically reduced, but there is greatly increased concern over the potential threats from states or sub-state groups seeking to develop or acquire nuclear weapons and other weapons of mass destruction.

  3. Nuclear states with anomalously large radius (size isomers)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogloblin, A. A.; Demyanova, A. S., E-mail: a.s.demyanova@bk.ru; Danilov, A. N.

    2016-07-15

    Methods of determination of the nuclear excited state radii are discussed together with the recently obtained data on the states of some light nuclei having abnormally large radii (size isomers). It is shown that such states include excited neutron-halo states in {sup 9}Be, {sup 11}Be, and {sup 13}C and some alpha-cluster states in {sup 12}C, {sup 11}B, and {sup 13}C. Among the latter ones, there is the well-known Hoyle state in {sup 12}C—the structure of this state exhibit rudimentary features of alpha-particle states.

  4. Equations of state for real gases on the nuclear scale

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr

    2017-07-01

    The formalism to augment the classical models of the equation of state for real gases with quantum statistical effects is presented. It allows an arbitrary excluded volume procedure to model repulsive interactions, and an arbitrary density-dependent mean field to model attractive interactions. Variations on the excluded volume mechanism include van der Waals (VDW) and Carnahan-Starling models, while the mean fields are based on VDW, Redlich-Kwong-Soave, Peng-Robinson, and Clausius equations of state. The VDW parameters of the nucleon-nucleon interaction are fitted in each model to the properties of the ground state of nuclear matter, and the following range of values is obtained: a =330 -430 MeV fm3 and b =2.5 -4.4 fm3 . In the context of the excluded volume approach, the fits to the nuclear ground state disfavor the values of the effective hard-core radius of a nucleon significantly smaller than 0.5 fm , at least for the nuclear matter region of the phase diagram. Modifications to the standard VDW repulsion and attraction terms allow one to improve significantly the value of the nuclear incompressibility factor K0, bringing it closer to empirical estimates. The generalization to include the baryon-baryon interactions into the hadron resonance gas model is performed. The behavior of the baryon-related lattice QCD observables at zero chemical potential is shown to be strongly correlated to the nuclear matter properties: an improved description of the nuclear incompressibility also yields an improved description of the lattice data at μ =0 .

  5. Systematic study of α preformation probability of nuclear isomeric and ground states

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Dong; Wu, Xi-Jun; Zheng, Bo; Xiang, Dong; Guo, Ping; Li, Xiao-Hua

    2017-01-01

    In this paper, based on the two-potential approach combining with the isospin dependent nuclear potential, we systematically compare the α preformation probabilities of odd-A nuclei between nuclear isomeric states and ground states. The results indicate that during the process of α particle preforming, the low lying nuclear isomeric states are similar to ground states. Meanwhile, in the framework of single nucleon energy level structure, we find that for nuclei with nucleon number below the magic numbers, the α preformation probabilities of high-spin states seem to be larger than low ones. For nuclei with nucleon number above the magic numbers, the α preformation probabilities of isomeric states are larger than those of ground states. Supported by National Natural Science Foundation of China (11205083), Construct Program of Key Discipline in Hunan Province, Research Foundation of Education Bureau of Hunan Province, China (15A159), Natural Science Foundation of Hunan Province, China (2015JJ3103, 2015JJ2123), Innovation Group of Nuclear and Particle Physics in USC, Hunan Provincial Innovation Foundation for Postgraduate (CX2015B398)

  6. Command and Control in New Nuclear States: Implications for Stability

    DTIC Science & Technology

    1994-06-01

    dangerous" scenario being one of nuclear proliferation "well- managed by the current nuclear powers."’’ Inside of Mearsheimer’s paradigm for peace and...expanded (but managed ) nuclear proliferation would tend to equalize military power amoung states and thus bolster stratigic stability generally. B...31Ashton B. Carter, John D. Steinbruner and Charles A. Zraket, ed., Managing Nuclear Orerations, (Washington, DC: Brookings,1987), 1. 32Webster’s New

  7. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  8. United States nuclear tests, July 1945 through September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  9. Support vector machines for nuclear reactor state estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavaljevski, N.; Gross, K. C.

    2000-02-14

    Validation of nuclear power reactor signals is often performed by comparing signal prototypes with the actual reactor signals. The signal prototypes are often computed based on empirical data. The implementation of an estimation algorithm which can make predictions on limited data is an important issue. A new machine learning algorithm called support vector machines (SVMS) recently developed by Vladimir Vapnik and his coworkers enables a high level of generalization with finite high-dimensional data. The improved generalization in comparison with standard methods like neural networks is due mainly to the following characteristics of the method. The input data space is transformedmore » into a high-dimensional feature space using a kernel function, and the learning problem is formulated as a convex quadratic programming problem with a unique solution. In this paper the authors have applied the SVM method for data-based state estimation in nuclear power reactors. In particular, they implemented and tested kernels developed at Argonne National Laboratory for the Multivariate State Estimation Technique (MSET), a nonlinear, nonparametric estimation technique with a wide range of applications in nuclear reactors. The methodology has been applied to three data sets from experimental and commercial nuclear power reactor applications. The results are promising. The combination of MSET kernels with the SVM method has better noise reduction and generalization properties than the standard MSET algorithm.« less

  10. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  11. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  12. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  13. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  14. 10 CFR Appendix D to Part 20 - United States Nuclear Regulatory Commission Regional Offices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false United States Nuclear Regulatory Commission Regional Offices D Appendix D to Part 20 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Pt. 20, App. D Appendix D to Part 20—United States Nuclear Regulatory Commission Regional Offices...

  15. Nuclear ground-state masses and deformations: FRDM(2012)

    DOE PAGES

    Moller, P.; Sierk, A. J.; Ichikawa, T.; ...

    2016-03-25

    Here, we tabulate the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground-state microscopic corrections, and nuclear ground-state deformations of 9318 nuclei ranging from 16O to A=339. The calculations are based on the finite-range droplet macroscopic and the folded-Yukawa single-particle microscopic nuclear-structure models, which are completely specified. Relative to our FRDM(1992) mass table in Möller et al. (1995), the results are obtained in the same model, but with considerably improved treatment of deformation and fewer of the approximations that were necessary earlier, due to limitations in computer power. The more accurate execution of the model and the more extensivemore » and more accurate experimental mass data base now available allow us to determine one additional macroscopic-model parameter, the density-symmetry coefficient LL, which was not varied in the previous calculation, but set to zero. Because we now realize that the FRDM is inaccurate for some highly deformed shapes occurring in fission, because some effects are derived in terms of perturbations around a sphere, we only adjust its macroscopic parameters to ground-state masses.« less

  16. Research program in nuclear and solid state physics

    NASA Technical Reports Server (NTRS)

    Stronach, C. E.

    1973-01-01

    The spectra of prompt gamma rays emitted following nuclear pion absorption were studied to determine the states of excited daughter nuclei, and the branching ratios for these states. Studies discussed include the negative pion absorption of C-12, S-32, and N-14; and the positive pion absorption on 0-16. Abstracts of papers submitted to the conference of the American Physical Society are included.

  17. Reordering of Nuclear Quantum States in Rare Isotopes

    NASA Astrophysics Data System (ADS)

    Flanagan, Kieran

    2010-02-01

    A key question in modern nuclear physics relates to the ordering of quantum states, and whether the predictions made by the shell model hold true far from stability. Recent innovations in technology and techniques at radioactive beam facilities have allowed access to rare isotopes previously inaccessible to experimentalists. Measurements that have been performed in several regions of the nuclear chart have yielded surprising and dramatic changes in nuclear structure, where level ordering is quite different than expected from previous theoretical descriptions. In order to reconcile the difference between experiment and theory, new shell-model interactions have been proposed, which include the role of the tensor force as part of the monopole term from the expansion of the residual proton-neutron interaction. This has motivated a series of laser spectroscopy experiments that have studied the neutron-rich copper and gallium isotopes at the ISOLDE facility. This work has deduced without nuclear-model dependence the spin, moments and charge radii. The results of this work and their implications for nuclear structure near ^78Ni will be discussed. )

  18. Equation of state of dense nuclear matter and neutron star structure from nuclear chiral interactions

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio; Logoteta, Domenico

    2018-02-01

    Aims: We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods: The EOS is derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are next computed solving numerically the Tolman-Oppenheimer-Volkov structure equations. Results: Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to 4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.

  19. 3 CFR - Delegation of Certain Functions Under Section 204(c) of the United States-India Nuclear...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) of the United States-India Nuclear Cooperation Approval and Nonproliferation Enhancement Act (Public... Delegation of Certain Functions Under Section 204(c) of the United States-India Nuclear Cooperation Approval... the President by section 204(c) of the United States-India Nuclear Cooperation Approval and...

  20. The many facets of the (non-relativistic) Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Giuliani, G.; Zheng, H.; Bonasera, A.

    2014-05-01

    A nucleus is a quantum many body system made of strongly interacting Fermions, protons and neutrons (nucleons). This produces a rich Nuclear Equation of State whose knowledge is crucial to our understanding of the composition and evolution of celestial objects. The nuclear equation of state displays many different features; first neutrons and protons might be treated as identical particles or nucleons, but when the differences between protons and neutrons are spelled out, we can have completely different scenarios, just by changing slightly their interactions. At zero temperature and for neutron rich matter, a quantum liquid-gas phase transition at low densities or a quark-gluon plasma at high densities might occur. Furthermore, the large binding energy of the α particle, a Boson, might also open the possibility of studying a system made of a mixture of Bosons and Fermions, which adds to the open problems of the nuclear equation of state.

  1. Attitudes Concerning Nuclear War in Finland and the United States.

    ERIC Educational Resources Information Center

    Johnson, Roger N.; And Others

    Four hundred and seventy residents of Ridgewood, New Jersey, and 493 residents of Jyvaskyla, Finland, were randomly selected and interviewed about their attitudes concerning nuclear war. In each area, a high proportion of the sample believed that some kind of nuclear incident is likely in the next decade. The vast majority stated that a nuclear…

  2. Nuclear equation of state for core-collapse supernova simulations with realistic nuclear forces

    NASA Astrophysics Data System (ADS)

    Togashi, H.; Nakazato, K.; Takehara, Y.; Yamamuro, S.; Suzuki, H.; Takano, M.

    2017-05-01

    A new table of the nuclear equation of state (EOS) based on realistic nuclear potentials is constructed for core-collapse supernova numerical simulations. Adopting the EOS of uniform nuclear matter constructed by two of the present authors with the cluster variational method starting from the Argonne v18 and Urbana IX nuclear potentials, the Thomas-Fermi calculation is performed to obtain the minimized free energy of a Wigner-Seitz cell in non-uniform nuclear matter. As a preparation for the Thomas-Fermi calculation, the EOS of uniform nuclear matter is modified so as to remove the effects of deuteron cluster formation in uniform matter at low densities. Mixing of alpha particles is also taken into account following the procedure used by Shen et al. (1998, 2011). The critical densities with respect to the phase transition from non-uniform to uniform phase with the present EOS are slightly higher than those with the Shen EOS at small proton fractions. The critical temperature with respect to the liquid-gas phase transition decreases with the proton fraction in a more gradual manner than in the Shen EOS. Furthermore, the mass and proton numbers of nuclides appearing in non-uniform nuclear matter with small proton fractions are larger than those of the Shen EOS. These results are consequences of the fact that the density derivative coefficient of the symmetry energy of our EOS is smaller than that of the Shen EOS.

  3. Constraints on the nuclear equation of state from nuclear masses and radii in a Thomas-Fermi meta-modeling approach

    NASA Astrophysics Data System (ADS)

    Chatterjee, D.; Gulminelli, F.; Raduta, Ad. R.; Margueron, J.

    2017-12-01

    The question of correlations among empirical equation of state (EoS) parameters constrained by nuclear observables is addressed in a Thomas-Fermi meta-modeling approach. A recently proposed meta-modeling for the nuclear EoS in nuclear matter is augmented with a single finite size term to produce a minimal unified EoS functional able to describe the smooth part of the nuclear ground state properties. This meta-model can reproduce the predictions of a large variety of models, and interpolate continuously between them. An analytical approximation to the full Thomas-Fermi integrals is further proposed giving a fully analytical meta-model for nuclear masses. The parameter space is sampled and filtered through the constraint of nuclear mass reproduction with Bayesian statistical tools. We show that this simple analytical meta-modeling has a predictive power on masses, radii, and skins comparable to full Hartree-Fock or extended Thomas-Fermi calculations with realistic energy functionals. The covariance analysis on the posterior distribution shows that no physical correlation is present between the different EoS parameters. Concerning nuclear observables, a strong correlation between the slope of the symmetry energy and the neutron skin is observed, in agreement with previous studies.

  4. 76 FR 69120 - Regulatory Changes To Implement the United States/Australian Agreement for Peaceful Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Government of the United States of America Concerning Peaceful Uses of Nuclear Energy'' (the Agreement). The... and the Government of the United States of America Concerning Peaceful Uses of Nuclear Energy, dated... NUCLEAR REGULATORY COMMISSION 10 CFR Part 40 RIN 3150-AI95 [NRC-2011-0072] Regulatory Changes To...

  5. Assessing State Nuclear Weapons Proliferation: Using Bayesian Network Analysis of Social Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, Garill A.; Brothers, Alan J.; Olson, Jarrod

    A Bayesian network (BN) model of social factors can support proliferation assessments by estimating the likelihood that a state will pursue a nuclear weapon. Social factors including political, economic, nuclear capability, security, and national identity and psychology factors may play as important a role in whether a State pursues nuclear weapons as more physical factors. This paper will show how using Bayesian reasoning on a generic case of a would-be proliferator State can be used to combine evidence that supports proliferation assessment. Theories and analysis by political scientists can be leveraged in a quantitative and transparent way to indicate proliferationmore » risk. BN models facilitate diagnosis and inference in a probabilistic environment by using a network of nodes and acyclic directed arcs between the nodes whose connections, or absence of, indicate probabilistic relevance, or independence. We propose a BN model that would use information from both traditional safeguards and the strengthened safeguards associated with the Additional Protocol to indicate countries with a high risk of proliferating nuclear weapons. This model could be used in a variety of applications such a prioritization tool and as a component of state safeguards evaluations. This paper will discuss the benefits of BN reasoning, the development of Pacific Northwest National Laboratory’s (PNNL) BN state proliferation model and how it could be employed as an analytical tool.« less

  6. Dynamic nuclear polarization solid-state NMR in heterogeneous catalysis research

    DOE PAGES

    Kobayashi, Takeshi; Perras, Frédéric A.; Slowing, Igor I.; ...

    2015-10-20

    In this study, a revolution in solid-state nuclear magnetic resonance (SSNMR) spectroscopy is taking place, attributable to the rapid development of high-field dynamic nuclear polarization (DNP), a technique yielding sensitivity improvements of 2–3 orders of magnitude. This higher sensitivity in SSNMR has already impacted materials research, and the implications of new methods on catalytic sciences are expected to be profound.

  7. Solid state laser media driven by remote nuclear powered fluorescence

    DOEpatents

    Prelas, Mark A.

    1992-01-01

    An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

  8. Fault Diagnosis with Multi-State Alarms in a Nuclear Power Control Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuart A. Ragsdale; Roger Lew; Ronald L. Boring

    2014-09-01

    This research addresses how alarm systems can increase operator performance within nuclear power plant operations. The experiment examined the effects of two types of alarm systems (two-state and three-state alarms) on alarm compliance and diagnosis for two types of faults differing in complexity. We hypothesized the use of three-state alarms would improve performance in alarm recognition and fault diagnoses over that of two-state alarms. Sensitivity and criterion based on the Signal Detection Theory were used to measure performance. We further hypothesized that operator trust would be highest when using three-state alarms. The findings from this research showed participants performed bettermore » and had more trust in three-state alarms compared to two-state alarms. Furthermore, these findings have significant theoretical implications and practical applications as they apply to improving the efficiency and effectiveness of nuclear power plant operations.« less

  9. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear... Statement for Combined Licenses (COL) for William States Lee III Nuclear Station Units 1 and 2 [Lee Nuclear... draft EIS can be accessed online at the NRC's William States Lee III Nuclear Site Web page at http://www...

  10. 3 CFR - Certifications Pursuant to Section 104 of the United States-India Nuclear Cooperation Approval...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... States-India Nuclear Cooperation Approval and Nonproliferation Enhancement Act Regarding the Safeguards Agreement Between India and the International Atomic Energy Agency Presidential Documents Other Presidential... of the United States-India Nuclear Cooperation Approval and Nonproliferation Enhancement Act...

  11. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy.

    PubMed

    Xu, Xiaodong; Yao, Wang; Sun, Bo; Steel, Duncan G; Bracker, Allan S; Gammon, Daniel; Sham, L J

    2009-06-25

    A single electron or hole spin trapped inside a semiconductor quantum dot forms the foundation for many proposed quantum logic devices. In group III-V materials, the resonance and coherence between two ground states of the single spin are inevitably affected by the lattice nuclear spins through the hyperfine interaction, while the dynamics of the single spin also influence the nuclear environment. Recent efforts have been made to protect the coherence of spins in quantum dots by suppressing the nuclear spin fluctuations. However, coherent control of a single spin in a single dot with simultaneous suppression of the nuclear fluctuations has yet to be achieved. Here we report the suppression of nuclear field fluctuations in a singly charged quantum dot to well below the thermal value, as shown by an enhancement of the single electron spin dephasing time T(2)*, which we measure using coherent dark-state spectroscopy. The suppression of nuclear fluctuations is found to result from a hole-spin assisted dynamic nuclear spin polarization feedback process, where the stable value of the nuclear field is determined only by the laser frequencies at fixed laser powers. This nuclear field locking is further demonstrated in a three-laser measurement, indicating a possible enhancement of the electron spin T(2)* by a factor of several hundred. This is a simple and powerful method of enhancing the electron spin coherence time without use of 'spin echo'-type techniques. We expect that our results will enable the reproducible preparation of the nuclear spin environment for repetitive control and measurement of a single spin with minimal statistical broadening.

  12. 78 FR 77508 - Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ..., LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined Licenses Application Review... Environmental Impact Statement [EIS] for Combined Licenses (COLs) for William States Lee III Nuclear Station... be accessed online at the NRC's William States Lee III Nuclear Station--specific Web page at: www.nrc...

  13. Proposal for the determination of nuclear masses by high-precision spectroscopy of Rydberg states

    NASA Astrophysics Data System (ADS)

    Wundt, B. J.; Jentschura, U. D.

    2010-06-01

    The theoretical treatment of Rydberg states in one-electron ions is facilitated by the virtual absence of the nuclear-size correction, and fundamental constants like the Rydberg constant may be in the reach of planned high-precision spectroscopic experiments. The dominant nuclear effect that shifts transition energies among Rydberg states therefore is due to the nuclear mass. As a consequence, spectroscopic measurements of Rydberg transitions can be used in order to precisely deduce nuclear masses. A possible application of this approach to hydrogen and deuterium, and hydrogen-like lithium and carbon is explored in detail. In order to complete the analysis, numerical and analytic calculations of the quantum electrodynamic self-energy remainder function for states with principal quantum number n = 5, ..., 8 and with angular momentum ell = n - 1 and ell = n - 2 are described \\big(j = \\ell \\pm {\\textstyle {\\frac{1}{2}}}\\big).

  14. Distinction of nuclear spin states with the scanning tunneling microscope.

    PubMed

    Natterer, Fabian Donat; Patthey, François; Brune, Harald

    2013-10-25

    We demonstrate rotational excitation spectroscopy with the scanning tunneling microscope for physisorbed H(2) and its isotopes HD and D(2). The observed excitation energies are very close to the gas phase values and show the expected scaling with the moment of inertia. Since these energies are characteristic for the molecular nuclear spin states we are able to identify the para and ortho species of hydrogen and deuterium, respectively. We thereby demonstrate nuclear spin sensitivity with unprecedented spatial resolution.

  15. Evidence of an enhanced nuclear radius of the α -halo state via α +12C inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ito, Makoto

    2018-04-01

    Evidence of the enhanced nuclear radius in the Hoyle rotational state, 22+, is derived from the differential cross sections in α +12C inelastic scattering. The prominent shrinkage is observed in the differential cross section of the 22+ state in comparison to the yrast 21+ state, and this shrinkage is the first evidence of the enhanced nuclear radius which originates from the 3 α structure in the 22+ state. A diffraction formula, that is, Blair's phase rule, is applied to the differential cross sections, and the present analysis predicts an enhancement of 0.6 to 1.0 fm in the nuclear radius of the 22+ state in comparison to the radius of the yrast 21+, which is considered to have a normal nuclear radius. Constraint on the recent ab initio calculation for 3 α states in 12C is also discussed.

  16. INL Director Discusses the Future for Nuclear Energy in the United States

    ScienceCinema

    Grossenbacher, John

    2018-01-15

    Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  17. Announced United States nuclear tests, July 1945 through December 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-04-01

    This document lists chronologically and alphabetically by event name all nuclear tests conducted and announced by the United States from July 1945 through December 1987, with the exception of the GMX experiments. The 24 GMX experiments, conducted at the Nevada Test Site (NTS) between December 1954 and February 1956, were /open quotes/equation-of-state/close quotes/ physics studies that used small chemical explosives and small quantities of plutonium. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missle launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or inmore » the air. Data on United States tests were obtained from and verified by the Department of Energy's three weapons laboratories--Los Alamos National Laboratory, Los Alamos, New Mexico; Lawrence Livermore National Laboratory, Livermore, California; and Sandia National Laboratories, Albuquerque, New Mexico. Additionally, data were obtained from public announcements issued by the Atomic Energy Commission and its successors, the Energy Research and Development Administation and the Department of Energy, respectively.« less

  18. Role of chiral quantum Hall edge states in nuclear spin polarization.

    PubMed

    Yang, Kaifeng; Nagase, Katsumi; Hirayama, Yoshiro; Mishima, Tetsuya D; Santos, Michael B; Liu, Hongwu

    2017-04-20

    Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and, in particular, the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. The unidirectional current flow along chiral edge states makes the polarization robust to thermal fluctuations at high temperatures and makes it possible to observe a reciprocity principle of the RDNMR response. These findings help us better understand complex NMR responses in QHF, which has important implications for the development of RDNMR techniques.

  19. Explaining nuclear energy pursuance: A comparison of the United States, Germany, and Japan

    NASA Astrophysics Data System (ADS)

    McKee, Lauren Emily

    Energy is critical to the functioning of the global economy and seriously impacts global security as well. What factors influence the extent to which countries will pursue nuclear energy in their overall mix of energy approaches? This dissertation explores this critical question by analyzing the nuclear energy policies of the United States, Germany and Japan. Rather than citizen opposition or proximity to nuclear disasters, it seems that a country's access to other resources through natural endowments or trading relationships offers the best explanation for nuclear energy pursuance.

  20. United States Nuclear Tests, July 1945 through September 1992, December 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  1. An Updated Nuclear Equation of State for Neutron Stars and Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Meixner, M. A.; Mathews, G. J.; Dalhed, H. E.; Lan, N. Q.

    2011-10-01

    We present an updated and improved Equation of State based upon the framework originally developed by Bowers & Wilson. The details of the EoS and improvements are described along with a description of how to access this EOS for numerical simulations. Among the improvements are an updated compressibility based upon recent measurements, the possibility of the formation of proton excess (Ye> 0.5) material and an improved treatment of the nuclear statistical equilibrium and the transition to pasta nuclei as the density approaches nuclear matter density. The possibility of a QCD chiral phase transition is also included at densities above nuclear matter density. We show comparisons of this EOS with the other two publicly available equations of state used in supernova collapse simulations. The advantages of the present EoS is that it is easily amenable to phenomenological parameterization to fit observed explosion properties and to accommodate new physical parameters.

  2. One Part Nuclear, One Part Solid State: Fifty Years of Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2004-05-01

    Starting in 1955 Rudolf Mössbauer conducted experiments that would demonstrate in the next three years that an atomic nucleus in a crystal does not recoil when it emits a gamma ray and provides the entire emitted energy to the gamma ray. The resonance spectroscopy made possible by this discovery led to fifty years of scientific explorations in a wide variety of fields including nuclear and solid state physics, chemistry, and geology. At the current time, Mössbauer spectroscopy is a vital part of science programs, both in many laboratories and at world-class light sources, such as Argonnes Advanced Photon Source. This paper will focus on the history of multidisciplinary Mössbauer research at Argonne National Laboratory and particularly on the interaction between nuclear and condensed matter physicists. This was necessary because of the ultra-high energy resolution of the Mössbauer resonance with its ability to resolve hyperfine interactions between the nuclear moments (nuclear charge distribution, the nuclear magnetic moment, and nuclear quadrupole moment) and corresponding solid state properties (electron charge distribution at the nucleus, magnetic field at the nucleus, and electric field gradient at the nucleus.) Understanding and exploiting Mössbauer spectroscopy therefore required work at the intersection of nuclear and solid state physics and the skills and knowledge of both specialties. The paper will start with the discovery and confirmation of the Mössbauer effect. Then it will outline early important experiments, such as the use of Mössbauer spectroscopy to confirm Einsteins general theory of relativity, and give an overview of the rapid expansion of this research tool, first with the use of Fe57 and later with the use of other isotopes. In particular the paper will focus on Argonnes cutting-edge Mössbauer work on transuranics. This work built on the resources and expertise first developed at the laboratory during WWII and brought together not only

  3. United States Nuclear Tests, July 1945 through September 1992, September 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. This is Revision 16, dated September 2015.

  4. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    NASA Astrophysics Data System (ADS)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  5. Can we Plan. The political economy of commercial nuclear energy policy in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J.L. Jr.

    1984-01-01

    The dissertation is an analysis of the commercial nuclear energy sector's decline in the United States. The research attempts to reconcile the debate between Weberian-institutional and Marxist political theory about the state's inability to successfully plan industrial development in advanced capitalist countries. Synthesizing these views, the central hypothesis guiding the research is that the greater the state's relative autonomy from political and economic constraints in an institutional sense, i.e., the greater its insulation from the contradictions of capitalism and democracy, the greater its planning capacity and the more successful it will be in directing industrial performance. The research examines onemore » industrial sector, commercial nuclear energy, and draws two major comparison. First, the French and US nuclear industries are compared, since the state's relative autonomy is much greater in the former than in the latter. This comparison is developed to identify policy areas where nuclear planning has succeeded in France but failed in America. Four areas are identified: reactor standardization, waste management, reactor safety, and financing. Second, looking particularly at the US, the policy areas are compared to analyze the development of policy and its effects on the sector's performance and to determine the degree to which planning was undermined by the structural constraints characteristic of a state with low relative autonomy.« less

  6. English v. General Electric Company: The state right to regulate the nuclear energy industry affirmed - (albeit indirect)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdan, W.

    1991-12-31

    The early history of the nuclear energy industry is dominated by almost exclusive federal government control and regulation. In the broadest sense, that history remains intact. Recent Supreme Court decisions, however, indicate that states are now capable of indirect regulation of the nuclear energy industry. English v. General Electric is such an example of a judicial decision with the potential to empower states with an opportunity to indirectly regulate the nuclear energy industry.

  7. Effect of nuclear-reaction mechanisms on the population of excited nuclear states and isomeric ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skobelev, N. K., E-mail: skobelev@jinr.ru

    2016-07-15

    Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable ({sup 6}Li) and radioactive ({sup 6}He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and {sup 3}He beams of the U-120M cyclotron at themore » Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei ({sup 6}Li and {sup 3}He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.« less

  8. Excited-State Spin Manipulation and Intrinsic Nuclear Spin Memory using Single Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Fuchs, Gregory

    2011-03-01

    Nitrogen vacancy (NV) center spins in diamond have emerged as a promising solid-state system for quantum information processing and precision metrology at room temperature. Understanding and developing the built-in resources of this defect center for quantum logic and memory is critical to achieving these goals. In the first case, we use nanosecond duration microwave manipulation to study the electronic spin of single NV centers in their orbital excited-state (ES). We demonstrate ES Rabi oscillations and use multi-pulse resonant control to differentiate between phonon-induced dephasing, orbital relaxation, and coherent electron-nuclear interactions. A second resource, the nuclear spin of the intrinsic nitrogen atom, may be an ideal candidate for a quantum memory due to both the long coherence of nuclear spins and their deterministic presence. We investigate coherent swaps between the NV center electronic spin state and the nuclear spin state of nitrogen using Landau-Zener transitions performed outside the asymptotic regime. The swap gates are generated using lithographically fabricated waveguides that form a high-bandwidth, two-axis vector magnet on the diamond substrate. These experiments provide tools for coherently manipulating and storing quantum information in a scalable solid-state system at room temperature. We gratefully acknowledge support from AFOSR, ARO, and DARPA.

  9. Low-energy antikaon nucleon and nucleus interaction studies

    NASA Astrophysics Data System (ADS)

    Marton, Johann; Leannis Collaboration

    2011-04-01

    The antikaon (K-) interaction on nucleons and nuclei at low energy is neither simple nor well understood. Kaonic hydrogen is a very interesting case where the strong interaction of K- with the proton leads to an energy shift and a broadening of the 1s ground state. These two observables can be precisely studied with x-ray spectroscopy. The behavior at threshold is influenced strongly by the elusive Lambda(1405) resonance. In Europe the DAFNE electron-positron collider at Laboratori Nazionali di Frascati (LNF) provides an unique source of monoenergetic kaons emitted in the Phi meson decay. Recently the experiment SIDDHARTA on kaonic hydrogen and helium isotopes was successfully performed at LNF. A European network LEANNIS with an outreach to J-PARC in Japan was set up which is promoting the research on the antikaon interactions with nucleons and nuclei. This talk will give an overview of LEANNIS research tasks, the present status and an outlook to future perspectives. Financial support by the EU project HadronPhysics2 is gratefully acknowledged.

  10. Comparisons and contrasts in the practice of nuclear cardiology in the United States and Japan.

    PubMed

    DePuey, E Gordon

    2016-12-01

    There are interesting differences between the practice of Nuclear Cardiology in Japan and that in the United States and associated unique challenges. Differences in patient body habitus and the perceived importance of limiting patient radiation dose have resulted in different radiopharmaceutical and imaging protocol preferences. Governmental approval and reimbursement policies for various radiopharmaceuticals have promulgated adoption of different clinical applications. Both countries have experienced a significant decline in the number of nuclear cardiology studies performed, in part due to decreased governmental funding and reimbursement and to the emergence of competing modalities. Whereas precertification and test substitution have impacted negatively on the sustainability and growth of nuclear cardiology in the United States, in Japan those deterrents have not yet been encountered. Instead, communication barriers between nuclear medicine physicians and referring cardiologists are cited as a more significant barrier.

  11. Theory of long-lived nuclear spin states in methyl groups and quantum-rotor induced polarisation.

    PubMed

    Dumez, Jean-Nicolas; Håkansson, Pär; Mamone, Salvatore; Meier, Benno; Stevanato, Gabriele; Hill-Cousins, Joseph T; Roy, Soumya Singha; Brown, Richard C D; Pileio, Giuseppe; Levitt, Malcolm H

    2015-01-28

    Long-lived nuclear spin states have a relaxation time much longer than the longitudinal relaxation time T1. Long-lived states extend significantly the time scales that may be probed with magnetic resonance, with possible applications to transport and binding studies, and to hyperpolarised imaging. Rapidly rotating methyl groups in solution may support a long-lived state, consisting of a population imbalance between states of different spin exchange symmetries. Here, we expand the formalism for describing the behaviour of long-lived nuclear spin states in methyl groups, with special attention to the hyperpolarisation effects observed in (13)CH3 groups upon rapidly converting a material with low-barrier methyl rotation from the cryogenic solid state to a room-temperature solution [M. Icker and S. Berger, J. Magn. Reson. 219, 1 (2012)]. We analyse the relaxation properties of methyl long-lived states using semi-classical relaxation theory. Numerical simulations are supplemented with a spherical-tensor analysis, which captures the essential properties of methyl long-lived states.

  12. Spin coherent states phenomena probed by quantum state tomography in Zeeman perturbed nuclear quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.

    2018-07-01

    Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.

  13. Nuclear Successor States of the Soviet Union, Nuclear Weapon and Sensitive Export Status Report

    DTIC Science & Technology

    1994-05-01

    EXPORT STATUS REPORT S I VIE T U N il] N A COOPERATIVE PROJECT OF THE CARNEGIE ENDOWMENT FOR INTERNATIONAL PEACE, WASHINGTON, DC, AND MOSCOW NUMBER 1...Launch Periodic Report on Nuclear Successor States Leonard S . Spector of the Carnegie Endowment for N U C L E A R International Peace and William C...range, translated in FBIS-SOV-92-232, December 2, 1992, p. 22. 5 Table I-C. -- N -Weapon Systems and Warheads on Territory, con’t. S

  14. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    PubMed

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  15. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    PubMed Central

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  16. A comparison of the additional protocols of the five nuclear weapon states and the ensuing safeguards benefits to international nonproliferation efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uribe, Eva C; Sandoval, M Analisa; Sandoval, Marisa N

    2009-01-01

    With the 6 January 2009 entry into force of the Additional Protocol by the United States of America, all five declared Nuclear Weapon States that are part of the Nonproliferation Treaty have signed, ratified, and put into force the Additional Protocol. This paper makes a comparison of the strengths and weaknesses of the five Additional Protocols in force by the five Nuclear Weapon States with respect to the benefits to international nonproliferation aims. This paper also documents the added safeguards burden to the five declared Nuclear Weapon States that these Additional Protocols put on the states with respect to accessmore » to their civilian nuclear programs and the hosting of complementary access activities as part of the Additional Protocol.« less

  17. Equation of state of asymmetric nuclear matter using re-projected nucleon–nucleon potentials

    NASA Astrophysics Data System (ADS)

    Asadi Aghbolaghi, Z.; Bigdeli, M.

    2018-06-01

    In this paper, we have calculated the equation of state of asymmetric nuclear matter using the lowest order constrained variational approach and Argonne family potentials with and without three-nucleon interaction (TNI) contribution. In particular, we have used the AV18 potential and the re-projected potentials, AV8‧, and AV6‧. We have also calculated the saturation properties of symmetric nuclear matter, and the nuclear symmetry energy using AV18+TNI, AV8‧+TNI and AV6‧+TNI potentials. The inclusion of TNI has modified the agreement with experiment. We have also made a comparison between our results and those of other many-body calculations.

  18. Algorithmic cooling in liquid-state nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Atia, Yosi; Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2016-01-01

    Algorithmic cooling is a method that employs thermalization to increase qubit purification level; namely, it reduces the qubit system's entropy. We utilized gradient ascent pulse engineering, an optimal control algorithm, to implement algorithmic cooling in liquid-state nuclear magnetic resonance. Various cooling algorithms were applied onto the three qubits of C132-trichloroethylene, cooling the system beyond Shannon's entropy bound in several different ways. In particular, in one experiment a carbon qubit was cooled by a factor of 4.61. This work is a step towards potentially integrating tools of NMR quantum computing into in vivo magnetic-resonance spectroscopy.

  19. Diamond nitrogen vacancy electronic and nuclear spin-state anti-crossings under weak transverse magnetic fields

    NASA Astrophysics Data System (ADS)

    Clevenson, Hannah; Chen, Edward; Dolde, Florian; Teale, Carson; Englund, Dirk; Braje, Danielle

    2016-05-01

    We report on detailed studies of electronic and nuclear spin states in the diamond nitrogen vacancy (NV) center under moderate transverse magnetic fields. We numerically predict and experimentally verify a previously unobserved NV ground state hyperfine anti-crossing occurring at magnetic bias fields as low as tens of Gauss - two orders of magnitude lower than previously reported hyperfine anti-crossings at ~ 510 G and ~ 1000 G axial magnetic fields. We then discuss how this regime can be optimized for magnetometry and other sensing applications and propose a method for how the nitrogen-vacancy ground state Hamiltonian can be manipulated by small transverse magnetic fields to polarize the nuclear spin state. Acknowlegement: The Lincoln Laboratory portion of this work is sponsored by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  20. [The Chinese nuclear test and 'atoms for peace' as a measure for preventing nuclear armament of Japan: the nuclear non-proliferation policy of the United States and the introduction of light water reactors into Japan, 1964-1968].

    PubMed

    Yamazaki, Masakatsu

    2014-07-01

    Japan and the United States signed in 1968 a new atomic energy agreement through which US light-water nuclear reactors, including those of the Fukushima Daiichi Nuclear Power Plant of Tokyo Electric Power Company, were to be introduced into Japan. This paper studies the history of negotiations for the 1968 agreement using documents declassified in the 1990s in the US and Japan. After the success of the Chinese nuclear test in October 1964, the United States became seriously concerned about nuclear armament of other countries in Asia including Japan. Expecting that Japan would not have its own nuclear weapons, the US offered to help the country to demonstrate its superiority in some fields of science including peaceful nuclear energy to counter the psychological effect of the Chinese nuclear armament. Driven by his own political agenda, the newly appointed Prime Minister Eisaku Sato responded to the US expectation favorably. When he met in January 1965 with President Johnson, Sato made it clear that Japan would not pursue nuclear weapons. Although the US continued its support after this visit, it nevertheless gave priority to the control of nuclear technology in Japan through the bilateral peaceful nuclear agreement. This paper argues that the 1968 agreement implicitly meant a strategic measure to prevent Japan from going nuclear and also a tactic to persuade Japan to join the Nuclear Non -Proliferation Treaty.

  1. Nuclear weapons modernizations

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2014-05-01

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludes that new limits on nuclear modernizations are needed.

  2. Effectiveness of United StatesLed Economic Sanctions as a Counterproliferation Tool Against Irans Nuclear Weapons Program

    DTIC Science & Technology

    2015-12-01

    www.nytimes.com/2015/07/15/world/middleeast/iran-nuclear-deal-is- reached-after-long-negotiations.html. 70 Valerie Lincy and Simon Chin, “How to...procuring steel and other materials used in the manufacturing of missile propellants. Lastly, in the United Kingdom case, the State Department...97 Valerie Lincy and Gary Milhollin, “Iran’s Nuclear Timetable,” Wisconsin Project on Nuclear Arms Control, June 17, 2015, http

  3. Iran: The Next Nuclear Threshold State?

    DTIC Science & Technology

    2014-09-01

    than 1,000 nuclear explosives.96 Furthermore, after the Fukushima disaster , Japan shut down its reactors, but continues work on the Rakkasho...Basement,’ and China Isn’t Happy,” NBC News, March 11, 2014, http://www.nbcnews.com/storyline/ fukushima -anniversary/japan-has- nuclear - bomb-basement...line civilian nuclear program that includes enrichment and reprocessing capabilities. Japan possesses few energy resources. Before the Fukushima

  4. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    NASA Astrophysics Data System (ADS)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel

  5. Nuclear weapons modernizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, Hans M.

    This article reviews the nuclear weapons modernization programs underway in the world's nine nuclear weapons states. It concludes that despite significant reductions in overall weapons inventories since the end of the Cold War, the pace of reductions is slowing - four of the nuclear weapons states are even increasing their arsenals, and all the nuclear weapons states are busy modernizing their remaining arsenals in what appears to be a dynamic and counterproductive nuclear competition. The author questions whether perpetual modernization combined with no specific plan for the elimination of nuclear weapons is consistent with the nuclear Non-Proliferation Treaty and concludesmore » that new limits on nuclear modernizations are needed.« less

  6. The Impact of the Nuclear Equation of State in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Baird, M. L.; Lentz, E. J.; Hix, W. R.; Mezzacappa, A.; Messer, O. E. B.; Liebendoerfer, M.; TeraScale Supernova Initiative Collaboration

    2005-12-01

    One of the key ingredients to the core collapse supernova mechanism is the physics of matter at or near nuclear density. Included in simulations as part of the Equation of State (EOS), nuclear repulsion experienced at high densities are responsible for the bounce shock, which initially causes the outer envelope of the supernova to expand, as well as determining the structure of the newly formed proto-neutron star. Recent years have seen renewed interest in this fundamental piece of supernova physics, resulting in several promising candidate EOS parameterizations. We will present the impact of these variations in the nuclear EOS using spherically symmetric, Newtonian and General Relativistic neutrino transport simulations of stellar core collapse and bounce. This work is supported in part by SciDAC grants to the TeraScale Supernovae Initiative from the DOE Office of Science High Energy, Nuclear, and Advanced Scientific Computing Research Programs. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. Department of Energy under contract DEAC05-00OR22725

  7. Limits in Proton Nuclear Singlet-State Lifetimes Measured with para-Hydrogen-Induced Polarization.

    PubMed

    Zhang, Yuning; Duan, Xueyou; Soon, Pei Che; Sychrovský, Vladimír; Canary, James W; Jerschow, Alexej

    2016-10-05

    The synthesis of a hyperpolarized molecule was developed, where the polarization and the singlet state were preserved over two controlled chemical steps. Nuclear singlet-state lifetimes close to 6 min for protons are reported in dimethyl fumarate. Owing to the high symmetry (AA'X 3 X 3 ' and A 2 systems), the singlet-state readout requires either a chemical desymmetrization or a long and repeated spin lock. Using DFT calculations and relaxation models, we further determine nuclear spin singlet lifetime limiting factors, which include the intramolecular dipolar coupling mechanism (proton-proton and proton-deuterium), the chemical shift anisotropy mechanism (symmetric and antisymmetric), and the intermolecular dipolar coupling mechanism (to oxygen and deuterium). If the limit of paramagnetic relaxation caused by residual oxygen could be lifted, the intramolecular dipolar coupling to deuterium would become the limiting relaxation mechanism and proton lifetimes upwards of 26 min could become available in the molecules considered here (dimethyl maleate and dimethyl fumarate). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 75 FR 3946 - License Nos. DPR-42 and DPR-60; Northern States Power Company; Prairie Island Nuclear Generating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ..., Office of Nuclear Reactor Regulation. [FR Doc. 2010-1309 Filed 1-22-10; 8:45 am] BILLING CODE 7590-01-P ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-282 and 50-306; NRC-2010-0022] License Nos. DPR-42 and DPR-60; Northern States Power Company; Prairie Island Nuclear Generating Plant, Units 1 and 2...

  9. Nuclear Symbiosis - A Means to Achieve Sustainable Nuclear Growth while Limiting the Spread of Sensititive Nuclear Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Shropshire

    Global growth of nuclear energy in the 21st century is creating new challenges to limit the spread of nuclear technology without hindering adoption in countries now considering nuclear power. Independent nuclear states desire autonomy over energy choices and seek energy independence. However, this independence comes with high costs for development of new indigenous fuel cycle capabilities. Nuclear supplier states and expert groups have proposed fuel supply assurance mechanisms such as fuel take-back services, international enrichment services and fuel banks in exchange for recipient state concessions on the development of sensitive technologies. Nuclear states are slow to accept any concessions tomore » their rights under the Non-Proliferation Treaty. To date, decisions not to develop indigenous fuel cycle capabilities have been driven primarily by economics. However, additional incentives may be required to offset a nuclear state’s perceived loss of energy independence. This paper proposes alternative economic development incentives that could help countries decide to forgo development of sensitive nuclear technologies. The incentives are created through a nuclear-centered industrial complex with “symbiotic” links to indigenous economic opportunities. This paper also describes a practical tool called the “Nuclear Materials Exchange” for identifying these opportunities.« less

  10. Liquid-state nuclear spin comagnetometers.

    PubMed

    Ledbetter, M P; Pustelny, S; Budker, D; Romalis, M V; Blanchard, J W; Pines, A

    2012-06-15

    We discuss nuclear spin comagnetometers based on ultralow-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and 19F nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about 5×10(-9)  Hz, or about 5×10(-11)  Hz in ≈1 day of integration. In a second version, spin precession of protons and 129Xe nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes is discussed.

  11. Nuclear Reign: Providing a Nuclear Umbrella to United States Pacific Partners

    DTIC Science & Technology

    2017-04-06

    October 2016/October 18 2016/North-Korean-Missile-Launch-Fails,-Again.aspx Amadeo, Kimberly. “Japan’s 2011 Earthquake: Tsunami and Nuclear Disaster .” The...Balance, 8 September 2016. https://www.thebalance.com/japan-s-2011-earthquake-tsunami-and- nuclear - disaster -3305662 Air War College Speaker...Foundation, “2017 Index of Military Strength Assessment Global Asia,” 129. See also, Kimberly Amadeo, “Japan’s 2011 Earthquake: Tsunami and Nuclear

  12. High-Field Liquid-State Dynamic Nuclear Polarization in Microliter Samples.

    PubMed

    Yoon, Dongyoung; Dimitriadis, Alexandros I; Soundararajan, Murari; Caspers, Christian; Genoud, Jeremy; Alberti, Stefano; de Rijk, Emile; Ansermet, Jean-Philippe

    2018-05-01

    Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 μm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1 H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 μL of water, a volume that is more than 100× larger than reported so far. The 1 H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31 P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.

  13. Dark state polarizing a nuclear spin in the vicinity of a nitrogen-vacancy center

    NASA Astrophysics Data System (ADS)

    Wang, Yang-Yang; Qiu, Jing; Chu, Ying-Qi; Zhang, Mei; Cai, Jianming; Ai, Qing; Deng, Fu-Guo

    2018-04-01

    The nuclear spin in the vicinity of a nitrogen-vacancy (NV) center possesses long coherence time and convenient manipulation assisted by the strong hyperfine interaction with the NV center. It is suggested for the subsequent quantum information storage and processing after appropriate initialization. However, current experimental schemes are either sensitive to the inclination and magnitude of the magnetic field or require thousands of repetitions to achieve successful realization. Here, we propose a method to polarize a 13C nuclear spin in the vicinity of an NV center via a dark state. We demonstrate theoretically and numerically that it is robust to polarize various nuclear spins with different hyperfine couplings and noise strengths.

  14. New limits for the 2 νββ decay of 96Zr to excited nuclear states of 96Mo

    NASA Astrophysics Data System (ADS)

    Finch, Sean; Tornow, Werner

    2015-10-01

    The final results from our search for the 2 νββ decay of 96Zr to excited 0+ and 2+ states of 96Mo are presented. Such measurements provide valuable test cases for 2 νββ -decay nuclear matrix element calculations, which in turn are used to tune 0 νββ -decay nuclear matrix element calculations. After undergoing double- β decay to an excited state, the excited daughter nucleus decays to the ground state, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the 96Zr sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously measured the 2 νββ decay of 100Mo and 150Nd to excited nuclear states. Experimental limits on the T1 / 2 and corresponding nuclear matrix element are presented for each of these decays. As a byproduct of this experiment, limits were also set on the single- β decay of 96Zr. Supported by DOE Grant: DE-FG02-97ER41033.

  15. The radioactive waste debate in the United States and nuclear technology for peaceful purposes

    NASA Astrophysics Data System (ADS)

    Tehan, Terrence Norbert

    Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.

  16. 76 FR 39445 - Northern States Power Company-Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ..., combined-cycle plant; a combination of natural gas, wind, and wood-fired generation and conservation; a... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-282 and 50-306; NRC-2009-0507] Northern States Power Company--Minnesota; Prairie Island Nuclear Generating Plant, Units 1 and 2; Notice of Issuance of Renewed...

  17. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    PubMed

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any

  18. Joint CDRH (Center for Devices and Radiological Health) and state quality-assurance surveys in nuclear medicine: Phase 2 - radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, D.R.; Evans, C.D.

    The report discusses survey results on aspects of the quality assurance of radio-pharmaceuticals from 180 nuclear-medicine facilities in the United States. Data were collected from facilities in 8 states. Demographic information about nuclear-medicine operations and quality-assurance programs was gathered by state radiation-control-program personnel. The data collected from the survey show an incomplete acceptance of quality-assurance practices for radiopharmaceuticals. Most of the facilities in the survey indicated that, because an inferior radiopharmaceutical was prepared so infrequently, they did not believe it was cost-effective to perform extensive quality-assurance testing. The Center for Devices and Radiological Health hopes that the information from themore » survey will stimulate nuclear-medicine professionals and their organizations to encourage appropriate testing of all radiopharmaceuticals.« less

  19. Vertical nuclear proliferation.

    PubMed

    Sidel, Victor W

    2007-01-01

    All the nuclear-weapon states are working to develop new nuclear-weapon systems and upgrade their existing ones. Although the US Congress has recently blocked further development of small nuclear weapons and earth-penetrating nuclear weapons, the United States is planning a range of new warheads under the Reliable Replacement Warhead programme, and renewing its nuclear weapons infrastructure. The United Kingdom is spending 1 billion pounds sterling on updating the Atomic Weapons Establishment at Aldermaston, and about 20 billion pounds sterling on replacing its Vanguard submarines and maintaining its Trident warhead stockpile. The US has withdrawn from the Anti-Ballistic Missile Treaty and plans to install missile defence systems in Poland and the Czech Republic; Russia threatens to upgrade its nuclear countermeasures. The nuclear-weapon states should comply with their obligations under Article VI of the Non-Proliferation Treaty, as summarised in the 13-point plan agreed at the 2000 NPT Review Conference, and they should negotiate a Nuclear Weapons Convention.

  20. The future of high-level nuclear waste disposal, state sovereignty and the tenth amendment: Nevada v. Watkins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swazo, S.

    The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less

  1. Hyperspherical nuclear motion of H3 + and D3 + in the electronic triplet state, a 3Sigmau +.

    PubMed

    Ferreira, Tiago Mendes; Alijah, Alexander; Varandas, António J C

    2008-02-07

    The potential energy surface of H(3) (+) in the lowest electronic triplet state, a (3)Sigma(u) (+), shows three equivalent minima at linear nuclear configurations. The vibrational levels of H(3) (+) and D(3) (+) on this surface can therefore be described as superimposed linear molecule states. Owing to such a superposition, each vibrational state characterized by quantum numbers of an isolated linear molecule obtains a one- and a two-dimensional component. The energy splittings between the two components have now been rationalized within a hyperspherical picture. It is shown that nuclear motion along the hyperangle phi mainly accounts for the splittings and provides upper bounds. This hyperspherical motion can be considered an extension of the antisymmetric stretching motion of the individual linear molecule.

  2. Impulsive effects of phase-locked pulse pairs on nuclear motion in the electronic ground state

    NASA Astrophysics Data System (ADS)

    Cina, J. A.; Smith, T. J.

    1993-06-01

    The nonlinear effects of ultrashort phase-locked electronically resonant pulse pairs on the ground state nuclear motion are investigated theoretically. The pulse-pair propagator, momentum impulse, and displacement are determined in the weak field limit for pulse pairs separated by a time delay short on a nuclear time scale. Possible application to large amplitude vibrational excitation of the 104 cm-1 mode of α-perylene is considered and comparisons are made to other Raman excitation methods.

  3. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    NASA Astrophysics Data System (ADS)

    Graham, Thomas, Jr.

    2014-05-01

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a "threat to peace and security", in effect a violation of international law, which in today's world it clearly would be.

  4. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K

    PubMed Central

    Thurber, Kent R.; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2012-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) [1], but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized 13C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional 13C MAS NMR spectra of frozen solutions of uniformly 13C-labeled L-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly 13C-labeled amino acids. PMID:23238592

  5. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    PubMed

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  6. Level crossing analysis of chemically induced dynamic nuclear polarization: Towards a common description of liquid-state and solid-state cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosnovsky, Denis V.; Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Novosibirsk State University, Pirogova 2, 630090, Novosibirsk

    Chemically Induced Dynamic Nuclear Polarization (CIDNP) is an efficient method of creating non-equilibrium polarization of nuclear spins by using chemical reactions, which have radical pairs as intermediates. The CIDNP effect originates from (i) electron spin-selective recombination of radical pairs and (ii) the dependence of the inter-system crossing rate in radical pairs on the state of magnetic nuclei. The CIDNP effect can be investigated by using Nuclear Magnetic Resonance (NMR) methods. The gain from CIDNP is then two-fold: it allows one to obtain considerable amplification of NMR signals; in addition, it provides a very useful tool for investigating elusive radicals andmore » radical pairs. While the mechanisms of the CIDNP effect in liquids are well established and understood, detailed analysis of solid-state CIDNP mechanisms still remains challenging; likewise a common theoretical frame for the description of CIDNP in both solids and liquids is missing. Difficulties in understanding the spin dynamics that lead to the CIDNP effect in the solid-state case are caused by the anisotropy of spin interactions, which increase the complexity of spin evolution. In this work, we propose to analyze CIDNP in terms of level crossing phenomena, namely, to attribute features in the CIDNP magnetic field dependence to Level Crossings (LCs) and Level Anti-Crossings (LACs) in a radical pair. This approach allows one to describe liquid-state CIDNP; the same holds for the solid-state case where anisotropic interactions play a significant role in CIDNP formation. In solids, features arise predominantly from LACs, since in most cases anisotropic couplings result in perturbations, which turn LCs into LACs. We have interpreted the CIDNP mechanisms in terms of the LC/LAC concept. This consideration allows one to find analytical expressions for a wide magnetic field range, where several different mechanisms are operative; furthermore, the LAC description gives a way to determine

  7. Alert status of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Kristensen, Hans M.

    2017-11-01

    Nuclear Alert Forces. Four nuclear-armed states deploy nuclear warheads on alert, ready to be used on relatively short notice: United States, Russia, France and Britain. Combined, the four countries deploy an estimated 1,869 nuclear alert warheads. Russia and the United States deploy 1,749 alert warheads combined, or 94% of all alert warheads. Despite some debate about possible need to increase readiness of nuclear forces (China, Pakistan), the five other nuclear-armed states (China, Pakistan, India, Israel and North Korea) are thought to store their warheads separate from launchers under normal circumstances. The overall number of alert warheads has remained relatively stable during the past five years.

  8. Mitigating Community Impacts of Energy Development: Some Examples for Coal and Nuclear Generating Plants in the United States.

    ERIC Educational Resources Information Center

    Peelle, Elizabeth

    The Hartsville, Tennessee nuclear reactor site, the coal plant at Wheatland, Wyoming, and the nuclear plant at Skagit, Washington have mitigation plans developed in response to a federal, state, and local regulatory agency, respectively; the three mitigation plans aim at internalizing community-level social costs and benefits during the…

  9. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, Jonathan

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  10. Opaque Nuclear Strategy

    DTIC Science & Technology

    2017-12-01

    enrichment facility); 3. The acquisition of the technology and know-how to design, assemble, and manufacture the bomb ; 4. A full-scale nuclear test...14 Scott D. Sagan, “Why Do States Build Nuclear Weapons?: Three Models in Search of a Bomb ,” International...15 Sagan, “Why Do States Build Nuclear Weapons?: Three Models in Search of a Bomb ,” 57–59. 16 Lewis A. Dunn and Herman Kahn, Trends in Nuclear

  11. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Thomas Jr.

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclearmore » stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.« less

  12. Personnel involved in the development of nuclear standards in the United States, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E.B.

    1977-03-01

    The development of voluntary nuclear standards in the United States is an active and necessary endeavor of the technical community concerned with the safe, orderly, and economic development of the nuclear potential. There are almost 8000 people presently involved either in writing voluntary standards and codes or in the management and processing roles necessary for their approval and promulgation. This document records the current participation of these people as member, chairman, or secretary of about 900 identified committees and projects. The standards projects are identified with the organizations that are responsible for the preparation, review, and maintenance of the standardsmore » and that provide support through supervisory committees and headquarters staff. The directory has four major sections: personnel, employers, committees, and a KWIC index of committee titles. The directory can be used to identify those nuclear standards projects currently active, to indicate the participation of employers, and to recognize the contributions of individuals to these often interdisciplinary activities.« less

  13. Personnel involved in the development of nuclear standards in the United States, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E.B.

    The development of voluntary nuclear standards in the United States is an active and necessary endeavor of the technical community concerned with the safe, orderly, and economic development of the nuclear potential. There are almost 8000 people presently involved either in writing voluntary standards and codes or in the management and processing roles necessary for their approval and promulgation. This document records the current participation of these people as member, chairman, or secretary of about 900 identified committees and projects. The standards projects are identified with the organizations that are responsible for the preparation, review, and maintenance of the standardsmore » and that provide support through supervisory committees and headquarters staff. The Directory has four major sections: personnel, employers, committees, and a KWIC Index of committee titles. The Directory can be used to identify those nuclear standards projects currently active, to indicate the participation of employers, and to recognize the contributions of individuals to these often interdisciplinary activities.« less

  14. Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pregenzer, Arian Leigh

    2011-12-01

    The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunitiesmore » for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.« less

  15. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack S. Brenizer, Jr.

    2003-01-17

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less

  16. A new equation of state for core-collapse supernovae based on realistic nuclear forces and including a full nuclear ensemble

    NASA Astrophysics Data System (ADS)

    Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.

    2017-09-01

    We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which

  17. Thorium-229 solid-state nuclear clock prospects in MgF2 and LiSAF

    NASA Astrophysics Data System (ADS)

    Meyer, Edmund; Barker, Beau; Collins, Lee

    2016-05-01

    The 229 Th isomer is thought to be a good candidate for a nuclear clock based on its relatively low-energy isomer excitation of ~ 7 . 8 eV. We report on the study of Th atoms embedded in two crystals, MgF2 and LiSAF (LiSrAlF6). For MgF2 we perform an oxidation study to find the preferred ionization state of the Th atom in the crystal; Thn+, where n = 2 - 4 . We find that the preferred state is n = 4 which requires two interstitial Fluorine atoms to charge compensate. Using the results of MgF2 we then search within LiSAF for suitable dopant sites (the Sr, Al, or Li can all serve). Employing a standard density functional package using a plane-wave basis and psuedopotentials, we optimize a doped cell of increasing particle number sizes and use this to estimate the dilute doped-limit band-gap of LiSAF. Placement of the dopant on the Sr and Al sites with accompanying double and single F interstitial atom placements is also studied to determine the ground state, and comparisons are made with previous calculations. In both crystal ground states, we find that the band gap is large enough for the observation of the 229 Th nuclear isomer transition; > 9 eV.

  18. State Regulatory Authority (SRA) Coordination of Safety, Security, and Safeguards of Nuclear Facilities: A Framework for Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mladineo, Stephen V.; Frazar, Sarah L.; Kurzrok, Andrew J.

    This paper will explore the development of a framework for conducting an assessment of safety-security-safeguards integration within a State. The goal is to examine State regulatory structures to identify conflicts and gaps that hinder management of the three disciplines at nuclear facilities. Such an analysis could be performed by a State Regulatory Authority (SRA) to provide a self-assessment or as part of technical cooperation with either a newcomer State, or to a State with a fully developed SRA.

  19. Nuclear obligations: Nuremberg law, nuclear weapons, and protest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burroughs, J.R.

    1991-01-01

    Nuclear weapons use and deployment and nonviolent anti-nuclear protests are evaluated. Use of nuclear weapons would constitute war crimes and crimes against humanity as defined in both the Nuremberg Charter and Allied Control Council Law No. 10 and applied by the International Military Tribunal and other Nuremberg courts. Strategic and atomic bombing during World War 2 did not set a precedent for use of nuclear weapons. The consequentialist argument for World War 2 bombing fails and the bombing has also been repudiated by codification of the law of war in Protocol 1 to the 1949 Geneva Conventions. The legality ofmore » deploying nuclear weapons as instruments of geopolitical policy is questionable when measured against the Nuremberg proscription of planning and preparation of aggressive war, war crimes, and crimes against humanity and the United Nations Charter's proscription of aggressive threat of force. While states' practice of deploying the weapons and the arms-control treaties that regulate but do not prohibit mere possession provide some support for legality, those treaties recognize the imperative of preventing nuclear war, and the Nuclear Non-Proliferation Treaty commits nuclear-armed states to good-faith negotiation of nuclear disarmament.« less

  20. IDNS: The Illinois Nuclear Safety Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallina, C.O.

    The Illinois Department of Nuclear Safety (IDNS) is one of only two cabinet-level state agencies in the United States devoted exclusively to nuclear and radiation safety. It was established in 1980 by then Gov. James Thompson in response to the 1979 accident at Three Mile Island-2, so the state would be prepared in case of a similar accident at an Illinois nuclear power facility. There are 13 commercial nuclear reactors at seven sites in Illinois, more than in any other state. If Illinois were a country, it would be seventh in the world in the amount of nuclear-generated electricity, andmore » second in the percentage of electricity produced by nuclear power. The state also has several major nonreactor nuclear facilities. 9 refs.« less

  1. Tripolar Stability: The Future of Nuclear Relations Among the United States, Russia, and China

    DTIC Science & Technology

    2002-09-01

    I N S T I T U T E F O R D E F E N S E A N A L Y S E S D E F E N S E T H R E A T R E D U C T I O N A G E N C Y Tripolar Stability: The Future of... Tripolar Stability: The Future of Nuclear Relations Among the United States, Russia, and China Brad Roberts PREFACE Since the creation of the...here were first sketched out in a symposium convened at IDA on July 28 on nuclear tripolarity , where thoughtful presentations were made on facets

  2. Partial wave analysis of the reaction p(3.5 GeV) + p → pK + Λ to search for the "ppK –" bound state

    DOE PAGES

    Agakishiev, G.; Arnold, O.; Belver, D.; ...

    2015-01-26

    Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5GeV) + p → pK +Λ. This reaction might contain information about the kaonic cluster “ppK -” (with quantum numbers J P=0 - and total isospin I =1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical K ¯NN (or, specifically “ppK -”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediatemore » states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a K ¯NN cluster. At a confidence level of CL s=95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK + Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.« less

  3. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction.

    PubMed

    Granovsky, Alexander A

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  4. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  5. Advances in Theory of Solid-State Nuclear Magnetic Resonance.

    PubMed

    Mananga, Eugene S; Moghaddasi, Jalil; Sana, Ajaz; Akinmoladun, Andrew; Sadoqi, Mostafa

    Recent advances in theory of solid state nuclear magnetic resonance (NMR) such as Floquet-Magnus expansion and Fer expansion, address alternative methods for solving a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state NMR in particular. The power and the salient features of these theoretical approaches that are helpful to describe the time evolution of the spin system at all times are presented. This review article presents a broad view of manipulations of spin systems in solid-state NMR, based on milestones theories including the average Hamiltonian theory and the Floquet theory, and the approaches currently developing such as the Floquet-Magnus expansion and the Fer expansion. All these approaches provide procedures to control and describe the spin dynamics in solid-state NMR. Applications of these theoretical methods to stroboscopic and synchronized manipulations, non-synchronized experiments, multiple incommensurated frequencies, magic-angle spinning samples, are illustrated. We also reviewed the propagators of these theories and discussed their convergences. Note that the FME is an extension of the popular Magnus Expansion and Average Hamiltonian Theory. It aims is to bridge the AHT to the Floquet Theorem but in a more concise and efficient formalism. Calculations can then be performed in a finite-dimensional Hilbert space instead of an infinite dimensional space within the so-called Floquet theory. We expected that the FME will provide means for more accurate and efficient spin dynamics simulation and for devising new RF pulse sequence.

  6. Phenomenological study of decoherence in solid-state spin qubits due to nuclear spin diffusion

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael J.; Bluhm, Hendrik

    2011-06-01

    We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present calculations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω2 noise power spectrum associated with nuclear spin flips in the host material. Beginning with this validation, we address the effects of nuclear programming, high-frequency nuclear spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.

  7. Gulf States Strategic Vision to Face Iranian Nuclear Project

    DTIC Science & Technology

    2015-09-01

    STRATEGIC VISION TO FACE IRANIAN NUCLEAR PROJECT by Fawzan A. Alfawzan September 2015 Thesis Advisor: James Russell Second Reader: Anne...nuclear weapons at a high degree. Nuclear capabilities provided Iran with uranium enrichments abilities and nuclear weapons to enable the country to...IN SECURITY STUDIES (STRATEGIC STUDIES) from the NAVAL POSTGRADUATE SCHOOL September 2015 Approved by: James Russell Thesis

  8. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  9. National Nuclear Data Center

    Science.gov Websites

    reaction data Sigma Retrieval & Plotting Nuclear structure & decay Data Nuclear Science References Experimental Unevaluated Nuclear Data List Evaluated Nuclear Structure Data File NNDC databases Ground and isomeric states properties Nuclear structure & decay data journal Nuclear reaction model code Tools and

  10. New Kohn-Sham density functional based on microscopic nuclear and neutron matter equations of state

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L. M.; Schuck, P.; Viñas, X.

    2013-06-01

    A new version of the Barcelona-Catania-Paris energy functional is applied to a study of nuclear masses and other properties. The functional is largely based on calculated ab initio nuclear and neutron matter equations of state. Compared to typical Skyrme functionals having 10-12 parameters apart from spin-orbit and pairing terms, the new functional has only 2 or 3 adjusted parameters, fine tuning the nuclear matter binding energy and fixing the surface energy of finite nuclei. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Wapstra [Nucl. Phys. ANUPABL0375-947410.1016/j.nuclphysa.2003.11.003 729, 337 (2003)] compilation. This rms value compares favorably with the one obtained using other successful mean field theories, which range from 1.5 to 3.0 MeV for optimized Skyrme functionals and 0.7 to 3.0 for the Gogny functionals. The other properties that have been calculated and compared to experiment are nuclear radii, the giant monopole resonance, and spontaneous fission lifetimes.

  11. The Nuclear Nonproliferation Treaty in Context

    NASA Astrophysics Data System (ADS)

    Davenport, Kelsey

    2017-01-01

    The 1968 Nuclear Nonproliferation Treaty (NPT) is the cornerstone of multilateral efforts to prevent the spread of nuclear weapons and promote efforts toward complete disarmament. In the grand bargain of the NPT, states foreswore pursuit of nuclear weapons in exchange for access to nuclear technology and limited nuclear arsenals to the five states (China, France, Russia, the United Kingdom and the United States) that tested such weapons before the NPT's conception. Now in its seventh decade, the NPT regime is embraced by the vast majority of the world's nations and is viewed as a critical element of international security. However, despite past successes in halting efforts in several states to pursue nuclear weapons, near universal adherence, and only one withdrawal (North Korea), the NPT regime is at a critical crossroads. The treaty has proven unable to adapt to new challenges, such as emerging technologies that threaten operational strategic realities, the devolution of state authority to non-state actors and institutions, and growing dissatisfaction with slow pace of nuclear disarmament. Additionally, the treaty leaves open critical questions, including whether or not state parties have the `right' to pursue technologies that allow for domestic production of fuels for nuclear reactors and if modernization programs for nuclear warheads are inconsistent with the treaty. If these questions remain unresolved, the international community will find itself ill prepared to confront emerging proliferation challenges and the NPT, the linchpin of international nonproliferation and disarmament efforts, may begin to erode.

  12. Coherent Nuclear Wave Packets in Q States by Ultrafast Internal Conversions in Free Base Tetraphenylporphyrin.

    PubMed

    Kim, So Young; Joo, Taiha

    2015-08-06

    Persistence of vibrational coherence in electronic transition has been noted especially in biochemical systems. Here, we report the dynamics between electronic excited states in free base tetraphenylporphyrin (H2TPP) by time-resolved fluorescence with high time resolution. Following the photoexcitation of the B state, ultrafast internal conversion occurs to the Qx state directly as well as via the Qy state. Unique and distinct coherent nuclear wave packet motions in the Qx and Qy states are observed through the modulation of the fluorescence intensity in time. The instant, serial internal conversions from the B to the Qy and Qx states generate the coherent wave packets. Theory and experiment show that the observed vibrational modes involve the out-of-plane vibrations of the porphyrin ring that are strongly coupled to the internal conversion of H2TPP.

  13. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarizedmore » electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of {sup 75}As, {sup 69}Ga and {sup 71}Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.« less

  14. Quantum nuclear pasta and nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  15. Zero Nuclear Weapons and Nuclear Security Enterprise Modernization

    DTIC Science & Technology

    2011-01-01

    national security strategy. For the first time since the Manhattan Project , the United States was no longer building nuclear weapons and was in fact...50 to 60 years to the Manhattan Project and are on the verge of catastrophic failure. Caustic chemicals and processes have sped up the corrosion and...day, the United States must fund the long-term modernization effort of the entire enter­ prise. Notes 1. Nuclear Weapon Archive, “The Manhattan

  16. Understanding mechanisms of solid-state phase transformations by probing nuclear materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar; Donthula, Harish

    2018-04-01

    In this review a few examples will be cited to illustrate that a study on a specific nuclear material sometimes lead to a better understanding of scientific phenomena of broader interests. Zirconium alloys offer some unique opportunities in addressing fundamental issues such as (i) distinctive features between displacive and diffusional transformations, (ii) characteristics of shuffle and shear dominated displacive transformations and (iii) nature of mixed-mode transformations. Whether a transformation is of first or higher order?" is often raised while classifying it. There are rare examples, such as Ni-Mo alloys, in which during early stages of ordering the system experiences tendencies for both first order and second order transitions. Studies on the order-disorder transitions under a radiation environment have established the pathway for the evolution of ordering. These studies have also identified the temperature range over which the chemically ordered state remains stable in steady state under radiation.

  17. Shoreham Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated onmore » such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.« less

  18. Semiclassical Calculations of Peripheral Heavy-Ion Collisions at Fermi Energies and the Nuclear Equation of State

    NASA Astrophysics Data System (ADS)

    Souliotis, G. A.; Shetty, D. V.; Galanopoulos, S.; Yennello, S. J.

    2008-10-01

    A systematic study of quasi-elastic and deep-inelastic collisions at Fermi energies has been undertaken at Texas A&M aiming at obtaining information on the mechanism of nucleon exchange and the course towards N/Z equilibration [1,2]. We expect to get insight in the dynamics and the nuclear equation of state by comparing our experimental heavy residue data to detailed calculations using microscopic models of quantum molecular dynamics (QMD) type. At present, we have performed detailed calculations using the code CoMD (Constrained Molecular Dynamics) of A. Bonasera and M. Papa [3]. The code implements an effective interaction with a nuclear-matter compressibility of K=200 (soft EOS) with several forms of the density dependence of the nucleon-nucleon symmetry potential. CoMD imposes a constraint in the phase space occupation for each nucleon, effectively restoring the Pauli principle at each time step of the collision. Results of the calculations and comparisons with our data will be presented and implications concerning the isospin part of the nuclear equation of state will be discussed. [1] G.A. Souliotis et al., Phys. Rev. Lett. 91, 022701 (2003). [2] G.A. Souliotis et al., Phys. Lett. B 588, 35 (2004). [3] M. Papa et al., Phys. Rev. C 64, 024612 (2001).

  19. The Nuclear Non-Proliferation Treaty: Regulating Nuclear Weapons around the World

    ERIC Educational Resources Information Center

    Middleton, Tiffany Willey

    2010-01-01

    In May 2010, scientists, national security experts, and state delegates from nations around the world will convene in New York for the 2010 Nuclear Non-Proliferation Treaty Review Conference. They will review current guidelines for nuclear testing and possession of nuclear weapons in accordance with the Nuclear Non-Proliferation Treaty of 1968,…

  20. Power politics: National energy strategies of the nuclear newly independent states of Armenia, Lithuania and Ukraine

    NASA Astrophysics Data System (ADS)

    Sabonis-Chafee, Theresa Marie

    The successor states of Armenia, Lithuania and Ukraine arrived at independence facing extraordinary challenges in their energy sectors. Each state was a net importer, heavily dependent on cheap energy supplies, mostly from Russia. Each state also inherited a nuclear power complex over which it had not previously exercised full control. In the time period 1991--1996, each state attempted to impose coherence on the energy sector, selecting a new course for the pieces it had inherited from a much larger, highly integrated energy structure. Each state attempted to craft national energy policies in the midst of severe supply shocks and price shocks. Each state developed institutions to govern its nuclear power sector. The states' challenges were made even greater by the fact that they had few political or economic structures necessary for energy management, and sought to create those structures at the same time. This dissertation is a systematic, non-quantitative examination of how each state's energy policies developed during the 1991--1996 time period. The theoretical premise of the analysis (drawn from Statist realism) is that systemic variables---regional climate and energy vulnerability---provide the best explanations for the resulting energy policy decisions. The dependent variable is defined as creation and reform of energy institutions. The independent variables include domestic climate, regional climate, energy vulnerability and transnational assistance. All three states adopted rhetoric and legislation declaring energy a strategic sector. The evidence suggests that two of the states, Armenia and Lithuania, which faced tense regional climates and high levels of energy vulnerability, succeeded in actually treating energy strategically, approaching energy as a matter of national security or "high politics." The third state, Ukraine, failed to do so. The evidence presented suggests that the systemic variables (regional climate and energy vulnerability) provided a

  1. Nuclear Forensics

    DOE PAGES

    Glaser, Alexander; Mayer, Klaus

    2016-06-01

    Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realistically achieve.more » It also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less

  2. Nuclear Strategy and World Order: The United States Imperative.

    ERIC Educational Resources Information Center

    Beres, Louis Rene

    The current U.S. nuclear strategy goes beyond the legitimate objective of survivable strategic forces to active preparation for nuclear war. The Reagan administration strategy rejects minimum deterrence and prepares for a nuclear war that might be protracted and controlled. The strategy reflects the understanding that a combination of counterforce…

  3. Supernova equations of state including full nuclear ensemble with in-medium effects

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2017-01-01

    We construct new equations of state for baryons at sub-nuclear densities for the use in core-collapse supernova simulations. The abundance of various nuclei is obtained together with thermodynamic quantities. The formulation is an extension of the previous model, in which we adopted the relativistic mean field theory with the TM1 parameter set for nucleons, the quantum approach for d, t, h and α as well as the liquid drop model for the other nuclei under the nuclear statistical equilibrium. We reformulate the model of the light nuclei other than d, t, h and α based on the quasi-particle description. Furthermore, we modify the model so that the temperature dependences of surface and shell energies of heavy nuclei could be taken into account. The pasta phases for heavy nuclei and the Pauli- and self-energy shifts for d, t, h and α are taken into account in the same way as in the previous model. We find that nuclear composition is considerably affected by the modifications in this work, whereas thermodynamical quantities are not changed much. In particular, the washout of shell effect has a great impact on the mass distribution above T ∼ 1 MeV. This improvement may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  4. From Crisis to Transition: The State of Russian Science Based on Focus Groups with Nuclear Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, T P; Ball, D Y

    The collapse of the Soviet system led to a sharp contraction of state funding for science. Formerly privileged scientists suddenly confronted miserly salaries (often paid late), plummeting social prestige, deteriorating research facilities and equipment, and few prospects for improvement. Many departed the field of science for more lucrative opportunities, both within Russia and abroad. The number of inventions, patent applications, and publications by Russian scientists declined. Reports of desperate nuclear physicists seeking work as tram operators and conducting hunger strikes dramatized the rapid collapse of one of the contemporary world's most successful scientific establishments. Even more alarming was the 1996more » suicide of Vladimir Nechai, director of the second largest nuclear research center in Russia (Chelyabinsk-70, now known as Snezhinsk). Nechai, a respected theoretical physicist who spent almost 40 years working on Soviet and Russian nuclear programs, killed himself because he could no longer endure his inability to rectify a situation in which his employees had not been paid for more than 5 months and were ''close to starvation.'' The travails of Russia's scientists sparked interest in the West primarily because of the security threat posed by their situation. The seemingly relentless crisis in science raised fears that disgruntled scientists might sell their nuclear weapons expertise to countries or organizations that harbor hostile intentions toward the United States. Such concerns are particularly pressing in the wake of the September 2001 terrorist attacks in the US. At the same time, we should not overlook other critical implications that the state of Russian science has for Russia's long-term economic and political development. It is in the West's interest to see Russia develop a thriving market economy and stable democracy. A successful scientific community can help on both counts. Science and technology can attract foreign investment

  5. Solution and Solid State Nuclear Magnetic Resonance Spectroscopic Characterization of Efavirenz.

    PubMed

    Sousa, Eduardo Gomes Rodrigues de; Carvalho, Erika Martins de; San Gil, Rosane Aguiar da Silva; Santos, Tereza Cristina Dos; Borré, Leandro Bandeira; Santos-Filho, Osvaldo Andrade; Ellena, Javier

    2016-09-01

    Samples of efavirenz (EFZ) were evaluated to investigate the influence of the micronization process on EFZ stability. A combination of X-ray diffraction, thermal analysis, FTIR, observations of isotropic chemical shifts of (1)H in distinct solvents, their temperature dependence and spin-lattice relaxation time constants (T1), solution (1D and 2D) (13)C nuclear magnetic resonance (NMR), and solid-state (13)C NMR (CPMAS NMR) provides valuable structural information and structural elucidation of micronized EFZ and heptane-recrystallized polymorphs (EFZ/HEPT). This study revealed that the micronization process did not affect the EFZ crystalline structure. It was observed that the structure of EFZ/HEPT is in the same form as that obtained from ethyl acetate/hexane, as shown in the literature. A comparison of the solid-state NMR spectra revealed discrepancies regarding the assignments of some carbons published in the literature that have been resolved. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. 75 FR 7337 - Certifications Pursuant to Section 104 of the United States-India Nuclear Cooperation Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Agreement Between India and the International Atomic Energy Agency Memorandum for the Secretary of State... Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities, as approved by the Board of Governors of the International Atomic Energy Agency on...

  7. Symplectic no-core configuration interaction framework for ab initio nuclear structure. II. Structure of rotational states

    NASA Astrophysics Data System (ADS)

    Caprio, Mark A.; McCoy, Anna E.; Dytrych, Tomas

    2017-09-01

    Rotational band structure is readily apparent as an emergent phenomenon in ab initio nuclear many-body calculations of light nuclei, despite the incompletely converged nature of most such calculations at present. Nuclear rotation in light nuclei can be analyzed in terms of approximate dynamical symmetries of the nuclear many-body problem: in particular, Elliott's SU (3) symmetry of the three-dimensional harmonic oscillator and the symplectic Sp (3 , R) symmetry of three-dimensional phase space. Calculations for rotational band members in the ab initio symplectic no-core configuration interaction (SpNCCI) framework allow us to directly examine the SU (3) and Sp (3 , R) nature of rotational states. We present results for rotational bands in p-shell nuclei. Supported by the US DOE under Award No. DE-FG02-95ER-40934 and the Czech Science Foundation under Grant No. 16-16772S.

  8. Sliding Mode Approaches for Robust Control, State Estimation, Secure Communication, and Fault Diagnosis in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Ablay, Gunyaz

    Using traditional control methods for controller design, parameter estimation and fault diagnosis may lead to poor results with nuclear systems in practice because of approximations and uncertainties in the system models used, possibly resulting in unexpected plant unavailability. This experience has led to an interest in development of robust control, estimation and fault diagnosis methods. One particularly robust approach is the sliding mode control methodology. Sliding mode approaches have been of great interest and importance in industry and engineering in the recent decades due to their potential for producing economic, safe and reliable designs. In order to utilize these advantages, sliding mode approaches are implemented for robust control, state estimation, secure communication and fault diagnosis in nuclear plant systems. In addition, a sliding mode output observer is developed for fault diagnosis in dynamical systems. To validate the effectiveness of the methodologies, several nuclear plant system models are considered for applications, including point reactor kinetics, xenon concentration dynamics, an uncertain pressurizer model, a U-tube steam generator model and a coupled nonlinear nuclear reactor model.

  9. Nuclear-Pumped Lasers. [efficient conversion of energy liberated in nuclear reactions to coherent radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The state of the art in nuclear pumped lasers is reviewed. Nuclear pumped laser modeling, nuclear volume and foil excitation of laser plasmas, proton beam simulations, nuclear flashlamp excitation, and reactor laser systems studies are covered.

  10. A new equation of state Based on Nuclear Statistical Equilibrium for Core-Collapse Simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-09-01

    We calculate a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.

  11. NSCL and FRIB at Michigan State University: Nuclear science at the limits of stability

    NASA Astrophysics Data System (ADS)

    Gade, A.; Sherrill, B. M.

    2016-05-01

    The National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) is a scientific user facility that offers beams of rare isotopes at a wide range of energies. This article describes the facility, its capabilities, and some of the experimental devices used to conduct research with rare isotopes. The versatile nuclear science program carried out by researchers at NSCL continues to address the broad challenges of the field, employing sensitive experimental techniques that have been developed and optimized for measurements with rare isotopes produced by in-flight separation. Selected examples showcase the broad program, capabilities, and the relevance for forefront science questions in nuclear physics, addressing, for example, the limits of nuclear existence; the nature of the nuclear force; the origin of the elements in the cosmos; the processes that fuel explosive scenarios in the Universe; and tests for physics beyond the standard model of particle physics. NSCL will cease operations in approximately 2021. The future program will be carried out at the Facility for Rare Isotope Beams, FRIB, presently under construction on the MSU campus adjacent to NSCL. FRIB will provide fast, stopped, and reaccelerated beams of rare isotopes at intensities exceeding NSCL’s capabilities by three orders of magnitude. An outlook will be provided on the enormous opportunities that will arise upon completion of FRIB in the early 2020s.

  12. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance.

    PubMed

    Baugh, J; Moussa, O; Ryan, C A; Nayak, A; Laflamme, R

    2005-11-24

    The counter-intuitive properties of quantum mechanics have the potential to revolutionize information processing by enabling the development of efficient algorithms with no known classical counterparts. Harnessing this power requires the development of a set of building blocks, one of which is a method to initialize the set of quantum bits (qubits) to a known state. Additionally, fresh ancillary qubits must be available during the course of computation to achieve fault tolerance. In any physical system used to implement quantum computation, one must therefore be able to selectively and dynamically remove entropy from the part of the system that is to be mapped to qubits. One such method is an 'open-system' cooling protocol in which a subset of qubits can be brought into contact with an external system of large heat capacity. Theoretical efforts have led to an implementation-independent cooling procedure, namely heat-bath algorithmic cooling. These efforts have culminated with the proposal of an optimal algorithm, the partner-pairing algorithm, which was used to compute the physical limits of heat-bath algorithmic cooling. Here we report the experimental realization of multi-step cooling of a quantum system via heat-bath algorithmic cooling. The experiment was carried out using nuclear magnetic resonance of a solid-state ensemble three-qubit system. We demonstrate the repeated repolarization of a particular qubit to an effective spin-bath temperature, and alternating logical operations within the three-qubit subspace to ultimately cool a second qubit below this temperature. Demonstration of the control necessary for these operations represents an important step forward in the manipulation of solid-state nuclear magnetic resonance qubits.

  13. Deterrence of Nuclear Terrorism via Post-Detonation Attribution: Is the United States on Target?

    DTIC Science & Technology

    2009-12-01

    Dr. Vahid Majidi , then Assistant FBI Director for the Weapons of Mass Destruction Directorate, the FBI Laboratory Division is “central” to...www.fbi.gov/hq/nsb/wmd/wmd_home.htm. 236 Joint Working Group, Nuclear Forensics: Role, State of the Art, and Program Needs, 36. 237 Vahid Majidi ...accessed November 7, 2009). Majidi , Vahid. Written Testimony before the U.S. House of Representatives Homeland Security Committee, Subcommittee on

  14. Evaluation of external hazards to nuclear power plants in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.; Budnitz, R.J.

    1987-12-01

    The Lawrence Livermore National Laboratory (LLNL) has performed a study of the risk of core damage to nuclear power plants in the United States due to externally initiated events. The broad objective has been to gain an understanding of whether or not each external initiator is among the major potential accident initiators that may pose a threat of severe reactor core damage or of large radioactive release to the environment from the reactor. Four external hazards were investigated in this report. These external hazards are internal fires, high winds/tornadoes, external floods, and transportation accidents. Analysis was based on two figures-of-merit,more » one based on core damage frequency and the other based on the frequency of large radioactive releases. Using these two figures-of-merit as evaluation criteria, it has been feasible to ascertain whether the risk from externally initiated accidents is, or is not, an important contributor to overall risk for the US nuclear power plants studied. This has been accomplished for each initiator separately. 208 refs., 17 figs., 45 tabs.« less

  15. Evolution of United States and NATO tactical nuclear doctrine and limited nuclear war options, 1949-1964. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiorano, A.G.

    The debate over nuclear weapons in Europe and their utility as part of NATO's forward defense strategy persisted since the mid-1950s. Existing tactical nuclear employment doctrine and strategies are based on obsolete criteria and defense concepts established when the U.S. possessed superiority in nearly all nuclear categories. NATO has allowed its tactical nuclear doctrine and arsenal of battlefield nuclear weapons to deteriorate, choosing instead to rely on the American strategic nuclear umbrella for all but the most localized of conflicts. This thesis examines the development, stagnation and decline of NATO tactical nuclear doctrine and strategy from 1949 to 1984. Itmore » analyzes four tactical nuclear postures, drawing from each to recommend a viable tactical nuclear strategy for NATO today. The presence and potential employment of tactical nuclear weapons make it imperative that NATO devise an effective limited nuclear war strategy.« less

  16. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  17. Spent Nuclear Fuel

    EIA Publications

    2015-01-01

    Spent nuclear fuel data are collected by the U.S. Energy Information Administration (EIA) for the Department of Energy's Office of Standard Contract Management (Office of the General Counsel) on the Form GC-859, "Nuclear Fuel Data Survey." The data include detailed characteristics of spent nuclear fuel discharged from commercial U.S. nuclear power plants and currently stored at commercial sites in the United States. Utilities were not required to report spent nuclear fuel assemblies shipped to away-from-reactor, off-site facilities.

  18. Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablon, S.; Hrubec, Z.; Boice, J.D. Jr.

    Reports from the United Kingdom have described increases in leukemia and lymphoma among young persons living near certain nuclear installations. Because of concerns raised by these reports, a mortality survey was conducted in populations living near nuclear facilities in the United States. All facilities began service before 1982. Over 900,000 cancer deaths occurred from 1950 through 1984 in 107 counties with or near nuclear installations. Each study county was matched for comparison to three control counties in the same region. There were 1.8 million cancer deaths in the 292 control counties during the 35 years studied. Deaths due to leukemiamore » or other cancers were not more frequent in the study counties than in the control counties. For childhood leukemia mortality, the relative risk comparing the study counties with their controls before plant start-up was 1.08, while after start-up it was 1.03. For leukemia mortality at all ages, the relative risks were 1.02 before start-up and 0.98 after. For counties in two states, cancer incidence data were also available. For one facility, the standardized registration ratio for childhood leukemia was increased significantly after start-up. However, the increase also antedated the operation of this facility. The study is limited by the correlational approach and the large size of the geographic areas (counties) used. It does not prove the absence of any effect. If, however, any excess cancer risk was present in US counties with nuclear facilities, it was too small to be detected with the methods employed.« less

  19. The effects of electric power industry restructuring on the safety of nuclear power plants in the United States

    NASA Astrophysics Data System (ADS)

    Butler, Thomas S.

    Throughout the United States the electric utility industry is restructuring in response to federal legislation mandating deregulation. The electric utility industry has embarked upon an extraordinary experiment by restructuring in response to deregulation that has been advocated on the premise of improving economic efficiency by encouraging competition in as many sectors of the industry as possible. However, unlike the telephone, trucking, and airline industries, the potential effects of electric deregulation reach far beyond simple energy economics. This dissertation presents the potential safety risks involved with the deregulation of the electric power industry in the United States and abroad. The pressures of a competitive environment on utilities with nuclear power plants in their portfolio to lower operation and maintenance costs could squeeze them to resort to some risky cost-cutting measures. These include deferring maintenance, reducing training, downsizing staff, excessive reductions in refueling down time, and increasing the use of on-line maintenance. The results of this study indicate statistically significant differences at the .01 level between the safety of pressurized water reactor nuclear power plants and boiling water reactor nuclear power plants. Boiling water reactors exhibited significantly more problems than did pressurized water reactors.

  20. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH.

    PubMed

    Nikodem, Astrid; Levine, R D; Remacle, F

    2016-05-19

    The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion.

  1. Nuclear air cushion vehicles

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1973-01-01

    The state-of-the-art of the still-conceptual nuclear air cushion vehicle, particularly the nuclear powerplant is identified. Using mission studies and cost estimates, some of the advantages of nuclear power for large air cushion vehicles are described. The technology studies on mobile nuclear powerplants and conceptual ACV systems/missions studies are summarized.

  2. Nonstrategic Nuclear Weapons

    DTIC Science & Technology

    2017-02-21

    missiles; cruise missiles; and gravity bombs . In contrast with the longer-range “strategic” nuclear weapons, these weapons had a lower profile in policy...States sought to deploy dual-capable aircraft and nuclear bombs at bases on the territories of NATO members in eastern Europe. Neither NATO, as an...ballistic missiles; cruise missiles; and gravity bombs . The United States deployed these weapons with its troops in the field, aboard aircraft, on

  3. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  4. Nuclear Security for Floating Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology aremore » proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states« less

  5. Progress in Spin Dynamics Solid-State Nuclear Magnetic Resonance with the Application of Floquet-Magnus Expansion to Chemical Shift Anisotropy

    PubMed Central

    Mananga, Eugene Stephane

    2013-01-01

    The purpose of this article is to present an historical overview of theoretical approaches used for describing spin dynamics under static or rotating experiments in solid state nuclear magnetic resonance. The article gives a brief historical overview for major theories in nuclear magnetic resonance and the promising theories. We present the first application of Floquet-Magnus expansion to chemical shift anisotropy when irradiated by BABA pulse sequence. PMID:23711337

  6. Nuclear Energy, Nuclear Weapons Proliferation, and the Arms Race.

    ERIC Educational Resources Information Center

    Hollander, Jack, Ed.

    A symposium was organized to reexamine the realities of vertical proliferation between the United States and the Soviet Union and to place into perspective the horizontal proliferation of nuclear weapons throughout the world, including the possible role of commercial nuclear power in facilitating proliferation. The four invited symposium…

  7. PREFACE: 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"

    NASA Astrophysics Data System (ADS)

    Yamada, Taiichi; Kanada-En'yo, Yoshiko

    2014-12-01

    The 3rd International Workshop on "State of the Art in Nuclear Cluster Physics"(SOTANCP3) was held at KGU Kannai Media Center, Kanto Gakuin University, Yokohama, Japan, from May 26 to 30, 2014. Yokohama is the second largest city in Japan, about 25 km southeast of Tokyo. The first workshop of the series was held in Strasbourg, France, in 2008 and the second one was in Brussels, Belgium, in 2010. The purpose of SOTANCP3 was to discuss the present status and future perspectives of the nuclear cluster physics. The following nine topics were selected in order to cover most of the scientific programme and highlight an area where new ideas have emerged over recent years: (1) Cluster structures and many-body correlations in stable and unstable nuclei (2) Clustering aspects of nuclear reactions and resonances (3) Alpha condensates and analogy with condensed matter approaches (4) Role of tensor force in cluster physics and ab initio approaches (5) Clustering in hypernuclei (6) Nuclear fission, superheavy nuclei, and cluster decay (7) Cluster physics and nuclear astrophysics (8) Clustering in nuclear matter and neutron stars (9) Clustering in hadron and atomic physics There were 122 participants, including 53 from 17 foreign countries. In addition to invited talks, we had many talks selected from contributed papers. There were plenary, parallel, and poster sessions. Poster contributions were also presented as four-minute talks in parallel sessions. This proceedings contains the papers presented in invited and selected talks together with those presented in poster sessions. We would like to express our gratitude to the members of the International Advisory Committee and those of the Organizing Committee for their efforts which made this workshop successful. In particular we would like to present our great thanks to Drs. Y. Funaki, W. Horiuchi, N. Itagaki, M. Kimura, T. Myo, and T. Yoshida. We would like also to thank the following organizations for their sponsors: RCNP

  8. Progress on Cleaning Up the Only Commercial Nuclear Fuel Reprocessing Facility to Operate in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T. J.; MacVean, S. A.; Szlis, K. A.

    2002-02-26

    This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less

  9. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    2017-10-13

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  10. Measuring Long-Range 13C– 13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance [Measuring Long Range 13C– 13C Correlations on Surface under Natural Abundance Using DNP-enhanced Solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek

    Here, we report that spatial (<1 nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C– 13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization. Importantly, it allows the study of long-range correlations in a variety of materials with high resolution.

  11. Nuclear Photonics

    NASA Astrophysics Data System (ADS)

    Nedorezov, V. G.; Savel'ev-Trofimov, A. B.

    2017-12-01

    A review of works performed at the Institute for Nuclear Research of the Russian Academy of Sciences and at the International Laser Center of the Moscow State University in the context of the new research area called "nuclear photonics" is presented. Nuclear photonics is based on creation of the new-generation gamma-ray sources which make it possible to solve a number of fundamental and applied problems, including research of low-energy photonuclear reactions, namely, investigation of collective excitations of nuclei near the threshold (pygmy resonances); nuclear safety assurance; production of low-energy positron beams; and phase-contrast X-ray imaging.

  12. Spatiotemporal dynamics of HSV genome nuclear entry and compaction state transitions using bioorthogonal chemistry and super-resolution microscopy

    PubMed Central

    2017-01-01

    We investigated the spatiotemporal dynamics of HSV genome transport during the initiation of infection using viruses containing bioorthogonal traceable precursors incorporated into their genomes (HSVEdC). In vitro assays revealed a structural alteration in the capsid induced upon HSVEdC binding to solid supports that allowed coupling to external capture agents and demonstrated that the vast majority of individual virions contained bioorthogonally-tagged genomes. Using HSVEdC in vivo we reveal novel aspects of the kinetics, localisation, mechanistic entry requirements and morphological transitions of infecting genomes. Uncoating and nuclear import was observed within 30 min, with genomes in a defined compaction state (ca. 3-fold volume increase from capsids). Free cytosolic uncoated genomes were infrequent (7–10% of the total uncoated genomes), likely a consequence of subpopulations of cells receiving high particle numbers. Uncoated nuclear genomes underwent temporal transitions in condensation state and while ICP4 efficiently associated with condensed foci of initial infecting genomes, this relationship switched away from residual longer lived condensed foci to increasingly decondensed genomes as infection progressed. Inhibition of transcription had no effect on nuclear entry but in the absence of transcription, genomes persisted as tightly condensed foci. Ongoing transcription, in the absence of protein synthesis, revealed a distinct spatial clustering of genomes, which we have termed genome congregation, not seen with non-transcribing genomes. Genomes expanded to more decondensed forms in the absence of DNA replication indicating additional transitional steps. During full progression of infection, genomes decondensed further, with a diffuse low intensity signal dissipated within replication compartments, but frequently with tight foci remaining peripherally, representing unreplicated genomes or condensed parental strands of replicated DNA. Uncoating and nuclear

  13. Relative performance of different types of passive dosimeters employing solid state nuclear track detectors.

    PubMed

    Jamil, K; Al-Ahmady, K K; Fazal-ur-Rehman; Ali, S; Qureshi, A A; Khan, H A

    1997-10-01

    Radon and its progeny, known to be carcinogenic, are a matter of great concern in underground mines and energy conserved air-tight houses. Different shapes of dosimeters using solid state nuclear track detectors (SSNTDs) have been devised to measure radon concentrations in mines and dwellings. Sometimes intercomparison of results is required by various laboratories working with solid state nuclear track detector-based passive dosimeters. The present work includes the determination of various parameters for a set of dosimeters consisting of (1) box-type, (2) pen-type, (3) tube-type, (4) Karlsruhe Diffusion Chamber, and (5) bare-type dosimeters. In this research two types of plastics, allyl-diglycol-carbonate (C12H18O7) and cellulose nitrate (C6H8O8N2) known as CR-39 and CN-85, respectively, have been employed. The detection efficiency for alpha particles from radon and its progeny for CR-39 and CN-85 have been compared. All experiments have been carried out in a custom-designed exposure chamber connected to a radon source. The calibration factors, in terms of Bq m(-3) per unit track density (1.0 cm(-2)) with respect to box-type dosimeter, have been determined for intercomparison and standardization of measured radon concentrations by a set of passive radon dosimeters used in various laboratories of the world.

  14. Accurate measurement of the first excited nuclear state in 235U

    NASA Astrophysics Data System (ADS)

    Ponce, F.; Swanberg, E.; Burke, J.; Henderson, R.; Friedrich, S.

    2018-05-01

    We have used superconducting high-resolution radiation detectors to measure the energy level of metastable Um235 as 76.737 ± 0.018 eV. The Um235 isomer is created from the α decay of 239Pu and embedded directly into the detector. When the Um235 subsequently decays, the energy is fully contained within the detector and is independent of the decay mode or the chemical state of the uranium. The detector is calibrated using an energy comb from a pulsed UV laser. A comparable measurement of the metastable Thm229 nucleus would enable a laser search for the exact transition energy in 229Th-Thm229 as a step towards developing the first ever nuclear (baryonic) clock.

  15. An Atlas of Nuclear Energy. A Non-Technical World Portrait of Commercial Nuclear Energy.

    ERIC Educational Resources Information Center

    Ball, John M.

    This atlas is a nontechnical presentation of the geography and history of world commercial nuclear power with particular emphasis on the United States. Neither pro- nor antinuclear, it presents commercial nuclear power data in a series of specially prepared, easily read maps, tables, and text. The first section (United States) includes information…

  16. Countering Putins Nuclear-Backed Aggression with a Continuous Nuclear-Capable Bomber Presence

    DTIC Science & Technology

    2016-05-13

    backed aggression can only be answered by a visible increase in nuclear capability in Europe. A nuclear-capable bomber force that permanently rotates ...permanently rotates through the EUCOM Area of Responsibility (AOR) would provide the United States with the ability to attack Putin’s strategy in three ways...One nuclear detonation in Europe would change the world. A BMD system cannot promise countries that it will negate every Russian nuclear missile

  17. Can you say `N`? NIMBY, NWPA and nuclear Preemption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    In Nevada v. Watkins, the Ninth Circuit Court of Appeals upheld the constitutionality of the 1987 NWPA amendments, which enabled the continued site characterization of Yucca Mountain and thwarted Nevada`s attempt to ban nuclear waste within its borders. The Watkins court ruled that Nevada`s statute, which banned nuclear waste, was preempted by NWPA. Nevada, like many states has passed laws that limit the storage, transportation or disposal of nuclear waste within its state boundaries. These statutes will meet the same fate as the one struck down in the Watkins decision - that is, until states rights in the area ofmore » nuclear energy are clarified. This note examines Watkins` application of the preemption doctrine, as well as general preemption principles, to determine what avenues may still be open to states seeking to regulate the disposal of nuclear waste. The Watkins decision neither discussed the fully authority of NWPA nor defined the extent of the federal government`s preemption of state regulation of nuclear waste disposal. However, Watkins seems to solidify the rationale of other recent court decisions holdings that Congress has occupied the nuclear-energy field. This interpretation could effectively eliminate any state regulatory power over the nuclear-energy field, including nuclear-waste disposal.« less

  18. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise requiredmore » to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.« less

  19. Discrimination of nuclear spin isomers exploiting the excited state dynamics of a quinodimethane derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obaid, Rana; Faculty of Pharmacy, Al-Quds University, Abu Dis, Palestine; Kinzel, Daniel

    2014-10-28

    Despite the concept of nuclear spin isomers (NSIs) exists since the early days of quantum mechanics, only few approaches have been suggested to separate different NSIs. Here, a method is proposed to discriminate different NSIs of a quinodimethane derivative using its electronic excited state dynamics. After electronic excitation by a laser field with femtosecond time duration, a difference in the behavior of several quantum mechanical operators can be observed. A pump-probe experimental approach for separating these different NSIs is then proposed.

  20. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    PubMed

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  1. Optimally moderated nuclear fission reactor and fuel source therefor

    DOEpatents

    Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID

    2008-07-22

    An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

  2. Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.

    PubMed

    Takahashi, Hiroki; Ayala, Isabel; Bardet, Michel; De Paëpe, Gaël; Simorre, Jean-Pierre; Hediger, Sabine

    2013-04-03

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool.

  3. Modeling of Steady-state Scenarios for the Fusion Nuclear Science Facility, Advanced Tokamak Approach

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Chan, V. S.; Prater, R.; Smith, S. P.; St. John, H. E.; Meneghini, O.

    2013-10-01

    A Fusion National Science Facility (FNSF) would complement ITER in addressing the community identified science and technology gaps to a commercially attractive DEMO, including breeding tritium and completing the fuel cycle, qualifying nuclear materials for high fluence, developing suitable materials for the plasma-boundary interface, and demonstrating power extraction. Steady-state plasma operation is highly desirable to address the requirements for fusion nuclear technology testing [1]. The Advanced Tokamak (AT) is a strong candidate for an FNSF as a consequence of its mature physics base, capability to address the key issues with a more compact device, and the direct relevance to an attractive target power plant. Key features of AT are fully noninductive current drive, strong plasma cross section shaping, internal profiles consistent with high bootstrap fraction, and operation at high beta, typically above the free boundary limit, βN > 3 . Work supported by GA IR&D funding, DE-FC02-04ER54698, and DE-FG02-95ER43309.

  4. Extra-Territorial Siting of Nuclear Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Thomas E.; Morris, Frederic A.

    2009-10-07

    Arrangements might be created for siting nuclear installations on land ceded by a host State for administration by an international or multinational organization. Such arrangements might prove useful in terms of resolving suspicions of proliferation in troubled areas of the world, or as a means to introduce nuclear activities into areas where political, financial or technical capabilities might otherwise make such activities unsound, or as a means to enable global solutions to be instituted for major nuclear concerns (e.g., spent fuel management). The paper examines practical matters associated with the legal and programmatic aspects of siting nuclear installations, including diplomatic/politicalmore » frameworks, engaging competent industrial bodies, protection against seizure, regulation to ensure safety and security, waste management, and conditions related to the dissolution of the extra-territorial provisions as may be agreed as the host State(s) achieve the capabilities to own and operate the installations. The paper considers the potential for using such a mechanism across the spectrum of nuclear power activities, from mining to geological repositories for nuclear waste. The paper considers the non-proliferation dimensions associated with such arrangements, and the pros and cons affecting potential host States, technology vendor States, regional neighbors and the international community. It considers in brief potential applications in several locations today.« less

  5. State-level legal preparedness for nuclear and radiological emergencies in the U.S.: a network analysis of state laws and regulations.

    PubMed

    Guclu, Hasan; Ferrell Bjerke, Elizabeth; Galvan, Jared; Sweeney, Patricia; Potter, Margaret A

    2014-01-01

    This study explored if and to what extent the laws of U.S. states mirrored the U.S. federal laws for responding to nuclear-radiological emergencies (NREs). Emergency laws from a 12-state sample and the federal government were retrieved and translated into numeric codes representing acting agents, their partner agents, and the purposes of activity in terms of preparedness, response, and recovery. We used network analysis to explore the relationships among agents in terms of legally directed NRE activities. States' legal networks for NREs appear as not highly inclusive, involving an average of 28% of agents among those specified in the federal laws. Certain agents are highly central in NRE networks, so that their capacity and effectiveness might strongly influence an NRE response. State-level lawmakers and planners might consider whether or not greater inclusion of agents, modeled on the federal government laws, would enhance their NRE laws and if more agents should be engaged in planning and policy-making for NRE incidents. Further research should explore if and to what extent legislated NRE directives impose constraints on practical response activities including emergency planning.

  6. Supporting Our Nation's Nuclear Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Peter

    2011-12-16

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  7. Supporting Our Nation's Nuclear Industry

    ScienceCinema

    Lyons, Peter

    2018-02-07

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  8. Planning for the worst in Washington State: initial response planning for improvised nuclear device explosions.

    PubMed

    Poeton, Richard W; Glines, Wayne M; McBaugh, Debra

    2009-01-01

    Since 11 September 2001, improvised nuclear devices have become recognized as an important radiological threat requiring emergency response planning. Although Protective Action Guidance is well established for fixed nuclear facilities, correspondingly well-developed guidance does not exist for nuclear explosions. The Washington State Department of Health has developed preplanned Protective Action Recommendations for improvised nuclear device explosions. These recommendations recognize the need for advice to the public soon after such an event, before significant data are available. They can be used before significant outside support is available locally, and reference observable effects so people can use them if communications were disabled. The recommendations focus on early actions (24-48 h) and place priority on actions to avoid deterministic health effects due to residual fallout. Specific emphasis is placed on determining recommendations for evacuation, as well as the extent of the area for sheltering. The key recommendations developed for an initial public response are: (1) if there is ready access to robust shelter such as an underground basement or interior spaces in a multi-story structure, immediate sheltering in these areas is the best action, regardless of location; (2) if robust shelter is not available, and if fallout is observed in the area, then evacuation is the best general recommendation for locations within 16 km (10 miles) of the explosion; and (3) beyond 16 km (10 miles), the generally recommended protective action is to shelter in the best-protected location which is readily available.

  9. Nuclear waste disposal: Gambling on Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginsburg, S.

    1995-05-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.

  10. The continuing risk of nuclear war.

    PubMed

    McCoy, Ronald

    2007-01-01

    Climate change and nuclear war are currently the most dangerous challenges to human civilisation and survival. The effects of climate change are now sufficient to persuade many governments to take effective measures to reduce greenhouse gas emissions. Today there are about 27,000 nuclear warheads, many at least ten times more powerful than the Hiroshima and Nagasaki bombs, and a meaningful medical response to a nuclear attack is impossible. Nevertheless, the threat of nuclear war does not raise public concern, and indeed the nuclear-weapon states are upgrading their capability. The only effective preventive measure is the abolition of nuclear weapons. Steps towards this include: a Fissile Material Cut-off Treaty, for the nuclear weapon states to observe their obligations under the Nuclear Non-Proliferation Treaty, and for the Comprehensive Test Ban Treaty to enter into force. The ultimate need is for a Nuclear Weapons Convention; International Physicians for the Prevention of Nuclear War have launched an International Campaign to Abolish Nuclear weapons (ICAN) to promote a NWC.

  11. International perceptions of US nuclear policy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, Elizabeth A.

    The report presents a summary of international perceptions and beliefs about US nuclear policy, focusing on four countries--China, Iran, Pakistan and Germany--chosen because they span the spectrum of states with which the United States has relationships. A paradox is pointed out: that although the goal of US nuclear policy is to make the United States and its allies safer through a policy of deterrence, international perceptions of US nuclear policy may actually be making the US less safe by eroding its soft power and global leadership position. Broadly held perceptions include a pattern of US hypocrisy and double standards--one setmore » for the US and its allies, and another set for all others. Importantly, the US nuclear posture is not seen in a vacuum, but as one piece of the United States behavior on the world stage. Because of this, the potential direct side effects of any negative international perceptions of US nuclear policy can be somewhat mitigated, dependent on other US policies and actions. The more indirect and long term relation of US nuclear policy to US international reputation and soft power, however, matters immensely to successful multilateral and proactive engagement on other pressing global issues.« less

  12. Nuclear Enterprise Performance Measurement

    DTIC Science & Technology

    2011-03-01

    xi I. Introduction ...WSA: Weapons Storage Area 1 I. Introduction Overview This paper discusses United States Air Force nuclear enterprise...sustainment systems. Keywords Performance measurement, process measurement, strategy, multicriteria decision- making, aggregation 1. Introduction Nuclear

  13. Extended Deterrence, Nuclear Proliferation, and START III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speed, R.D.

    2000-06-20

    Early in the Cold War, the United States adopted a policy of ''extended nuclear deterrence'' to protect its allies by threatening a nuclear strike against any state that attacks these allies. This threat can (in principle) be used to try to deter an enemy attack using conventional weapons or one using nuclear, chemical, or biological weapons. The credibility of a nuclear threat has long been subject to debate and is dependent on many complex geopolitical factors, not the least of which is the military capabilities of the opposing sides. The ending of the Cold War has led to a significantmore » decrease in the number of strategic nuclear weapons deployed by the United States and Russia. START II, which was recently ratified by the Russian Duma, will (if implemented) reduce the number deployed strategic nuclear weapons on each side to 3500, compared to a level of over 11,000 at the end of the Cold War in 1991. The tentative limit established by Presidents Clinton and Yeltsin for START III would reduce the strategic force level to 2000-2500. However, the Russians (along with a number of arms control advocates) now argue that the level should be reduced even further--to 1500 warheads or less. The conventional view is that ''deep cuts'' in nuclear weapons are necessary to discourage nuclear proliferation. Thus, as part of the bargain to get the non-nuclear states to agree to the renewal of the Nuclear Non-Proliferation Treaty, the United States pledged to work towards greater reductions in strategic forces. Without movement in the direction of deep cuts, it is thought by many analysts that some countries may decide to build their own nuclear weapons. Indeed, this was part of the rationale India used to justify its own nuclear weapons program. However, there is also some concern that deep cuts (to 1500 or lower) in the U.S. strategic nuclear arsenal could have the opposite effect. The fear is that such cuts might undermine extended deterrence and cause a crisis in

  14. The harmonic oscillator and nuclear physics

    NASA Technical Reports Server (NTRS)

    Rowe, D. J.

    1993-01-01

    The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.

  15. Equation of state for nucleonic matter and its quark mass dependence from the nuclear force in lattice QCD.

    PubMed

    Inoue, Takashi; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2013-09-13

    Quark mass dependence of the equation of state (EOS) for nucleonic matter is investigated, on the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon interaction extracted from lattice QCD simulations. We observe saturation of nuclear matter at the lightest available quark mass corresponding to the pseudoscalar meson mass ≃469  MeV. Mass-radius relation of the neutron stars is also studied with the EOS for neutron-star matter from the same nuclear force in lattice QCD. We observe that the EOS becomes stiffer and thus the maximum mass of neutron star increases as the quark mass decreases toward the physical point.

  16. RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations

    NASA Astrophysics Data System (ADS)

    Kirsch, L. E.; Bernstein, L. A.

    2018-06-01

    A new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the use of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.

  17. RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations

    DOE PAGES

    Kirsch, L. E.; Bernstein, L. A.

    2018-03-04

    In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less

  18. RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirsch, L. E.; Bernstein, L. A.

    In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less

  19. History of Nuclear Weapons Design and Production

    NASA Astrophysics Data System (ADS)

    Oelrich, Ivan

    2007-04-01

    The nuclear build-up of the United States and the Soviet Union during the Cold War is often portrayed as an arms race. Some part was indeed a bilateral competition, but much was the result of automatic application of technical advances as they became available, without careful consideration of strategic implications. Thus, the history of nuclear weapon design is partly designers responding to stated military needs and partly the world responding to constant innovations in nuclear capability. Today, plans for a new nuclear warhead are motivated primarily by the desire to maintain a nuclear design and production capability for the foreseeable future.

  20. Nuclear Weapons: DOD Assessed the Need for Each Leg of the Strategic Triad and Considered Other Reductions to Nuclear Forces

    DTIC Science & Technology

    2016-09-01

    NUCLEAR WEAPONS DOD Assessed the Need for Each Leg of the Strategic Triad and Considered Other Reductions to... Nuclear Forces Report to Congressional Requesters September 2016 GAO-16-740 United States Government Accountability Office United States...Government Accountability Office Highlights of GAO-16-740, a report to congressional requesters September 2016 NUCLEAR WEAPONS DOD Assessed

  1. 78 FR 22347 - GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-320; NRC-2013-0065] GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain Security Requirements AGENCY: Nuclear Regulatory Commission. ACTION: Exemption. FOR FURTHER INFORMATION CONTACT: John B. Hickman, Office of Federal and State Materials and Environmental...

  2. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State

    PubMed Central

    Looney, Chris; Zack, Richard S.; LaBonte, James R.

    2014-01-01

    Abstract In this paper we report on ground beetles (Coleoptera: Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity. PMID:24715791

  3. Photographs and Pamphlet about Nuclear Fallout. The Constitution Community: Postwar United States (1945 to Early 1970s).

    ERIC Educational Resources Information Center

    Lawlor, John M., Jr.

    In August 1945, the United States unleashed an atomic weapon against the Japanese at Hiroshima and Nagasaki and brought an end to World War II. These bombs killed in two ways -- by the blast's magnitude and resulting firestorm, and by nuclear fallout. After the Soviet Union exploded its first atom bomb in 1949, the Cold War waged between the two…

  4. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.

    2018-04-01

    The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.

  5. Nuclear Forensics. Chapter 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Klaus; Glaser, Alexander

    Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Here, analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realisticallymore » achieve. Lastly, it also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less

  6. Recent Advances in Characterization of Lignin Polymer by Solution-State Nuclear Magnetic Resonance (NMR) Methodology

    PubMed Central

    Wen, Jia-Long; Sun, Shao-Long; Xue, Bai-Liang; Sun, Run-Cang

    2013-01-01

    The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA), nitrobenzene oxidation (NBO), and derivatization followed by reductive cleavage (DFRC). Recent advances in nuclear magnetic resonance (NMR) technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ), as well as their applications are reviewed. PMID:28809313

  7. In defiance of nuclear deterrence: anti-nuclear New Zealand after two decades.

    PubMed

    Reitzig, Andreas

    2006-01-01

    In 1984, nuclear-armed and nuclear-powered vessels were banned from New Zealand to express the country's rejection of the nuclear deterrence concept. This led to a disagreement with the United States. Today, the ban on nuclear-powered ships is the only element of the nuclear-free legislation that still strains US-New Zealand relations. This article presents the reasons for the ban on nuclear-powered ships, which include scientific safety concerns, a symbolic rejection of the nuclear deterrence posture, and patriotic factors such as a nuclear-free national identity. The military and economic consequences of the ban are also examined. Since the ban on nuclear-powered vessels appears to be neither widely known abroad nor commonly recognised as a supportive disarmament measure outside New Zealand, it is concluded that whatever the future of this ban will be, New Zealand's anti-nuclear image will remain known internationally through the ban on nuclear arms.

  8. Nuclear power: levels of safety.

    PubMed

    Lidsky, L M

    1988-02-01

    The rise and fall of the nuclear power industry in the United States is a well-documented story with enough socio-technological conflict to fill dozens of scholarly, and not so scholarly, books. Whatever the reasons for the situation we are now in, and no matter how we apportion the blame, the ultimate choice of whether to use nuclear power in this country is made by the utilities and by the public. Their choices are, finally, based on some form of risk-benefit analysis. Such analysis is done in well-documented and apparently logical form by the utilities and in a rather more inchoate but not necessarily less accurate form by the public. Nuclear power has failed in the United States because both the real and perceived risks outweigh the potential benefits. The national decision not to rely upon nuclear power in its present form is not an irrational one. A wide ranging public balancing of risk and benefit requires a classification of risk which is clear and believable for the public to be able to assess the risks associated with given technological structures. The qualitative four-level safety ladder provides such a framework. Nuclear reactors have been designed which fit clearly and demonstrably into each of the possible qualitative safety levels. Surprisingly, it appears that safer may also mean cheaper. The intellectual and technical prerequisites are in hand for an important national decision. Deployment of a qualitatively different second generation of nuclear reactors can have important benefits for the United States. Surprisingly, it may well be the "nuclear establishment" itself, with enormous investments of money and pride in the existing nuclear systems, that rejects second generation reactors. It may be that we will not have a second generation of reactors until the first generation of nuclear engineers and nuclear power advocates has retired.

  9. Steady-state nuclear actin levels are determined by export competent actin pool.

    PubMed

    Skarp, Kari-Pekka; Huet, Guillaume; Vartiainen, Maria K

    2013-10-01

    A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin. Copyright © 2013 Wiley Periodicals, Inc.

  10. A new baryonic equation of state at sub-nuclear densities for core-collapse simulations

    NASA Astrophysics Data System (ADS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2012-11-01

    We construct a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is based on the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by using relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect to the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. It is also interesting that the root mean square of the mass number is not very different from the average mass number, since the former is important for the evaluation of coherent scattering rates on nuclei but has been unavailable so far.

  11. Nuclear proliferation-resistance and safeguards for future nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Kuno, Y.; Inoue, N.; Senzaki, M.

    2009-03-01

    Corresponding to the world nuclear security concerns, future nuclear fuel cycle (NFC) should have high proliferation-resistance (PR) and physical protection (PP), while promotion of the peaceful use of the nuclear energy must not be inhibited. In order to accomplish nuclear non-proliferation from NFC, a few models of the well-PR systems should be developed so that international community can recognize them as worldwide norms. To find a good balance of 'safeguard-ability (so-called extrinsic measure or institutional barrier)' and 'impede-ability (intrinsic feature or technical barrier)' will come to be essential for NFC designers to optimize civilian nuclear technology with nuclear non-proliferation, although the advanced safeguards with high detectability can still play a dominant role for PR in the states complying with full institutional controls. Accomplishment of such goal in a good economic efficiency is a future key challenge.

  12. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE PAGES

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    2018-02-26

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  13. The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.

    Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less

  14. Survey II of Public and Leadership Attitudes Toward Nuclear Power Development in the United States. Study No. 2628.

    ERIC Educational Resources Information Center

    Harris (Louis) and Associates, Inc., New York, NY.

    This publication details a national survey done by Louis Harris and Associates, similar to one done in 1975, to assess attitudes toward nuclear power in the United States. The survey consisted of three parts. The first part was in-person, door-to-door interviews with 1,597 randomly selected households nationwide. The second part was 309…

  15. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    Founded in 1996 upon the initiative of the “Group of 8” governments (G8), the Nuclear Forensics International Technical Working Group (ITWG) is an ad hoc organization of official nuclear forensics practitioners (scientists, law enforcement, and regulators) that can be called upon to provide technical assistance to the global community in the event of a seizure of nuclear or radiological materials. The ITWG is supported by and is affiliated with roughly 40 countries and international partner organizations including the International Atomic Energy Agency (IAEA), EURATOM, INTERPOL, EUROPOL, and the United Nations Interregional Crime and Justice Research Institute (UNICRI). Besides providing amore » network of nuclear forensics laboratories that are able to assist law enforcement during a nuclear smuggling event, the ITWG is also committed to the advancement of the science of nuclear forensic analysis, largely through participation in periodic table top and Collaborative Materials Exercises (CMXs). Exercise scenarios use “real world” samples with realistic forensics investigation time constraints and reporting requirements. These exercises are designed to promote best practices in the field and test, evaluate, and improve new technical capabilities, methods and techniques in order to advance the science of nuclear forensics. The ITWG recently completed its fourth CMX in the 20 year history of the organization. This was also the largest materials exercise to date, with participating laboratories from 16 countries or organizations. Three samples of low enriched uranium were shipped to these laboratories as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. An objective review of the State Of Practice and Art of international nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less

  16. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  17. Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Mananga, Eugène S; Charpentier, Thibault

    2011-07-28

    In this article, we present an alternative expansion scheme called Floquet-Magnus expansion (FME) used to solve a time-dependent linear differential equation which is a central problem in quantum physics in general and solid-state nuclear magnetic resonance (NMR) in particular. The commonly used methods to treat theoretical problems in solid-state NMR are the average Hamiltonian theory (AHT) and the Floquet theory (FT), which have been successful for designing sophisticated pulse sequences and understanding of different experiments. To the best of our knowledge, this is the first report of the FME scheme in the context of solid state NMR and we compare this approach with other series expansions. We present a modified FME scheme highlighting the importance of the (time-periodic) boundary conditions. This modified scheme greatly simplifies the calculation of higher order terms and shown to be equivalent to the Floquet theory (single or multimode time-dependence) but allows one to derive the effective Hamiltonian in the Hilbert space. Basic applications of the FME scheme are described and compared to previous treatments based on AHT, FT, and static perturbation theory. We discuss also the convergence aspects of the three schemes (AHT, FT, and FME) and present the relevant references. © 2011 American Institute of Physics

  18. Nuclear Taskforce Summation.

    ERIC Educational Resources Information Center

    1979

    At the end of 1978, there were approximately 230 nuclear-fueled electric generating plants around the world; 72 of these were in the United States. Each plant requires an operations-and-maintenance workforce of 92 people, and attrition occurs at a rate of 8% per year. Requirements for a nuclear taskforce and job training, in view of current…

  19. Pakistans Nuclear Weapons

    DTIC Science & Technology

    2016-02-12

    not be subject to International Atomic Energy Agency ( IAEA ) safeguards have the potential to produce 280...PNRA states that Pakistan follows IAEA physical protection standards. Proliferation A fundamental aspect of nuclear security is ensuring that...related to the design and fabrication of a nuclear explosive device,” according to the IAEA (Implementation of the NPT Safeguards Agreement in the

  20. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: application to SSSH.

    PubMed

    Kolmann, Stephen J; Jordan, Meredith J T

    2010-02-07

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol(-1) at the CCSD(T)/6-31G* level of theory, has a 4 kJ mol(-1) dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol(-1) lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol(-1) lower in energy at the CCSD(T)/6-31G* level of theory. Ideally, for sub-kJ mol(-1) thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  1. Method and basis set dependence of anharmonic ground state nuclear wave functions and zero-point energies: Application to SSSH

    NASA Astrophysics Data System (ADS)

    Kolmann, Stephen J.; Jordan, Meredith J. T.

    2010-02-01

    One of the largest remaining errors in thermochemical calculations is the determination of the zero-point energy (ZPE). The fully coupled, anharmonic ZPE and ground state nuclear wave function of the SSSH radical are calculated using quantum diffusion Monte Carlo on interpolated potential energy surfaces (PESs) constructed using a variety of method and basis set combinations. The ZPE of SSSH, which is approximately 29 kJ mol-1 at the CCSD(T)/6-31G∗ level of theory, has a 4 kJ mol-1 dependence on the treatment of electron correlation. The anharmonic ZPEs are consistently 0.3 kJ mol-1 lower in energy than the harmonic ZPEs calculated at the Hartree-Fock and MP2 levels of theory, and 0.7 kJ mol-1 lower in energy at the CCSD(T)/6-31G∗ level of theory. Ideally, for sub-kJ mol-1 thermochemical accuracy, ZPEs should be calculated using correlated methods with as big a basis set as practicable. The ground state nuclear wave function of SSSH also has significant method and basis set dependence. The analysis of the nuclear wave function indicates that SSSH is localized to a single symmetry equivalent global minimum, despite having sufficient ZPE to be delocalized over both minima. As part of this work, modifications to the interpolated PES construction scheme of Collins and co-workers are presented.

  2. Politics of nuclear waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colglazier, E.W. Jr.

    1982-01-01

    In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administrationmore » as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)« less

  3. Proliferation of Nuclear Weapons: Opportunities for Control and Abolition

    PubMed Central

    Sidel, Victor W.; Levy, Barry S.

    2007-01-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. “Horizontal” proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. “Vertical” proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation—and ultimately abolishing nuclear weapons—involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large. PMID:17666690

  4. Proliferation of nuclear weapons: opportunities for control and abolition.

    PubMed

    Sidel, Victor W; Levy, Barry S

    2007-09-01

    Nuclear weapons pose a particularly destructive threat. Prevention of the proliferation and use of nuclear weapons is urgently important to public health. "Horizontal" proliferation refers to nation-states or nonstate entities that do not have, but are acquiring, nuclear weapons or developing the capability and materials for producing them. "Vertical" proliferation refers to nation-states that do possess nuclear weapons and are increasing their stockpiles of these weapons, improving the technical sophistication or reliability of their weapons, or developing new weapons. Because nation-states or other entities that wish to use or threaten to use nuclear weapons need methods for delivering those weapons, proliferation of delivery mechanisms must also be prevented. Controlling proliferation--and ultimately abolishing nuclear weapons--involves national governments, intergovernmental organizations, nongovernmental and professional organizations, and society at large.

  5. Federal Guidance Report No. 4: Estimates and Evaluation of Fallout in the United States from Nuclear Weapons Testing Conducted Through 1962

    EPA Pesticide Factsheets

    This Federal Radiation Council report includes a full study and analysis of fallout expected in 1963 from nuclear testing that occurred in the past. This report covers fallout expected from Soviet and United States tests through 1962.

  6. 75 FR 42690 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... Civil Nuclear Trade Advisory Committee (CINTAC). The members will discuss issues outlined in the... States exports of civil nuclear goods and services in accordance with applicable United States...

  7. Sensitivity of the nuclear deformability and fission barriers to the equation of state

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Anwer, Hisham

    2018-07-01

    The model-dependent analysis of the fission data impacts the extracted fission-related quantities, which are not directly observables, such as the super- and hyperdeformed isomeric states and their energies. We investigated the model dependence of the deformability of a nucleus and its fission barriers on the nuclear equation of state. Within the microscopic-macroscopic model based on a large number of Skyrme nucleon-nucleon interactions, the total energy surfaces and the double-humped fission barrier of 230Th are calculated in a multidimensional deformation space. In addition to the ground-state (GS) and the superdeformed (SD) minima, all the investigated forces yielded a hyperdeformed (HD) minimum. The contour map of the shell-plus-pairing energy clearly displayed the three minima. We found that the GS binding energy and the deformation energy of the different deformation modes along the fission path increase with the incompressibility coefficient K0, while the fission barrier heights and the excitation energies of the SD and HD modes decrease with it. Conversely, the surface-energy coefficient asurf, the symmetry-energy, and its density-slope parameter decrease the GS energy and the deformation energies, but increase the fission barrier heights and the excitation energies. The obtained deformation parameters of the different deformation modes exhibit almost independence on K0, and on the symmetry-energy and its density-slope. The principle deformation parameters of the SD and HD isomeric states tend to decrease with asurf.

  8. 75 FR 36634 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... the Civil Nuclear Trade Advisory Committee (CINTAC). The members will discuss issues outlined in the... States exports of civil nuclear goods and services in accordance with applicable United States...

  9. 75 FR 8922 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... the Civil Nuclear Trade Advisory Committee (CINTAC). The members will discuss issues outlined in the... States exports of civil nuclear goods and services in accordance with applicable United States...

  10. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    DOE PAGES

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    2016-09-16

    The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques weremore » applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less

  11. State of practice and emerging application of analytical techniques of nuclear forensic analysis: highlights from the 4th Collaborative Materials Exercise of the Nuclear Forensics International Technical Working Group (ITWG)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.

    The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques weremore » applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less

  12. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  13. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    DTIC Science & Technology

    2007-11-01

    critical aspect of the nuclear fuel cycle for the United States, where longstanding nonproliferation policy discouraged commercial nuclear fuel...perhaps the most critical question in this decade for strengthening the nuclear nonproliferation regime: how can access to sensitive fuel cycle...process can take advantage of the slight difference in atomic mass between 235U and 238U. The typical enrichment process requires about 10 lbs of uranium

  14. Leo Szilard Lectureship Award Talk: Nuclear disarmament after the cold war

    NASA Astrophysics Data System (ADS)

    Podvig, Pavel

    2008-04-01

    Now that the cold war is long over, our thinking of nuclear weapons and the role that they play in international security has undergone serious changes. The emphasis has shifted from superpower confrontation to nuclear proliferation, spread of weapon materials, and to the dangers of countries developing nuclear weapon capability under a cover of a civilian program. At the same time, the old cold-war dangers, while receded, have not disappeared completely. The United States and Russia keep maintaining thousands of nuclear weapons in their arsenals, some of them in very high degree of readiness. This situation presents a serious challenge that the international community has to deal with. Although Russia and the United States are taking some steps to reduce their nuclear arsenals, the traditional arms control process has stalled -- the last treaty that was signed in 2002 does not place serious limits on strategic forces of either side. The START Treaty, which provides a framework for verification and transparency in reduction of nuclear arsenals, will expire at the end of 2009. Little effort has been undertaken to extend the treaty or renegotiate it. Moreover, in recent years Russia has stepped up the efforts to modernize its strategic nuclear forces. The United States has resisted joining the Comprehensive Nuclear Test Ban Treaty and has been working on controversial new nuclear weapon development programs. The U.S. missile defense program makes the dialogue between Russia and the United States even more difficult. The reluctance of Russia and the United States to engage in a discussion about drastic reductions of their nuclear forces undermines the case of nuclear nonproliferation and seriously complicated their effort to contain the spread of nuclear weapon technologies and expertise. One of the reasons for the current lack of progress in nuclear disarmament is the contradiction between the diminished role that nuclear weapons play in security of nuclear weapon

  15. Experiment and Theory for Nuclear Reactions in Nano-Materials Show e14 - e16 Solid-State Fusion Reactions

    NASA Astrophysics Data System (ADS)

    George, Russ

    2005-03-01

    Nano-lattices of deuterium loving metals exhibit coherent behavior by populations of deuterons (d's) occupying a Bloch state. Therein, coherent d-overlap occurs wherein the Bloch condition reduces the Coulomb barrier.Overlap of dd pairs provides a high probability fusion will/must occur. SEM photo evidence showing fusion events is now revealed by laboratories that load or flux d into metal nano-domains. Solid-state dd fusion creates an excited ^4He nucleus entangled in the large coherent population of d's.This contrasts with plasma dd fusion in collision space where an isolated excited ^4He nucleus seeks the ground state via fast particle emission. In momentum limited solid state fusion,fast particle emission is effectively forbidden.Photographed nano-explosive events are beyond the scope of chemistry. Corroboration of the nuclear nature derives from photographic observation of similar events on spontaneous fission, e.g. Cf. We present predictive theory, heat production, and helium isotope data showing reproducible e14 to e16 solid-state fusion reactions.

  16. Multi-state trajectory approach to non-adiabatic dynamics: General formalism and the active state trajectory approximation

    NASA Astrophysics Data System (ADS)

    Tao, Guohua

    2017-07-01

    A general theoretical framework is derived for the recently developed multi-state trajectory (MST) approach from the time dependent Schrödinger equation, resulting in equations of motion for coupled nuclear-electronic dynamics equivalent to Hamilton dynamics or Heisenberg equation based on a new multistate Meyer-Miller (MM) model. The derived MST formalism incorporates both diabatic and adiabatic representations as limiting cases and reduces to Ehrenfest or Born-Oppenheimer dynamics in the mean-field or the single-state limits, respectively. In the general multistate formalism, nuclear dynamics is represented in terms of a set of individual state-specific trajectories, while in the active state trajectory (AST) approximation, only one single nuclear trajectory on the active state is propagated with its augmented images running on all other states. The AST approximation combines the advantages of consistent nuclear-coupled electronic dynamics in the MM model and the single nuclear trajectory in the trajectory surface hopping (TSH) treatment and therefore may provide a potential alternative to both Ehrenfest and TSH methods. The resulting algorithm features in a consistent description of coupled electronic-nuclear dynamics and excellent numerical stability. The implementation of the MST approach to several benchmark systems involving multiple nonadiabatic transitions and conical intersection shows reasonably good agreement with exact quantum calculations, and the results in both representations are similar in accuracy. The AST treatment also reproduces the exact results reasonably, sometimes even quantitatively well, with a better performance in the adiabatic representation.

  17. UNITED STATES DEPARTMENT OF HEALTH AND HUMAN SERVICES BIODOSIMETRY AND RADIOLOGICAL/NUCLEAR MEDICAL COUNTERMEASURE PROGRAMS.

    PubMed

    Homer, Mary J; Raulli, Robert; DiCarlo-Cohen, Andrea L; Esker, John; Hrdina, Chad; Maidment, Bert W; Moyer, Brian; Rios, Carmen; Macchiarini, Francesca; Prasanna, Pataje G; Wathen, Lynne

    2016-09-01

    The United States Department of Health and Human Services (HHS) is fully committed to the development of medical countermeasures to address national security threats from chemical, biological, radiological, and nuclear agents. Through the Public Health Emergency Medical Countermeasures Enterprise, HHS has launched and managed a multi-agency, comprehensive effort to develop and operationalize medical countermeasures. Within HHS, development of medical countermeasures includes the National Institutes of Health (NIH), (led by the National Institute of Allergy and Infectious Diseases), the Office of the Assistant Secretary of Preparedness and Response/Biomedical Advanced Research and Development Authority (BARDA); with the Division of Medical Countermeasure Strategy and Requirements, the Centers for Disease Control and Prevention, and the Food and Drug Administration as primary partners in this endeavor. This paper describes various programs and coordinating efforts of BARDA and NIH for the development of medical countermeasures for radiological and nuclear threats. © World Health Organisation 2016. All rights reserved. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  18. Potential Nuclear Conflict: Attention Adult Educators.

    ERIC Educational Resources Information Center

    Gleazer, Edmund J.

    1983-01-01

    Teaching about potential nuclear conflict is increasing in schools, colleges, and universities. A group of faculty from many universities across the United States has formed United Campuses to Prevent Nuclear War (UCAM) to produce teaching materials and publish summaries of courses on nuclear war. One such course at Lafayette College…

  19. Consequences of Regional Scale Nuclear Conflicts and Acts of Individual Nuclear Terrorism

    NASA Astrophysics Data System (ADS)

    Toon, O. B.; Turco, R. P.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    The number of nuclear warheads in the world has fallen by about a factor of three since its peak in 1986. However, the potential exists for numerous regional nuclear arms races, and for a significant expansion in the number of nuclear weapons states. Eight countries are known to have nuclear weapons, 2 are constructing them, and an additional 32 nations already have the fissile material needed to build weapons if they so desire. Population and economic activity worldwide are congregated to an increasing extent in "megacities", which are ideal targets for nuclear weapons. We find that low yield weapons, which new nuclear powers are likely to construct, can produce 100 times as many fatalities and 100 times as much smoke from fires per kt yield as high-yield weapons, if they are targeted at city centers. A single low-yield nuclear detonation in an urban center could lead to more fatalities, in some cases by orders of magnitude, than have occurred in major historical conflicts. A regional war between the smallest current nuclear states involving 100 15-kt explosions (less than 0.1% of the explosive yield of the current global nuclear arsenal) could produce direct fatalities comparable to all of those worldwide in World War II (WW-II), or to those once estimated for a "counterforce" nuclear war between the superpowers. Portions of megacities attacked with nuclear devices or exposed to fallout of long-lived isotopes, through armed conflict or terrorism, would likely be abandoned indefinitely, with severe national and international implications. Smoke from urban firestorms in a regional war might induce significant climatic and ozone anomalies on global scales. While there are many uncertainties in the issues we discuss here, the major uncertainties are the type and scale of conflict that might occur. Each of these potential hazards deserves careful analysis by governments worldwide advised by a broad section of the world scientific community, as well as widespread

  20. "Life without nuclear power": A nuclear plant retirement formulation model and guide based on economics. San Onofre Nuclear Generating Station case: Economic impacts and reliability considerations leading to plant retirement

    NASA Astrophysics Data System (ADS)

    Wasko, Frank

    Traditionally, electric utilities have been slow to change and very bureaucratic in nature. This culture, in and of itself, has now contributed to a high percentage of United States electric utilities operating uneconomical nuclear plants (Crooks, 2014). The economic picture behind owning and operating United States nuclear plants is less than favorable for many reasons including rising fuel, capital and operating costs (EUCG, 2012). This doctoral dissertation is specifically focused on life without nuclear power. The purpose of this dissertation is to create a model and guide that will provide electric utilities who currently operate or will operate uneconomical nuclear plants the opportunity to economically assess whether or not their nuclear plant should be retired. This economic assessment and stakeholder analysis will provide local government, academia and communities the opportunity to understand how Southern California Edison (SCE) embraced system upgrade import and "voltage support" opportunities to replace "base load" generation from San Onofre Nuclear Generating Station (SONGS) versus building new replacement generation facilities. This model and guide will help eliminate the need to build large replacement generation units as demonstrated in the SONGS case analysis. The application of The Nuclear Power Retirement Model and Guide will provide electric utilities with economic assessment parameters and an evaluation assessment progression needed to better evaluate when an uneconomical nuclear plant should be retired. It will provide electric utilities the opportunity to utilize sound policy, planning and development skill sets when making this difficult decision. There are currently 62 nuclear power plants (with 100 nuclear reactors) operating in the United States (EIA, 2014). From this group, 38 are at risk of early retirement based on the work of Cooper (2013). As demonstrated in my model, 35 of the 38 nuclear power plants qualify to move to the economic

  1. Nuclear Data Sheets for A = 136

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2002-04-01

    Experimental data on ground-- and excited--state properties for all known nuclei with mass number A=136 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are presented. This work supersedes the 1994 evaluation by J.K. Tuli (1994Tu01).

  2. Integrating nuclear weapons stockpile management and nuclear arms control to enable significant stockpile reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, Lani Miyoshi; DeLand, Sharon M.; Pregenzer, Arian L.

    2010-11-01

    In his 2009 Prague speech and the 2010 Nuclear Posture Review, President Barack Obama committed the United States to take concrete steps toward nuclear disarmament while maintaining a safe, secure, and effective nuclear deterrent. There is an inherent tension between these two goals that is best addressed through improved integration of nuclear weapons objectives with nuclear arms control objectives. This article reviews historical examples of the interaction between the two sets of objectives, develops a framework for analyzing opportunities for future integration, and suggests specific ideas that could benefit the nuclear weapons enterprise as it undergoes transformation and that couldmore » make the future enterprise compatible with a variety of arms control futures.« less

  3. Climatic Consequences of Nuclear Conflict

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2011-12-01

    A nuclear war between Russia and the United States could still produce nuclear winter, even using the reduced arsenals of about 4000 total nuclear weapons that will result by 2017 in response to the New START treaty. A nuclear war between India and Pakistan, with each country using 50 Hiroshima-sized atom bombs as airbursts on urban areas, could produce climate change unprecedented in recorded human history. This scenario, using much less than 1% of the explosive power of the current global nuclear arsenal, would produce so much smoke from the resulting fires that it would plunge the planet to temperatures colder than those of the Little Ice Age of the 16th to 19th centuries, shortening the growing season around the world and threatening the global food supply. Crop model studies of agriculture in the U.S. and China show massive crop losses, even for this regional nuclear war scenario. Furthermore, there would be massive ozone depletion with enhanced ultraviolet radiation reaching the surface. These surprising conclusions are the result of recent research (see URL) by a team of scientists including those who produced the pioneering work on nuclear winter in the 1980s, using the NASA GISS ModelE and NCAR WACCM GCMs. The soot is self-lofted into the stratosphere, and the effects of regional and global nuclear war would last for more than a decade, much longer than previously thought. Nuclear proliferation continues, with nine nuclear states now, and more working to develop or acquire nuclear weapons. The continued environmental threat of the use of even a small number of nuclear weapons must be considered in nuclear policy deliberations in Russia, the U.S., and the rest of the world.

  4. Nuclear Security in the 21^st Century

    NASA Astrophysics Data System (ADS)

    Archer, Daniel E.

    2006-10-01

    Nuclear security has been a priority for the United States, starting in the 1940s with the secret cities of the Manhattan Project. In the 1970s, the United States placed radiation monitoring equipment at nuclear facilities to detect nuclear material diversion. Following the breakup of the Soviet Union, cooperative Russian/U.S. programs were launched in Russia to secure the estimated 600+ metric tons of fissionable materials against diversion (Materials Protection, Control, and Accountability -- MPC&A). Furthermore, separate programs were initiated to detect nuclear materials at the country's borders in the event that these materials had been stolen (Second Line of Defense - SLD). In the 2000s, new programs have been put in place in the United States for radiation detection, and research is being funded for more advanced systems. This talk will briefly touch on the history of nuclear security and then focus on some recent research efforts in radiation detection. Specifically, a new breed of radiation monitors will be examined along with the concept of sensor networks.

  5. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    PubMed

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  6. Can Shale Safely Host U.S. Nuclear Waste?

    NASA Astrophysics Data System (ADS)

    Neuzil, C. E.

    2013-07-01

    Even as cleanup efforts after Japan's Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America's Nuclear Future, 2012].

  7. Nuclear Data Sheets for A = 69

    NASA Astrophysics Data System (ADS)

    Nesaraja, C. D.

    2014-01-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A = 69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05).

  8. Nuclear Data Sheets for A=69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesaraja, C.D.

    Experimental data on ground– and excited–state properties for all known nuclei with mass number A=69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05)

  9. Python-Based Tool for Universal Nuclear Data Extraction

    NASA Astrophysics Data System (ADS)

    McDonald, William; Blair, Hayden; Consalvi, Peter; Garbiso, Markus; Grover, Hannah; Harget, Alex; Martin, Matthew; Natzke, Connor; Leach, Kyle

    2017-09-01

    Over the past 70 years, nuclear physics experiments have provided a vast wealth of experimental data on both ground and excited state properties across the nuclear chart. In many cases, searching for and parsing the relevant nuclear structure data from previous work can be tedious and difficult. Although the compilation, evaluation, and digitization of this data by multiple groups around the world over the past several decades has helped dramatically in this respect, the process of performing systematic studies using this data can still be cumbersome and limited. We are in the process of creating a python-based program to extract, sort, and manipulate nuclear and atomic data efficiently. In its current state, the program is able to extract all atomic-shell ionization energies, excited- and ground-state nuclear properties, and all beta-decay rates and ratios. As a part of this ongoing project, we plan to use this tool to examine beta-decay rates in extreme astrophysical environments.

  10. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    DTIC Science & Technology

    2008-01-20

    critical aspect of the nuclear fuel cycle for the United States, where longstanding nonproliferation policy discouraged commercial nuclear fuel...have U.S. government officials. However, the case of Iran raises perhaps the most critical question in this decade for strengthening the nuclear...slight difference in atomic mass between 235U and 238U. The typical enrichment process requires about 10 lbs of uranium U3O8 to produce 1 lb of low

  11. Two-parameter partially correlated ground-state electron density of some light spherical atoms from Hartree-Fock theory with nonintegral nuclear charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Nicolas A.; March, Norman H.; Alonso, Julio A.

    2007-05-15

    Partially correlated ground-state electron densities for some spherical light atoms are calculated, into which nonrelativistic ionization potentials represent essential input data. The nuclear cusp condition of Kato is satisfied precisely. The basic theoretical starting point, however, is Hartree-Fock (HF) theory for the N electrons under consideration but with nonintegral nuclear charge Z{sup '} slightly different from the atomic number Z (=N). This HF density is scaled with a parameter {lambda}, near to unity, to preserve normalization. Finally, some tests are performed on the densities for the atoms Ne and Ar, as well as for Be and Mg.

  12. The United Arab Emirates Nuclear Program and Proposed U.S. Nuclear Cooperation

    DTIC Science & Technology

    2009-12-23

    reactors deployed” in the UAE. Some Members of Congress had welcomed the UAE government’s stated commitments not to pursue proliferation-sensitive...for the planned nuclear reactor or on handling spent reactor fuel. (...continued) May...firms and the UAE related to the UAE’s proposed nuclear program has already taken place. In August 2008, Virginia’s Thorium Power Ltd. signed two

  13. Initial state nuclear effects for jet production measured in s=200GeV d+Au collisions by STAR

    NASA Astrophysics Data System (ADS)

    STAR Collaboration; Kapitán, Jan; STAR Collaboration

    2009-11-01

    Full jet reconstruction in heavy-ion collisions is a promising tool for quantitative study of properties of the dense medium produced at RHIC. Measurements of d+Au collisions are important to disentangle initial state nuclear effects from medium-induced k broadening and jet quenching. We report measurements of mid-rapidity (|η|<0.4|) di-jet correlations in d+Au using high-statistics run 8 RHIC data at s=200GeV.

  14. A Basic Guide to Nuclear Power.

    ERIC Educational Resources Information Center

    Martocci, Barbara; Wilson, Greg

    More than 100 nuclear power plants supply over 17 percent of the electricity in the United States. The basic principles of how nuclear energy works and how it is used to make electricity are explained in this profusely illustrated booklet written for the average sixth grade reader. Discussions include: (1) atomic structure; (2) nuclear fission;…

  15. Kaon Condensation and Hyperon Mixture in Inhomogeneous Neutron Star Matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Muto, Takumi; Tatsumi, Toshitaka

    We explore the structure and properties of matter in neutron stars, particularly at the densities where kaons and/or hyperons begin to mix in nucleons. The kaon mixture is expected to bring about regular structures, some of which are called "pasta". It is interesting to know what happens to the kaonic pasta if hyperons begin to mix into nucleons.

  16. Commercial Nuclear Reprocessing in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrill, Charles Leland; Balatsky, Galya Ivanovna

    2015-09-09

    The short presentation outline: Reprocessing Overview; Events leading up to Carter’s Policy; Results of the decision; Policy since Nuclear Nonproliferation Act. Conclusions reached: Reprocessing ban has become an easy and visible fix to the public concern about proliferation, but has not completely stopped proliferation; and, Reprocessing needs to become detached from political considerations, so technical research can continue, regardless of the policy decisions we decide to take.

  17. Nuclear Power Now and in the Near Future

    NASA Astrophysics Data System (ADS)

    Burchill, William

    2006-04-01

    The presentation will describe the present status of nuclear power in the United States including its operating, economic, and safety record. This status report will be based on publicly-available records of the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and the Institute of Nuclear Power Operations. The report will provide a brief description and state the impact of both the Three Mile Island and Chernobyl accidents. It will list the lessons learned and report significant improvements in U.S. nuclear power plants. The major design differences between Chernobyl and U.S. nuclear reactors will be discussed. The presentation will project the near future of nuclear power considering the 2005 Energy Bill, initiatives by the U.S. Department of Energy and industry, and public opinions. Issues to be considered include plant operating safety, disposition of nuclear waste, protection against proliferation of potential weapons materials, economic performance, environmental impact and protection, and advanced nuclear reactor designs and fuel cycle options. The risk of nuclear power plant operations will be compared to risks presented by other industrial activities.

  18. Toward a nuclear weapons free world?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maaranen, S.A.

    Doubts about the wisdom of relying on nuclear weapons are as old as nuclear weapons themselves. But despite this questioning, nuclear weapons came to be seen as the indispensable element of American (indeed Western) security during the Cold War. By the 1970s and 1980s, however, discontent was growing about the intense US-Soviet nuclear arms competition, as it failed to provide any enduring improvement in security; rather, it was seen as creating ever greater risks and dangers. Arms control negotiations and limitations, adopted as a means to regulate the technical competition, may also have relieved some of the political pressures andmore » dangers. But the balance of terror, and the fears of it, continued. The Strategic Defense Initiative (SDI) under President Reagan was a very different approach to escaping from the precarious protection of nuclear weapons, in that it sought a way to continue to defend the US and the West, but without the catastrophic risks of mutual deterrence. As such, SDI connoted unhappiness with the precarious nuclear balance and, for many, with nuclear weapons in general. The disappearance of the Warsaw Pact, the disintegration of the Soviet Union, and the sudden end of the Cold War seemed to offer a unique opportunity to fashion a new, more peaceful world order that might allow for fading away of nuclear weapons. Scholars have foreseen two different paths to a nuclear free world. The first is a fundamental improvement in the relationships between states such that nuclear weapons are no longer needed. The second path is through technological development, e.g., missile defenses which could provide effective protection against nuclear attacks. The paper discusses nuclear weapon policy in the US, views of other nuclear states, the future of nuclear weapons, and issues in a less-nuclear world.« less

  19. A Poor Man's Nuclear Deterrent: Assessing the Value of Radiological Weapons for State Actors

    NASA Astrophysics Data System (ADS)

    Donohue, Nathan

    The threat of weapons of mass destruction is an issue which remains at the forefront on national security. Nuclear, chemical, and biological weapons are all considered very dangerous by both state and non-state actors. Radiological weapons exist in that same category yet are not held in the same regard; the reason that is given is that these types of weapons are not the weapons of mass destruction that the other three are. Instead, radiological weapons are better considered weapons of mass disruption. Accordingly, in the academic and policy literature there has been very little perceived value associated with such weapons for use by state actors. However the historical focus on the military efficacy of radiological weapons has obscured the obvious truth that they may pose significant value for state actors. What this research shows is that the explosion of a radiological weapon could disrupt a target area in ways which could cripple the economy of an adversary state and promote widespread fear concerning exposure to radiation. Any such attack would not only necessitate large scale evacuation, but cleanup, decontamination, demolition, territory exclusion, and relocation. Moreover, the effects of such an attack would be unlikely to remain an isolated event as evacuated and displaced citizens spread across the nation carrying both fear and residual radiation. All of these factors would only be compounded by a state actor's ability to not only develop such weapons, but to manufacture them in such a composition that contemporary examples of such weapons grossly underestimate their impact. Accordingly, radiological weapons could hold great value for any state actor wishing to pursue their development and to threaten their use. Moreover, "while RDDs may not be well suited as "military weapons" in the classic sense, the use of RDDs could be powerfully coercive."1 In that sense, state actors could even acquire radiological weapons for their deterrent value. 1James L. Ford

  20. Role of Electronic Structure In Ion Band State Theory of Low Energy Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Chubb, Scott

    2004-03-01

    The Nuts and Bolts of our Ion Band State (IBS) theory of low energy nuclear reactions (LENR's) in palladium-deuteride (PdD) and palladium-hydride (PdH) are the electrons that hold together or tear apart the bonds (or lack of bonds) between deuterons (d's) or protons (p's) and the host material. In PdDx and PdH_x, this bonding is strongly correlated with loading: in ambient loading conditions (x< 0. 6), the bonding in hibits IBS occupation. As x arrow 1, slight increases and decreases in loading can lead to vibrations (which have conventionally been thought to occur from phonons) that can induce potential losses or increases of p/d. Naive assumptions about phonons fail to include these losses and increases. These effects can occur because neither H or D has core electrons and because in either PdD or PdH, the electrons near the Fermi Energy have negligible overlap with the nucleus of either D or H. I use these ideas to develop a formal justification, based on a generalization of conventional band theory (Scott Chubb, "Semi-Classical Conduction of Charged and Neutral Particles in Finite Lattices," 2004 March Meeting."), for the idea that occupation of IBS's can occur and that this can lead to nuclear reactions.

  1. Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, Jerry; Dion, Heather; LaMont, Stephen

    A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.

  2. Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)

    DOE PAGES

    Davydov, Jerry; Dion, Heather; LaMont, Stephen; ...

    2015-12-16

    A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.

  3. Taking a stand against nuclear proliferation: the pediatrician's role.

    PubMed

    Newman, Thomas B

    2008-05-01

    Nuclear weapons pose a grave threat to the health of children. The Nuclear Nonproliferation Treaty, which for almost 40 years has limited the spread of nuclear weapons, is in danger of unraveling. At the 2000 Nuclear Nonproliferation Treaty Review Conference, 180 countries, including the United States, agreed on 13 practical steps to implement Article VI of the treaty, which calls for nuclear disarmament. However, the United States has acted in contravention of several of those disarmament steps, with announced plans to develop new nuclear weapons and to maintain a large nuclear arsenal for decades to come. Pediatricians, working individually and through organizations such as the American Academy of Pediatrics and International Physicians for the Prevention of Nuclear War, can educate the public and elected officials regarding the devastating and irremediable effects of nuclear weapons on children and the need for policies that comply with and strengthen the Nuclear Nonproliferation Treaty, rather than undermining it. For the children of the world, our goal must be a nuclear weapons convention (similar to the chemical and biological weapons conventions) that would prohibit these weapons globally.

  4. Countering the Non-State Nuclear Threat: Are We Ready?

    DTIC Science & Technology

    2005-01-01

    Problem……………………………………… 7 B. Civilian Nuclear Sources………….………………………………… 10 C. The “ Brain Drain” ………………………………………………….. 13 V. US POLICY ON NUCLEAR...4 Jay Ackerman and Laura Snyder. “Would They if They Could?” Bulletin of the Atomic Scientists, Vol. 58, no. 3...New York: Columbia University Press, 1998), 94. 6 Jay Ackerman and Laura Snyder. “Would They if They Could?” Bulletin of the Atomic Scientists, Vol. 58

  5. US changes course on nuclear-weapons strategy

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2010-05-01

    US President Barack Obama has signalled a new approach to nuclear-weapons policy that limits their use against other states and documents how the country will ensure the viability of existing stockpiles. The Nuclear Posture Review (NPR), which sets out the US's nuclear strategy over a 10-year period, also calls for a highly skilled workforce to ensure "the long-term safety, security and effectiveness of the nuclear arsenal and to support the full range of nuclear-security work".

  6. SkyNet: Modular nuclear reaction network library

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  7. Science, Society, and America's Nuclear Waste: The Nuclear Waste Policy Act, Unit 3. Teacher Guide. Second Edition.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.

    This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…

  8. In-laboratory development of an automatic track counting system for solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Uzun, Sefa Kemal; Demiröz, Işık; Ulus, İzzet

    2017-01-01

    In this study, an automatic track counting system was developed for solid state nuclear track detectors (SSNTD). Firstly the specifications of required hardware components were determined, and accordingly the CCD camera, microscope and stage motor table was supplied and integrated. The system was completed by developing parametric software with VB.Net language. Finally a set of test intended for radon activity concentration measurement was applied. According to the test results, the system was enabled for routine radon measurement. Whether the parameters of system are adjusted for another SSNTD application, it could be used for other fields of SSNTD like neutron dosimetry or heavy charged particle detection.

  9. Nuclear Data Sheets for A = 138

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2003-03-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A=138 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties are given. This work supersedes the 1995 evaluation by J.K. Tuli (1995Tu01). Manuscripts published before December 2002 have been included in this work.

  10. The Nuclear Arsenals of the US and USSR.

    ERIC Educational Resources Information Center

    Levi, Barbara G.

    1983-01-01

    Compares United States and Soviet nuclear arsenals, surveying strategic and tactical weapons the two countries have (includes chart detailing strategic nuclear arsenals). Also summarizes trends in nuclear weapons, including use of electronics in surveillance and in command, communication, and control structures. (JN)

  11. State of the environment in the arrangement area of the enterprises for repairing and utilization of nuclear-powered submarines.

    PubMed

    Dovgusha, V V; Bychenkov, V S; Blekher AYa; Belyaev, A V; Krupkin, A B; Kovygin GPh; Puzikov, A G; Ryabchikov, S G; Stepanov, S V; Toropov, S A

    2001-01-01

    The influence of nuclear-powered utilization (disjunction) upon the state of health of the soil, vegetation and atmospheric air was studied. It was stated that the concentration of hazardous metals in the air of an industrial site did not exceed the permissible levels. In the residential area the cases of increased concentrations of manganese and chromium were noted. The major pollutants of vegetation are manganese, titanium, copper and nickel. The authors propose a complex of anthropogenic factors to be the cause of the environmental contamination by hard metals. The volume activity of radioactive aerosols in the studied site is confined to the local hum.

  12. Peach Bottom and Vermont Yankee Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1992-12-31

    A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governmentsmore » provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.« less

  13. Tackling the nuclear manpower shortage: industry, educators must work together

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzig, W.

    1981-10-01

    A 50% decline in graduate enrollment and an increase to 50% of foreign nationals among the nuclear engineering students since 1973 at Pennsylvania State University is typical of national trends, which have led to the closing of 13 undergraduate programs across the country. Penn State's proximity to Three Mile Island had less effect than its interactions with high schools and utilities in keeping the nuclear program as strong as it is. Penn State operates three separate career programs to interest high school students in a nuclear career. Institute of Nuclear Power Operations (INPO) educational assistance reflects industry interest, but moremore » scholarships are needed to broaden student awareness. (DCK)« less

  14. Nuclear Dynamics at Molecule–Metal Interfaces: A Pseudoparticle Perspective

    DOE PAGES

    Galperin, Michael; Nitzan, Abraham

    2015-11-20

    We discuss nuclear dynamics at molecule-metal interfaces including nonequilibrium molecular junctions. Starting from the many-body states (pseudoparticle) formulation of the molecule-metal system in the molecular vibronic basis, we introduce gradient expansion to reduce the adiabatic nuclear dynamics (that is, nuclear dynamics on a single molecular potential surface) into its semiclassical form while maintaining the effect of the nonadiabatic electronic transitions between different molecular charge states. Finally, this yields a set of equations for the nuclear dynamics in the presence of these nonadiabatic transitions, which reproduce the surface-hopping formulation in the limit of small metal-molecule coupling (where broadening of the molecularmore » energy levels can be disregarded) and Ehrenfest dynamics (motion on the potential of mean force) when information on the different charging states is traced out.« less

  15. Nuclear Cryogenic Propulsion Stage (NCPS) Fuel Element Testing in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES)

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2017-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). Last year NTREES was successfully used to satisfy a testing milestone for the Nuclear Cryogenic Propulsion Stage (NCPS) project and met or exceeded all required objectives.

  16. Irans Nuclear Program: Tehrans Compliance with International Obligations

    DTIC Science & Technology

    2016-04-07

    ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear

  17. Irans Nuclear Program: Tehrans Compliance with International Obligations

    DTIC Science & Technology

    2016-03-03

    ratified the nuclear Nonproliferation Treaty (NPT) in 1970. Article III of the treaty requires non-nuclear- weapon states-parties 1 to accept...concern that Tehran is pursuing nuclear weapons . Tehran’s construction of gas centrifuge uranium enrichment facilities is currently the main source...uranium (HEU), which is one of the two types of fissile material used in nuclear weapons . HEU can also be used as fuel in certain types of nuclear

  18. Suppression of Zeeman gradients by nuclear polarization in double quantum dots.

    PubMed

    Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P

    2012-12-07

    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.

  19. Improving the Nuclear Reform Implementation for Success

    DTIC Science & Technology

    2016-09-15

    IMPROVING THE NUCLEAR REFORM IMPLEMENTATION FOR SUCCESS GRADUATE RESEARCH PAPER Allen Y. Agnes...United States. AFIT-ENS-MS-16-S-023 IMPROVING THE NUCLEAR REFORM IMPLMENTATION FOR SUCCESS GRADUATE RESEARCH PAPER Presented to the...AFIT-ENS-MS-16-S-023 IMPROVING THE NUCLEAR REFORM IMPLEMENTATION FOR SUCCESS Allen Y. Agnes, BS, MS Major, USAF

  20. Solving the electron and electron-nuclear Schroedinger equations for the excited states of helium atom with the free iterative-complement-interaction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakashima, Hiroyuki; Hijikata, Yuh; Nakatsuji, Hiroshi

    2008-04-21

    Very accurate variational calculations with the free iterative-complement-interaction (ICI) method for solving the Schroedinger equation were performed for the 1sNs singlet and triplet excited states of helium atom up to N=24. This is the first extensive applications of the free ICI method to the calculations of excited states to very high levels. We performed the calculations with the fixed-nucleus Hamiltonian and moving-nucleus Hamiltonian. The latter case is the Schroedinger equation for the electron-nuclear Hamiltonian and includes the quantum effect of nuclear motion. This solution corresponds to the nonrelativistic limit and reproduced the experimental values up to five decimal figures. Themore » small differences from the experimental values are not at all the theoretical errors but represent the physical effects that are not included in the present calculations, such as relativistic effect, quantum electrodynamic effect, and even the experimental errors. The present calculations constitute a small step toward the accurately predictive quantum chemistry.« less

  1. Nuclear Excitation by Electronic Transition of U-235

    NASA Astrophysics Data System (ADS)

    Chodash, Perry

    2017-01-01

    Nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that is theorized to exist in numerous isotopes. NEET is the inverse of bound internal conversion and occurs when an electronic transition couples to a nuclear transition causing the nucleus to enter an excited state. This process can only occur for isotopes with low-lying nuclear levels due to the requirement that the electronic and nuclear transitions have similar energies. One of the candidate isotopes for NEET, 235U, has been studied several times over the past 40 years and NEET of 235U has never been conclusively observed. These past experiments generated conflicting results with some experiments claiming to observe NEET of 235U and others setting limits for the NEET rate. If NEET of 235U were to occur, the uranium would be excited to its first excited nuclear state. The first excited nuclear state in 235U is only 76 eV, the second lowest known nuclear state. Additionally, the 76 eV state is a nuclear isomer that decays by internal conversion with a half-life of 26 minutes. In order to measure whether NEET occurs in 235U and at what rate, a uranium plasma was required. The plasma was generated using a Q-switched Nd:YAG laser outputting 789 mJ pulses of 1064 nm light. The laser light was focused onto uranium targets generating an intensity on target of order 1012 W/cm2. The resulting plasma was captured on a catcher plate and electrons emitted from the catcher plate were accelerated and focused onto a microchannel plate detector. Measurements performed using a variety of uranium targets spanning depleted uranium up to 99.4% enriched uranium did not observe a 26 minute decay. An upper limit for the NEET rate of 235U was determined. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The U.S. DHS, UC Berkeley, the NNIS fellowship and the NSSC further supported this work.

  2. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy.

    PubMed

    Dessovic, P; Mohn, P; Jackson, R A; Winkler, G; Schreitl, M; Kazakov, G; Schumm, T

    2014-03-12

    The (229)thorium isotope presents an extremely low-energy isomer state of the nucleus which is expected around 7.8 eV, in the vacuum ultraviolet (VUV) regime. This unique system may bridge between atomic and nuclear physics, enabling coherent manipulation and precision spectroscopy of nuclear quantum states using laser light. It has been proposed to implant (229)thorium into VUV transparent crystal matrices to facilitate laser spectroscopy and possibly realize a solid-state nuclear clock. In this work, we validate the feasibility of this approach by computer modelling of thorium doping into calcium fluoride single crystals. Using atomistic modelling and full electronic structure calculations, we find a persistent large band gap and no additional electronic levels emerging in the middle of the gap due to the presence of the dopant, which should allow direct optical interrogation of the nuclear transition.Based on the electronic structure, we estimate the thorium nuclear quantum levels within the solid-state environment. Precision laser spectroscopy of these levels will allow the study of a broad range of crystal field effects, transferring Mössbauer spectroscopy into the optical regime.

  3. Two Paradigmatic Waves of Public Discourse on Nuclear Waste in the United States, 1945-2009: Understanding a Magnitudinal and Longitudinal Phenomenon in Anthropological Terms

    PubMed Central

    Pajo, Judi

    2016-01-01

    This project set out to illuminate the discursive existence of nuclear waste in American culture. Given the significant temporal dimension of the phenomenon as well as the challenging size of the United States setting, the project adapted key methodological elements of the sociocultural anthropology tradition and produced proxies for ethnographic fieldnotes and key informant interviews through sampling the digital archives of the New York Times over a 64-year period that starts with the first recorded occurrence of the notion of nuclear waste and ends with the conclusion of the presidency of George W. Bush. Two paradigmatic waves of American public discourse on nuclear waste come to light when subjecting this empirical data to quantitative inventorying and interpretive analysis: between 1945 and 1969 nuclear waste was generally framed in light of the beneficial utilizations of nuclear reactions and with optimistic expectations for a scientific/technological solution; by contrast, between 1969 and 2009 nuclear waste was conceptualized as inherited harm that could not be undone and contestation that required political/legal management. Besides this key finding and the empirical timing of the two paradigms, the study’s value lies also with its detailed empirical documentation of nuclear waste in its sociocultural existence. PMID:27310719

  4. Two Paradigmatic Waves of Public Discourse on Nuclear Waste in the United States, 1945-2009: Understanding a Magnitudinal and Longitudinal Phenomenon in Anthropological Terms.

    PubMed

    Pajo, Judi

    2016-01-01

    This project set out to illuminate the discursive existence of nuclear waste in American culture. Given the significant temporal dimension of the phenomenon as well as the challenging size of the United States setting, the project adapted key methodological elements of the sociocultural anthropology tradition and produced proxies for ethnographic fieldnotes and key informant interviews through sampling the digital archives of the New York Times over a 64-year period that starts with the first recorded occurrence of the notion of nuclear waste and ends with the conclusion of the presidency of George W. Bush. Two paradigmatic waves of American public discourse on nuclear waste come to light when subjecting this empirical data to quantitative inventorying and interpretive analysis: between 1945 and 1969 nuclear waste was generally framed in light of the beneficial utilizations of nuclear reactions and with optimistic expectations for a scientific/technological solution; by contrast, between 1969 and 2009 nuclear waste was conceptualized as inherited harm that could not be undone and contestation that required political/legal management. Besides this key finding and the empirical timing of the two paradigms, the study's value lies also with its detailed empirical documentation of nuclear waste in its sociocultural existence.

  5. The Nuclear Posture Review (NPR) : are we safer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brune, Nancy E.

    2010-07-01

    Nuclear Posture Review (NPR) is designed to make world safer by reducing the role of U.S. nuclear weapons and reducing the salience of nuclear weapons. U.S. also seeks to maintain a credible nuclear deterrent and reinforce regional security architectures with missile defenses and other conventional military capabilities. But recent studies suggest that nuclear proliferation is a direct response to the perceived threat of U.S. conventional capabilities not U.S. nuclear stockpile. If this is true, then the intent of the NPR to reduce the role and numbers of nuclear weapons and strengthen conventional military capabilities may actually make the world lessmore » safe. First stated objective of NPR is to reduce the role and numbers of U.S. nuclear weapons, reduce the salience of nuclear weapons and move step by step toward eliminating them. Second stated objective is a reaffirmation of U.S. commitment to maintaining a strong deterrent which forms the basis of U.S. assurances to allies and partners. The pathway - made explicit throughout the NPR - for reducing the role and numbers of nuclear weapons while maintaining a credible nuclear deterrent and reinforcing regional security architectures is to give conventional forces and capabilities and missile defenses (e.g. non-nuclear elements) a greater share of the deterrence burden.« less

  6. Scanning of vehicles for nuclear materials

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2014-05-01

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost and disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.

  7. Nuclear excitation by electronic transition of 235U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chodash, P. A.; Norman, E. B.; Burke, J. T.

    Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.

  8. Nuclear excitation by electronic transition of 235U

    DOE PAGES

    Chodash, P. A.; Norman, E. B.; Burke, J. T.; ...

    2016-03-11

    Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.

  9. Nuclear pursuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  10. History of Nuclear India

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ram

    2000-04-01

    India emerged as a free and democratic country in 1947, and entered into the nuclear age in 1948 by establishing the Atomic Energy Commission (AEC), with Homi Bhabha as the chairman. Later on the Department of Atomic Energy (DAE) was created under the Office of the Prime Minister Jawahar Lal Nehru. Initially the AEC and DAE received international cooperation, and by 1963 India had two research reactors and four nuclear power reactors. In spite of the humiliating defeat in the border war by China in 1962 and China's nuclear testing in 1964, India continued to adhere to the peaceful uses of nuclear energy. On May 18, 1974 India performed a 15 kt Peaceful Nuclear Explosion (PNE). The western powers considered it nuclear weapons proliferation and cut off all financial and technical help, even for the production of nuclear power. However, India used existing infrastructure to build nuclear power reactors and exploded both fission and fusion devices on May 11 and 13, 1998. The international community viewed the later activity as a serious road block for the Non-Proliferation Treaty and the Comprehensive Test Ban Treaty; both deemed essential to stop the spread of nuclear weapons. India considers these treaties favoring nuclear states and is prepared to sign if genuine nuclear disarmament is included as an integral part of these treaties.

  11. Political life and half-life: the future formulation of nuclear waste public policy in the United States.

    PubMed

    Leroy, David

    2006-11-01

    The United States continues to need forward-thinking and revised public policy to assure safe nuclear waste disposal. Both the high- and low-level disposal plans enacted by Congress in the 1980's have been frustrated by practical and political interventions. In the interim, ad hoc solutions and temporary fixes have emerged as de facto policy. Future statutory, regulatory, and administrative guidance will likely be less bold, more narrowly focused, and adopted at lower levels of government, more informally, in contrast to the top-down, statutory policies of the 1980's.

  12. The future of the NPT and measures to reduce nuclear dangers in the age of Trump

    NASA Astrophysics Data System (ADS)

    Kimball, Daryl G.

    2017-11-01

    Through the decades, the international nuclear disarmament and nonproliferation enterprise, though imperfect, has curbed nuclear proliferation and limited the number of nuclear-armed states to nine, forced reductions in major-power nuclear arsenals, ended nuclear testing by all but one state, and created an informal taboo against nuclear weapons use.

  13. Spent Nuclear Fuel Disposition

    DOE PAGES

    Wagner, John C.

    2016-05-22

    One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less

  14. Spent Nuclear Fuel Disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, John C.

    One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less

  15. On the pursuit of a nuclear development capability: The case of the Cuban nuclear program

    NASA Astrophysics Data System (ADS)

    Benjamin-Alvarado, Jonathan Calvert

    1998-09-01

    While there have been many excellent descriptive accounts of modernization schemes in developing states, energy development studies based on prevalent modernization theory have been rare. Moreover, heretofore there have been very few analyses of efforts to develop a nuclear energy capability by developing states. Rarely have these analyses employed social science research methodologies. The purpose of this study was to develop a general analytical framework, based on such a methodology to analyze nuclear energy development and to utilize this framework for the study of the specific case of Cuba's decision to develop nuclear energy. The analytical framework developed focuses on a qualitative tracing of the process of Cuban policy objectives and implementation to develop a nuclear energy capability, and analyzes the policy in response to three models of modernization offered to explain the trajectory of policy development. These different approaches are the politically motivated modernization model, the economic and technological modernization model and the economic and energy security model. Each model provides distinct and functionally differentiated expectations for the path of development toward this objective. Each model provides expected behaviors to external stimuli that would result in specific policy responses. In the study, Cuba's nuclear policy responses to stimuli from domestic constraints and intensities, institutional development, and external influences are analyzed. The analysis revealed that in pursuing the nuclear energy capability, Cuba primarily responded by filtering most of the stimuli through the twin objectives of economic rationality and technological advancement. Based upon the Cuban policy responses to the domestic and international stimuli, the study concluded that the economic and technological modernization model of nuclear energy development offered a more complete explanation of the trajectory of policy development than either the

  16. Nuclear power program and technology development in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Byung-Oke

    1994-12-31

    KEPCO has successfully implemented the construction and operation of nuclear power plants since the early 1970s, and will continue to build safer and more efficient nuclear plants in the future in accordance with the nuclear power development plan previously established. KEPCO will also make every effort to enhance nuclear safety and obtain the public`s acceptance for nuclear power. We are, however, facing the same difficulties, as United States and other countries have, in strengthened regulatory requirements, public acceptance, radwaste disposal, and acquisition of new plant sites despite an active nuclear power program. Story of Ted Turner, CNN; {open_quotes}It ain`t asmore » easy as it looks.{close_quotes} Yes! It is difficult. But we will cope with these issues so that we can promote the nuclear power development and continue to supply a highly economical and clean energy to the world. In this regard, it is my sincere wish that each organization participating in the nuclear industry, especially Korea and United States strengthen their ties and help each other so that we together can successfully accomplish our goals.« less

  17. Nuclear physics from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala

    2017-09-01

    I will discuss the current state and future scope of numerical Lattice Quantum Chromodynamics (LQCD) calculations of nuclear matrix elements. The goal of the program is to provide direct QCD calculations of nuclear observables relevant to experimental programs, including double-beta decay matrix elements, nuclear corrections to axial matrix elements relevant to long-baseline neutrino experiments and nuclear sigma terms needed for theory predictions of dark matter cross-sections at underground detectors. I will discuss the progress and challenges on these fronts, and also address recent work constraining a gluonic analogue of the EMC effect, which will be measurable at a future electron-ion collider.

  18. Summer Schools in Nuclear and Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silber, Herbert B.

    The ACS Summer Schools in Nuclear and Radiochemistry (herein called “Summer Schools”) were funded by the U.S. Department of Energy and held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio ismore » needed due to the intense nature of the six-week program. To broaden the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program. The Department of Energy’s Office of Basic Energy Sciences (BES) renewed the five-year proposal for the Summer Schools starting March 1, 2007, with contributions from Biological and Environmental Remediation (BER) and Nuclear Physics (NP). This Final Technical Report covers the Summer Schools held in the years 2007-2011.« less

  19. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  20. A Strategy for Nuclear Energy Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralph G. Bennett

    2008-12-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce themore » transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.« less

  1. Trends in Anti-Nuclear Protests in the United States, 1984-1987

    DTIC Science & Technology

    1989-01-01

    Obispo, CA. 2 days of peaceful protests at Diablo Canyon nuclear powerplant against licensing of plant. Date: January 12 and 13, 1984 Group: Abalone ...Members of the Abalone Alliance and the Livermore Action Group blocked entrance to Bohemian Grove club, a conservative all-male club to which Reagan...belongs, to protest the club members’ connections to the nuclear weapons industry. Date: July 22, 1984 Group: Abalone and Livermore Action Group

  2. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  3. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE PAGES

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma; ...

    2018-02-15

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  4. Characterization of Pharmaceutical Cocrystals and Salts by Dynamic Nuclear Polarization-Enhanced Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li; Hanrahan, Michael P.; Chakravarty, Paroma

    Multicomponent solids such as cocrystals have emerged as a way to control and engineer the stability, solubility and manufacturability of solid active pharmaceutical ingredients (APIs). Cocrystals are typically formed by solution- or solid-phase reactions of APIs with suitable cocrystal coformers, which are often weak acids. One key structural question about a given multicomponent solid is whether it should be classified as a salt, where the basic API is protonated by the acid, or as a cocrystal, where the API and coformer remain neutral and engage in hydrogen bonding interactions. It has previously been demonstrated that solid-state NMR spectroscopy is amore » powerful probe of structure in cocrystals and salts of APIs, however, the poor sensitivity of solid-state NMR spectroscopy usually restricts the types of experiments that can be performed. Here relayed dynamic nuclear polarization (DNP) was applied to reduce solid-state NMR experiments by one to two orders of magnitude for salts and cocrystals of a complex API. The large sensitivity gains from DNP facilitates rapid acquisition of natural isotopic abundance 13C and 15N solid-state NMR spectra. Critically, DNP enables double resonance 1H-15N solid-state NMR experiments such as 2D 1H-15N HETCOR, 1H-15N CP-build up, 15N{1H} J-resolved/attached proton tests, 1H-15N DIPSHIFT and 1H-15N PRESTO. The latter two experiments allow 1H-15N dipolar coupling constants and H-N bond lengths to be accurately measured, providing an unambiguous assignment of nitrogen protonation state and definitive classification of the multi-component solids as cocrystals or salts. In conclusion, these types of measurements should also be extremely useful in the context of polymorph discrimination, NMR crystallography structure determination and for probing hydrogen bonding in a variety of organic materials.« less

  5. Nuclear ``pasta'' formation

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2013-12-01

    The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.

  6. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Zueqian

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-anglemore » X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.« less

  7. A Task Analysis of Selected Nuclear Technician Occupations.

    ERIC Educational Resources Information Center

    Braden, Paul V.; Paul, Krishan K.

    A task analysis of nuclear technician occupations in selected organizations in the Southern Interstate Nuclear Board Region was conducted as part of a research and development project leading to a nuclear technician manpower information system for these 17 states. In order to answer 11 questions focusing on task performance frequency and…

  8. Rydberg phases of Hydrogen and low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  9. 78 FR 59005 - Civil Nuclear Trade Advisory Committee Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... of the Civil Nuclear Trade Advisory Committee (CINTAC). DATES: The meeting is scheduled for Wednesday... administration of programs to expand United States exports of civil nuclear goods and services in accordance with...

  10. JPRS Report, Nuclear Developments

    DTIC Science & Technology

    1989-08-29

    Korea is developing nuclear weapons Yi and Bartholomew agreed that the two governments capability. should reestablish a bilateral science and...early this year. Taking advantage of such a mood of The government should develop state-of-the-art technol- detente. even our country is now actively...counter to such a mood of detente. and why can they not The report recommended that the government establish abandon nuclear weapons at a time when

  11. The Race Against Nuclear Terror

    DTIC Science & Technology

    2005-09-01

    orientation (central planning vs . market economy); or (3) systemic or state-specific incentives, such as new norms, emerge that diminish the appeal of... franchised version of the nuclear “Wal-Mart” cannot be discounted. Yet, if we are 49 Christopher Clary. “Dr... independent capability. To do so would require specific enrichment technology developed indigenously or obtained illegally. Most exporters of nuclear

  12. The Evolution of India’s Nuclear Program: Implications for the United States

    DTIC Science & Technology

    2008-05-22

    be a part of the global nuclear regime: “On the one hand, nuclear weapons were considered a shameful badge worn by the great powers of the cold war ...Asian region, balancing their policies between the needed Pakistani support for the Global War on Terror (GWOT) with the desire to maintain India as an...1990s: On the Brink of Nuclear War in South Asia .................................................... 25 Section 3: Indian Military Capability

  13. Disparities in nuclear power plant performance in the United States and the Federal Republic of Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, K.F.; Winje, D.K.

    This report presents data comparing the performance of light water reactors in the United States and the Federal Republic of Germany (FRG). The comparisons are made for the years 1980-1983 and include 21 Westinghouse Pressurized Water Reactors (PWRs), 22 General Electric Boiling Water Reactors (BWRs) in the US; and 6 Kraftwerk Union (KWU) PWRs and 4 KWJ BWRs in the FRG. Data on capacity losses are presented in a disaggregated form for scheduled outages, forced outages, and regulatory imposed outages. Further, within the scheduled and forced outages, the data is subdivided into losses associated with the nuclear island, the balancemore » of plant, or other causes.« less

  14. Electron-nuclear corellations for photoinduced dynamics in molecular dimers

    NASA Astrophysics Data System (ADS)

    Kilin, Dmitri S.; Pereversev, Yuryi V.; Prezhdo, Oleg V.

    2003-03-01

    Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by dynamic reorganization of of inter- and intra- molecular nuclear configuration modelled by quantized nuclear degree of freedom [1]. The dynamics of the electronic population and nuclear coherence is analyzed with help of both numerical solution of the chain of coupled differential equations for mean coordinate, population inversion, electronic-vibrational correlation etc.[2] and by propagating the Gaussian wavepackets in relevant adiabatic potentials. Intriguing results were obtained in the approximation of small energy difference and small change of nuclear equilibrium configuration for excited electronic states. In the limiting case of resonance between electronic states energy difference and frequency of the nuclear mode these results have been justified by comparison to exactly solvable Jaynes-Cummings model. It has been found that the photoinduced processes in dimer are arranged according to their time scales:(i) fast scale of nuclear motion,(ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electronic -nuclear correlation,(iii) slow scale of electronic population approaching to the quasiequilibrium distribution, decay of electronic-nuclear correlation, and diminishing the amplitude of mean coordinate oscillations, accompanied by essential growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. Demonstrated quantum-relaxational features of photoinduced vibronic dinamical processess in molecular dimers are obtained by simple method, applicable to large biological systems with many degrees of freedom. [1] J. A. Cina, D. S. Kilin, T. S. Humble, J. Chem. Phys. (2003) in press. [2] O. V. Prezhdo, J. Chem. Phys. 117, 2995 (2002).

  15. Quartetting in Nuclear Matter and α Particle Condensation in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Röpke, G.; Schuck, P.; Horiuchi, H.; Tohsaki, A.; Funaki, Y.; Yamada, T.

    2008-02-01

    Alternatively to pairing, four-particle correlations may become of importance for the formation of quantum condensates in nuclear matter. With increasing density, four-particle correlations are suppressed because of Pauli blocking. Signatures of α-like clusters are expected to occur in low-density nuclear systems. The famous Hoyle state (02+ at 7.654 MeV in 12C) is identified as being an almost ideal condensate of three α-particles, hold together only by the Coulomb barrier. It, therefore, has a 8Be-α structure of low density. Transition probability and inelastic form factor together with position and other physical quantities are correctly reproduced without any adjustable parameter from our two parameter wave function of α-particle condensate type. The possibility of the existence of α-particle condensed states in heavier nα nuclei is also discussed.

  16. Taking the Lead: Russia, the United States, and Nuclear Nonproliferation after Bush

    DTIC Science & Technology

    2008-12-01

    2002), especially chap. 5; Henry D. Sokolski, ed., Pakistan’s Nuclear Future: Worries beyond War ( Carl - isle: SSI, January 2008); Henry Sokolski and...Two sides of this issue are argued in Scott D. Sagan and Kenneth N. Waltz, The Spread of Nuclear Weapons: A Debate (New York: W. W. Norton, 995

  17. The Logic of Integrating Conventional and Nuclear Planning [Integration of conventional and nuclear: What does it mean?

    DOE PAGES

    Manzo, Vincent A.; Miles, Aaron R.

    2016-10-31

    In October 2015, Secretary of Defense Carter called for NATO to better integrate conventional and nuclear deterrence. Four months later, Assistant Secretary of Defense Robert Scher stated in Senate testimony that the DoD is "working to ensure an appropriate level of integration between nuclear and conventional planning and operations."

  18. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  19. The Midlife Crisis of the Nuclear Nonproliferation Treaty

    NASA Astrophysics Data System (ADS)

    Pella, Peter

    2016-03-01

    The Nuclear Nonproliferation Treaty (NPT) has been the principal legal barrier to prevent the spread of nuclear weapons for the past forty-five years. It promotes the peaceful uses of nuclear technology and insures, through the application of safeguards inspections conducted by the International Atomic Energy Agency (IAEA), that those technologies are not being diverted toward the production of nuclear weapons. It is also the only multinational treaty that obligates the five nuclear weapons states that are party to the treaty (China, France, Great Britain, Russia, and the United States) to pursue nuclear disarmament measures. Though there have been many challenges over the years, most would agree that the treaty has largely been successful. However, many are concerned about the continued viability of the NPT. The perceived slow pace of nuclear disarmament, the interest by some countries to consider a weapons program while party to the treaty, and the funding and staffing issues at the IAEA, are all putting considerable strain on the treaty. This manuscript explores those issues and offers some possible solutions to ensure that the NPT will survive effectively for many years to come.

  20. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  1. Data feature: 1996 world nuclear electricity production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    Detailed data on electricity supplied by nuclear power reactors in 1996 are provided. Figures from the International Atomic Energy Agency indicate that a total of 32 countries worldwide were operating 441 nuclear power plants with an installed capacity of 350,411 GWe, and that 36 commercial nuclear power plant units in 14 different countries with an aggregate installed capacity of 27,928 GWe were under construction. Worldwide nuclear generated electricity increased by 3.6% from 1995 to 1996, providing 17.3% of the world`s electricity production. Data for individual countries and regional totals, including generation and consumption data by source, are provided for Westernmore » Europe, Eastern Europe, the Commonwealth of Independent States, the Far East, Canada, and the United States. Other information provided includes 1996 commercial startups, decommissioning, reactor load factors, imports and exports, and gross electricity production.« less

  2. Materials for Children about Nuclear War.

    ERIC Educational Resources Information Center

    Eiss, Harry

    President Reagan's Fiscal Year 1987 budget was an attempt to increase dramatically spending on national defense, on nuclear weapons, while cutting back on social programs. The increases for almost all nuclear weapons indicate the Administration of the United States saw its major responsibility as one of providing a strong military, one centered on…

  3. Nuclear Engineering Enrollments and Degrees, 1982.

    ERIC Educational Resources Information Center

    Sweeney, Deborah H.; And Others

    This report presents data on the number of students enrolled and the number of bachelor's, master's, and doctoral degrees awarded in academic year 1981-82 from 72 United States institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented as well are historical data for the last decade…

  4. Wide-range nuclear magnetic resonance detector

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.; Jirberg, R. J.

    1972-01-01

    Compact and easy to use solid state nuclear magnetic resonance detector is designed for measuring field strength to 20 teslas in cryogenically cooled magnets. Extremely low noise and high sensitivity make detector applicable to nearly all types of analytical nuclear magnetic resonance measurements and can be used in high temperature and radiation environments.

  5. U.S.-Russian cooperation in nuclear disarmament and nonproliferation

    NASA Astrophysics Data System (ADS)

    Podvig, Pavel

    2010-02-01

    The United States and Russia, the two largest nuclear powers, have a special obligation to provide leadership in nuclear disarmament and in strengthening the nuclear non-proliferation regime. In the past year the two countries made an effort to restart the arms control process by concluding a new treaty that would bring their legal disarmament obligations in line with the realities of their post-cold war relationships. The process of negotiating deeper nuclear reductions in the new environment turned out to be rather difficult, since the approaches that the countries used in the past are not well suited to dealing with issues like conversion of strategic nuclear delivery systems to conventional missions, tactical nuclear weapons, or dismantlement of nuclear warheads. This presentation considers the recent progress in U.S.-Russian arms control process and outlines the key issues at the negotiations. It also considers prospects for further progress in bilateral nuclear disarmament and issues that will be encountered at later stages of the process. The author argues that success of the arms reductions will depend on whether the United States and Russia will be able to build an institutional framework for cooperation on a range of issues - from traditional arms control to securing nuclear materials and from missile defense to strengthening the international nuclear safeguards. )

  6. Scanning of vehicles for nuclear materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J. I.

    2014-05-09

    Might a nuclear-armed terrorist group or state use ordinary commerce to deliver a nuclear weapon by smuggling it in a cargo container or vehicle? This delivery method would be the only one available to a sub-state actor, and it might enable a state to make an unattributed attack. Detection of a weapon or fissile material smuggled in this manner is difficult because of the large volume and mass available for shielding. Here I review methods for screening cargo containers to detect the possible presence of nuclear threats. Because of the large volume of innocent international commerce, and the cost andmore » disruption of secondary screening by opening and inspection, it is essential that the method be rapid and have a low false-positive rate. Shielding can prevent the detection of neutrons emitted spontaneously or by induced fission. The two promising methods are muon tomography and high energy X-radiography. If they do not detect a shielded threat object they can detect the shield itself.« less

  7. The Importance of International Technical Nuclear Forensics to Deter Illicit Trafficking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D K

    2007-01-30

    Illicit trafficking of nuclear materials is a transboundary problem that requires a cooperative approach involving international nuclear forensics to ensure all states understand the threat posed by nuclear smuggling as well as a means to best deter the movement of nuclear contraband. To achieve the objectives, all cases involving illicit trafficking of nuclear and radiological materials must be vigorously pursued and prosecuted when appropriate. The importance of outreach and formal government-to-government relationships with partner nations affected by nuclear trafficking cannot be under-estimated. States that are situated on smuggling routes may be well motivated to counter nuclear crimes to bolster theirmore » own border and transportation security as well as strengthen their economic and political viability. National law enforcement and atomic energy agencies in these states are aggressively pursuing a comprehensive strategy to counter nuclear smuggling through increasing reliance on technical nuclear forensics. As part of these activities, it is essential that these organizations be given adequate orientation to the best practices in this emerging discipline including the categorization of interdicted nuclear material, collection of traditional and nuclear forensic evidence, data analysis using optimized analytical protocols, and how to best fuse forensics information with reliable case input to best develop a law enforcement or national security response. The purpose of formalized USG relationship is to establish an institutional framework for collaboration in international forensics, improve standards of forensics practice, conduct joint exercises, and pursue case-work that benefits international security objectives. Just as outreach and formalized relationships are important to cultivate international nuclear forensics, linking nuclear forensics to ongoing national assistance in border and transpiration security, including port of entry of entry

  8. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru; Győrffy, Werner; Celani, Paolo; Werner, Hans-Joachim

    2011-08-01

    The extended multireference quasi-degenerate perturbation theory, proposed by Granovsky [J. Chem. Phys. 134, 214113 (2011)], is combined with internally contracted multi-state complete active space second-order perturbation theory (XMS-CASPT2). The first-order wavefunction is expanded in terms of the union of internally contracted basis functions generated from all the reference functions, which guarantees invariance of the theory with respect to unitary rotations of the reference functions. The method yields improved potentials in the vicinity of avoided crossings and conical intersections. The theory for computing nuclear energy gradients for MS-CASPT2 and XMS-CASPT2 is also presented and the first implementation of these gradient methods is reported. A number of illustrative applications of the new methods are presented.

  9. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    DTIC Science & Technology

    2008-09-03

    Spent nuclear fuel disposal has remained the most critical aspect of the nuclear fuel cycle for the United States, where longstanding nonproliferation...inalienable right and by and large, neither have U.S. government officials. However, the case of Iran raises perhaps the most critical question in...the enrichment process can take advantage of the slight difference in atomic mass between 235U and 238U. The typical enrichment process requires

  10. Nuclear threat in the post cold-war era. Monograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurey, W.S.

    1995-05-14

    This monograph discusses the nuclear threat that the United States faces following the downfall of the Soviet Union. The Russian and Chinese nuclear arsenals represent a formidable threat that must be countered and a new threat is emerging in the third world despite efforts to counter the proliferation of weapons of mass destruction. The monograph reviews the current status of both the Russian and Chinese arsenals and lists the programs that are being undertaken to modernize and improve their respective nuclear capabilities. Both nations are taking significant steps to preserve and improve their nuclear strike capability. The proliferation of nuclearmore » weapons technology, fissile material, and ballistic missiles in the third world is an emerging threat to national security interests. The lack of appropriate security measures during the on-going dismantling of the former Soviet nuclear arsenal presents an opportunity for rogue states and terrorist organizations to readily obtain the materials to produce their own nuclear weapons.« less

  11. Nuclear Science Symposium, 4th, and Nuclear Power Systems Symposium, 9th, San Francisco, Calif., October 19-21, 1977, Proceedings

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Consideration is given to the following types of high energy physics instrumentation: drift chambers, multiwire proportional chambers, calorimeters, optical detectors, ionization and scintillation detectors, solid state detectors, and electronic and digital subsystems. Attention is also paid to reactor instrumentation, nuclear medicine instrumentation, data acquisition systems for nuclear instrumentation, microprocessor applications in nuclear science, environmental instrumentation, control and instrumentation of nuclear power generating stations, and radiation monitoring. Papers are also presented on instrumentation for the High Energy Astronomy Observatory.

  12. Nuclear Forensics: Report of the AAAS/APS Working Group

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Benn

    2008-04-01

    This report was produced by a Working Group of the American Physical Society's Program on Public Affairs in conjunction with the American Association for the Advancement of Science Center for Science, Technology and Security Policy. The primary purpose of this report is to provide the Congress, U.S. government agencies and other institutions involved in nuclear forensics with a clear unclassified statement of the state of the art of nuclear forensics; an assessment of its potential for preventing and identifying unattributed nuclear attacks; and identification of the policies, resources and human talent to fulfill that potential. In the course of its work, the Working Group observed that nuclear forensics was an essential part of the overall nuclear attribution process, which aims at identifying the origin of unidentified nuclear weapon material and, in the event, an unidentified nuclear explosion. A credible nuclear attribution capability and in particular nuclear forensics capability could deter essential participants in the chain of actors needed to smuggle nuclear weapon material or carry out a nuclear terrorist act and could also encourage states to better secure such materials and weapons. The Working Group also noted that nuclear forensics result would take some time to obtain and that neither internal coordination, nor international arrangements, nor the state of qualified personnel and needed equipment were currently enough to minimize the time needed to reach reliable results in an emergency such as would be caused by a nuclear detonation or the intercept of a weapon-size quantity of material. The Working Group assesses international cooperation to be crucial for forensics to work, since the material would likely come from inadequately documented foreign sources. In addition, international participation, if properly managed, could enhance the credibility of the deterrent effect of attribution. Finally the Working Group notes that the U.S. forensics

  13. The Threats to Survival in a Nuclear Environment.

    DTIC Science & Technology

    1987-05-01

    second threat to survival in a nuclear attack is the blast or shock wave. Deen and Browning, in How to Survive a Nuclear Disaster , state, "It has been... Nuclear Disaster . Piscataway, NJ: A Grayson-Russell Book, New Century P’u-S1Tshers, 198t. 1S. Martin, Thomas 1., Jr. and Latham, Ronald C. Strategqy

  14. Stimulated Raman adiabatic control of a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Coto, Raul; Jacques, Vincent; Hétet, Gabriel; Maze, Jerónimo R.

    2017-08-01

    Coherent manipulation of nuclear spins is a highly desirable tool for both quantum metrology and quantum computation. However, most of the current techniques to control nuclear spins lack fast speed, impairing their robustness against decoherence. Here, based on stimulated Raman adiabatic passage, and its modification including shortcuts to adiabaticity, we present a fast protocol for the coherent manipulation of nuclear spins. Our proposed Λ scheme is implemented in the microwave domain and its excited-state relaxation can be optically controlled through an external laser excitation. These features allow for the initialization of a nuclear spin starting from a thermal state. Moreover we show how to implement Raman control for performing Ramsey spectroscopy to measure the dynamical and geometric phases acquired by nuclear spins.

  15. Technical approaches to reducing the threat of nuclear terrorism

    NASA Astrophysics Data System (ADS)

    Priedhorsky, William C.

    2005-04-01

    The threat of a nuclear attack on the United States by terrorists using a smuggled weapon is now considered more likely than an attack by a nuclear-armed ballistic missle. Consequently it is important to understand what can be done to detect and intercept a nuclear weapon being smuggled into the United States. A significant quantity of smuggled nuclear material has been intercepted already, but science and technology have so far contributed little to its interception. The critical special nuclear materials, plutonium and highly enriched uranium, are only weakly radioactive and detection of their radioactivity is limited both by atmospheric attenuation and by competition with natural backgrounds. Although many schemes for long-range detection of radioactivity have been proposed, none so far appears feasible. Detection of nuclear radiation can be improved using new technologies and sensing systems, but it will still be possible only at relatively small distances. Consequently the best approach to containing dangerous nuclear materials is at their sources; containment within lengthy borders and large areas is extremely difficult.

  16. Systematics of nuclear ground state properties in 78-100Sr by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Buchinger, F.; Ramsay, E. B.; Arnold, E.; Neu, W.; Neugart, R.; Wendt, K.; Silverans, R. E.; Lievens, P.; Vermeeren, L.; Berdichevsky, D.; Fleming, R.; Sprung, D. W. L.; Ulm, G.

    1990-06-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=98 and A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii are compared with predictions of the droplet model and of Hartree-Fock-plus-BCS calculations. For the isotopes in the transitional regions below and above the N=50 shell closure, the inclusion of quadrupole zero point motion in the Droplet model describes part of the observed shell effect. An additional change in the surface region of the charge distribution at spherical shape is suggested by the microscopic model. Furthermore, we propose that the isotopes 78Sr and 80Sr may show an unusual shape-sharing structure, with different mean deformations in the ground and 2+1 excited states.

  17. Coulomb excitation with radioactive nuclear beam of 64Cu

    NASA Astrophysics Data System (ADS)

    Guo, Gang; Xu, Jincheng; Chen, Quan; He, Ming; Qin, Jiuchang; Shen, Dongjun; Wu, Shaoyong; Jiang, Yongliang; Cheng, Yehao

    2003-09-01

    The radioactive nuclear beam of 64Cu was obtained utilizing a two-stage method at the HI-13 tandem accelerator of China Institute of Atomic Energy. The B(E2) value of the first excitation state of 64Cu has been directly measured for the first time by Coulomb excitation method, using the radioactive nuclear beam of 64Cu. An upper limit of the B(E2;2 1+→1 gs+) value from the first excitation state to the ground state of 64Cu is determined to be 49 W.u., which is significantly smaller than 250±170 W.u., the value adopted by Nuclear Data Sheets. The reliability of the experimental method was verified by simultaneously performing the Coulomb excitation experiment of 181Ta.

  18. Spent nuclear fuel discharges from US reactors 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactivemore » Waste Management.« less

  19. Russia`s Great Game in a nuclear South Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilat, J.F.; Taylor, T.T.

    1998-12-31

    Lost in the noise of Pakistan`s nuclear weapon tests in the western Baluchistan desert on 28 and 30 May was a surprising diplomatic move by Russia. On 23 May, Russia became the first state to express its willingness to recognize India as a nuclear-weapon state, provided that India commits itself to the international nonproliferation regime. Russia`s Ambassador to India, Albert Chernyshev, stated in the days after the Indian but before the Pakistani nuclear tests that ``India proclaimed itself a nuclear weapons power. One now hopes that India will behave as a nuclear weapons power by acting responsibly. Every nuclear weaponsmore » state has some rights. But for getting recognition it must have some obligations. Once it is ready to show these obligations by joining the nonproliferation regime, its recognition as a nuclear weapons power will follow.`` Russia`s Great Game in South Asia in pursuit of short-term economic and other interests appears to be a serious obstacle on the path to dealing effectively with the South Asian nuclear crisis. Grave damage to security, stability and nonproliferation has already resulted from India`s and Pakistan`s actions, but the situation does not have to spiral out of control. It is imperative that the international community respond appropriately to this challenge. The international community is at a crossroads and Russia`s actions will be critical. Will it be willing to go beyond the narrow economic and political calculations reflected in its diplomatic posturing, and take actions that will serve its long-term interests by bridging differences with other great powers in order to demonstrate to India that it has not chosen the right path. If Russia decides it can gain from India`s current, perilous path and blocks or otherwise frustrates appropriate responses, the nuclear danger on the subcontinent will escalate and the global regimes to promote nonproliferation and to ban testing will be seriously, perhaps fatally, weakened with

  20. Nuclear science outreach program for high school girls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, D.E.; Stone, C.A.

    1996-12-31

    The authors have developed a 2-week summer school on nuclear science for high school girls. This summer school is an outgrowth of a recent American Nuclear Society high school teachers workshop held at San Jose State University. Young scientists are introduced to concepts in nuclear science through a combination of lectures, laboratory experiments, literature research, and visits to local national laboratories and nuclear facilities. Lectures cover a range of topics, including radioactivity and radioactive decay, statistics, fission and fusion, nuclear medicine, and food irradiation. A variety of applications of nuclear science concepts are also presented.

  1. Rocketdyne/Westinghouse nuclear thermal rocket engine modeling

    NASA Technical Reports Server (NTRS)

    Glass, James F.

    1993-01-01

    The topics are presented in viewgraph form and include the following: systems approach needed for nuclear thermal rocket (NTR) design optimization; generic NTR engine power balance codes; rocketdyne nuclear thermal system code; software capabilities; steady state model; NTR engine optimizer code-logic; reactor power calculation logic; sample multi-component configuration; NTR design code output; generic NTR code at Rocketdyne; Rocketdyne NTR model; and nuclear thermal rocket modeling directions.

  2. Entrepreneurial proliferation: Russia`s nuclear industry suits the buyers market. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, T.D.; Williams, A.R.

    1995-06-01

    The Soviet Union collapsed in December 1991, bringing an end to four decades of the Cold War. A system of tight centralized controls has given way to chaotic freedom and un-managed, entrepreneurial capitalism. Of immediate concern to most world leaders has been the control and safety of over 30,000 Soviet nuclear weapons. After 1991, the Soviet, centralized system of management lost one key structural element: a reliable `human factor` for nuclear material control. The Soviet systems for physical security and material control are still in place in the nuclear inheritor states - Russia, Ukraine, Khazakhnstan, and Belarus - but theymore » do not restrain or regulate their nuclear industry. In the chaos created by the Soviet collapse, the nonproliferation regime may not adequately temper the supply of the nuclear materials of the new inheritor states. This could permit organizations or states seeking nuclear weapons easier access to fissile materials. New initiatives such as the United States Cooperative Threat Reduction program, which draws upon U.S. technology and expertise to help the NIS solve these complex problems, are short-tern tactics. At present there are no strategies which address the long-tern root problems caused by the Soviet collapse.This thesis demonstrates the extent of the nuclear control problems in Russia. Specifically, we examine physical security, material control and accounting regulation and enforcement, and criminal actions. It reveals that the current lack of internal controls make access to nuclear materials easier for aspiring nuclear weapons States.« less

  3. Strategic Missile Defense & Nuclear Deterrence

    NASA Astrophysics Data System (ADS)

    Grego, Laura

    The United States has pursued defenses against nuclear-armed long-range ballistic missiles since at least the 1950s. At the same time, concerns that missile defenses could undermine nuclear deterrence and potentially spark an arms race led the United States and Soviet Union to negotiate limits on these systems. The 1972 Anti-Ballistic Missile Treaty constrained strategic missile defenses for thirty years. After abandoning the treaty in 2002, President George W. Bush began fielding the Ground-based Midcourse Defense (GMD) homeland missile defense system on an extremely aggressive schedule, nominally to respond to threats from North Korea and Iran. Today, nearly fifteen years after its initial deployment, the potential and the limits of this homeland missile defense are apparent. Its test record is poor and it has no demonstrated ability to stop an incoming missile under real-world conditions. No credible strategy is in place to solve the issue of discriminating countermeasures. Insufficient oversight has not only exacerbated the GMD system's problems, but has obscured their full extent, which could encourage politicians and military leaders to make decisions that actually increase the risk of a missile attack against the United States. These are not the only costs. Both Russia and China have repeatedly expressed concerns that U.S. missile defenses adversely affect their own strategic capabilities and interests, particularly taken in light of the substantial US nuclear forces. This in turn affects these countries' nuclear modernization priorities. This talk will provide a technical overview of the US strategic missile defense system, and how it relates to deterrence against non-peer adversaries as well as how it affects deterrence with Russia and China and the long-term prospects for nuclear reductions

  4. 75 FR 10444 - Nuclear Energy Institute; Denial of Petition for Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 [Docket No. PRM-73-14; NRC-2009-0493] Nuclear Energy... (PRM) submitted by the Nuclear Energy Institute (NEI) (the petitioner). The petitioner requested that... rulemaking. The petitioner states that the nuclear energy industry has fully implemented numerous new...

  5. 76 FR 11521 - Prairie Island Nuclear Generating Plant, Unit 1, Northern States Power Company-Minnesota; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ..., Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001..., Division of Operating Reactor Licensing, Office of Nuclear Reactor Regulation. [FR Doc. 2011-4557 Filed 3-1... NUCLEAR REGULATORY COMMISSION [Docket No. 50-282; NRC-2011-0040] Prairie Island Nuclear Generating...

  6. 75 FR 48643 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... Civil Nuclear Trade Advisory Committee (CINTAC). DATES: The meeting is scheduled for Wednesday... programs to expand United States exports of civil nuclear goods and services in accordance with applicable...

  7. 75 FR 29988 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... the Civil Nuclear Trade Advisory Committee (CINTAC). The members will discuss issues outlined in the... exports of civil nuclear goods and services in accordance with applicable United States regulations...

  8. Nuclear anxiety: a test-construction study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braunstein, A.L.

    1986-01-01

    The Nuclear Anxiety Scale was administered to 263 undergraduate and graduate studies (on eight occasions in December, 1985 and January, 1986). (1) The obtained alpha coefficient was .91. This was significant at the .01 level, and demonstrated that the scale was internally homogeneous and consistent. (2) Item discrimination indices (point biserial correlation coefficients) computered for the thirty (30) items yielded a range of .25 to .64. All coefficients were significant at the .01 level, and all 30 items were retained as demonstrating significant discriminability. (3) The correlation between two administrations of the scale (with a 48-hour interval) was .83. Thismore » was significant at the .01 level, and demonstrated test-retest reliability and stability over time. (4) The point-biserial correlation coefficient between scores on the Nuclear Anxiety Scale, and the students' self-report of nuclear anxiety as being either a high or low ranked stressor, was .59. This was significant at the .01 level, and demonstrated concurrent validity. (5) The correlation coefficient between scores on the Nuclear Anxiety Scale and the Spielberger State-Trait Anxiety Inventory, A-Trait, (1970), was .41. This was significant at the .01 level, and demonstrated convergent validity. (6) The correlation coefficient between positively stated and negatively stated items (with scoring reversed) was .76. This was significant at the .01 level, and demonstrated freedom from response set bias.« less

  9. Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.

  10. INDC International Nuclear Data Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, A.; McCutchan, E.; Dimitriou, P.

    The 22nd meeting of the International Network of Nuclear Structure and Decay Data Evaluators was convened at the Lawrence Berkeley National Laboratory, Berkeley, USA, from 22 to 26 May 2017 under the auspices of the IAEA Nuclear Data Section. This meeting was attended by 38 scientists from 12 Member States and the IAEA, all of whom are concerned primarily with the measurement, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, data centre reports, various proposals considered, technical discussions, actions agreed by the participants, and the resulting recommendations/conclusions are presented within this document.

  11. Converting Energy to Medical Progress [Nuclear Medicine

    DOE R&D Accomplishments Database

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  12. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins

    PubMed Central

    Stephens, Andrew D.; Liu, Patrick Z.; Banigan, Edward J.; Almassalha, Luay M.; Backman, Vadim; Adam, Stephen A.; Goldman, Robert D.; Marko, John F.

    2018-01-01

    Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed “blebs” are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson–Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity. PMID:29142071

  13. Advances in instrumentation for nuclear astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pain, S. D.

    The study of the nuclear physics properties which govern energy generation and nucleosynthesis in the astrophysical phenomena we observe in the universe is crucial to understanding how these objects behave and how the chemical history of the universe evolved to its present state. The low cross sections and short nuclear lifetimes involved in many of these reactions make their experimental determination challenging, requiring developments in beams and instrumentation. A selection of developments in nuclear astrophysics instrumentation is discussed, using as examples projects involving the nuclear astrophysics group at Oak Ridge National Laboratory. These developments will be key to the instrumentationmore » necessary to fully exploit nuclear astrophysics opportunities at the Facility for Rare Isotope Beams which is currently under construction.« less

  14. An automatic analyzer of solid state nuclear track detectors using an optic RAM as image sensor

    NASA Astrophysics Data System (ADS)

    Staderini, Enrico Maria; Castellano, Alfredo

    1986-02-01

    An optic RAM is a conventional digital random access read/write dynamic memory device featuring a quartz windowed package and memory cells regularly ordered on the chip. Such a device is used as an image sensor because each cell retains data stored in it for a time depending on the intensity of the light incident on the cell itself. The authors have developed a system which uses an optic RAM to acquire and digitize images from electrochemically etched CR39 solid state nuclear track detectors (SSNTD) in the track count rate up to 5000 cm -2. On the digital image so obtained, a microprocessor, with appropriate software, performs image analysis, filtering, tracks counting and evaluation.

  15. 76 FR 23568 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... Civil Nuclear Trade Advisory Committee (CINTAC). DATES: The meeting is scheduled for Thursday, May 12... programs to expand United States exports of civil nuclear goods and services in accordance with applicable...

  16. 76 FR 61669 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... Civil Nuclear Trade Advisory Committee (CINTAC). DATES: The meeting is scheduled for Friday, November 4... programs to expand United States exports of civil nuclear goods and services in accordance with applicable...

  17. 76 FR 35405 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... Civil Nuclear Trade Advisory Committee (CINTAC). DATES: The meeting is scheduled for Thursday, July 14... programs to expand United States exports of civil nuclear goods and services in accordance with applicable...

  18. Nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frankel, D.R.

    1980-01-01

    Several recent congressional and executive proposals address the political problem posed by nuclear wastes. The proposals are divided into three categories on the basis of the degree of authority granted to state officials in siting decisions: those granting states a veto power, those providing for consultation with state officials during planning, and those leaving plenary authority in the hands of the Federal goverment. Legislative proposals are discussed under these categories. The most-balanced approach provides a formal role for state officials without granting the states an absolute veto. This solution provides a political outlet for local concern and ensures a widermore » range of views. It also avoids the problem, inherent in the state veto, of sacrificing the national interest in selecting the safest possible disposal site. 69 references.« less

  19. Fallout risk following a major nuclear attack on the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, T.F.; Shapiro, C.S.; Wittler, R.F.

    Fallout distributions are calculated for nuclear attacks on the contiguous United States. Four attack scenarios are treated, including counterforce and counterforce-countervalue attacks, for meteorological conditions associated with a typical day in summer and one in winter. The countervalue attacks contain mostly airbursts. To determine fallout effects, the population surviving the prompt effects is first calculated. For the prompt effects, a 'conflagration-type' model is used. The counterforce attack produces about 8 million prompt deaths, and the counterforce-countervalue case projects 98 million prompt deaths. Partial relocation before attack to low-risk fallout areas at least 15 km from potential strategic targets would resultmore » in a decrease in projections of deaths by tens of millions. For fallout risk calculations, only the dose received in the first 48 h (the early or local fallout) is considered. Populations are assumed to be sheltered, with a shelter protection factor profile that varies for a large urban area, a small urban area, or a rural area. With these profiles, without relocation, the fallout fatalities for all four attack scenarios are calculated to be less than one million people. This can be compared to fallout fatalities of about 10 million for a hypothetical unsheltered 'phantom' population.« less

  20. Fallout risk following a major nuclear attack on the United States.

    PubMed

    Harvey, T F; Shapiro, C S; Wittler, R F

    1992-01-01

    Fallout distributions are calculated for nuclear attacks on the contiguous United States. Four attack scenarios are treated, including counterforce and counterforce-countervalue attacks, for meteorological conditions associated with a typical day in summer and one in winter. The countervalue attacks contain mostly airbursts. To determine fallout effects, the population surviving the prompt effects is first calculated. For the prompt effects, a "conflagration-type" model is used. The counterforce attack produces about 8 million prompt deaths, and the counterforce-countervalue case projects 98 million prompt deaths. Partial relocation before attack to low-risk fallout areas at least 15 km from potential strategic targets would result in a decrease in projections of deaths by tens of millions. For fallout risk calculations, only the dose received in the first 48 h (the early or local fallout) is considered. Populations are assumed to be sheltered, with a shelter protection factor profile that varies for a large urban area, a small urban area, or a rural area. With these profiles, without relocation, the fallout fatalities for all four attack scenarios are calculated to be less than one million people. This can be compared to fallout fatalities of about 10 million for a hypothetical unsheltered "phantom" population.

  1. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  2. Nuclear Weapons and the Future: An "Unthinkable" Proposal.

    ERIC Educational Resources Information Center

    Tyler, Robert L.

    1982-01-01

    The author looks ahead 30 or 40 years to see what might come of the nuclear weapons predicament. As a minimal first step in the campaign against nuclear warfare, he suggests a unilateral and complete disarmament by the United States. (AM)

  3. On the unification of nuclear-structure theory: A response to Bortignon and Broglia

    NASA Astrophysics Data System (ADS)

    Cook, Norman D.

    2016-09-01

    Nuclear-structure theory is unusual among the diverse fields of quantum physics. Although it provides a coherent description of all known isotopes on the basis of a quantum-mechanical understanding of nucleon states, nevertheless, in the absence of a fundamental theory of the nuclear force acting between nucleons, the prediction of all ground-state and excited-state nuclear binding energies is inherently semi-empirical. I suggest that progress can be made by returning to the foundational work of Eugene Wigner from 1937, where the mathematical symmetries of nucleon states were first defined. Those symmetries were later successfully exploited in the development of the independent-particle model ( IPM ˜ shell model , but the geometrical implications noted by Wigner were neglected. Here I review how the quantum-mechanical, but remarkably easy-to-understand geometrical interpretation of the IPM provides constraints on the parametrization of the nuclear force. The proposed "geometrical IPM" indicates a way forward toward the unification of nuclear-structure theory that Bortignon and Broglia have called for.

  4. Review, Analyses and Recommendations Related to Modern International Use of Nuclear Space Technologies with Focus on United States and Russia

    NASA Astrophysics Data System (ADS)

    Smith, T.

    The current Administration under President Barack Obama has given NASA a new directive in manned spaceflight. Instead of building a fleet of Ares rockets with various load specifications to deliver astronauts to the International Space Station (ISS) and return them to the Moon, the 2011 NASA Strategic Plan [1] states that NASA will develop ``integrated architecture and capabilities for safe crewed and cargo missions beyond Low Earth Orbit.'' The technologies developed within this architecture will take astronauts beyond the Moon, to destinations such as Mars or asteroids and will most likely require the use of Nuclear Space Technologies (NSTs).While there are other proposals for novel power generation and propulsion, such as fusion technology, these technologies are immature and it may be decades before they have demonstrated feasibility; in contrast NSTs are readily available, proven to work in space, and flight qualified. However, NSTs such as nuclear thermal propulsion (NTP) may or may not reach completion - especially with the lack of a mission in which they may be developed. Prospects and progress in current NST projects, ranging from power sources to propulsion units, are explored within this study, mainly in the United States, with an overview of projects occurring in other countries. At the end of the study, recommendations are made in order to address budget and political realities, aerospace export control and nuclear non-proliferation programs, and international issues and potentials as related to NSTs. While this report is not fully comprehensive, the selection of chosen projects illustrates a range of issues for NSTs. Secondly, the reader would be keen to make a distinction between technologies that have flown in the past, projects that have been tested and developed yet not flown, and concepts that have not yet reached the bench for testing.

  5. Technical Issues Related to the Comprehensive Nuclear Test Ban Treaty

    NASA Astrophysics Data System (ADS)

    Garwin, Richard L.

    2003-04-01

    The National Academy of Sciences recently published a detailed study of technical factors related to the Comprehensive Nuclear Test Ban Treaty (CTBT), with emphasis on those issues that arose when the Senate declined to ratify the Treaty in 1999. The study considered (1) the capacity of the United States to maintain confidence in the safety and reliability of its nuclear weapons without nuclear testing; (2) the capabilities of the international nuclear-test monitoring system; and (3) the advances in nuclear weapons capabilities that other countries might make through low-yield testing that might escape detection. Excluding political factors, the committee considered three possible future worlds: (1) a world without a CTBT; (2) a world in which the signatories comply with a CTBT; and (3) a world in the signatories evade its strictures within the limits set by the detection system. The talk and ensuing discussion will elaborate on the study. The principal conclusion of the report, based solely on technical reasons, is that the national security of the United States is better served with a CTBT in force than without it, whether or not other signatories conduct low level but undetected tests in violation of the treaty. Moreover, the study finds that nuclear testing would not add substantially to the US Stockpile Stewardship Program in allowing the United States to maintain confidence in the assessment of its existing nuclear weapons.

  6. Technical Issues Related to the Comprehensive Nuclear Test Ban Treaty

    NASA Astrophysics Data System (ADS)

    2003-03-01

    The National Academy of Sciences recently completed a detailed study of the technical factors related to the Comprehensive Nuclear Test Ban Treaty (CTBT), with emphasis on those issues that arose when the Senate declined to ratify the Treaty in 1999. The study considered (1) the capacity of the United States to maintain confidence in the safety and reliability of its nuclear weapons without nuclear testing; (2) the capabilities of the international nuclear-test monitoring system; and (3) the advances in nuclear weapons capabilities that other countries might make through low-yield testing that might escape detection. While political factors were excluded, the committee considered three possible future worlds: (1) a world without a CTBT; (2) a world in which the signatories comply with a CTBT; and (3) a world in the signatories evade its strictures within the limits set by the detection system. The talk will elaborate on the study. The primary conclusion, based solely on technical reasons, is that the national security of the United States is better served with a CTBT in force than without it, whether or not other signatories conduct low level but undetected tests in violation of the treaty. Moreover, the study finds that nuclear testing would not add substantially to the US Stockpile Stewardship Program in allowing the United States to maintain confidence in the assessment of its existing nuclear weapons."

  7. A proliferation of nuclear waste for the Southeast.

    PubMed

    Alvarez, Robert; Smith, Stephen

    2007-12-01

    The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is being promoted as a program to bring about the expansion of worldwide nuclear energy. Here in the U.S. much of this proposed nuclear power expansion is slated to happen in the Southeast, including here in South Carolina. Under the GNEP plan, the United States and its nuclear partners would sell nuclear power plants to developing nations that agree not to pursue technologies that would aid nuclear weapons production, notably reprocessing and uranium enrichment. As part of the deal, the United States would take highly radioactive spent ("used") fuel rods to a reprocessing center in this country. Upon analysis of the proposal, it is clear that DOE lacks a credible plan for the safe management and disposal of radioactive wastes stemming from the GNEP program and that the high costs and possible public health and environmental impacts from the program pose significant risks, especially to this region. Given past failures to address waste problems before they were created, DOE's rush to invest major public funds for deployment of reprocessing should be suspended.

  8. 78 FR 44535 - Civil Nuclear Trade Advisory Committee (CINTAC) Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... programs to expand United States exports of civil nuclear goods and services in accordance with applicable U.S. laws and regulations, including advice on how U.S. civil nuclear goods and services export...

  9. 77 FR 12008 - Civil Nuclear Trade Advisory Committee Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... meeting of the Civil Nuclear Trade Advisory Committee (CINTAC). DATES: The meeting is scheduled for Monday... administration of programs to expand United States exports of civil nuclear goods and services in accordance with...

  10. Nuclear structure studies with gamma-ray beams

    DOE PAGES

    Tonchev, Anton; Bhatia, Chitra; Kelley, John; ...

    2015-05-28

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  11. Nuclear Structure Studies with Gamma-Ray Beams

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bhatia, Chitra; Kelley, John; Raut, Rajarshi; Rusev, Gencho; Tornow, Werner; Tsoneva, Nadia

    2015-05-01

    In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.

  12. New method for taking into account finite nuclear mass in the determination of the absence of bound states: Application to e/sup +/H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armour, E.A.G.

    1982-06-07

    It has been known since the work of Aronson, Kleinman and Spruch, and Armour that, if the proton is considered to be infinitely massive, no bound state of a system made up of a positron and a hydrogen atom can exist. In this Letter a new method is introduced for taking into account finite nuclear mass. With use of this method it is shown that the inclusion of the finite mass of the proton does not result in the appearance of a bound state. This is the first time that this result has been established.

  13. The Nuclear Cryogenic Propulsion Stage

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.

  14. Neutrino Spectra from Nuclear Weak Interactions in sd-Shell Nuclei under Astrophysical Conditions

    NASA Astrophysics Data System (ADS)

    Misch, G. Wendell; Sun, Yang; Fuller, George M.

    2018-01-01

    We present shell model calculations of nuclear neutrino energy spectra for 70 sd-shell nuclei over the mass number range A = 21–35. Our calculations include nuclear excited states as appropriate for the hot and dense conditions characteristic of pre-collapse massive stars. We consider neutrinos produced by charged lepton captures and decays, and for the first time in tabular form, neutral current nuclear deexcitation, providing neutrino energy spectra on the Fuller–Fowler–Newman temperature–density grid for these interaction channels for each nucleus. We use the full sd-shell model space to compute initial nuclear states up to 20 MeV excitation with transitions to final states up to 35–40 MeV, employing a modification of the Brink-Axel hypothesis to handle high-temperature population factors and the nuclear partition functions.

  15. 2011 Japanese Nuclear Incident

    EPA Pesticide Factsheets

    EPA’s RadNet system monitored the environmental radiation levels in the United States and parts of the Pacific following the Japanese Nuclear Incident. Learn about EPA’s response and view historical laboratory data and news releases.

  16. Current nuclear threats and possible responses

    NASA Astrophysics Data System (ADS)

    Lamb, Frederick K.

    2005-04-01

    Over the last 50 years, the United States has spent more than 100 billion developing and building a variety of systems intended to defend its territory against intercontinental-range ballistic missiles. Most of these systems never became operational and ultimately all were judged ineffective. The United States is currently spending about 10 billion per year developing technologies and systems intended to defend against missiles that might be acquired in the future by North Korea or Iran. This presentation will discuss these efforts ad whether they are likely to be more effective than those of the past. It will also discuss the proper role of anti-ballistic programs at a time when the threat of a nuclear attack on the U.S. by terrorists armed with nuclear weapons is thought to be much higher than the threat of an attack by nuclear-armed ballistic missles.

  17. SkyNet: A Modular Nuclear Reaction Network Library

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas; Roberts, Luke F.

    2017-12-01

    Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.

  18. NUCLEAR NONPROLIFERATION AND SAFETY: Challenges Facing the International Atomic Energy Agency.

    DTIC Science & Technology

    1993-09-01

    safeguards), and the Chernobyl nuclear power plant accident have focused greater attention on nuclear proliferation and the safety of nuclear power... Chernobyl , IAEA has placed increasing emphasis on assisting member states in improving the safety of nuclear power plants. Despite funding shortfalls...report language, GAO has incorporated their comments where appropriate. 2Nuclear Power Safety: Chernobyl Accident Prompted Worldwide Actions but

  19. Impact of American Cinema on Nuclear Geopolitical Identity

    DTIC Science & Technology

    2014-04-01

    AU/ACSC/AY14 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY IMPACT OF AMERICAN CINEMA ON NUCLEAR GEOPOLITICAL IDENTITY by Major Michael...26 ABSTRACT American cinema has shaped and reinforced nuclear ideological geopolitics in the United States since the beginning of...policymakers and the public. When US nuclear strategy appeared to shift away from deterrence later in the Cold War, American cinema pushed back by

  20. Can shale safely host US nuclear waste?

    USGS Publications Warehouse

    Neuzil, C.E.

    2013-01-01

    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  1. The medical implications of nuclear war

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, F.; Marston, R.Q.

    1986-01-01

    This volume is divided into five parts. The first provides an overview of the physical and environmental effects of nuclear war, setting the stage for later sections that address the medical impact of various types of nuclear attack. Part III reviews the demand for medical resources after a nuclear attack and estimates the actual supply likely to be available. If a single one-megaton bomb were exploded over the city of Detroit, for example, it is calculated that survivors would need about forty times the number of burn beds currently available throughout the entire United States. Contributors to Part IV addressmore » the nuclear arms race from a psychosocial point of view: How does the threat of nuclear war affect the attitudes and behavior of adults and children. Studies provide evidence that many young children are worried about the possibility of nuclear war; most learn about nuclear war from television or the media and rarely discuss it with their parents. Finally in this section is a call for improving the screening system used to select nuclear weapons handlers.« less

  2. An Overview of the Cooperative Effort between the United States Department of Energy and the China Atomic Energy Authority to Enhance MPC&A Inspections for Civil Nuclear Facilities in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahern, Keith; Daming, Liu; Hanley, Tim

    The United States Department of Energy, National Nuclear Security Administration (DOE/NNSA) and the China Atomic Energy Authority (CAEA) are cooperating to enhance the domestic regulatory inspections capacity for special nuclear material protection, control and accounting (MPC&A) requirements for civil nuclear facilities in China. This cooperation is conducted under the auspices of the Agreement between the Department of Energy of the United States of America and the State Development and Planning Commission of the People s Republic of China on Cooperation Concerning Peaceful Uses of Nuclear Technology. This initial successful effort was conducted in three phases. Phase I focused on introducingmore » CAEA personnel to DOE and U. S. Nuclear Regulatory Commission inspection methods for U. S. facilities. This phase was completed in January 2008 during meetings in Beijing. Phase II focused on developing physical protection and material control and accounting inspection exercises that enforced U. S. inspection methods identified during Phase 1. Hands on inspection activities were conducted in the United States over a two week period in July 2009. Simulated deficiencies were integrated into the inspection exercises. The U. S. and Chinese participants actively identified and discussed deficiencies noted during the two week training course. The material control and accounting inspection exercises were conducted at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, KY. The physical protection inspection exercises were conducted at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. Phase III leveraged information provided under Phase I and experience gained under Phase II to develop a formal inspection guide that incorporates a systematic approach to training for Chinese MPC&A field inspectors. Additional hands on exercises that are applicable to Chinese regulations were incorporated into the Phase III training material. Phase III was completed in May 2010 at

  3. A Nuclear Dilemma--Korean War Deja Vu

    DTIC Science & Technology

    2006-03-08

    USAWC STRATEGY RESEARCH PROJECT A NUCLEAR DILEMMA—KOREAN WAR DEJA VU by Lieutenant Colonel Trent A. Pickering United States Air Force Colonel William...Lieutenant Colonel Trent A. Pickering TITLE: A Nuclear Dilemma—Korean War Deja Vu FORMAT: Strategy Research Project DATE: 8 March 2006 WORD COUNT: 19,270...1. REPORT DATE 15 MAR 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2005 to 00-00-2006 4. TITLE AND SUBTITLE Nuclear Dilemma--Korean War Deja

  4. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  5. Projected Costs of U.S. Nuclear Forces, 2017 to 2026

    DTIC Science & Technology

    2017-02-01

    CBO FEBRUARY 2017 Projected Costs of U.S. Nuclear Forces, 2017 to 2026 Nuclear weapons have been a cornerstone of U.S. national security since they...were developed during World War II. In the Cold War, nuclear forces were central to U.S. defense policy, resulting in the buildup of a large...arsenal. Since that time, nuclear forces have figured less prominently than conventional forces, and the United States has not built any new nuclear

  6. Nuclear thermal propulsion workshop overview

    NASA Technical Reports Server (NTRS)

    Clark, John S.

    1991-01-01

    NASA is planning an Exploration Technology Program as part of the Space Exploration Initiative to return U.S. astronauts to the moon, conduct intensive robotic exploration of the moon and Mars, and to conduct a piloted mission to Mars by 2019. Nuclear Propulsion is one of the key technology thrust for the human mission to Mars. The workshop addresses NTP (Nuclear Thermal Rocket) technologies with purpose to: assess the state-of-the-art of nuclear propulsion concepts; assess the potential benefits of the concepts for the mission to Mars; identify critical, enabling technologies; lay-out (first order) technology development plans including facility requirements; and estimate the cost of developing these technologies to flight-ready status. The output from the workshop will serve as a data base for nuclear propulsion project planning.

  7. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  8. Safe, Affordable, Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.

    2014-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  9. Nuclear field density problems.

    DOT National Transportation Integrated Search

    1975-01-01

    The densities of subgrade soil at various locations throughout the state were determined using the different model nuclear gages owned by the Department. In addition, some laboratory testing and sand cote testing were carried out. It was concluded th...

  10. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  11. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  12. Power Generation from Nuclear Reactors in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  13. 78 FR 33122 - Policy Statement on Adequacy and Compatibility of Agreement State Programs; Statement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0081] Policy Statement on Adequacy and Compatibility of Agreement State Programs; Statement of Principles and Policy for the Agreement State Program AGENCY: Nuclear.... Nuclear Regulatory Commission (NRC) is proposing revisions to its policy statements on Agreement State...

  14. State-level emergency preparedness and response capabilities.

    PubMed

    Watkins, Sharon M; Perrotta, Dennis M; Stanbury, Martha; Heumann, Michael; Anderson, Henry; Simms, Erin; Huang, Monica

    2011-03-01

    Prior assessments of public health readiness had identified gaps in radiation preparedness. In recent years, preparedness planning has involved an "all-hazards" approach. Current assessment of the national status related to radiation public health emergency preparedness capabilities at the state and local health department levels was needed. A survey of state health departments related to radiation readiness was undertaken in 2010 by the Council of State and Territorial Epidemiologists (CSTE). States with nuclear power plants were instructed to consider their responses exclusive of capabilities and resources related to the plants given that the emergency response plans for nuclear power plants are specific and unique. Thirty-eight (76%) state health departments responded to the survey, including 26 of the 31 states with nuclear power plants. Specific strengths noted at the state level included that the majority of states had a written radiation response plan and most plans include a detailed section for communications issues during a radiation emergency. In addition, more than half of the states indicated that their relationship with federal partners is sufficient to provide resources for radiation emergencies, indicating the importance states placed on federal resources and expertise. Specific weaknesses are discussed and include that most states had completed little to no planning for public health surveillance to assess potential human health impacts of a radiation event; less than half had written plans to address exposure assessment, environmental sampling, human specimen collection and analysis, and human health assessment. Few reported having sufficient resources to do public health surveillance, radiation exposure assessment, laboratory functions and other capabilities. Levels of planning, resources and partnerships varied among states, those with nuclear power plants were better prepared. Gaps were evident in all states; however and additional training and

  15. Strategic perspective: Nuclear issues in the New Zealand media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridriksson, L.N.

    New Zealand's anti-nuclear policy drew international attention and threw the nation into a foreign policy crisis with the United States over the trilateral mutual security pact ANZUS. After more than a year of diminished intelligence and military cooperation, New Zealand was expelled from the alliance. This study involved a content analysis of coverage of these events and other nuclear issues in selected newspapers of New Zealand and the United States. Research points to the roles of the media as a critical one in the overall relations among countries. Through their frequent use of official government sources, the media tend tomore » uphold the government line or status quo with regard to foreign affairs. This study sought to identify the nuclear issues covered in the New Zealand and US media, the characteristics of that coverage, the sources of that coverage and how coverage varied during changing US-New Zealand relations. The official frame prevailed in coverage of nuclear issues. In the New Zealand and US newspapers under study, most sources of nuclear issue news were government officials. This research also found that most coverage of nuclear issues in the New Zealand media was related to some aspect of US interests, and that coverage of New Zealand's policy in the US media was covered most often when related to the United States. Nuclear issue coverage was most often not crisis-oriented in New Zealand and US newspapers, but coverage of all nuclear issues increased dramatically during the period of the ANZUS policy crisis. This study found a number of changes in nuclear issue coverage in the New Zealand media after the policy crisis was resolved. Among those changes were a tendency to focus less on economic and trade effects of the anti-nuclear policy, a tendency to focus more on ties with other South Pacific nations, use more sources from those countries, and a tendency to focus less on the moral and ethical position of the country.« less

  16. Pocket formula for nuclear deformations of actinides

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-06-01

    We have formulated a pocket formula for quadrupole (β2), octupole (β3), hexadecapole (β4) and hexacontatetrapole (β6) deformation of the nuclear ground state of all isotopes of actinide nuclei (89 < Z < 103). This formula is first of its kind and produces a nuclear deformation of all isotopes actinide nuclei 89 < Z < 103 with simple inputs of Z and A. Hence, this formula is useful in the fields of nuclear physics to study the structure and interaction of nuclei.

  17. Protecting a Diamond Quantum Memory by Charge State Control.

    PubMed

    Pfender, Matthias; Aslam, Nabeel; Simon, Patrick; Antonov, Denis; Thiering, Gergő; Burk, Sina; Fávaro de Oliveira, Felipe; Denisenko, Andrej; Fedder, Helmut; Meijer, Jan; Garrido, Jose A; Gali, Adam; Teraji, Tokuyuki; Isoya, Junichi; Doherty, Marcus William; Alkauskas, Audrius; Gallo, Alejandro; Grüneis, Andreas; Neumann, Philipp; Wrachtrup, Jörg

    2017-10-11

    In recent years, solid-state spin systems have emerged as promising candidates for quantum information processing. Prominent examples are the nitrogen-vacancy (NV) center in diamond, phosphorus dopants in silicon (Si:P), rare-earth ions in solids, and V Si -centers in silicon-carbide. The Si:P system has demonstrated that its nuclear spins can yield exceedingly long spin coherence times by eliminating the electron spin of the dopant. For NV centers, however, a proper charge state for storage of nuclear spin qubit coherence has not been identified yet. Here, we identify and characterize the positively charged NV center as an electron-spin-less and optically inactive state by utilizing the nuclear spin qubit as a probe. We control the electronic charge and spin utilizing nanometer scale gate electrodes. We achieve a lengthening of the nuclear spin coherence times by a factor of 4. Surprisingly, the new charge state allows switching of the optical response of single nodes facilitating full individual addressability.

  18. Converting energy to medical progress [nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biologicalmore » research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.« less

  19. Combinedatomic–nuclear decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzyublik, A. Ya., E-mail: dzyublik@ukr.net

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2{sup +} level of {sub 63}{sup 153}Eu and K hole, formed in the K capture by {sup 153}Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10{sup −13}, that is much less than the recent experimental findings.

  20. PREFACE: XXXVI Symposium on Nuclear Physics (Cocoyoc 2013)

    NASA Astrophysics Data System (ADS)

    Barrón-Palos, Libertad; Morales-Agiss, Irving; Martínez-Quiroz, Enrique

    2014-03-01

    logo The XXXVI Symposium on Nuclear Physics, organized by the Division of Nuclear Physics of the Mexican Physical Society, took place from 7-10 January, 2013. As it is customary, the Symposium was held at the Hotel Hacienda Cocoyoc, in the state of Morelos, Mexico. Conference photograph This international venue with many years of tradition was attended by outstanding physicists, some of them already regulars to this meeting and others who joined us for the first time; a total of 45 attendees from different countries (Argentina, Brazil, Canada, China, Germany, Italy, Japan, Mexico and the United States). A variety of topics related to nuclear physics (nuclear reactions, radioactive beams, nuclear structure, fundamental neutron physics, sub-nuclear physics and nuclear astrophysics, among others) were presented in 26 invited talks and 10 contributed posters. Local Organizing Committee Libertad Barrón-Palos (IF-UNAM)) Enrique Martínez-Quíroz (ININ)) Irving Morales-Agiss (ICN-UNAM)) International Advisory Committee Osvaldo Civitarese (UNLP, Argentina) Jerry P Draayer (LSU, USA)) Alfredo Galindo-Uribarri (ORNL, USA)) Paulo Gomes (UFF, Brazil)) Piet Van Isacker (GANIL, France)) James J Kolata (UND, USA)) Reiner Krücken (TRIUMF, Canada)) Jorge López (UTEP, USA)) Stuart Pittel (UD, USA)) W Michael Snow (IU, USA)) Adam Szczepaniak (IU, USA)) Michael Wiescher (UND, USA)) A list of participants is available in the PDF

  1. Reexamining the Ethics of Nuclear Technology.

    PubMed

    Andrianov, Andrei; Kanke, Victor; Kuptsov, Ilya; Murogov, Viktor

    2015-08-01

    This article analyzes the present status, development trends, and problems in the ethics of nuclear technology in light of a possible revision of its conceptual foundations. First, to better recognize the current state of nuclear technology ethics and related problems, this article focuses on presenting a picture of the evolution of the concepts and recent achievements related to technoethics, based on the ethics of responsibility. The term 'ethics of nuclear technology' describes a multidisciplinary endeavor to examine the problems associated with nuclear technology through ethical frameworks and paradigms. Second, to identify the reasons for the intensification of efforts to develop ethics in relation to nuclear technology, this article presents an analysis of the recent situation and future prospects of nuclear technology deployment. This includes contradictions that have aggravated nuclear dilemmas and debates stimulated by the shortcomings of nuclear technology, as well as the need for the further development of a nuclear culture paradigm that is able to provide a conceptual framework to overcome nuclear challenges. Third, efforts in the field of nuclear technology ethics are presented as a short overview of particular examples, and the major findings regarding obstacles to the development of nuclear technology ethics are also summarized. Finally, a potential methodological course is proposed to overcome inaction in this field; the proposed course provides for the further development of nuclear technology ethics, assuming the axiological multidisciplinary problematization of the main concepts in nuclear engineering through the basic ethical paradigms: analytical, hermeneutical, and poststructuralist.

  2. A Nuclear Freeze and a Noninterventionary Conventional Policy.

    ERIC Educational Resources Information Center

    Forsberg, Randall

    1982-01-01

    The history of the arms race between the United States and the Soviet Union is related, and the role assigned to conventional and nuclear forces in both countries is explained. A plea is made for a nuclear freeze and for reducing conventional forces as well. (PP)

  3. Nuclear Data and Reaction Rate Databases in Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas

    2018-06-01

    Astrophysical simulations and models require a large variety of micro-physics data, such as equation of state tables, atomic opacities, properties of nuclei, and nuclear reaction rates. Some of the required data is experimentally accessible, but the extreme conditions present in many astrophysical scenarios cannot be reproduced in the laboratory and thus theoretical models are needed to supplement the empirical data. Collecting data from various sources and making them available as a database in a unified format is a formidable task. I will provide an overview of the data requirements in astrophysics with an emphasis on nuclear astrophysics. I will then discuss some of the existing databases, the science they enable, and their limitations. Finally, I will offer some thoughts on how to design a useful database.

  4. Nuclear-spin-independent short-range three-body physics in ultracold atoms.

    PubMed

    Gross, Noam; Shotan, Zav; Kokkelmans, Servaas; Khaykovich, Lev

    2010-09-03

    We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev. Lett. 103, 163202 (2009)]. We extend the previously reported universality in three-body recombination loss across a Feshbach resonance to the absolute ground state. We show that the positions and widths of recombination minima and Efimov resonances are identical for both states which indicates that the short-range physics is nuclear-spin independent.

  5. The Organization and Management of the Nuclear Weapons Program.

    DTIC Science & Technology

    1997-03-01

    over operations include the Defense Nuclear Facilities Safety Board, the Environmental Protection Agency, the Occupational Safety and Health...Safety, and Health. Still more guidance is received from the Defense Nuclear Facilities Safety Board and other external bodies such as the...state regulatory agencies, and the Defense Nuclear Facilities Safety Board. This chapter briefly reviews the most recent decade of this history, describes

  6. Cycle Trades for Nuclear Thermal Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, C.; Guidos, M.; Greene, W.

    2003-01-01

    Nuclear fission has been used as a reliable source for utility power in the United States for decades. Even in the 1940's, long before the United States had a viable space program, the theoretical benefits of nuclear power as applied to space travel were being explored. These benefits include long-life operation and high performance, particularly in the form of vehicle power density, enabling longer-lasting space missions. The configurations for nuclear rocket systems and chemical rocket systems are similar except that a nuclear rocket utilizes a fission reactor as its heat source. This thermal energy can be utilized directly to heat propellants that are then accelerated through a nozzle to generate thrust or it can be used as part of an electricity generation system. The former approach is Nuclear Thermal Propulsion (NTP) and the latter is Nuclear Electric Propulsion (NEP), which is then used to power thruster technologies such as ion thrusters. This paper will explore a number of indirect-NTP engine cycle configurations using assumed performance constraints and requirements, discuss the advantages and disadvantages of each cycle configuration, and present preliminary performance and size results. This paper is intended to lay the groundwork for future efforts in the development of a practical NTP system or a combined NTP/NEP hybrid system.

  7. Nuclear Winter: Scientists in the Political Arena

    NASA Astrophysics Data System (ADS)

    Badash, Lawrence

    2001-03-01

    The nuclear winter phenomenon is used to illustrate the many paths by which scientific advice reaches decision makers in the United States government. Because the Reagan administration was hostile to the strategic policy that the scientific discovery seemed to demand, the leading proponent of nuclear winter, Carl Sagan, used his formidable talent for popularization to reach a larger audience.

  8. 77 FR 25961 - Civil Nuclear Trade Advisory Committee (CINTAC) Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF COMMERCE International Trade Administration Civil Nuclear Trade Advisory Committee... to expand United States exports of civil nuclear goods and services in accordance with applicable U.S. laws and regulations, including advice on how U.S. civil nuclear goods and services export policies...

  9. Bright perspectives for nuclear photonics

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.

    2014-05-01

    With the advent of new high-power, short-pulse laser facilities in combination with novel technologies for the production of highly brilliant, intense γ beams (like, e.g., Extreme Light Infrastructure - Nuclear Physics (ELI-NP) in Bucharest, MEGaRay in Livermore or a planned upgrade of the HIγS facility at Duke University), unprecedented perspectives will open up in the coming years for photonuclear physics both in basic sciences as in various fields of applications. Ultra-high sensitivity will be enabled by an envisaged increase of the γ-beam spectral density from the presently typical 102γ/eVs to about 104γ/eVs, thus enabling a new quality of nuclear photonics [1], assisted by new γ-optical elements [2]. Photonuclear reactions with highly brilliant γ beams will allow to produce radioisotopes for nuclear medicine with much higher specific activity and/or more economically than with conventional methods. This will open the door for completely new clinical applications of radioisotopes [3]. The isotopic, state-selective sensitivity of the well-established technique of nuclear resonance fluorescence (NRF) will be boosted by the drastically reduced energy bandwidth (<0.1%) of the novel γ beams. Together with a much higher intensity of these beams, this will pave the road towards a γ-beam based non-invasive tomography and microscopy, assisting the management of nuclear materials, such as radioactive waste management, the detection of nuclear fissile material in the recycling process or the detection of clandestine fissile materials. Moreover, also secondary sources like low-energy, pulsed, polarized neutron beams of high intensity and high brilliance [4] or a new type of positron source with significantly increased brilliance, for the first time fully polarized [5], can be realized and lead to new applications in solid state physics or material sciences.

  10. Experimental data on ground- and excited-state properties for all nuclei with mass number A=144 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes have been built, as well as tables of nuclear properties. This work supersedes the 1989 evaluation by J.K. Tuli (1989Tu02). Manuscripts published before December 2000 have been included in this work

    NASA Astrophysics Data System (ADS)

    Sonzogni, A. A.

    2001-07-01

    Experimental data on ground- and excited-state properties for all nuclei with mass number A = 144 have been compiled and evaluated. States populated in radioactive decay as well as in nuclear reactions have been considered. For these nuclei, level and decay schemes have been built, as well as tables of nuclear properties. This work supersedes the 1989 evaluation by J.K. Tuli (1989Tu02). Manuscripts published before December 2000 have been included in this work.

  11. Who Did It? Using International Forensics to Detect and Deter Nuclear Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunlop, W H; Smith, H P

    On February 2, the ''New York Times'' reported that the Pentagon has formed a nuclear forensics team tasked with identifying the terrorist attackers should the United States be hit with a nuclear bomb. Adapting nuclear technology to the forensics of exploded nuclear weapons is an old but rapidly evolving field. It dates back to at least 1949, when analysis of airborne debris, retrieved at high altitude off the coast of China, convinced President Harry Truman that the Soviet Union had exploded a nuclear device on the steppes of central Asia. The technology is neither new nor has it been particularlymore » secret, but the formation of a national nuclear forensics team was newsworthy and a useful development. An international team, however, would be even better. Although Washington has naturally focused on preventing a nuclear terrorism attack in the United States, a U.S. city is not necessarily the most likely target for nuclear terrorists. It is doubtful that a terrorist organization would be able to acquire a U.S. nuclear device and even more doubtful that it would acquire one on U.S. soil. Accordingly, if a terrorist organization does get its hands on a fission device, it is likely that it will do so on foreign territory. At that point, the terrorists will have an enormously valuable political weapon in their hands and will be loath to risk losing that asset. Given the risks associated with getting the device into the United States, the rational choice would be to deploy the device abroad against much softer targets. For Islamist terrorists, a major ''Christian'' capital such as London, Rome, or Moscow might offer a more suitable target. Among these, Moscow perhaps presents the most compelling case for international cooperation on post-detonation nuclear forensics. Russia has the largest stockpile of poorly secured nuclear devices in the world. It also has porous borders and poor internal security, and it continues to be a potential source of contraband nuclear

  12. Can tonne-scale direct detection experiments discover nuclear dark matter?

    NASA Astrophysics Data System (ADS)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.

    2017-10-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.

  13. Can tonne-scale direct detection experiments discover nuclear dark matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with amore » decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .« less

  14. National Nuclear Forensics Expertise Development Program

    NASA Astrophysics Data System (ADS)

    Kentis, Samantha E.; Ulicny, William D.

    2009-08-01

    Over the course of the 2009 Federal Fiscal Year the United States (U.S.) Department of Homeland Security (DHS), in partnership with the Departments of Defense (DoD) and Energy (DOE), is continuing existing programs and introducing new programs designed to maintain a highly qualified, enduring workforce capable of performing the technical nuclear forensics mission. These student and university programs are designed to recruit the best and brightest students, develop university faculty and research capabilities, and engage the national laboratories in fields of study with application in nuclear forensics. This comprehensive effort constitutes the National Nuclear Forensics Expertise Development Program.

  15. The solid state physics programme at ISOLDE: recent developments and perspectives

    NASA Astrophysics Data System (ADS)

    Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.

    2017-10-01

    Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.

  16. Comment on "radioactive fallout in the United States due to the Fukushima nuclear plant accident" by P. Thakur, S. Ballard and R. Nelson, J. Environ. Monit., 2012, 14, 1317-1324.

    PubMed

    Rose, Paula S

    2014-07-01

    The May 2012 paper "Radioactive fallout in the United States due to the Fukushima nuclear plant accident" (P. Thakur, S. Ballard and R. Nelson, J. Environ. Monit., 2012, 14, 1317-1324), does not address medical patient excreta as a source of (131)I (t1/2 = 8.04 d) to the environment. While (131)I is generated during fission reactions and may be released to the environment from nuclear power plants, nuclear weapons tests, nuclear fuel reprocessing and weapons production facilities, it is also produced for medical use. Iodine-131 administered to patients, excreted and discharged to sewer systems is readily measureable in sewage and the environment; the patient-to-sewage pathway is the only source of (131)I in many locations.

  17. Opening Doors of Opportunity to Develop the Future Nuclear Workforce - 13325

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mets, Mindy

    2013-07-01

    The United States' long-term demand for highly skilled nuclear industry workers is well-documented by the Nuclear Energy Institute. In addition, a study commissioned by the SRS Community Reuse Organization concludes that 10,000 new nuclear workers are needed in the two-state region of Georgia and South Carolina alone. Young adults interested in preparing for these nuclear careers must develop specialized skills and knowledge, including a clear understanding of the nuclear workforce culture. Successful students are able to enter well-paying career fields. However, the national focus on nuclear career opportunities and associated training and education programs has been minimal in recent decades.more » Developing the future nuclear workforce is a challenge, particularly in the midst of competition for similar workers from various industries. In response to regional nuclear workforce development needs, the SRS Community Reuse Organization established the Nuclear Workforce Initiative (NWI{sup R}) to promote and expand nuclear workforce development capabilities by facilitating integrated partnerships. NWI{sup R} achievements include a unique program concept called NWI{sup R} Academies developed to link students with nuclear career options through firsthand experiences. The academies are developed and conducted at Aiken Technical College and Augusta Technical College with support from workforce development organizations and nuclear employers. Programs successfully engage citizens in nuclear workforce development and can be adapted to other communities focused on building the future nuclear workforce. (authors)« less

  18. NASA's Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC- 3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP).

  19. Electron momentum spectroscopy of dimethyl ether taking account of nuclear dynamics in the electronic ground state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morini, Filippo; Deleuze, Michael Simon, E-mail: michael.deleuze@uhasselt.be; Watanabe, Noboru

    The influence of nuclear dynamics in the electronic ground state on the (e,2e) momentum profiles of dimethyl ether has been analyzed using the harmonic analytical quantum mechanical and Born-Oppenheimer molecular dynamics approaches. In spite of fundamental methodological differences, results obtained with both approaches consistently demonstrate that molecular vibrations in the electronic ground state have a most appreciable influence on the momentum profiles associated to the 2b{sub 1}, 6a{sub 1}, 4b{sub 2}, and 1a{sub 2} orbitals. Taking this influence into account considerably improves the agreement between theoretical and newly obtained experimental momentum profiles, with improved statistical accuracy. Both approaches point outmore » in particular the most appreciable role which is played by a few specific molecular vibrations of A{sub 1}, B{sub 1}, and B{sub 2} symmetries, which correspond to C–H stretching and H–C–H bending modes. In line with the Herzberg-Teller principle, the influence of these molecular vibrations on the computed momentum profiles can be unraveled from considerations on the symmetry characteristics of orbitals and their energy spacing.« less

  20. Preliminary Experimental Results using a Steady State ICP Flow Reactor to Investigate Condensation Chemistry for Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Koroglu, Batikan; Armstrong, Mike; Cappelli, Mark; Chernov, Alex; Crowhurst, Jonathan; Mehl, Marco; Radousky, Harry; Rose, Timothy; Zaug, Joe

    2016-10-01

    The high temperature chemistry of rapidly condensing matter is under investigation using a steady state inductively coupled plasma (ICP) flow reactor. The objective is to study chemical processes on cooling time scales similar to that of a low yield nuclear fireball. The reactor has a nested set of gas flow rings that provide flexibility in the control of hydrodynamic conditions and mixing of chemical components. Initial tests were run using two different aqueous solutions (ferric nitrate and uranyl nitrate). Chemical reactants passing through the plasma torch undergo non-linear cooling from 10,000K to 1,000K on time scales of <0.1 to 0.5s depending on flow conditions. Optical spectroscopy measurements were taken at different positions along the flow axis to observe the in situ spatial and temporal evolution of chemical species at different temperatures. The current data offer insights into the changes in oxide chemistry as a function of oxygen fugacity. The time resolved measurements will also serve as a validation target for the development of kinetic models that will be used to describe chemical fractionation during nuclear fireball condensation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    PubMed Central

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25–30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2–6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92–128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6–3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2–4 times lower than with the best triradicals. PMID:24887201

  2. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR

    NASA Astrophysics Data System (ADS)

    Yau, Wai-Ming; Thurber, Kent R.; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized 13C NMR signals from 15N,13C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8 s for 1H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute 13C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals.

  3. Synthesis and evaluation of nitroxide-based oligoradicals for low-temperature dynamic nuclear polarization in solid state NMR.

    PubMed

    Yau, Wai-Ming; Thurber, Kent R; Tycko, Robert

    2014-07-01

    We describe the synthesis of new nitroxide-based biradical, triradical, and tetraradical compounds and the evaluation of their performance as paramagnetic dopants in dynamic nuclear polarization (DNP) experiments in solid state nuclear magnetic resonance (NMR) spectroscopy with magic-angle spinning (MAS). Under our experimental conditions, which include temperatures in the 25-30 K range, a 9.4 T magnetic field, MAS frequencies of 6.2-6.8 kHz, and microwave irradiation at 264.0 GHz from a 800 mW extended interaction oscillator source, the most effective compounds are triradicals that are related to the previously-described compound DOTOPA-TEMPO (see Thurber et al., 2010), but have improved solubility in glycerol/water solvent near neutral pH. Using these compounds at 30 mM total nitroxide concentration, we observe DNP enhancement factors of 92-128 for cross-polarized (13)C NMR signals from (15)N,(13)C-labeled melittin in partially protonated glycerol/water, and build-up times of 2.6-3.8s for (1)H spin polarizations. Net sensitivity enhancements with biradical and tetraradical dopants, taking into account absolute (13)C NMR signal amplitudes and build-up times, are approximately 2-4 times lower than with the best triradicals. Published by Elsevier Inc.

  4. [Risk communication in construction of new nuclear power plant].

    PubMed

    He, Gui-Zhen; Lü, Yong-Long

    2013-03-01

    Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.

  5. Psychology in nuclear power plants: an integrative approach to safety - general statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shikiar, R.

    Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals withmore » the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety.« less

  6. Fission Signatures for Nuclear Material Detection

    NASA Astrophysics Data System (ADS)

    Gozani, Tsahi

    2009-06-01

    Detection and interdiction of nuclear materials in all forms of transport is one of the most critical security issues facing the United States and the rest of the civilized world. Naturally emitted gamma rays by these materials, while abundant and detectable when unshielded, are low in energy and readily shielded. X-ray radiography is useful in detecting the possible presence of shielding material. Positive detection of concealed nuclear materials requires methods which unequivocally detect specific attributes of the materials. These methods typically involve active interrogation by penetrating radiation of neutrons, photons or other particles. Fortunately, nuclear materials, probed by various types of radiation, yield very unique and often strong signatures. Paramount among them are the detectable fission signatures, namely prompt neutrons and gamma rays, and delayed neutrons gamma rays. Other useful signatures are the nuclear states excited by neutrons, via inelastic scattering, or photons, via nuclear resonance fluorescence and absorption. The signatures are very different in magnitude, level of specificity, ease of excitation and detection, signal to background ratios, etc. For example, delayed neutrons are very unique to the fission process, but are scarce, have low energy, and hence are easily absorbed. Delayed gamma rays are more abundant but "featureless", and have a higher background from natural sources and more importantly, from activation due to the interrogation sources. The prompt fission signatures need to be measured in the presence of the much higher levels of probing radiation. This requires taking special measures to look for the signatures, sometimes leading to a significant sensitivity loss or a complete inability to detect them. Characteristic gamma rays induced in nuclear materials reflecting their nuclear structure, while rather unique, require very high intensity of interrogation radiation and very high resolution in energy and/or time. The

  7. What is nuclear power in Japan?

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  8. Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage

    PubMed Central

    Albi, Elisabetta; Perrella, Giuseppina; Lazzarini, Andrea; Cataldi, Samuela; Lazzarini, Remo; Floridi, Alessandro; Ambesi-Impiombato, Francesco Saverio; Curcio, Francesco

    2014-01-01

    Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear sphingomyelin and increase of bax protein. PMID:24979136

  9. Fabrication and testing of a 4-node micro-pocket fission detector array for the Kansas State University TRIGA Mk. II research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.

    2017-08-01

    Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.

  10. Viewpoints on Nuclear Education.

    ERIC Educational Resources Information Center

    Social Education, 1983

    1983-01-01

    The Committee on the Present Danger, Inc., the Committee of Atomic Bomb Survivors in the United States, the World Friendship Center in Hiroshima, two authors, physics and education professors, an English and history teacher, and a high school student comment on nuclear education. (RM)

  11. Nuclear exports: the perilous enterprise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, G.

    1977-03-01

    A representative of the Sierra Club proposes that the United States can at least provide an opportunity for a break in the trend toward nuclear proliferation and may be able to offer the moral and economic persuasion for a worldwide moratorium. The combination of plutonium toxicity and its use in making nuclear explosives, together with the number of countries who have recently entered the nuclear community, indicate an increasing problem in limiting nuclear power to peaceful purposes. The ease with which plutonium can be diverted from power-generating plants into the hands of terrorists and unstable rulers limits the security options.more » The non-proliferation agreements are felt to have created additional problems by making it possible for non-signers of the treaty to have less-stringent safeguards than the signers. The International Atomic Energy Agency is considered to be effective only in a bookkeeping and monitoring capacity, while competition between nuclear suppliers may lead them to relax standards. The author feels that efforts to negotiate voluntary restraints on exporters could offer guarantees of fuel services and other nuclear assistance to those countries agreeing to forego nuclear explosives and reprocessing facilities and accepting safeguards restraints and export restrictions. (DCK)« less

  12. Perspectives of The Interagency Nuclear Safety Review Panel (INSRP) on future nuclear powered space missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.B.; Pyatt, D.W.; Sholtis, J.A.

    1993-01-10

    The Interagency Nuclear Safety Review Panel (INSRP) has provided reviews of all nuclear powered spacecraft launched by the United States. The two most recent launches were Ulysses in 1990 and Galileo in 1989. One reactor was launched in 1965 (SNAP-10A). All other U.S. space missions have utilized radioisotopic thermoelectric generators (RTGs). There are several missions in the next few years that are to be nuclear powered, including one that would utilize the Topaz II reactor purchased from Russia. INSRP must realign itself to perform parallel safety assessments of a reactor powered space mission, which has not been done in aboutmore » thirty years, and RTG powered missions.« less

  13. Low Energy Nuclear Reactions: A Millennium Status Report

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2000-03-01

    This talk will summarize some of the more convincing recent experiments that show that helium-4, nuclear scale excess energy, tritium, low-level neutron production, and the transmutation of heavy elements can occur near room temperature in relatively simple systems. Despite inappropriate theory-based arguments against it and unethical attacks by people unfamiliar with the supporting experiments, the new field of solid state nuclear reactions is progressing. The physical theory behind the associated phenomena continues to be debated among theorists. The facts of the history of this scientific controversy suggest that it is inadvisable to rush to judgment against allegedly ``impossible" new phenomena when increasingly careful experiments have revealed new vistas in physics. Detailed discussion of evidence for solid state nuclear reactions is available elsewhere (http://www.infinite-energy.com). abstract document

  14. Medical and policy considerations for nuclear and radiation accidents, incidents and terrorism.

    PubMed

    Gale, Robert Peter

    2017-11-01

    The purpose of this review is to address the increasing medical and public concern regarding the health consequences of radiation exposure, a concern shaped not only by fear of another Chernobyl or Fukushima nuclear power facility accident but also by the intentional use of a nuclear weapon, a radiological dispersion device, a radiological exposure device, or an improved nuclear device by rogue states such as North Korea and terrorist organizations such as Al Qaeda and ISIS. The United States has the medical capacity to respond to a limited nuclear or radiation accident or incident but an effective medical response to a catastrophic nuclear event is impossible. Dealing effectively with nuclear and radiation accidents or incidents requires diverse strategies, including policy decisions, public education, and medical preparedness. I review medical consequences of exposures to ionizing radiations, likely concomitant injuries and potential medical intervention. These data should help haematologists and other healthcare professionals understand the principles of medical consequences of nuclear terrorism. However, the best strategy is prevention.

  15. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conca, James; Wright, Judith

    2012-07-01

    To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i

  16. Can Nuclear Terrorists be Deterred?

    NASA Astrophysics Data System (ADS)

    Ferguson, Charles

    2005-04-01

    Conventional thinking since September 11, 2001, posits that nuclear-armed terrorists cannot be deterred. However, not all terrorist groups are alike. For instance, those that are strongly affiliated with a national territory or a constituency that can be held hostage are more likely to be self-deterred against using or even acquiring nuclear weapons. In contrast, international terrorist organizations, such as al Qaeda, or apocalyptic groups, such as Aum Shinrikyo, may welcome retaliatory nuclear strikes because they embrace martyrdom. Such groups may be immune to traditional deterrence, which threatens direct punishment against the group in question or against territory or people the terrorists' value. Although deterring these groups may appear hopeless, nuclear forensic techniques could provide the means to establish deterrence through other means. In particular, as long as the source of the nuclear weapon or fissile material could be identified, the United States could threaten a retaliatory response against a nation that did not provide adequate security for its nuclear weapons or weapons-usable fissile material. This type of deterrent threat could be used to compel the nation with lax security to improve its security to meet rigorous standards.

  17. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, R.W.

    1982-06-29

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  18. Digital computer operation of a nuclear reactor

    DOEpatents

    Colley, Robert W.

    1984-01-01

    A method is described for the safe operation of a complex system such as a nuclear reactor using a digital computer. The computer is supplied with a data base containing a list of the safe state of the reactor and a list of operating instructions for achieving a safe state when the actual state of the reactor does not correspond to a listed safe state, the computer selects operating instructions to return the reactor to a safe state.

  19. Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.

    PubMed

    Takahashi, R; Kono, K; Tarucha, S; Ono, K

    2011-07-08

    We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.

  20. The role of commercial nuclear pharmacy in the future practice of nuclear medicine.

    PubMed

    Callahan, R J

    1996-04-01

    It has been estimated that today 70% to 80% of all radiopharmaceutical doses are dispensed through commercial nuclear pharmacy channels. These services are provided by the approximately 250 facilities in the United States, with some multisite corporations dispensing in excess of 20,000 unit-dose prescriptions per day. As pressures mount within health care institutions to reduce manpower, increase cost-effectiveness, increase participation in managed care contracts, and to seek outside vendors for many services that were previously provided in-house, the future role of the commercial nuclear pharmacy in the practice of nuclear medicine will only continue to increase. The essence of nuclear pharmacy practice is the dispensing of a full range of high quality radiopharmaceuticals in patient-specific unit doses. These doses must be delivered in a timely and cost effective manner, without compromising quality or patient safety. Commercial nuclear pharmacies have expanded to provide such varied functions as radiation safety and waste management, as well as consultative and marketing activities directed towards clinicians within a nuclear medicine practitioners own facility. In-service continuing education programs directed towards physicians and technologists are frequently offered by many commercial nuclear pharmacies. Changes in health care economics, merging and down-sizing in the hospital industry, and the overall impact of managed care on the viability of hospitals in general has resulted in slow growth, or even a small decline in the number of institutionally based nuclear pharmacists. As a result, nuclear medicine practitioners will be looking to the commercial nuclear pharmacies to meet a larger portion of their radiopharmaceutical needs, as well as to value added services, such as education and research and development. Specialized practice settings, such as nuclear cardiology and free-standing nuclear medicine clinics, are especially well suited to the services

  1. Achieving Nuclear Deterrence in the 21st Century

    DTIC Science & Technology

    2011-03-18

    and disease. If that all sounded too good to be true, it was too good to be true. While the Soviet Union did depart this vale of tears, Russia...necessary or there could be a large increase in the number of nuclear-armed states. The second nuclear age, per Levite , spanned the years 1968 to 1992...currently the international mood is pessimism with the world on the brink of widespread nuclear proliferation.37 Levite suggests that the emergence

  2. Comprehensive Nuclear-Test-Ban Treaty: Background and Current Developments

    DTIC Science & Technology

    2008-05-28

    testing, and has no plans to test. It has reduced the time needed to conduct a nuclear test. Critics raised concerns about the implications of these...particularly as it is reduced, is reliable and safe. So he has not ruled out testing in the future, but there are no plans to do so.’”4 Critics ...Secretary of State, to Honorable Pete Domenici, United States Senate, June 25, 2007. a ten-year-old moratorium on nuclear weapons testing.”5 Another critic

  3. Taming the Wild West: United States Nuclear Policy (1945-1961)

    DTIC Science & Technology

    2015-06-12

    Terms It is important to define a few terms and phrases used when discussing nuclear doctrine and strategy. While this list is not all- inclusive , it...in staging a demonstration or compromising the secrecy the Manhattan Project worked so hard to maintain. Therefore, the recommendation was to use

  4. Nuclear Innovation Workshops Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, John Howard; Allen, Todd Randall; Hildebrandt, Philip Clay

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  5. Blocking the spread of nuclear weapons. American and European perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.C.; Holst, J.J.

    1986-01-01

    This volume is the product of separate but parallel studies undertaken by two panels of experts-one from the United States, the other from Western Europe-on new approaches to preventing the proliferation of nuclear weapons to additional countries. Neither panel sounded a doomsday alarm; each concluded that the chances for controlling proliferation lie in good part on building on the sound foundation of existing policies and institutional structures. Among the other conclusions derived from the parallel studies: The threat of nuclear proliferation is a specific, definable danger in a limited number of countries. The incentives that appear to make nuclear weaponsmore » an interesting option to some states must be understood, and potential proliferators must be persuaded that their acquisition will not lead to national security. Effective persuasion is more likely to come from non-nuclear weapon nations. Europe and the United States must collaborate in engaging such third-party persuaders in this endeavor. The panels' intensive examination of the six states of greatest near-term concern leads to the conclusion that the uneasy status quo will probably prevail for the next several years, yet these are volatile situations. The nature of the threat demands an extraordinary degree of international collaboration.« less

  6. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  7. Prospects for Sub-Micron Solid State Nuclear Magnetic Resonance Imaging with Low-Temperature Dynamic Nuclear Polarization

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2010-01-01

    Summary We evaluate the feasibility of 1H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol/water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 µl sample yields a 1H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that 1H NMR signals from 1 µm3 voxel volumes should be readily detectable, and voxels as small as 0.03 µm3 may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz 1H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension. PMID:20458431

  8. Optical Polarization of Nuclear Spins in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Falk, Abram L.; Klimov, Paul V.; Ivády, Viktor; Szász, Krisztián; Christle, David J.; Koehl, William F.; Gali, Ádám; Awschalom, David D.

    2015-06-01

    We demonstrate optically pumped dynamic nuclear polarization of 29Si nuclear spins that are strongly coupled to paramagnetic color centers in 4 H - and 6 H -SiC. The 9 9 % ±1 % degree of polarization that we observe at room temperature corresponds to an effective nuclear temperature of 5 μ K . By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.

  9. The nuclear lamina as a gene-silencing hub.

    PubMed

    Shevelyov, Yuri Y; Nurminsky, Dmitry I

    2012-01-01

    There is accumulating evidence that the nuclear periphery is a transcriptionally repressive compartment. A surprisingly large fraction of the genome is either in transient or permanent contact with nuclear envelope, where the majority of genes are maintained in a silent state, waiting to be awakened during cell differentiation. The integrity of the nuclear lamina and the histone deacetylase activity appear to be essential for gene repression at the nuclear periphery. However, the molecular mechanisms of silencing, as well as the events that lead to the activation of lamina-tethered genes, require further elucidation. This review summarizes recent advances in understanding of the mechanisms that link nuclear architecture, local chromatin structure, and gene regulation.

  10. A multi-state trajectory method for non-adiabatic dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Guohua, E-mail: taogh@pkusz.edu.cn

    2016-03-07

    A multi-state trajectory approach is proposed to describe nuclear-electron coupled dynamics in nonadiabatic simulations. In this approach, each electronic state is associated with an individual trajectory, among which electronic transition occurs. The set of these individual trajectories constitutes a multi-state trajectory, and nuclear dynamics is described by one of these individual trajectories as the system is on the corresponding state. The total nuclear-electron coupled dynamics is obtained from the ensemble average of the multi-state trajectories. A variety of benchmark systems such as the spin-boson system have been tested and the results generated using the quasi-classical version of the method showmore » reasonably good agreement with the exact quantum calculations. Featured in a clear multi-state picture, high efficiency, and excellent numerical stability, the proposed method may have advantages in being implemented to realistic complex molecular systems, and it could be straightforwardly applied to general nonadiabatic dynamics involving multiple states.« less

  11. Turning nuclear waste into glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  12. Quantity and quality in nuclear engineering professional skills needed by the nuclear power industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slember, R.J.

    1990-01-01

    This paper examines the challenge of work force requirements in the context of the full range of issues facing the nuclear power industry. The supply of skilled managers and workers may be a more serious problem if nuclear power fades away than if it is reborn in a new generation. An even greater concern, however, is the quality of education that the industry needs in all its future professionals. Both government and industry should be helping universities adapt their curricula to the needs of the future. This means building a closer relationship with schools that educate nuclear professionals, that is,more » providing adequate scholarships and funding for research and development programs, offering in-kind services, and encouraging internships and other opportunities for hands-on experience. The goal should not be just state-of-the-art engineering practices, but the broad range of knowledge, issues, and skills that will be required of the nuclear leadership of the twenty-first century.« less

  13. Superpower nuclear minimalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graben, E.K.

    1992-01-01

    During the Cold War, the United States and the Soviet Union competed in building weapons -- now it seems like America and Russia are competing to get rid of them the fastest. The lengthy process of formal arms control has been replaced by exchanges of unilateral force reductions and proposals for reciprocal reductions not necessarily codified by treaty. Should superpower nuclear strategies change along with force postures President Bush has yet to make a formal pronouncement on post-Cold War American nuclear strategy, and it is uncertain if the Soviet/Russian doctrine of reasonable sufficiency formulated in the Gorbachev era actually heraldsmore » a change in strategy. Some of the provisions in the most recent round of unilateral proposals put forth by Presidents Bush and Yeltsin in January 1992 are compatible with a change in strategy. Whether such a change has actually occurred remains to be seen. With the end of the Cold War and the breakup of the Soviet Union, the strategic environment has fundamentally changed, so it would seem logical to reexamine strategy as well. There are two main schools of nuclear strategic thought: a maximalist school, mutual assured destruction (MAD) which emphasizes counterforce superiority and nuclear war- fighting capability, and a MAD-plus school, which emphasizes survivability of an assured destruction capability along with the ability to deliver small, limited nuclear attacks in the event that conflict occurs. The MAD-plus strategy is based on an attempt to conventionalize nuclear weapons which is unrealistic.« less

  14. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    PubMed

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  15. Emergency Preparedness in the 10-Mile Emergency Planning Zone Surrounding Nuclear Power Plants

    PubMed Central

    Adalja, Amesh A.; Sell, Tara Kirk; Ravi, Sanjana J.; Minton, Katie; Morhard, Ryan

    2015-01-01

    Objectives Each of the nuclear power plants in the US is encircled by an Emergency Planning Zone (EPZ). Within each EPZ, government officials, utility professionals, emergency managers, and public health practitioners collectively conduct extensive planning, exercises, and outreach to better protect their communities in the event of a nuclear accident. Our objective was to conduct a cross-sectional study of off-site public health preparedness within EPZs to better understand the dynamics of nuclear preparedness and uncover lessons for all-hazards preparedness. Methods Using a qualitative, interview-based method, we consulted 120 county emergency managers, state health preparedness officers, state radiation health officials, and industry officials from 17 EPZs in ten different states. Results Interviewees reflected that EPZ emergency preparedness is generally robust, results from strong public-private partnership between nuclear plants and emergency management agencies, and enhances all-hazard preparedness. However, there exist a few areas which merit further study and improvement. These areas include cross-state coordination, digital public communication, and optimizing the level of public education within EPZs. Conclusions This first-of-its-kind study provides a cross-sectional snapshot of emergency preparedness in the 10-mile EPZ surrounding nuclear power plants. PMID:26692825

  16. Emergency Preparedness in the 10-Mile Emergency Planning Zone Surrounding Nuclear Power Plants.

    PubMed

    Adalja, Amesh A; Sell, Tara Kirk; Ravi, Sanjana J; Minton, Katie; Morhard, Ryan

    2014-12-01

    Each of the nuclear power plants in the US is encircled by an Emergency Planning Zone (EPZ). Within each EPZ, government officials, utility professionals, emergency managers, and public health practitioners collectively conduct extensive planning, exercises, and outreach to better protect their communities in the event of a nuclear accident. Our objective was to conduct a cross-sectional study of off-site public health preparedness within EPZs to better understand the dynamics of nuclear preparedness and uncover lessons for all-hazards preparedness. Using a qualitative, interview-based method, we consulted 120 county emergency managers, state health preparedness officers, state radiation health officials, and industry officials from 17 EPZs in ten different states. Interviewees reflected that EPZ emergency preparedness is generally robust, results from strong public-private partnership between nuclear plants and emergency management agencies, and enhances all-hazard preparedness. However, there exist a few areas which merit further study and improvement. These areas include cross-state coordination, digital public communication, and optimizing the level of public education within EPZs. This first-of-its-kind study provides a cross-sectional snapshot of emergency preparedness in the 10-mile EPZ surrounding nuclear power plants.

  17. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.L.

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena andmore » presents major conclusions on the state of the art.« less

  18. Non-plane-wave Hartree-Fock states and nuclear homework potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, G.; Plastino, A.; de Llano, M.

    1979-12-01

    It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a ''spin-density-wave-like'' structure give lower energy than plane waves beyond a certain relatively low density in both nuclear and neutron matter with homework pair potentials v/sub 1/ and v/sub 2/.

  19. 10 CFR 110.46 - Conduct resulting in termination of nuclear exports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2010-01-01 2010-01-01 false Conduct resulting in termination of nuclear exports. 110...

  20. 10 CFR 110.46 - Conduct resulting in termination of nuclear exports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EQUIPMENT AND MATERIAL Review of License Applications § 110.46 Conduct resulting in termination of nuclear... technology to the sovereign control of a non-nuclear weapon state, except in connection with an international... 10 Energy 2 2011-01-01 2011-01-01 false Conduct resulting in termination of nuclear exports. 110...

  1. Detection of tannins in modern and fossil barks and in plant residues by high-resolution solid-state 13C nuclear magnetic resonance

    USGS Publications Warehouse

    Wilson, M.A.; Hatcher, P.G.

    1988-01-01

    Bark samples isolated from brown coal deposits in Victoria, Australia, and buried wood from Rhizophora mangle have been studies by high-resolution solid-state nuclear magnetic resonance (NMR) techniques. Dipolar dephasing 13C NMR appears to be a useful method of detecting the presence of tannins in geochemical samples including barks, buried woods, peats and leaf litter. It is shown that tannins are selectively preserved in bark during coalification to the brown coal stage. ?? 1988.

  2. Increasing Uncertainty: The Dangers of Relying on Conventional Forces for Nuclear Deterrence

    DTIC Science & Technology

    2016-03-14

    designed by the United States to meet its nuclear deterrence needs are not constrained by the “nuclear taboo ” and, in fact, are more usable.38 The...Nuclear deterrence may be much more fragile than any of us realize. It is imperative that we do not take the “nuclear taboo ” for granted by assuming

  3. Argonne explains nuclear recycling in 4 minutes

    ScienceCinema

    Willit, Jim; Williamson, Mark; Haynes, Amber

    2018-05-30

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  4. Nuclear Cryogenic Propulsion Stage for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  5. Nuclear Thermal Propulsion for Advanced Space Exploration

    NASA Technical Reports Server (NTRS)

    Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.

    2012-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).

  6. Innovations in Nuclear Infrastructure and Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Bernard

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus andmore » direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.« less

  7. Nuclear structure and dynamics with density functional theory

    NASA Astrophysics Data System (ADS)

    Stetcu, Ionel

    2015-10-01

    Even in the absence of ab initio methods capable of tackling heavy nuclei without restrictions, one can obtain an ab initio description of ground-state properties by means of the density functional theory (DFT), and its extension to superfluid systems in its local variant, the superfluid local density approximation (SLDA). Information about the properties of excited states can be obtained in the same framework by using an extension to the time-dependent (TD) phenomena. Unlike other approaches in which the nuclear structure information is used as a separate input into reaction models, the TD approach treats on the same footing the nuclear structure and dynamics, and is well suited to provide more reliable description for a large number of processes involving heavy nuclei, from the nuclear response to electroweak probes, to nuclear reactions, such as neutron-induced reactions, or nuclear fusion and fission. Such processes, sometimes part of integrated nuclear systems, have important applications in astrophysics, energy production, global security, etc. In this talk, I will present the simulation of a simple reaction, that is the Coulomb excitation of a 238U nucleus, and discuss the application of the TD-DFT formalism to the description of induced fission. I gratefully acknowledge partial support of the U.S. Department of Energy through an Early Career Award of the LANL/LDRD Program.

  8. Areas for US-India civilian nuclear cooperation to prevent/mitigate radiological events.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balachandran, Gopalan; Forden, Geoffrey Ethan

    2013-01-01

    Over the decades, India and the United States have had very little formal collaboration on nuclear issues. Partly this was because neither country needed collaboration to make progress in the nuclear field. But it was also due, in part, to the concerns both countries had about the others intentions. Now that the U.S.-India Deal on nuclear collaboration has been signed and the Hyde Act passed in the United States, it is possible to recognize that both countries can benefit from such nuclear collaboration, especially if it starts with issues important to both countries that do not touch on strategic systems.more » Fortunately, there are many noncontroversial areas for collaboration. This study, funded by the U.S. State Department, has identified a number of areas in the prevention of and response to radiological incidents where such collaboration could take place.« less

  9. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  10. Spin temperature concept verified by optical magnetometry of nuclear spins

    NASA Astrophysics Data System (ADS)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  11. Probing the nuclear symmetry energy at high densities with nuclear reactions

    NASA Astrophysics Data System (ADS)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  12. Nuclear Fusion Rate Study of a Muonic Molecule via Nuclear Threshold Resonances

    NASA Astrophysics Data System (ADS)

    Faghihi, F.; Eskandari, M. R.

    This work follows our previous calculations of the ground state binding energy, size, and the effective nuclear charge of the muonic T3 molecule, using the Born-Oppenheimer adiabatic approximation. In our past articles, we showed that the system possesses two minimum positions, the first one at the muonic distance and the second at the atomic distance. Also, the symmetric planner vibrational model assumed between the two minima and the approximated potential were calculated. Following from the previous studies, we now calculate the fusion rate of the T3 muonic molecule according to the overlap integral of the resonance nuclear compound nucleus and the molecular wave functions.

  13. 78 FR 43960 - Delegation by the Secretary of State to the Assistant Secretary of State for Consular Affairs of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... citizen of Iran is seeking to enter the United States to participate in coursework to prepare for a career in the energy sector of Iran or in nuclear science or nuclear engineering or a related field in Iran...

  14. Entanglement in a solid-state spin ensemble.

    PubMed

    Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L

    2011-02-03

    Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.

  15. How to think about nuclear war

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luttwak, E.N.

    1982-08-01

    Mr. Luttwak, a professional defense consultant, observes the arguments of nuclear freeze proponents can be refuted on both strategic and moral grounds. The freeze concept is illogical, he notes, because it is political systems - not state boundaries - that separate sides and because the Warsaw Pact countries are more heavily armed than the North Atlantic Treaty Organization (NATO) countries. An important factor keeping NATO forces at a disadvantage is their defensive orientation, which keeps forces militarily diffuse and dependent on nuclear weapons and preemptive action as a deterrent. Mr. Luttwak feels the shock effect of any use of nuclearmore » weapons would probably shorten a war rather than expand it because of the instinct for survival on both sides; further only nuclear weapons have this awesome power to deter. The proposal for universal disarmament under world government control is not a serious one, he thinks, and reflects an indifference to the possibility of a long non-nuclear war. The effect would be to trade the risk of nuclear death for the inevitability of many non-nuclear casualties. (DCK)« less

  16. Antineutrino Monitoring of Spent Nuclear Fuel

    NASA Astrophysics Data System (ADS)

    Brdar, Vedran; Huber, Patrick; Kopp, Joachim

    2017-11-01

    Military and civilian applications of nuclear energy have left a significant amount of spent nuclear fuel over the past 70 years. Currently, in many countries worldwide, the use of nuclear energy is on the rise. Therefore, the management of highly radioactive nuclear waste is a pressing issue. In this paper, we explore antineutrino detectors as a tool for monitoring and safeguarding nuclear-waste material. We compute the flux and spectrum of antineutrinos emitted by spent nuclear fuel elements as a function of time, and we illustrate the usefulness of antineutrino detectors in several benchmark scenarios. In particular, we demonstrate how a measurement of the antineutrino flux can help to reverify the contents of a dry storage cask in case the monitoring chain by conventional means gets disrupted. We then comment on the usefulness of antineutrino detectors at long-term storage facilities such as Yucca mountain. Finally, we put forward antineutrino detection as a tool in locating underground "hot spots" in contaminated areas such as the Hanford site in Washington state.

  17. Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium

    NASA Astrophysics Data System (ADS)

    Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.

    2015-06-01

    Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.

  18. 75 FR 11578 - Northern States Power Company of Minnesota, Monticello Nuclear Generating Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... generically extend the rule's compliance date for all operating nuclear power plants, but noted that the..., Nuclear Energy Institute). The licensee's request for an exemption is, therefore, consistent with the... Commission (NRC, the Commission) now or hereafter in effect. The facility consists of a General Electric...

  19. U.S. Nuclear Cooperation With India: Issues for Congress

    DTIC Science & Technology

    2010-02-24

    Panorama , February 6, 2009. “Chennai Daily Report: India, Kazakhstan Set To Sign Nuclear Reactor Export Deal,” Chennai Business Line Online, July 10, 2009...agreements that covered reactors producing more than 5 MW thermal or special nuclear material connected therewith. 123 United States General Accounting

  20. Activities report in nuclear physics and particle acceleration

    NASA Astrophysics Data System (ADS)

    Jansen, J. F. W.; Demeijer, R. J.

    1984-04-01

    Research on nuclear resonances; charge transfer; breakup of light and heavy ions; reaction mechanisms of heavy ion collisions; high-spin states; and fundamental symmetries in weak interactions are outlined. Group theoretical methods applied to supersymmetries; phenomenological description of rotation-vibration coupling; a microscopic theory of collective variables; the binding energy of hydrogen adsorbed on stepped platinium; and single electron capture are discussed. Isotopes for nuclear medicine, for off-line nuclear spectroscopy work, and for the study of hyperfine interactions were produced.

  1. IAEA Nuclear Data Section: provision of atomic and nuclear databases for user applications.

    PubMed

    Humbert, Denis P; Nichols, Alan L; Schwerer, Otto

    2004-01-01

    The Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) provides a wide range of atomic and nuclear data services to scientists worldwide, with particular emphasis placed on the needs of developing countries. Highly focused Co-ordinated Research Projects and multinational data networks are sponsored under the auspices of the IAEA for the development and assembly of databases through the organised participation of specialists from Member States. More than 100 data libraries are readily available cost-free through the Internet, CD-ROM and other media. These databases are used in a wide range of applications, including fission- and fusion-energy, non-energy applications and basic research studies. Further information concerning the various services can be found through the web address of the IAEA Nuclear Data Section: and a mirror site at IPEN, Brazil that is maintained by NDS staff:.

  2. Ukraine nuclear power struggles for survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramchenkov, V.M.; Launer, M.K.

    1996-07-01

    The breakup of the former Soviet Union left Ukraine`s nuclear power industry in the lurch. Rampant inflation and the consequent skyrocketing price of fossil fuels has given Ukrain`s nuclear industry a greater share of the energy pie, say Vladimir M. Kramchenkov, deputy head of the technical department at the Zaporozhe nuclear station in Energodar, Ukraine, and Michael K. Launer, professor of Russian at Florida State University in Tallahassee. But with the economy in a downward spiral, conditions in the nuclear industry are getting worse rather than better. {open_quotes}Manufacturers don`t pay transporters; and employers often don`t pay workers for several monthsmore » at a time,{close_quotes} the authors note. The authors conclude that while nuclear power will be vital to Ukrain`s industrial strength, {open_quotes}the economic woes currently plaguing Ukraine-including persistent, rampant inflation-will continue to affect every aspect of Ukrainian society, including the energy sector.{close_quotes}« less

  3. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21).

  4. Surface properties for α-cluster nuclear matter

    NASA Astrophysics Data System (ADS)

    Castro, J. J.; Soto, J. R.; Yépez, E.

    2013-03-01

    We introduce a new microscopic model for α-cluster matter, which simulates the properties of ordinary nuclear matter and α-clustering in a curved surface of a large but finite nucleus. The model is based on a nested icosahedral fullerene-like multiple-shell structure, where each vertex is occupied by a microscopic α-particle. The novel aspect of this model is that it allows a consistent description of nuclear surface properties from microscopic parameters to be made without using the leptodermous expansion. In particular, we show that the calculated surface energy is in excellent agreement with the corresponding coefficient of the Bethe-Weizäcker semi-empirical mass formula. We discuss the properties of the surface α-cluster state, which resembles an ultra cold bosonic quantum gas trapped in an optical lattice. By comparing the surface and interior states we are able to estimate the α preformation probability. Possible extensions of this model to study nuclear dynamics through surface vibrations and departures from approximate sphericity are mentioned.

  5. Nuclear rapprochement in Argentina and Brazil: Workshop summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. Doyle

    1999-10-01

    On October 21 and 22, 1998, the Center for International Security Affairs at Los Alamos National Laboratory and the Center for Global Security and Cooperation at Science Applications International Corporation hosted the first of a series of work-shops on states that have chosen to roll back their pursuit of nuclear arms. The objective of the workshop series is to conduct a systematic evaluation of the roles played by U.S. nonproliferation policy in cases of nuclear rollback or restraint and to provide recommendations for future nonproliferation efforts based on lessons learned. Key attendees at the workshop included officials and former officialsmore » from the foreign ministries of Argentina and Brazil, and current and former officials from the U.S. Department of State, the Arms Control and Disarmament Agency (ACDA), and the Department of Energy (DOE). Scholars and independent researchers who have examined nuclear policy in Argentina and Brazil also participated. This workshop report includes important background information that helps set the stage for assessing nuclear policies in Argentina and Brazil. It describes national perspectives and areas of consensus and debate among the participants, particularly on the questions of lessons learned and their salience to proliferation challenges in other states. It also summarizes key questions and propositions regarding the roles played in these cases by U.S. nonproliferation policy.« less

  6. New Approach for Nuclear Reaction Model in the Combination of Intra-nuclear Cascade and DWBA

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Iwamoto, O.; Iwamoto, Y.; Sato, T.; Niita, K.

    2014-04-01

    We applied a new nuclear reaction model that is a combination of the intra nuclear cascade model and the distorted wave Born approximation (DWBA) calculation to estimate neutron spectra in reactions induced by protons incident on 7Li and 9Be targets at incident energies below 50 MeV, using the particle and heavy ion transport code system (PHITS). The results obtained by PHITS with the new model reproduce the sharp peaks observed in the experimental double-differential cross sections as a result of taking into account transitions between discrete nuclear states in the DWBA. An excellent agreement was observed between the calculated results obtained using the combination model and experimental data on neutron yields from thick targets in the inclusive (p, xn) reaction.

  7. The nuclear weapons ban treaty and the non-proliferation regime.

    PubMed

    Egeland, Kjølv; Hugo, Torbjørn Graff; Løvold, Magnus; Nystuen, Gro

    2018-06-18

    The Treaty on the Prohibition of Nuclear Weapons (TPNW), adopted by the United Nations General Assembly in July 2017, has been met with mixed reactions. While supporters have described the Treaty as a watershed in the struggle for disarmament, others have expressed fervent opposition. One of the most serious charges levelled at the TPNW is that it will undermine the long-standing nuclear Non-Proliferation Treaty (NPT), by many regarded as a cornerstone of the international security architecture. Critics have contended that the new agreement risks eroding the system of safeguards designed to prevent the spread of nuclear weapons, derailing disarmament efforts within the NPT framework, and aggravating political division between nuclear and non-nuclear powers. Investigating the legal and political cogency of these arguments, we argue that not only may the TPNW be reconciled with existing legal instruments, the new Treaty supports and reinforces key norms and institutions on which the nuclear non-proliferation and disarmament regime is based. Furthermore, any technical challenges that might arise in the future may be addressed at meetings of states party; the drafters envisioned a dynamic process of institutional adaptations and expansion. The main challenge facing advocates of the Treaty is political: convincing the nuclear-armed states to disarm.

  8. Nuclear Forensics: A Capability at Risk (Abbreviated Version)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    National Research Council of the National Academies

    Nuclear forensics is important to our national security. Actions, including provision of appropriate funding, are needed now to sustain and improve the nation's nuclear forensics capabilities. The Department of Homeland Security (DHS), working with cooperating agencies and national laboratories, should plan and implement a sustainable, effective nuclear forensics program. Nuclear forensics is the examination and evaluation of discovered or seized nuclear materials and devices or, in cases of nuclear explosions or radiological dispersals, of detonation signals and post-detonation debris. Nuclear forensic evidence helps law enforcement and intelligence agencies work toward preventing, mitigating, and attributing a nuclear or radiological incident. Thismore » report, requested by DHS, the National Nuclear Security Administration, and the Department of Defense, makes recommendations on how to sustain and improve U.S. nuclear forensics capabilities. The United States has developed a nuclear forensics capability that has been demonstrated in real-world incidents of interdicted materials and in exercises of actions required after a nuclear detonation. The committee, however, has concerns about the program and finds that without strong leadership, careful planning, and additional funds, these capabilities will decline. Major areas of concern include: Organization. The responsibility for nuclear forensics is shared by several agencies without central authority and with no consensus on strategic requirements to guide the program. This organizational complexity hampers the program and could prove to be a major hindrance operationally. Sustainability. The nation's current nuclear forensics capabilities are available primarily because the system of laboratories, equipment, and personnel upon which they depend was developed and funded by the nuclear weapons program. However, the weapons program's funds are declining. Workforce and Infrastructure. Personnel skilled in nuclear

  9. Nuclear power: the bargain we can't afford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, R.

    1977-01-01

    This is a handbook for citizens who wish to raise questions about the costs of atomic energy. It explains, step-by-step, why nuclear reactors have failed to produce low-cost electricity, and it tells citizens how they can use economic arguments to challenge nuclear expansion. Part One, The Costs of Nuclear Energy, contains 7 chapters--The Price of Power (electricity is big business); Mushrooming Capital Costs (nuclear construction costs are skyrocketing); Nuclear Lemons (reactors spend much of their time closed for repairs); The Faulty Fuel Cycle (turning uranium into electricity is not as simple as the utilities say); Hidden Costs (goverment subsidies obscuremore » the true costs of atomic energy); Ratepayer Roulette (nuclear problems translate into higher electric rates); and Alternatives to the Atom (coal-fired power and energy conservation can meet future energy needs more cheaply than nuclear energy). Part Two, Challenging Nuclear Power, contains 3 chapters--Regulators and Reactors (state utility commissions can eliminate the power companies' bias toward nuclear energy); Legislation, Licensing, and Lawsuits (nuclear critics can challenge reactor construction in numerous forums); and Winning the Battle (building an organization is a crucial step in fighting nuclear power). (MCW)« less

  10. Importance of Nuclear Physics to NASA's Space Missions

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    We show that nuclear physics is extremely important for accurate risk assessments for space missions. Due to paucity of experimental input radiation interaction information it is imperative to develop reliable accurate models for the interaction of radiation with matter. State-of-the-art nuclear cross sections models have been developed at the NASA Langley Research center and are discussed.

  11. Iran’s Nuclear Program: Status

    DTIC Science & Technology

    2009-11-25

    wave software, and neutron sources, which could be useful for developing nuclear weapons.44 In addition, ElBaradei’s May 2008 report notes that...Intelligence stated that the Bureau continues to stand by this estimate. 77 The time frame described in the 2007 NIE is the same as one described in a... standing with the IAEA has ever used this tactic. North Korea restarted its nuclear weapons program after announcing its withdrawal from the NPT in

  12. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  13. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  14. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  15. 10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...

  16. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  17. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  18. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  19. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...

  20. 10 CFR 150.17 - Submission to Commission of nuclear material status reports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...