Sample records for kappa b-like enhancer

  1. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB.

    PubMed

    Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook

    2005-07-29

    The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.

  2. FLICE-like inhibitory protein (FLIP) protects against apoptosis and suppresses NF-kappaB activation induced by bacterial lipopolysaccharide.

    PubMed

    Bannerman, Douglas D; Eiting, Kristine T; Winn, Robert K; Harlan, John M

    2004-10-01

    Bacterial lipopolysaccharide (LPS) via its activation of Toll-like receptor-4 contributes to much of the vascular injury/dysfunction associated with gram-negative sepsis. Inhibition of de novo gene expression has been shown to sensitize endothelial cells (EC) to LPS-induced apoptosis, the onset of which correlates with decreased expression of FLICE-like inhibitory protein (FLIP). We now have data that conclusively establish a role for FLIP in protecting EC against LPS-induced apoptosis. Overexpression of FLIP protected against LPS-induced apoptosis, whereas down-regulation of FLIP using antisense oligonucleotides sensitized EC to direct LPS killing. Interestingly, FLIP overexpression suppressed NF-kappaB activation induced by LPS, but not by phorbol ester, suggesting a specific role for FLIP in mediating LPS activation. Conversely, mouse embryo fibroblasts (MEF) obtained from FLIP -/- mice showed enhanced LPS-induced NF-kappaB activation relative to those obtained from wild-type mice. Reconstitution of FLIP-/- MEF with full-length FLIP reversed the enhanced NF-kappaB activity elicited by LPS in the FLIP -/- cells. Changes in the expression of FLIP had no demonstrable effect on other known LPS/Tlr-4-activated signaling pathways including the p38, Akt, and Jnk pathways. Together, these data support a dual role for FLIP in mediating LPS-induced apoptosis and NF-kappaB activation.

  3. African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B.

    PubMed

    Rodríguez, Clara I; Nogal, María L; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2002-04-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-kappaB. Thus, transient transfection of the viral IAP increases the activity of an NF-kappaB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-kappaB-dependent gene. NF-kappaB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-kappaB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-kappaB activity seems to be the consequence of higher IkappaB kinase (IKK) basal activity in these cells. The NF-kappaB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2.

  4. c-rel activates but v-rel suppresses transcription from kappa B sites.

    PubMed Central

    Inoue, J; Kerr, L D; Ransone, L J; Bengal, E; Hunter, T; Verma, I M

    1991-01-01

    We show that the product of the protooncogene c-rel is a constituent of an NF-kappa B-like complex that binds to the kappa B site originally identified in the enhancer of immunoglobulin kappa light chain gene. c-rel protein synthesized in bacteria binds to the kappa B site in a sequence-specific manner. The rel-kappa B complex can be disrupted by incubation with anti-rel antibodies. The rel protein can form oligomers. The c-rel protein can activate transcription from promoters containing kappa B sites; v-rel, on the other hand, suppresses the transcription of genes linked to kappa B sites. Thus, v-rel may interfere with the normal transcriptional machinery of the cell by acting as a dominant negative mutant. Images PMID:2023921

  5. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes.

    PubMed

    Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina

    2009-01-15

    BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we

  6. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jian; Tan Juan; Zhang Xihui

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may bemore » responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription.« less

  7. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription.

    PubMed

    Wang, Jian; Tan, Juan; Zhang, Xihui; Guo, Hongyan; Zhang, Qicheng; Guo, Tingting; Geng, Yunqi; Qiao, Wentao

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may be responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Porcine arterivirus activates the NF-{kappa}B pathway through I{kappa}B degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Myeong; Kleiboeker, Steven B.

    2005-11-10

    Nuclear factor-kappaB (NF-{kappa}B) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-{kappa}B in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-{kappa}B activation was characterized by translocation of NF-{kappa}B from the cytoplasm to the nucleus, increased DNA binding activity, and NF-{kappa}B-regulated gene expression. NF-{kappa}B activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-{kappa}B activation. Degradationmore » of I{kappa}B protein was detected late in PRRSV infection, and overexpression of the dominant negative form of I{kappa}B{alpha} (I{kappa}B{alpha}DN) significantly suppressed NF-{kappa}B activation induced by PRRSV. However, I{kappa}B{alpha}DN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-{kappa}B DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-{kappa}B was activated by PRRSV infection. Moreover, NF-{kappa}B-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-{kappa}B activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.« less

  9. Impedimetric aptasensor for nuclear factor kappa B with peroxidase-like mimic coupled DNA nanoladders as enhancer.

    PubMed

    Peng, Kanfu; Zhao, Hongwen; Xie, Pan; Hu, Shuang; Yuan, Yali; Yuan, Ruo; Wu, Xiongfei

    2016-07-15

    In this work, we developed a sensitive and universal aptasensor for nuclear factor kappa B (NF-κB) detection based on peroxidase-like mimic coupled DNA nanoladders for signal amplification. The dsDNA formed by capture DNA S1 and NF-κB binding aptamer (NBA) was firstly assembled on electrode surface. The presence of target NF-κB then led to the leave of NBA from electrode surface and thus provided the binding sites for immobilizing initiator to trigger in situ formation of DNA nanoladders on electrode surface. Since the peroxidase-like mimic manganese (III) meso-tetrakis (4-Nmethylpyridyl)-porphyrin (MnTMPyP) interacts with DNA nanoladders via groove binding, the insoluble benzo-4-chlorohexadienone (4-CD) precipitation derived from the oxidation of 4-chloro-1-naphthol (4-CN) could be formed on electrode surface in the presence of H2O2, resulting in a significantly amplified EIS signal output for quantitative target analysis. As a result, the developed aptasensor showed a low detection limit of 7pM and a wide linear range of 0.01-20nM. Featured with high sensitivity and label-free capability, the proposed sensing scheme can thus offer new opportunities for achieving sensitive, selective and stable detection of different types of target proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Immunoglobulin kappa light chain gene promoter and enhancer are not responsible for B-cell restricted gene rearrangement.

    PubMed Central

    Goodhardt, M; Babinet, C; Lutfalla, G; Kallenbach, S; Cavelier, P; Rougeon, F

    1989-01-01

    We have produced transgenic mice which synthesize chimeric mouse-rabbit immunoglobulin (Ig) kappa light chains following in vivo recombination of an injected unrearranged kappa gene. The exogenous gene construct contained a mouse germ-line kappa variable (V kappa) gene segment, the mouse germ-line joining (J kappa) locus including the enhancer, and the rabbit b9 constant (C kappa) region. A high level of V-J recombination of the kappa transgene was observed in spleen of the transgenic mice. Surprisingly, a particularly high degree of variability in the exact site of recombination and the presence of non germ-line encoded nucleotides (N-regions) were found at the V-J junction of the rearranged kappa transgene. Furthermore, unlike endogenous kappa genes, rearrangement of the exogenous gene occurred in T-cells of the transgenic mice. These results show that additional sequences, other than the heptamer-nonamer signal sequences and the promoter and enhancer elements, are required to obtain stage- and lineage- specific regulation of Ig kappa light chain gene rearrangement in vivo. Images PMID:2508061

  11. Inhibition of IL-1{beta}-mediated inflammatory responses by the I{kappa}B{alpha} super-repressor in human fibroblast-like synoviocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Rae; Kweon, Suc-Hyun; Kwon, Kang-Beom

    The IL-1{beta}-NF-{kappa}B axis is a key pathway in the pathogenesis of rheumatoid arthritis (RA) and is central in the production of proinflammatory mediators in the inflamed synovium. Therefore, we examined whether fibroblast-like synoviocytes (FLS) could be spared from IL-1{beta}-induced toxicity by an overexpressing I{kappa}B super-repressor. Infection of FLS with Ad-I{kappa}B{alpha} (S32A, S36A), an adenovirus-containing mutant I{kappa}B{alpha}, inhibited IL-1{beta}-induced nuclear translocation and DNA binding of NF-{kappa}B. In addition, Ad-I{kappa}B{alpha} (S32A, S36A) prevented IL-1{beta}-induced inflammatory responses; namely, the production of chemokines, such as ENA-78 and RANTES, and activation of MMP-1 and MMP-3. Finally, increased cellular proliferation of FLS after IL-1{beta} treatment wasmore » significantly reduced by Ad-I{kappa}B{alpha} (S32A, S36A). However, Ad-I{kappa}B{beta} (S19A, S23A), the I{kappa}B{beta} mutant, was not effective in preventing IL-1{beta} toxicity. These results suggest that inhibition of I{kappa}B{alpha} degradation is a potential target for the prevention of joint destruction in patients with RA.« less

  12. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness "liking" and "wanting".

    PubMed

    Castro, Daniel C; Berridge, Kent C

    2014-03-19

    A specialized cubic-millimeter hotspot in the rostrodorsal quadrant of medial shell in nucleus accumbens (NAc) of rats may mediate opioid enhancement of gustatory hedonic impact or "liking". Here, we selectively stimulated the three major subtypes of opioid receptors via agonist microinjections [mu (DAMGO), delta (DPDPE), or kappa (U50488H)] and constructed anatomical maps for functional localizations of consequent changes in hedonic "liking" (assessed by affective orofacial reactions to sucrose taste) versus "wanting" (assessed by changes in food intake). Results indicated that the NAc rostrodorsal quadrant contains a shared opioid hedonic hotspot that similarly mediates enhancements of sucrose "liking" for mu, delta, and kappa stimulations. Within the rostrodorsal hotspot boundaries each type of stimulation generated at least a doubling or higher enhancement of hedonic reactions, with comparable intensities for all three types of opioid stimulation. By contrast, a negative hedonic coldspot was mapped in the caudal half of medial shell, where all three types of opioid stimulation suppressed "liking" reactions to approximately one-half normal levels. Different anatomical patterns were produced for stimulation of food "wanting", reflected in food intake. Altogether, these results indicate that the rostrodorsal hotspot in medial shell is unique for generating opioid-induced hedonic enhancement, and add delta and kappa signals to mu as hedonic generators within the hotspot. Also, the identification of a separable NAc caudal coldspot for hedonic suppression, and separate NAc opioid mechanisms for controlling food "liking" versus "wanting" further highlights NAc anatomical heterogeneity and localizations of function within subregions of medial shell.

  13. RRM2 induces NF-{kappa}B-dependent MMP-9 activation and enhances cellular invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duxbury, Mark S.; Whang, Edward E.

    2007-03-02

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-{kappa}B (NF-{kappa}B) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-{kappa}B-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-{kappa}B activity. NF-{kappa}B is a key mediator ofmore » the invasive phenotypic changes induced by RRM2 overexpression.« less

  14. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating I{kappa}B kinase renaturation and blocking its further denaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan

    2005-07-01

    Heat shock (HS) treatment has been previously shown to suppress the I{kappa}B/nuclear factor-{kappa}B (NF-{kappa}B) cascade by denaturing, and thus inactivating I{kappa}B kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayedmore » TNF-{alpha}-induced I{kappa}B{alpha} degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the I{kappa}B{alpha} stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating the renaturation of IKK and blocking its further denaturation.« less

  15. Genistein enhances the effect of epidermal growth factor receptor tyrosine kinase inhibitors and inhibits nuclear factor kappa B in nonsmall cell lung cancer cell lines.

    PubMed

    Gadgeel, Shirish M; Ali, Shadan; Philip, Philip A; Wozniak, Antoinette; Sarkar, Fazlul H

    2009-05-15

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have shown modest clinical benefit in patients with relapsed nonsmall cell lung cancer (NSCLC). Down-regulation of Akt appears to correlate with the antitumor activity of EGFR-TKIs. Akt activates nuclear factor kappa B (NF-kappaB), which transcribes genes important for cell survival, invasion, and metastasis. The authors hypothesized that genistein, through the inhibition of NF-kappaB, could enhance the activity of EGFR-TKIs in NSCLCs. Three NSCLC cell lines with various EGFR mutation status and sensitivities to EGFR-TKIs were selected: H3255 (L858R), H1650 (del E746-A750), and H1781 (wild-type EGFR). Cells were treated with erlotinib, gefitinib, genistein, or the combination of each of the EGFR-TKIs with genistein. Cell survival and apoptosis were assessed, and expression levels of EGFR, pAkt, cyclooxygenase-2 (COX-2), E-cadherin, prostaglandin E(2) (PGE(2)), and NF-kappaB were measured. Both EGFR-TKIs demonstrated growth inhibition and apoptosis in each of the cell lines, but H1650 and H1781 were much less sensitive. Genistein demonstrated some antitumor activity in all cell lines, but enhanced growth inhibition and apoptosis when combined with the EGFR-TKIs in each of the cell lines. Both combinations down-regulated NF-kappaB significantly more than either agent alone in H3255. In addition, the combinations reduced the expression of EGFR, pAkt, COX-2, and PGE(2,) consistent with inactivation of NF-kappaB. The authors concluded that genistein enhances the antitumor effects of EGFR-TKIs in 3 separate NSCLC cell lines. This enhanced activity is in part because of greater reduction in the DNA-binding activity of NF-kappaB when EGFR-TKIs were combined with genistein.

  16. Direct covalent modification as a strategy to inhibit nuclear factor-kappa B.

    PubMed

    Pande, Vineet; Sousa, Sérgio F; Ramos, Maria João

    2009-01-01

    Nuclear Factor-KkappaB (NF-kappaB) is a transcription factor whose inappropriate activation may result in the development of a number of diseases including cancer, inflammation, neurodegeneration and AIDS. Recent studies on NF-kappaB mediated pathologies, made therapeutic interventions leading to its inhibition an emerging theme in pharmaceutical research. NF-kappaB resides in the cytoplasm and is activated by several time-dependent factors, leading to proteasome-dependent degradation of its inhibitory protein (IkappaB), resulting in free NF-kappaB (p50 and p65 subunits, involved in disease states), which binds to target DNA sites, further resulting in enhanced transcription of several disease associated proteins. The complex pathway of NF-kappaB, finally leading to its DNA binding, has attracted several approaches interfering with this pathway. One such approach is that of a direct covalent modification of NF-kappaB. In this article, we present a critical review on the pharmacological agents that have been studied as inhibitors of NF-kappaB by covalently modifying redox-regulated cysteine residues in its subunits, ultimately resulting in the inhibition of kappaB DNA recognition and binding. Beginning with a general overview of NF-kappaB pathway and several possibilities of chemical interventions, the significance of redox-regulation in NF-kappaB activation and DNA binding is presented. Further, protein S-thiolation, S-nitrosylation and irreversible covalent modification are described as regular biochemical events in the cell, having provided a guideline for the development of NF-kappaB inhibitors discussed further. Although just a handful of inhibitors, with most of them being alkylating agents have been studied in the present context, this approach presents potential for the development of a new class of NF-kappaB-inhibitors.

  17. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation.

    PubMed

    Yan, Xu; Zhu, Mei J; Xu, Wei; Tong, Jun F; Ford, Stephen P; Nathanielsz, Peter W; Du, Min

    2010-01-01

    Maternal obesity is increasing at an alarming rate. We previously showed that maternal obesity induces an inflammatory response and enhances adipogenesis in fetal skeletal muscle at midgestation. The objective of this study was to evaluate effects of maternal obesity on adipogenesis, inflammatory signaling, and insulin pathways at late gestation when ovine fetal skeletal muscle matures. Nonpregnant ewes were assigned to a control diet (Con, fed 100% of National Research Council nutrient recommendations, n = 6) or obesogenic diet (OB, fed 150% of National Research Council recommendations, n = 6) from 60 d before to 135 d after conception (term 148 d) when the fetal semitendenosus skeletal muscle was sampled. Expression of the adipogenic marker, peroxisome proliferator-activated receptor-gamma, was increased in OB compared with Con fetal semitendenosus muscle, indicating up-regulation of adipogenesis. More intramuscular adipocytes were observed in OB muscle. Phosphorylation of inhibitor-kappaB kinase-alpha/beta and nuclear factor-kappaB RelA/p65 were both increased in OB fetal muscle, indicating activation of nuclear factor-kappaB pathway. Phosphorylation of c-Jun N-terminal kinase and c-Jun (at Ser 63 and Ser 73) was also elevated. Toll-like receptor 4 expression was higher in OB than Con fetal muscle. Moreover, despite higher insulin concentrations in OB vs. Con fetal plasma (2.89 +/- 0.53 vs. 1.06 +/- 0.52 ng/ml; P < 0.05), phosphorylation of protein kinase B at Ser 473 was reduced, indicating insulin resistance. In conclusion, our data show maternal obesity-induced inflammatory signaling in late gestation fetal muscle, which correlates with increased im adipogenesis and insulin resistance, which may predispose offspring to later-life obesity and diabetes.

  18. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  19. Porcine circovirus type 2 induces the activation of nuclear factor kappa B by I{kappa}B{alpha} degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Li; Kwang, Jimmy; Wang Jin

    The transcription factor NF-{kappa}B is commonly activated upon virus infection and a key player in the induction and regulation of the host immune response. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate NF-{kappa}B in PCV2-infected PK15 cells. In PCV2-infected cells, NF-{kappa}B was activated concomitantly with viral replication, which was characterized by increased DNA binding activity, translocation of NF-{kappa}B p65 from the cytoplasm to the nucleus, as well as degradation and phosphorylation of I{kappa}B{alpha} protein. We further demonstratedmore » PCV2-induced activation of NF-{kappa}B and colocalization of p65 nuclear translocation with virus replication in cultured cells. Treatment of cells with CAPE, a selective inhibitor of NF-{kappa}B activation, reduced virus protein expression and progeny production followed by decreasing PCV2-induced apoptotic caspase activity, indicating the involvement of this transcription factor in induction of cell death. Taken together, these data suggest that NF-{kappa}B activation is important for PCV2 replication and contributes to virus-mediated changes in host cells. The results presented here provide a basis for understanding molecular mechanism of PCV2 infection.« less

  20. MicroRNA-22 and microRNA-140 suppress NF-{kappa}B activity by regulating the expression of NF-{kappa}B coactivators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, Akemi; Otsuka, Motoyuki, E-mail: otsukamo-tky@umin.ac.jp; Kojima, Kentaro

    2011-08-12

    Highlights: {yields} miRNAs were screened for their ability to regulate NF-{kappa}B activity. {yields} miRNA-22 and miRNA-140-3p suppress NF-{kappa}B activity by regulating coactivators. {yields} miRNA-22 targets nuclear receptor coactivator 1 (NCOA1). {yields} miRNA-140-3p targets nuclear receptor-interacting protein 1 (NRIP1). -- Abstract: Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor that regulates a set of genes that are critical to many biological phenomena, including liver tumorigenesis. To identify microRNAs (miRNAs) that regulate NF-{kappa}B activity in the liver, we screened 60 miRNAs expressed in hepatocytes for their ability to modulate NF-{kappa}B activity. We found that miRNA-22 and miRNA-140-3p significantly suppressed NF-{kappa}B activity bymore » regulating the expression of nuclear receptor coactivator 1 (NCOA1) and nuclear receptor-interacting protein 1 (NRIP1), both of which are NF-{kappa}B coactivators. Our results provide new information about the roles of miRNAs in the regulation of NF-{kappa}B activity.« less

  1. Pharmacological characterization of the cloned kappa opioid receptor as a kappa 1b subtype.

    PubMed

    Lai, J; Ma, S W; Zhu, R H; Rothman, R B; Lentes, K U; Porreca, F

    1994-10-27

    Substantial pharmacological evidence in vitro and in vivo has suggested the existence of subtypes of the kappa opioid receptor. Quantitative radioligand binding techniques resolved the presence of two high affinity binding sites for the kappa 1 ligand [3H]U69,593 in mouse brain membranes, termed kappa 1a and kappa 1b, respectively. Whereas the kappa 1a site has high affinity for fedotozine and oxymorphindole and low affinity for bremazocine and alpha-neoendorphin, site kappa 1b has high affinity for bremazocine and alpha-neoendorphin and low affinity for fedotozine and oxymorphindole. CI-977 and U69,593 bind equally well at both sites. To determine the relationship between these kappa 1 receptor subtypes and the recently cloned mouse kappa 1 receptor (KOR), we examined [3H]U69,593 binding to the KOR in stably transfected cells (KORCHN-8). Competition of [3H]U69,593 binding to the KOR by bremazocine, alpha-neoendorphin, fedotozine and oxymorphindole resolved a single class of binding sites at which these agents had binding affinities similar to that of the kappa 1b site present in mouse brain. These results suggest that the cloned KOR corresponds to the kappa 1 site in mouse brain defined as kappa 1b.

  2. HTLV-I Tax protein binds to MEKK1 to stimulate IkappaB kinase activity and NF-kappaB activation.

    PubMed

    Yin, M J; Christerson, L B; Yamamoto, Y; Kwak, Y T; Xu, S; Mercurio, F; Barbosa, M; Cobb, M H; Gaynor, R B

    1998-05-29

    NF-kappaB, a key regulator of the cellular inflammatory and immune response, is activated by the HTLV-I transforming and transactivating protein Tax. We show that Tax binds to the amino terminus of the protein kinase MEKK1, a component of an IkappaB kinase complex, and stimulates MEKK1 kinase activity. Tax expression increases the activity of IkappaB kinase beta (IKKbeta) to enhance phosphorylation of serine residues in IkappaB alpha that lead to its degradation. Dominant negative mutants of both IKKbeta and MEKK1 prevent Tax activation of the NF-kappaB pathway. Furthermore, recombinant MEKK1 stimulates IKKbeta phosphorylation of IkappaB alpha. Thus, Tax-mediated increases in NF-kappaB nuclear translocation result from direct interactions of Tax and MEKK1 leading to enhanced IKKbeta phosphorylation of IkappaB alpha.

  3. The effects of dexamethasone on rat brain cortical nuclear factor kappa B (NF-{kappa}B) in endotoxic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhi; Kang Jinsong; Li Yang

    2006-08-01

    To explore the molecular mechanism of brain tissue injury induced by lipopolysaccharide (LPS), we studied the effects of endotoxic shock on rat brain cortex NF-{kappa}B and the effects of dexamethasone on these changes. Rats were randomly divided into LPS, LPS + dexamethasone, and control groups. The DNA-binding activity of NF-{kappa}B was observed using electrophoretic mobility shift assay (EMSA). Protein expression in nuclear extracts was studied using Western blots, and nuclear translocation was observed using immunohistochemistry. These indices were assayed at 1 h and 4 h after intravenous injection of LPS (4 mg.kg{sup -1}). EMSA showed significantly increased NF-{kappa}B DNA-binding activitymore » in nuclear extracts from the LPS group at both 1 h and 4 h after LPS injection, compared with the control group (P < 0.01). For the LPS group, the NF-{kappa}B DNA-binding activity was greater at 1 h than at 4 h (P < 0.05). The expression of p65 and p50 protein in the nuclear extracts was also increased, as compared with the control group. However, the expression of p65 and p50 protein from cytosolic extracts did not show any significant change. Dexamethasone down-regulated not only NF-{kappa}B DNA-binding activity but also the expression of p65 protein in the nuclear extracts. From these data, we have concluded that NF-{kappa}B activation and nuclear translocation of NF-{kappa}B play a key role in the molecular mechanism of brain tissue injury in endotoxic shock. Dexamethasone may alleviate brain injury by inhibiting NF-{kappa}B activation.« less

  4. A new structural class of proteasome inhibitors that prevent NF-kappa B activation.

    PubMed

    Lum, R T; Kerwar, S S; Meyer, S M; Nelson, M G; Schow, S R; Shiffman, D; Wick, M M; Joly, A

    1998-05-01

    The multicatalytic proteinase or proteasome is a highly conserved cellular structure that is responsible for the ATP-dependent proteolysis of many proteins involved in important regulatory cellular processes. We have identified a novel class of inhibitors of the chymotrypsin-like proteolytic activity of the 20S proteasome that exhibit IC50 values ranging from 0.1 to 0.5 microgram/mL (0.1 to 1 microM). In cell proliferation assays, these compounds inhibit growth with an IC50 ranging from 5 to 10 micrograms/mL (10-20 microM). A representative member of this class of inhibitors was tested in other biological assays. CVT-634 (5-methoxy-1-indanone-3-acetyl-leu-D-leu-1-indanylamide) prevented lipopolysaccharide (LPS), tumor necrosis factor (TNF)-, and phorbol ester-induced activation of nuclear factor kappa B (NF-kappa B) in vitro by preventing signal-induced degradation of I kappa B-alpha. In these studies, the I kappa B-alpha that accumulated was hyperphosphorylated, indicating that CVT-634 did not inhibit I kappa B-alpha kinase, the enzyme responsible for signal-induced phosphorylation of I kappa B-alpha. In vivo studies indicated that CVT-634 prevented LPS-induced TNF synthesis in a murine macrophage cell line. In addition, in mice pretreated with CVT-634 at 25 and 50 mg/kg and subsequently treated with LPS, serum TNF levels were significantly lower (225 +/- 59 and 83 +/- 41 pg/mL, respectively) than in those mice that were treated only with LPS (865 +/- 282 pg/mL). These studies suggest that specific inhibition of the chymotrypsin-like activity of the proteasome is sufficient to prevent signal-induced NF-kappa B activation and that the proteasome is a novel target for the identification of agents that may be useful in the treatment of diseases whose etiology is dependent upon the activation of NF-kappa B.

  5. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  6. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-{kappa}B signaling in cultured astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakita, Hiroki; Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601; Department of Neonatology, Aichi Human Service Center Central Hospital, 713-8 Kamiya-Cho, Kasugai 480-0392

    2009-07-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1{beta}, tumor necrosis factor-{alpha} and interferon-{gamma}, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol:more » APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-{kappa}B inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-{kappa}B p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-{kappa}B signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.« less

  7. Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons.

    PubMed

    Culmsee, Carsten; Siewe, Jan; Junker, Vera; Retiounskaia, Marina; Schwarz, Stephanie; Camandola, Simonetta; El-Metainy, Shahira; Behnke, Hagen; Mattson, Mark P; Krieglstein, Josef

    2003-09-17

    The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 precedes apoptosis in many cell types. Controversial reports exist on the role of the transcription factor nuclear factor-kappaB (NF-kappaB) in p53-mediated apoptosis, depending on the cell type and experimental conditions. Therefore, we sought to elucidate the role of NF-kappaB in p53-mediated neuron death. In cultured neurons DNA damaging compounds induced activation of p53, whereas NF-kappaB activity declined significantly. The p53 inhibitor pifithrin-alpha (PFT) preserved NF-kappaB activity and protected neurons against apoptosis. Immunoprecipitation experiments revealed enhanced p53 binding to the transcriptional cofactor p300 after induction of DNA damage, whereas binding of p300 to NF-kappaB was reduced. In contrast, PFT blocked the interaction of p53 with the cofactor, whereas NF-kappaB binding to p300 was enhanced. Most interestingly, similar results were observed after oxygen glucose deprivation in cultured neurons and in ischemic brain tissue. Ischemia-induced repression of NF-kappaB activity was prevented and brain damage was reduced by the p53 inhibitor PFT in a dose-dependent manner. It is concluded that a balanced competitive interaction of p53 and NF-kappaB with the transcriptional cofactor p300 exists in neurons. Exposure of neurons to lethal stress activates p53 and disrupts NF-kappaB binding to p300, thereby blocking NF-kappaB-mediated survival signaling. Inhibitors of p53 provide pronounced neuroprotective effects because they block p53-mediated induction of cell death and concomitantly enhance NF-kappaB-induced survival signaling.

  8. TLR3-mediated NF-{kappa}B signaling in human esophageal epithelial cells.

    PubMed

    Lim, Diana M; Narasimhan, Sneha; Michaylira, Carmen Z; Wang, Mei-Lun

    2009-12-01

    Despite its position at the front line against ingested pathogens, very little is presently known about the role of the esophageal epithelium in host innate immune defense. As a key player in the innate immune response, Toll-like receptor (TLR) signaling has not been well characterized in human esophageal epithelial cells. In the present study, we investigated the inflammatory response and signaling pathways activated by TLR stimulation of human esophageal cells in vitro. Using quantitative RT-PCR, we profiled the expression pattern of human TLRs 1-10 in primary esophageal keratinocytes (EPC2), immortalized nontransformed esophageal keratinocytes (EPC2-hTERT), and normal human esophageal mucosal biopsies and found that TLRs 1, 2, 3, and 5 were expressed both in vivo and in vitro. Using the cytokine IL-8 as a physiological read out of the inflammatory response, we found that TLR3 is the most functional of the expressed TLRs in both primary and immortalized esophageal epithelial cell lines in response to its synthetic ligand polyinosinic polycytidylic acid [poly(I:C)]. Through reporter gene studies, we show that poly(I:C)-induced NF-kappaB activation is critical for the transactivation of the IL-8 promoter in vitro and that nuclear translocation of NF-kappaB occurs at an early time point following poly(I:C) stimulation of esophageal epithelial cells. Importantly, we also show that poly(I:C) stimulation induces the NF-kappaB-dependent esophageal epithelial expression of TLR2, leading to enhanced epithelial responsiveness of EPC2-hTERT cells to TLR2 ligand stimulation, suggesting an important regulatory role for TLR3-mediated NF-kappaB signaling in the innate immune response of esophageal epithelial cells. Our findings demonstrate for the first time that TLR3 is highly functional in the human esophageal epithelium and that TLR3-mediated NF-kappaB signaling may play an important regulatory role in esophageal epithelial homeostasis.

  9. Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.

    PubMed

    Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C

    2000-12-01

    The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.

  10. NF-kappaB modulators from Valeriana officinalis.

    PubMed

    Jacobo-Herrera, Nadia J; Vartiainen, Nina; Bremner, Paul; Gibbons, Simon; Koistinaho, Jari; Heinrich, Michael

    2006-10-01

    Valeriana officinalis (Valerianaceae) has been of great interest for its therapeutic uses for treating mild nervous tension and temporary sleeping problems. In traditional European medicine it has been also reported as an antiinflammatory remedy. This study reports that the EtOAc extract of the underground parts of V. officinalis showed inhibitory activity against NF-kappaB at 100 microg/mL in the IL-6/Luc assay on HeLa cells and provided protection against excitotoxicity in primary brain cell cultures at micromolar concentrations. Bioassay-guided fractionation of the EtOAc extract led to the isolation of three known sesquiterpenes: acetylvalerenolic acid (1), valerenal (2) and valerenic acid (3), 1 and 3 were active as inhibitors of NF-kappaB at a concentration of 100 microg/mL. Acetylvalerenolic acid (1) reduced NF-kappaB activity to 4%, whereas valerenic acid (3) reduced NF-kappaB activity to 25%. Copyright 2006 John Wiley & Sons, Ltd.

  11. Relationship between carbachol hyperstimulation-induced pancreatic intracellular trypsinogen and NF-kappa B activation in rats in vitro.

    PubMed

    Jiang, Chunfang; Zheng, Hai; Liu, Sunan; Fang, Kaifeng

    2008-02-01

    The relationship between intracellular trypsinogen activation and NF-kappa B activation in rat pancreatic acinar cells induced by M3 cholinergic receptor agonist (carbachol) hyperstimulation was studied. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, the active protease inhibitor (pefabloc) and NF-kappa B inhibitor (PDTC) in vitro. Intracellular trypsin activity was measured by using a fluorogenic substrate. The activity of NF-kappa B was monitored by using electrophoretic mobility shift assay. The results showed that after pretreatment with 2 mmol/L pefabloc, the activities of trypsin and NF-kappa B in pancreatic acinar cells treated with high concentrations of carbachol (10(-3) mol/L) in vitro was significantly decreased as compared with control group (P<0.01). The addition of 10(-2) mol/L PDTC resulted in a significant decrease of NF-kappa B activities in pancreatic acinar cells after treated with high concentrations of carbachol (10(-3) mol/L) in vitro, but the intracellular trypsinogen activity was not obviously inhibited (P>0.05). It was concluded that intracellular trypsinogen activation is likely involved in the regulation of high concentrations of carbachol-induced NF-kappa B activation in pancreatic acinar cells in vitro. NF-kappa B activation is likely not necessary for high concentrations of carbachol-induced trypsinogen activation in pancreatic acinar cells in vitro.

  12. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    PubMed

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  13. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro.

    PubMed

    Benedict, Chris A; Angulo, Ana; Patterson, Ginelle; Ha, Sukwon; Huang, Huang; Messerle, Martin; Ware, Carl F; Ghazal, Peter

    2004-01-01

    Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.

  14. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Jana V., E-mail: Jana.maier@kit.edu; Volz, Yvonne; Berger, Caroline

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulatemore » the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.« less

  15. NF-{kappa}B regulates Lef1 gene expression in chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Kangsun; Choi, Yoo Duk; Nam, Jong Hee

    The relation of Wnt/{beta}-catenin signaling to osteoarthritis progression has been revealed with little information on the underlying molecular mechanism. In this study we found overexpression of Lef1 in cartilage tissue of osteoarthritic patients and elucidated molecular mechanism of NF-{kappa}B-mediated Lef1 gene regulation in chondrocytes. Treatment of IL-1{beta} augmented Lef1 upregulation and nuclear translocation of NF-{kappa}B in chondrocytes. Under IL-1{beta} signaling, treatment of NF-{kappa}B nuclear translocation inhibitor SN-50 reduced Lef1 expression. A conserved NF-{kappa}B-binding site between mouse and human was selected through bioinformatic analysis and mapped at the 14 kb upstream of Lef1 transcription initiation site. NF-{kappa}B binding to the sitemore » was confirmed by chromatin immunoprecipitation assay. Lef1 expression was synergistically upregulated by interactions of NF-{kappa}B with Lef1/{beta}-catenin in chondrocytes. Our results suggest a pivotal role of NF-{kappa}B in Lef1 expression in arthritic chondrocytes or cartilage degeneration.« less

  16. IKK{epsilon} modulates RSV-induced NF-{kappa}B-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao Xiaoyong; Indukuri, Hemalatha; Liu Tianshuang

    2010-12-20

    Respiratory syncytial virus (RSV), a negative-strand RNA virus, is the most common cause of epidemic respiratory disease in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B). In this study we have investigated the role of the non canonical I{kappa}B kinase (IKK){epsilon} in modulating RSV-induced NF-{kappa}B activation. Our results show that inhibition of IKK{epsilon} activation results in significant impairment of viral-induced NF-{kappa}B-dependent gene expression, through a reduction in NF-{kappa}B transcriptional activity, without changes in nuclear translocation or DNA-binding activity. Absencemore » of IKK{epsilon} results in a significant decrease of RSV-induced NF-{kappa}B phosphorylation on serine 536, a post-translational modification important for RSV-induced NF-{kappa}B-dependent gene expression, known to regulate NF-{kappa}B transcriptional activity without affecting nuclear translocation. This study identifies a novel mechanism by which IKK{epsilon} regulates viral-induced cellular signaling.« less

  17. Antiinflammatory effects of glucocorticoids in brain cells, independent of NF-kappa B.

    PubMed

    Bourke, E; Moynagh, P N

    1999-08-15

    Glucocorticoids are potent antiinflammatory drugs. They inhibit the expression of proinflammatory cytokines and adhesion molecules. It has recently been proposed that the underlying basis to such inhibition is the induction of the protein I kappa B, which inhibits the transcription factor NF-kappa B. The latter is a key activator of the genes encoding cytokines and adhesion molecules. The present study shows that the synthetic glucocorticoid, dexamethasone, inhibits the induction of the proinflammatory cytokine IL-8 and the adhesion molecules VCAM-1 and ICAM-1 in human 1321N1 astrocytoma and SK.N.SH neuroblastoma cells. However, dexamethasone failed to induce I kappa B or inhibit activation of NF-kappa B by IL-1 in the two cell types. EMSA confirmed the identity of the activated NF-kappa B by demonstrating that an oligonucleotide, containing the wild-type NF-kappa B-binding motif, inhibited formation of the NF-kappa B-DNA complexes whereas a mutated form of the NF-kappa B-binding motif was ineffective. In addition, supershift analysis showed that the protein subunits p50 and p65 were prevalent components in the activated NF-kappa B complexes. The lack of effect of dexamethasone on the capacity of IL-1 to activate NF-kappa B correlated with its inability to induce I kappa B and the ability of IL-1 to cause degradation of I kappa B, even in the presence of dexamethasone. The results presented in this paper strongly suggest that glucocorticoids may exert antiinflammatory effects in cells of neural origin by a mechanism(s) independent of NF-kappa B.

  18. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah

    2009-01-01

    LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less

  19. Nuclear factor kappa B: a potential target for anti-HIV chemotherapy.

    PubMed

    Pande, V; Ramos, M J

    2003-08-01

    The Nuclear Factor Kappa B (NF-kappaB) is a lymphoid-specific transcription factor, which is sequestered in the cytoplasm by the protein IkappaB. NF-kappaB plays a major role in the regulation of HIV-1 gene expression. Upon activation, NF-kappaB is released from IkappaB, moves to the nucleus, and binds to its sites on the HIV long terminal repeat to start transcription of integrated HIV genome. The present review focuses on the NF-kappaB as a potential target for the development of chemotherapy against HIV-1. Beginning from the viral-binding to reverse transcription, integration, and gene expression, to the virion maturation, the life cycle of HIV presents drug-targets at all the stages. As a result, many drugs have been developed and have entered clinical trials. Some of the most important of these are reverse transcriptase and protease inhibitors, which have been used mostly in clinical studies in the form of combined therapy. But, this combined therapy has presented the problem of resistance, due to mutations in the virus. However, targeting NF-kappaB for the suppression of virus does not present the problem of resistance, as NF-kappaB is a normal part of the human T-4 cell, and is not subject to mutations, as is the virus. An overview of the NF-kappaB system and its role in HIV-1 is presented, followed by a critical review of its current and potential synthetic inhibitors. The drugs studied against NF-kappaB fall mainly into three categories: (1) Antioxidants, against oxidative stress conditions, which aid in NF-kappaB activation, (2) IkappaB phosphorylation and degradation inhibitors (the phosphorylation and degradation of IkappaB is necessary to make NF-kappaB free and move to the nucleus), and (3) NF-kappaB DNA binding inhibitors. The antioxidants include N-Acetyl-L-cysteine (NAC), alpha-Lipoic acid, glutathione monoester, pyrrolidine dithiocarbamate, and tepoxalin, of which NAC is the best studied. The IkappaB phosphorylation and degradation inhibitors

  20. NIK and IKKbeta interdependence in NF-kappaB signalling--flux analysis of regulation through metabolites.

    PubMed

    Kim, Hong-Bum; Evans, Iona; Smallwood, Rod; Holcombe, Mike; Qwarnstrom, Eva E

    2010-02-01

    Activation of the transcription factor NF-kappaB is central to control of immune and inflammatory responses. Cytokine induced activation through the classical or canonical pathway relies on degradation of the inhibitor, IkappaBalpha and regulation by the IKKbeta kinase. In addition, the NF-kappaB is activated through the NF-kappaB-inducing kinase, NIK. Analysis of the IKK/NIK inter-relationship and its impact on NF-kappaB control, were analysed by mathematical modelling, using matrix formalism and stoichiometrically balanced reactions. The analysis considered a range of bio-reactions and core metabolites and their role in relation to kinase activation and in control of specific steps of the NF-kappaB pathway. The model predicts a growth-rate and time-dependent transfer of the primary kinase activity from IKKbeta to NIK. In addition, it suggests that NIK/IKKbeta interdependence is controlled by intermediates of phosphoribosylpyrophosphate (PRPP) within the glycolysis pathway, and thus, identifies a link between specific metabolic events and kinase activation in inflammatory signal transduction. Subsequent in vitro experiments, carried out to validate the impact of IKK/NIK interdependence, confirmed signal amplification at the level of the NF-kappaB/IkappaBalpha complex control in the presence of both kinases. Further, they demonstrate that the induced potentiation is due to synergistic enhancement of relA-dependent activation. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Analysis and Quantitation of NF-[kappa]B Nuclear Translocation in Tumor Necrosis Factor Alpha (TNF-[alpha]) Activated Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.

    2006-07-01

    Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.

  2. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20.

    PubMed

    Lin, Su-Chang; Chung, Jee Y; Lamothe, Betty; Rajashankar, Kanagalaghatta; Lu, Miao; Lo, Yu-Chih; Lam, Amy Y; Darnay, Bryant G; Wu, Hao

    2008-02-15

    Nuclear factor kappaB (NF-kappaB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappaB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappaB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.

  3. Resveratrol enhances ultraviolet B-induced cell death through nuclear factor-{kappa}B pathway in human epidermoid carcinoma A431 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Preeti; Kalra, Neetu; Nigam, Nidhi

    Resveratrol has been reported to suppress cancer progression in several in vivo and in vitro models, whereas ultraviolet B (UVB), a major risk for skin cancer, is known to induce cell death in cancerous cells. Here, we investigated whether resveratrol can sensitize A431 human epidermoid carcinoma cells to UVB-induced cell death. We examined the combined effect of UVB (30 mJ/cm{sup 2}) and resveratrol (60 {mu}M) on A431 cells. Exposure of A431 carcinoma cells to UVB radiation or resveratrol can inhibit cell proliferation and induce apoptosis. However, the combination of resveratrol and UVB exposure was associated with increased proliferation inhibition ofmore » A431 cells compared with either agent alone. Furthermore, results showed that resveratrol and UVB treatment of A431 cells disrupted the nuclear factor-kappaB (NF-{kappa}B) pathway by blocking phosphorylation of serine 536 and inactivating NF-{kappa}B and subsequent degradation of I{kappa}B{alpha}, which regulates the expression of survivin. Resveratrol and UVB treatment also decreased the phosphorylation of tyrosine 701 of the important transcription factor signal transducer activator of transcription (STAT1), which in turn inhibited translocation of phospho-STAT1 to the nucleus. Moreover, resveratrol/UVB also inhibited the metastatic protein LIMK1, which reduced the motility of A431 cells. In conclusion, our study demonstrates that the combination of resveratrol and UVB act synergistically against skin cancer cells. Thus, resveratrol is a potential chemotherapeutic agent against skin carcinogenesis.« less

  4. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against

  5. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor NF-kappaB.

    PubMed

    Riehemann, K; Behnke, B; Schulze-Osthoff, K

    1999-01-08

    Activation of transcription factor NF-kappaB is elevated in several chronic inflammatory diseases and is responsible for the enhanced expression of many proinflammatory gene products. Extracts from leaves of stinging nettle (Urtica dioica) are used as antiinflammatory remedies in rheumatoid arthritis. Standardized preparations of these extracts (IDS23) suppress cytokine production, but their mode of action remains unclear. Here we demonstrate that treatment of different cells with IDS23 potently inhibits NF-kappaB activation. An inhibitory effect was observed in response to several stimuli, suggesting that IDS23 suppressed a common NF-kappaB pathway. Inhibition of NF-kappaB activation by IDS23 was not mediated by a direct modification of DNA binding, but rather by preventing degradation of its inhibitory subunit IkappaB-alpha. Our results suggests that part of the antiinflammatory effect of Urtica extract may be ascribed to its inhibitory effect on NF-kappaB activation.

  6. Pre-folding IkappaBalpha alters control of NF-kappaB signaling.

    PubMed

    Truhlar, Stephanie M E; Mathes, Erika; Cervantes, Carla F; Ghosh, Gourisankar; Komives, Elizabeth A

    2008-06-27

    Transcription complex components frequently show coupled folding and binding but the functional significance of this mode of molecular recognition is unclear. IkappaBalpha binds to and inhibits the transcriptional activity of NF-kappaB via its ankyrin repeat (AR) domain. The beta-hairpins in ARs 5-6 in IkappaBalpha are weakly-folded in the free protein, and their folding is coupled to NF-kappaB binding. Here, we show that introduction of two stabilizing mutations in IkappaBalpha AR 6 causes ARs 5-6 to fold cooperatively to a conformation similar to that in NF-kappaB-bound IkappaBalpha. Free IkappaBalpha is degraded by a proteasome-dependent but ubiquitin-independent mechanism, and this process is slower for the pre-folded mutants both in vitro and in cells. Interestingly, the pre-folded mutants bind NF-kappaB more weakly, as shown by both surface plasmon resonance and isothermal titration calorimetry in vitro and immunoprecipitation experiments from cells. One consequence of the weaker binding is that resting cells containing these mutants show incomplete inhibition of NF-kappaB activation; they have significant amounts of nuclear NF-kappaB. Additionally, the weaker binding combined with the slower rate of degradation of the free protein results in reduced levels of nuclear NF-kappaB upon stimulation. These data demonstrate clearly that the coupled folding and binding of IkappaBalpha is critical for its precise control of NF-kappaB transcriptional activity.

  7. Proteasome and NF-kappaB inhibiting phaeophytins from the green alga Cladophora fascicularis.

    PubMed

    Huang, Xinping; Li, Min; Xu, Bo; Zhu, Xiaobin; Deng, Zhiwei; Lin, Wenhan

    2007-03-21

    Chemical examination of the green alga Cladophora fascicularis resulted in the isolation and characterization of a new porphyrin derivative, porphyrinolactone (1), along with five known phaeophytins 2-6 and fourteen sterols and cycloartanes. The structure of 1 was determined on the basis of spectroscopic analyses and by comparison of its NMR data with those of known phaeophytins. Compounds 1-6 displayed moderate inhibition of tumor necrosis factor alpha (TNF-alpha) induced nuclear factor-kappaB (NF-kappaB) activation, while 2 and 4 displayed potential inhibitory activity toward proteasome chymotripsin-like activation. The primary structure-activity relationship was also discussed.

  8. Synergistic activation of NF-{kappa}B by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKK{beta}-I{kappa}B{alpha}, and p38 MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Soo-Mi; Wang, Beinan; Rixter, Davida

    2006-12-15

    In review of the past studies on NF-{kappa}B regulation, most of them have focused on investigating how NF-{kappa}B is activated by a single inducer at a time. Given the fact that, in mixed bacterial infections in vivo, multiple inflammation inducers, including both nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae, are present simultaneously, a key issue that has yet to be addressed is whether NTHi and S. pneumoniae simultaneously activate NF-{kappa}B and the subsequent inflammatory response in a synergistic manner. Here, we show that NTHi and S. pneumoniae synergistically induce NF-{kappa}B-dependent inflammatory response via activation of multiple signaling pathways in vitromore » and in vivo. The classical IKK{beta}-I{kappa}B{alpha} and p38 MAPK pathways are involved in synergistic activation of NF-{kappa}B via two distinct mechanisms, p65 nuclear translocation-dependent and -independent mechanisms. Moreover, casein kinase 2 (CK2) is involved in synergistic induction of NF-{kappa}B via a mechanism dependent on phosphorylation of p65 at both Ser536 and Ser276 sites. These studies bring new insights into the molecular mechanisms underlying the NF-{kappa}B-dependent inflammatory response in polymicrobial infections and may lead to development of novel therapeutic strategies for modulating inflammation in mixed infections for patients with otitis media and chronic obstructive pulmonary diseases.« less

  9. NF-{kappa}B signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less

  10. The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation.

    PubMed Central

    Brown, Sharron A N; Richards, Christine M; Hanscom, Heather N; Feng, Sheau-Line Y; Winkles, Jeffrey A

    2003-01-01

    Fn14 is a growth-factor-inducible immediate-early-response gene encoding a 102-amino-acid type I transmembrane protein. The human Fn14 protein was recently identified as a cell-surface receptor for the tumour necrosis factor (TNF) superfamily member named TWEAK (TNF-like weak inducer of apoptosis). In the present paper, we report that the human TWEAK extracellular domain can also bind the murine Fn14 protein. Furthermore, site-specific mutagenesis and directed yeast two-hybrid interaction assays revealed that the TNFR-associated factor (TRAF) 1, 2, 3 and 5 adaptor molecules bind the murine Fn14 cytoplasmic tail at an overlapping, but non-identical, amino acid sequence motif. We also found that TWEAK treatment of quiescent NIH 3T3 cells stimulates inhibitory kappaBalpha phosphorylation and transcriptional activation of a nuclear factor-kappaB (NF-kappaB) enhancer/luciferase reporter construct. Fn14 overexpression in transiently transfected NIH 3T3 cells also promotes NF-kappaB activation, and this cellular response requires an intact TRAF binding site. These results indicate that Fn14 is a functional TWEAK receptor that can associate with four distinct TRAF family members and stimulate the NF-kappaB transcription factor signalling pathway. PMID:12529173

  11. Curcumin Regulates Low-Linear Energy Transfer {gamma}-Radiation-Induced NF{kappa}B-Dependent Telomerase Activity in Human Neuroblastoma Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aravindan, Natarajan, E-mail: naravind@ouhsc.ed; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh

    2011-03-15

    enhanced the IR-induced inhibition of cell survival. Conclusions: These results strongly suggest that curcumin inhibits IR-induced TA in an NF{kappa}B dependent manner in human neuroblastoma cells.« less

  12. Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1.

    PubMed

    Lin, Ling; Peng, Stanford L

    2006-04-15

    Forkhead transcription factors play critical roles in the maintenance of immune homeostasis. In this study, we demonstrate that this regulation most likely involves intricate interactions between the forkhead family members and inflammatory transcription factors: the forkhead member Foxd1 coordinates the regulation of the activity of two key inflammatory transcription factors, NF-AT and NF-kappaB, with Foxd1 deficiency resulting in multiorgan, systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autologous MLRs. Foxd1-deficient T cells possess increased activity of both NF-AT and NF-kappaB: the former correlates with the ability of Foxd1 to regulate casein kinase 1, an NF-AT inhibitory kinase; the latter with the ability of Foxd1 to regulate Foxj1, which regulates the NF-kappaB inhibitory subunit IkappaB beta. Thus, Foxd1 modulates inflammatory reactions and prevents autoimmunity by directly regulating anti-inflammatory regulators of the NF-AT pathway, and by coordinating the suppression of the NF-kappaB pathway via Foxj1. These findings indicate the presence of a general network of forkhead proteins that enforce T cell quiescence.

  13. TRIM45 negatively regulates NF-{kappa}B-mediated transcription and suppresses cell proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibata, Mio; Sato, Tomonobu; Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer NF-{kappa}B plays an important role in cell survival and carcinogenesis. Black-Right-Pointing-Pointer TRIM45 negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription. Black-Right-Pointing-Pointer TRIM45 overexpression suppresses cell growth. Black-Right-Pointing-Pointer TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth. -- Abstract: The NF-{kappa}B signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-{kappa}B is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-{kappa}B signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin-proteasome system. It has been reported that overexpression of TRIM45, one ofmore » the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNF{alpha}-induced NF-{kappa}B-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-{kappa}B signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-{kappa}B signal and regulates cell growth.« less

  14. Clinical validation of nuclear factor kappa B expression in invasive breast cancer.

    PubMed

    Agrawal, Anil Kumar; Pielka, Ewa; Lipinski, Artur; Jelen, Michal; Kielan, Wojciech; Agrawal, Siddarth

    2018-01-01

    Breast cancer is the most commonly diagnosed cancer in Polish women. The expression of transcription nuclear factor kappa B, a key inducer of inflammatory response promoting carcinogenesis and cancer progression in breast cancer, is not well-established. We assessed the nuclear factor kappa B expression in a total of 119 invasive breast carcinomas and 25 healthy control samples and correlated this expression pattern with several clinical and pathologic parameters including histologic type and grade, tumor size, lymph node status, estrogen receptor status, and progesterone receptor status. The data used for the analysis were derived from medical records. An immunohistochemical analysis of nuclear factor kappa B, estrogen receptor, and progesterone receptor was carried out and evaluation of stainings was performed. The expression of nuclear factor kappa B was significantly higher than that in the corresponding healthy control samples. No statistical difference was demonstrated in nuclear factor kappa B expression in relation to age, menopausal status, lymph node status, tumor size and location, grade and histologic type of tumor, and hormonal status (estrogen receptor and progesterone receptor). Nuclear factor kappa B is significantly overexpressed in invasive breast cancer tissues. Although nuclear factor kappa B status does not correlate with clinicopathological findings, it might provide important additional information on prognosis and become a promising object for targeted therapy.

  15. Smad7 mediates inhibition of Saos2 osteosarcoma cell differentiation by NF{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliseev, Roman A.; Schwarz, Edward M.; Zuscik, Michael J.

    2006-01-01

    The transcription factor NF{kappa}B is constitutively activated in various tumor cells where it promotes proliferation and represses apoptosis. The bone morphogenetic proteins (BMPs) delay cell proliferation and promote differentiation and apoptosis of bone cells through activation of Smad downstream effectors and via Smad-independent mechanisms. Thus, NF{kappa}B and BMP pathways play opposing roles in regulating osteoblastic cell fate. Here, we show that in osteosarcoma Saos2 osteoblasts, NF{kappa}B regulates the activity of the BMP/Smad signaling. Inhibition of NF{kappa}B by overexpression of mI{kappa}B leads to the induction of osteoblast differentiation. Saos2 cells overexpressing mI{kappa}B (Saos2-mI{kappa}B) exhibit higher expression of osteoblast phenotypic genes suchmore » as alkaline phosphatase, Runx2 and osteocalcin and are more responsive to BMP2 in comparison to wild-type cells (Saos2-wt) or empty vector infected controls (Saos2-EV). Furthermore, BMP-2 signaling and Smad phosphorylation are significantly increased in Saos2-mI{kappa}B cells in comparison to Saos2-EV cells. Inhibition of NF{kappa}B signaling in Saos2-mI{kappa}B cells is associated with decreased expression of the BMP signaling inhibitor Smad7. While gain of Smad7 function in Saos2-mI{kappa}B cells results in inhibition of BMP signaling, anti-sense knockdown of Smad7 in Saos2-EV cells leads to upregulation of BMP signaling. We therefore conclude that in osteosarcoma Saos2 cells, NF{kappa}B represses BMP/Smad signaling and BMP2-induced differentiation through Smad7.« less

  16. NF-kappaB transcription factor is required for inhibitory avoidance long-term memory in mice.

    PubMed

    Freudenthal, Ramiro; Boccia, Mariano M; Acosta, Gabriela B; Blake, Mariano G; Merlo, Emiliano; Baratti, Carlos M; Romano, Arturo

    2005-05-01

    Although it is generally accepted that memory consolidation requires regulation of gene expression, only a few transcription factors (TFs) have been clearly demonstrated to be specifically involved in this process. Increasing research data point to the participation of the Rel/nuclear factor-kappaB (NF-kappaB) family of TFs in memory and neural plasticity. Here we found that two independent inhibitors of NF-kappaB induced memory impairment in the one-trial step-through inhibitory avoidance paradigm in mice: post-training administration of the drug sulfasalazine and 2 h pretraining administration of a double-stranded DNA oligonucleotide containing the NF-kappaB consensus sequence (kappaB decoy). Conversely, one base mutation of the kappaB decoy (mut-kappaB decoy) injection did not affect long-term memory. Accordingly, the kappaB decoy inhibited NF-kappaB in hippocampus 2 h after injection but no inhibition was found with mut-kappaB decoy administration. A temporal course of hippocampal NF-kappaB activity after training was determined. Unexpectedly, an inhibition of NF-kappaB was found 15 min after training in shocked and unshocked groups when compared with the naïve group. Hippocampal NF-kappaB was activated 45 min after training in both shocked and unshocked groups, decreasing 1 h after training and returning to basal levels 2 and 4 h after training. On the basis of the latter results, we propose that activation of NF-kappaB in hippocampus is part of the molecular mechanism involved in the storage of contextual features that constitute the conditioned stimulus representation. The results presented here provide the first evidence to support NF-kappaB activity being regulated in hippocampus during consolidation, stressing the role of this TF as a conserved molecular mechanism for memory storage.

  17. NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach.

    PubMed

    Amit, Sharon; Ben-Neriah, Yinon

    2003-02-01

    Nuclear factor-kappa B (NF-kappaB) activation relies primarily on ubiquitin-mediated degradation of its inhibitor IkappaB. NF-kappaB plays an important role in many aspects of tumor development, progression, and therapy. Some types of cancer are characterized by constitutive NF-kappaB activity, whereas in others such activity is induced following chemotherapy. NF-kappaB-harboring tumors are generally resistant to chemotherapy and their eradication requires NF-kappaB inhibition. Here we describe the mechanisms of NF-kappaB activation in normal and tumor cells, review prevalent notions regarding the factor's contribution to tumorigenicity and discuss present and future options for NF-kappaB inhibition in cancer. The ubiquitination-mediated activation of NF-kappaB is intersected by another cancer-associated protein, beta-catenin. We, therefore, compare the related activation pathways and discuss the possibility of differential targeting of the involved ubiquitination machinery. Copyright 2002 Elsevier Science Ltd.

  18. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu; Karin, Norman J.; Geist, Derik J.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that themore » P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.« less

  19. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls.

    PubMed

    Baud, Véronique; Karin, Michael

    2009-01-01

    Nuclear factor kappaB (NF-kappaB) transcription factors have a key role in many physiological processes such as innate and adaptive immune responses, cell proliferation, cell death, and inflammation. It has become clear that aberrant regulation of NF-kappaB and the signalling pathways that control its activity are involved in cancer development and progression, as well as in resistance to chemotherapy and radiotherapy. This article discusses recent evidence from cancer genetics and cancer genome studies that support the involvement of NF-kappaB in human cancer, particularly in multiple myeloma. The therapeutic potential and benefit of targeting NF-kappaB in cancer, and the possible complications and pitfalls of such an approach, are explored.

  20. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-11-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia.

  1. Moderate Resolution Spectroscopy of Substellar Companion Kappa Andromeda B

    NASA Astrophysics Data System (ADS)

    Wilcomb, Kielan; Konopacky, Quinn; Barman, Travis; Brown, Jessie; Brock, Laci; Macintosh, Bruce; Ruffio, Jean-Baptiste; Marois, Christian

    2018-01-01

    Recent direct imaging of exoplanets has revealed a population of Jupiter-like objects that orbit at large separations (~10-100 AU) from their host stars. These planets, with masses of ~2-14 MJup and temperatures of ~500-2000 K, remain a problem for the two main planet formation models—core accretion and gravitational instability. OSIRIS observations of directly imaged planets have expanded our understanding of their atmospheres, alluded to their formation, and uncovered individual molecular lines. Here, we present OSIRIS K band spectra of the “super-Jupiter,” Kappa Andromeda b. Kappa Andromeda b has a lower mass limit at the deuterium burning limit, but also has an uncertain age which may indicate the source is a higher mass brown dwarf. The spectra reveal resolved molecular lines from water and CO. We will present atmospheric properties of this object derived from comparison to PHOENIX atmosphere models, and measure a best fit C/O ratio for the source. We will compare our results to atmospheric properties of other brown dwarfs and gas giant planets in an effort to improve our knowledge of intricate atmospheres of young, substellar objects.

  2. Salicylates inhibit flavivirus replication independently of blocking nuclear factor kappa B activation.

    PubMed

    Liao, C L; Lin, Y L; Wu, B C; Tsao, C H; Wang, M C; Liu, C I; Huang, Y L; Chen, J H; Wang, J P; Chen, L K

    2001-09-01

    Flaviviruses comprise a positive-sense RNA genome that replicates exclusively in the cytoplasm of infected cells. Whether flaviviruses require an activated nuclear factor(s) to complete their life cycle and trigger apoptosis in infected cells remains elusive. Flavivirus infections quickly activate nuclear factor kappa B (NF-kappaB), and salicylates have been shown to inhibit NF-kappaB activation. In this study, we investigated whether salicylates suppress flavivirus replication and virus-induced apoptosis in cultured cells. In a dose-dependent inhibition, we found salicylates within a range of 1 to 5 mM not only restricted flavivirus replication but also abrogated flavivirus-triggered apoptosis. However, flavivirus replication was not affected by a specific NF-kappaB peptide inhibitor, SN50, and a proteosome inhibitor, lactacystin. Flaviviruses also replicated and triggered apoptosis in cells stably expressing IkappaBalpha-DeltaN, a dominant-negative mutant that antagonizes NF-kappaB activation, as readily as in wild-type BHK-21 cells, suggesting that NF-kappaB activation is not essential for either flavivirus replication or flavivirus-induced apoptosis. Salicylates still diminished flavivirus replication and blocked apoptosis in the same IkappaBalpha-DeltaN cells. This inhibition of flaviviruses by salicylates could be partially reversed by a specific p38 mitogen-activated protein (MAP) kinase inhibitor, SB203580. Together, these results show that the mechanism by which salicylates suppress flavivirus infection may involve p38 MAP kinase activity but is independent of blocking the NF-kappaB pathway.

  3. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  4. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manea, Adrian, E-mail: adrian.manea@icbp.ro; Tanase, Laurentia I.; Raicu, Monica

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysismore » showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.« less

  5. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    PubMed

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  6. Chronic intermittent hypoxia activates nuclear factor-{kappa}B in cardiovascular tissues in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Harly; Ye Xiaobing; Wilson, David

    2006-05-05

    Obstructive sleep apnea (OSA) is an important risk factor for cardiovascular morbidity and mortality. The mechanisms through which OSA promotes the development of cardiovascular disease are poorly understood. In this study, we tested the hypotheses that chronic exposure to intermittent hypoxia and reoxygenation (CIH) is a major pathologic factor causing cardiovascular inflammation, and that CIH-induces cardiovascular inflammation and pathology by activating the NF-{kappa}B pathway. We demonstrated that exposure of mice to CIH activated NF-{kappa}B in cardiovascular tissues, and that OSA patients had markedly elevated monocyte NF-{kappa}B activity, which was significantly decreased when obstructive apneas and their resultant CIH were eliminatedmore » by nocturnal CPAP therapy. The elevated NF-{kappa}B activity induced by CIH is accompanied by and temporally correlated to the increased expression of iNOS protein, a putative and important NF-{kappa}B-dependent gene product. Thus, CIH-mediated NF-{kappa}B activation may be a molecular mechanism linking OSA and cardiovascular pathologies seen in OSA patients.« less

  7. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed Central

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-01-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia. Images PMID:1976820

  8. Regulation of NF-{kappa}B activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spilsbury, Alison; Vauzour, David; Spencer, Jeremy P.E.

    Highlights: Black-Right-Pointing-Pointer We tested the hypothesis that low concentrations of flavonoids inhibit NF-{kappa}B in astrocytes. Black-Right-Pointing-Pointer Primary cultured astrocytes possess a functional {kappa}B-system, measured using luciferase assays. Black-Right-Pointing-Pointer Seven flavonoids (100 nM-1 {mu}M) failed to reduce NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer Four flavonoids (100 nM-1 {mu}M) failed to reduce TNFa-stimulated NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer (-)-Epicatechin did not regulate nuclear translocation of the NF-{kappa}B subunit, p65. -- Abstract: Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Sustained activation of nuclear transcription factor {kappa}B (NF-{kappa}B) is thought to play an importantmore » role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-{kappa}B signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNF{alpha}, 150 ng/ml) increased NF-{kappa}B-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative I{kappa}B{alpha} construct. In addition, TNF{alpha} increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-{kappa}B activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((-)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1-1 {mu}M) for 18 h. None of the flavonoids modulated constitutive or

  9. Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.

    PubMed

    Alexander, George; Carlsen, Harald; Blomhoff, Rune

    2006-04-01

    To determine the dynamics of Nuclear Factor-kappaB (NF-kappaB) in murine corneal pathology and the role of NF-kappaB in maintaining corneal clarity after ultraviolet B radiation insult, transgenic mice containing NF-kappaB-luciferase reporter were exposed to LPS (bacterial lipopolysaccharide), TNF-alpha (Tumor Necrosis Factor-alpha) or 4 kJ m(-2) UV-B radiation. NF-kappaB decoy oligonucleotides were also administered in some of the UV-B experiments. Following various exposure times, the mice were sacrificed and whole eyes or corneal tissues were obtained. Whole eyes were examined for scattering using a point-source optical imaging technique. Tissue homogenates were examined for luciferase activity using a luminometer. TNF-alpha and LPS-injected NF-kappaB-luciferase transgenic mice demonstrated 3-10-fold increases in cornea NF-kappaB with peak activities at 4 and 6 hr post-injection, respectively. Mice exposed to 4 kJ m(-2) UV-B exhibited a 3-fold increase in NF-kappaB activity 4 hr post-exposure. The administration of NF-kappaB-decoy oligonucleotides to mice had the effect of reducing UV-B-induced NF-kappaB activity in the cornea and significantly increasing the amount of light scattering in UV-B exposed corneas 7 days post-UV-B exposure when compared to sham injected mice. These results indicate that NF-kappaB is activated in cornea in pathologies that involves increased plasma levels of LPS and TNF-alpha, as well as direct UV-B exposure, and suggest that NF-kappaB activation play an essential part in the corneal healing process.

  10. EWS-FLI1 inhibits TNF{alpha}-induced NF{kappa}B-dependent transcription in Ewing sarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagirand-Cantaloube, Julie, E-mail: julie.cantaloube@crbm.cnrs.fr; Laud, Karine, E-mail: karine.laud@curie.fr; Institut Curie, Genetique et biologie des cancers, Paris

    2010-09-03

    Research highlights: {yields} EWS-FLI1 interferes with TNF-induced activation of NF{kappa}B in Ewing sarcoma cells. {yields} EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NF{kappa}B binding to DNA. {yields} EWS-FLI1 reduces TNF-stimulated NF{kappa}B-dependent transcriptional activation. {yields} Constitutive NF{kappa}B activity is not affected by EWS-FLI1. {yields} EWS-FLI1 physically interacts with NF{kappa}B p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NF{kappa}B) is a tightly regulated transcription factor controllingmore » cell survival, proliferation and differentiation, as well as tumorigenesis. NF{kappa}B activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NF{kappa}B activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NF{kappa}B basal activity, but impairs TNF-induced NF{kappa}B-driven transcription, at least in part through inhibition of NF{kappa}B binding to DNA. We detected an in vivo physical interaction between the fusion protein and NF{kappa}B p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NF{kappa}B.« less

  11. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less

  12. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  13. Different effects of antisense RelA p65 and NF-kappaB1 p50 oligonucleotides on the nuclear factor-kappaB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells.

    PubMed

    Voisard, R; Huber, N; Baur, R; Susa, M; Ickrath, O; Both, A; Koenig, W; Hombach, V

    2001-01-01

    Activation of nuclear factor-kappaB (NF-kappaB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-alpha (TNF-alpha) induced and NF-kappaB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-kappaB1 p50 oligonucleotides (RelA p65 and NF-kappaB1 p50). Smooth muscle cells (SMC) from human coronary plaque material (HCPSMC, plaque material of 52 patients), SMC from the human coronary media (HCMSMC), human endothelial cells (EC) from umbilical veins (HUVEC), and human coronary EC (HCAEC) were successfully isolated (HCPSMC, HUVEC), identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC). 12 hrs prior to TNF-alpha stimulus (20 ng/mL, 6 hrs) RelA p65 and NF-kappaB1 p50 (1, 2, 4, 10, 20, and 30 microM) and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-kappaB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-kappaB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-kappaB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-kappaB1 p50. The data point out that differences exist in the NF-kappaB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-kappaB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  14. Nuclear factor-kappaB activation correlates with better prognosis and Akt activation in human gastric cancer.

    PubMed

    Lee, Byung Lan; Lee, Hye Seung; Jung, Jieun; Cho, Sung Jin; Chung, Hee-Yong; Kim, Woo Ho; Jin, Young-Woo; Kim, Chong Soon; Nam, Seon Young

    2005-04-01

    Because the biological significance of constitutive nuclear factor-kappaB (NF-kappaB) activation in human gastric cancer is unclear, we undertook this study to clarify the regulatory mechanism of NF-kappaB activation and its clinical significance. Immunohistochemistry for NF-kappaB/RelA was done on 290 human gastric carcinoma specimens placed on tissue array slides. The correlations between NF-kappaB activation and clinicopathologic features, prognosis, Akt activation, tumor suppressor gene expression, or Bcl-2 expression were analyzed. We also did luciferase reporter assay, Western blot analysis, and reverse transcription-PCR using the SNU-216 human gastric cancer cell line transduced with retroviral vectors containing constitutively active Akt or the NF-kappaB repressor mutant of IkappaBalpha. Nuclear expression of RelA was found in 18% of the gastric carcinomas and was higher in early-stage pathologic tumor-node-metastasis (P = 0.019). A negative correlation was observed between NF-kappaB activation and lymphatic invasion (P = 0.034) and a positive correlation between NF-kappaB activation and overall survival rate of gastric cancer patients (P = 0.0228). In addition, NF-kappaB activation was positively correlated with pAkt (P = 0.047), p16 (P = 0.004), adenomatous polyposis coli (P < 0.001), Smad4 (P = 0.002), and kangai 1 (P < 0.001) expression. An in vitro study showed that NF-kappaB activity in gastric cancer cells is controlled by and controls Akt. NF-kappaB activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis and Akt activation. These findings suggest that NF-kappaB activation is a valuable prognostic variable in gastric carcinoma.

  15. Regulation of the nuclear factor (NF)-kappaB pathway by ISGylation.

    PubMed

    Minakawa, Miki; Sone, Takayuki; Takeuchi, Tomoharu; Yokosawa, Hideyoshi

    2008-12-01

    Post-translational modification with ISG15 (interferon-stimulated gene 15 kDa) (ISGylation) is mediated by a sequential reaction similar to ubiquitination, and various target proteins for ISGylation have been identified. We previously reported that ISGylation of the E2 ubiquitin-conjugating enzyme Ubc13 suppresses its E2 activity. Ubc13 forms a heterodimer with Uev1A, a ubiquitin-conjugating enzyme variant, and the Ubc13-Uev1A complex catalyzes the assembly of a Lys63-linked polyubiquitin chain, which plays a non-proteolytic role in the nuclear factor (NF)-kappaB pathway. In this study, we examined the effect of ISGylation on tumor necrosis factor receptor-associated factor (TRAF)-6/transforming growth factor beta-activated kinase (TAK)-1-dependent NF-kappaB activation. We found that expression of the ISGylation system suppresses NF-kappaB activation via TRAF6 and TAK1 and that the level of polyubiquitinated TRAF6 is reduced by expression of the ISGylation system. Taken together, the results suggest that the NF-kappaB pathway is negatively regulated by ISGylation.

  16. Polycystin-1 promotes PKC{alpha}-mediated NF-{kappa}B activation in kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky

    2006-11-17

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-{kappa}B signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293{sup CTT}), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-{kappa}B nuclear levels and NF-{kappa}B-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-{kappa}B promoter activation was mediated by PKC{alpha}more » because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293{sup CTT} cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-{kappa}B inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKC{alpha}-mediated NF-{kappa}B signalling and cell survival.« less

  17. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimers, Kerstin; Buchholz, Katja; Werchau, Hermann

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cellsmore » revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.« less

  18. Identification of a novel A20-binding inhibitor of nuclear factor-kappa B activation termed ABIN-2.

    PubMed

    Van Huffel, S; Delaei, F; Heyninck, K; De Valck, D; Beyaert, R

    2001-08-10

    The nuclear factor kappaB (NF-kappaB) plays a central role in the regulation of genes implicated in immune responses, inflammatory processes, and apoptotic cell death. The zinc finger protein A20 is a cellular inhibitor of NF-kappaB activation by various stimuli and plays a critical role in terminating NF-kappaB responses. The underlying mechanism for NF-kappaB inhibition by A20 is still unknown. A20 has been shown to interact with several proteins including tumor necrosis factor (TNF) receptor-associated factors 2 and 6, as well as the inhibitory protein of kappaB kinase (IKK) gamma protein. Here we report the cloning and characterization of ABIN-2, a previously unknown protein that binds to the COOH-terminal zinc finger domain of A20. NF-kappaB activation induced by TNF and interleukin-1 is inhibited by overexpression of ABIN-2. The latter also inhibits NF-kappaB activation induced by overexpression of receptor-interacting protein or TNF receptor-associated factor 2. In contrast, NF-kappaB activation by overexpression of IKKbeta or direct activators of the IKK complex, such as Tax, cannot be inhibited by ABIN-2. These results indicate that ABIN-2 interferes with NF-kappaB activation upstream of the IKK complex and that it might contribute to the NF-kappaB-inhibitory function of A20.

  19. NF-{kappa}B inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-07-15

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-{kappa}B) in this process. Exposure of rats to 80 mg/m{sup 3} tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-{kappa}Bmore » activity, noted by suppression of inhibitor of {kappa}B (I{kappa}B) kinase (IKK), accumulation of I{kappa}B{alpha}, decrease of NF-{kappa}B DNA binding activity, and downregulation of NF-{kappa}B-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-{kappa}B pathway in tobacco smoke-induced apoptosis.« less

  20. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less

  1. NF-kappaB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia.

    PubMed

    Jang, Pil-Geum; Namkoong, Cherl; Kang, Gil Myoung; Hur, Man-Wook; Kim, Seung-Whan; Kim, Geun Hyang; Kang, Yeoungsup; Jeon, Min-Jae; Kim, Eun Hee; Lee, Myung-Shik; Karin, Michael; Baik, Ja-Hyun; Park, Joong-Yeol; Lee, Ki-Up; Kim, Young-Bum; Kim, Min-Seon

    2010-03-26

    Anorexia and weight loss are prevalent in infectious diseases. To investigate the molecular mechanisms underlying these phenomena, we established animal models of infection-associated anorexia by administrating bacterial and viral products, lipopolysaccharide (LPS) and human immunodeficiency virus-1 transactivator protein (Tat). In these models, we found that the nuclear factor-kappaB (NF-kappaB), a pivotal transcription factor for inflammation-related proteins, was activated in the hypothalamus. In parallel, administration of LPS and Tat increased hypothalamic pro-inflammatory cytokine production, which was abrogated by inhibition of hypothalamic NF-kappaB. In vitro, NF-kappaB activation directly stimulated the transcriptional activity of pro-opiomelanocortin (POMC), a precursor of anorexigenic melanocortin, and mediated the stimulatory effects of LPS, Tat, and pro-inflammatory cytokines on POMC transcription, implying the involvement of NF-kappaB in controlling feeding behavior. Consistently, hypothalamic injection of LPS and Tat caused a significant reduction in food intake and body weight, which was prevented by blockade of NF-kappaB and melanocortin. Furthermore, disruption of I kappaB kinase-beta, an upstream kinase of NF-kappaB, in POMC neurons attenuated LPS- and Tat-induced anorexia. These findings suggest that infection-associated anorexia and weight loss are mediated via NF-kappaB activation in hypothalamic POMC neurons. In addition, hypothalamic NF-kappaB was activated by leptin, an important anorexigenic hormone, and mediates leptin-stimulated POMC transcription, indicating that hypothalamic NF-kappaB also serves as a downstream signaling pathway of leptin.

  2. Evidence for nucleotide receptor modulation of cross talk between MAP kinase and NF-kappa B signaling pathways in murine RAW 264.7 macrophages.

    PubMed

    Aga, Mini; Watters, Jyoti J; Pfeiffer, Zachary A; Wiepz, Gregory J; Sommer, Julie A; Bertics, Paul J

    2004-04-01

    Extracellular nucleotides such as ATP are present in abundance at sites of inflammation and tissue damage, and these agents exert a potent modulatory effect on macrophage/monocyte function via the nucleotide receptor P2X(7). In this regard, after exposure to bacterial LPS, P2X(7) activation augments expression of the inducible nitric oxide (NO) synthase and production of NO in macrophages. Because P2X(7) has been reported to stimulate certain members of the MAP kinase family (ERK1/2) and can enhance the DNA-binding activity of NF-kappa B, we tested the hypothesis that LPS and nucleotides regulate NF-kappa B-dependent inflammatory events via cross talk with MAPK-associated pathways. In this regard, the present studies revealed that cotreatment of macrophages with LPS and the P2X(7)-selective ligand 2'-3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) results in the cooperative activation of NF-kappa B DNA-binding activity and a sustained attenuation of levels of the NF-kappa B inhibitory protein I kappa B alpha. Interestingly, a persistent reduction in I kappa B alpha levels is also observed when the MEK1/2 inhibitor U0126 is coadministered with LPS, suggesting that components of the MEK/ERK pathway are involved in regulating I kappa B alpha protein expression and/or turnover. The observation that U0126 and BzATP exhibit overlapping actions with respect to LPS-induced changes in I kappa B alpha levels is supported by the finding that Ras activation, which is upstream of MEK/ERK activation, is reduced upon macrophage cotreatment with BzATP and LPS compared with the effects of BzATP treatment alone. These data are consistent with the concept that the Ras/MEK/ERK pathways are involved in regulating NF-kappa B/I kappa B-dependent inflammatory mediator production and suggest a previously unidentified mechanism by which nucleotides can modulate LPS-induced action via cross talk between NF-kappa B and Ras/MEK/MAPK-associated pathways.

  3. Activation of peroxisome proliferator-activated receptor beta/delta inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-kappaB activity via extracellular signal-related kinase 1/2.

    PubMed

    Rodríguez-Calvo, Ricardo; Serrano, Lucía; Coll, Teresa; Moullan, Norman; Sánchez, Rosa M; Merlos, Manuel; Palomer, Xavier; Laguna, Juan C; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel

    2008-08-01

    Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

  4. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Myoung Hee; Oh, Sang Cheul; Lee, Hyun Joo

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B.more » Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.« less

  5. Persistent tumor necrosis factor signaling in normal human fibroblasts prevents the complete resynthesis of I kappa B-alpha.

    PubMed

    Poppers, D M; Schwenger, P; Vilcek, J

    2000-09-22

    Transcription factor NF-kappa B is normally sequestered in the cytoplasm, complexed with I kappa B inhibitory proteins. Tumor necrosis factor (TNF) and interleukin-1 induce I kappa B-alpha phosphorylation, leading to I kappa B-alpha degradation and translocation of NF-kappa B to the nucleus where it activates genes important in inflammatory and immune responses. TNF and interleukin-1 actions are typically terminated by desensitization, and I kappa B-alpha reappearance normally occurs within 30-60 min. We found that in normal human FS-4 fibroblasts maintained in the presence of TNF, I kappa B-alpha protein failed to return to base-line levels for up to 15 h. Removal of TNF at any time during the 15-h period resulted in complete I kappa B-alpha resynthesis, suggesting that I kappa B-alpha reappearance was prevented by continued TNF signaling. Long term exposure of FS-4 fibroblasts to TNF led to a persistent presence of I kappa B-alpha mRNA, sustained I kappa B kinase activation, continuous proteasome-mediated degradation of I kappa B-alpha, and sustained nuclear localization of NF-kappa B. Continuous exposure of FS-4 cells to TNF did not lead to a sustained activation of p38 or ERK mitogen-activated protein kinases, suggesting that not all TNF-induced signaling pathways are persistently activated. These findings challenge the notion that all cytokine-mediated signals are rapidly terminated by desensitization and illustrate the need to elucidate the process of deactivation of TNF-induced signaling.

  6. TNF{alpha} acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-{kappa}B-dependent pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas, Martin A.; Carnevale, Romina P.; Proietti, Cecilia J.

    2008-02-01

    Tumor necrosis factor {alpha} (TNF{alpha}) enhances proliferation of chemically-induced mammary tumors and of T47D human cell line through not fully understood pathways. Here, we explored the intracellular signaling pathways triggered by TNF{alpha}, the participation of TNF{alpha} receptor (TNFR) 1 and TNFR2 and the molecular mechanism leading to breast cancer growth. We demonstrate that TNF{alpha} induced proliferation of C4HD murine mammary tumor cells and of T47D cells through the activation of p42/p44 MAPK, JNK, PI3-K/Akt pathways and nuclear factor-kappaB (NF-{kappa}B) transcriptional activation. A TNF{alpha}-specific mutein selectively binding to TNFR1 induced p42/p44 MAPK, JNK, Akt activation, NF-{kappa}B transcriptional activation and cell proliferation,more » just like wild-type TNF{alpha}, while a mutein selective for TNFR2 induced only p42/p44 MAPK activation. Interestingly, blockage of TNFR1 or TNFR2 with specific antibodies was enough to impair TNF{alpha} signaling and biological effect. Moreover, in vivo TNF{alpha} administration supported C4HD tumor growth. We also demonstrated, for the first time, that injection of a selective inhibitor of NF-{kappa}B activity, Bay 11-7082, resulted in regression of TNF{alpha}-promoted tumor. Bay 11-7082 blocked TNF{alpha} capacity to induce cell proliferation and up-regulation of cyclin D1 and of Bcl-x{sub L}in vivo and in vitro. Our results reveal evidence for TNF{alpha} as a breast tumor promoter, and provide novel data for a future therapeutic approach using TNF{alpha} antagonists and NF-{kappa}B pharmacological inhibitors in established breast cancer treatment.« less

  7. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma.

    PubMed

    Uffort, Deon G; Grimm, Elizabeth A; Ellerhorst, Julie A

    2009-01-01

    Tumor expression of inducible nitric oxide synthase (iNOS) predicts poor outcomes for melanoma patients. We have reported the regulation of melanoma iNOS by the mitogen-activated protein kinase (MAPK) pathway. In this study, we test the hypothesis that NF-kappaB mediates this regulation. Western blotting of melanoma cell lysates confirmed the constitutive expression of iNOS. Western blot detected baseline levels of activated nuclear extracellular signal-regulated kinase and NF-kappaB. Indirect immunofluorescence confirmed the presence of NF-kappaB p50 and p65 in melanoma cell nuclei, with p50 being more prevalent. Electrophoretic mobility shift assay demonstrated baseline NF-kappaB activity, the findings confirmed by supershift analysis. Treatment of melanoma cells with the MEK inhibitor U0126 decreased NF-kappaB binding to its DNA recognition sequence, implicating the MAPK pathway in NF-kappaB activation. Two specific NF-kappaB inhibitors suppressed iNOS expression, demonstrating regulation of iNOS by NF-kappaB. Several experiments indicated the presence of p50 homodimers, which lack a transactivation domain and rely on the transcriptional coactivator Bcl-3 to carry out this function. Bcl-3 was detected in melanoma cells and co-immunoprecipitated with p50. These data suggest that the constitutively activated melanoma MAPK pathway stimulates activation of NF-kappaB hetero- and homodimers, which, in turn, drive iNOS expression and support melanoma tumorigenesis.

  8. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that

  9. NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya

    2010-12-03

    Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network.more » To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.« less

  10. Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis.

    PubMed

    Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2010-09-01

    To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.

  11. Chlamydia pneumoniae activates IKK/I kappa B-mediated signaling, which is inhibited by 4-HNE and following primary exposure.

    PubMed

    Donath, Bernadette; Fischer, Claudia; Page, Sharon; Prebeck, Sigrid; Jilg, Nikolaus; Weber, Marion; da Costa, Clarissa; Neumeier, Dieter; Miethke, Thomas; Brand, Korbinian

    2002-11-01

    Chlamydia pneumoniae may be involved in atherosclerosis by inducing inflammation as well as LDL oxidation. The transcription factor NF-kappa B is found in an active state in atherosclerotic lesions. This study examined the effect of C. pneumoniae exposure on the NF-kappa B system in human monocytic lineage cells. Short exposure to C. pneumoniae as well as chlamydial heat shock protein 60 activated NF-kappa B, accompanied by increased cytokine production. Incubation with C. pneumoniae-induced depletion of I kappa B-alpha and later I kappa B-epsilon which was preceded by I kappa B kinase complex activation. 4-Hydroxynonenal, an aldehyde LDL oxidation product, was shown to inhibit C. pneumoniae induced NF-kappa B activation by preventing I kappa B phosphorylation/proteolysis. During long-term incubation with C. pneumoniae I kappa B-alpha returned to baseline, whereas the levels of I kappa B-epsilon and p65 were upregulated. Interestingly, long-term preincubation with C. pneumoniae selectively prevented restimulation by this microorganism, which appears to be at least partly facilitated by inhibition of I kappa B proteolysis. C. pneumoniae-induced NF-kappa B activation as well as the inhibition of that effect under certain conditions may contribute to chronic inflammation with potential relevance to vascular disease.

  12. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  13. The Role of the Noncanonical NF-KappaB Pathway in Colon Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-13-1-0321 TITLE: The Role of the Noncanonical NF -KappaB Pathway in Colon Cancer PRINCIPAL INVESTIGATOR: Yatrik Shah...2013 - 29 May 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0321 The Role of the Noncanonical NF -KappaB Pathway in Colon Cancer 5b...inflammatory bowel disease samples that the non-canonical NF -κB2 signaling cascade is highly activated in intestinal epithelial cells compared to normal

  14. GS143, an I{kappa}B ubiquitination inhibitor, inhibits allergic airway inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirose, Koichi; Wakashin, Hidefumi; Oki, Mie

    2008-09-26

    Asthma is characterized by airway inflammation with intense eosinophil infiltration and mucus hyper-production, in which antigen-specific Th2 cells play critical roles. Nuclear factor-{kappa}B (NF-{kappa}B) pathway has been demonstrated to be essential for the production of Th2 cytokines and chemokines in the airways in murine asthma models. In the present study, we examined the effect of GS143, a novel small-molecule inhibitor of I{kappa}B ubiquitination, on antigen-induced airway inflammation and Th2 cytokine production in mice. Intranasal administration of GS143 prior to antigen challenge suppressed antigen-induced NF-{kappa}B activation in the lung of sensitized mice. Intranasal administration of GS143 also inhibited antigen-induced eosinophil andmore » lymphocyte recruitment into the airways as well as the expression of Th2 cytokines and eotaxin in the airways. Moreover, GS143 inhibited antigen-induced differentiation of Th2 cells but not of Th1 cells in vitro. Taken together, these results suggest that I{kappa}B ubiquitination inhibitor may have therapeutic potential against asthma.« less

  15. Enhanced IL-1{beta}-induced IL-8 production in cystic fibrosis lung epithelial cells is dependent of both mitogen-activated protein kinases and NF-{kappa}B signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muselet-Charlier, Celine; Universite Pierre et Marie Curie-Paris 6, Paris, UMR-S719, F-75012; Roque, Telma

    2007-06-01

    Transcription nuclear factor-{kappa}B (NF-{kappa}B) is hyperactivated in cystic fibrosis (CF) lung epithelial cells, and participates in exaggerated IL-8 production in the CF lung. We recently found that rapid activation of NF-{kappa}B occurred in a CF lung epithelial IB3-1 cell line (CF cells) upon IL-1{beta} stimulation, which was not observed in its CFTR-corrected lung epithelial S9 cell line (corrected cells). To test whether other signaling pathways such as that of mitogen-activated protein kinases (MAPKs) could be involved in IL-1{beta}-induced IL-8 production of CF cells, we investigated ERK1/2, JNK, and p38MAP signaling compared to NF-{kappa}B. Within 30 min, exposure to IL-1{beta} causedmore » high activation of NF-{kappa}B, ERK1/2, p38MAP but not JNK in CF cells compared to corrected cells. Treatment of IL-1{beta}-stimulated CF cells with a series of chemical inhibitors of NF-{kappa}B, ERK1/2, and p38MAP, when used separately, reduced slightly IL-8 production. However, when used together, these inhibitors caused a blockade in IL-1{beta}-induced IL-8 production in CF cells. Understanding of the cross-talk between NF-{kappa}B and MAPKs signaling in CF lung epithelial cells may help in developing new therapeutics to reduce lung inflammation in patients with CF.« less

  16. Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities.

    PubMed

    Srinivasan, Balasubramanian; Johnson, Thomas E; Lad, Rahul; Xing, Chengguo

    2009-11-26

    Chalcone is a privileged structure, demonstrating promising anti-inflammatory and anticancer activities. One potential mechanism is to suppress nuclear factor kappa B (NF-kappaB) activation. The structures of chalcone-based NF-kappaB inhibitors vary significantly that there is minimum information about their structure-activity relationships (SAR). This study aims to establish SAR of chalcone-based compounds to NF-kappaB inhibition, to explore the feasibility of developing simple chalcone-based potent NF-kappaB inhibitors, and to evaluate their anticancer activities. Three series of chalcones were synthesized in one to three steps with the key step being aldol condensation. These candidates demonstrated a wide range of NF-kappaB inhibitory activities, some of low micromolar potency, establishing that structural complexity is not required for NF-kappaB inhibition. Lead compounds also demonstrate potent cytotoxicity against lung cancer cells. Their cytotoxicities correlate moderately well with their NF-kappaB inhibitory activities, suggesting that suppressing NF-kappaB activation is likely responsible for at least some of the cytotoxicities. One lead compound effectively inhibits lung tumor growth with no signs of adverse side effects.

  17. Rhinovirus stimulation of interleukin-6 in vivo and in vitro. Evidence for nuclear factor kappa B-dependent transcriptional activation.

    PubMed Central

    Zhu, Z; Tang, W; Ray, A; Wu, Y; Einarsson, O; Landry, M L; Gwaltney, J; Elias, J A

    1996-01-01

    To further understand the biology of rhinovirus (RV), we determined whether IL-6 was produced during RV infections and characterized the mechanism by which RV stimulates lung cell IL-6 production. In contrast to normals and minimally symptomatic volunteers, IL-6 was detected in the nasal washings from patients who developed colds after RV challenge. RV14 and RV1A, major and minor receptor group RVs, respectively, were potent stimulators of IL-6 protein production in vitro. These effects were associated with significant increases in IL-6 mRNA accumulation and gene transcription. RV was also a potent stimulator of IL-6 promoter-driven luciferase activity. This stimulation was modestly decreased by mutation of the nuclear factor (NF)-IL-6 site and abrogated by mutation of the NF-kappa B site in this promoter. An NF-kappa B-DNA binding activity, mediated by p65, p50, and p52 NF-kappa B moieties, was rapidly induced in RV-infected cells. Activator protein 1-DNA binding was not similarly altered. These studies demonstrate that IL-6 is produced during symptomatic RV infections, that RVs are potent stimulators of IL-6 elaboration, and that RV stimulation IL-6 production is mediated by an NF-kappa B-dependent transcriptional stimulation pathway. IL-6 may play an important role in the pathogenesis of RV infection, and NF-kappa B activation is likely to be an important event in RV-induced pathologies. PMID:8567963

  18. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    PubMed

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  19. LPS-induced NF-{kappa}B expression in THP-1Blue cells correlates with neopterin production and activity of indoleamine 2,3-dioxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroecksnadel, Sebastian; Jenny, Marcel; Division of Medical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck

    2010-09-03

    Research highlights: {yields} LPS induces NF-{kappa}B, neopterin formation and tryptophan degradation in THP-1 cells. {yields} Close dose- and time-dependent correlations exist between these biochemical events. {yields} Data provides some evidence for a parallel induction of them upon TLR stimulation. {yields} Results can be of considerable relevance also in vivo. -- Abstract: Neopterin production is induced in human monocyte-derived macrophages and dendritic cells upon stimulation with Th1-type cytokine interferon-{gamma} (IFN-{gamma}). In parallel, IFN-{gamma} induces the tryptophan-(trp)-degrading enzyme indoleamine 2,3-dioxygenase (IDO) and triggers the formation of reactive oxygen species (ROS). Translocation of the signal transduction element nuclear factor-{kappa}B (NF-{kappa}B) is induced bymore » ROS and accelerates the pro-inflammatory response by activation of other pro-inflammatory pathways. Therefore, a close relationship between NF-{kappa}B expression, the production of neopterin and the degradation of trp can be assumed, although this has not been demonstrated so far. In the present in vitro study we compared the influence of lipopolysaccharide (LPS) on NF-{kappa}B activation, neopterin formation and the degradation of trp in THP-1Blue cells, which represent the human myelomonocytic cell line THP-1 stably transfected with an NF-{kappa}B inducible reporter system. In cells stimulated with LPS, a significant induction of NF-{kappa}B was observed, and this was paralleled by an increase of kynureunine (kyn) and neopterin concentrations and a decline of trp. The increase of the kyn to trp quotient indicates accelerated IDO activity. Higher LPS concentrations and longer incubation of cells were associated with higher activities of all three biochemical pathways and significant correlations existed between NF-{kappa}B activation, neopterin release and trp degradation (all p < 0.001). We conclude that there is a parallel induction of NF-{kappa}B, neopterin

  20. Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export.

    PubMed

    Chen, Yao; Li, Hong Hai; Fu, Jing; Wang, Xue Feng; Ren, Yi Bin; Dong, Li Wei; Tang, Shan Hua; Liu, Shu Qing; Wu, Meng Chao; Wang, Hong Yang

    2007-12-01

    p28(GANK) (also known as PSMD10, p28 and gankyrin) is an ankyrin repeat anti-apoptotic oncoprotein that is commonly overexpressed in hepatocellular carcinomas and increases the degradation of p53 and Rb. NF-kappaB (nuclear factor-kappaB) is known to be sequestered in the cytoplasm by I kappaB (inhibitor of NF-kappaB) proteins, but much less is known about the cytoplasmic retention of NF-kappaB by other cellular proteins. Here we show that p28(GANK) inhibits NF-kappaB activity. As a nuclear-cytoplasmic shuttling protein, p28(GANK) directly binds to NF-kappaB/RelA and exports RelA from nucleus through a chromosomal region maintenance-1 (CRM-1) dependent pathway, which results in the cytoplasmic retention of NF-kappaB/RelA. We demonstrate that all the ankyrin repeats of p28(GANK) are required for the interaction with RelA and that the N terminus of p28(GANK), which contains the nuclear export sequence (NES), is responsible for suppressing NF-kappaB/RelA nuclear translocation. These results suggest that overexpression of p28(GANK) prevents the nuclear localization and inhibits the activity of NF-kappaB/RelA.

  1. The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells.

    PubMed

    Byrd, Matthew S; Pang, Bing; Mishra, Meenu; Swords, W Edward; Wozniak, Daniel J

    2010-06-29

    In order for the opportunistic Gram-negative pathogen Pseudomonas aeruginosa to cause an airway infection, the pathogen interacts with epithelial cells and the overlying mucous layer. We examined the contribution of the biofilm polysaccharide Psl to epithelial cell adherence and the impact of Psl on proinflammatory signaling by flagellin. Psl has been implicated in the initial attachment of P. aeruginosa to biotic and abiotic surfaces, but its direct role in pathogenesis has not been evaluated (L. Ma, K. D. Jackson, R. M. Landry, M. R. Parsek, and D. J. Wozniak, J. Bacteriol. 188:8213-8221, 2006). Using an NF-kappaB luciferase reporter system in the human epithelial cell line A549, we show that both Psl and flagellin are necessary for full activation of NF-kappaB and production of the interleukin 8 (IL-8) chemokine. We demonstrate that Psl does not directly stimulate NF-kappaB activity, but indirectly as a result of increasing contact between bacterial cells and epithelial cells, it facilitates flagellin-mediated proinflammatory signaling. We confirm differential adherence of Psl and/or flagellin mutants by scanning electron microscopy and identify Psl-dependent membrane structures that may participate in adherence. Although we hypothesized that Psl would protect P. aeruginosa from recognition by the epithelial cell line A549, we instead observed a positive role for Psl in flagellin-mediated NF-kappaB activation, likely as a result of increasing contact between bacterial cells and epithelial cells.

  2. Homologous kappa-neurotoxins exhibit residue-specific interactions with the alpha 3 subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for kappa-bungarotoxin and kappa-flavitoxin binding.

    PubMed

    McLane, K E; Weaver, W R; Lei, S; Chiappinelli, V A; Conti-Tronconi, B M

    1993-07-13

    kappa-Flavotoxin (kappa-FTX), a snake neurotoxin that is a selective antagonist of certain neuronal nicotinic acetylcholine receptors (AChRs), has recently been isolated and characterized [Grant, G. A., Frazier, M. W., & Chiappinelli, V. A. (1988) Biochemistry 27, 1532-1537]. Like the related snake toxin kappa-bungarotoxin (kappa-BTX), kappa-FTX binds with high affinity to alpha 3 subtypes of neuronal AChRs, even though there are distinct sequence differences between the two toxins. To further characterize the sequence regions of the neuronal AChR alpha 3 subunit involved in formation of the binding site for this family of kappa-neurotoxins, we investigated kappa-FTX binding to overlapping synthetic peptides screening the alpha 3 subunit sequence. A sequence region forming a "prototope" for kappa-FTX was identified within residues alpha 3 (51-70), confirming the suggestions of previous studies on the binding of kappa-BTX to the alpha 3 subunit [McLane, K. E., Tang, F., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 1537-1544] and alpha-bungarotoxin to the Torpedo AChR alpha subunit [Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230] that this sequence region is involved in formation of a cholinergic site. Single residue substituted analogues, where each residue of the sequence alpha 3 (51-70) was sequentially replaced by a glycine, were used to identify the amino acid side chains involved in the interaction of this prototope with kappa-FTX.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko

    2009-12-04

    The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in thismore » study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.« less

  4. Pyropheophorbide-a methyl ester-mediated photosensitization activates transcription factor NF-kappaB through the interleukin-1 receptor-dependent signaling pathway.

    PubMed

    Matroule, J Y; Bonizzi, G; Morlière, P; Paillous, N; Santus, R; Bours, V; Piette, J

    1999-01-29

    Pyropheophorbide-a methyl ester (PPME) is a second generation of photosensitizers used in photodynamic therapy. We demonstrated that PPME photosensitization activated NF-kappaB transcription factor in colon cancer cells. Unexpectedly, this activation occurred in two separate waves, i.e. a rapid and transient one and a second slower but sustained phase. The former was due to photosensitization by PPME localized in the cytoplasmic membrane which triggered interleukin-1 receptor internalization and the transduction pathways controlled by the interleukin-1 type I receptor. Indeed, TRAF6 dominant negative mutant abolished NF-kappaB activation by PPME photosensitization, and TRAF2 dominant negative mutant was without any effect, and overexpression of IkappaB kinases increased gene transcription controlled by NF-kappaB. Oxidative stress was not likely involved in the activation. On the other hand, the slower and sustained wave could be the product of the release of ceramide through activation of the acidic sphingomyelinase. PPME localization within the lysosomal membrane could explain why ceramide acted as second messenger in NF-kappaB activation by PPME photosensitization. These data will allow a better understanding of the molecular basis of tumor eradication by photodynamic therapy, in particular the importance of the host cell response in the treatment.

  5. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes.

    PubMed

    Watchorn, Tammy M; Dowidar, Nabil; Dejong, Cornelis H C; Waddell, Ian D; Garden, O James; Ross, James A

    2005-10-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells, the resident macrophages of the liver, and in monocytes, resulting in the production of pro-inflammatory cytokines. Normal liver tissue was obtained from patients undergoing partial hepatectomy and Kupffer cells were isolated. Monocytes were isolated from peripheral blood. Following exposure to native PIF, pro-inflammatory cytokine production from Kupffer cells and monocytes was measured and the NF-kappaB and STAT3 transcriptional pathways were investigated using electrophoretic mobility shift assays. We demonstrate that PIF is able to activate the transcription factor NF-kappaB and NF-kappaB-inducible genes in human Kupffer cells, and in monocytes, resulting in the production of pro-inflammatory cytokines such as TNF-alpha, IL-8 and IL-6. PIF enhances the expression of the cell surface molecules LFA-1 and CD14 on macrophages. PIF also activates the transcription factor STAT3 in Kupffer cells. The pro-inflammatory effects of PIF, mediated via NF-kappaB and STAT3, are important in macrophage behaviour and may contribute to the inflammatory pro-cachectic process in the liver.

  6. Apolipoprotein CIII-induced THP-1 cell adhesion to endothelial cells involves pertussis toxin-sensitive G protein- and protein kinase C alpha-mediated nuclear factor-kappaB activation.

    PubMed

    Kawakami, Akio; Aikawa, Masanori; Nitta, Noriko; Yoshida, Masayuki; Libby, Peter; Sacks, Frank M

    2007-01-01

    Plasma apolipoprotein CIII (apoCIII) independently predicts risk for coronary heart disease (CHD). We recently reported that apoCIII directly enhances adhesion of human monocytes to endothelial cells (ECs), and identified the activation of PKC alpha as a necessary upstream event of enhanced monocyte adhesion. This study tested the hypothesis that apoCIII activates PKC alpha in human monocytic THP-1 cells, leading to NF-kappaB activation. Among inhibitors specific to PKC activators, phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor D609 limited apoCIII-induced PKC alpha activation and THP-1 cell adhesion. ApoCIII increased PC-PLC activity in THP-1 cells, resulting in PKC alpha activation. Pertussis toxin (PTX) inhibited apoCIII-induced PC-PLC activation and subsequent PKC alpha activation, implicating PTX-sensitive G protein pathway. ApoCIII further activated nuclear factor-kappaB (NF-kappaB) through PKC alpha in THP-1 cells and augmented beta1-integrin expression. The NF-kappaB inhibitor peptide SN50 partially inhibited apoCIII-induced beta1-integrin expression and THP-1 cell adhesion. ApoCIII-rich VLDL had similar effects to apoCIII alone. PTX-sensitive G protein pathway participates critically in PKC alpha stimulation in THP-1 cells exposed to apoCIII, activating NF-kappaB, and increasing beta1-integrin. This action causes monocytic cells to adhere to endothelial cells. Furthermore, because leukocyte NF-kappaB activation contributes to inflammatory aspects of atherogenesis, apoCIII may stimulate diverse inflammatory responses through monocyte activation.

  7. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    PubMed

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P < 0.01). CLI-095 or PDTC administration suppressed proinflammatory cytokine (TNF-α, IL-6, and IL-1β) production and macrophage infiltration into the kidney (P < 0.01). Moreover, in an in vitro study, CLI-095 or PDTC suppressed myoglobin-induced expression of TLR4, NF-κB, and proinflammatory cytokine levels in macrophage RAW264.7 cells (P < 0.01). The pharmacological inhibition of TLR4/NF-κB exhibited protective effects on rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

  8. Medicinal mushroom Lingzhi or Reishi, Ganoderma lucidum (W.Curt.:Fr.) P. Karst., beta-glucan induces Toll-like receptors and fails to induce inflammatory cytokines in NF-kappaB inhibitor-treated macrophages.

    PubMed

    Batbayar, Sainkhuu; Kim, Mi Jeong; Kim, Ha Won

    2011-01-01

    Beta-Glucan of medicinal Lingzhi or Reishi mushroom, Ganoderma lucidum (BGG), possesses immunostimulatory and anti-tumor activities. Innate immune cells are activated by the binding of beta-glucan to the dectin-1 receptor. The present study investigated the immunostimulating activities of BGG, including binding to dectin-1, secretion of cytokines and reactive oxygen species, and induction of Toll-like receptors (TLRs) in RAW264.7 mouse macrophages. Reverse transcription-polymerase chain reaction and flow cytometry were used for the cytokine and TLR analyses. A mouse inflammation antibody array was used for protein-level cytokine analysis. BGG bound to dectin-1 and induced RAW264.7 cell secretion of several cytokines, including granulocyte colony-stimulating factor, interleukin (IL)-6, regulated upon activation normal T cell expressed and secreted (RANTES), tissue inhibitor of metalloproteinase-1, and tumor necrosis factor-alpha. The secretion of these cytokines was further increased by the addition of lipopolysaccharide (LPS). BGG also induced both nitric oxide and inducible nitric oxide synthase (iNOS). Treatment with an inhibitor of nuclear factor-kappa B (NF-kappaB) reduced the induction of IL-1, IL-6, and iNOS in a concentration-dependent manner. Expressions of TLR2, TLR4, and TLR6 were increased by BGG treatment, and addition of LPS induced further induction of TLR4 and TLR6. Our result indicates that BGG induces macrophage secretion of inflammatory cytokines, which can be potentiated by the presence of LPS, likely by binding to dectin-1 and TLR-2/6 receptors, which activate NF-kappaB and prompt the secretion of cytokines.

  9. Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action.

    PubMed

    Miller, Susanne C; Huang, Ruili; Sakamuru, Srilatha; Shukla, Sunita J; Attene-Ramos, Matias S; Shinn, Paul; Van Leer, Danielle; Leister, William; Austin, Christopher P; Xia, Menghang

    2010-05-01

    Nuclear factor-kappa B (NF-kappaB) is a transcription factor that plays a critical role across many cellular processes including embryonic and neuronal development, cell proliferation, apoptosis, and immune responses to infection and inflammation. Dysregulation of NF-kappaB signaling is associated with inflammatory diseases and certain cancers. Constitutive activation of NF-kappaB signaling has been found in some types of tumors including breast, colon, prostate, skin and lymphoid, hence therapeutic blockade of NF-kappaB signaling in cancer cells provides an attractive strategy for the development of anticancer drugs. To identify small molecule inhibitors of NF-kappaB signaling, we screened approximately 2800 clinically approved drugs and bioactive compounds from the NIH Chemical Genomics Center Pharmaceutical Collection (NPC) in a NF-kappaB mediated beta-lactamase reporter gene assay. Each compound was tested at fifteen different concentrations in a quantitative high throughput screening format. We identified nineteen drugs that inhibited NF-kappaB signaling, with potencies as low as 20 nM. Many of these drugs, including emetine, fluorosalan, sunitinib malate, bithionol, narasin, tribromsalan, and lestaurtinib, inhibited NF-kappaB signaling via inhibition of IkappaBalpha phosphorylation. Others, such as ectinascidin 743, chromomycin A3 and bortezomib utilized other mechanisms. Furthermore, many of these drugs induced caspase 3/7 activity and had an inhibitory effect on cervical cancer cell growth. Our results indicate that many currently approved pharmaceuticals have previously unappreciated effects on NF-kappaB signaling, which may contribute to anticancer therapeutic effects. Comprehensive profiling of approved drugs provides insight into their molecular mechanisms, thus providing a basis for drug repurposing. Published by Elsevier Inc.

  10. Inequalities between Kappa and Kappa-Like Statistics for "k x k" Tables

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2010-01-01

    The paper presents inequalities between four descriptive statistics that can be expressed in the form [P-E(P)]/[1-E(P)], where P is the observed proportion of agreement of a "kappa x kappa" table with identical categories, and E(P) is a function of the marginal probabilities. Scott's "pi" is an upper bound of Goodman and Kruskal's "lambda" and a…

  11. Dietary turmeric modulates DMBA-induced p21{sup ras}, MAP kinases and AP-1/NF-{kappa}B pathway to alter cellular responses during hamster buccal pouch carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Rachana; Ingle, Arvind; Maru, Girish

    2008-11-01

    The chemopreventive efficacy of turmeric has been established in experimental systems. However, its mechanism(s) of action are not fully elucidated in vivo. The present study investigates the mechanism of turmeric-mediated chemoprevention in 7,12-dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis at 2, 4, 6, 10 and 12 weeks. Dietary turmeric (1%) led to decrease in DMBA-induced tumor burden and multiplicity, and enhanced the latency period in parallel, to its modulatory effects on oncogene products and various cellular responses during HBP tumorigenesis. DMBA-induced expression of ras oncogene product, p21 and downstream target, the mitogen-activated protein kinases were significantly decreased by turmeric duringmore » HBP carcinogenesis. Turmeric also diminished the DMBA-induced mRNA expression of proto-oncogenes (c-jun, c-fos) and NF-{kappa}B, leading to decreased protein levels and in further attenuation of DMBA-induced AP-1/NF-{kappa}B DNA-binding in the buccal pouch nuclear extracts. Besides, buccal pouch of hamsters receiving turmeric diet showed significant alterations in DMBA-induced effects: (a) decrease in cell proliferation (diminished PCNA and Bcl2 expression), (b) enhanced apoptosis (increased expression of Bax, caspase-3 and apoptotic index), (c) decrease in inflammation (levels of Cox-2, the downstream target of AP-1/NF-{kappa}B, and PGE2) and (d) aberrant expression of differentiation markers, the cytokeratins (1, 5, 8, and 18). Together, the protective effects of dietary turmeric converge on augmenting apoptosis of the initiated cells and decreasing cell proliferation in DMBA-treated animals, which in turn, is reflected in decreased tumor burden, multiplicity and enhanced latency period. Some of these biomarkers are likely to be helpful in monitoring clinical trials and evaluating drug effect measurements.« less

  12. Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6.

    PubMed

    Takahashi, Shinichiro; Harigae, Hideo; Ishii, Keiko Kumura; Inomata, Mitsue; Fujiwara, Tohru; Yokoyama, Hisayuki; Ishizawa, Kenichi; Kameoka, Junichi; Licht, Jonathan D; Sasaki, Takeshi; Kaku, Mitsuo

    2005-08-01

    Activating mutations or over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), associated with activation of Ras/MAP kinase and other signaling pathways. In this study, we addressed the role of Flt3 in the activation of nuclear factor-kappa B (NF-kappaB), which is a target molecule of these kinase pathways. In BaF3 cells stably expressing Flt3, a NF-kappaB-responsive reporter was upregulated and its target gene, IL-6, was increased by the involvement of Flt3-ERK/MAPK-NF-kappaB pathway. Furthermore, we found a modest positive correlation (r=0.35, p=0.096) between Flt3 and IL-6 mRNA expression in 24 AML specimens. These results suggest a role of Flt3 over-expression in NF-kappaB pathway.

  13. TAK1 regulates NF-{Kappa}B and AP-1 activation in airway epithelial cells following RSV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Nilay; Liu Tianshuang; Garofalo, Roberto P.

    2011-09-30

    Respiratory syncytial virus (RSV) is the most common cause of epidemic respiratory diseases in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B) and AP-1. In this study, we have investigated the signaling pathway leading to activation of these two transcription factors in response to RSV infection. Our results show that IKK{beta} plays a key role in viral-induced NF-{kappa}B activation, while JNK regulates AP-1-dependent gene transcription, as demonstrated by using kinase inactive proteins and chemical inhibitors of the two kinases.more » Inhibition of TAK1 activation, by overexpression of kinase inactive TAK1 or using cells lacking TAK1 expression, significantly reduced RSV-induced NF-{kappa}B and AP-1 nuclear translocation and DNA-binding activity, as well as NF-{kappa}B-dependent gene expression, identifying TAK1 as an important upstream signaling molecule regulating RSV-induced NF-{kappa}B and AP-1 activation. - Highlights: > IKK{beta} is a major kinase involved in RSV-induced NF-{kappa}B activation. > JNK regulates AP-1-dependent gene transcription in RSV infection. > TAK1 is a critical upstream signaling molecule for both pathways in infected cells.« less

  14. Prevalence of mutations in hepatitis C virus core protein associated with alteration of NF-kappaB activation.

    PubMed

    Mann, Elizabeth A; Stanford, Sandra; Sherman, Kenneth E

    2006-10-01

    The hepatitis C virus (HCV) core protein is a key structural element of the virion but also affects a number of cellular pathways, including nuclear factor kappaB (NF-kappaB) signaling. NF-kappaB is a transcription factor that regulates both anti-apoptotic and pro-inflammatory genes and its activation may contribute to HCV-mediated pathogenesis. Amino acid sequence divergence in core is seen at the genotype level as well as within patient isolates. Recent work has implicated amino acids 9-11 of core in the modulation of NF-kappaB activation. We report that the sequence RKT is highly conserved (93%) at this position across all HCV genotypes, based on sequences collected in the Los Alamos HCV database. Of the 13 types of variants present in the database, the two most prevalent substitutions are RQT and RKP. We further show that core encoding RKP fails to activate NF-kappaB signaling in vitro while NF-kappaB activation by core encoding RQT does not differ from control RKT core. The effect of RKP core is specific to NF-kappaB signaling as activator protein 1 (AP-1) activity is not altered. Further studies are needed to assess potential associations between specific amino acid substitutions at positions 9-11 and liver disease progression and/or response to treatment in individual patients.

  15. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less

  16. Inhibition by antioxidants of nitric oxide synthase expression in murine macrophages: role of nuclear factor kappa B and interferon regulatory factor 1.

    PubMed Central

    Hecker, M.; Preiss, C.; Klemm, P.; Busse, R.

    1996-01-01

    virtually identical inhibitory effect of chrysin, DCI and NAS on the activation of IRF-1 points to a redox-sensitive step in the activation of this transcription factor, which in contrast to NF-kappa B requires de novo protein synthesis. 6. Since iNOS gene expression in human cells and tissues usually requires the combination of several cytokines, antioxidants such as chrysin and NAS which do not interfere with the activation of NF-kappa B may be of therapeutic value for selectively inhibiting the enhanced expression of this enzyme in inflammation. Images Figure 4 Figure 6 Figure 7 PMID:8864559

  17. Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning.

    PubMed

    Kassed, C A; Willing, A E; Garbuzova-Davis, S; Sanberg, P R; Pennypacker, K R

    2002-08-01

    The roles of activated NF-kappaB subunits in the CNS remain to be discerned. Members of this family of transcription factors are essential to diverse physiological processes and can be activated by pathogens, stress, pharmacological agents, and trauma. We are particularly interested in long-term NF-kappaB activation and its involvement in neuroplastic changes in the brain resulting from acquisition of memory as well as injury. Here, we use lesioning by the limbic-specific neurotoxicant trimethyltin (TMT) as a model in which to examine activation of the NF-kappaB p50 subunit before, during, and after neuronal degeneration. Neurons in wild-type mice that survived TMT-induced injury contained activated p50 and did not label with Fluoro-Jade, a histochemical marker of degenerating neurons. Granule cells of the wild-type dentate gyrus subregion, an area particularly vulnerable to TMT-induced degeneration, contained less activated p50 protein than CA regions. We compared the extent of degeneration in wild-type and p50-null mice and found a fivefold increase in death of hippocampal neurons in mice lacking p50. The hippocampus is key to processes of learning and memory, and NF-kappaB has reported involvement in these processes. The enhanced hippocampal degeneration in p50-null mice prompted us to evaluate their basal learning abilities, and we discovered that difficulties in task acquisition were an additional consequence of p50 ablation. These results indicate that absence of p50 negatively modulates learning ability as well as hippocampal responsiveness to brain injury after a chemical-induced lesion.

  18. Curcumin Modulates the Radiosensitivity of Colorectal Cancer Cells by Suppressing Constitutive and Inducible NF-{kappa}B Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandur, Santosh K.; Deorukhkar, Amit; Pandey, Manoj K.

    2009-10-01

    Purpose: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. Methods and Materials: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-{kappa}B (NF-{kappa}B)more » activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. Results: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-{kappa}B activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-{kappa}B activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of {kappa}B alpha, inhibition of inhibitor of {kappa}B kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-{kappa}B-regulated gene products (Bcl-2, Bcl-x{sub L}, inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). Conclusions: Our results suggest that transient inducible NF-{kappa}B activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.« less

  19. Pim-2 activates API-5 to inhibit the apoptosis of hepatocellular carcinoma cells through NF-kappaB pathway.

    PubMed

    Ren, Ke; Zhang, Wei; Shi, Yujun; Gong, Jianping

    2010-06-01

    Pim-2 is proved to be relevant to the tumorigenesis of hepatocellular carcinoma (HCC), but the mechanism is unclear. We studied the relationship among Pim-2, NF-kappaB and API-5. In our experiment, expression level of the three factors and phosphorylation level of API-5, as well as NF-kappaB activity, were detected in HCC tissues and the nontumorous controls. Then Pim-2 gene was transfected into nontumorous liver cells L02, and Pim-2 SiRNA was transfected into hepatoblastoma cell line HepG2. Parthenolide was added as NF-kappaB inhibitor. The same detections as above were repeated in the cells, along with the apoptosis analysis. We found the levels of Pim-2, NF-kappaB and API-5, as well as NF-kappaB activity, were significantly higher in HCC tissues. Pim-2 level was increased in L02 cells after the transfection of Pim-2 gene, but decreased in HepG2 cells after the transfection of Pim-2 SiRNA. The levels of NF-kappaB and API-5, as well as NF-kappaB activity and API-5 phosphorylation level, were in accordance with Pim-2 level, but could be reversed by Parthenolide. Cell apoptosis rates were negatively correlated with API-5 phosphorylation level. Therefore, we infer that Pim-2 could activate API-5 to inhibit the apoptosis of liver cells, and NF-kappaB is the key regulator.

  20. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.

    PubMed

    McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W

    2000-01-01

    The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.

  1. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.

    PubMed

    Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia; Buck, Isabelle; Teiten, Marie-Hélène; Daubeuf, Sandrine; Eifes, Serge; Dicato, Mario; Aggarwal, Bharat B; Visvikis, Athanase; Diederich, Marc

    2009-02-01

    Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.

  2. Selenium reduces the proapoptotic signaling associated to NF-kappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolinate in rat corpus striatum.

    PubMed

    Santamaría, Abel; Vázquez-Román, Beatriz; La Cruz, Verónica Pérez-De; González-Cortés, Carolina; Trejo-Solís, Ma Cristina; Galván-Arzate, Sonia; Jara-Prado, Aurelio; Guevara-Fonseca, Jorge; Ali, Syed F

    2005-12-15

    Quinolinate (QUIN) neurotoxicity has been attributed to degenerative events in nerve tissue produced by sustained activation of N-methyl-D-aspartate receptor (NMDAr) and oxidative stress. We have recently described the protective effects that selenium (Se), an antioxidant, produces on different markers of QUIN-induced neurotoxicity (Santamaría et al., 2003, J Neurochem 86:479-488.). However, the mechanisms by which Se exerts its protective actions remain unclear. Since some of these events are thought to be related with inhibition of deadly molecular cascades through the activation of antioxidant selenoproteins, in this study we investigated the effects of Se on QUIN-induced cell damage elicited by the nuclear factor kappaB (NF-kappaB) pathway, as well as the time-course response of striatal glutathione peroxidase (GPx) activity. Se (sodium selenite, 0.625 mg/kg/day, i.p.) was administered to rats for 5 days, and 120 min after the last administration, animals received a single striatal injection of QUIN (240 nmol/mul). Twenty-four hours later, their striata were tested for the expression of IkappaB-alpha (the NF-kappaB cytosolic binding protein), the immunohistochemical expression of NF-kappaB (evidenced as nuclear expression of P65), caspase-3-like activation, and DNA fragmentation. Additional groups were killed at 2, 6, and 24 h for measurement of GPx activity. Se reduced the QUIN-induced decrease in IkappaB-alpha expression, evidencing a reduction in its cytosolic degradation. Se also prevented the QUIN-induced increase in P65-immunoreactive cells, suggesting a reduction of NF-kappaB nuclear translocation. Caspase-3-like activation and DNA fragmentation produced by QUIN were also inhibited by Se. Striatal GPx activity was stimulated by Se at 2 and 6 h, but not at 24 h postlesion. Altogether, these data suggest that the protective effects exerted by Se on QUIN-induced neurotoxicity are partially mediated by the inhibition of proapoptotic events underlying IkappaB

  3. Effects of Cot expression on the nuclear translocation of NF-kappaB in RBL-2H3 cells.

    PubMed

    Chikamatsu, Satomi; Furuno, Tadahide; Kinoshita, Yosuke; Inoh, Yoshikazu; Hirashima, Naohide; Teshima, Reiko; Nakanishi, Mamoru

    2007-03-01

    Cot is a serine/threonine protein kinase and is classified as a mitogen-activated protein (MAP) kinase kinase kinase. Overexpression of this protein has been shown to activate the extracellular signal-regulated kinase, the c-Jun N-terminal kinase, and the p38 MAP kinase pathways and to stimulate NF-AT and NF-kappaB-dependent transcription. Here we have shown that Cot kinase activity is intimately involved in the high affinity receptor for IgE (FcvarepsilonRI)-mediated nuclear translocation of NF-kappaB1 independent of NF-kappaB-inducing kinase (NIK) in rat basophilic leukemia (RBL-2H3) cells. A transfected green fluorescent protein-tagged NF-kappaB1 (GFP-NF-kappaB1) resided in the cytoplasm in RBL-2H3 cells and it remained in the cytoplasm even when Cot tagged with red fluorescent protein (Cot-RFP) was co-expressed. Western blotting analysis showed that IkappaB kinases (IKKs) were expressed in RBL-2H3 cells but NIK was not. GFP-NF-kappaB1 translocated from the cytoplasm to the nucleus after the aggregation of FcvarepsilonRI in Cot-transfected cells but not in kinase-deficient Cot-transfected cells. This finding gives a new insight into the role of Cot in the FcvarepsilonRI-mediated NF-kappaB activation in mast cells.

  4. Evaluation of NF-kappaB Signaling in T Cells

    DTIC Science & Technology

    2009-01-01

    ranging from myelomas (46) to breast cancer (47) to esophageal cancer (48), to name a few. NF-κB activation is also implicated in several leukemias and...nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer . J Clin Invest 100:2952-2960. 48. Abdel-Latif, M. M., J. O’Riordan, H. J...42), cyclin D1 (43), and cyclin E (44, 45). Furthermore, NF-κB activity has been linked to the proliferation of various types of cancer cells

  5. An essential complementary role of NF-kappaB pathway to microbicidal oxidants in Drosophila gut immunity.

    PubMed

    Ryu, Ji-Hwan; Ha, Eun-Mi; Oh, Chun-Taek; Seol, Jae-Hong; Brey, Paul T; Jin, Ingnyol; Lee, Dong Gun; Kim, Jaesang; Lee, Daekee; Lee, Won-Jae

    2006-08-09

    In the Drosophila gut, reactive oxygen species (ROS)-dependent immunity is critical to host survival. This is in contrast to the NF-kappaB pathway whose physiological function in the microbe-laden epithelia has yet to be convincingly demonstrated despite playing a critical role during systemic infections. We used a novel in vivo approach to reveal the physiological role of gut NF-kappaB/antimicrobial peptide (AMP) system, which has been 'masked' in the presence of the dominant intestinal ROS-dependent immunity. When fed with ROS-resistant microbes, NF-kappaB pathway mutant flies, but not wild-type flies, become highly susceptible to gut infection. This high lethality can be significantly reduced by either re-introducing Relish expression to Relish mutants or by constitutively expressing a single AMP to the NF-kappaB pathway mutants in the intestine. These results imply that the local 'NF-kappaB/AMP' system acts as an essential 'fail-safe' system, complementary to the ROS-dependent gut immunity, during gut infection with ROS-resistant pathogens. This system provides the Drosophila gut immunity the versatility necessary to manage sporadic invasion of virulent pathogens that somehow counteract or evade the ROS-dependent immunity.

  6. Incensole acetate, a novel anti-inflammatory compound isolated from Boswellia resin, inhibits nuclear factor-kappa B activation.

    PubMed

    Moussaieff, Arieh; Shohami, Esther; Kashman, Yoel; Fride, Ester; Schmitz, M Lienhard; Renner, Florian; Fiebich, Bernd L; Munoz, Eduardo; Ben-Neriah, Yinon; Mechoulam, Raphael

    2007-12-01

    Boswellia resin is a major anti-inflammatory agent in herbal medical tradition, as well as a common food supplement. Its anti-inflammatory activity has been attributed to boswellic acid and its derivatives. Here, we re-examined the anti-inflammatory effect of the resin, using inhibitor of nuclear factor-kappaB alpha (IkappaB alpha) degradation in tumor necrosis factor (TNF) alpha-stimulated HeLa cells for a bioassay-guided fractionation. We thus isolated two novel nuclear factor-kappaB (NF-kappaB) inhibitors from the resin, their structures elucidated as incensole acetate (IA) and its nonacetylated form, incensole (IN). IA inhibited TAK/TAB-mediated IkappaB kinase (IKK) activation loop phosphorylation, resulting in the inhibition of cytokine and lipopolysaccharide-mediated NF-kappaB activation. It had no effect on IKK activity in vitro, and it did not suppress IkappaB alpha phosphorylation in costimulated T-cells, indicating that the kinase inhibition is neither direct nor does it affect all NF-kappaB activation pathways. The inhibitory effect seems specific; IA did not interfere with TNFalpha-induced activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase. IA treatment had a robust anti-inflammatory effect in a mouse inflamed paw model. Cembrenoid diterpenoids, specifically IA and its derivatives, may thus constitute a potential novel group of NF-kappaB inhibitors, originating from an ancient anti-inflammatory herbal remedy.

  7. Reactive oxygen species mediate liver injury through parenchymal nuclear factor-kappaB inactivation in prolonged ischemia/reperfusion.

    PubMed

    Llacuna, Laura; Marí, Montserrat; Lluis, Josep M; García-Ruiz, Carmen; Fernández-Checa, José C; Morales, Albert

    2009-05-01

    Nuclear factor (NF)-kappaB participates in ischemia/reperfusion (I/R) hepatic signaling, stimulating both protective mechanisms and the generation of inflammatory cytokines. After analyzing NF-kappaB activation during increasing times of ischemia in murine I/R, we observed that the nuclear translocation of p65 paralleled Src and IkappaB tyrosine phosphorylation, which peaked after 60 minutes of ischemia. After extended ischemic periods (90 to 120 minutes) however, nuclear p65 levels were inversely correlated with the progressive induction of oxidative stress. Despite this profile of NF-kappaB activation, inflammatory genes, such as tumor necrosis factor (TNF) and interleukin (IL)-1beta, predominantly induced by Kupffer cells, increased throughout time during ischemia (30 to 120 minutes), whereas protective NF-kappaB-dependent genes, such as manganese superoxide dismutase (Mn-SOD), expressed in parenchymal cells, decreased. Consistent with this behavior, gadolinium chloride pretreatment abolished TNF/IL-1beta up-regulation during ischemia without affecting Mn-SOD levels. Interestingly, specific glutathione (GSH) up-regulation in hepatocytes by S-adenosylmethionine increased Mn-SOD expression and protected against I/R-mediated liver injury despite TNF/IL-1beta induction. Similar protection was achieved by administration of the SOD mimetic MnTBAP. In contrast, indiscriminate hepatic GSH depletion by buthionine-sulfoximine before I/R potentiated oxidative stress and decreased both nuclear p65 and Mn-SOD expression levels, increasing TNF/IL-1beta up-regulation and I/R-induced liver damage. Thus, the divergent role of NF-kappaB activation in selective liver cell populations underlies the dichotomy of NF-kappaB in hepatic I/R injury, illustrating the relevance of specifically maintaining NF-kappaB activation in parenchymal cells.

  8. ST2 suppresses IL-6 production via the inhibition of I{kappa}B degradation induced by the LPS signal in THP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takezako, Naoki; Hayakawa, Morisada; Hayakawa, Hiroko

    2006-03-10

    LPS induces the production of inflammatory cytokines via the stimulation of Toll-like receptors. In this study, we demonstrated that a soluble secreted form of the ST2 gene product (ST2), a member of the interleukin-1 receptor family, suppressed the production of IL-6 in an LPS-stimulated human monocytic leukemia cell line, THP-1. Immunofluorescence confocal microscopy revealed the binding of ST2 to the surface of the THP-1 cells, in which ST2 led to decreased binding of nuclear factor-{kappa}B to the IL-6 promoter. Furthermore, the degradation of I{kappa}B in the cytoplasm after LPS stimulation was reduced by pretreatment with ST2. These results demonstrated thatmore » ST2 negatively regulates LPS-induced IL-6 production via the inhibition of I{kappa}B degradation in THP-1 cells.« less

  9. NIK and Cot cooperate to trigger NF-kappaB p65 phosphorylation.

    PubMed

    Wittwer, Tobias; Schmitz, M Lienhard

    2008-06-27

    The serine/threonine kinase Cot triggers NF-kappaB-dependent transactivation and activation of various MAPKinases. Here we identify Cot as a novel p65 interacting protein kinase. Cot expression induces p65 phosphorylation at serines 536 and 468 in dependence from its kinase function. Accordingly, shRNA-mediated knockdown of Cot expression interferes with TNF-induced NF-kappaB-dependent gene expression. Also the C-terminally truncated, oncogenic form of Cot is able to trigger p65 phosphorylation. In vitro kinase assays and dominant negative mutants revealed that NIK functions downstream of Cot to mediate p65 phosphorylation.

  10. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2.

    PubMed Central

    Duckett, C S; Gedrich, R W; Gilfillan, M C; Thompson, C B

    1997-01-01

    CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell. PMID:9032281

  11. Inactivation of IkappaBbeta by the tax protein of human T-cell leukemia virus type 1: a potential mechanism for constitutive induction of NF-kappaB.

    PubMed

    McKinsey, T A; Brockman, J A; Scherer, D C; Al-Murrani, S W; Green, P L; Ballard, D W

    1996-05-01

    In resting T lymphocytes, the transcription factor NF-kappaB is sequestered in the cytoplasm via interactions with members of the I kappa B family of inhibitors, including IkappaBalpha and IkappaBbeta. During normal T-cell activation, IkappaBalpha is rapidly phosphorylated, ubiquitinated, and degraded by the 26S proteasome, thus permitting the release of functional NF-kappaB. In contrast to its transient pattern of nuclear induction during an immune response, NF-kappaB is constitutively activated in cells expressing the Tax transforming protein of human T-cell leukemia virus type I (HTLV-1). Recent studies indicate that HTLV-1 Tax targets IkappaBalpha to the ubiquitin-proteasome pathway. However, it remains unclear how this viral protein induces a persistent rather than transient NF-kappaB response. In this report, we provide evidence that in addition to acting on IkappaBalpha, Tax stimulates the turnover Of IkappaBbeta via a related targeting mechanism. Like IkappaBalpha, Tax-mediated breakdown of IkappaBbeta in transfected T lymphocytes is blocked either by cell-permeable proteasome inhibitors or by mutation Of IkappaBbeta at two serine residues present within its N-terminal region. Despite the dual specificity of HTLV-1 Tax for IkappaBalpha and IkappaBbeta at the protein level, Tax selectively stimulates NF-kappaB-directed transcription of the IkappaBalpha gene. Consequently, IkappaBbeta protein expression is chronically downregulated in HTLV-1-infected T lymphocytes. These findings with IkappaBbeta provide a potential mechanism for the constitutive activation of NF-kappaB in Tax-expressing cells.

  12. Inhibition of GSK3 differentially modulates NF-{kappa}B, CREB, AP-1 and {beta}-catenin signaling in hepatocytes, but fails to promote TNF-{alpha}-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetschel, Frank; Kern, Claudia; Lang, Simona

    2008-04-01

    Glycogen synthase kinase-3 (GSK-3) is known to modulate cell survival and apoptosis through multiple intracellular signaling pathways. However, its hepatoprotective function and its role in activation of NF-{kappa}B and anti-apoptotic factors are poorly understood and remain controversial. Here we investigated whether inhibition of GSK-3 could induce apoptosis in the presence of TNF-{alpha} in primary mouse hepatocytes. We show that pharmacological inhibition of GSK-3 in primary mouse hepatocytes does not lead to TNF-{alpha}-induced apoptosis despite reduced NF-{kappa}B activity. Enhanced stability of I{kappa}B-{alpha} appears to be responsible for lower levels of nuclear NF-{kappa}B and hence reduced transactivation. Additionally, inhibition of GSK-3 wasmore » accompanied by marked upregulation of {beta}-catenin, AP-1, and CREB transcription factors. Stimulation of canonical Wnt signaling and CREB activity led to elevated levels of anti-apoptotic factors. Hence, survival of primary mouse hepatocytes may be caused by the activation and/or upregulation of other key regulators of liver homeostasis and regeneration. These signaling molecules may compensate for the compromised anti-apoptotic function of NF-{kappa}B and allow survival of hepatocytes in the presence of TNF-{alpha} and GSK-3 inhibition.« less

  13. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Guoping; Liu, Dongxu; Liu, Jing

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likelymore » that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.« less

  14. Corrective recombination of mouse immunoglobulin kappa alleles in Abelson murine leukemia virus-transformed pre-B cells.

    PubMed Central

    Feddersen, R M; Van Ness, B G

    1990-01-01

    Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed. Images PMID:2153918

  15. NF-kappaB signaling blockade by Bay 11-7085 during early cardiac morphogenesis induces alterations of the outflow tract in chicken heart.

    PubMed

    Hernández-Gutierrez, S; García-Peláez, I; Zentella-Dehesa, A; Ramos-Kuri, M; Hernández-Franco, P; Hernández-Sánchez, F; Rojas, E

    2006-07-01

    Nuclear factor kappaB (NF-kappaB) is a pleiotropic transcription factor implicated in the regulation of diverse morphologic cardiac alterations, for which the p50 and p65 subunits form the most prevalent dimeric form in the heart. NF-kappaB is inactivated by proteins of the IkappaB family, which trap it in the cytoplasm. It is not known whether NF-kappaB influences cardiac development. Here we investigated the role of NF-kappaB in regulating transcription in chicken heart morphogenesis. Specifically, we tested whether NF-kappaB activation is required for normal formation of the outflow tract (OFT) during a critical stage of heart development. We designed a reporter vector with kappaB binding sites for Rel family members in the promoter, upstream from the cDNA of Green Fluorescent Protein (GFP). This construct was injected directly into the developing heart of chicken embryos. NF-kappaB activation was subsequently inhibited by administration of the specific pharmacological agent Bay 11-7085. We found that forced NF-kappaB expression was associated with multiple congenital cardiac alterations of the OFT (mainly IVC, DORV and great arteries stenosis). These findings indicate that blockade of NF-kappaB induces apoptosis and is an important factor in the development of OFT during cardiogenesis. However, it remains unknown which members of the Rel family are relevant in this process.

  16. Evidence for activation of nuclear factor kappaB in obstructive sleep apnea.

    PubMed

    Yamauchi, Motoo; Tamaki, Shinji; Tomoda, Koichi; Yoshikawa, Masanori; Fukuoka, Atsuhiko; Makinodan, Kiyoshi; Koyama, Noriko; Suzuki, Takahiro; Kimura, Hiroshi

    2006-12-01

    Obstructive sleep apnea (OSA) is a risk factor for atherosclerosis, and atherosclerosis evolves from activation of the inflammatory cascade. We propose that activation of the nuclear factor kappaB (NF-kappaB), a key transcription factor in the inflammatory cascade, occurs in OSA. Nine age-matched, nonsmoking, and non-hypertensive men with OSA symptoms and seven similar healthy subjects were recruited for standard polysomnography followed by the collection of blood samples for monocyte nuclear p65 concentrations (OSA and healthy groups). In the OSA group, p65 and of monocyte production of tumor necrosis factor alpha (TNF-alpha) were measured at the same time and after the next night of continuous positive airway pressure (CPAP). p65 Concentrations in the OSA group were significantly higher than in the control group [median, 0.037 ng/microl (interquartile range, 0.034 to 0.051) vs 0.019 ng/microl (interquartile range, 0.013 to 0.032); p = 0.008], and in the OSA group were significantly correlated with apnea-hypopnea index and time spent below an oxygen saturation of 90% (r = 0.77 and 0.88, respectively) after adjustment for age and BMI. One night of CPAP resulted in a reduction in p65 [to 0.020 ng/mul (interquartile range, 0.010 to 0.036), p = 0.04] and levels of TNF-alpha production in cultured monocytes [16.26 (interquartile range, 7.75 to 24.85) to 7.59 ng/ml (interquartile range, 5.19 to 12.95), p = 0.01]. NF-kappaB activation occurs with sleep-disordered breathing. Such activation of NF-kappaB may contribute to the pathogenesis of atherosclerosis in OSA patients.

  17. NBBA, a synthetic small molecule, inhibits TNF-{alpha}-induced angiogenesis by suppressing the NF-{kappa}B signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam Hee; Jung, Hye Jin; Shibasaki, Futoshi

    2010-01-15

    Nuclear factor-{kappa}B (NF-{kappa}B) is a crucial transcription factor that contributes to cancer development by regulating a number of genes involved in angiogenesis and tumorigenesis. Here, we describe (Z)-N-(3-(7-nitro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)benzylidene) propan-2-amine oxide (NBBA) as a new anti-angiogenic small molecule that targets NF-{kappa}B activity. NBBA showed stronger growth inhibition on human umbilical vein endothelial cells (HUVECs) than on the cancer cell lines we tested. Moreover, NBBA inhibited tumor necrosis factor-alpha (TNF-{alpha})-induced tube formation and invasion of HUVECs. In addition, NBBA suppressed the neovascularization of chorioallantonic membrane from growing chick embryos in vivo. To address the mode of action of the compound, the effectmore » of NBBA on TNF-{alpha}-induced NF-{kappa}B transcription activity was investigated. NBBA suppressed TNF-{alpha}-induced c-Jun N-terminal kinase phosphorylation, which resulted in suppression of transcription of NF-{kappa}B and its target genes, including interleukin-8, interleukin-1{alpha}, and epidermal growth factor. Collectively, these results demonstrated that NBBA is a new anti-angiogenic small molecule that targets the NF-{kappa}B signaling pathway.« less

  18. Tumor necrosis factor-{alpha} induces MMP-9 expression via p42/p44 MAPK, JNK, and nuclear factor-{kappa}B in A549 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.-C.; Tseng, Hsiao-Wei; Hsieh, Hsi-Lung

    2008-06-15

    Matrix metalloproteinases (MMPs), in particular MMP-9, have been shown to be induced by cytokines including tumor necrosis factor-{alpha} (TNF-{alpha}) and contributes to airway inflammation. However, the mechanisms underlying MMP-9 expression induced by TNF-{alpha} in human A549 cells remain unclear. Here, we showed that TNF-{alpha} induced production of MMP-9 protein and mRNA is determined by zymographic, Western blotting, RT-PCR and ELISA assay, which were attenuated by inhibitors of MEK1/2 (U0126), JNK (SP600125), and NF-{kappa}B (helenalin), and transfection with dominant negative mutants of ERK2 ({delta}ERK) and JNK ({delta}JNK), and siRNAs for MEK1, p42 and JNK2. TNF-{alpha}-stimulated phosphorylation of p42/p44 MAPK and JNKmore » were attenuated by pretreatment with the inhibitors U0126 and SP600125 or transfection with dominant negative mutants of {delta}ERK and {delta}JNK. Furthermore, the involvement of NF-{kappa}B in TNF-{alpha}-induced MMP-9 production was consistent with that TNF-{alpha}-stimulated degradation of I{kappa}B-{alpha} and translocation of NF-{kappa}B into the nucleus which were blocked by helenalin, but not by U0126 and SP600125, revealed by immunofluorescence staining. The regulation of MMP-9 gene transcription by MAPKs and NF-{kappa}B was further confirmed by gene luciferase activity assay. MMP-9 promoter activity was enhanced by TNF-{alpha} in A549 cells transfected with wild-type MMP-9-Luc, which was inhibited by helenalin, U0126, or SP600125. In contrast, TNF-{alpha}-stimulated MMP-9 luciferase activity was totally lost in cells transfected with mutant-NF-{kappa}B MMP-9-luc. Moreover, pretreatment with actinomycin D and cycloheximide attenuated TNF-{alpha}-induced MMP-9 expression. These results suggest that in A549 cells, phosphorylation of p42/p44 MAPK, JNK, and transactivation of NF-{kappa}B are essential for TNF-{alpha}-induced MMP-9 gene expression.« less

  19. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xia; Center for New Drugs Evaluation, Shandong University, Jinan 250012; Qu, Xian-Jun

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at dosesmore » of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.« less

  20. CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel.

    PubMed

    Dutta, Jui; Fan, Gaofeng; Gélinas, Céline

    2008-11-01

    The Rel/NF-kappaB transcription factors are constitutively activated in many human cancers. The Rel proteins in this family are implicated in leukemia/lymphomagenesis, but the mechanism is not completely understood. Previous studies showed that the transcription activation domains (TADs) of the viral oncoprotein v-Rel and its cellular Rel/NF-kappaB homologues c-Rel and RelA are key determinants of their different transforming activities in primary lymphocytes. Substitution of a Rel TAD for that of RelA conferred a strong transforming phenotype upon RelA, which otherwise failed to transform cells. To gain insights into protein interactions that influence cell transformation by the Rel TADs, we identified factors that interact with the TAD of v-Rel, the most oncogenic member of the Rel/NF-kappaB family. We report that the coactivator for transcription factors AP-1 and estrogen receptors, CAPERalpha, interacts with the v-Rel TAD and potently synergizes v-Rel-mediated transactivation. Importantly, coexpression of CAPERalpha markedly reduced and delayed v-Rel's transforming activity in primary lymphocytes, whereas a dominant-negative mutant enhanced the kinetics of v-Rel-mediated transformation. Furthermore, small interfering RNA-mediated knockdown of CAPERalpha in v-Rel-transformed lymphocytes significantly enhanced colony formation in soft agar. Since the potency of Rel-mediated transactivation is an important determinant of lymphocyte transformation, as is Rel's ability to induce transcriptional repression, these data suggest that CAPERalpha's interaction with the Rel TAD could modulate Rel/NF-kappaB's transforming activity by facilitating expression or dampening repression of specific gene subsets important for oncogenesis. Overall, this study identifies CAPERalpha as a new transcriptional coregulator for v-Rel and reveals an important role in modulating Rel's oncogenic activity.

  1. Functional characterization of bovine TIRAP and MyD88 in mediating bacterial lipopolysaccharide-induced endothelial NF-kappaB activation and apoptosis.

    PubMed

    Cates, Elizabeth A; Connor, Erin E; Mosser, David M; Bannerman, Douglas D

    2009-11-01

    Mastitis is a prevalent disease in dairy cows. Gram-negative bacteria, which express the pro-inflammatory molecule lipopolysaccharide (LPS), are responsible for the majority of acute clinical cases of mastitis. Previous studies have identified differential susceptibility of human and bovine endothelial cells (EC) to the pro-inflammatory and injury-inducing effects of LPS. The Toll-like receptor (TLR)-4 signaling pathway, which is activated by LPS, has been well studied in humans, but not in ruminants. Human myeloid differentiation-factor 88 (MyD88) and TIR-domain containing adaptor protein (TIRAP) are critical proteins in the LPS-induced NF-kappaB and apoptotic signaling pathways. To assess the role of the bovine orthologs of these proteins in bovine TLR-4 signaling, dominant-negative constructs were expressed in bovine EC, and LPS-induced NF-kappaB activation and apoptosis evaluated. The results from this study indicate that bovine MyD88 and TIRAP play functional roles in transducing LPS signaling from TLR-4 to downstream effector molecules involved in NF-kappaB activation, and that TIRAP promotes apoptotic signaling.

  2. Effects of age and sedentary lifestyle on skeletal muscle NF-kappaB signaling in men.

    PubMed

    Buford, Thomas W; Cooke, Matthew B; Manini, Todd M; Leeuwenburgh, Christiaan; Willoughby, Darryn S

    2010-05-01

    Nuclear factor kappa B (NF-kappaB) is a critical signaling molecule of disuse-induced skeletal muscle atrophy. However, few studies have carefully investigated whether similar pathways are modulated with physical activity and age. The present study examined lean mass, maximal force production, and skeletal muscle NF-kappaB signaling in 41 men categorized as sedentary (OS, N = 13, 63.85 +/- 6.59 year), physically active (OA, N = 14, 60.71 +/- 5.54 year), or young and sedentary (YS, N = 14, 21.35 +/- 3.84 year). Muscle tissue from the vastus lateralis was assayed for messenger RNA (mRNA) expression of the beta subunit of IkB kinase (IKKbeta), cytosolic protein content of phosphorylated inhibitor of kappa B alpha (pIKBalpha), and nuclear content of NF-kappaB subunits p50 and p65. When compared with YS, OS demonstrated age-related muscle atrophy and reduced isokinetic knee extension torque. Physical activity in older individuals preserved maximal isokinetic knee extension torque. OS muscle contained 50% more pIKBalpha than OA and 61% more pIKBalpha than YS. Furthermore, nuclear p65 was significantly elevated in OS compared with YS. OS muscle did not differ from either of the other two groups for nuclear p50 or for mRNA expression of IKKbeta. These results indicate that skeletal muscle content of nuclear-bound p65 is elevated by age in humans. The elevation in nuclear-bound p65 appears to be at least partially due to significant increases in pIKBalpha. A sedentary lifestyle appears to play some role in increased IKBalpha; however, further research is needed to identify downstream effects of this increase.

  3. Targeting Nuclear Factor kappa B for the Treatment of Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    J Immunol 163:5617-23, 1999 3. Mendonca M, Hardacre, M, Datzman, N, Comerford, K, Chin-Sinex, H, Sweeney C.: Inhibition of constitutive NFkappaB ...nuclear factor kappaB activation in 20:7342-51. PC3 cells by genistein is mediated via Akt signaling pathway. Clin 9. Huang S, DeGuzman A, Bucana CD

  4. Thalidomide suppresses NF-kappa B activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester.

    PubMed

    Majumdar, Sekhar; Lamothe, Betty; Aggarwal, Bharat B

    2002-03-15

    Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.

  5. Insulin-like growth factor-binding protein-5 (IGFBP-5) inhibits TNF-{alpha}-induced NF-{kappa}B activity by binding to TNFR1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jae Ryoung; Huh, Jae Ho; Lee, Yoonna

    2011-02-25

    Research highlights: {yields} Binding assays demonstrated that secreted- and cellular-IGFBP-5 interacted with TNFR1. {yields} The interaction between IGFBP-5 and TNFR1 was inhibited by TNF-{alpha} and was blocked TNF-{alpha}-activated NF-{kappa}B activity. {yields} IGFBP-5 interacted with TNFR1 through its N- and L-domains but the binding of L-domain to TNFR1 was blocked by TNF-{alpha}. {yields} Competition between the L-domain of IGFBP-5 and TNF-{alpha} blocked TNF-{alpha}-induced NF-{kappa}B activity. {yields} This study suggests that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a competitive TNF-{alpha} inhibitor. -- Abstract: IGFBP-5 is known to be involved in various cell phenomena such as proliferation,more » differentiation, and apoptosis. However, the exact mechanisms by which IGFBP-5 exerts its functions are unclear. In this study, we demonstrate for the first time that IGFBP-5 is a TNFR1-interacting protein. We found that ectopic expression of IGFBP-5 induced TNFR1 gene expression, and that IGFBP-5 interacted with TNFR1 in both an in vivo and an in vitro system. Secreted IGFBP-5 interacted with GST-TNFR1 and this interaction was blocked by TNF-{alpha}, demonstrating that IGFBP-5 might be a TNFR1 ligand. Furthermore, conditioned media containing secreted IGFBP-5 inhibited PMA-induced NF-{kappa}B activity and IL-6 expression in U-937 cells. Coimmunoprecipitation assays of TNFR1 and IGFBP-5 wild-type and truncation mutants revealed that IGFBP-5 interacts with TNFR1 through its N- and L-domains. However, only the interaction between the L-domain of IGFBP-5 and TNFR1 was blocked by TNF-{alpha} in a dose-dependent manner, suggesting that the L-domain of IGFBP-5 can function as a TNFR1 ligand. Competition between the L-domain of IGFBP-5 and TNF-{alpha} resulted in inhibition of TNF-{alpha}-induced NF-{kappa}{Beta} activity. Taken together, our results suggest that the L-domain of IGFBP-5 is a novel TNFR1 ligand that functions as a

  6. Real-time monitoring of inflammation status in 3T3-L1 adipocytes possessing a secretory Gaussia luciferase gene under the control of nuclear factor-kappa B response element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagasaki, Haruka; Yoshimura, Takeshi; Aoki, Naohito, E-mail: n-aoki@bio.mie-u.ac.jp

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Inflammation status in adipocytes can be monitored by the new assay system. Black-Right-Pointing-Pointer Only an aliquot of conditioned medium is required without cell lysis. Black-Right-Pointing-Pointer Inflammation-attenuating compounds can be screened more conveniently. -- Abstract: We have established 3T3-L1 cells possessing a secretory Gaussia luciferase (GLuc) gene under the control of nuclear factor-kappa B (NF-{kappa}B) response element. The 3T3-L1 cells named 3T3-L1-NF-{kappa}B-RE-GLuc could differentiate into adipocyte as comparably as parental 3T3-L1 cells. Inflammatory cytokines such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-1{beta} induced GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes in a concentration- and time-dependent manner. GLuc secretion of 3T3-L1-NF-{kappa}B-RE-GLucmore » adipocytes was also induced when cultured with RAW264.7 macrophages and was dramatically enhanced by lipopolysaccharide (LPS)-activated macrophages. An NF-{kappa}B activation inhibitor BAY-11-7085 and an antioxidant N-acetyl cysteine significantly suppressed GLuc secretion induced by macrophages. Finally, we found that rosemary-derived carnosic acid strongly suppressed GLuc secretion induced by macrophages and on the contrary up-regulated adiponectin secretion. Collectively, by using 3T3-L1-NF-{kappa}B-RE-GLuc adipocytes, inflammation status can be monitored in real time and inflammation-attenuating compounds can be screened more conveniently.« less

  7. The lymphotoxin promoter is stimulated by HTLV-I tax activation of NF-kappa B in human T-cell lines.

    PubMed

    Paul, N L; Millet, I; Ruddle, N H

    1993-07-01

    The HTLV-I transcriptional activator tax was used to gain insight into the mechanism of lymphotoxin (LT; TNF-beta) gene induction. Tax-expressing cell lines produce LT biologic activity. An LT promoter (LT-293) CAT construct that contained an NF-kappa B site was active in the LT-producing C81-66-45 cell line, which contains defective HTLV-I but expresses tax. The observation that a mutated LT-kappa B construct (M1-CAT) was inactive in C81-66-45, confirmed the importance of NF-kappa B in LT gene expression. Tax was transfected into HTLV-I-negative human T-cell lines. Jurkat T cells stably expressing tax contained elevated levels of NF-kappa B that directly bound to the LT-kappa B site. Tax co-transfected with reporter constructs into Jurkat cells maximally activated HTLV-I-LTR-CAT and kappa B-fos-CAT and also activated LT-293 to a lesser extent. In JM T cells, tax induced LT-293 activity by two- to four-fold, though there was no induction of M1-CAT. The increase in LT-293 CAT activity mirrored the increase in LT biologic activity seen under these conditions. These studies, the first to demonstrate induction of LT promoter activity over basal levels, indicate that HTLV-I tax causes low-level activation of both endogenous LT and the LT promoter, at least in part through activation of NF-kappa B.

  8. Modulation of NF-kappaB activation in Theileria annulata-infected cloned cell lines is associated with detection of parasite-dependent IKK signalosomes and disruption of the actin cytoskeleton.

    PubMed

    Schmuckli-Maurer, Jacqueline; Kinnaird, Jane; Pillai, Sreerekha; Hermann, Pascal; McKellar, Sue; Weir, William; Dobbelaere, Dirk; Shiels, Brian

    2010-02-01

    Apicomplexan parasites within the genus Theileria have the ability to induce continuous proliferation and prevent apoptosis of the infected bovine leukocyte. Protection against apoptosis involves constitutive activation of the bovine transcription factor NF-kappaB in a parasite-dependent manner. Activation of NF-kappaB is thought to involve recruitment of IKK signalosomes at the surface of the macroschizont stage of the parasite, and it has been postulated that additional host proteins with adaptor or scaffolding function may be involved in signalosome formation. In this study two clonal cell lines were identified that show marked differences in the level of activated NF-kappaB. Further characterization of these lines demonstrated that elevated levels of activated NF-kappaB correlated with increased resistance to cell death and detection of parasite-associated IKK signalosomes, supporting results of our previous studies. Evidence was also provided for the existence of host- and parasite-dependent NF-kappaB activation pathways that are influenced by the architecture of the actin cytoskeleton. Despite this influence, it appears that the primary event required for formation of the parasite-dependent IKK signalosome is likely to be an interaction between a signalosome component and a parasite-encoded surface ligand.

  9. Influence of deoxynivalenol on NF-kappaB activation and IL-8 secretion in human intestinal Caco-2 cells.

    PubMed

    Van De Walle, Jacqueline; Romier, Béatrice; Larondelle, Yvan; Schneider, Yves-Jacques

    2008-04-01

    Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin in crops in Europe and North America. In human intestinal Caco-2 cells, DON activates the mitogen-activated protein kinases (MAPKs). We hypothesized a link between DON ingestion and intestinal inflammation, and used Caco-2 cells to assess the effects of DON, at plausible intestinal concentrations (250-10,000 ng/ml), on inflammatory mediators acting downstream the MAPKs cascade i.e. activation of nuclear factor-kappaB (NF-kappaB) and interleukin-8 (IL-8) secretion. In addition, Caco-2 cells were co-exposed to pro-inflammatory stimuli in order to mimic an inflamed intestinal epithelium. Dose-dependent increases in NF-kappaB activity and IL-8 secretion were observed, reaching 1.4- and 7.6-fold, respectively using DON at 10 microg/ml. Phosphorylation of inhibitor-kappaB (IkappaB) increased (1.6-fold) at DON levels <0.5 microg/ml. Exposure of Caco-2 cells to pro-inflammatory agents, i.e. 25 ng/ml interleukin-1beta, 100 ng/ml tumor necrosis factor-alpha or 10 microg/ml lipopolysaccharides, activated NF-kappaB and increased IL-8 secretion. Synergistic interactions between these stimuli and DON were observed. These data show that DON induces NF-kappaB activation and IL-8 secretion dose-dependently in Caco-2 cells, and this effect was accentuated upon pro-inflammatory stimulation, suggesting DON exposure could cause or exacerbate intestinal inflammation.

  10. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis.

    PubMed

    Oakley, Fiona; Meso, Muriel; Iredale, John P; Green, Karen; Marek, Carylyn J; Zhou, Xiaoying; May, Michael J; Millward-Sadler, Harry; Wright, Matthew C; Mann, Derek A

    2005-01-01

    Resolution of liver fibrosis is associated with clearance of hepatic myofibroblasts by apoptosis; development of strategies that promote this process in a selective way is therefore important. The aim of this study was to determine whether the inhibitor of kappaB kinase suppressor sulfasalazine stimulates hepatic myofibroblast apoptosis and recovery from fibrosis. Hepatic myofibroblasts were generated by culture activation of rat and human hepatic stellate cells. Fibrosis was established in rat livers by chronic injury with carbon tetrachloride followed by recovery with or without sulfasalazine (150 mg/kg) treatment. Treatment of hepatic stellate cells with sulfasalazine (0.5-2.0 mmol/L) induced apoptosis of activated rat and human hepatic stellate cells. A single in vivo administration of sulfasalazine promoted accelerated recovery from fibrosis as assessed by improved fibrosis score, selective clearance of smooth muscle alpha-actin-positive myofibroblasts, reduced hepatic procollagen I and tissue inhibitor of metalloproteinase 1 messenger RNA expression, and increased matrix metalloproteinase 2 activity. Mechanistic studies showed that sulfasalazine selectively blocks nuclear factor-kappaB-dependent gene transcription, inhibits hepatic stellate cell expression of Gadd45beta, stimulates phosphorylation of Jun N-terminal kinase 2, and promotes apoptosis by a mechanism that is prevented by the Jun N-terminal kinase inhibitor SP600125. As further evidence for a survival role for the inhibitor of kappaB kinase/nuclear factor-kappaB pathway in activated hepatic stellate cells, a highly selective cell-permeable peptide inhibitor of kappaB kinase activation also stimulated hepatic stellate cell apoptosis via a Jun N-terminal kinase-dependent mechanism. Inhibition of the inhibitor of kappaB kinase/nuclear factor-kappaB pathway is sufficient to increase the rate at which activated hepatic stellate cells undergo apoptosis both in vitro and in vivo, and drugs that

  11. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation.

    PubMed

    Kanzawa, Noriyuki; Nishigaki, Kazuo; Hayashi, Takaya; Ishii, Yuichi; Furukawa, Souichi; Niiro, Ayako; Yasui, Fumihiko; Kohara, Michinori; Morita, Kouichi; Matsushima, Kouji; Le, Mai Quynh; Masuda, Takao; Kannagi, Mari

    2006-12-22

    Severe acute respiratory syndrome (SARS) is characterized by rapidly progressing respiratory failure resembling acute/adult respiratory distress syndrome (ARDS) associated with uncontrolled inflammatory responses. Here, we demonstrated that, among five accessory proteins of SARS coronavirus (SARS-CoV) tested, 3a/X1 and 7a/X4 were capable of activating nuclear factor kappa B (NF-kappaB) and c-Jun N-terminal kinase (JNK), and significantly enhanced interleukin 8 (IL-8) promoter activity. Furthermore, 3a/X1 and 7a/X4 expression in A549 cells enhanced production of inflammatory chemokines that were known to be up-regulated in SARS-CoV infection. Our results suggest potential involvement of 3a/X1 and 7a/X4 proteins in the pathological inflammatory responses in SARS.

  12. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression.

    PubMed

    Huerta-Yepez, Sara; Vega, Mario; Jazirehi, Ali; Garban, Hermes; Hongo, Fumiya; Cheng, Genhong; Bonavida, Benjamin

    2004-06-24

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to be selective in the induction of apoptosis in cancer cells with minimal toxicity to normal tissues and this prompted its potential therapeutic application in cancer. However, not all cancers are sensitive to TRAIL-mediated apoptosis and, therefore, TRAIL-resistant cancer cells must be sensitized first to become sensitive to TRAIL. Treatment of prostate cancer (CaP) cell lines (DU145, PC-3, CL-1, and LNCaP) with nitric oxide donors (e.g. (Z)-1-[2-(2-aminoethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1, 2-diolate (DETANONOate)) sensitized CaP cells to TRAIL-induced apoptosis and synergy was achieved. The mechanism by which DETANONOate mediated the sensitization was examined. DETANONOate inhibited the constitutive NF-kappa B activity as assessed by EMSA. Also, p50 was S-nitrosylated by DETANONOate resulting in inhibition of NF-kappa B. Inhibition of NF-kappa B activity by the chemical inhibitor Bay 11-7085, like DETANONOate, sensitized CaP to TRAIL apoptosis. In addition, DETANONOate downregulated the expression of Bcl-2 related gene (Bcl-(xL)) which is under the transcriptional regulation of NF-kappa B. The regulation of NF-kappa B and Bcl-(xL) by DETANONOate was corroborated by the use of Bcl-(xL) and Bcl-x kappa B reporter systems. DETANONOate inhibited luciferase activity in the wild type and had no effect on the mutant cells. Inhibition of NF-kappa B resulted in downregulation of Bcl-(xL) expression and sensitized CaP to TRAIL-induced apoptosis. The role of Bcl-(xL) in the regulation of TRAIL apoptosis was corroborated by inhibiting Bcl-(xL) function by the chemical inhibitor 2-methoxyantimycin A(3) and this resulted in sensitization of the cells to TRAIL apoptosis. Signaling by DETANONOate and TRAIL for apoptosis was examined. DETANONOate altered the mitochondria by inducing membrane depolarization and releasing modest amounts of cytochrome c and Smac/DIABLO in the absence of

  13. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression andmore » TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.« less

  14. Cellular and molecular mechanisms of chronic rhinosinusitis and potential therapeutic strategies: review on cytokines, nuclear factor kappa B and transforming growth factor beta.

    PubMed

    Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J

    2015-07-01

    Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.

  15. Homeobox a5 Promotes White Adipose Tissue Browning Through Inhibition of the Tenascin C/Toll-Like Receptor 4/Nuclear Factor Kappa B Inflammatory Signaling in Mice.

    PubMed

    Cao, Weina; Huang, Hongtao; Xia, Tianyu; Liu, Chenlong; Muhammad, Saeed; Sun, Chao

    2018-01-01

    Lipopolysaccharide (LPS) induces rapid increase in systemic inflammatory factors. As adipose tissue is a key contributor to the inflammatory response to numerous metabolic stimuli, it is important to understand the mechanism behind the LPS-induced inflammation in white adipose tissue (WAT). Homeobox a5 (Hoxa5) is an important transcription factor, which is highly expressed in adipose tissue, and its mRNA expression is increased at cold exposure in mice. So far, the function of Hoxa5 in adipose tissue browning has been poorly understood. So, the objective of this study was conducted to determine the role of Hoxa5 in adipose inflammatory response and white adipose browning in mice. LPS-induced inflammatory and cold-induced browning model were conducted. We compared the coordinated role of Hoxa5 in inflammation and thermogenesis of mice adipose. Transcriptional and methylation regulation was determined by luciferase assay, electrophoretic mobility shift assay, and bisulfite conversion experiment. Hoxa5 and tenascin C (TNC) were involved in WAT inflammation and browning in mice with LPS injection. Furthermore, Hoxa5 inhibited the TNC-involved activation of Toll-like receptor (TLR) 4/nuclear factor kappa B (NF-κB) signal pathway and promoted WAT browning. Moreover, we found that a BMP4/Smad1 signal, closely related to browning, was activated by Hoxa5. Hoxa5 relieved adipocyte inflammation by decreasing TNC-mediated TLR4 transducer and activator of the NF-κB pathway. Interestingly, descended methylation level increased Hoxa5 expression in cold exposure. Our findings demonstrated that Hoxa5 alleviated inflammation and enhanced browning of adipose tissue via negative control of TNC/TLR4/NF-κB inflammatory signaling and activating BMP4/Smad1 pathway. These findings indicated a novel potential means for the regulation of inflammation in adipocytes to prevent obesity and other inflammatory diseases.

  16. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-kappaB activation.

    PubMed

    Selvaraj, Suresh K; Prasadarao, Nemani V

    2005-08-01

    Phagocytes are well-known effectors of the innate immune system to produce proinflammatory cytokines and chemokines such as tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, and IL-8 during infections. Here, we show that infection of monocytes with wild-type Escherichia coli K1, which causes meningitis in neonates, suppresses the production of cytokines and chemokines (TNF-alpha, regulated on activation, normal T expressed and secreted, macrophage-inflammatory protein-1beta, IL-1beta, and IL-8). In contrast, infection of monocytes with a mutant E. coli, which lacks outer membrane protein A (OmpA- E. coli) resulted in robust production of cytokines and chemokines. Wild-type E. coli K1 (OmpA+ E. coli) prevented the phosphorylation and its degradation of inhibitor of kappaB, thereby blocking the translocation of nuclear factor (NF)-kappaB to the nucleus. OmpA+ E. coli-infected cells, subsequently subjected to lipopolysaccharide challenge, were crippled severely in their ability to activate NF-kappaB to induce cytokine/chemokine production. Selective inhibitors of the extracellular signal-regulated kinase (ERK) 1/2 pathway and p38 mitogen-activated protein kinase (MAPK), but not Jun N-terminal kinase, significantly reduced the activation of NF-kappaB and the production of cytokines and chemokines induced by OmpA- E. coli, indicating a role for these kinases in the NF-kappaB/cytokine pathway. It is interesting that the phosphorylation of ERK 1/2 and p38 MAPK was notably reduced in monocytes infected with OmpA+ E. coli when compared with monocytes infected with OmpA- E. coli, suggesting that the modulation of upstream events common for NF-kappaB and MAPKs by the bacterium is possible. The ability of OmpA+ E. coli K1 to inhibit the macrophage response temporarily may enable bacterial survival and growth within the host for the onset of meningitis by E. coli K1.

  17. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse

    PubMed Central

    Miraghazadeh, Bahar; Cook, Matthew C.

    2018-01-01

    NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease. PMID:29686669

  18. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    PubMed Central

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  19. High-level replication of human immunodeficiency virus in thymocytes requires NF-kappaB activation through interaction with thymic epithelial cells.

    PubMed

    Chêne, L; Nugeyre, M T; Barré-Sinoussi, F; Israël, N

    1999-03-01

    We have previously demonstrated that interaction of infected thymocytes with autologous thymic epithelial cells (TEC) is a prerequisite for a high level of human immunodeficiency virus type 1 (HIV-1) replication in thymocytes (M. Rothe, L. Chêne, M. Nugeyre, F. Barré-Sinoussi, and N. Israël, J. Virol. 72:5852-5861, 1998). We report here that this activation of HIV replication takes place at the transcriptional level through activation of the Rel/NF-kappaB transcription factors. We first demonstrate that an HIV-1 provirus (SF-2 strain) very effectively replicates in thymocytes cocultured with TEC whereas this provirus, with kappaB sites deleted, fails to replicate. We provide evidence that several NF-kappaB complexes are constitutively found in the nuclei of thymocytes either freshly isolated from the thymus or maintained in coculture with autologous or heterologous TEC. The prevalent complex is the heterodimer p50-p65. NF-kappaB activity is tightly correlated with the transcriptional activity of a long terminal repeat (LTR) of HIV-1 transfected in thymocytes. The cotransfection of this LTR with a mutated IkappaBalpha molecule formally demonstrates that LTR transactivation is regulated by members of the Rel/NF-kappaB family in thymocytes. We also showed that tumor necrosis factor (TNF) and to a lesser extent interleukin-1 (IL-1), secreted within the coculture, induce NF-kappaB activity and a correlative LTR transactivation. However IL-7, a crucial factor for thymopoiesis that is secreted mainly by TEC, is a necessary cofactor for NF-kappaB activation elicited by TNF or IL-1. Together, these data indicate that NF-kappaB activation, required for a high level of HIV replication in thymocytes, is regulated in a specific manner in the thymic microenvironment which provides the necessary cytokines: TNF, IL-1, and IL-7.

  20. The suppression of radiation-induced NF-{kappa}B activity by dexamethasone correlates with increased cell death in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Seon Young; Chung, Hee-Yong

    2005-10-21

    In this study, we show that dexamethasone treatment increases ionizing radiation-induced cell death by inducing the inhibitory {kappa}B{alpha} (I{kappa}B{alpha}) pathway in mice. The effect of dexamethasone on radiation-induced cell death was assessed by changes in total spleen cellularity and bone marrow colony-forming unit-granulocyte-macrophage (CFU-GM) contents after total body irradiation. While in vivo treatment of mice with dexamethasone alone (1 mg/kg/day, for 2 days) failed to elicit cell death in spleen cells, the combined treatment with dexamethasone (1 mg/kg/day, for 2 days) and {gamma}-rays (1 or 5 Gy) caused a 50-80% reduction in total cellularity in spleen and CFU-GM contents inmore » bone marrow. These results demonstrate that dexamethasone has a synergistic effect on radiation-induced cellular damages in vivo. Immunoblot analysis showed that dexamethasone treatment significantly increases I{kappa}B{alpha} expression in the spleens of irradiated mice. In addition, the dexamethasone treatment significantly reduced radiation-induced nuclear translocation of the nucleus factor-{kappa}B in the spleens of irradiated mice. These results indicate that dexamethasone treatment in vivo may increase radiation-induced cell damages by increasing I{kappa}B{alpha} expression in hematopoietic organs such as spleen and bone marrow.« less

  1. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-{kappa}B activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke

    2008-09-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-{kappa}B) signalling pathway in human lung epithelial cells (A549).more » The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-{kappa}B activity. An inhibitor of NF-{kappa}B, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-{kappa}B signalling pathway by styrene is mediated via a redox-sensitive mechanism.« less

  2. Tumour Necrosis Factor-alpha and Nuclear Factor-kappa B Gene Variants in Sepsis.

    PubMed

    Acar, Leyla; Atalan, Nazan; Karagedik, E Hande; Ergen, Arzu

    2018-01-20

    The humoral system is activated and various cytokines are released due to infections in tissues and traumatic damage. Nuclear factor-kappa B dimers are encoded by nuclear factor-kappa B genes and regulate transcription of several crucial proteins of inflammation such as tumour necrosis factor-alpha. To investigate the possible effect of polymorphisms on tumour necrosis factor-alpha serum levels with clinical and prognostic parameters of sepsis by determining the nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A) gene polymorphisms and tumour necrosis factor-alpha serum levels. Case-control study. Seventy-two patients with sepsis and 104 healthy controls were included in the study. In order to determine the polymorphisms of nuclear factor-kappa B-1-94 ins/del ATTG and tumour necrosis factor-alpha (-308 G/A), polymerase chain reaction-restriction fragment length polymorphism analysis was performed and serum tumour necrosis factor-alpha levels were determined using an enzyme-linked immunosorbent assay. We observed no significant differences in tumour necrosis factor-alpha serum levels between the study groups. In the patient group, an increase in the tumour necrosis factor-alpha serum levels in patients carrying the tumour necrosis factor-alpha (-308 G/A) A allele compared to those without the A allele was found to be statistically significant. Additionally, an increase in the tumour necrosis factor-alpha serum levels in patients carrying tumour necrosis factor-alpha (-308 G/A) AA genotype compared with patients carrying the AG or GG genotypes was statistically significant. No significant differences were found in these 2 polymorphisms between the patient and control groups (p>0.05). Our results showed the AA genotype and the A allele of the tumour necrosis factor-alpha (-308 G/A) polymorphism may be used as a predictor of elevated tumour necrosis factor-alpha levels in patients with sepsis.

  3. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies

    PubMed Central

    Gambhir, Sahil; Vyas, Dinesh; Hollis, Michael; Aekka, Apporva; Vyas, Arpita

    2015-01-01

    Nuclear factor kappa B (NF-κB) has an established role in the regulation of innate immunity and inflammation. NF-κB is also involved in critical mechanisms connecting inflammation and cancer development. Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal, gastric and colorectal cancers. This review will explore NF-κB’s function in inflammation-associated gastrointestinal malignancies, highlighting its oncogenic contribution to each step of carcinogenesis. NF-κB’s role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy. PMID:25805923

  4. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymesmore » (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.« less

  5. Human immunodeficiency virus type 1 Nef protein inhibits NF-kappa B induction in human T cells.

    PubMed Central

    Niederman, T M; Garcia, J V; Hastings, W R; Luria, S; Ratner, L

    1992-01-01

    Human immunodeficiency virus type 1 (HIV-1) can establish a persistent and latent infection in CD4+ T lymphocytes (W. C. Greene, N. Engl. J. Med. 324:308-317, 1991; S. M. Schnittman, M. C. Psallidopoulos, H. C. Lane, L. Thompson, M. Baseler, F. Massari, C. H. Fox, N. P. Salzman, and A. S. Fauci, Science 245:305-308, 1989). Production of HIV-1 from latently infected cells requires host cell activation by T-cell mitogens (T. Folks, D. M. Powell, M. M. Lightfoote, S. Benn, M. A. Martin, and A. S. Fauci, Science 231:600-602, 1986; D. Zagury, J. Bernard, R. Leonard, R. Cheynier, M. Feldman, P. S. Sarin, and R. C. Gallo, Science 231:850-853, 1986). This activation is mediated by the host transcription factor NF-kappa B [G. Nabel and D. Baltimore, Nature (London) 326:711-717, 1987]. We report here that the HIV-1-encoded Nef protein inhibits the induction of NF-kappa B DNA-binding activity by T-cell mitogens. However, Nef does not affect the DNA-binding activity of other transcription factors implicated in HIV-1 regulation, including SP-1, USF, URS, and NF-AT. Additionally, Nef inhibits the induction of HIV-1- and interleukin 2-directed gene expression, and the effect on HIV-1 transcription depends on an intact NF-kappa B-binding site. These results indicate that defective recruitment of NF-kappa B may underlie Nef's negative transcriptional effects on the HIV-1 and interleukin 2 promoters. Further evidence suggests that Nef inhibits NF-kappa B induction by interfering with a signal derived from the T-cell receptor complex. Images PMID:1527859

  6. TRAF2-binding BIR1 domain of c-IAP2/MALT1 fusion protein is essential for activation of NF-kappaB.

    PubMed

    Garrison, J B; Samuel, T; Reed, J C

    2009-04-02

    Marginal zone mucosa-associated lymphoid tissue (MALT) B-cell lymphoma is the most common extranodal non-Hodgkin lymphoma. The t(11;18)(q21;q21) translocation occurs frequently in MALT lymphomas and creates a chimeric NF-kappaB-activating protein containing the baculoviral IAP repeat (BIR) domains of c-IAP2 (inhibitor of apoptosis protein 2) fused with portions of the MALT1 protein. The BIR1 domain of c-IAP2 interacts directly with TRAF2 (TNFalpha-receptor-associated factor-2), but its role in NF-kappaB activation is still unclear. Here, we investigated the role of TRAF2 in c-IAP2/MALT1-induced NF-kappaB activation. We show the BIR1 domain of c-IAP2 is essential for NF-kappaB activation, whereas BIR2 and BIR3 domains are not. Studies of c-IAP2/MALT1 BIR1 mutant (E47A/R48A) that fails to activate NF-kappaB showed loss of TRAF2 binding, but retention of TRAF6 binding, suggesting that interaction of c-IAP2/MALT1 with TRAF6 is insufficient for NF-kappaB induction. In addition, a dominant-negative TRAF2 mutant or downregulation of TRAF2 achieved by small interfering RNA inhibited NF-kappaB activation by c-IAP2/MALT1 showing that TRAF2 is indispensable. Comparisons of the bioactivity of intact c-IAP2/MALT1 oncoprotein and BIR1 E47A/R48A c-IAP2/MALT1 mutant that cannot bind TRAF2 in a lymphoid cell line provided evidence that TRAF2 interaction is critical for c-IAP2/MALT1-mediated increases in the NF-kappaB activity, increased expression of endogenous NF-kappaB target genes (c-FLIP, TRAF1), and resistance to apoptosis.

  7. Inhibition of NF-kappaB-mediated transcription and induction of apoptosis in human breast cancer cells by epoxypseudoisoeugenol-2-methyl butyrate.

    PubMed

    Ma, Guoyi; Tabanca, Nurhayat; Husnu Can Baser, K; Kirimer, Nese; Pasco, David S; Khan, Ikhlas A; Khan, Shabana I

    2009-03-01

    Breast cancer is one of the most prevalent woman cancers. Genomic instability, accumulative mutations, and subsequent changes in intracellular signaling cascades play key roles in the development of human breast cancers. Activation of nuclear factor-kappaB (NF-kappaB) has been implicated in oncogenesis of breast cancers and is known to be associated with resistance to anticancer agents and apoptosis. Blocking NF-kappaB signaling may represent a therapeutic strategy in breast cancer therapy. The objective of this study is to investigate the in vitro effects of epoxypseudoisoeugenol-2-methyl butyrate (EPB), a phenylpropranoid isolated from Pimpinella corymbosa, on the activation of NF-kappaB, cell growth, cell cycle progression and apoptosis in MCF-7 (estrogen-dependent) and BT-549 (estrogen-independent) breast cancer cells. Transcriptional activity of NF-kappaB was measured by cell based reporter gene assay. Cell proliferation was determined by MTT assay. Cell cycle analysis was carried out by flow cytometry and apoptosis was observed by DAPI staining assy. EPB inhibited the NF-kappaB-mediated transcription activity induced by tumor necrosis factor-alpha (TNF-alpha) and phorbol myristate acetate (PMA) in MCF-7 cells. EPB also inhibited constitutive NF-kappaB transcriptional activity in BT-549 cells. EPB inhibited the proliferation of both MCF-7 and BT-549 cells in a concentration- and time-dependent manner. EPB induced cell cycle arrest in G(1)/G(0) phase and apoptosis in both MCF-7 and BT 549 cells. These in vitro results indicated that EPB has a potential for use against both hormone-dependent and hormone-independent breast cancers and its effects seem to be mediated by inhibiting the NF-kappaB activity.

  8. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    PubMed

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  9. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome

    PubMed Central

    Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.

    2013-01-01

    Study Objectives: Childhood obstructive sleep apnea syndrome (OSAS) is associated with an elevation of inflammatory markers such as C-reactive protein (CRP) that correlates with specific morbidities and subsides following intervention. In adults, OSAS is associated with activation of the transcription factor nuclear factor kappa B (NF-kB). We explored the mechanisms underlying NF-kB activation, based on the hypothesis that specific NF-kB signaling is activated in children with OSAS. Design: Adenoid and tonsillar tissues from children with OSAS and matched controls were immunostained against NF-kB classical (p65 and p50) and alternative (RelB and p52) pathway subunits, and NF-kB-dependent cytokines: interleukin (IL)- 1α, IL-1β, tumor necrosis factor-α, and IL-8). Serum CRP levels were measured in all subjects. NF-kB induction was evaluated by a luciferase-NF-kB reporter assay in L428 cells constitutively expressing NF-kB and in Jurkat cells with inducible NF-kB expression. p65 translocation to the nucleus, reflecting NF-kB activation, was measured in cells expressing fluorescent NF-kB-p65-GFP (green fluorescent protein). Setting: Sleep research laboratory. Patients or Participants: Twenty-five children with OSAS and 24 without OSAS. Interventions: N/A. Measurements and Results: Higher expression of IL-1α and classical NF-kB subunits p65 and p50 was observed in adenoids and tonsils of children with OSAS. Patient serum induced NF-kB activity, as measured by a luciferase-NF-kB reporter assay and by induction of p65 nuclear translocation in cells permanently transfected with GFP-p65 plasmid. IL-1β showed increased epithelial expression in OSAS tissues. Conclusions: Nuclear factor kappa B is locally and systemically activated in children with obstructive sleep apnea syndrome. This observation may motivate the search for new anti-inflammatory strategies for controlling nuclear factor kappa B activation in obstructive sleep apnea syndrome. Citation: Israel LP

  10. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  11. Transcriptional up-regulation of nitric oxide synthase II by nuclear factor-kappaB at rostral ventrolateral medulla in a rat mevinphos intoxication model of brain stem death.

    PubMed

    Chan, Julie Y H; Wu, Carol H Y; Tsai, Ching-Yi; Cheng, Hsiao-Lei; Dai, Kuang-Yu; Chan, Samuel H H; Chang, Alice Y W

    2007-06-15

    As the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this vital phenomenon. Using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, we evaluated the hypothesis that transcriptional up-regulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-kappaB (NF-kappaB) on activation of muscarinic receptors in the RVLM underlies brain stem death. In Sprague-Dawley rats maintained under propofol anaesthesia, co-microinjection of muscarinic M2R (methoctramine) or M4R (tropicamide), but not M1R (pirenzepine) or M3R (4-diphenylacetoxy-N-dimethylpiperidinium) antagonist significantly reduced the enhanced NOS I-protein kinase G signalling ('pro-life' phase) or augmented NOS II-peroxynitrite cascade ('pro-death' phase) in ventrolateral medulla, blunted the biphasic increase and decrease in baroreceptor reflex-mediated sympathetic vasomotor tone that reflect the transition from life to death, and diminished the elevated DNA binding activity or nucleus-bound translocation of NF-kappaB in RVLM neurons induced by microinjection of Mev into the bilateral RVLM. However, NF-kappaB inhibitors (diethyldithiocarbamate or pyrrolidine dithiocarbamate) or double-stranded kappaB decoy DNA preferentially antagonized the augmented NOS II-peroxynitrite cascade and the associated cardiovascular depression exhibited during the 'pro-death' phase. We conclude that transcriptional up-regulation of NOS II gene expression by activation of NF-kappaB on selective stimulation of muscarinic M2 or M4 subtype receptors in the RVLM underlies the elicited cardiovascular depression during the 'pro-death' phase in our Mev intoxication model of brain stem death.

  12. Role of osteoprotegerin/receptor activator of nuclear factor kappa B/receptor activator of nuclear factor kappa B ligand axis in nonalcoholic fatty liver disease.

    PubMed

    Pacifico, Lucia; Andreoli, Gian Marco; D'Avanzo, Miriam; De Mitri, Delia; Pierimarchi, Pasquale

    2018-05-21

    Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease (NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome (MetS), like insulin resistance (IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, MetS, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin (OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesity-related comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of MetS as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.

  13. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin.

    PubMed

    Kasinski, Andrea L; Du, Yuhong; Thomas, Shala L; Zhao, Jing; Sun, Shi-Yong; Khuri, Fadlo R; Wang, Cun-Yu; Shoji, Mamoru; Sun, Aiming; Snyder, James P; Liotta, Dennis; Fu, Haian

    2008-09-01

    The nuclear factor-kappaB (NF-kappaB) signaling pathway has been targeted for therapeutic applications in a variety of human diseases, includuing cancer. Many naturally occurring substances, including curcumin, have been investigated for their actions on the NF-kappaB pathway because of their significant therapeutic potential and safety profile. A synthetic monoketone compound termed 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24) was developed from curcumin and exhibited potent anticancer activity. Here, we report a mechanism by which EF24 potently suppresses the NF-kappaB signaling pathway through direct action on IkappaB kinase (IKK). We demonstrate that 1) EF24 induces death of lung, breast, ovarian, and cervical cancer cells, with a potency about 10 times higher than that of curcumin; 2) EF24 rapidly blocks the nuclear translocation of NF-kappaB, with an IC(50) value of 1.3 microM compared with curcumin, with an IC(50) value of 13 microM; 3) EF24 effectively inhibits tumor necrosis factor (TNF)-alpha-induced IkappaB phosphorylation and degradation, suggesting a role of this compound in targeting IKK; and 4) EF24 indeed directly inhibits the catalytic activity of IKK in an in vitro-reconstituted system. Our study identifies IKK as an effective target for EF24 and provides a molecular explanation for a superior activity of EF24 over curcumin. The effective inhibition of TNF-alpha-induced NF-kappaB signaling by EF24 extends the therapeutic application of EF24 to other NF-kappaB-dependent diseases, including inflammatory diseases such as rheumatoid arthritis.

  14. Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-kappaB binding to DNA.

    PubMed

    Heiss, Elke; Gerhäuser, Clarissa

    2005-01-01

    The chemopreventive agent sulforaphane (SFN) exerts anti-inflammatory activity by thiol-dependent inhibition of nuclear factor kappaB (NF-kappaB) DNA binding. To further analyze the underlying mechanisms, we focused on the thioredoxin/thioredoxin reductase (TrxR) system as a key redox mechanism regulating NF-kappaB DNA binding. Using cultured Raw 264.7 mouse macrophages as a model, 1-chloro-2,4-dinitrobenzene (CDNB), a known inhibitor of TrxR, was identified as an inhibitor of lipopolysaccharide (LPS)-mediated nitric oxide (NO) production and of NF-kappaB DNA binding. CDNB and SFN acted synergistically with respect to inhibition of LPS-induced NO release, and we consequently identified SFN as a novel inhibitor of TrxR enzymatic activity in vitro. Short-term treatment of Raw macrophages with SFN or CDNB resulted in the inhibition of TrxR activity in vivo with half-maximal inhibitory concentration of 25.0 +/- 3.5 microM and 9.4 +/- 3.7 microM, respectively, whereas after a 24-h treatment with 25 microM SFN, TrxR activity was >1.5-fold elevated. In additional experiments, we could exclude that inhibition of trans-activating activity of NF-kappaB contributed to the reduced expression of pro-inflammatory proteins by SFN, based on transient transfection experiments with a (kappaB)(2)- chloramphenicol acetyltransferase construct and a lack of inhibition of protein kinase A activity. These findings further emphasize the importance of redox modulation or thiol reactivity for the regulation of NF-kappaB-dependent transcription by SFN. Antioxid. Redox Signal. 7, 1601-1611. Antioxid. Redox Signal. 7, 1601-1611.

  15. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.

    PubMed

    Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T

    2000-09-01

    Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.

  16. Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules.

    PubMed

    Crinelli, Rita; Carloni, Elisa; Menotta, Michele; Giacomini, Elisa; Bianchi, Marzia; Ambrosi, Gianluca; Giorgi, Luca; Magnani, Mauro

    2010-05-25

    Oligonucleotide (ODN) decoys are synthetic ODNs containing the DNA binding sequence of a transcription factor. When delivered to cells, these molecules can compete with endogenous sequences for binding the transcription factor, thus inhibiting its ability to activate the expression of target genes. Modulation of gene expression by decoy ODNs against nuclear factor-kappaB (NF-kappaB), a transcription factor regulating many genes involved in immunity, has been achieved in a variety of immune/inflammatory disorders. However, the successful use of transcription factor decoys depends on an efficient means to bring the synthetic DNA to target cells. It is known that single-walled carbon nanotubes (SWCNTs), under certain conditions, are able to cross the cell membrane. Thus, we have evaluated the possibility to functionalize SWCNTs with decoy ODNs against NF-kappaB in order to improve their intracellular delivery. To couple ODNs to CNTs, we have exploited the carbodiimide chemistry which allows covalent binding of amino-modified ODNs to carboxyl groups introduced onto SWCNTs through oxidation. The effective binding of ODNs to nanotubes has been demonstrated by a combination of microscopic, spectroscopic, and electrophoretic techniques. The uptake and subcellular distribution of ODN decoys bound to SWCNTs was analyzed by fluorescence microscopy. ODNs were internalized into macrophages and accumulated in the cytosol. Moreover, no cytotoxicity associated with SWCNT administration was observed. Finally, NF-kappaB-dependent gene expression was significantly reduced in cells receiving nanomolar concentrations of SWCNT-NF-kappaB decoys compared to cells receiving SWCNTs or SWCNTs functionalized with a nonspecific ODN sequence, demonstrating both efficacy and specificity of the approach.

  17. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B.

    PubMed

    Lee, Kyung Mi; Kang, Nam Joo; Han, Jin Hee; Lee, Ki Won; Lee, Hyong Joo

    2007-11-14

    Abnormal expression of cyclooxygenase-2 (COX-2) has been implicated in the development of cancer. There are multiple lines of evidence that red wine exerts chemopreventive effects, and 3,5,4'-trihydroxy- trans-stilbene (resveratrol), which is a non-flavonoid polyphenol found in red wine, has been reported to be a natural chemopreventive agent. However, other phytochemicals might contribute to the cancer-preventive activities of red wine, and the flavonol content of red wines is about 30 times higher than that of resveratrol. Here we report that 3,3',4',5,5',7-hexahydroxyflavone (myricetin), one of the major flavonols in red wine, inhibits 12-O-tetradecanoylphorbol-13-acetate (phorbol ester)-induced COX-2 expression in JB6 P+ mouse epidermal (JB6 P+) cells by suppressing activation of nuclear factor kappa B (NF-kappaB). Myricetin at 10 and 20 microM inhibited phorbol ester-induced upregulation of COX-2 protein, while resveratrol at the same concentration did not exert significant effects. The phorbol ester-induced production of prostaglandin E 2 was also attenuated by myricetin treatment. Myricetin inhibited both COX-2 and NF-kappaB transactivation in phorbol ester-treated JB6 P+ cells, as determined using a luciferase assay. Myricetin blocked the phorbol ester-stimulated DNA binding activity of NF-kappaB, as determined using an electrophoretic mobility shift assay. Moreover, TPCK (N-tosyl-l-phenylalanine chloromethyl ketone), a NF-kappaB inhibitor, significantly attenuated COX-2 expression and NF-kappaB promoter activity in phorbol ester-treated JB6 P+ cells. In addition, red wine extract inhibited phorbol ester-induced COX-2 expression and NF-kappaB transactivation in JB6 P+ cells. Collectively, these data suggest that myricetin contributes to the chemopreventive effects of red wine through inhibition of COX-2 expression by blocking the activation of NF-kappaB.

  18. Constitutive activation of NF-kappa B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve G alpha(13) and RhoA.

    PubMed

    Shepard, L W; Yang, M; Xie, P; Browning, D D; Voyno-Yasenetskaya, T; Kozasa, T; Ye, R D

    2001-12-07

    The Kaposi's sarcoma herpesvirus (KSHV) open reading frame 74 encodes a G protein-coupled receptor (GPCR) for chemokines. Exogenous expression of this constitutively active GPCR leads to cell transformation and vascular overgrowth characteristic of Kaposi's sarcoma. We show here that expression of KSHV-GPCR in transfected cells results in constitutive transactivation of nuclear factor kappa B (NF-kappa B) and secretion of interleukin-8, and this response involves activation of G alpha(13) and RhoA. The induced expression of a NF-kappa B luciferase reporter was partially reduced by pertussis toxin and the G beta gamma scavenger transducin, and enhanced by co-expression of G alpha(13) and to a lesser extent, G alpha(q). These results indicate coupling of KSHV-GPCR to multiple G proteins for NF-kappa B activation. Expression of KSHV-GPCR led to stress fiber formation in NIH 3T3 cells. To examine the involvement of the G alpha(13)-RhoA pathway in KSHV-GPCR-mediated NF-kappa B activation, HeLa cells were transfected with KSHV-GPCR alone and in combination with the regulator of G protein signaling (RGS) from p115RhoGEF or a dominant negative RhoA(T19N). Both constructs, as well as the C3 exoenzyme from Clostritium botulinum, partially reduced NF-kappa B activation by KSHV-GPCR, and by a constitutively active G alpha(13)(Q226L). KSHV-GPCR-induced NF-kappa B activation is accompanied by increased secretion of IL-8, a function mimicked by the activated G alpha(13) but not by an activated G alpha(q)(Q209L). These results suggest coupling of KSHV-GPCR to the G alpha(13)-RhoA pathway in addition to other G proteins.

  19. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B.

    PubMed

    Taylor, Shannon L; Frias-Staheli, Natalia; García-Sastre, Adolfo; Schmaljohn, Connie S

    2009-02-01

    Hantaviruses such as Hantaan virus (HTNV) and Andes virus cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is thought to be immunologically mediated and there have been numerous reports of patients with elevated levels of proinflammatory and inflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), in their sera. Multiple viruses have developed evasion strategies to circumvent the host cell inflammatory process, with one of the most prevalent being the disruption of nuclear factor kappa B (NF-kappaB) activation. We hypothesized that hantaviruses might also moderate host inflammation by interfering with this pathway. We report here that the nucleocapsid (N) protein of HTNV was able to inhibit TNF-alpha-induced activation of NF-kappaB, as measured by a reporter assay, and the activation of endogenous p65, an NF-kappaB subunit. Surprisingly, there was no defect in the degradation of the inhibitor of NF-kappaB (IkappaB) protein, nor was there any alteration in the level of p65 expression in HTNV N-expressing cells. However, immunofluorescence antibody staining demonstrated that cells expressing HTNV N protein and a green fluorescent protein-p65 fusion had limited p65 nuclear translocation. Furthermore, we were able to detect an interaction between HTNV N protein and importin alpha, a nuclear import molecule responsible for shuttling NF-kappaB to the nucleus. Collectively, our data suggest that HTNV N protein can sequester NF-kappaB in the cytoplasm, thus inhibiting NF-kappaB activity. These findings, which were obtained using cells transfected with cDNA representing the HTNV N gene, were confirmed using HTNV-infected cells.

  20. In vitro anticancer property of a novel thalidomide analogue through inhibition of NF-kappaB activation in HL-60 cells.

    PubMed

    Li, Min; Sun, Wan; Yang, Ya-ping; Xu, Bo; Yi, Wen-yuan; Ma, Yan-xia; Li, Zhong-jun; Cui, Jing-rong

    2009-01-01

    To investigate the anticancer property and possible mechanism of action of a novel sugar-substituted thalidomide derivative (STA-35) on HL-60 cells in vitro. TNF-alpha-induced NF-kappaB activation was determined using a reporter gene assay. The MTT assay was used to measure cytotoxicity of the compound. The appearance of apoptotic Sub-G1 cells was detected by flow cytometry analysis. PARP cleavage and protein expression of NF-kappaB p65 and its inhibitor IkappaB were viewed by Western blotting. TA-35 (1-20 micromol/L) suppressed TNF-alpha-induced NF-kappaB activation in transfected cells (HEK293/pNiFty-SEAP) in a dose- (1-20 micromol/L) and time-dependent (0-48 h) manner. It was also shown that STA-35 exerted a dose-dependent inhibitory effect on HL-60 cell proliferation with an IC(50) value of 9.05 micromol/L. In addition, STA-35 induced apoptosis in HL-60 cells, as indicated by the appearance of a Sub-G1 peak in the cell cycle distribution, as well as poly ADP-ribose polymerase (PARP) cleavage. Subsequently, both NF-kappaB p65 and its inhibitor IkappaB gradually accumulated in cytoplasmic extracts in a dose- and time-dependent manner, indicating the blockage of NF-kappaB translocation induced by TNF-alpha from the cytoplasm to the nucleus. A novel sugar-substituted thalidomide derivative, STA-35, is potent toward HL-60 cells in vitro and induces apoptosis by the suppression of NF-kappaB activation.

  1. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses.

    PubMed

    Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-06-02

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.

  2. Distinct roles of NF-{kappa}B p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambach, Donna M.; Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, NJ 08543; Durham, Stephen K.

    2006-03-01

    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. In addition to inducing direct cellular damage, oxidants can activate transcription factors including NF-{kappa}B, which regulate the production of inflammatory mediators implicated in hepatotoxicity. Here, we investigated the role of APAP-induced oxidative stress and NF-{kappa}B in inflammatory mediator production. Treatment of mice with APAP (300 mg/kg, i.p.) resulted in centrilobular hepatic necrosis and increased serum aminotransferase levels. This was correlated with depletion of hepatic glutathione and CuZn superoxide dismutase (SOD). APAP administration also increased expression of the proinflammatory mediators, interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF{alpha}), macrophage chemotactic protein-1 (MCP-1), andmore » KC/gro, and the anti-inflammatory cytokine, interleukin-10 (IL-10). Pretreatment of mice with the antioxidant, N-acetylcysteine (NAC) prevented APAP-induced depletion of glutathione and CuZnSOD, as well as hepatotoxicity. NAC also abrogated APAP-induced increases in TNF{alpha}, KC/gro, and IL-10, but augmented expression of the anti-inflammatory cytokines interleukin-4 (IL-4) and transforming growth factor-{beta} (TGF{beta}). No effects were observed on IL-1{beta} or MCP-1 expression. To determine if NF-{kappa}B plays a role in regulating mediator production, we used transgenic mice with a targeted disruption of the gene for NF-{kappa}B p50. As observed with NAC pretreatment, the loss of NF-{kappa}B p50 was associated with decreased ability of APAP to upregulate TNF{alpha}, KC/gro, and IL-10 expression and increased expression of IL-4 and TGF{beta}. However, in contrast to NAC pretreatment, the loss of p50 had no effect on APAP-induced hepatotoxicity. These data demonstrate that APAP-induced cytokine expression in the liver is influenced by oxidative stress and that this is dependent, in part, on NF-{kappa}B. However, NF-{kappa}B p50

  3. Pasteurella haemolytica leukotoxin and endotoxin induced cytokine gene expression in bovine alveolar macrophages requires NF-kappaB activation and calcium elevation.

    PubMed

    Hsuan, S L; Kannan, M S; Jeyaseelan, S; Prakash, Y S; Malazdrewich, C; Abrahamsen, M S; Sieck, G C; Maheswaran, S K

    1999-05-01

    In bovine alveolar macrophages (BAMs), exposure to leukotoxin (Lkt) and endotoxin (LPS) from Pasteurella haemolytica results in expression of inflammatory cytokine genes and intracellular calcium ([Ca2+]i) elevation. Leukotoxin from P. haemolytica interacts only with leukocytes and platelets from ruminant species. Upregulation of cytokine genes in different cells by LPS involves activation of the transcription factor NF-kappaB (NF-kappaB), resulting in its translocation from the cytoplasm to the nucleus. Using immunocytochemical staining and confocal imaging, we studied whether NF-kappaB activation represents a common mechanism for the expression of multiple cytokine genes in BAMs (Lkt-susceptible cells) stimulated with Lkt and LPS. Bovine pulmonary artery endothelial cells and porcine alveolar macrophages were used as nonsusceptible cells. The role of Ca2+ and tyrosine kinases in NF-kappaB activation and inflammatory cytokine gene expression was studied, since an inhibitor of tyrosine kinases attenuates LPS-induced [Ca2+]i elevation in BAMs. The results are summarized as follows: (a) Lkt induced NF-kappaB activation and [Ca2+]i elevation only in BAMs, while LPS effects were demonstrable in all cell types; (b) chelation of [Ca2+]i blocked NF-kappaB activation and IL-1beta, TNFalpha, and IL-8 mRNA expression; and (c) tyrosine kinase inhibitor herbimycin A blocked expression of all three cytokine genes in BAMs stimulated with Lkt, while only the expression of IL-1beta was blocked in BAMs stimulated with LPS. We conclude that cytokine gene expression in BAMs requires NF-kappaB activation and [Ca2+]i elevation, and Lkt effects exhibit cell type- and species specificity. Copyright 1999 Academic Press.

  4. NF-kappaB: Two Sides of the Same Coin.

    PubMed

    Pires, Bruno R B; Silva, Rafael C M C; Ferreira, Gerson M; Abdelhay, Eliana

    2018-01-09

    Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.

  5. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    PubMed

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  6. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling.

    PubMed

    Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard

    2008-10-01

    Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.

  7. Oligo-carrageenan kappa increases NADPH, ascorbate and glutathione syntheses and TRR/TRX activities enhancing photosynthesis, basal metabolism, and growth in Eucalyptus trees.

    PubMed

    González, Alberto; Moenne, Fabiola; Gómez, Melissa; Sáez, Claudio A; Contreras, Rodrigo A; Moenne, Alejandra

    2014-01-01

    In order to analyze the effect of OC kappa in redox status, photosynthesis, basal metabolism and growth in Eucalyptus globulus, trees were treated with water (control), with OC kappa at 1 mg mL(-1), or treated with inhibitors of NAD(P)H, ascorbate (ASC), and glutathione (GSH) syntheses and thioredoxin reductase (TRR) activity, CHS-828, lycorine, buthionine sulfoximine (BSO), and auranofin, respectively, and with OC kappa, and cultivated for 4 months. Treatment with OC kappa induced an increase in NADPH, ASC, and GSH syntheses, TRR and thioredoxin (TRX) activities, photosynthesis, growth and activities of basal metabolism enzymes such as rubisco, glutamine synthetase (GlnS), adenosine 5'-phosphosulfate reductase (APR), involved in C, N, and S assimilation, respectively, Krebs cycle and purine/pyrimidine synthesis enzymes. Treatment with inhibitors and OC kappa showed that increases in ASC, GSH, and TRR/TRX enhanced NADPH synthesis, increases in NADPH and TRR/TRX enhanced ASC and GSH syntheses, and only the increase in NADPH enhanced TRR/TRX activities. In addition, the increase in NADPH, ASC, GSH, and TRR/TRX enhanced photosynthesis and growth. Moreover, the increase in NADPH, ASC and TRR/TRX enhanced activities of rubisco, Krebs cycle, and purine/pyrimidine synthesis enzymes, the increase in GSH, NADPH, and TRR/TRX enhanced APR activity, and the increase in NADPH and TRR/TRX enhanced GlnS activity. Thus, OC kappa increases NADPH, ASC, and GSH syntheses leading to a more reducing redox status, the increase in NADPH, ASC, GSH syntheses, and TRR/TRX activities are cross-talking events leading to activation of photosynthesis, basal metabolism, and growth in Eucalyptus trees.

  8. IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation.

    PubMed

    Midwinter, Robyn G; Cheah, Fook-Choe; Moskovitz, Jackob; Vissers, Margret C; Winterbourn, Christine C

    2006-05-15

    Hypochlorous acid (HOCl) is produced by the neutrophil enzyme, myeloperoxidase, and reacts with amines to generate chloramines. These oxidants react readily with thiols and methionine and can affect cell-regulatory pathways. In the present study, we have investigated the ability of HOCl, glycine chloramine (Gly-Cl) and taurine chloramine (Tau-Cl) to oxidize IkappaBalpha, the inhibitor of NF-kappaB (nuclear factor kappaB), and to prevent activation of the NF-kappaB pathway in Jurkat cells. Glycine chloramine (Gly-Cl) and HOCl were permeable to the cells as determined by oxidation of intracellular GSH and inactivation of glyceraldehyde-3-phosphate dehydrogenase, whereas Tau-Cl showed no detectable cell permeability. Both Gly-Cl (20-200 muM) and HOCl (50 microM) caused oxidation of IkappaBalpha methionine, measured by a shift in electrophoretic mobility, when added to the cells in Hanks buffer. In contrast, a high concentration of Tau-Cl (1 mM) in Hanks buffer had no effect. However, Tau-Cl in full medium did modify IkappaBalpha. This we attribute to chlorine exchange with other amines in the medium to form more permeable chloramines. Oxidation by Gly-Cl prevented IkappaBalpha degradation in cells treated with TNFalpha (tumour necrosis factor alpha) and inhibited nuclear translocation of NF-kappaB. IkappaBalpha modification was reversed by methionine sulphoxide reductase, with both A and B forms required for complete reduction. Oxidized IkappaBalpha persisted intracellularly for up to 6 h. Reversion occurred in the presence of cycloheximide, but was prevented if thioredoxin reductase was inhibited, suggesting that it was due to endogenous methionine sulphoxide reductase activity. These results show that cell-permeable chloramines, either directly or when formed in medium, could regulate NF-kappaB activation via reversible IkappaBalpha oxidation.

  9. [Effects of different nuclear factor kappaB dimers on the survival of immortalized neural progenitor cells].

    PubMed

    Gui, Ling-Li; Zhang, Chuan-Han; Liu, Zhi-Heng; Chen, Zhao-Jun; Zhu, Chang

    2008-04-01

    To investigate the effects of different nuclear factor (NF)-KB dimers on the survival of immortalized neural progenitor cells (INPCs). The control vector RC/CMV, containing the promoter of cytomegalovirus (CMV), and the expression vectors, RcCMV-p50 and RcCMV-p65, containing the coding regions of NF-KB subunits p50 and p65 genes, were transfected into the INPCs by liposome respectively. Stably transfected clones were screened out following G418 selection. Subsequently, the plasmid RcCMV-p50 was transiently transfected into the INPCs which had been stably transfected with the plasmid RcCMV-p65. The expression of p50 or p65 gene was detected in each cell strain by Western blotting. And the NF-KB DNA binding activity in the cell nuclear extracts was measured by electrophoresis mobility shift assay (EMSA). The expression of IkappaBalpha in the cytoplasm was detected by Western blotting. After oxygen and glucose deprivation for 13 h, the cell survival rate was measured by MTT assay. After gene transfection, five different cell strains were obtained: INPC, INPC/CMV, INPC/p50, INPC/p65, and INPC/p50p65. p50 or p65 gene was translated correctly and efficiently in the cell strains which had been transfected with the corresponding plasmids. EMSA showed that the INPC/p50, INPC/p65, and INPC/p50p65 cells all gave rise to NF-kappaB specific bands, which were composed of p50 homodimer, p65 homodimer, and p50 p65 heterodimer and p50 homodimer respectively. The expression of IkappaBbeta was increased significantly in the cytoplasm of the INPC/p65 and INPC/p50p65 cells. Games-Howell test showed that after oxygen and glucose deprivation for 13 h, the survival rates of the NPC/p65 and INPC/p50p65 cells were (6.0 +/- 1.0)% and (4.6 +/- 0.6)% respectively, both significantly lower than those of the INPC, INPC/CMV, and INPC/p50 cells [(72.5 +/- 6.2)%, (70.1 +/- 4.3)%, and (70.4 +/- 7.3)% respectively, all P < 0.05]. Overexpression of p50 gene and p65 gene directly enhance the DNA

  10. NF-kappaB: Two Sides of the Same Coin

    PubMed Central

    Silva, Rafael C. M. C.; Ferreira, Gerson M.; Abdelhay, Eliana

    2018-01-01

    Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target. PMID:29315242

  11. Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer.

    PubMed

    Arun, Pattatheyil; Brown, Matthew S; Ehsanian, Reza; Chen, Zhong; Van Waes, Carter

    2009-10-01

    Aberrant nuclear activation and phosphorylation of the canonical NF-kappaB subunit RELA/p65 at Serine-536 by inhibitor kappaB kinase is prevalent in head and neck squamous cell carcinoma (HNSCC), but the role of other kinases in NF-kappaB activation has not been well defined. Here, we investigated the prevalence and function of p65-Ser276 phosphorylation by protein kinase A (PKA) in the malignant phenotype and gene transactivation, and studied p65-Ser276 as a potential target for therapy. Phospho and total p65 protein expression and localization were determined in HNSCC tissue array and in cell lines. The effects of the PKA inhibitor H-89 on NF-kappaB activation, downstream gene expression, cell proliferation and cell cycle were examined. Knockdown of PKA by specific siRNA confirmed the specificity. NF-kappaB p65 phosphorylated at Ser276 was prevalent in HNSCC and adjacent dysplastic mucosa, but localized to the cytoplasm in normal mucosa. In HNSCC lines, tumor necrosis factor-alpha (TNF-alpha) significantly increased, whereas H-89 inhibited constitutive and TNF-alpha-induced nuclear p65 (Ser276) phosphorylation, and significantly suppressed NF-kappaB and target gene IL-8 reporter activity. Knockdown of PKA by small interfering RNA inhibited NF-kappaB, IL-8, and BCL-XL reporter gene activities. H-89 suppressed cell proliferation, induced cell death, and blocked the cell cycle in G(1)-S phase. Consistent with its biological effects, H-89 down-modulated expression of NF-kappaB-related genes Cyclin D1, BCL2, BCL-XL, COX2, IL-8, and VEGF, as well as induced cell cycle inhibitor p21(CIP1/WAF1), while suppressing proliferative marker Ki67. NF-kappaB p65 (Ser276) phosphorylation by PKA promotes the malignant phenotype and holds potential as a therapeutic target in HNSCC.

  12. Inhibitory effect on activator protein-1, nuclear factor-kappaB, and cell transformation by extracts of strawberries (Fragaria x ananassa Duch.).

    PubMed

    Wang, Shiow Y; Feng, Rentian; Lu, Yongju; Bowman, Linda; Ding, Min

    2005-05-18

    The inhibitory effects of strawberry (Fragaria x ananassa Duch.) antioxidant enzymes on tetradecanoylphorbol-13-acetate (TPA) or ultraviolet-B (UVB) induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) were studied. The inhibitory effects of strawberry extracts on the proliferation and transformation of human and mouse cancer cells were also evaluated. Strawberries had high activities of glutathione peroxidase, superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase. Strawberry extracts inhibited the proliferation of human lung epithelial cancer cell line A549 and decreased TPA-induced neoplastic transformation of JB6 P+ mouse epidermal cells. Pretreatment of JB6 P+ mouse epidermal cells with strawberry extract resulted in the inhibition of both UVB- and TPA-induced AP-1 and NF-kappaB transactivation. Furthermore, strawberry extract also blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs) and UVB-induced phosphorylation of ERKs and JNK kinase in JB6 P+ mouse epidermal cell culture. These results suggest that the ability of strawberries to block UVB- and TPA-induced AP-1 and NF-kappaB activation may be due to their antioxidant properties and their ability to reduce oxidative stress. The oxidative events that regulate AP-1 and NF-kappaB transactivation can be important molecular targets for cancer prevention. The strawberries may be highly effective as a chemopreventive agent that acts by targeting the down-regulation of AP-1 and NF-kappaB activities, blocking MAPK signaling, and suppressing cancer cell proliferation and transformation.

  13. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-{alpha}-induced apoptosis via NF-{kappa}B in mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Cheng-Fei; Cardiovascular Research Institute and Department of Cardiology, Shenyang Northern Hospital, Shenyang; Han, Ya-Ling, E-mail: hanyaling53@gmail.com

    2011-03-25

    Research highlights: {yields} CREG protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis. {yields} CREG inhibits the phosphorylation of I{kappa}B{alpha} and prevents the activation of NF-{kappa}B. {yields} CREG inhibits NF-{kappa}B nuclear translocation and pro-apoptosis protein transcription. {yields} CREG anti-apoptotic effect involves inhibition of the death receptor pathway. {yields} p53 is downregulated by CREG via NF-{kappa}B pathway under TNF-{alpha} stimulation. -- Abstract: Bone marrow-derived mesenchymal stem cells (MSCs) show great potential for therapeutic repair after myocardial infarction. However, poor viability of transplanted MSCs in the ischemic heart has limited their use. Cellular repressor of E1A-stimulated genes (CREG) has been identified asmore » a potent inhibitor of apoptosis. This study therefore aimed to determine if rat bone marrow MSCs transfected with CREG-were able to effectively resist apoptosis induced by inflammatory mediators, and to demonstrate the mechanism of CREG action. Apoptosis was determined by flow cytometric and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays. The pathways mediating these apoptotic effects were investigated by Western blotting. Overexpression of CREG markedly protected MSCs from tumor necrosis factor-{alpha} (TNF-{alpha}) induced apoptosis by 50% after 10 h, through inhibition of the death-receptor-mediated apoptotic pathway, leading to attenuation of caspase-8 and caspase-3. Moreover, CREG resisted the serine phosphorylation of I{kappa}B{alpha} and prevented the nuclear translocation of the transcription factor nuclear factor-{kappa}B (NF-{kappa}B) under TNF-{alpha} stimulation. Treatment of cells with the NF-{kappa}B inhibitor pyrrolidine dithiocarbamate (PDTC) significantly increased the transcription of pro-apoptosis proteins (p53 and Fas) by NF-{kappa}B, and attenuated the anti-apoptotic effects of CREG on MSCs. The results of this

  14. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells

    DTIC Science & Technology

    2011-08-01

    Cheng DS, Chodosh LA, Blackwell TS, Yull FE: Activation of nuclear factor kappa B in mammary epithelium promotes milk loss during mammary... microbial products (15, 16). To date, the potential role of macrophages in the fetal lung innate immune response has not been closely examined. Studies...In this model, microbial products initially activate NF-kB in lung macrophages. The release of inflammatory mediators, particularly IL-1b and/or TNF-a

  15. Cisplatin induces apoptosis in oral squamous carcinoma cells by the mitochondria-mediated but not the NF-kappaB-suppressed pathway.

    PubMed

    Azuma, M; Tamatani, T; Ashida, Y; Takashima, R; Harada, K; Sato, M

    2003-04-01

    Cisplatin (CDDP) is a potent DNA-damaging anticancer agent, and its cytotoxic action is exerted by the induction of apoptosis. However, activation of the transcription factor NF-kappaB results in protection against apoptosis. We examined the molecular mechanisms involved in the induction of apoptosis by CDDP as regards both suppression of NF-kappaB and activation of caspases. Human oral squamous carcinoma cells (B88) were employed in this study. We found that CDDP treatment affected neither NF-kappaB activity nor the expression levels of antiapoptotic proteins, including TRAF-1, TRAF-2, and cFLIP, in B88 cells. However, two apoptosome molecules, cytochrome c and Apaf-1, were significantly augmented in the cytoplasm by CDDP treatment. Further, the activation of caspase-9 and caspase-3, downstream molecules leading to mitochondria-mediated apoptosis, were detected after treatment with CDDP. Finally, apoptosis was also clearly observed, as evidenced by cleavage of PARP through the activation of caspase-3. These findings suggest that CDDP exerts its apoptotic action by the mitochondria-mediated activation of caspases but not by the activation of caspases due to the inhibition of NF-kappaB activity that follows the suppression of antiapoptotic proteins.

  16. CD86 and beta2-adrenergic receptor signaling pathways, respectively, increase Oct-2 and OCA-B Expression and binding to the 3'-IgH enhancer in B cells.

    PubMed

    Podojil, Joseph R; Kin, Nicholas W; Sanders, Virginia M

    2004-05-28

    Stimulation of CD86 (formerly known as B7-2) and/or the beta2-adrenergic receptor on a CD40 ligand/interleukin-4-activated B cell increased the rate of mature IgG1 transcription. To identify the mechanism responsible for this effect, we determined whether CD86 and/or beta2-adrenergic receptor stimulation regulated transcription factor expression and binding to the 3'-IgH enhancer in vitro and in vivo. We showed that CD86 stimulation increased the nuclear localization of NF-kappaB1 (p50) and phosphorylated RelA (p65) and increased Oct-2 expression and binding to the 3'-IgH enhancer, in a protein kinase C-dependent manner. These effects were lost when CD86-deficient or NF-kappaB1-deficient B cells were used. CD86 stimulation also increased the level of IkappaB-alpha phosphorylation but in a protein kinase C-independent manner. Beta2-adrenergic receptor stimulation increased CREB phosphorylation, OCA-B expression, and OCA-B binding to the 3'-IgH enhancer in a protein kinase A-dependent manner, an effect lost when beta2-adrenergic receptor-deficient B cells were used. Also, the beta2-adrenergic receptor-induced increase in the level of mature IgG1 transcript was lost when OCA-B-deficient B cells were used. These data are the first to show that CD86 stimulation up-regulates the expression of the transcription factor Oct-2 in a protein kinase C- and NF-kappaB1-dependent manner, and that beta2-adrenergic receptor stimulation up-regulates the expression of the coactivator OCA-B in a protein kinase A-dependent manner to cooperate with Oct-2 binding to the 3'-IgH enhancer.

  17. Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex.

    PubMed

    Bergqvist, Simon; Croy, Carrie H; Kjaergaard, Magnus; Huxford, Tom; Ghosh, Gourisankar; Komives, Elizabeth A

    2006-07-07

    IkappaBalpha is an ankyrin repeat protein that inhibits NF-kappaB transcriptional activity by sequestering NF-kappaB outside of the nucleus in resting cells. We have characterized the binding thermodynamics and kinetics of the IkappaBalpha ankyrin repeat domain to NF-kappaB(p50/p65) using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR data showed that the IkappaBalpha and NF-kappaB associate rapidly but dissociate very slowly, leading to an extremely stable complex with a K(D,obs) of approximately 40 pM at 37 degrees C. As reported previously, the amino-terminal DNA-binding domain of p65 contributes little to the overall binding affinity. Conversely, helix four of p65, which forms part of the nuclear localization sequence, was essential for high-affinity binding. This was surprising, given the small size of the binding interface formed by this part of p65. The NF-kappaB(p50/p65) heterodimer and p65 homodimer bound IkappaBalpha with almost indistinguishable thermodynamics, except that the NF-kappaB p65 homodimer was characterized by a more favorable DeltaH(obs) relative to the NF-kappaB(p50/p65) heterodimer. Both interactions were characterized by a large negative heat capacity change (DeltaC(P,obs)), approximately half of which was contributed by the p65 helix four that was necessary for tight binding. This could not be accounted for readily by the small loss of buried non-polar surface area and we hypothesize that the observed effect is due to additional folding of some regions of the complex.

  18. Nuclear factor-kappa B decoy suppresses nerve injury and improves mechanical allodynia and thermal hyperalgesia in a rat lumbar disc herniation model.

    PubMed

    Suzuki, Munetaka; Inoue, Gen; Gemba, Takefumi; Watanabe, Tomoko; Ito, Toshinori; Koshi, Takana; Yamauchi, Kazuyo; Yamashita, Masaomi; Orita, Sumihisa; Eguchi, Yawara; Ochiai, Nobuyasu; Kishida, Shunji; Takaso, Masashi; Aoki, Yasuchika; Takahashi, Kazuhisa; Ohtori, Seiji

    2009-07-01

    Nuclear factor-kappa B (NF-kappaB) is a gene transcriptional regulator of inflammatory cytokines. We investigated the transduction efficiency of NF-kappaB decoy to dorsal root ganglion (DRG), as well as the decrease in nerve injury, mechanical allodynia, and thermal hyperalgesia in a rat lumbar disc herniation model. Forty rats were used in this study. NF-kappaB decoy-fluorescein isothiocyanate (FITC) was injected intrathecally at the L5 level in five rats, and its transduction efficiency into DRG measured. In another 30 rats, mechanical pressure was placed on the DRG at the L5 level and nucleus pulposus harvested from the rat coccygeal disc was transplanted on the DRG. Rats were classified into three groups of ten animals each: a herniation + decoy group, a herniation + oligo group, and a herniation only group. For behavioral testing, mechanical allodynia and thermal hyperalgesia were evaluated. In 15 of the herniation rats, their left L5 DRGs were resected, and the expression of activating transcription factor 3 (ATF-3) and calcitonin gene-related peptide (CGRP) was evaluated immunohistochemically compared to five controls. The total transduction efficiency of NF-kappaB decoy-FITC in DRG neurons was 10.8% in vivo. The expression of CGRP and ATF-3 was significantly lower in the herniation + decoy group than in the other herniation groups. Mechanical allodynia and thermal hyperalgesia were significantly suppressed in the herniation + decoy group. NF-kappaB decoy was transduced into DRGs in vivo. NF-kappaB decoy may be useful as a target for clarifying the mechanism of sciatica caused by lumbar disc herniation.

  19. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    PubMed

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  20. Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients

    PubMed Central

    Rhoads, Mary G.; Kandarian, Susan C.; Pacelli, Fabio; Doglietto, Giovan Battista; Bossola, Maurizio

    2011-01-01

    The mechanisms eliciting cancer cachexia are not well understood. Wasting of skeletal muscle is problematic because it is responsible for the clinical deterioration in cancer patients and the ability to tolerate cancer treatment. Animal studies suggest that nuclear factor of kappa B (NF-κB) signaling is important in the progression of muscle wasting due to several types of tumors. However, there are no published studies in humans on a role for NF-κB in cancer cachexia. In this project we studied the rectus abdominis muscle from patients with gastric tumors (n=14) and age matched control subjects (n=10) for markers of NF-κB activation. Nuclear levels of p65, p50, and Bcl-3 were the same in both groups of subjects. However, phospho-p65 was elevated by 25% in muscles of cancer patients. In addition, expression of the inhibitor of kappa B alpha (IκBα), was decreased by 25% in cancer patients. Decreased expression of IκBα reflects its degradation by one of the IκBα kinases and is a marker of NF-κB activation. Interestingly, there was no correlation between the stage of cancer and the extent of IκBα decrease, nor was there a correlation between the degree of cachexia and decreased IκBα levels. This suggests that the activation of NF-κB is an early and sustained event in gastric cancer. The work implicates the NF-κB signaling in the initiation and progression of cancer cachexia in humans and demonstrates the need for additional study of this pathway; it also recommends NF-κB signaling as a therapeutic target for the amelioration of cachexia as has been suggested from rodent studies. PMID:19857958

  1. 1-Cinnamoyl-3,11-dihydroxymeliacarpin is a natural bioactive compound with antiviral and nuclear factor-{kappa}B modulating properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barquero, Andrea A.; Michelini, Flavia M.; Alche, Laura E.

    2006-06-09

    We have reported the isolation of the tetranortriterpenoid 1-cinnamoyl-3,11-dihydroxymeliacarpin (CDM) from partially purified leaf extracts of Melia azedarach L. (MA) that reduced both, vesicular stomatitis virus (VSV) and Herpes simplex virus type 1 (HSV-1) multiplication. CDM blocks VSV entry and the intracellular transport of VSV-G protein, confining it to the Golgi apparatus, by pre- or post-treatment, respectively. Here, we report that HSV-1 glycoproteins were also confined to the Golgi apparatus independently of the nature of the host cell. Considering that MA could be acting as an immunomodulator preventing the development of herpetic stromal keratitis in mice, we also examined anmore » eventual effect of CDM on NF-{kappa}B signaling pathway. CDM is able to impede NF-{kappa}B activation in HSV-1-infected conjunctival cells and leads to the accumulation of p65 NF-{kappa}B subunit in the cytoplasm of uninfected treated Vero cells. In conclusion, CDM is a pleiotropic agent that not only inhibits the multiplication of DNA and RNA viruses by the same mechanism of action but also modulates the NF-{kappa}B signaling pathway.« less

  2. Thalidomide in rat liver cirrhosis: blockade of tumor necrosis factor-alpha via inhibition of degradation of an inhibitor of nuclear factor-kappaB.

    PubMed

    Paul, Shelley Chireyath; Lv, Peng; Xiao, Yan-Jv; An, Ping; Liu, Shi-Quan; Luo, He-Sheng

    2006-01-01

    Thalidomide inhibited tumor necrosis factor-alpha (TNF-alpha) effectively in many trials. The aim of this study was to investigate the effect of thalidomide on the expression of nuclear factor-kappaB (NF-kappaB), inhibitor of NF-kappaB (IkappaB) and TNF-alpha in a rat model of liver cirrhosis. Liver cirrhosis was achieved by intraperitoneal injection of carbon tetrachloride thrice weekly, and thalidomide (10 or 100 mg/kg/day) was given daily by intragastric route for 8 weeks. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), prealbumin (PA), hyaluronic acid (HA) and laminin (LN), and hydroxyproline (HYP), NF-kappaBp65, alpha-smooth muscle actin (alpha-SMA) protein and TNF-alpha mRNA were studied in the liver, IkappaBalpha and TNF-alpha protein in the cytoplasm and NF-kappaBp65 protein in the nucleus. Compared with nontreated cirrhotic rats, the histopathology of rats given thalidomide (100 mg/kg) was significantly better. Serum ALT, AST, HA and LN and HYP content in the liver were significantly decreased and PA was elevated (p < 0.01) in this group; the expression of TNF-alpha mRNA and protein, NF-kappaBp65 and alpha-SMA were significantly decreased and IkappaBalpha protein was also elevated (p < 0.01). Thalidomide downregulates NF-kappaB-induced TNF-alpha and activates hepatic stellate cells (HSC) via inhibition of IkappaB degradation to prevent liver cirrhosis. Copyright 2006 S. Karger AG, Basel.

  3. Involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940 in male rats.

    PubMed

    Marín, S; Marco, E; Biscaia, M; Fernández, B; Rubio, M; Guaza, C; Schmidhammer, H; Viveros, M P

    2003-02-01

    We have studied the possible interaction between three selective opioid-receptor antagonists, nor-binaltorphimine (NB: kappa) (5 mg/kg), cyprodime (CY: mu) (10 mg/kg) and naltrindole (NTI: delta) (1 mg/kg), and the cannabinoid receptor agonist CP 55,940, in the modulation of anxiety (plus-maze) and adrenocortical activity (serum corticosterone levels by radioimmunoassay) in male rats. The holeboard was used to evaluate motor activity and directed exploration. CP 55,940 (75 microg/kg, but not 10 microg/kg) induced an anxiogenic-like effect, which was antagonised by NB. The other effects of CP 55,940 (75 microg/kg), a decreased holeboard activity and stimulation of adrenocortical activity, were not antagonised by any of the three opioid receptor antagonists. CY and NTI, when administered alone, induced marked reductions in motor activity, anxiogenic-like effects and stimulation of adrenocortical activity. The selective kappa-opioid receptor antagonist NB, on its own, did not modify the level of anxiety but stimulated adrenocortical activity. We provide the first pharmacological evidence about the involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940.

  4. Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132.

    PubMed

    Fiedler, M A; Wernke-Dollries, K; Stark, J M

    1998-08-01

    The working hypothesis of the studies described herein was that inhibition of proteasome-mediated IkappaB degradation would inhibit TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, interleukin-8 (IL-8) gene transcription, and IL-8 protein release in A549 cells. Mutational analysis of the 5' flanking region of the IL-8 gene confirmed that an intact NF-kappaB site is necessary for TNF-alpha-induced IL-8 gene transcription. The addition of TNF-alpha to A549 cells resulted in rapid loss of IkappaB from the cytoplasm of cells, associated with a corresponding increase in NF-kappaB-binding activity in nuclear extracts from the cells. However, pretreatment of the cells with the proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132, 10 microM) reversed the effects of TNF-alpha on IL-8 release from A549 cells (as determined with an enzyme-linked immunosorbent assay [ELISA]) and on IL-8 gene transcription (as determined with reporter-gene assays). MG-132 reversed the effects of TNF-alpha on IkappaB degradation as determined by Western blot analysis. IkappaB phosphorylation and ubiquination were not altered by MG-132, which implies that the effects of MG-132 were secondary to proteasome inhibition. MG-132 also reversed the increase in NF-kappaB binding in nuclear extracts from TNF-alpha-treated cells. These studies show that inhibition of proteasome-mediated IkappaB degradation results in inhibition of TNF-alpha induced IL-8 production in A549 cells by limiting NF-kappaB-mediated gene transcription.

  5. Reactivity of the Ni-->B dative sigma-bond in the nickel boratrane compounds [kappa4-B(mimBut)3]NiX (X=Cl, OAc, NCS, N3): synthesis of a series of B-functionalized tris(2-mercapto-1-tert-butylimidazolyl)borato complexes, [YTmBut)]NiZ.

    PubMed

    Pang, Keliang; Tanski, Joseph M; Parkin, Gerard

    2008-02-28

    The nickel boratrane complexes [kappa4-B(mimBut))3]Ni(kappa1-OAc), [kappa4-B(mimBut)3]NiNCS and [kappa4-B(mimBut)3]NiN3 are obtained via metathesis of the chloride ligand of [kappa4-B(mimBut)3]NiCl with TlOAc, KSCN and NaN3, respectively; the Ni-->B bond in these complexes is a site of reactivity, thereby providing a means of synthesizing nickel complexes that feature B-functionalized tris(mercaptoimidazolyl)borate derivatives, [YTmBut]NiZ.

  6. FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappaB and activating protein-1.

    PubMed

    Lungu, Gina; Covaleda, Lina; Mendes, Odete; Martini-Stoica, Heidi; Stoica, George

    2008-06-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tumor invasion and metastasis. Here, we investigate the effect of fibroblast growth factor-1 (FGF-1) on the expression of MMP-9 in ENU1564, an ethyl-N-nitrosourea-induced rat mammary adenocarcinoma cell line. We observed that FGF-1 induces a dose-dependent increase in MMP-9 mRNA, protein, and activity in ENU1564 cells. To gain insight into the molecular mechanism of MMP-9 regulation by FGF-1, we investigated the role of components of PI3K-Akt and MEK1/2-ERK signaling pathways in our system since NF-kappaB and AP-1 transcription factor binding sites have been characterized in the upstream region of the MMP-9 gene. We demonstrated that FGF-1 increases Akt phosphorylation, triggers nuclear translocation of NF-kappaBp65, and enhances degradation of cytoplasmic IkappaBalpha. Pretreatment of cells with LY294002, a PI3K inhibitor, significantly inhibited MMP-9 protein expression in FGF-1-treated cells. Conversely, our data show that FGF-1 increases ERK phosphorylation in ENU1564 cells, increases c-jun and c-fos mRNA expression in a time-dependent manner, and triggers nuclear translocation of c-jun. Pretreatment of cells with PD98059, a MEK1/2 inhibitor significantly inhibited MMP-9 protein expression in FGF-1 treated cells. Finally, we observed increased DNA binding of NF-kappaB and AP-1 in FGF-1-treated cells and that mutation of either NF-kappaB or AP-1 response elements prevented MMP-9 promoter activation by FGF-1. Taken together, these results demonstrated that FGF-1-induced MMP-9 expression in ENU1564 cells is associated with increasing DNA binding activities of NF-kappaB and AP-1 and involve activation of a dual signaling pathway, PI3K-Akt and MEK1/2-ERK. (c) 2007 Wiley-Liss, Inc.

  7. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ci Xinxin; Song Yu; Zeng Fanqin

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS.more » Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.« less

  8. Protective effects of grape seed proanthocyanidin extracts on cerebral cortex of streptozotocin-induced diabetic rats through modulating AGEs/RAGE/NF-kappaB pathway.

    PubMed

    Lu, Mei; Xu, Ling; Li, Baoying; Zhang, Weidong; Zhang, Chengmei; Feng, Hong; Cui, Xiaopei; Gao, Haiqing

    2010-01-01

    Diabetic encephalopathy is a severe complication in patients with long-term hyperglycemia. Oxidative stress is thought to be closely implicated in this disorder, so in this study, we examined whether grape seed proanthocyanidin extract (GSPE), a naturally occurring antioxidant derived from grape seeds, could reduce the injuries in the cerebral cortex of diabetic rats by modulating advanced glycation end products (AGEs)/the receptor for AGEs (RAGE)/nuclear factor-kappa B p65 (NF-kappaB p65) pathway, which is crucial in oxidative stress. Body weight and serum AGEs were tested; cerebral cortexes were isolated for morphological observations and the pyramidal cell layers were immunohistochemically stained for the detection of RAGE, NF-kappaB p65, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) as well. For RAGE and NF-kappaB p65, quantitative reverse transcriptase coupled to polymerase chain reaction (RT-PCR) was employed for determination of mRNA levels, and western blot was used to detect protein expression. Our results showed that long term hyperglycemia in diabetic rats caused the degeneration of neurons and the up-regulation of serum AGEs, and also the up-regulation of RAGE, NF-kappaB p65, VCAM-1 and ICAM-1 in the brain. We found that GSPE treatment improved the pathological changes of diabetic rats by modulating the AGEs/RAGE/NF-kappaB p65 pathway. This study enables us to further understand the key role that the AGEs/RAGE/NF-kappaB pathway plays in the pathogenesis of diabetic encephalopathy, and confirms that GSPE might be a therapeutical means to the prevention and treatment of this disorder.

  9. Nuclear translocation and DNA-binding activity of NFKB (NF-kappaB) after exposure of human monocytes to pulsed ultra-wideband electromagnetic fields (1 kV/cm) fails to transactivate kappaB-dependent gene expression.

    PubMed

    Natarajan, M; Nayak, B K; Galindo, C; Mathur, S P; Roldan, F N; Meltz, M L

    2006-06-01

    The objective of this study was to investigate whether exposure of human monocytes to a pulsed ultra-wideband electromagnetic field (EMF) of 1 kV/cm average peak power triggers a signaling pathway responsible for the transcriptional regulation of NFKB (NF-kappaB)-dependent gene expression. Human Mono Mac 6 (MM6) cells were exposed intermittently to EMF pulses for a total of 90 min. The pulse width was 0.79+/-0.01 ns and the pulse repetition rate was 250 pps. The temperature of the medium was maintained at 37 degrees C in both sham- and EMF-exposed flasks. Total NFKB DNA-binding activity was measured in the nuclear extracts by the electrophoretic mobility shift assay. Cells exposed to the EMFs and incubated for 24 h postexposure showed a 3.5+/-0.2-fold increase in the NFKB DNA-binding activity. Since activation of NFKB was observed, the possibility of kappaB-dependent gene expression in response to exposure to the EMFs was investigated using NFKB signal-specific gene arrays. The results revealed no difference in the NFKB-dependent gene expression profiles at 8 or 24 h postexposure, indicating that activated NFKB does not lead to the differential expression of kappaB-dependent target genes. To determine whether the absence of the kappaB-dependent gene expression was due to compromised transcriptional regulation of NFKB, the functional activity of NFKB was examined in cells transiently transfected with Mercury Pathway constructs containing 4x NFKB binding sites associated either with the luciferase reporter system or a control vector. Pulsed EMF exposure did not induce NFKB-driven luciferase activity in these cells, indicating that the activation of NFKB at 24 h after the 1 kV/cm EMF exposure is functionally inactive. From these results, it is clear that the EMF-induced NFKB activation is only a transient response, with minimal or no downstream effect.

  10. Inhibition of EGR-1 and NF-kappa B gene expression by dexamethasone during phorbol ester-induced human monocytic differentiation.

    PubMed

    Hass, R; Brach, M; Gunji, H; Kharbanda, S; Kufe, D

    1992-10-20

    The treatment of human myeloid leukemia cells (HL-60, U-937, THP-1) with 12-O-tetradecanoylphorbol-13-acetate (TPA) is associated with growth arrest and appearance of a differentiated monocytic phenotype. While previous studies have reported that the glucocorticoid dexamethasone blocks phenotypic characteristics of monocytic differentiation, we demonstrated in the present work that dexamethasone delays the effects of TPA on the loss of U-937 cell proliferation. We also demonstrated that this glucocorticoid inhibits TPA-induced increases in expression of the EGR-1 early response gene. The results of nuclear run-on assays and half-life experiments indicated that this effect of dexamethasone is regulated at the post-transcriptional level. Similar studies were performed for the NF-kappa B gene. While TPA treatment was associated with transient increases in NF-kappa B mRNA levels, this induction was blocked by dexamethasone. In contrast, dexamethasone had no significant effect on the activation of pre-existing NF-kappa B protein as determined in DNA-binding assays. Taken together, these findings suggest that the activated glucocorticoid receptor inhibits signaling pathways which include expression of the EGR-1 and NF-kappa B genes and that such effects may contribute to a block in TPA-induced monocytic differentiation.

  11. Methyl-{beta}-cyclodextrin enhances the susceptibility of human breast cancer cells to carboplatin and 5-fluorouracil: Involvement of Akt, NF-{kappa}B and Bcl-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Ankur Kumar; Singh, Sandeep; Chhipa, Rishi Raj

    2006-10-15

    The response rates of extensively used chemotherapeutic drugs, carboplatin (Carb) or 5-fluorouracil (5-FU) are relatively disappointing because of considerable side effects associated with their high-dose regimen. In the present study, we determined whether treatment with a cholesterol depleting agent, methyl-{beta}-cyclodextrin (MCD), enhances the weak efficacy of low doses of Carb or 5-FU in human breast cancer cells. Data demonstrate that pretreatment with MCD significantly potentiates the cytotoxic activity of Carb and 5-FU in both MCF-7 and MDA-MB-231. Furthermore, we explored the molecular basis of enhanced cytotoxicity, and our data revealed that low-dose treatment with these drugs in MCD pretreated cellsmore » exhibited significantly decreased Akt phosphorylation, NF-{kappa}B activity and down-regulation in expression of anti-apoptotic protein Bcl-2. In addition, MCD pretreated cells demonstrated an increased intracellular drug accumulation as compared to cells treated with drugs alone. Taken together, our data provide the basis for potential therapeutic application of MCD in combination with other conventional cytotoxic drugs to facilitate reduction of drug dosage that offers a better chemotherapeutic approach with low toxicity.« less

  12. NF-KappaB2/p52 Activation and Androgen Receptor Signaling in Prostate Cancer

    DTIC Science & Technology

    2011-08-01

    biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells expressing NF-kappaB2/p52. Luciferase assays...RESULTS: Expression levels of androgen biosynthetic enzymes including AKR1C3, CYP17A1, HSD3B2, and SRD5A1 were found to be elevated in CaP cells

  13. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    PubMed Central

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  14. Green tea polyphenols-induced apoptosis in human osteosarcoma SAOS-2 cells involves a caspase-dependent mechanism with downregulation of nuclear factor-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bin Hafeez, Bilal; Ahmed, Salahuddin; Wang, Naizhen

    2006-10-01

    Development of chemotherapy resistance and evasion from apoptosis in osteosarcoma, a primary malignant bone tumor, is often correlated with constitutive nuclear factor-{kappa}B (NF-{kappa}B) activation. Here, we investigated the ability of a polyphenolic fraction of green tea (GTP) that has been shown to have antitumor effects on various malignant cell lines to inhibit growth and induce apoptosis in human osteosarcoma SAOS-2 cells. Treatment of SAOS-2 cells with GTP (20-60 {mu}g/ml) resulted in reduced cell proliferation and induction of apoptosis, which correlated with decreased nuclear DNA binding of NF-{kappa}B/p65 and lowering of NF-{kappa}B/p65 and p50 levels in the cytoplasm and nucleus. GTPmore » treatment of cells reduced I{kappa}B-{alpha} phosphorylation but had no effect on its protein expression. Furthermore, GTP treatment resulted in the inhibition of IKK-{alpha} and IKK-{beta}, the upstream kinases that phosphorylate I{kappa}B-{alpha}. The increase in apoptosis in SAOS-2 cells was accompanied with decrease in the protein expression of Bcl-2 and concomitant increase in the levels of Bax. GTP treatment of SAOS-2 cells also resulted in significant activation of caspases as was evident by increased levels of cleaved caspase-3 and caspase-8 in these cells. Treatment of SAOS-2 cells with a specific caspase-3 inhibitor Ac-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO) and general caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (OMe)-fluoromethyl ketone (Z-VAD-FMK) rescued SAOS-2 cells from GTP-induced apoptosis. Taken together, these results indicate that GTP is a candidate therapeutic for osteosarcoma that mediates its antiproliferative and apoptotic effects via activation of caspases and inhibition of NF-{kappa}B.« less

  15. BCL10 aberations and NF-kappa B activation involving p65 are absent or rare in primary gastric MALT lymphoma.

    PubMed

    Hajder, Jelena; Marisavljević, Dragomir; Stanisavljević, Natasa; Mihaljević, Biljana; Kovcin, Vladimir; Marković, Olivera; Zivković, Radmila

    2014-11-01

    Mucosa-associated lymphoid tissue (MALT) lymphoma accounts for 5-17% non-Hodgkin lymphomas (NHL). The molecular pathogenesis of MALT lymphomas is not well-established. The aim of this study was to evaluate immunohistochemically determined nuclear coexpression of BCL10 and NF-kappaB (NF-kappaB) in tumor cells of gastric MALT lymphoma and its impact on the patogenesis and outcome of the disease. Medical records of 35 patients with newly diagnosed gastric MALT lymphoma were analyzed and biopsy specimens were immunostained for BCL10 and NF-kappaB expression (p65 subunit). The median age of 35 patients diagnosed with gastric MALT lymphoma was 63.5 years (male/female = 21/14). Symptoms were present in 23/35 (65.7%) patients with the weight loss as the most common symptom. Gastric MALT lymphomas were usually localized in the stomach corpus and corpus and antrum (45.7% and 31.2%, respectively). H. pylon infection was confirmed in 20 out of 30 (66.7%) patients. Treatment options were as follows: immunochemotherapy in 10 (28.5%) patients, surgery in 9 (25.8%) patients, combined surgery and chemotherapy in 14 (40%) patients and supportive measures in 2 (5.7%) patients. Complete remission was achieved in 13 (37.10/) patients and partial remission in two (5.7%/) patients. Sixteen (45.7%/) patients had disease progression (p < 0.001). Cytoplasmatic expression of BCL10 in tumor cells was detected in 19 (54.3%) specimens. Nuclear expression was detected in no specimen. Cytoplasmic expression of NF-kappaB was present in 22 (65.7%) specimens, but nuclear expression was not detected in any specimens. Nuclear expressions (activation)of NF-kappaB p65 subunit and BCL10 were not detected in specimens of gastric MALT lymphoma. The correlation of nuclear coexpression of BCL10 and NF-kappaB in gastric MALT lymphoma was not established. These results indicate that other mechanisms and signal pathways are active in lymphogenesis of gastric MALT lymphoma, as that apoptotic inhibition is not

  16. Nuclear factor-kappaB bioluminescence imaging-guided transcriptomic analysis for the assessment of host-biomaterial interaction in vivo.

    PubMed

    Hsiang, Chien-Yun; Chen, Yueh-Sheng; Ho, Tin-Yun

    2009-06-01

    Establishment of a comprehensive platform for the assessment of host-biomaterial interaction in vivo is an important issue. Nuclear factor-kappaB (NF-kappaB) is an inducible transcription factor that is activated by numerous stimuli. Therefore, NF-kappaB-dependent luminescent signal in transgenic mice carrying the luciferase genes was used as the guide to monitor the biomaterials-affected organs, and transcriptomic analysis was further applied to evaluate the complex host responses in affected organs in this study. In vivo imaging showed that genipin-cross-linked gelatin conduit (GGC) implantation evoked the strong NF-kappaB activity at 6h in the implanted region, and transcriptomic analysis showed that the expressions of interleukin-6 (IL-6), IL-24, and IL-1 family were up-regulated. A strong luminescent signal was observed in spleen on 14 d, suggesting that GGC implantation might elicit the biological events in spleen. Transcriptomic analysis of spleen showed that 13 Kyoto Encyclopedia of Genes and Genomes pathways belonging to cell cycles, immune responses, and metabolism were significantly altered by GGC implants. Connectivity Map analysis suggested that the gene signatures of GGC were similar to those of compounds that affect lipid or glucose metabolism. GeneSetTest analysis further showed that host responses to GGC implants might be related to diseases states, especially the metabolic and cardiovascular diseases. In conclusion, our data provided a concept of molecular imaging-guided transcriptomic platform for the evaluation and the prediction of host-biomaterial interaction in vivo.

  17. Screening for anti-inflammatory activity of 12 Arnica (Asteraceae) species assessed by inhibition of NF-kappaB and release of human neutrophil elastase.

    PubMed

    Ekenäs, Catarina; Zebrowska, Anna; Schuler, Barbara; Vrede, Tobias; Andreasen, Katarina; Backlund, Anders; Merfort, Irmgard; Bohlin, Lars

    2008-12-01

    Several species in the genus Arnica have been used in traditional medicine to treat inflammatory-related disorders. Extracts of twelve Arnica species and two species closely related to arnica ( Layia hieracioides and Madia sativa) were investigated for inhibition of human neutrophil elastase release and inhibition of transcription factor NF-kappaB. Statistical analyses reveal significant differences in inhibitory capacities between extracts. Sesquiterpene lactones of the helenanolide type, of which some are known inhibitors of human neutrophil elastase release and NF-kappaB, are present in large amounts in the very active extracts of A. montana and A. chamissonis. Furthermore, A. longifolia, which has previously not been investigated, shows a high activity similar to that of A. montana and A. chamissonis in both bioassays. Sesquiterpene lactones of the xanthalongin type are present in large amounts in A. longifolia and other active extracts and would be interesting to evaluate further. COX-2:cyclooxygenase 2 EMSA:electrophoretic mobility shift assay fMLP: N-formyl-methionyl-leucyl-phenylalanine HaCaT:human keratinocyte HNE:human neutrophil elastase IkappaB:inhibitory subunit of kappaB iNOS:inducible nitric oxide synthase NF-kappaB:nuclear factor kappaB PAF:platelet activating factor STL:sesquiterpene lactone TNF-alpha:tumor necrosis factor alpha.

  18. Rosiglitazone attenuates NF-{kappa}B-dependent ICAM-1 and TNF-{alpha} production caused by homocysteine via inhibiting ERK{sub 1/2}/p38MAPK activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yong-Ping; Liu, Yu-Hui; Chen, Jia

    2007-08-17

    Previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-{kappa}B) activation and homocysteine (Hcy)-induced cytokines expression in endothelial cells and vascular smooth muscle cells. However, the underlying mechanism remains illusive. In this study, we investigated the effects of Hcy on NF-{kappa}B-mediated sICAM-1, TNF-{alpha} production and the possible involvement of ERK{sub 1/2}/p38MAPK pathway. The effects of rosiglitazone intervention were also examined. Our results show that Hcy increased the levels of sICAM-1 and TNF-{alpha} in cultured human umbilical vein endothelial cells (HUVECs) in a time- and concentration-dependent manner. This effect was significantly depressed by rosiglitazone and different inhibitors (PDTC, NF-{kappa}B inhibitor; PD98059,more » MEK inhibitor; SB203580, p38MAPK specific inhibitor; and staurosporine, PKC inhibitor). Next, we investigated the effect of Hcy on ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B activity in HUVECs. The results show that Hcy activated both ERK{sub 1/2}/p38MAPK pathway and NF-{kappa}B-DNA-binding activity. These effects were markedly inhibited by rosiglitazone as well as other inhibitors (SB203580, PD98059, and PDTC). Further, the pretreatment of staurosporine abrogated ERK{sub 1/2}/p38MAPK phosphorylation, suggesting that Hcy-induced ERK{sub 1/2}/p38MAPK activation is associated with PKC activity. Our results provide evidence that Hcy-induced NF-{kappa}B activation was mediated by activation of ERK{sub 1/2}/p38MAPK pathway involving PKC activity. Rosiglitazone reduces the NF-{kappa}B-mediated sICAM-1 and TNF-{alpha} production induced by Hcy via inhibition of ERK{sub 1/2}/p38MAPK pa0011thw.« less

  19. The flavonoid, fisetin, inhibits UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells.

    PubMed

    Yao, Ke; Zhang, Li; Zhang, Yidong; Ye, PanPan; Zhu, Ning

    2008-01-01

    Ultraviolet (UV) radiation-induced oxidative stress plays a significant role in the progression of cataracts. This study investigated the photoprotective effect of fisetin on UV radiation-induced oxidative stress in human lens epithelial cells and the possible molecular mechanism involved. SRA01/04 cells exposed to different doses of ultraviolet B (UVB) were cultured with various concentrations of fisetin and subsequently monitored for cell viability by the 4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. The effect of fisetin on the generation of reactive oxygen species (ROS) of SRA01/04 cells was determined by flow cytometry. Translocation of nuclear factor kappa-B (NF-kappaB) was examined by immunocytochemistry. Expression of NF-kappaB/P65, inhibiter kappa B (IkappaB), and mitogen activated protein kinase (MAPK) proteins were measured by western blot. Treatment of SRA01/04 cells with fisetin inhibited UVB-induced cell death and the generation of ROS. Fisetin inhibited UVB-induced activation and translocation of NF-kappaB/p65, which was mediated through an inhibition of the degradation and activation of IkappaB. Fisetin also inhibited UVB-induced phosphorylation of the p38 and c-Jun N-terminal kinase (JNK) proteins of the MAPK family at various time points studied. The flavonoid, fisetin, could be useful in attenuation of UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells, which suggests that fisetin has a potential protective effect against cataractogenesis.

  20. Decursin inhibits induction of inflammatory mediators by blocking nuclear factor-kappaB activation in macrophages.

    PubMed

    Kim, Jung-Hee; Jeong, Ji-Hye; Jeon, Sung-Tak; Kim, Ho; Ock, Jiyeon; Suk, Kyoungho; Kim, Sang-In; Song, Kyung-Sik; Lee, Won-Ha

    2006-06-01

    In the course of screening inhibitors of matrix metalloproteinase (MMP)-9 induction in macrophages, we isolated decursin, a coumarin compound, from the roots of Angelicae gigas. As a marker for the screening and isolation, we tested expression of MMP-9 in RAW264.7 cells and THP-1 cells after treatment with bacterial lipopolysaccharide (LPS), the TLR-4 ligand. Decursin suppressed MMP-9 expression in cells stimulated by LPS in a dose-dependent manner at concentrations below 60 microM with no sign of cytotoxicity. The suppressive effect of decursin was observed not only in cells stimulated with ligands for TLR4, TLR2, TLR3, and TLR9 but also in cells stimulated with interleukin (IL)-1beta, and tumor necrosis factor (TNF)-alpha, indicating that the molecular target of decursin is common signaling molecules induced by these stimulants. In addition to the suppression of MMP-9 expression, decursin blocked nitric oxide production and cytokine (IL-8, MCP-1, IL-1beta, and TNF-alpha) secretion induced by LPS. To find out the molecular mechanism responsible for the suppressive effect of decursin, we analyzed signaling molecules involved in the TLR-mediated activation of MMP-9 and cytokines. Decursin blocked phosphorylation of IkappaB and nuclear translocation of NF-kappaB in THP-1 cells activated with LPS. Furthermore, expression of a luciferase reporter gene under the promoter containing NF-kappaB binding sites was blocked by decursin. These data indicate that decursin is a novel inhibitor of NF-kappaB activation in signaling induced by TLR ligands and cytokines.

  1. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less

  2. [Effects of granulocyte-macrophage colony stimulating factor on nuclear factor-KappaB activation in multiple organs of hemorrhage-induced acute lung injury in mice].

    PubMed

    Wang, Qian; Song, Yong; Shi, Yi

    2007-05-01

    To investigate the effects of nuclear factor-KappaB (NF-KappaB) activation in multiple organs of hemorrhage-induced acute lung injury (ALI) by the specific granulocyte-macrophage colony stimulating factor (GM-CSF)-neutralizing antibody (22E9) and dexamethasone (DEX) in mice. Twenty male C57BL/6 mice were used to reproduce a model of hemorrhagic shock by cardiac puncture. Before cardiac puncture, mice in different groups were transnasally administered with phosphate buffered solution (PBS, PCG group), PBS plus 1 microg 22E9 (HS1 group), PBS plus 10 microg 22E9 (HS10 group) and PBS plus 20 microg DEX (DEX group), respectively. In negative control group (NCG group) received cardiac puncture without shock followed by transnasal administration with PBS without shock. Lungs, hearts, livers and kidneys tissues of mice were harvested at 4 hours after hemorrhagic shock. The activities of NF-KappaB in different organs was determined by electrophoretic mobility shift assay (EMSA). The tumor necrosis factor-alpha (TNF-alpha) in lung and heart were determined by enzyme-linked immunosorbent assay (ELISA). 22E9 in both low or high doses could significantly inhibit NF-KappaB activities in lung, heart and liver, and elevated NF-KappaB activity in kidney compared with those of PCG group (all P<0.05). The effect of 22E9 was much better in HS1 group than in HS10 group (all P<0.05). DEX significantly strengthened NF-KappaB activity in kidney (P<0.05) and didn't significantly inhibit NF-KappaB activities in heart and liver compared with those of PCG group. 22E9 significantly inhibited TNF-alpha in lung and heart, while DEX significantly inhibited TNF-alpha in heart (all P<0.05). 22E9 can inhibit the NF-KappaB activation and inflammatory reaction in multiple organs after hemorrhage-induced ALI and reduce injury in multiple organs, while DEX has no significant effect.

  3. Effects of decoy molecules targeting NF-kappaB transcription factors in Cystic fibrosis IB3–1 cells

    PubMed Central

    Finotti, Alessia; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria; Mancini, Irene; Cabrini, Giulio; Saviano, Michele; Avitabile, Concetta; Romanelli, Alessandra; Gambari, Roberto

    2012-01-01

    One of the clinical features of cystic fibrosis (CF) is a deep inflammatory process, which is characterized by production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against CF to reduce the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. In order to demonstrate that TFD against NF-kappaB interferes with the NF-kappaB pathway we proved, by chromatin immunoprecipitation (ChIP) that treatment with TFD oligodeoxyribonucleotides of cystic fibrosis IB3–1 cells infected with Pseudomonas aeruginosa leads to a decrease occupancy of the Il-8 gene promoter by NF-kappaB factors. In order to develop more stable therapeutic molecules, peptide nucleic acids (PNAs) based agents were considered. In this respect PNA-DNA-PNA (PDP) chimeras are molecules of great interest from several points of view: (1) they can be complexed with liposomes and microspheres; (2) they are resistant to DNases, serum and cytoplasmic extracts; (3) they are potent decoy molecules. By using electrophoretic mobility shift assay and RT-PCR analysis we have demonstrated that (1) the effects of PDP/PDP NF-kappaB decoy chimera on accumulation of pro-inflammatory mRNAs in P.aeruginosa infected IB3–1 cells reproduce that of decoy oligonucleotides; in particular (2) the PDP/PDP chimera is a strong inhibitor of IL-8 gene expression; (3) the effect of PDP/PDP chimeras, unlike those of ODN-based decoys, are observed even in the absence of protection with lipofectamine. These informations are of great impact, in our opinion, for the development of stable molecules to be used in non-viral gene therapy of cystic fibrosis. PMID:22772035

  4. Inhibition of Nuclear Factor-Kappa B Activation Decreases Survival of Mycobacterium tuberculosis in Human Macrophages

    PubMed Central

    Chmura, Kathryn; Ovrutsky, Alida R.; Su, Wen-Lin; Griffin, Laura; Pyeon, Dohun; McGibney, Mischa T.; Strand, Matthew J.; Numata, Mari; Murakami, Seiji; Gaido, Loretta; Honda, Jennifer R.; Kinney, William H.; Oberley-Deegan, Rebecca E.; Voelker, Dennis R.; Ordway, Diane J.; Chan, Edward D.

    2013-01-01

    Nuclear factor-kappa B (NFκB) is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB). However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase) or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy. PMID:23634218

  5. African Swine Fever Virus IAP-Like Protein Induces the Activation of Nuclear Factor Kappa B

    PubMed Central

    Rodríguez, Clara I.; Nogal, María L.; Carrascosa, Angel L.; Salas, María L.; Fresno, Manuel; Revilla, Yolanda

    2002-01-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-κB. Thus, transient transfection of the viral IAP increases the activity of an NF-κB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-κB-dependent gene. NF-κB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-κB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-κB activity seems to be the consequence of higher IκB kinase (IKK) basal activity in these cells. The NF-κB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2. PMID:11907233

  6. Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications.

    PubMed

    Nourmohammadi, Jhamak; Roshanfar, Fahimeh; Farokhi, Mehdi; Haghbin Nazarpak, Masoumeh

    2017-07-01

    The combination of protein-polysaccharide in scaffolding together with the ability to induce bone-like apatite formation has become a promising approach to mimic extracellular matrix composition. In the present study, we developed and characterized new bioactive composite scaffolds from kappa-carrageenan/silk fibroin for bone regeneration applications. Three dimensional (3D) scaffolds were fabricated by adding various amounts of carrageenan to a silk fibroin solution, followed by freeze-drying. Various characterization techniques were applied to analyze such items as the structure, morphology, compressive strength, and bone-like apatite mineralization of the composites, which were then compared to those of pure fibroin scaffolds. The results demonstrated the formation of a highly porous structure with interconnected pores. The mean pore size and porosity both increased by increasing carrageenan content. Moreover, the addition of carrageenan to silk fibroin led to the formation of a bone-like apatite layer throughout the scaffolds after 7days of soaking them in simulated body fluid. Osteoblast-like cell (MG 63) culture experiments indicated that all scaffolds are biocompatible. The cells attached well to the surfaces of all scaffolds and tended to join their adjacent cells. However, higher carrageenan content led to better cellular proliferation and higher Alkaline phosphatase expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter.

    PubMed

    Borghaei, Ruth C; Rawlings, P Lyle; Javadi, Masoud; Woloshin, Joanna

    2004-03-26

    A 5T/6T polymorphic site in the matrix metalloproteinase-3 (MMP-3) promoter has been identified as a repressor element involved in inhibiting induction of MMP-3 transcription by interleukin 1; and the 6T allele has been associated with decreased expression of MMP-3 as compared to the 5T allele. Zinc-binding protein-89 (ZBP-89) was cloned from a yeast one-hybrid assay via its ability to interact with this site, but when the protein was over-expressed, it resulted in activation of the MMP-3 promoter rather than repression. Here we show that in nuclear extracts isolated from human gingival fibroblasts stimulated with IL-1, this site is bound by p50 and p65 components of NF-kappaB in addition to ZBP-89, and that recombinant p50 binds preferentially to the 6T binding site. These results are consistent with a role for NF-kappaB in limiting the cytokine induced expression of MMP-3.

  8. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} induces renal epithelial cell death through NF-{kappa}B-dependent and MAPK-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dae Sik; Kwon, Chae Hwa; Park, Ji Yeon

    2006-11-01

    The peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) ligand 15d-PGJ{sub 2} induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-{kappa}B in opossum kidney (OK) cell death induced by 15d-PGJ{sub 2}. Treatment of OK cells with 15d-PGJ{sub 2} resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ{sub 2} increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ{sub 2}-induced cell death was also prevented by these antioxidants, suggesting thatmore » the cell death was associated with ROS generation. The PPAR{gamma} antagonist GW9662 did not prevent the 15d-PGJ{sub 2}-induced cell death. 15d-PGJ{sub 2} caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ{sub 2}-induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ{sub 2} inhibited the NF-{kappa}B transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-{kappa}B subunit p65 and impairment in DNA binding. Inhibition of NF-{kappa}B with a NF-{kappa}B specific inhibitor pyrrolidinecarbodithioate and transfection with I{kappa}B{alpha} (S32A/36A) caused cell death. These results suggest that the 5d-PGJ{sub 2}-induced OK cell death was associated with ROS production and NF-{kappa}B inhibition, but not with MAPK activation.« less

  9. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway.

    PubMed

    Yu, Nan; Wang, Sinian; Song, Xiujun; Gao, Ling; Li, Wei; Yu, Huijie; Zhou, Chuanchuan; Wang, Zhenxia; Li, Fengsheng; Jiang, Qisheng

    2018-04-01

    For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.

  10. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  11. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats.

    PubMed

    Ochaion, A; Bar-Yehuda, S; Cohen, S; Amital, H; Jacobson, K A; Joshi, B V; Gao, Z G; Barer, F; Patoka, R; Del Valle, L; Perez-Liz, G; Fishman, P

    2008-08-15

    The A(3) adenosine receptor (A(3)AR) is over-expressed in inflammatory cells and was defined as a target to combat inflammation. Synthetic agonists to this receptor, such as IB-MECA and Cl-IB-MECA, exert an anti-inflammatory effect in experimental animal models of adjuvant- and collagen-induced arthritis. In this study we present a novel A(3)AR agonist, CF502, with high affinity and selectivity at the human A(3)AR. CF502 induced a dose dependent inhibitory effect on the proliferation of fibroblast-like synoviocytes (FLS) via de-regulation of the nuclear factor-kappa B (NF-kappaB) signaling pathway. Furthermore, CF502 markedly suppressed the clinical and pathological manifestations of adjuvant-induced arthritis (AIA) in a rat experimental model when given orally at a low dose (100 microg/kg). As is typical of other G-protein coupled receptors, the A(3)AR expression level was down-regulated shortly after treatment with agonist CF502 in paw and in peripheral blood mononuclear cells (PBMCs) derived from treated AIA animals. Subsequently, a decrease in the expression levels of protein kinase B/Akt (PKB/Akt), IkappaB kinase (IKK), I kappa B (IkappaB), NF-kappaB and tumor necrosis factor-alpha (TNF-alpha) took place. In addition, the expression levels of glycogen synthase kinase-3 beta (GSK-3beta), beta-catenin, and poly(ADP-ribose)polymerase (PARP), known to control the level and activity of NF-kappaB, were down-regulated upon treatment with CF502. Taken together, CF502 inhibits FLS growth and the inflammatory manifestations of arthritis, supporting the development of A(3)AR agonists for the treatment of rheumatoid arthritis.

  12. Lithospermum erythrorhizon extract inhibits Der p2-induced inflammatory response through alleviation of thymic stromal lymphopoietin, nuclear factor Kappa B, and inflammasome expression in human bronchial epithelial cells.

    PubMed

    Yen, Chung-Yang; Chiang, Wen-Dee; Liu, Shang-Yong; Wang, Kun-Teng; Liao, En-Chih; Hsieh, Ching-Liang

    2017-04-06

    Lithospermum erythrorhizon (LE) and Angelica sinensis (AS), widely used in several folk medicine for wound, pus discharge and dermatitis for the history of several hundred years in Asian countries. To investigate the therapeutic effect of LE and AS on Der p2-induced inflammatory response in human bronchial epithelial (BEAS-2B) cells. The effects of Der p2 stimulation on thymic stromal lymphopoietin (TSLP), the nuclear factor kappa B (NF-κB) pathway, the inflammasome (specifically, the apoptosis speck-like protein [ASC] and nod-like receptor 3 [NLRP3]), Caspase-1 and the signal transducer and activator of transcription (STAT) 3 pathway were evaluated in the human bronchial epithelial (BEAS-2B) cells. The results indicated that LE, AS, and LE+AS reduced TSLP, I kappa B kinase-α, and NLRP3 levels; LE and AS reduced Caspase-1; LE and LE+AS also reduced NF-κB p50, NF-κB p65, ASC, and STAT3 levels. Both LE and AS aqueous extracts exert anti-inflammatory effects in Der p2-stimulated BEAS-2B cells. These effects may involve multiple mechanisms, including the inhibition of TSLP production as well as the suppression of IKKα, Caspase-1 and NLRP3; however, additional studies are warranted to elucidate the underlying mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Curcumin inhibits interferon-{alpha} induced NF-{kappa}B and COX-2 in human A549 non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jeeyun; Im, Young-Hyuck; Jung, Hae Hyun

    2005-08-26

    The A549 cells, non-small cell lung cancer cell line from human, were resistant to interferon (IFN)-{alpha} treatment. The IFN-{alpha}-treated A549 cells showed increase in protein expression levels of NF-{kappa}B and COX-2. IFN-{alpha} induced NF-{kappa}B binding activity within 30 min and this increased binding activity was markedly suppressed with inclusion of curcumin. Curcumin also inhibited IFN-{alpha}-induced COX-2 expression in A549 cells. Within 10 min, IFN-{alpha} rapidly induced the binding activity of a {gamma}-{sup 32}P-labeled consensus GAS oligonucleotide probe, which was profoundly reversed by curcumin. Taken together, IFN-{alpha}-induced activations of NF-{kappa}B and COX-2 were inhibited by the addition of curcumin in A549more » cells.« less

  14. Ethyl caffeate suppresses NF-kappaB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin.

    PubMed

    Chiang, Yi-Ming; Lo, Chiu-Ping; Chen, Yi-Ping; Wang, Sheng-Yang; Yang, Ning-Sun; Kuo, Yueh-Hsiung; Shyur, Lie-Fen

    2005-10-01

    Ethyl caffeate, a natural phenolic compound, was isolated from Bidens pilosa, a medicinal plant popularly used for treating certain inflammatory syndromes. The purpose of this study was to investigate the structural activity, and the anti-inflammatory functions and mechanism(s) of ethyl caffeate. Ethyl caffeate was found to markedly suppress the lipopolysaccharide (LPS)-induced nitric oxide (NO) production (IC(50) = 5.5 microg ml(-1)), mRNA and protein expressions of inducible nitric oxide synthase (iNOS), and prostaglandin E(2) (PGE(2)) production in RAW 264.7 macrophages. Transient gene expression assays using human cox-2 promoter construct revealed that ethyl caffeate exerted an inhibitory effect on cox-2 transcriptional activity in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells. Immunohistochemical studies of mouse skin demonstrated that TPA-induced COX-2 expression was significantly inhibited by ethyl caffeate with a superior effect to that of celecoxib, a nonsteroidal anti-inflammatory drug. The phosphorylation and degradation of inhibitor kappaB (IkappaB) and the translocation of nuclear transcription factor-kappaB (NF-kappaB) into the nucleus, as well as the activation of mitogen-activated protein kinases (MAPKs) induced by LPS in macrophages, were not affected by ethyl caffeate. Ethyl caffeate, however, could inhibit NF-kappaB activation by impairing the binding of NF-kappaB to its cis-acting element. These results suggest that ethyl caffeate suppresses iNOS and COX-2 expressions partly through the inhibition of the NF-kappaB.DNA complex formation. Structure-activity relationship analyses suggested that the catechol moiety and alpha,beta-unsaturated ester group in ethyl caffeate are important and essential structural features for preventing NF-kappaB.DNA complex formation. This study provides an insight into the probable mechanism(s) underlying the anti-inflammatory and therapeutic properties of ethyl caffeate.

  15. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats.

    PubMed

    Hsieh, Ching-Liang; Ho, Tin-Yun; Su, Shan-Yu; Lo, Wan-Yu; Liu, Chung-Hsiang; Tang, Nou-Ying

    2009-01-01

    Our previous studies have shown that Uncaria rhynchophylla (UR) can reduce epileptic seizures. We hypothesized that UR and its major component rhynchophylline (RH), reduce epileptic seizures in rats treated with kainic acid (KA) by inhibiting nuclear factor-kappaB (NF-kappaB) and activator-protein-1 (AP-1) activity, and by eliminating superoxide anions. Therefore, the level of superoxide anions and the DNA binding activities of NF-kappaB and AP-1 were measured. Sprague-Dawley (SD) rats were pre-treated with UR (1.0 g/kg, i.p.), RH (0.25 mg/kg, i.p.), or valproic acid (VA, 250 mg/kg, i.p.) for 3 days and then KA was administered intra-peritoneal (i.p.). The results indicated that UR, RH, and VA can reduce epileptic seizures and the level of superoxide anions in the blood. Furthermore, KA was demonstrated to induce the DNA binding activities of NF-kappaB and AP-1. However, these inductions were inhibited by pre-treatment with UR, RH, or VA for 3 days. Moreover, UR and RH were shown to be involved in the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. This study suggested that UR and RH have antiepileptic effects in KA-induced seizures and are associated with the regulation of the innate immune system via a reduction in the level of superoxide anions, JNK phosphorylation, and NF-kappaB activation.

  16. TNF-{alpha} promotes cell survival through stimulation of K{sup +} channel and NF{kappa}B activity in corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-11-15

    Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less

  17. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax andmore » subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.« less

  18. Blunted activation of NF-{kappa}B and NF-{kappa}B-dependent gene expression by geranylgeranylacetone: Involvement of unfolded protein response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayakawa, Kunihiro; Hiramatsu, Nobuhiko; Okamura, Maro

    2008-01-04

    Geranylgeranylacetone (GGA), an anti-ulcer agent, has anti-inflammatory potential against experimental colitis and ischemia-induced renal inflammation. However, molecular mechanisms involved in its anti-inflammatory effects are largely unknown. We found that, in glomerular mesangial cells, GGA blocked activation of nuclear factor-{kappa}B and consequent induction of monocyte chemoattractant protein 1 (MCP-1) by inflammatory cytokines. It was inversely correlated with induction of unfolded protein response (UPR) evidenced by expression of 78 kDa glucose-regulated protein (GRP78) and suppression of endoplasmic reticulum stress-responsive alkaline phosphatase. Various inducers of UPR including tunicamycin, thapsigargin, A23187, 2-deoxyglucose, dithiothreitol, and AB{sub 5} subtilase cytotoxin reproduced the suppressive effects of GGA.more » Furthermore, attenuation of UPR by stable transfection with GRP78 diminished the anti-inflammatory effects of GGA. These results disclosed a novel, UPR-dependent mechanism underlying the anti-inflammatory potential of GGA.« less

  19. Immunotoxicity of ochratoxin A and aflatoxin B1 in combination is associated with the nuclear factor kappa B signaling pathway in 3D4/21 cells.

    PubMed

    Hou, Lili; Gan, Fang; Zhou, Xuan; Zhou, Yajiao; Qian, Gang; Liu, Zixuan; Huang, Kehe

    2018-05-01

    The co-contamination of cereals, grains, crops, and animal feeds by mycotoxins is a universal problem. Humans and animals are exposed to several mycotoxins simultaneously as evidenced by extensive studies on this topic. Yet, most studies have addressed the effects of mycotoxins individually. Aflatoxin B1 and ochratoxin A can induce immunotoxicity. However, it remains unclear whether a combination of these mycotoxins aggravates immunotoxicity and the potential mechanism underlying this effect. In this study, we used the cell line 3D4/21, swine alveolus macrophages and innate immune cell. The results showed that the percentage of cell inhibition, annexin V/PI-positive rates, and the expression of pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-6) significantly increased and the release of lactate dehydrogenase and phagocytotic index were significantly decreased at different concentrations of aflatoxin B1 and ochratoxin A combination when compared with control. The combination of aflatoxin B1 and ochratoxin A significantly decreased the production of GSH and increased reactive oxygen species level. However, N-acetylcysteine suppressed the oxidative stress and alleviated the immunotoxicity induced by the combination. The combination of aflatoxin B1 and ochratoxin A markedly enhanced the degradation of IκBa, the phosphorylation of nuclear factor kappa B (p65), and the translocation of activated nuclear factor kappa B (NF-κB) into the nuclei as demonstrated by western blotting and confocal laser scanning microscopy. These effects could be reversed by BAY 11-7082, a specific inhibitor of NF-κB. Taken together, a combination of aflatoxin B1 and ochratoxin A could aggravate immunotoxicity by activating the NF-κB signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    PubMed

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    Plants have been a major source of inspiration in developing novel drug compounds in the treatment of various diseases that afflict human beings worldwide. Ruta angustifolia L. Pers known locally as Garuda has been conventionally used for various medicinal purposes such as in the treatment of cancer. A dihydrofuranocoumarin named chalepin, which was isolated from the chloroform extract of the plant, was tested on its ability to inhibit molecular pathways of human lung carcinoma (A549) cells. Cell cycle analysis and caspase 8 activation were conducted using a flow cytometer, and protein expressions in molecular pathways were determined using Western blot technique. Cell cycle analysis showed that cell cycle was arrested at the S phase. Further studies using Western blotting technique showed that cell cycle-related proteins such as cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs correspond to a cell cycle arrest at the S phase. Chalepin also showed inhibition in the expression of inhibitors of apoptosis proteins. Nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT-3), cyclooxygenase-2, and c-myc were also downregulated upon treatment with chalepin. Chalepin was found to induce extrinsic apoptotic pathway. Death receptors 4 and 5 showed a dramatic upregulation at 24 h. Analysis of activation of caspase 8 with the flow cytometer showed an increase in activity in a dose- and time-dependent manner. Activation of caspase 8 induced cleavage of BH3-interacting domain death agonist, which initiated a mitochondrial-dependent or -independent apoptosis. Chalepin causes S phase cell cycle arrest, NF-κB pathway inhibition, and STAT-3 inhibition, induces extrinsic apoptotic pathway, and could be an excellent chemotherapeutic agent. This study reports the capacity of an isolated bioactive compound known as chalepin to suppress the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, signal

  1. Induction of activator protein (AP)-1 and nuclear factor-kappaB by CD28 stimulation involves both phosphatidylinositol 3-kinase and acidic sphingomyelinase signals.

    PubMed

    Edmead, C E; Patel, Y I; Wilson, A; Boulougouris, G; Hall, N D; Ward, S G; Sansom, D M

    1996-10-15

    A major obstacle in understanding the signaling events that follow CD28 receptor ligation arises from the fact that CD28 acts as a costimulus to TCR engagement, making it difficult to assess the relative contribution of CD28 signals as distinct from those of the TCR. To overcome this problem, we have exploited the observation that activated human T cell blasts can be stimulated via the CD28 surface molecule in the absence of antigenic challenge; thus, we have been able to observe the response of normal T cells to CD28 activation in isolation. Using this system, we observed that CD28 stimulation by B7-transfected CHO cells induced a proliferative response in T cells that was not accompanied by measurable IL-2 production. However, subsequent analysis of transcription factor generation revealed that B7 stimulation induced both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) complexes, but not NF-AT. In contrast, engagement of the TCR by class II MHC/superantigen, either with or without CD28 ligation, resulted in the induction of NF-AT, AP-1, and NF-kappaB as well as IL-2 production. Using selective inhibitors, we investigated the signaling pathways involved in the CD28-mediated induction of AP-1 and NF-kappaB. This revealed that NF-kappaB generation was sensitive to chloroquine, an inhibitor of acidic sphingomyelinase, but not to the phosphatidylinositol 3-kinase inhibitor, wortmannin. In contrast, AP-1 generation was inhibited by wortmannin and was also variably sensitive to chloroquine. These data suggest that in activated normal T cells, CD28-derived signals can stimulate proliferation at least in part via NF-kappaB and AP-1 generation, and that this response uses both acidic sphingomyelinase and phosphatidylinositol 3-kinase-linked pathways.

  2. Rosmanol potently inhibits lipopolysaccharide-induced iNOS and COX-2 expression through downregulating MAPK, NF-kappaB, STAT3 and C/EBP signaling pathways.

    PubMed

    Lai, Ching-Shu; Lee, Jong Hun; Ho, Chi-Tang; Liu, Cheng Bin; Wang, Ju-Ming; Wang, Ying-Jan; Pan, Min-Hsiung

    2009-11-25

    Rosmanol is a natural polyphenol from the herb rosemary (Rosmarinus officinalis L.) with high antioxidant activity. In this study, we investigated the inhibitory effects of rosmanol on the induction of NO synthase (NOS) and COX-2 in RAW 264.7 cells induced by lipopolysaccharide (LPS). Rosmanol markedly inhibited LPS-stimulated iNOS and COX-2 protein and gene expression, as well as the downstream products, NO and PGE2. Treatment with rosmanol also reduced translocation of the nuclear factor-kappaB (NF-kappaB) subunits by prevention of the degradation and phosphorylation of inhibitor kappaB (IkappaB). Western blot analysis showed that rosmanol significantly inhibited translocation and phosphorylation of NF-kappaB, signal transducer and activator of transcription-3 (STAT3), and the protein expression of C/EBPbeta and C/EBPdelta. We also found that rosmanol suppressed LPS-induced phosphorylation of ERK1/2, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Our results demonstrate that rosmanol downregulates inflammatory iNOS and COX-2 gene expression by inhibiting the activation of NF-kappaB and STAT3 through interfering with the activation of PI3K/Akt and MAPK signaling. Taken together, rosmanol might contribute to the potent anti-inflammatory effect of rosemary and may have potential to be developed into an effective anti-inflammatory agent.

  3. Angiotensin II and the transcription factor Rel/NF-kappaB link environmental water shortage with memory improvement.

    PubMed

    Frenkel, L; Freudenthal, R; Romano, A; Nahmod, V E; Maldonado, H; Delorenzi, A

    2002-01-01

    One of the essential requirements even in the most ancient life forms is to be able to preserve body fluid medium. In line with such requirement, animals need to perform different behaviors to cope with water shortages. As angiotensin II (ANGII) is involved on a widespread range of functions in vertebrates, including memory modulation, an integrative role, in response to an environmental water shortage, has been envisioned. Previous work on the semi-terrestrial and brackish-water crab Chasmagnathus granulatus showed that endogenous ANGII enhanced an associative long-term memory and, in addition, that high salinity environment induces both an increase of brain ANGII levels and memory improvement. Here, we show that in the crab Chasmagnathus air exposure transiently increases blood sodium concentration, significantly increases brain ANGII immunoreactivity, and has a facilitatory effect on memory that is abolished by a non-selective ANGII receptor antagonist, saralasin. Furthermore, Rel/NF-kappaB, a transcription factor activated by ANGII in mammals and during memory consolidation in Chasmagnathus brain, is induced in the crab's brain by air exposure. Moreover, nuclear brain NF-kappaB is activated by ANGII, and this effect is reversed by saralasin. Our results constitute the first demonstration in an invertebrate that cognitive functions are modulated by an environmental stimulus through a neuropeptide and give evolutionary support to the role of angiotensins in memory processes. Moreover, these results suggest that angiotensinergic system is preserved across evolution not only in its structure and molecular mechanisms, but also in its capability of coordinating specific adaptative responses.

  4. Cell autonomous expression of inflammatory genes in biologically aged fibroblasts associated with elevated NF-kappaB activity.

    PubMed

    Kriete, Andres; Mayo, Kelli L; Yalamanchili, Nirupama; Beggs, William; Bender, Patrick; Kari, Csaba; Rodeck, Ulrich

    2008-07-16

    Chronic inflammation is a well-known corollary of the aging process and is believed to significantly contribute to morbidity and mortality of many age-associated chronic diseases. However, the mechanisms that cause age-associated inflammatory changes are not well understood. Particularly, the contribution of cell stress responses to age-associated inflammation in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on differences in molecular signatures indicative of inflammatory states associated with biological aging of human fibroblasts from donors aged 22 to 92 years. Gene expression profiling revealed elevated steady-state transcript levels consistent with a chronic inflammatory state in fibroblast cell-strains obtained from older donors. We also observed enhanced NF-kappaB DNA binding activity in a subset of strains, and the NF-kappaB profile correlated with mRNA expression levels characteristic of inflammatory processes, which include transcripts coding for cytokines, chemokines, components of the complement cascade and MHC molecules. This intrinsic low-grade inflammatory state, as it relates to aging, occurs in cultured cells irrespective of the presence of other cell types or the in vivo context. Our results are consistent with the view that constitutive activation of inflammatory pathways is a phenomenon prevalent in aged fibroblasts. It is possibly part of a cellular survival process in response to compromised mitochondrial function. Importantly, the inflammatory gene expression signature described here is cell autonomous, i.e. occurs in the absence of prototypical immune or pro-inflammatory cells, growth factors, or other inflammatory mediators.

  5. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries.

    PubMed

    Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long

    2017-02-10

    Lithiation modification of VO 2 (B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO 2 (B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO 2 (B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO 2 (B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO 2 (B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO 2 (B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.

  6. Enhanced electrochemical performance of orientated VO2(B) raft-like nanobelt arrays through direct lithiation for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Liang; Liu, Qiang; Zhao, Wen; Li, Guochun; Wang, Limei; Shi, Weidong; Chen, Long

    2017-02-01

    Lithiation modification of VO2(B) has been carried out by a facile hydrothermal process, and the compact and locally ordered VO2(B) raft-like nanobelt arrays have been prepared. The synthesis route provides a new approach to elaborate a VO2(B) nanostructure under a mild environment condition. It is found that the growth mechanism of VO2(B) raft-like nanobelt arrays is different from the traditional nucleation-growth process. A novel chemical lithiating-exfoliating-splitting model is proposed. Compared with the bulk counterpart, the lithiated VO2(B) raft-like nanobelt arrays as cathodes exhibit a higher discharge capacity and an enhanced high-rate performance owing to their increased structural anisotropy and decreased polarization. This work indicates that VO2(B) raft-like nanobelt arrays have great potential applications as cathode materials for lithium ion batteries.

  7. Role of adapter function in oncoprotein-mediated activation of NF-kappaB. Human T-cell leukemia virus type I Tax interacts directly with IkappaB kinase gamma.

    PubMed

    Jin, D Y; Giordano, V; Kibler, K V; Nakano, H; Jeang, K T

    1999-06-18

    Mechanisms by which the human T-cell leukemia virus type I Tax oncoprotein activates NF-kappaB remain incompletely understood. Although others have described an interaction between Tax and a holo-IkappaB kinase (IKK) complex, the exact details of protein-protein contact are not fully defined. Here we show that Tax binds to neither IKK-alpha nor IKK-beta but instead complexes directly with IKK-gamma, a newly characterized component of the IKK complex. This direct interaction with IKK-gamma correlates with Tax-induced IkappaB-alpha phosphorylation and NF-kappaB activation. Thus, our findings establish IKK-gamma as a key molecule for adapting an oncoprotein-specific signaling to IKK-alpha and IKK-beta.

  8. Interrater reliability: the kappa statistic.

    PubMed

    McHugh, Mary L

    2012-01-01

    The kappa statistic is frequently used to test interrater reliability. The importance of rater reliability lies in the fact that it represents the extent to which the data collected in the study are correct representations of the variables measured. Measurement of the extent to which data collectors (raters) assign the same score to the same variable is called interrater reliability. While there have been a variety of methods to measure interrater reliability, traditionally it was measured as percent agreement, calculated as the number of agreement scores divided by the total number of scores. In 1960, Jacob Cohen critiqued use of percent agreement due to its inability to account for chance agreement. He introduced the Cohen's kappa, developed to account for the possibility that raters actually guess on at least some variables due to uncertainty. Like most correlation statistics, the kappa can range from -1 to +1. While the kappa is one of the most commonly used statistics to test interrater reliability, it has limitations. Judgments about what level of kappa should be acceptable for health research are questioned. Cohen's suggested interpretation may be too lenient for health related studies because it implies that a score as low as 0.41 might be acceptable. Kappa and percent agreement are compared, and levels for both kappa and percent agreement that should be demanded in healthcare studies are suggested.

  9. Fermented guava leaf extract inhibits LPS-induced COX-2 and iNOS expression in Mouse macrophage cells by inhibition of transcription factor NF-kappaB.

    PubMed

    Choi, Soo-Youn; Hwang, Joon-Ho; Park, Soo-Young; Jin, Yeong-Jun; Ko, Hee-Chul; Moon, Sang-Wook; Kim, Se-Jae

    2008-08-01

    The goal of this study was to elucidate the antiinflammatory activities of Psidium guajava L. (guava) leaf. To improve the functionality of guava leaf, it was fermented with Phellinus linteus mycelia, Lactobacillus plantarum and Saccharomyces cerevisiae. The ethanol extract from fermented guava leaf inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production. Western blot analysis showed that fermented guava leaf extract decreased LPS-induced inducible nitric oxide synthase (iNOS) and the cyclooxygenase-2 (COX-2) protein level in RAW 264.7 cells. To investigate the mechanism involved, the study examined the effect of fermented guava leaf extract on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. Fermented guava leaf extract significantly inhibited LPS-induced NF-kappaB transcriptional activity. Immunochemical analysis revealed that fermented guava leaf extract suppressed LPS-induced degradation of I-kappaBalpha. Taken together, the data indicate that fermented guava leaf extract is involved in the inhibition of iNOS and COX-2 via the down-regulation of NF-kappaB pathway, revealing a partial molecular basis for the antiinflammatory properties of fermented guava leaf extract.

  10. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: inhibition of IL-1beta-induced NF-kappaB-mediated inflammation and apoptosis.

    PubMed

    Csaki, Constanze; Mobasheri, Ali; Shakibaei, Mehdi

    2009-01-01

    Currently available treatments for osteoarthritis (OA) are restricted to nonsteroidal anti-inflammatory drugs, which exhibit numerous side effects and are only temporarily effective. Thus novel, safe and more efficacious anti-inflammatory agents are needed for OA. Naturally occurring polyphenolic compounds, such as curcumin and resveratrol, are potent agents for modulating inflammation. Both compounds mediate their effects by targeting the NF-kappaB signalling pathway. We have recently demonstrated that in chondrocytes resveratrol modulates the NF-kappaB pathway by inhibiting the proteasome, while curcumin modulates the activation of NF-kappaB by inhibiting upstream kinases (Akt). However, the combinational effects of these compounds in chondrocytes has not been studied and/or compared with their individual effects. The aim of this study was to investigate the potential synergistic effects of curcumin and resveratrol on IL-1beta-stimulated human chondrocytes in vitro using immunoblotting and electron microscopy. Treatment with curcumin and resveratrol suppressed NF-kappaB-regulated gene products involved in inflammation (cyclooxygenase-2, matrix metalloproteinase (MMP)-3, MMP-9, vascular endothelial growth factor), inhibited apoptosis (Bcl-2, Bcl-xL, and TNF-alpha receptor-associated factor 1) and prevented activation of caspase-3. IL-1beta-induced NF-kappaB activation was suppressed directly by cocktails of curcumin and resveratrol through inhibition of Ikappakappa and proteasome activation, inhibition of IkappaBalpha phosphorylation and degradation, and inhibition of nuclear translocation of NF-kappaB. The modulatory effects of curcumin and resveratrol on IL-1beta-induced expression of cartilage specific matrix and proinflammatory enzymes were mediated in part by the cartilage-specific transcription factor Sox-9. We propose that combining these natural compounds may be a useful strategy in OA therapy as compared with separate treatment with each individual

  11. Constitutive activation of alternative nuclear factor kappa B pathway in canine diffuse large B-cell lymphoma contributes to tumor cell survival and is a target of new adjuvant therapies.

    PubMed

    Seelig, Davis M; Ito, Daisuke; Forster, Colleen L; Yoon, Una A; Breen, Matthew; Burns, Linda J; Bachanova, Veronika; Lindblad-Toh, Kerstin; O'Brien, Timothy D; Schmechel, Stephen C; Rizzardi, Anthony E; Modiano, Jaime F; Linden, Michael A

    2017-07-01

    Activation of the classical nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway is a common molecular event observed in both human and canine diffuse large B-cell lymphoma (DLBCL). Although the oncogenic potential of the alternative NFκB pathway (ANFκBP) has also been recently identified in DLBCL, its precise role in tumor pathogenesis and potential as a treatment target is understudied. We hypothesized that up-regulation of the ANFκBP plays an important role in the proliferation and survival of canine DLBCL cells, and we demonstrate that the ANFκBP is constitutively active in primary canine DLBCL samples and a cell line (CLBL1). We further demonstrate that a small interfering RNA inhibits the activation of the NFκB pathway and induces apoptosis in canine DLBCL cells. In conclusion, the ANFκBP facilitates survival of canine DLBCL cells, and thus, dogs with spontaneous DLBCL can provide a useful large animal model to study therapies targeting the ANFκBP.

  12. Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-kappaB-dependent manner.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Su-Young; Bae, Yun-Hee; Bae, Soo-Kyung; Kwon, Jun Bum; Kim, Kyoung-Jin; Kwak, Mi-Kyoung; Park, Young-Joon; Choi, Han Gon; Kim, Jung-Ae

    2008-11-01

    Increased interleukin (IL)-8 plays an important role not only in activation and recruitment of neutrophils but also in inducing exaggerated angiogenesis at the inflamed site. In the present study, we investigated the fact that clotrimazole (CLT) inhibits intestinal inflammation, and the inhibitory action is mediated through suppression of IL-8 expression. In the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, CLT dose-dependently protected from the TNBS-induced weight loss, colon ulceration, and myeloperoxidase activity increase. In the lesion site, CLT also suppressed the TNBS-induced angiogenesis, IL-8 expression, and nuclear factor (NF)-kappaB activation. In a cellular model of colitis using tumor necrosis factor (TNF)-alpha-stimulated HT29 colon epithelial cells, treatment with CLT significantly suppressed TNF-alpha-mediated IL-8 induction and NF-kappaB transcriptional activity revealed by a luciferase reporter gene assay. Furthermore, cotreatment with CLT and pyrrolidine dithiocarbamate, a NF-kappaB inhibitor, synergistically reduced the NF-kappaB transcriptional activity as well as IL-8 expression. In an in vitro angiogenesis assay, CLT suppressed IL-8-induced proliferation, tube formation, and invasion of human umbilical vein endothelial cells. The in vivo angiogenesis assay using chick chorioallantoic membrane also showed that CLT significantly inhibited the IL-8-induced formation of new blood vessels. Taken together, these results suggest that CLT may prevent the progression of intestinal inflammation by not only down-regulating IL-8 expression but also inhibiting the action of IL-8 in both colon epithelial and vascular endothelial cells during pathogenesis of intestinal inflammation.

  13. Involvement of MAPKs, NF-{kappa}B and p300 co-activator in IL-1{beta}-induced cytosolic phospholipase A{sub 2} expression in canine tracheal smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, S.-F.; Lin, C.-C.; Chen, H.-C.

    2008-11-01

    Cytosolic phospholipase A{sub 2} (cPLA{sub 2}) plays a pivotal role in mediating agonist-induced arachidonic acid release for prostaglandin (PG) synthesis during stimulation with interleukin-1{beta} (IL-1{beta}). However, the mechanisms underlying IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis by canine tracheal smooth muscle cells (CTSMCs) have not been defined. IL-1{beta} induced cPLA{sub 2} protein and mRNA expression, PGE{sub 2} production, and phosphorylation of p42/p44 MAPK, p38 MAPK (ATF{sub 2}), and JNK (c-Jun) in a time- and concentration-dependent manner, determined by Western blotting, RT-PCR, and ELISA, which was attenuated by the inhibitors of MEK1/2 (U0126), p38 MAPK (SB202190), and JNK (SP600125), ormore » transfection with dominant negative mutants of MEK1/2, p38, and JNK, respectively. Furthermore, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was inhibited by a selective NF-{kappa}B inhibitor (helenalin) or transfection with dominant negative mutants of NF-{kappa}B inducing kinase (NIK), I{kappa}B kinase (IKK)-{alpha}, and IKK-{beta}. Consistently, IL-1{beta} stimulated both I{kappa}B-{alpha} degradation and NF-{kappa}B translocation into nucleus in these cells. NF-{kappa}B translocation was blocked by helenalin, but not by U0126, SB202190, and SP600125. MAPKs together with NF-{kappa}B-activated p300 recruited to cPLA{sub 2} promoter thus facilitating the binding of NF-{kappa}B to cPLA{sub 2} promoter region and expression of cPLA{sub 2} mRNA. IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} production was inhibited by actinomycin D and cycloheximide, indicating the involvement of transcriptional and translational events in these responses. These results suggest that in CTSMCs, IL-1{beta}-induced cPLA{sub 2} expression and PGE{sub 2} synthesis was independently mediated through activation of MAPKs and NF-{kappa}B pathways and was connected to p300 recruitment and activation.« less

  14. Productive and Penicillin-Stressed Chlamydia pecorum Infection Induces Nuclear Factor Kappa B Activation and Interleukin-6 Secretion In Vitro.

    PubMed

    Leonard, Cory A; Schoborg, Robert V; Borel, Nicole

    2017-01-01

    Nuclear factor kappa B (NFκB) is an inflammatory transcription factor that plays an important role in the host immune response to infection. The potential for chlamydiae to activate NFκB has been an area of interest, however most work has focused on chlamydiae impacting human health. Given that inflammation characteristic of chlamydial infection may be associated with severe disease outcomes or contribute to poor overall fitness in farmed animals, we evaluated the ability of porcine chlamydiae to induce NFκB activation in vitro . C. pecorum infection induced both NFκB nuclear translocation and activation at 2 hours post infection (hpi), an effect strongly enhanced by suppression of host de novo protein synthesis. C. suis and C. trachomatis showed less capacity for NFκB activation compared to C. pecorum , suggesting a species-specific variation in NFκB activation. At 24 hpi, C. pecorum induced significant NFκB activation, an effect not abolished by penicillin (beta lactam)-induced chlamydial stress. C. pecorum -dependent secretion of interleukin 6 was also detected in the culture supernatant of infected cells at 24 hpi, and this effect, too, was unchanged by penicillin-induced chlamydial stress. Taken together, these results suggest that NFκB participates in the early inflammatory response to C. pecorum and that stressed chlamydiae can promote inflammation.

  15. Requirement of NF-kappa B Activation in Different Mice Brain Areas during Long-Term Memory Consolidation in Two Contextual One-Trial Tasks with Opposing Valences

    PubMed Central

    Salles, Angeles; Krawczyk, Maria del C.; Blake, Mariano; Romano, Arturo; Boccia, Mariano M.; Freudenthal, Ramiro

    2017-01-01

    NF-kappa B is a transcription factor whose activation has been shown to be necessary for long-term memory consolidation in several species. NF-kappa B is activated and translocates to the nucleus of cells in a specific temporal window during consolidation. Our work focuses on a one trial learning tasks associated to the inhibitory avoidance (IA) setting. Mice were trained either receiving or not a footshock when entering a dark compartment (aversive vs. appetitive learning). Regardless of training condition (appetitive or aversive), latencies to step-through during testing were significantly different to those measured during training. Additionally, these testing latencies were also different from those of a control group that only received a shock unrelated to context. Moreover, nuclear NF-kappa B DNA-binding activity was augmented in the aversive and the appetitive tasks when compared with control and naïve animals. NF-kappa B inhibition by Sulfasalazine injected either in the Hippocampus, Amygdala or Nucleus accumbens immediately after training was able to impair retention in both training versions. Our results suggest that NF-kappa B is a critical molecular step, in different brain areas on memory consolidation. This was the case for both the IA task and also the modified version of the same task where the footshock was omitted during training. This work aims to further investigate how appetitive and aversive memories are consolidated. PMID:28439227

  16. The effects of thalidomide on the stimulation of NF-kappaB activity and TNF-alpha production by lipopolysaccharide in a human colonic epithelial cell line.

    PubMed

    Kim, You Sun; Kim, Joo Sung; Jung, Hyun Chae; Song, In Sung

    2004-04-30

    The immunomodulatory and anti-inflammatory effects of thalidomide are associated with inhibition of TNF-alpha levels. However, the mechanism by which thalidomide reduces TNF-alpha production remains elusive. NF-kappaB is known to play a central role in regulating inflammatory responses in patients with inflammatory bowel disease (IBD). We tested whether thalidomide acts through inhibiting NF-kappaB activity. HT-29 cells were stimulated with LPS (1 microg/ml) alone, or after pretreatment with thalidomide (100 microg/ml), and NF-kappaB activity was determined by gel mobility shift assays. RT-PCR was used to measure expression of the proinflammatory cytokine genes TNF-alpha, IL-1beta and IL-8. The level of TNF-alpha mRNA was also analyzed by real-time quantitative RT-PCR, and TNF-alpha protein was measured by ELISA. Thalidomide pretreatment did not affect NF-kappaB activity in HT-29 cells stimulated with LPS but production of TNF-alpha was depressed. Thalidomide was found to accelerate the degradation of TNF-alpha mRNA, but had little effect on IL-1beta or IL-8. These observations suggest that the immunomodulatory effect of thalidomide in colonic epithelial cells is associated with inhibition of TNF-alpha. However, it does not act by inhibiting NF-kappaB but rather by inducing degradation of TNF-alpha mRNA.

  17. [Nuclear factor-kappaB mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and effect of jianwei yuyang granule on its expression].

    PubMed

    Ling, Jiang-Hong; Li, Jia-Bang; Shen, Ding-Zhu; Zhou, Bing

    2006-03-01

    To observe the inflammatory reaction, nuclear factor-kappaB (NF-kappaB) mRNA and protein expression in stomach tissue of rats with gastric ulcer recurrence and the effect of Jianwei Yuyang granule (JYG) on them. Gastric ulcer and its recurrent lesion were successively induced by acetic acid and interliukin1-beta (IL-1beta), and the model rats were divided into the sham operation group, the model group, the omeprazole (correction of omepraxole) group and the JYG group to observe the state of chronic inflammatory cell, neutrophil count, NF-kappaBmRNA and protein expression in stomach tissue. On the 16th and 92th day after administration, the increase of chronic inflammatory cell, neutrophil, NF-kappaBmRNA and protein expression in the model group was more significant than those in the sham operated group (P < 0.01), while that was lower in the JYG group than in the model group (P < 0.05, P <0.01), but with no remarkable difference to the omepraxole group. In addition, the mRNA and protein expression of NF-kappaB were correlated closely with the count of chronic inflammatory cell and neutrophil respectively (P < 0.01). NF-kappaB may play an important role in regulating inflammatory reaction during the healing and recurrence processes of gastric ulcer induced by acetic acid. JYG may suppress inflammatory reaction by inhibiting the activation and expression of NF-kappaB in stomach tissue, which may be one of the mechanisms of JYG in preventing the recurrence of gastric ulcer.

  18. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT.

    PubMed

    Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph

    2008-11-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.

  19. Characterizing Cometary Electrons with Kappa Distributions

    NASA Technical Reports Server (NTRS)

    Broiles, T. W.; Livadiotis, G.; Burch, J. L.; Chae, K.; Clark, G.; Cravens, T. E.; Davidson, R.; Eriksson, A.; Frahm, R. A.; Fuselier, S. A.; hide

    2016-01-01

    The Rosetta spacecraft has escorted comet 67P/Churyumov-Gerasimenko since 6 August 2014 and has offered an unprecedented opportunity to study plasma physics in the coma. We have used this opportunity to make the first characterization of cometary electrons with kappa distributions. Two three-dimensional kappa functions were fit to the observations, which we interpret as two populations of dense and warm (density 10 cubic centimeters, temperature 2 times 10 (sup 5) degrees Kelvin, invariant kappa index 10 to 1000), and rarefied and hot (density equals 0.005 cubic centimeters, temperature 5 times 10 (sup 5) degrees Kelvin, invariant kappa index equals 1 to 10) electrons. We fit the observations on 30 October 2014 when Rosetta was 20 kilometers from 67P, and 3 Astronomical Units from the Sun. We repeated the analysis on 15 August 2015 when Rosetta was 300 kilometers from the comet and 1.3 Astronomical Units from the Sun. Comparing the measurements on both days gives the first comparison of the cometary electron environment between a nearly inactive comet far from the Sun and an active comet near perihelion. We find that the warm population density increased by a factor of 3, while the temperature cooled by a factor of 2, and the invariant kappa index was unaffected. We find that the hot population density increased by a factor of 10, while the temperature and invariant kappa index were unchanged. We conclude that the hot population is likely the solar wind halo electrons in the coma. The warm population is likely of cometary origin, but its mechanism for production is not known.

  20. Ectodomain shedding of TNF receptor 1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Hirotsugu; Tsukumo, Yoshinori; Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501

    2008-04-01

    The transcription factor nuclear factor {kappa}B (NF-{kappa}B) plays a major role in the inducible resistance to death receptor-mediated apoptosis. It has been established that the protein synthesis inhibitor cycloheximide (CHX) sensitizes many types of cells to tumor necrosis factor (TNF)-{alpha}-induced apoptosis, mainly due to its ability to block de novo synthesis of cellular FLICE-inhibitory protein (c-FLIP). Nevertheless, we have surprisingly found that CHX, as well as its structural analogue acetoxycycloheximide (Ac-CHX), prevents TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8 in human lung carcinoma A549 cells. Both CHX and Ac-CHX reduced the expression of cell surface TNF receptor 1 (TNF-R1) in amore » dose-dependent manner, while Ac-CHX was approximately 100-fold more effective than CHX. Consistent with this observation, Ac-CHX induced the proteolytic cleavage of TNF-R1 and its release into the culture medium. CHX and Ac-CHX profoundly decreased constitutive and inducible expression of c-FLIP, whereas these compounds potentiated TNF-{alpha}-induced caspase-8 activation only when metalloprotease inhibitors were present. Thus, our results indicate that ectodomain shedding of TNF-R1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8.« less

  1. Immature surface Ig+ B cells can continue to rearrange kappa and lambda L chain gene loci

    PubMed Central

    1993-01-01

    Pro and pre B cells possess the long-term capacity to proliferate in vitro on stromal cells and interleukin 7 (IL-7) and can differentiate to surface immunoglobulin (sIg+) cells upon removal of IL-7 from the cultures. A key event in this differentiation is the extensive cell loss due to apoptosis. Because the proto-oncogene bcl-2 can promote cell survival, we established pre-B cell lines from E mu-bcl-2 transgenic mice. These pre-B cells have the same properties as those derived from non-bcl-2 transgenic mice except that they do not die by apoptosis. This allowed us to study the fate of newly formed B cells in vitro for a longer period of time. Here we show that early during the differentiation of pre-B cells, upregulation of RAG-1 and RAG-2 expression go hand in hand with rearrangements of the Ig gene loci. Moreover, the newly formed sIg+ B cells continue to express RAG-1 and RAG-2 and continue to rearrange L chain gene loci, even in the absence of proliferation, in an orderly fashion, so that kappa L+ sIg+ cells can become lambda L+ sIg+ or sIg- cells, whereas lambda L+ sIg+ cells can become sIg-, but not kappa L+ sIg+ cells. Thus, deposition of a complete Ig molecule on the surface of a B cell does not automatically stop the Ig-rearrangement machinery. PMID:8376934

  2. A quantitative study of NF-kappaB activation by H2O2: relevance in inflammation and synergy with TNF-alpha.

    PubMed

    de Oliveira-Marques, Virgínia; Cyrne, Luísa; Marinho, H Susana; Antunes, Fernando

    2007-03-15

    Although the germicide role of H(2)O(2) released during inflammation is well established, a hypothetical regulatory function, either promoting or inhibiting inflammation, is still controversial. In particular, after 15 years of highly contradictory results it remains uncertain whether H(2)O(2) by itself activates NF-kappaB or if it stimulates or inhibits the activation of NF-kappaB by proinflammatory mediators. We investigated the role of H(2)O(2) in NF-kappaB activation using, for the first time, a calibrated and controlled method of H(2)O(2) delivery--the steady-state titration--in which cells are exposed to constant, low, and known concentrations of H(2)O(2). This technique contrasts with previously applied techniques, which disrupt cellular redox homeostasis and/or introduce uncertainties in the actual H(2)O(2) concentration to which cells are exposed. In both MCF-7 and HeLa cells, H(2)O(2) at extracellular concentrations up to 25 microM did not induce significantly per se NF-kappaB translocation to the nucleus, but it stimulated the translocation induced by TNF-alpha. For higher H(2)O(2) doses this stimulatory role shifts to an inhibition, which may explain published contradictory results. The stimulatory role was confirmed by the observation that 12.5 microM H(2)O(2), a concentration found during inflammation, increased the expression of several proinflammatory NF-kappaB-dependent genes induced by TNF-alpha (e.g., IL-8, MCP-1, TLR2, and TNF-alpha). The same low H(2)O(2) concentration also induced the anti-inflammatory gene coding for heme oxygenase-1 (HO-1) and IL-6. We propose that H(2)O(2) has a fine-tuning regulatory role, comprising both a proinflammatory control loop that increases pathogen removal and an anti-inflammatory control loop, which avoids an exacerbated harmful inflammatory response.

  3. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells.

    PubMed

    Oh, Young Taek; Lee, Jung Yeon; Lee, Jinhwa; Lee, Ju Hie; Kim, Ja-Eun; Ha, Joohun; Kang, Insug

    2010-05-03

    Oleamide (cis-9-octadecenamide) is an endogenous sleep-inducing fatty acid amide that accumulates in the cerebrospinal fluid of the sleep-deprived animals. Microglia are the major immune cells involved in neuroinflammation causing brain damage during infection, ischemia, and neurodegenerative disease. In this study, we examined the effects of oleamide on LPS-induced production of proinflammatory mediators and the mechanisms involved in BV2 microglia. Oleamide inhibited LPS-induced production of NO and prostaglandin E2 as well as expression of iNOS and COX-2. We showed that oleamide blocked LPS-induced NF-kappaB activation and phosphorylation of inhibitor kappaB kinase (IKK). We also showed that oleamide inhibited LPS-induced phosphorylation of Akt, p38 MAPK, and ERK, activation of PI 3-kinase, and accumulation of reactive oxygen species (ROS). Finally, we showed that a specific antagonist of the CB2 receptor, AM630, blocked the inhibitory effects of oleamide on LPS-induced production of proinflammatory mediators and activation of NF-kappaB. Taken together, our results suggest that oleamide shows an anti-inflammatory effect through inhibition of NF-kappaB activation in LPS-stimulated BV2 microglia. 2010 Elsevier Ireland Ltd. All rights reserved.

  4. WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation.

    PubMed

    Wang, Yan-Yi; Liu, Li-Juan; Zhong, Bo; Liu, Tian-Tian; Li, Ying; Yang, Yan; Ran, Yong; Li, Shu; Tien, Po; Shu, Hong-Bing

    2010-01-12

    Viral infection causes activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and cellular antiviral response. The mitochondrial outer membrane protein VISA acts as a critical adapter for assembling a virus-induced complex that signals NF-kappaB and IRF3 activation. Using a biochemical purification approach, we identified the WD repeat protein WDR5 as a VISA-associated protein. WDR5 was recruited to VISA in a viral infection dependent manner. Viral infection also caused translocation of WDR5 from the nucleus to mitochondria. Knockdown of WDR5 impaired the formation of virus-induced VISA-associated complex. Consistently, knockdown of WDR5 inhibited virus-triggered activation of IRF3 and NF-kappaB as well as transcription of the IFNB1 gene. These findings suggest that WDR5 is essential in assembling a virus-induced VISA-associated complex and plays an important role in virus-triggered induction of type I IFNs.

  5. The hemoglobin receptor protein of porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages.

    PubMed

    Fujimura, Yuji; Hotokezaka, Hitoshi; Ohara, Naoya; Naito, Mariko; Sakai, Eiko; Yoshimura, Mamiko; Narita, Yuka; Kitaura, Hideki; Yoshida, Noriaki; Nakayama, Koji

    2006-05-01

    Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-kappaB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-kappaB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-beta) from bone marrow macrophages, but the induction level of IFN-beta might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-beta-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.

  6. Nuclear Transcription Factor Kappa B Downregulation Reduces Chemoresistance in Bone Marrow-derived Cells Through P-glycoprotein Modulation.

    PubMed

    Loaiza, Brenda; Hernández-Gutierrez, Salomon; Montesinos, Juan Jose; Valverde, Mahara; Rojas, Emilio

    2016-02-01

    Nuclear transcription factor kappa B (NF-κB) is associated with many types of refractory cancer. However, despite multiple strategies to treat cancer and novel target drugs, multidrug resistance still causes relapses. The best-characterized mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein (P-gp). Because the direct inhibition of this protein is very toxic, other methods of multidrug resistance (MDR) regulation have been proposed. The MDR-1 promoter sequence contains a κB site, which is recognized by NF-κB. The aim of this work was to characterize whether NF-κB modulation changes the response of bone marrow-derived cells (BMDCs) to chemotherapy. We exposed BMDCs to etoposide and doxorubicin, two of the most used antineoplastic drugs. BMDCs presented high tolerance to these drugs, which correlated with high intrinsic P-gp activity and strong protein expression of NF-κB. To determine the mechanism behind the poor sensitivity of BMDCs to chemotherapy, we blocked the activity of the heterodimer protein NF-κB using the pharmacological inhibitor Bay 11-7085 and through the transfection of an adenovirus negative mutant of I kappa B alpha. The multidrug resistance phenotype of BMDCs was reversed by inhibiting the NF-κB pathway, and this change was accompanied by a decrease in P-gp activity. NF-κB is a possible target for improving the antineoplastic response. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  7. Assessment of hypoxia and TNF-alpha response by a vector with HRE and NF-kappaB response elements.

    PubMed

    Chen, Zhilin; Eadie, Ashley L; Hall, Sean R; Ballantyne, Laurel; Ademidun, David; Tse, M Yat; Pang, Stephen C; Melo, Luis G; Ward, Christopher A; Brunt, Keith R

    2017-01-01

    Hypoxia and inflammatory cytokine activation (H&I) are common processes in many acute and chronic diseases. Thus, a single vector that responds to both hypoxia and inflammatory cytokines, such as TNF-alpha, is useful for assesing the severity of such diseases. Adaptation to hypoxia is regulated primarily by hypoxia inducible transcription factor (HIF alpha) nuclear proteins that engage genes containing a hypoxia response element (HRE). Inflammation activates a multitude of cytokines, including TNF-alpha, that invariably modulate activation of the nuclear factor kappa B (NF-kB) transcription factor. We constructed a vector that encompassed both a hypoxia response element (HRE), and a NF-kappaB responsive element. We show that this vector was functionally responsive to both hypoxia and TNF-alpha, in vitro and in vivo . Thus, this vector might be suitable for the detection and assessment of hypoxia or TNF-alpha.

  8. Ion-cyclotron instability in plasmas described by product-bi-kappa distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, M. S. dos; Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br; Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br

    The dispersion relation for parallel propagating waves in the ion-cyclotron branch is investigated numerically by considering that the velocity distribution of the ion population is a function of type product-bi-kappa. We investigate the effects of the non-thermal features and of the anisotropy associated with this type of distribution on the ion-cyclotron instability, as well as the influence of different forms of the electron distribution, by considering Maxwellian distributions, bi-kappa distributions, and product-bi-kappa distributions. The cases of ions described by either Maxwellian or bi-kappa distributions are also considered, for comparison. The results of the numerical analysis show that the increase inmore » the non-thermal character associated with the anisotropic kappa distributions for ions contributes to enhance the instability as compared to that obtained in the Maxwellian case, in magnitude and in wave number range, with more significant enhancement for the case of ion product-bi-kappa distributions than for the case of ion bi-kappa distributions. It is also shown that the ion-cyclotron instability is decreased if the electrons are described by product-bi-kappa distributions, while electrons described by bi-kappa distributions lead to growth rates which are very similar to those obtained considering a Maxwellian distribution for the electron population.« less

  9. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: from cells to bed rest to astronauts.

    PubMed

    Zwart, Sara R; Pierson, Duane; Mehta, Satish; Gonda, Steve; Smith, Scott M

    2010-05-01

    NF-kappaB is a transcriptional activator of many genes, including some that lead to muscle atrophy and bone resorption-significant concerns for astronauts. NF-kappaB activation is inhibited by eicosapentaenoic acid (EPA), but the influence of this omega-3 fatty acid on the effects of weightlessness are unknown. We report here cellular, ground analogue, and spaceflight findings. We investigated the effects of EPA on differentiation of RAW264.7 monocyte/macrophage cells induced by receptor activator of NF-kappaB ligand (RANKL) and on activation of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) or exposure to modeled weightlessness. EPA (50 microM for 24 hours) inhibited RANKL-induced differentiation and decreased activation of NF-kappaB induced by 0.2 microg/mL of TNF-alpha for 30 minutes or by modeled weightlessness for 24 hours (p < .05). In human studies, we evaluated whether NF-kappaB activation was altered after short-duration spaceflight and determined the relationship between intake of omega-3 fatty acids and markers of bone resorption during bed rest and the relationship between fish intake and bone mineral density after long-duration spaceflight. NF-kappaB was elevated in crew members after short-duration spaceflight, and higher consumption of fish (a rich source of omega-3 fatty acids) was associated with reduced loss of bone mineral density after flight (p < .05). Also supporting the cell study findings, a higher intake of omega-3 fatty acids was associated with less N-telopeptide excretion during bed rest (Pearson r = -0.62, p < .05). Together these data provide mechanistic cellular and preliminary human evidence of the potential for EPA to counteract bone loss associated with spaceflight. (c) 2010 American Society for Bone and Mineral Research.

  10. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation.

    PubMed

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-05-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.

  11. Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

    PubMed

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2011-01-21

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.

  12. Suppressive effects of Lithospermum erythrorhizon extracts on lipopolysaccharide-induced activation of AP-1 and NF-kappaB via mitogen-activated protein kinase pathways in mouse macrophage cells.

    PubMed

    Han, Kyu Yeon; Kwon, Taek Hwan; Lee, Tae Hoon; Lee, Sung-Joon; Kim, Sung-Hoon; Kim, Jiyoung

    2008-04-30

    A variety of anti-inflammatory agents have been shown to exert chemopreventive activity via targeting of transcription factors such as NF-kappaB and AP-1. Lithospermum erythrorhizon (LE) has long been used in traditional oriental medicine. In this study, we demonstrated the inhibitory effects of LE extracts on lipopolysaccharide (LPS)-stimulated production of inflammatory cytokines. As an underlying mechanism of inhibition, LE extracts reduced LPS-induced transactivation of AP-1 as well as NF-kappaB in mouse macrophage cells. Electrophoretic mobility shift assays indicated that LE extracts inhibited the DNA binding activities of AP-1 and NF-kappaB. In addition, phosphorylation of IkappaB-alpha protein was suppressed by LE extracts. Moreover, LE extracts inhibited c-Jun N-terminal kinase and extracellular signal-regulated signaling pathways. Our results suggest that the anti-inflammatory activity of LE extracts may be mediated by the inhibition of signal transduction pathways that normally lead to the activation of AP-1and NF-kappaB. These inhibitory effects may be useful for chemoprevention of cancer or other chronic inflammatory diseases.

  13. Productive and Penicillin-Stressed Chlamydia pecorum Infection Induces Nuclear Factor Kappa B Activation and Interleukin-6 Secretion In Vitro

    PubMed Central

    Leonard, Cory A.; Schoborg, Robert V.; Borel, Nicole

    2017-01-01

    Nuclear factor kappa B (NFκB) is an inflammatory transcription factor that plays an important role in the host immune response to infection. The potential for chlamydiae to activate NFκB has been an area of interest, however most work has focused on chlamydiae impacting human health. Given that inflammation characteristic of chlamydial infection may be associated with severe disease outcomes or contribute to poor overall fitness in farmed animals, we evaluated the ability of porcine chlamydiae to induce NFκB activation in vitro. C. pecorum infection induced both NFκB nuclear translocation and activation at 2 hours post infection (hpi), an effect strongly enhanced by suppression of host de novo protein synthesis. C. suis and C. trachomatis showed less capacity for NFκB activation compared to C. pecorum, suggesting a species-specific variation in NFκB activation. At 24 hpi, C. pecorum induced significant NFκB activation, an effect not abolished by penicillin (beta lactam)-induced chlamydial stress. C. pecorum-dependent secretion of interleukin 6 was also detected in the culture supernatant of infected cells at 24 hpi, and this effect, too, was unchanged by penicillin-induced chlamydial stress. Taken together, these results suggest that NFκB participates in the early inflammatory response to C. pecorum and that stressed chlamydiae can promote inflammation. PMID:28553623

  14. The nuclear-factor kappaB pathway is activated in pterygium.

    PubMed

    Siak, Jay Jyh Kuen; Ng, See Liang; Seet, Li-Fong; Beuerman, Roger W; Tong, Louis

    2011-01-05

    Pterygium is a prevalent ocular surface disease with unknown pathogenesis. The authors investigated the role of nuclear factor kappa B (NF-κB) transcription factors in pterygium. Surgically excised primary pterygia were studied compared with uninvolved conjunctiva tissues. NF-κB activation was evaluated using Western blot analysis, ELISA, and DNA-binding assays. Primary pterygium fibroblasts were treated with TNF-α (20 ng/mL), and NF-κB activation was evaluated using immunocytochemistry, Western blot analysis, phospho-IκBα ELISA, and DNA-binding assays. TNF-α stimulation of NF-κB target genes RelB, NFKB2, RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 in pterygium fibroblasts was compared with that in primary tenon fibroblasts by real-time PCR. Phosphorylation of IκBα (Ser32) was increased in pterygia tissues compared with uninvolved conjunctiva tissues, as determined by Western blot analysis and ELISA. IκBα expression was decreased, whereas nuclear RelA and p50 DNA-binding capacities were increased. Within 30 minutes of treatment with TNF-α, pterygium fibroblasts showed increased IκBα phosphorylation and nuclear translocation of RelA and p50. Treatment with TNF-α beyond 12 hours resulted in increased nuclear expression of RelB, p100, and p52. Furthermore, the upregulation of RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 expression was more pronounced in TNF-α-treated pterygium fibroblasts than in tenon fibroblasts. The NF-κB pathway is shown for the first time to be activated in pterygia tissues compared with normal conjunctiva tissues. Stimulation by the inflammatory cytokine TNF-α can activate both canonical and noncanonical NF-κB pathways in pterygium fibroblasts with concomitant upregulation of NF-κB target genes.

  15. cAMP inhibits inducible nitric oxide synthase expression and NF-kappaB-binding activity in cultured rat hepatocytes.

    PubMed

    Harbrecht, B G; Taylor, B S; Xu, Z; Ramalakshmi, S; Ganster, R W; Geller, D A

    2001-08-01

    The inducible nitric oxide synthase (iNOS) is strongly expressed following inflammatory stimuli. Adenosine 3',5'-cyclic monophosphate (cAMP) increases iNOS expression and activity in a number of cell types but decreases cytokine-stimulated iNOS expression in hepatocytes. The mechanisms for this effect are unknown. Rat hepatocytes were stimulated with cytokines to induce iNOS and cultured with cAMP agonists dibutyryl-cAMP (dbcAMP), 8-bromo-cAMP, and forskolin (FSK). Nitric oxide synthesis was assessed by supernatant nitrite levels and iNOS expression was measured by Northern and Western blot analyses. Nuclear factor kappaB binding was assessed by electromobility shift assay. Cyclic AMP dose dependently decreased NO synthesis in response to a combination of proinflammatory cytokines or interleukin-1beta (IL-1beta) alone. The adenylate cyclase inhibitor SQ 22,536 increased cytokine- or IL-1beta-stimulated NO synthesis. dbcAMP decreased iNOS mRNA expression and iNOS protein expression. Both dbcAMP and glucagon decreased iNOS promoter activity in rat hepatocytes transfected with the murine iNOS promoter and decreased DNA binding of the transcription factor NF-kappaB. These data suggest that cAMP is important in hepatocyte iNOS expression and agents that alter cAMP levels may profoundly alter the response of hepatocytes to inflammatory stimuli through effects onthe iNOS promoter region and NF-kappaB. Copyright 2001 Academic Press.

  16. Activation of the Transcription Factor NF-[Kappa]B by Retrieval Is Required for Long-Term Memory Reconsolidation

    ERIC Educational Resources Information Center

    Maldonado, Hector; Romano, Arturo; Merlo, Emiliano; Freudenthal, Ramiro

    2005-01-01

    Several studies support that stored memories undergo a new period of consolidation after retrieval. It is not known whether this process, termed reconsolidation, requires the same transcriptional mechanisms involved in consolidation. Increasing evidence supports the participation of the transcription factor NF-[Kappa]B in memory. This was…

  17. Nuclear translocation of the 1,25D{sub 3}-MARRS (membrane associated rapid response to steroids) receptor protein and NF{kappa}B in differentiating NB4 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenqing; Beilhartz, Greg; Roy, Yvette

    2010-04-15

    1,25 Dihydroxyvitamin D{sub 3} (1,25D{sub 3}) primes NB4 promyelocytic leukemia cells to differentiate along the monocyte/macrophage lineage through a non-genomic mechanism. Here we show that NB4 cells express high levels of the recently identified membrane receptor for 1,25D{sub 3}, which is a distinct gene product from the classical nuclear vitamin D receptor. This 57 kDa protein, named 1,25D{sub 3}-MARRS (Membrane Activated Rapid Response to Steroids)/ERp57/PIA3 appears to associate in a complex with the transcription factor, nuclear factor kappa B (NF{kappa}B). In unstimulated cells, 1,25D{sub 3}-MARRS can be co-immunoprecipitated with antibodies directed at NF{kappa}B, and NF{kappa}B is co-precipitated when antibodies againstmore » 1,25D{sub 3}-MARRS or ERp57 are used. Confocal microscopy and subcellular fractionation studies demonstrate that both 1,25D{sub 3}-MARRS and NF{kappa}B begin translocating to the nucleus within minutes of co-stimulation with 1,25D{sub 3} and phorbol ester. The predominant nuclear localization of both proteins precedes the expression of the monocyte/macrophage phenotype and suggests that this event may be critical to the differentiation pathway. This suggests a role for 1,25D{sub 3}-MARRS in the nucleus as a regulator of gene expression. Here it may also regulate the activity of NF{kappa}B and other factors with which it may be interacting.« less

  18. Shikonin derivatives inhibited LPS-induced NOS in RAW 264.7 cells via downregulation of MAPK/NF-kappaB signaling.

    PubMed

    Cheng, Yu Wen; Chang, Ching Yi; Lin, Kou Lung; Hu, Chien Ming; Lin, Cheng Hui; Kang, Jaw Jou

    2008-11-20

    Shikonin/alkannin (SA) derivatives, analogs of naphthoquinone pigments, are the major components of root extracts of the Chinese medicinal herb (Lithospermum erythrorhizon; LE) and widely distributed in several folk medicines. In the present study, the effect and the underline molecular mechanism of shikonin derivatives isolated from root extracts of Lithospermum euchroma on lipopolysaccharide (LPS)-induced inflammatory response were investigated. Effects of five SA derivatives, including SA, acetylshikonin, beta,beta-dimethylacrylshikonin, 5,8-dihydroxy-1.4-naphthoquinone, and 1,4-naphthoquinone on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in mouse macrophage RAW264.7 cells were examined. Data suggested that SA derivatives inhibited LPS-induced NO and PGE(2) production, and iNOS protein expression. RT-PCR analysis showed that SA derivatives diminished LPS-induced iNOS mRNA expression. Moreover, the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in LPS-stimulated RAW 264.7 cells was concentration-dependently suppressed by SA derivatives. SA inhibited NF-kappaB activation by prevention of the degradation of inhibitory factor-kappaB and p65 level in nuclear fractions induced by LPS. Taken together, these results suggest that the anti-inflammatory properties of SA derivatives might result from inhibition of iNOS protein expression through the downregulation of NF-kappaB activation via suppression of phosphorylation of ERK, in LPS-stimulated RAW 264.7 cells.

  19. 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-{alpha} and NF-{kappa}B pathways in lipopolysaccharide-stimulated mouse macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tzung-Yan, E-mail: joyamen@mail.cgu.edu.tw; Lee, Ko-Chen; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan

    2009-04-24

    Inflammation is involved in numerous diseases, including chronic inflammatory diseases and the development of cancer. Many plants possess a variety of biological activities, including antifungal, antibacterial and anti-inflammatory activities. However, our understanding of the anti-inflammatory effects of 6-gingerol is very limited. We used lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of 6-gingerol, which contains phenolic structure. We found that 6-gingerol exhibited an anti-inflammatory effect. 6-Gingerol could decrease inducible nitric oxide synthase and TNF-{alpha} expression through suppression of I-{kappa}B{alpha} phosphorylation, NF-{kappa}B nuclear activation and PKC-{alpha} translocation, which in turn inhibits Ca{sup 2+} mobilization and disruptionmore » of mitochondrial membrane potential in LPS-stimulated macrophages. Here, we demonstrate that 6-gingerol acts as an anti-inflammatory agent by blocking NF-{kappa}B and PKC signaling, and may be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.« less

  20. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotaro; Ichimura, Eri; Enomoto, Aya; Suzuki, Yuri; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-09-01

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa B kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Altered anti-inflammatory response of mononuclear cells to neuropeptide PACAP is associated with deregulation of NF-{kappa}B in chronic pancreatitis.

    PubMed

    Michalski, Christoph W; Selvaggi, Federico; Bartel, Michael; Mitkus, Tomas; Gorbachevski, Andrej; Giese, Thomas; Sebastiano, Pierluigi Di; Giese, Nathalia A; Friess, Helmut

    2008-01-01

    Although it is recognized that neurogenic influences contribute to progression of chronic inflammatory diseases, the molecular basis of neuroimmune interactions in the pathogenesis of chronic pancreatitis (CP) is not well defined. Here we report that responsiveness of peripheral blood mononuclear cells (PBMC) to the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is altered in CP. Expression of PACAP and its receptors in human CP was analyzed with quantitative RT-PCR, laser-capture microdissection, and immunohistochemistry. Regulation of PACAP expression was studied in coculture systems using macrophages and acinar cells. Responsiveness of donor and CP PBMC to PACAP was determined based on cytokine profiles and NF-kappaB activation of LPS- or LPS+PACAP-exposed cells. Although donor and CP PBMC responded equally to LPS, PACAP-mediated counteraction of LPS-induced cytokine response was switched from inhibiting TNF-alpha to decreasing IL-1beta and increasing IL-10 secretion. The change of PACAP-mediated anti-inflammatory pattern was associated with altered activation of NF-kappaB: compared with LPS alone, a combination of LPS and PACAP had no effect on NF-kappaB p65 nuclear translocation in CP PBMC, whereas NF-kappaB was significantly decreased in donor PBMC. According to laser-capture microdissection and coculture experiments, PBMC also contributed to generation of a PACAP-rich intrapancreatic environment by upregulating PACAP expression in macrophages encountering apoptotic pancreatic acini. The nociceptive status of CP patients correlated with pancreatic PACAP levels and with IL-10 bias of PACAP-exposed CP PBMC. Thus the ability of PBMC to produce and to respond to PACAP might influence neuroimmune interactions that regulate pain and inflammation in CP.

  2. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage.

    PubMed

    Zhang, Yan; Igwe, Orisa J

    2018-01-01

    Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Comparative inhibitory effects of magnolol, honokiol, eugenol and bis-eugenol on cyclooxygenase-2 expression and nuclear factor-kappa B activation in RAW264.7 macrophage-like cells stimulated with fimbriae of Porphyromonas gingivalis.

    PubMed

    Murakami, Yukio; Kawata, Akifumi; Seki, Yuya; Koh, Teho; Yuhara, Kenji; Maruyama, Takehisa; Machino, Mamoru; Ito, Shigeru; Kadoma, Yoshinori; Fujisawa, Seiichiro

    2012-01-01

    The anti-inflammatory activity of magnolol and related compounds is currently a focus of interest. In the present study, the inhibitory effects of these compounds on cyclooxygenase (COX-2) expression and nuclear factor-kappa B (NF-κB) activation were investigated in RAW264.7 macrophage-like cells stimulated with the fimbriae of Porphyromonas gingivalis, an oral anaerobe. The cytotoxicity of magnolol, honokiol, eugenol and bis-eugenol against RAW264.7 cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX-2 mRNA, stimulated by exposure to the fimbriae was investigated by real-time polymerase chain reaction (PCR). NF-κB activation was evaluated by enzyme-linked immunosorbent assay (ELISA)-like microwell colorimetric transcription factor activity assay (Trans-AM) and western blot analysis. The radical-scavenging activity was determined using the induction period method in the methyl methacrylate-azobisisobutyronitrile (AIBN) polymerization system under nearly anaerobic conditions. The phenolic bond dissociation enthalpy (BDE) and orbital energy were calculated at the density functional theory (DFT) B3LYP/6-31G* level. The cytotoxicity against RAW264.7 cells declined in the order bis-eugenol>eugenol> honokiol>magnolol, whereas the radical-scavenging activity declined in the order honokiol, bis-eugenol>magnolol> eugenol. Magnolol and honokiol significantly inhibited the fimbria-induced expression of COX-2 at non-cytotoxic concentrations. Both the fimbria-stimulated binding of NF-κB to its consensus sequence and phosphorylation-dependent proteolysis of inhibitor κB-α were markedly inhibited by magnilol and honokiol, whereas eugenol and bis-eugenol did not inhibit COX-2 expression and NF-κB activation. Magnolol and honokiol possessed a high electronegativity (χ) value. Magnolol and honokiol exhibit antioxidative activity, low cytotoxicity, and anti-inflammatory activity. These compounds may be

  4. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-{kappa}B translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawan, Bruno; Kao, Y.-H.; Department of Biological Sciences, National Sun Yat-Sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 {mu}M after 48 h incubation. Pretreatment with 100 {mu}M PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstratedmore » that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-{alpha}, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and I{kappa}B{alpha}, as well as the nuclear translocation of NF-{kappa}B primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-{kappa}B nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers.« less

  5. Nuclear Factor Kappa B Activation and Peroxisome Proliferator-activated Receptor Transactivational Effects of Chemical Components of the Roots of Polygonum multiflorum.

    PubMed

    Sun, Ya Nan; Li, Wei; Song, Seok Bean; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2016-01-01

    Polygonum multiflorum is well-known as "Heshouwu" in traditional Chinese herbal medicine. In Northeast Asia, it is often used as a tonic to prevent premature aging of the kidney and liver, tendons, and bones and strengthening of the lower back and knees. To research the anti-inflammatory activities of components from P. multiflorum. The compounds were isolated by a combination of silica gel and YMC R-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-nuclear magnetic resonance, and mass spectrometry). The anti-inflammatory activities of the isolated compounds 1-15 were evaluated by luciferase reporter gene assays. Fifteen compounds (1-15) were isolated from the roots of P. multiflorum. Compounds 1-5 and 14-15 significantly inhibited tumor necrosis factor-α-induced nuclear factor kappa B-luciferase activity, with IC50 values of 24.16-37.56 μM. Compounds 1-5 also greatly enhanced peroxisome proliferator-activated receptors transcriptional activity with EC50 values of 18.26-31.45 μM. The anthraquinone derivatives were the active components from the roots of P. multiflorum as an inhibitor on inflammation-related factors in human hepatoma cells. Therefore, we suggest that the roots of P. multiflorum can be used to treat natural inflammatory diseases. This study presented that fifteen compounds (1-15) isolated from the roots of Polygonum multiflrum exert signifiant anti inflmmatory effects by inhibiting TNF α induced NF κB activation and PPARs transcription. Abbreviation used: NF κB: Nuclear factor kappa B, PPARs: Peroxisome proliferator activated receptors, PPREs: Peroxisome proliferator response elements, TNF α: Tumor necrosis factor α, ESI-MS: Electrospray ionization mass spectrometry, HepG2: Human hepatoma cells.

  6. Effect of Daisaikoto on Expressions of SIRT1 and NF-kappaB of Diabetic Fatty Liver Rats Induced by High-Fat Diet and Streptozotocin

    PubMed Central

    Qian, Weibin; Cai, Xinrui; Zhang, Xinying; Wang, Yingying; Qian, Qiuhai; Hasegawa, Junichi

    2016-01-01

    Background Daisaikoto (DSKT), a classical traditional Chinese herbal formula, has been used for treating digestive diseases for 1800 years in China. Therefore, in this study, we are going to investigate the effect of DSKT on diabetic fatty liver rats induced by a high-fat diet and streptozotocin (STZ), and the effects of DSKT on silent mating type information regulation 2 homolog 1 (SIRT1) and nuclear factor kappa B (NF-kappaB). Methods Diabetic fatty liver rat model was selected to establish a high-fat diet and STZ. Sixty Wistar rats were divided into six groups (n = 10): control group, high-fat diet + STZ group, simvastatin treatment group, DSKT low dose, medial dose and high dose treatment groups. After 8 weeks of drug intervention, body and liver weights, blood chemistry, blood glucose and insulin were examined. The expressions of sirtuin 1 and NF-kappaB in the liver were observed by RT-PCR and immunohistochemistry, respectively. Results A high-fat diet increased body, liver weights, and serum cholesterol concentrations. Intraperitoneal injection of STZ increased blood glucose and decreased body weights. DSKT improved them. Homeostasis model assessment-estimated insulin resistance (HOMA-IR) indices were increased in the high-fat diet groups. DSKT improved them too. In histological examinations of the liver, we observed a significant improvement after treatment. Immunostaining expression of NF-kappaB in the liver was improved by DSKT and simvastatin. The mRNA expressions of SIRT1 in the liver were increased by DSKT and simvastatin. Conclusion We have demonstrated that DSKT is capable of reversing dyslipidemia and insulin resistance induced by a high-fat diet and STZ. High dose DSKT reveals a stronger effect than simvastatin on the expressions of SIRT1 and NF-kappaB. Furthermore, DSKT has shown a strong dose-depended protective effect on diabetic fatty liver. PMID:27493486

  7. Gene expression profiling of anti-GBM glomerulonephritis model: the role of NF-kappaB in immune complex kidney disease.

    PubMed

    Kim, Ju Han; Ha, Il Soo; Hwang, Chang-Il; Lee, Young-Ju; Kim, Jihoon; Yang, Seung-Hee; Kim, Yon Su; Cao, Yun Anna; Choi, Sangdun; Park, Woong-Yang

    2004-11-01

    Immune complexes may cause an irreversible onset of chronic renal disease. Most patients with chronic renal disease undergo a final common pathway, marked by glomerulosclerosis and interstitial fibrosis. We attempted to draw a molecular map of anti-glomerular basement membrane (GBM) glomerulonephritis in mice using oligonucleotide microarray technology. Kidneys were harvested at days 1, 3, 7, 11, and 16 after inducing glomerulonephritis by using anti-GBM antibody. In parallel with examining the biochemical and histologic changes, gene expression profiles were acquired against five pooled control kidneys. Gene expression levels were cross-validated by either reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, or immunohistochemistry. Pathologic changes in anti-GBM glomerulonephritis were confirmed in both BALB/c and C57BL/6 strains. Among the 13,680 spotted 65mer oligonucleotides, 1112 genes showing significant temporal patterns by permutation analysis of variance (ANOVA) with multiple testing correction [false discovery ratio (FDR) < 0.05] were chosen for cluster analysis. From the expression profile, acute inflammatory reactions characterized by the elevation of various cytokines, including interleukin (IL)-1 and IL-6, were identified within 3 days of disease onset. After 7 days, tissue remodeling response was prominent with highly induced extracellular-matrix (ECM) genes. Although cytokines related to lymphocyte activation were not detected, monocyte or mesangial cell proliferation-related genes were increased. Tumor necrosis factor-alpha (TNF-alpha) and nuclear factor-kappaB (NF-kappaB) pathway were consistently activated along the entire disease progression, inducing various target genes like complement 3, IL-1b, IL-6, Traf1, and Saa1. We made a large-scale gene expression time table for mouse anti-GBM glomerulonephritis model, providing a comprehensive overview on the mechanism governing the initiation and the progression of inflammatory

  8. Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: involvement of NF-kappaB pathway.

    PubMed

    Borthakur, Alip; Saksena, Seema; Gill, Ravinder K; Alrefai, Waddah A; Ramaswamy, Krishnamurthy; Dudeja, Pradeep K

    2008-04-01

    Butyrate, a short chain fatty acid (SCFA) produced by bacterial fermentation of undigested carbohydrates in the colon, constitutes the major fuel for colonocytes. We have earlier shown the role of apically localized monocarboxylate transporter isoform 1 (MCT1) in transport of butyrate into human colonic Caco-2 cells. In an effort to study the regulation of MCT1 gene, we and others have cloned the promoter region of the MCT1 gene and identified cis elements for key transcription factors. A previous study has shown up-regulation of MCT1 expression, and activity by butyrate in AA/C1 human colonic epithelial cells, however, the detailed mechanisms of this up-regulation are not known. In this study, we demonstrate that butyrate, a substrate for MCT1, stimulates MCT1 promoter activity in Caco-2 cells. This effect was dose dependent and specific to butyrate as other predominant SCFAs, acetate, and propionate, were ineffective. Utilizing progressive deletion constructs of the MCT1 promoter, we showed that the putative butyrate responsive elements are in the -229/+91 region of the promoter. Butyrate stimulation of the MCT1 promoter was found to be independent of PKC, PKA, and tyrosine kinases. However, specific inhibitors of the NF-kappaB pathway, lactacystein (LC), and caffeic acid phenyl ester (CAPE) significantly reduced the MCT1 promoter stimulation by butyrate. Also, butyrate directly stimulated NF-kappaB-dependent luciferase reporter activity. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) also stimulated MCT1 promoter activity, however, unlike butyrate, this stimulation was unaltered by the NF-kappaB inhibitors. Further, the combined effect of butyrate, and TSA on MCT1 promoter activity was additive, indicating that their mechanisms of action were independent. Our results demonstrate the involvement of NF-kappaB pathway in the regulation of MCT1 promoter activity by butyrate. 2007 Wiley-Liss, Inc.

  9. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Fen; Yang, Shuang; Zhao, Dan

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pHmore » 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.« less

  10. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin.

    PubMed

    Westergaard, Majken; Henningsen, Jeanette; Johansen, Claus; Rasmussen, Sofie; Svendsen, Morten Lyhne; Jensen, Uffe Birk; Schrøder, Henrik Daa; Staels, Bart; Iversen, Lars; Bolund, Lars; Kragballe, Knud; Kristiansen, Karsten

    2003-11-01

    Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology domain of p65. Irrespective of the presence of agonists none of the PPAR subtypes decreased p65-mediated transactivation in keratinocytes. In contrast p65, but not p50, was a potent repressor of PPAR-mediated transactivation. The p65-dependent repression of PPARdelta- but not PPARalpha- or PPARgamma-mediated transactivation was partially relieved by forced expression of the coactivators p300 or CBP. We suggest that deficient NF-kappaB activation in chronic psoriatic plaques permitting unabated PPARdelta-mediated transactivation contributes to the pathologic phenotype of psoriasis.

  11. Count on kappa.

    PubMed

    Czodrowski, Paul

    2014-11-01

    In the 1960s, the kappa statistic was introduced for the estimation of chance agreement in inter- and intra-rater reliability studies. The kappa statistic was strongly pushed by the medical field where it could be successfully applied via analyzing diagnoses of identical patient groups. Kappa is well suited for classification tasks where ranking is not considered. The main advantage of kappa is its simplicity and the general applicability to multi-class problems which is the major difference to receiver operating characteristic area under the curve. In this manuscript, I will outline the usage of kappa for classification tasks, and I will evaluate the role and uses of kappa in specifically machine learning and cheminformatics.

  12. Role of nuclear factor-kappa B activation in the adverse effects induced by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture.

    PubMed

    Dagher, Zeina; Garçon, Guillaume; Billet, Sylvain; Verdin, Anthony; Ledoux, Frédéric; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz

    2007-01-01

    To contribute to improving knowledge on the adverse health effects induced by particulate matter (PM) air pollution, an extensive investigation was undertaken of the underlying mechanisms of action activated by PM(2.5) air pollution collected in Dunkerque, a strongly industrialized French seaside city. Their chemical and physical characteristics have been previously determined, and earlier in vitro short-term studies have shown them to cause dose-dependent and time-dependent oxidative damage, gene expression and protein secretion of inflammatory mediators, and apoptotic events in human lung epithelial cells (L132) in culture. Hence, this work studied the activation of nuclear factor-kappa B (NF-kappaB)/inhibitory kappa B (IkappaB) by Dunkerque city PM(2.5) in these target cells, by determination of phosphorylated p65 and phosphorylated IkappaBalpha protein levels in cytoplasmic extracts, and p65 and p50 DNA binding in nuclear extracts. In PM-exposed L132 cells, there were concentration- and/or time-dependent increases in nuclear p65 and cytoplasmic IkB-alpha phosphorylation, and nuclear p65 and p50 DNA binding. Taken together, these results showed that Dunkerque city PM(2.5) were involved in the activation of the NF-kappaB/IkappaB complex, notably through the occurrence of oxidative stress conditions, and, therefore, in the gene expression and protein secretion of inflammatory mediators in target L132 cells. Hence, these findings suggested that the activation of the NF-kappaB/IkappaB complex preceded cytotoxicity in Dunkerque city PM-exposed L132 cells. (c) 2007 John Wiley & Sons, Ltd.

  13. Acetylation of the human T-cell leukemia virus type 1 Tax oncoprotein by p300 promotes activation of the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodewick, Julie; Lamsoul, Isabelle; Polania, Angela

    The oncogenic potential of the HTLV-1 Tax protein involves activation of the NF-{kappa}B pathway, which depends on Tax phosphorylation, ubiquitination and sumoylation. We demonstrate that the nuclei of Tax-expressing cells, including HTLV-1 transformed T-lymphocytes, contain a pool of Tax molecules acetylated on lysine residue at amino acid position 346 by the transcriptional coactivator p300. Phosphorylation of Tax on serine residues 300/301 was a prerequisite for Tax localization in the nucleus and correlated with its subsequent acetylation by p300, whereas sumoylation, resulting in the formation of Tax nuclear bodies in which p300 was recruited, favored Tax acetylation. Overexpression of p300 markedlymore » increased Tax acetylation and the ability of a wild type HTLV-1 provirus, -but not of a mutant provirus carrying an acetylation deficient Tax gene-, to activate gene expression from an integrated NF-{kappa}B-controlled promoter. Thus, Tax acetylation favors NF-{kappa}B activation and might play an important role in HTLV-1-induced cell transformation.« less

  14. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells.

    PubMed

    Coll, Teresa; Alvarez-Guardia, David; Barroso, Emma; Gómez-Foix, Anna Maria; Palomer, Xavier; Laguna, Juan C; Vázquez-Carrera, Manuel

    2010-04-01

    Elevated plasma free fatty acids cause insulin resistance in skeletal muscle through the activation of a chronic inflammatory process. This process involves nuclear factor (NF)-kappaB activation as a result of diacylglycerol (DAG) accumulation and subsequent protein kinase Ctheta (PKCtheta) phosphorylation. At present, it is unknown whether peroxisome proliferator-activated receptor-delta (PPARdelta) activation prevents fatty acid-induced inflammation and insulin resistance in skeletal muscle cells. In C2C12 skeletal muscle cells, the PPARdelta agonist GW501516 prevented phosphorylation of insulin receptor substrate-1 at Ser(307) and the inhibition of insulin-stimulated Akt phosphorylation caused by exposure to the saturated fatty acid palmitate. This latter effect was reversed by the PPARdelta antagonist GSK0660. Treatment with the PPARdelta agonist enhanced the expression of two well known PPARdelta target genes involved in fatty acid oxidation, carnitine palmitoyltransferase-1 and pyruvate dehydrogenase kinase 4 and increased the phosphorylation of AMP-activated protein kinase, preventing the reduction in fatty acid oxidation caused by palmitate exposure. In agreement with these changes, GW501516 treatment reversed the increase in DAG and PKCtheta activation caused by palmitate. These effects were abolished in the presence of the carnitine palmitoyltransferase-1 inhibitor etomoxir, thereby indicating that increased fatty acid oxidation was involved in the changes observed. Consistent with these findings, PPARdelta activation by GW501516 blocked palmitate-induced NF-kappaB DNA-binding activity. Likewise, drug treatment inhibited the increase in IL-6 expression caused by palmitate in C2C12 and human skeletal muscle cells as well as the protein secretion of this cytokine. These findings indicate that PPARdelta attenuates fatty acid-induced NF-kappaB activation and the subsequent development of insulin resistance in skeletal muscle cells by reducing DAG accumulation

  15. IFN-{gamma} sensitizes MIN6N8 insulinoma cells to TNF-{alpha}-induced apoptosis by inhibiting NF-{kappa}B-mediated XIAP upregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hun Sik; Kim, Sunshin; Lee, Myung-Shik

    2005-10-28

    Although X-linked inhibitor of apoptosis protein (XIAP) is an important intracellular suppressor of apoptosis in a variety of cell types, its role in cytokine-induced pancreatic {beta}-cell apoptosis remains unclear. Here, we found that: (i) XIAP level was inversely correlated with tumor necrosis factor (TNF)-{alpha}-induced apoptosis in MIN6N8 insulinoma cells; (ii) adenoviral XIAP overexpression abrogated the TNF-{alpha}-induced apoptosis through inhibition of caspase activity; (iii) downregulation of XIAP by antisense oligonucleotide or Smac peptide sensitized MIN6N8 cells to TNF-{alpha}-induced apoptosis; (iv) XIAP expression was induced by TNF-{alpha} through a nuclear factor-{kappa}B (NF-{kappa}B)-dependent pathway, and interferon (IFN)-{gamma} prevented such an induction in amore » manner independent of NF-{kappa}B, which presents a potential mechanism underlying cytotoxic IFN-{gamma}/TNF-{alpha} synergism. Taken together, our results suggest that XIAP is an important modulator of TNF-{alpha}-induced apoptosis of MIN6N8 cells, and XIAP regulation in pancreatic {beta}-cells might play an important role in pancreatic {beta}-cell apoptosis and in the pathogenesis of type 1 diabetes.« less

  16. Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1.

    PubMed

    Gulati, Anthony P; Yang, Yang-Ming; Harter, David; Mukhopadhyay, Asok; Aggarwal, Bharat B; Aggarwal, Bharat A; Benzil, Deborah L; Whysner, John; Albino, Anthony P; Murali, Raj; Jhanwar-Uniyal, Meena

    2006-01-01

    The roles of the mitogen-activated kinase protein (MAPK) pathway, nuclear factor-kappa B (NF-kappaB), and activator protein-1 (AP-1) in cellular responses to growth factors and mitogen are well established. However, the manner by which these proliferative pathways are affected by the tumor suppressor protein p53 is not fully understood. We report here the results of an investigation of the status of p53 on two human melanoma cell lines with wild-type p53 (SK-Mel-186) or mutant p53 (SK-Mel-110). The basal levels of the activated extracellular-signal regulated kinases 1 and 2 (ERK1/2) were high in cells with wild-type p53, but low in cells with mutant p53. The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of ERK1/2 through the phosphorylation of threonine and tyrosine at 202 and 204, respectively, was demonstrated in both cell lines, however, in a discrete manner. TPA-induced activation of ERK1/2 was sustained in wild-type p53 cells, while only a transient activation was seen in mutant p53 cells. Inhibition of MAPK kinase (MEK), an upstream kinase, by U0126, blocked TPA-induced activation of ERK1/2 in wild-type p53 cells and in mutant p53 cells. Treatment of wild-type p53 (SK-Mel 186) cells with small interfering RNA (siRNA) of p53 displayed a transient induction of activation of ERK1/2 following TPA treatment, indicating that p53 has a role in the regulation of the activation of ERK1/2. NF-kappaB activity decreased significantly in cells with wild-type p53, while enhanced NF-kappaB activity was evident in cells with mutant p53. The expression of either wild-type or mutant p53 had a similar effect on TPA-induced Jun N-terminal kinase (JNK) activation, indicating specificity for the ERK pathway. Similarly, AP-1 binding activity showed a transient variation in both cell lines after TPA treatment but with different kinetics. These observations suggest that both wild-type and mutant p53 can modulate the activation pathways for ERK1/2, and NF-kappaB

  17. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    PubMed

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  18. Trastuzumab-Resistant Luminal B Breast Cancer Cells Show Basal-Like Cell Growth Features Through NF-κB-Activation

    PubMed Central

    Kanzaki, Hirotaka; Mukhopadhya, Nishit K.; Cui, Xiaojiang; Ramanujan, V. Krishnan

    2016-01-01

    A major clinical problem in the treatment of breast cancer is mortality due to metastasis. Understanding the molecular mechanisms associated with metastasis should aid in designing new therapeutic approaches for breast cancer. Trastuzumab is the main therapeutic option for HER2+ breast cancer patients; however, the molecular basis for trastuzumab resistance (TZR) and subsequent metastasis is not known. Earlier, we found expression of basal-like molecular markers in TZR tissues from patients with invasive breast cancer.(1) The basal-like phenotype is a particularly aggressive form of breast cancer. This observation suggests that TZR might contribute to an aggressive phenotype. To understand if resistance to TZR can lead to basal-like phenotype, we generated a trastuzumab-resistant human breast cancer cell line (BT-474-R) that maintained human epidermal growth factor receptor 2 (HER2) overexpression and HER2 mediated signaling. Analysis showed that nuclear factor-kappa B (NF-κB) was constitutively activated in the BT-474-R cells, a feature similar to the basal-like tumor phenotype. Pharmacologic inhibition of NF-κB improved sensitivity of BT-474-R cells to trastuzumab. Interestingly, activation of HER2 independent NF-κB is not shown in luminal B breast cancer cells. Our study suggests that by activating the NF-κB pathway, luminal B cells may acquire a HER2+ basal-like phenotype in which NF-κB is constitutively activated; this notion is consistent with the recently proposed “progression through grade” or “evolution of resistance” hypothesis. Furthermore, we identified IKK-α/IKK-β and nuclear accumulation of RelA/p65 as the major determinants in the resistant cells. Thus our study additionally suggests that the nuclear accumulation of p65 may be a useful marker for identifying metastasis-initiating tumor cells and targeting RelA/p65 may limit metastasis of breast and other cancers associated with NF-κB activation. PMID:26871511

  19. [Expressions of HSP 70 and NF-kappaB in the peripheral blood lymphocyte of chronic gastritis patients of different syndrome patterns].

    PubMed

    Hu, Ling; Zheng, Xiao-Feng; Yan, Xue-Hui

    2012-09-01

    To study the expressions of heat shock protein 70 (HSP 70) and nuclear factor-kappa B (NF-kappaB) in the peripheral blood lymphocyte of chronic gastritis (CG) patients of Pi-Wei hygropyrexia syndrome (PWHS) and Pi-qi deficiency syndrome (PQDS), and to explore their correlation with Helicobacter pylori (Hp) infection. Recruited were totally 86 CG patients who visited at the clinics of gastroenterology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, including 67 patients of PWHS (30 of predominant-dampness, 30 of equal dampness and heat, and 30 of predominant-heat) and 19 patients of PQDS. Another 12 volunteers from healthy employees and students of Guangzhou University of Traditional Chinese Medicine were recruited as the control group. Their peripheral blood was collected. The Hp infection was detected using ASSURE Hp rapid test. The expressions of HSP 70 and NF-kappaB in the peripheral blood lymphocyte were detected using flow cytometry. The Hp infection rate was 37. 31% in the GS patients of PWHS and 36. 84% in the GS patients of PQDS (P>0.05). Compared with the control group, the expression of HSP 70 decreased in the PWHS predominant-heat group, and the expression of NF-kappaB increased in the PWHS predominant-heat group and the PQDS group (P<0.05). The expression of NF-kappaB were higher in the positive Hp infection patients of PWHS and PQDS than in the control group (P<0.05). The expression of HSP 70 was higher in the positive Hp infection patients of PQDS than in the negative Hp infection patients of PQDS (P<0.05). Besides, the coefficient correlation was -0. 023 between HSP 70 and Hp infection, and 0. 027 between NF-KB and Hp infection (P>0.05). The increased expression of NF-KB in the peripheral blood lymphocyte of CG patients of PWHS and PQDS might reflect the pathogenic roles of "inner evil" in Chinese medicine theories. The increased expression of HSP 70 in CG patients of PQDS and decreased expression of HSP 70 in CG

  20. Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway.

    PubMed

    Liu, Ji Ping; Liu, Dan; Gu, Jun Fei; Zhu, Mao Mao; Cui, Li

    2015-08-01

    Shikonin is an active naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon. This study was designed to explore the inhibition of Shikonin on cell viability, adhesion, migration and invasion ability of gastric cancer (GC) and its possible mechanism. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for cell viability and adhesion ability of MGC-803 cells. Cell scratch repair experiments were conducted for the determination of migration ability while transwell assay for cell invasion ability. Western blot analysis and real-time polymerase chain reaction assay were used for the detection of protein and mRNA expressions. Fifty per cent inhibitory concentration of Shikonin on MGC-803 cells was 1.854 μm. Shikonin (1 μm) inhibited significantly the adhesion, invasion and migratory ability of MGC-803 cells. Interestingly, Shikonin in the presence or absence of anti-Toll-like receptor 2 (TLR2) antibody (2 μg) and nuclear factor-kappa B (NF-κB) inhibitor MG-132 (10 μm) could decrease these ability of MGC-803 cells markedly, as well as the expression levels of matrix metalloproteinases (MMP)-2, MMP-7, TLR2 and p65 NF-κB. In addition, the co-incubation of Shikonin and anti-TLR2/MG-132 has a significant stronger activity than anti-TLR2 or MG-132 alone. The results indicated that Shikonin could suppress the cell viability, adhesion, invasion and migratory ability of MGC-803 cells through TLR2- or NF-κB-mediated pathway. Our findings provide novel information for the treatment of Shikonin on GC. © 2015 Royal Pharmaceutical Society.

  1. Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells.

    PubMed

    Oh, Jung Hwa; Kwon, Taeg Kyu

    2009-05-01

    We here investigated the functional effect of withaferin A on airway inflammation and its action mechanism. Withaferin A inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in human lung epithelial A549 cells stimulated with tumor necrosis factor-alpha (TNF-alpha), resulting in the suppression of leukocyte adhesion to lung epithelial A549 cells. In addition, withaferin A inhibited TNF-alpha-induced expression of adhesion molecules (ICAM-1 and VCAM-1) protein and mRNA in a dose-dependent manner. Withaferin A prevented DNA binding activity of nuclear factor-kappaB (NF-kappaB) and nuclear translocation of NF-kappaB. It also inhibited phosphorylation of Akt and extracellular signal-regulated kinase (ERK), which are upstream in the regulation of adhesion molecules by TNF-alpha. Furthermore, withaferin A inhibited U937 monocyte adhesion to A549 cells stimulated by TNF-alpha, suggesting that it may inhibit the binding of these cells by regulating the expression of critical adhesion molecules by TNF-alpha. Taken together, these results suggest that withaferin A inhibits cell adhesion through inhibition of ICAM-1 and VCAM-1 expression, at least in part, by blocking Akt and down-regulating NF-kappaB activity.

  2. Mangiferin, a novel nuclear factor kappa B-inducing kinase inhibitor, suppresses metastasis and tumor growth in a mouse metastatic melanoma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Tomoya; Tsubaki, Masanobu; Sakamoto, Kotar

    Advanced metastatic melanoma, one of the most aggressive malignancies, is currently without reliable therapy. Therefore, new therapies are urgently needed. Mangiferin is a naturally occurring glucosylxanthone and exerts many beneficial biological activities. However, the effect of mangiferin on metastasis and tumor growth of metastatic melanoma remains unclear. In this study, we evaluated the effect of mangiferin on metastasis and tumor growth in a mouse metastatic melanoma model. We found that mangiferin inhibited spontaneous metastasis and tumor growth. Furthermore, mangiferin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated NF-κB-inducing kinase (NIK), inhibitor of kappa Bmore » kinase (IKK), and inhibitor of kappa B (IκB) and increases the expression of IκB protein in vivo. In addition, we found that mangiferin inhibited the expression of matrix metalloproteinases (MMPs) and very late antigens (VLAs) in vivo. Mangiferin treatment also increased the expression of cleaved caspase-3, cleaved Poly ADP ribose polymerase-1 (PARP-1), p53 upregulated modulator of apoptosis (PUMA), p53, and phosphorylated p53 proteins, and decreased the expression of Survivin and Bcl-associated X (Bcl-xL) proteins in vivo. These results indicate that mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation, thereby inhibiting metastasis and tumor growth. Importantly, the number of reported NIK selective inhibitors is limited. Taken together, our data suggest that mangiferin may be a potential therapeutic agent with a new mechanism of targeting NIK for the treatment of metastatic melanoma. - Highlights: • Mangiferin prolongs survival in mice by inhibiting metastasis and tumor growth • Mangiferin selectivity suppresses the NF-κB pathway via inhibition of NIK activation • Mangiferin regulates the expression of MMPs, VLAs, and apoptosis regulatory proteins.« less

  3. Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice.

    PubMed

    Kuzmin, Alexander; Madjid, Nather; Terenius, Lars; Ogren, Sven Ove; Bakalkin, Georgy

    2006-09-01

    Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the kappa-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through kappa-opioid receptors.

  4. Immunogenicity of DNA Vaccine against H5N1 Containing Extended Kappa B Site: In Vivo Study in Mice and Chickens

    PubMed Central

    Redkiewicz, Patrycja; Stachyra, Anna; Sawicka, Róz∙a; Bocian, Katarzyna; Góra-Sochacka, Anna; Kosson, Piotr; Sirko, Agnieszka

    2017-01-01

    Influenza is one of the most important illnesses in the modern world, causing great public health losses each year due to the lack of medication and broadly protective, long-lasting vaccines. The development of highly immunogenic and safe vaccines is currently one of the major problems encountered in efficient influenza prevention. DNA vaccines represent a novel and powerful alternative to the conventional vaccine approaches. To improve the efficacy of the DNA vaccine against influenza H5N1, we inserted three repeated kappa BB) motifs, separated by a 5-bp nucleotide spacer, upstream of the cytomegalovirus promoter and downstream of the SV40 late polyadenylation signal. The κB motif is a specific DNA element (10pb-long) recognized by one of the most important transcription factors NFκB. NFκB is present in almost all animal cell types and upon cell stimulation under a variety of pathogenic conditions. NFκB is released from IκB and translocates to the nucleus and binds to κB sites, thereby leading to enhanced transcription and expression of downstream genes. We tested the variants of DNA vaccine with κB sites flanking the antigen expression cassette and without such sites in two animal models: chickens (broilers and layers) and mice (BALB/c). In chickens, the variant with κB sites stimulated stronger humoral response against the target antigen. In mice, the differences in humoral response were less apparent. Instead, it was possible to spot several gene expression differences in the spleens isolated from mice immunized with both variants. The results of our study indicate that modification of the sequence outside of the sequence encoding the antigen might enhance the immune response to the target but understanding the mechanisms responsible for this process requires further analysis. PMID:28883819

  5. Activin A stimulates IkappaB-alpha/NFkappaB and RANK expression for osteoclast differentiation, but not AKT survival pathway in osteoclast precursors.

    PubMed

    Sugatani, T; Alvarez, U M; Hruska, K A

    2003-09-01

    Recent studies have reported that activin A enhances osteoclastogenesis in cultures of mouse bone marrow cells stimulated with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the exact mechanisms by which activin A functions during osteoclastogenesis are not clear. RANKL stimulation of RANK/TRAF6 signaling increases nuclear factor-kappaB (NFkappaB) nuclear translocation and activates the Akt/PKB cell survival pathway. Here we report that activin A alone activates IkappaB-alpha, and stimulates nuclear translocation of NFkappaB and receptor activator of nuclear factor-kappaB (RANK) expression for osteoclastogenesis, but not Akt/PKB survival signal transduction including BAD and mammalian target of rapamycin (mTOR) for survival in osteoclast precursors in vitro. Activin A alone failed to activate Akt, BAD, and mTOR by immunoblotting, and it also failed to prevent apoptosis in osteoclast precursors. While activin A activated IkappaB-alpha and induced nuclear translocation of phosphorylated-NFkappaB, and it also enhanced RANK expression in osteoclast precursors. Moreover, activin A enhanced RANKL- and M-CSF-stimulated nuclear translocation of NFkappaB. Our data suggest that activin A enhances osteoclastogenesis treated with RANKL and M-CSF via stimulation of RANK, thereby increasing the RANKL stimulation. Activin A alone activated the NFkappaB pathway, but not survival in osteoclast precursors in vitro, but it is, thus, insufficient as a sole stimulus to osteoclastogenesis. Copyright 2003 Wiley-Liss, Inc.

  6. Role of thrombospondin-1 and nuclear factor-kappa B signaling pathways in anti-angiogenesis of infantile hemangioma.

    PubMed

    Xu, Weili; Li, Suolin; Yu, Fengxue; Zhang, Yongting; Yang, Xiaofeng; An, Wenting; Wang, Wenbo; Sun, Chi

    2018-06-12

    Propranolol (PRO) is the first-line drug for infantile hemangioma treatment. However, its mechanism of action remains unclear. Nuclear factor-kappa B (NF-κB) is highly expressed in tumors, directly or indirectly promoting angiogenesis. Thrombospondin-1 (TSP-1) is the most important anti-angiogenesis protein in vivo. These proteins mediate signaling pathways, probably playing an important role in hemangioma treatment. This study explored the synergistic regulation of TSP-1 and NF-κB signaling pathways in the treatment of hemangioma with PRO. The hemangioma-derived endothelial cells (HemECs) were sorted out from the specimens of proliferative hemangioma by flow cytometry. Furthermore, a BALB/c nude mice hemangioma model was established. Viability and proliferation of HemECs, and the role of TSP-1 and NF-κB signaling pathways were observed after PRO administration in vitro and in vivo. The expressions of TSP-1 and its receptor cluster of differentiation 36 (CD36) in HemECs gradually increased with the increase in PRO concentration, while the expressions of NF-κBp65, phosphorylated inhibitor of kappa B alpha (p-IκBα), and phosphorylated inhibitor of NF-κB kinase beta (p-IκKβ) weakened gradually (p < 0.05). In vivo, the tumors shrank gradually after PRO treatment, with increase in TSP-1 and CD36, and decrease in NF-κBp65, p-IκBα, and p-IκKβ (p < 0.05). Glucocorticoid improved the anti-angiogenesis mediated by TSP-1/CD36 and inhibited the angiogenesis mediated by NF-κB/IκB (p < 0.05). Negative regulation occurred between the two signaling pathways. The treatment of infantile hemangioma with PRO is promising to promote TSP-1-mediated anti-angiogenesis and block NF-κB-mediated angiogenesis.

  7. Intrauterine growth restriction decreases nuclear factor-kappa B signaling in fetal pulmonary artery endothelial cells of fetal sheep.

    PubMed

    Dodson, R Blair; Powers, Kyle N; Gien, Jason; Rozance, Paul J; Seedorf, Gregory J; Astling, David; Jones, Kenneth Lloyd; Crombleholme, Timothy M; Abman, Steven H; Alvira, Cristina M

    2018-05-03

    Intrauterine growth restriction (IUGR) in premature newborns increases the risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted pulmonary angiogenesis and alveolarization. We previously showed that experimental IUGR impairs angiogenesis, however, mechanisms that impair pulmonary artery endothelial cell (PAEC) function are uncertain. The nuclear factor-kappa-B (NFκB) pathway promotes vascular growth in the developing mouse lung, and we hypothesized that IUGR disrupts NFκB-regulated pro-angiogenic targets in fetal PAEC. PAECs were isolated from lungs of control fetal sheep and sheep with experimental IUGR from an established model of chronic placental insufficiency. Microarray analysis identified suppression of NFκB signaling and significant alterations in extracellular matrix (ECM) pathways in IUGR PAEC, including decreases in collagen 4α1 and laminin α4, components of the basement membrane and putative NFκB targets. In comparison with controls: (i) immunostaining of active NFκB complexes; (ii) NFκB-DNA binding; (iii) baseline expression of NFκB subunits, p65 and p50; and (iv) LPS-mediated inducible activation of NFκB signaling were decreased in IUGR PAEC. Although pharmacologic NFκB inhibition did not affect angiogenic function in IUGR PAEC, angiogenic function of control PAEC was reduced to a similar degree as that observed in IUGR PAEC. These data identify reductions in endothelial NFκB signaling as central to the disrupted angiogenesis observed in IUGR, likely by impairing both intrinsic PAEC angiogenic function and NFκB-mediated regulation of ECM components necessary for vascular development. These data further suggest that strategies that preserve endothelial NFκB activation may be useful in lung diseases marked by disrupted angiogenesis such as IUGR.

  8. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism.

    PubMed

    Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Abe, Jun-Ichi; Berk, Bradford C; Li, Jian-Dong; Yan, Chen

    2010-05-25

    Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.

  9. Search for optical coronal line emission from the X-ray sources Epsilon Orionis /B0 Ia/ and Kappa Orionis /B0.5 Ia/

    NASA Technical Reports Server (NTRS)

    Nordsieck, K. H.; Cassinelli, J. P.; Anderson, C. M.

    1981-01-01

    A search was conducted for evidence of a coronal region at the base of the winds of Epsilon Ori and Kappa Ori, by means of high signal-to-noise observations at the forbidden lines of Fe X, at 6574 A, and Fe XIV, 5303 A. Both stars have been detected as soft X-ray sources, and show anomalously strong O VI lines in their UV spectra. Large coronal emission measures were expected from the total X-ray flux and Auger-enhanced ionization, but the fact that the iron coronal lines were not detected places new limits on the emission measure if the total temperature is in the range of 700,000-3,000,000 or more than 1,000,000 for Kappa Ori and 2,000,000 for Epsilon Ori. It is suggested that at least some of the X-rays arise, not from the base corona, but from source features farther out in the wind.

  10. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB.

    PubMed

    Liu, T Z; Lee, K T; Chern, C L; Cheng, J T; Stern, A; Tsai, L Y

    2001-10-01

    Excessive production of hydroxyl radicals in blood and liver has previously been demonstrated by us in rats with obstructive jaundice induced by common bile duct ligation (CBDL). In this study, we demonstrate overproduction of superoxide radicals in circulating blood of CBDL rats by the lucigenin-amplified chemiluminescence technique. To pinpoint the molecular agents that mediate these processes, we measured circulating proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta ( IL-1beta), and interleukin-6 (IL-6) in controls and CBDL rats. Concentrations of these cytokines in blood of CBDL rats were markedly elevated when compared to the controls (TNF-alpha: 36.7 +/- 5.0 vs 13.8 +/- 0.5 pg/mL; IL-6: 2,814 +/- 1,740 vs 0 pg/mL; IL-1beta: 11.9 +/- 2.6 vs 0 pg/mL). The overproduction of free radicals triggered by elevated cytokines in CBDL rats was correlated with the activation of NF-kappaB in hepatic tissue. Using the TdT-mediated dUTP nick-end label staining technique, we showed that hepatic tissue sections from CBDL rats had an increase in the apoptotic index (AI). Based on these findings, we propose that the severe hepatic injury in CBDL rats is mediated by a cycle that involves the activation of NF-kappaB by combined action of proinflammatory cytokines and reactive oxygen species (ROS). NF-KB, in turn, initiates the transcription of cytokine genes (eg, IL-6, IL-8, TNF-alpha), which triggers hepatic injury, at least in part, by a free radical-mediated apoptotic mechanism. Elevated ROS may be as a positive-feedback signal that triggers NF-KB reactivation; the severe hepatic injury of CBDL rats may result from perpetuation of this vicious cycle.

  11. Anatomy of a new B-cell-specific enhancer.

    PubMed Central

    Koch, W; Benoist, C; Mathis, D

    1989-01-01

    The major histocompatibility complex class II molecules, like the immunoglobulins, are prominent B-lymphocyte markers. Herein, we describe a B-cell-specific enhancer associated with the murine class II gene, Ek alpha. This enhancer has a complex anatomy that suggests interactions between remotely spaced elements. Of particular interest is the finding that two CCAAT boxes spaced one kilobase apart are important for enhancer activity. Somewhat surprisingly, the E alpha and immunoglobulin enhancers seem to show little resemblance. Images PMID:2467189

  12. Cinnamaldehyde inhibits the tumor necrosis factor-{alpha}-induced expression of cell adhesion molecules in endothelial cells by suppressing NF-{kappa}B activation: Effects upon I{kappa}B and Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, B.-C.; Hsieh, C.-W.; Liu, Y.-C.

    The production of adhesion molecules and subsequent attachment of leukocytes to endothelial cells (ECs) are critical early events in atherogenesis. These adhesion molecules thus play an important role in the development of this disease. Recent studies have highlighted the chemoprotective and anti-inflammatory effects of cinnamaldehyde, a Cinnamomum cassia Presl-specific diterpene. In our current study, we have examined the effects of both cinnamaldehyde and extracts of C. cassia on cytokine-induced monocyte/human endothelial cell interactions. We find that these compounds inhibit the adhesion of TNF{alpha}-induced monocytes to endothelial cells and suppress the expression of the cell adhesion molecules, VCAM-1 and ICAM-1, atmore » the transcriptional level. Moreover, in TNF{alpha}-treated ECs, the principal downstream signal of VCAM-1 and ICAM-1, NF-{kappa}B, was also found to be abolished in a time-dependent manner. Interestingly, cinnamaldehyde exerts its anti-inflammatory effects by blocking the degradation of the inhibitory protein I{kappa}B-{alpha}, but only in short term pretreatments, whereas it does so via the induction of Nrf2-related genes, including heme-oxygenase-1 (HO-1), over long term pretreatments. Treating ECs with zinc protoporphyrin, a HO-1 inhibitor, partially blocks the anti-inflammatory effects of cinnamaldehyde. Elevated HO-1 protein levels were associated with the inhibition of TNF{alpha}-induced ICAM-1 expression. In addition to HO-1, we also found that cinnamaldehyde can upregulate Nrf2 in nuclear extracts, and can increase ARE-luciferase activity and upregulate thioredoxin reductase-1, another Nrf2-related gene. Moreover, cinnamaldehyde exposure rapidly reduces the cellular GSH levels in ECs over short term treatments but increases these levels after 9 h exposure. Hence, our present findings indicate that cinnamaldehyde suppresses TNF-induced singling pathways via two distinct mechanisms that are activated by different pretreatment

  13. PPARbeta/delta agonist stimulates human lung carcinoma cell growth through inhibition of PTEN expression: the involvement of PI3K and NF-kappaB signals.

    PubMed

    Han, ShouWei; Ritzenthaler, Jeffrey D; Zheng, Ying; Roman, Jesse

    2008-06-01

    Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.

  14. Inhibition of TNF-{alpha}-mediated inflammatory responses by a benzodioxolylacetylamino-linked benzothiazole analog in human fibroblast-like synoviocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young-Rae; Jin, Guo Hua; Lee, Sang-Myeong

    Highlights: {yields} We synthesized SPA0537, a benzothiazole analog. {yields} SPA0537 is a potent NF-{kappa}B inhibitor. {yields} SPA0537 suppresses the production of proinflammatory mediators in human rheumatoid fibroblast-like synoviocytes. {yields} SPA0537 is effective at suppressing osteoclast differentiation. -- Abstract: The pathologic processes of rheumatoid arthritis are mediated by a number of cytokines, chemokines, and matrix metalloproteinases, the expressions of which are controlled by NF-{kappa}B. This study was performed to explore the effects of a benzothiazole analog, SPA0537, on the control of the NF-{kappa}B activation pathway. We also investigated whether SPA0537 had any anti-inflammatory effects in human rheumatoid fibroblast-like synoviocytes (FLS). SPA0537more » inhibited the nuclear translocation and the DNA binding of NF-{kappa}B subunits, which correlated with the inhibitory effects on IKK phosphorylation and I{kappa}B{alpha} degradation in TNF-{alpha}-stimulated rheumatoid FLS. These events further suppressed chemokine production, matrix metalloproteinase secretion, and TNF-{alpha}-induced cell proliferation. In addition, SPA0537 inhibited the osteoclast differentiation induced by macrophage colony-stimulating factor (MCSF) and receptor activator of the NF-{kappa}B ligand (RANKL) in bone marrow macrophages. These findings suggest that SPA0537 exerts anti-inflammatory effects in rheumatoid FLS through the inhibition of the NF-{kappa}B pathway. Therefore, it may have therapeutic value for the treatment of rheumatoid arthritis.« less

  15. Properties of a U1 RNA enhancer-like sequence.

    PubMed Central

    Ciliberto, G; Palla, F; Tebb, G; Mattaj, I W; Philipson, L

    1987-01-01

    The properties of a X.laevis U1B snRNA gene enhancer have been studied by microinjection in Xenopus oocytes. The enhancer-like sequence, defined as a short DNA stretch that is able to activate transcription in an orientation independent manner, is interchangeable between different U snRNA genes. The enhancer sequence alone does not, however, efficiently activate transcription from an SV40 pol II promoter but regains its activity when combined with the U-gene specific proximal sequence element. DNase I protection experiments show that the X.laevis U1B enhancer can interact specifically with a nuclear factor present in mammalian cells. Images PMID:3031597

  16. Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Gong, E-mail: gong-feng@northwestern.edu; Anong Biotech Institute, Tianjin; Li Ying

    Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularinmore » induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.« less

  17. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    PubMed Central

    Zhang, Ailiang; Wang, Kun; Ding, Lianghua; Bao, Xinnan; Wang, Xuan; Qiu, Xubin; Liu, Jinbo

    2017-01-01

    Lumbar disc herniation (LDH) is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB) and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP) was implanted in the left L5 dorsal root ganglion (DRG) to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC), caspase-1, interleukin (IL)-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP) were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65) and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation. PMID:28243141

  18. Prevention of ocular inflammation in endotoxin-induced uveitis with resveratrol by inhibiting oxidative damage and nuclear factor-kappaB activation.

    PubMed

    Kubota, Shunsuke; Kurihara, Toshihide; Mochimaru, Hiroshi; Satofuka, Shingo; Noda, Kousuke; Ozawa, Yoko; Oike, Yuichi; Ishida, Susumu; Tsubota, Kazuo

    2009-07-01

    Resveratrol is known as one of the antioxidant polyphenols contained in red wine and grape skin. The purpose of the present study was to investigate the role of resveratrol in ocular inflammation in endotoxin-induced uveitis (EIU). EIU was induced in male C57/B6 mice at the age of 6 weeks by a single intraperitoneal injection of lipopolysaccharide (LPS). Animals had received oral supplementation of resveratrol at the doses of 5, 50, 100, or 200 mg/kg for 5 days until LPS injection. Twenty-four hours after LPS administration, leukocyte adhesion to the retinal vasculature was examined with a concanavalin A lectin perfusion-labeling technique. Retinal and retinal pigment epithelium (RPE)-choroidal levels of intercellular adhesion molecule (ICAM)-1, monocyte chemotactic protein (MCP)-1, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nuclear translocation of nuclear factor (NF)-kappaB p65 were evaluated by enzyme-linked immunosorbent assay. Retinal and RPE-choroidal activities of silent information regulator two ortholog (SIRT) 1 were measured by deacetylase fluorometric assay. Resveratrol pretreatment led to significant and dose-dependent suppression of leukocyte adhesion to retinal vessels of EIU mice compared with vehicle application. Protein levels of MCP-1 and ICAM-1 in the retina and the RPE-choroid of EIU animals were significantly reduced by resveratrol administration. Importantly, resveratrol-treated animals showed significant decline of retinal 8-OHdG generation and nuclear NF-kappaB P65 translocation, both of which were upregulated after EIU induction. RPE-choroidal SIRT1 activity, reduced in EIU animals, was significantly augmented by treatment with resveratrol. Resveratrol prevented EIU-associated cellular and molecular inflammatory responses by inhibiting oxidative damage and redox-sensitive NF-kappaB activation.

  19. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPS-induced inflammation in human THP-1-derived macrophages through NF-{kappa}B, p38MAPK and Akt inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essafi-Benkhadir, Khadija; Refai, Amira; Riahi, Ichrak

    Highlights: Black-Right-Pointing-Pointer Quince peel polyphenols inhibit LPS-induced secretion of TNF-{alpha} and IL-8. Black-Right-Pointing-Pointer Quince peel polyphenols augment LPS-induced secretion of IL-10 and IL-6. Black-Right-Pointing-Pointer Quince peel polyphenols-mediated inhibition of LPS-induced secretion of TNF-{alpha} is partially mediated by IL-6. Black-Right-Pointing-Pointer The anti-inflammatory effects of quince polyphenols pass through NF-{kappa}B, p38MAPK and Akt inhibition. -- Abstract: Chronic inflammation is a hallmark of several pathologies, such as rheumatoid arthritis, gastritis, inflammatory bowel disease, atherosclerosis and cancer. A wide range of anti-inflammatory chemicals have been used to treat such diseases while presenting high toxicity and numerous side effects. Here, we report the anti-inflammatory effectmore » of a non-toxic, cost-effective natural agent, polyphenolic extract from the Tunisian quince Cydonia oblonga Miller. Lipopolysaccharide (LPS) treatment of human THP-1-derived macrophages induced the secretion of high levels of the pro-inflammatory cytokine TNF-{alpha} and the chemokine IL-8, which was inhibited by quince peel polyphenolic extract in a dose-dependent manner. Concomitantly, quince polyphenols enhanced the level of the anti-inflammatory cytokine IL-10 secreted by LPS-treated macrophages. We further demonstrated that the unexpected increase in IL-6 secretion that occurred when quince polyphenols were associated with LPS treatment was partially responsible for the polyphenols-mediated inhibition of TNF-{alpha} secretion. Biochemical analysis showed that quince polyphenols extract inhibited the LPS-mediated activation of three major cellular pro-inflammatory effectors, nuclear factor-kappa B (NF-{kappa}B), p38MAPK and Akt. Overall, our data indicate that quince peel polyphenolic extract induces a potent anti-inflammatory effect that may prove useful for the treatment of inflammatory diseases and that a quince

  20. Dexamethasone protection from TNF-alpha-induced cell death in MCF-7 cells requires NF-kappaB and is independent from AKT.

    PubMed

    Machuca, Catalina; Mendoza-Milla, Criselda; Córdova, Emilio; Mejía, Salvador; Covarrubias, Luis; Ventura, José; Zentella, Alejandro

    2006-02-21

    The biochemical bases for hormone dependence in breast cancer have been recognized as an important element in tumor resistance, proliferation and metastasis. On this respect, dexamethasone (Dex) dependent protection against TNF-alpha-mediated cell death in the MCF-7 cell line has been demonstrated to be a useful model for the study of this type of cancer. Recently, cytoplasmic signaling induced by steroid receptors has been described, such as the activation of the PI3K/Akt and NF-kappaB pathways. We evaluated their possible participation in the Dex-dependent protection against TNF-alpha-mediated cell death. Cellular cultures of the MCF-7 cell line were exposed to either, TNF-alpha or TNF-alpha and Dex, and cell viability was evaluated. Next, negative dominants of PI3K and IkappaB-alpha, designed to block the PI3K/Akt and NF-kappaB pathways, respectively, were transfected and selection and evaluation of several clones overexpressing the mutants were examined. Also, correlation with inhibitor of apoptosis proteins (IAPs) expression was examined. Independent inhibition of these two pathways allowed us to test their participation in Dex-dependent protection against TNF-alpha-cytotoxicity in MCF-7 cells. Expression of the PI3K dominant negative mutant did not alter the protection conferred by Dex against TNF-alpha mediated cell death. Contrariwise, clones expressing the IkappaB-alpha dominant negative mutant lost the Dex-conferred protection against TNF-alpha. In these clones degradation of c-IAP was accelerated, while that of XIAP was remained unaffected. NF-kappaB, but not PI3K/Akt activation, is required for the Dex protective effect against TNF-alpha-mediated cell death, and correlates with lack of degradation of the anti-apoptotic protein c-IAP1.

  1. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury.

    PubMed

    Jiang, Shao-Yun; Zou, Yuan-Yuan; Wang, Jian-Tao

    2012-01-01

    In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and

  2. p38 mitogen-activated protein kinase–induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury

    PubMed Central

    Jiang, Shao-Yun; Zou, Yuan-Yuan

    2012-01-01

    Purpose In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Methods Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. Results The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. Conclusions These findings provide evidence of crosstalk

  3. Sulforaphane protects against cytokine- and streptozotocin-induced {beta}-cell damage by suppressing the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mi-Young; Kim, Eun-Kyung; Moon, Woo-Sung

    2009-02-15

    Sulforaphane (SFN) is an indirect antioxidant that protects animal tissues from chemical or biological insults by stimulating the expression of several NF-E2-related factor-2 (Nrf2)-regulated phase 2 enzymes. Treatment of RINm5F insulinoma cells with SFN increases Nrf2 nuclear translocation and expression of phase 2 enzymes. In this study, we investigated whether the activation of Nrf2 by SFN treatment or ectopic overexpression of Nrf2 inhibited cytokine-induced {beta}-cell damage. Treatment of RIN cells with IL-1{beta} and IFN-{gamma} induced {beta}-cell damage through a NF-{kappa}B-dependent signaling pathway. Activation of Nrf2 by treatment with SFN and induction of Nrf2 overexpression by transfection with Nrf2 prevented cytokinemore » toxicity. The mechanism by which Nrf2 activation inhibited NF-{kappa}B-dependent cell death signals appeared to involve the reduction of oxidative stress, as demonstrated by the inhibition of cytokine-induced H{sub 2}O{sub 2} production. The protective effect of SFN was further demonstrated by the restoration of normal insulin secreting responses to glucose in cytokine-treated rat pancreatic islets. Furthermore, pretreatment with SFN blocked the development of type 1 diabetes in streptozotocin-treated mice.« less

  4. Anti-inflammatory function of Withangulatin A by targeted inhibiting COX-2 expression via MAPK and NF-kappaB pathways.

    PubMed

    Sun, Lijuan; Liu, Jianwen; Cui, Daling; Li, Jiyu; Yu, Youjun; Ma, Lei; Hu, Lihong

    2010-02-15

    Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti-tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti-inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose- and time-dependent manner and inhibited pro-inflammation cytokines (IL-2, IFN-gamma, and IL-6) dramatically. Moreover, WA targeted inhibited COX-2 expression mediated by MAPKs and NF-kappaB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX-1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro-inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX-2 expression via MAPKs and NF-kappaB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti-inflammatory agent. (c) 2009 Wiley-Liss, Inc.

  5. Regulation of adhesion and growth of fibrosarcoma cells by NF-kappa B RelA involves transforming growth factor beta.

    PubMed Central

    Perez, J R; Higgins-Sochaski, K A; Maltese, J Y; Narayanan, R

    1994-01-01

    The NF-kappa B transcription factor is a pleiotropic activator that participates in the induction of a wide variety of cellular genes. Antisense oligomer inhibition of the RelA subunit of NF-kappa B results in a block of cellular adhesion and inhibition of tumor cell growth. Investigation of the molecular basis for these effects showed that in vitro inhibition of the growth of transformed fibroblasts by relA antisense oligonucleotides can be reversed by the parental-cell-conditioned medium. Cytokine profile analysis of these cells treated with relA antisense oligonucleotides revealed inhibition of transforming growth factor beta 1 (TGF-beta 1 to the transformed fibroblasts reversed the inhibitory effects of relA antisense oligomers on soft agar colony formation and cell adhesion to the substratum. Direct inhibition of TGF-beta 1 expression by antisense phosphorothioates to TGF-beta 1 mimicked the in vitro effects of blocking cell adhesion that are elicited by antisense relA oligomers. These results may explain the in vitro effects of relA antisense oligomers on fibrosarcoma cell growth and adhesion. Images PMID:8035811

  6. Targeting chronic inflammation in cerebral aneurysms: focusing on NF-kappaB as a putative target of medical therapy.

    PubMed

    Aoki, Tomohiro; Nishimura, M

    2010-03-01

    Cerebral aneurysms (CAs) are the main cause of life-threatening subarachnoid hemorrhage. Given its prevalence and endpoint, CA treatment is a public health issue. Effective medical treatment of CAs is lacking because the detailed mechanisms of CA formation are incompletely understood. The aim of this contribution is to review recent articles about CA formation, to suggest the underlying mechanisms of CA formation, and to discuss potential therapeutic targets for treatment. Articles were collected by an internet search of PubMed using the keywords 'intracranial' or 'cerebral aneurysm'. A review of articles about the pathogenesis of CA formation focusing on inflammation. Recent articles demonstrate that inflammation-related-molecule induction and inflammatory cell infiltration in CA walls and the close relationship between inflammatory responses and CA formation. From studies in experimental models, chronic inflammation triggered primarily by NF-kappaB activation in endothelial cells and subsequent macrophage infiltration have critical roles in CA formation. Inhibition of inflammation-related molecules in CA walls results in the decreased incidence of CA formation. Agents with anti-inflammatory activity (particularly anti- NF-kappaB effects) have potential as therapeutic drugs for CAs.

  7. Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-kappaB in RAW 264.7 cells.

    PubMed

    Oh, Jung Hwa; Lee, Tae-Jin; Park, Jong-Wook; Kwon, Taeg Kyu

    2008-12-03

    Induction of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production is thought to have beneficial immunomodulatory effects in acute and chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, withaferin A inhibited LPS-induced expression of both iNOS protein and mRNA in a dose-dependent manner. To investigate the mechanism by which withaferin A inhibits iNOS gene expression, we examined activation of mitogen-activated protein kinases (MAPKs) and Akt in Raw 264.7 cells. We did not observe any significant changes in the phosphorylation of p38 MAPK in cells treated with LPS alone or LPS plus withaferin A. However, LPS-induced Akt phosphorylation was markedly inhibited by withaferin A, while the phosphorylation of p42/p44 extracellular signal-regulated kinases (ERKs) was slightly inhibited by withaferin A treatment. Withaferin A prevented IkappaB phosphorylation, blocking the subsequent nuclear translocation of nuclear factor-kappaB (NF-kappaB) and inhibiting its DNA binding activity. LPS-induced p65 phosphorylation, which is mediated by extracellular signal-regulated kinase (ERK) and Akt pathways, was attenuated by withaferin A treatment. Moreover, LPS-induced NO production and NF-kappaB activation were inhibited by SH-6, a specific inhibitor of Akt. Taken together, these results suggest that withaferin A inhibits inflammation through inhibition of NO production and iNOS expression, at least in part, by blocking Akt and subsequently down-regulating NF-kappaB activity.

  8. Nuclear factor-kappaB activation and postischemic inflammation are suppressed in CD36-null mice after middle cerebral artery occlusion.

    PubMed

    Kunz, Alexander; Abe, Takato; Hochrainer, Karin; Shimamura, Munehisa; Anrather, Josef; Racchumi, Gianfranco; Zhou, Ping; Iadecola, Costantino

    2008-02-13

    CD36, a class-B scavenger receptor involved in multiple functions, including inflammatory signaling, may also contribute to ischemic brain injury through yet unidentified mechanisms. We investigated whether CD36 participates in the molecular events underlying the inflammatory reaction that accompanies cerebral ischemia and may contribute to the tissue damage. We found that activation of nuclear factor-kappaB, a transcription factor that coordinates postischemic gene expression, is attenuated in CD36-null mice subjected to middle cerebral artery occlusion. The infiltration of neutrophils and the glial reaction induced by cerebral ischemia were suppressed. Treatment with an inhibitor of inducible nitric oxide synthase, an enzyme that contributes to the tissue damage, reduced ischemic brain injury in wild-type mice, but not in CD36 nulls. In contrast to cerebral ischemia, the molecular and cellular inflammatory changes induced by intracerebroventricular injection of interleukin-1beta were not attenuated in CD36-null mice. The findings unveil a novel role of CD36 in early molecular events leading to nuclear factor-kappaB activation and postischemic inflammation. Inhibition of CD36 signaling may be a valuable therapeutic approach to counteract the deleterious effects of postischemic inflammation.

  9. c-Rel, an NF-[kappa]B Family Transcription Factor, Is Required for Hippocampal Long-Term Synaptic Plasticity and Memory Formation

    ERIC Educational Resources Information Center

    Ahn, Hyung Jin; Hernandez, Caterina M.; Levenson, Jonathan M.; Lubin, Farah D.; Liou, Hsiou-Chi; Sweatt, J. David

    2008-01-01

    Transcription is a critical component for consolidation of long-term memory. However, relatively few transcriptional mechanisms have been identified for the regulation of gene expression in memory formation. In the current study, we investigated the activity of one specific member of the NF-[kappa]B transcription factor family, c-Rel, during…

  10. Characterization of a SUMO Ligase that is Essential for DNA Damage-Induced NF-Kappa B Activation

    DTIC Science & Technology

    2008-03-01

    DNA damage. Oncogene 18, 2261 – 2271. 80 Jung , M., Zhang, Y., Lee, S. and Dritschilo, A. (1995) Correction of radiation sensitivity in ataxia...telangiectasia cells by a truncated I kappaB-alpha. Science 268, 1619 – 1621. 81 Lee, S. J., Dimtchev, A., Lavin,M. F., Dritschilo, A. and Jung , M. (1998) A...CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94, 2927 – 2932. 98 Kuo , H. Y., Chang, C. C., Jeng, J. C

  11. A nuclear factor kappa B-derived inhibitor tripeptide inhibits UVB-induced photoaging process.

    PubMed

    Oh, Jee Eun; Kim, Min Seo; Jeon, Woo-Kwang; Seo, Young Kwon; Kim, Byung-Chul; Hahn, Jang Hee; Park, Chang Seo

    2014-12-01

    Ultraviolet (UV) irradiation on the skin induces photoaging which is characterized by keratinocyte hyperproliferation, generation of coarse wrinkles, worse of laxity and roughness. Upon UV irradiation, nuclear factor kappa B (NF-κB) is activated which plays a key role in signaling pathway leading to inflammation cascade and this activation stimulates expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1alpha (IL-1α) and a stress response gene cyclooxygenase-2 (COX-2). In addition, activation of NF-κB up-regulates the expression of matrix metalloprotease-1 (MMP-1) and consequently collagen in dermis is degraded. In this study, the effects of a NF-κB-derived inhibitor tripeptide on the UVB-induced photoaging and inflammation were investigated in vitro and in vivo. A NF-κB-derived inhibitor tripeptide (NF-κB-DVH) was synthesized based on the sequence of dimerization region of the subunit p65 of NF-κB. Its inhibitory activity was confirmed using chromatin immunoprecipitation assay and in situ proximate ligation assay. The effects of anti-photoaging and anti-inflammation were analyzed by Enzyme-linked immunosorbent assay (ELISA), immunoblotting and immunochemistry. NF-κB-DVH significantly decreased UV-induced expression of TNF-α, IL-1α, MMP-1 and COX-2 while increased production of type I procollagen. Results showed NF-κB-DVH had strong anti-inflammatory activity probably by inhibiting NF-κB activation pathway and suggested to be used as a novel agent for anti-photoaging. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Transdermal anti-nuclear kappaB siRNA therapy for atopic dermatitis using a combination of two kinds of functional oligopeptide.

    PubMed

    Ibaraki, Hisako; Kanazawa, Takanori; Takashima, Yuuki; Okada, Hiroaki; Seta, Yasuo

    2018-05-05

    Nucleic acid-based targeting of nuclear factor kappaB (NF-κB) is gaining attention as a treatment option for skin diseases like atopic dermatitis (AD). Transdermal administration improves patient quality of life because of non-invasive; however, siRNA delivery into the skin can be challenging owing to the barrier of tight junctions in the granular layer. Therefore, we aimed to develop a delivery system of siRNA for topical skin application using functional peptides. We previously reported that combined treatment with a cytoplasm-responsive stearylated-arginine-rich peptide (STR-CH 2 R 4 H 2 C) and a tight junction opening peptide (AT1002) showed high siRNA permeability in the skin of AD-induced and normal mice. Here, we used murine macrophage RAW264.7 cells to examine siRNA permeation and the therapeutic effect of anti-NF-κB (RelA) siRNA (siRelA) complexed with STR-CH 2 R 4 H 2 C and AT1002 for AD-induced mice. We showed that significantly higher siRNA cellular uptake occurs after this treatment as well as decreased TNF-α and IL-6 expression. Additionally, we showed that effective siRNA transdermal delivery occurs with the suppression of the tight junction protein ZO-1. Moreover, topical skin application of siRelA with STR-CH 2 R 4 H 2 C and AT1002 improved AD-like symptoms in model mice. Thus, the combined treatment of STR-CH 2 R 4 H 2 C and AT1002 could serve as an effective transdermal siRNA therapeutic system for AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    PubMed

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  14. Gigantol isolated from the whole plants of Cymbidium goeringii inhibits the LPS-induced iNOS and COX-2 expression via NF-kappaB inactivation in RAW 264.7 macrophages cells.

    PubMed

    Won, Jong-Heon; Kim, Ji-Yeon; Yun, Kyung-Jin; Lee, Jin-Hee; Back, Nam-In; Chung, Hae-Gon; Chung, Sun A; Jeong, Tae-Sook; Choi, Myung-Sook; Lee, Kyung-Tae

    2006-10-01

    During our efforts to find bioactive natural products with anti-inflammatory activity, we isolated gigantol from the whole plants of Cymbidium goeringii (Orchidaceae) by activity-guided chromatographic fractionation. Gigantol was found to have potent inhibitory effects on LPS-induced nitric oxide (NO) and prostaglandin E (2) (PGE (2)) production in RAW 264.7 cells. Consistent with these findings, gigantol suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in RAW 264.7 cells in a concentration-dependent manner. Our data also indicate that gigantol is a potent inhibitor of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) release and influenced the mRNA expression levels of these cytokines in a dose-dependent manner. Furthermore, a reporter gene assay for nuclear factor kappa B (NF-kappaB) and an electromobility shift assay (EMSA) demonstrated that gigantol effectively inhibited the activation of NF-kappaB, which is necessary for the expression of iNOS, COX-2, TNF-alpha, IL-1beta and IL-6. Thus, our studies suggest that gigantol inhibits LPS-induced iNOS and COX-2 expression by blocking NF- kappaB activation.

  15. Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappaB and p-c-Jun/c-Fos.

    PubMed

    Yao, Chenjuan; Purwanti, Nunuk; Karabasil, Mileva Ratko; Azlina, Ahmad; Javkhlan, Purevjav; Hasegawa, Takahiro; Akamatsu, Tetsuya; Hosoi, Toru; Ozawa, Koichiro; Hosoi, Kazuo

    2010-08-01

    The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.

  16. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-05

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Short communication: molecular characterization of dog and cat p65 subunits of NF-kappaB.

    PubMed

    Ishikawa, Shingo; Takemitsu, Hiroshi; Li, Gebin; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2015-04-01

    Nuclear factor kappa B (NF-κB) plays an important role in the immune system. The p65 subunit is an important part of NF-κB unit, and studies of dog and cat p65 subunits of NF-κB (dp65 and cp65) are important in understanding their immune function. In this study, we described the molecular characterization of dp65 and cp65. The dp65 and cp65 complementary DNA encoded 542 and 555 amino acids, respectively, showing a high sequence homology with the mammalian p65 subunit (>87.5%). Quantitative polymerase chain reaction revealed that the p65 messenger RNA is highly expressed in the dog stomach and cat heart and adipose tissue. Functional NF-κB promoter-luciferase reporter vectors revealed that our isolated dp65 and cp65 cDNA encodes a functionally active protein. Transiently expressed dp65 and cp65 up-regulated pro-inflammatory cytokine expression levels in dog and cat, respectively. These findings suggest that dp65 and cp65 play important roles in regulating immune function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1... Specific Chemical Substances § 721.10033 Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as zinc...

  19. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1... Specific Chemical Substances § 721.10033 Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as zinc...

  20. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    PubMed

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  1. Mineral trioxide aggregate promotes the odonto/osteogenic differentiation and dentinogenesis of stem cells from apical papilla via nuclear factor kappa B signaling pathway.

    PubMed

    Yan, Ming; Wu, Jintao; Yu, Yan; Wang, Yanping; Xie, Lizhe; Zhang, Guangdong; Yu, Jinhua; Zhang, Chengfei

    2014-05-01

    Mineral trioxide aggregate (MTA) has been widely used in clinical apexification and apexogenesis. However, the effects of MTA on the stem cells from apical papilla (SCAPs) and the precise mechanism of apexogenesis have not been elucidated in detail. Multiple colony-derived stem cells were isolated from the apical papillae, and the effects of MTA on the proliferation and differentiation of SCAPs were investigated both in vitro and in vivo. Activation of nuclear factor kappa B (NFκB) pathway in MTA-treated SCAPs was analyzed by immunofluorescence assay and Western blot. MTA at the concentration of 2 mg/mL did not affect the proliferation activity of SCAPs. However, 2 mg/mL MTA-treated SCAPs presented the ultrastructural changes, up-regulated alkaline phosphatase, increased calcium deposition, up-regulated expression of odontoblast markers (dentin sialoprotein and dentin sialophosphoprotein) and odonto/osteoblast markers (runt-related transcription factor 2 and osteocalcin), suggesting that MTA enhanced the odonto/osteoblastic differentiation of SCAPs in vitro. In vivo results confirmed that MTA can promote the regular dentinogenesis of SCAPs. Moreover, MTA-treated SCAPs exhibited the up-regulated cytoplasmic phos-IκBα and phos-P65, enhanced nuclear P65, and increased nuclear translocation of P65. When co-treated with BMS345541 (the specific NFκB inhibitor), MTA-mediated odonto/osteoblastic differentiation was significantly attenuated. MTA at the concentration of 2 mg/mL can improve the odonto/osteogenic capacity of SCAPs via the activation of NFκB pathway. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    PubMed

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  3. Kappa2 opioid receptor subtype binding requires the presence of the DOR-1 gene.

    PubMed

    Ansonoff, Michael A; Wen, Ting; Pintar, John E

    2010-01-01

    Over the past several years substantial evidence has documented that opioid receptor homo- and heterodimers form in cell lines expressing one or more of the opioid receptors. We used opioid receptor knockout mice to determine whether in vivo pharmacological characteristics of kappa1 and kappa2 opioid receptors changed following knockout of specific opioid receptors. Using displacement of the general opioid ligand diprenorphine, we observed that occupancy or knockout of the DOR-1 gene increases the binding density of kappa1 receptors and eliminates kappa2 receptors in crude membrane preparations while the total density of kappa opioid binding sites is unchanged. Further, the analgesic potency of U69,593 in cumulative dose response curves is enhanced in mice lacking the DOR-1 gene. These results demonstrate that the DOR-1 gene is required for the expression of the kappa2 opioid receptor subtype and are consistent with the possibility that a KOR-1/DOR-1 heterodimer mediates kappa2 pharmacology.

  4. Renin-angiotensin system inhibition ameliorates CCl4-induced liver fibrosis in mice through the inactivation of nuclear transcription factor kappa B.

    PubMed

    Saber, Sameh; Mahmoud, Amr A A; Helal, Noha S; El-Ahwany, Eman; Abdelghany, Rasha H

    2018-06-01

    Therapeutic interventions for liver fibrosis are still limited due to the complicated molecular pathogenesis. Renin-angiotensin system (RAS) seems to contribute to the development of hepatic fibrosis. Therefore, we aimed to examine the effect of RAS inhibition on CCl 4 -induced liver fibrosis. Mice were treated with silymarin (30 mg·kg -1 ), perindopril (1 mg·kg -1 ), fosinopril (2 mg·kg -1 ), or losartan (10 mg·kg -1 ). The administration of RAS inhibitors improved liver histology and decreased protein expression of alpha smooth muscle actin (α-SMA) and hepatic content of hydroxyproline. These effects found to be mediated via inactivation of nuclear transcription factor kappa B (NFκB) pathway by the inhibition of NFκB p65 phosphorylation at the Ser536 residue and phosphorylation-induced degradation of nuclear factor kappa-B inhibitor alpha (NFκBia) subsequently inhibited NFκB-induced TNF-α and TGF-β1, leading to lower levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and vascular endothelial growth factor (VEGF). We concluded that the tissue affinity of the angiotensin converting enzyme inhibitors (ACEIs) has no impact on its antifibrotic activity and that interfering the RAS either through the inhibition of ACE or the blockade of AT1R has the same therapeutic benefit. These results suggest RAS inhibitors as promising candidates for further clinical trials in the management of hepatic fibrosis.

  5. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.

    PubMed

    Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-09-18

    Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.

  6. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  7. Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets.

    PubMed

    Albini, Adriana; Dell'Eva, Raffaella; Vené, Roberta; Ferrari, Nicoletta; Buhler, Donald R; Noonan, Douglas M; Fassina, Gianfranco

    2006-03-01

    Xanthohumol (XN), the principal flavonoid of the hop plant (Humulus lupulus L.) and a constituent of beer, has been suggested to have potential cancer chemopreventive activities. We have observed that most cancer chemopreventive agents show antiangiogenic properties in vitro and in vivo, a concept we termed "angioprevention." Here we show for the first time that XN can inhibit growth of a vascular tumor in vivo. Histopathology and in vivo angiogenesis assays indicated that tumor angiogenesis inhibition was involved. Further, we show the mechanisms for its inhibition of angiogenesis in vivo and related endothelial cell activities in vitro. XN repressed both the NF-kappaB and Akt pathways in endothelial cells, indicating that components of these pathways are major targets in the molecular mechanism of XN. Moreover, using in vitro analyses, we show that XN interferes with several points in the angiogenic process, including inhibition of endothelial cell invasion and migration, growth, and formation of a network of tubular-like structures. Our results suggest that XN can be added to the expanding list of antiangiogenic chemopreventive drugs whose potential in cancer prevention and therapy should be evaluated.

  8. Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol.

    PubMed

    Ahn, Sang-Il; Lee, Jun-Kyung; Youn, Hyung-Sun

    2009-02-28

    Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B (NF-kappaB). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of NF-kappaB activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.

  9. Ocean acidification weakens the immune response of blood clam through hampering the NF-kappa β and toll-like receptor pathways.

    PubMed

    Liu, Saixi; Shi, Wei; Guo, Cheng; Zhao, Xinguo; Han, Yu; Peng, Chao; Chai, Xueliang; Liu, Guangxu

    2016-07-01

    The impact of pCO2 driven ocean acidification on marine bivalve immunity remains poorly understood. To date, this impact has only been investigated in a few bivalve species and the underlying molecular mechanism remains unknown. In the present study, the effects of the realistic future ocean pCO2 levels (pH at 8.1, 7.8, and 7.4) on the total number of haemocyte cells (THC), phagocytosis status, blood cell types composition, and expression levels of twelve genes from the NF-kappa β signaling and toll-like receptor pathways of a typical bottom burrowing bivalve, blood clam (Tegillarca granosa), were investigated. The results obtained showed that while both THC number and phagocytosis frequency were significantly reduced, the percentage of red and basophil granulocytes were significantly decreased and increased, respectively, upon exposure to elevated pCO2. In addition, exposure to pCO2 acidified seawater generally led to a significant down-regulation in the inducer and key response genes of NF-kappa β signaling and toll-like receptor pathways. The results of the present study revealed that ocean acidification may hamper immune responses of the bivalve T. granosa which subsequently render individuals more susceptible to pathogens attacks such as those from virus and bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The kappa-opiate receptor impacts the pathophysiology and behavior of substance use.

    PubMed

    Mysels, David; Sullivan, Maria A

    2009-01-01

    There is increasing evidence that the kappa-opiate receptor, in addition to the mu-opiate receptor, plays an important role in substance use pathophysiology and behavior. As dopamine activity is upregulated through chronic substance use, kappa receptor activity, mediated through the peptide dynorphin, is upregulated in parallel. Dynorphin causes dysphoria and decreased locomotion, and the upregulation of its activity on the kappa receptor likely dampens the excitation caused by increased dopaminergic activity. This feedback mechanism may have significant clinical implications for treating drug dependent patients in various stages of their pathology.

  11. Constitutive Activation of NF-kappaB in Prostate Carcinoma Cells Through a Positive Feedback Loop: Implication of Inducible IKK-Related Kinase (IKKi)

    DTIC Science & Technology

    2006-08-01

    to IkB kinases. Intenational Immunology. 11: 1357-1362, 1999. 3. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention...is in turn NF- kB-dependent, is typical for tumor cells (Orlowski and Baldwin, 2002; Zerbini et al., 2003; Greten and Karin, 2004). Those cytokines...Polo JR. (2000). J Neurochem 75: 1377–1389. Greten FR, Karin M. (2004). Cancer Lett 206: 193–199. Gupta S, Afaq F, Mukhtar H. (2002). Oncogene 21: 3727

  12. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As amore » reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.« less

  13. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-{kappa}B and MAPK pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisutsitthiwong, Chonnaree; Buranaruk, Chayanit; Pudhom, Khanitha

    Highlights: Black-Right-Pointing-Pointer A gedunin type limonoid from seeds of mangroves, 7-oxo-7-deacetoxygedunin, exhibits strong anti-osteoclastogenic activity. Black-Right-Pointing-Pointer Treatment with this limonoid results in significant decrease in expression of NFATc1 and osteoclast-related genes. Black-Right-Pointing-Pointer The mode of action of this limonoid is by inhibiting activation of the NF-{kappa}B and MAPK pathways which are activated by RANKL. -- Abstract: Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-{kappa}B (RANK) and its ligand, RANKL. Inmore » this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 {mu}M. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-{kappa}B p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.« less

  14. Li2 B12 and Li3 B12 : Prediction of the Smallest Tubular and Cage-like Boron Structures.

    PubMed

    Dong, Xue; Jalife, Said; Vásquez-Espinal, Alejandro; Ravell, Estefanía; Pan, Sudip; Cabellos, José Luis; Liang, Wei-Yan; Cui, Zhong-Hua; Merino, Gabriel

    2018-04-16

    An intriguing structural transition from the quasi-planar form of B 12 cluster upon the interaction with lithium atoms is reported. High-level computations show that the lowest energy structures of LiB 12 , Li 2 B 12 , and Li 3 B 12 have quasi-planar (C s ), tubular (D 6d ), and cage-like (C s ) geometries, respectively. The energetic cost of distorting the B 12 quasi-planar fragment is overcompensated by an enhanced electrostatic interaction between the Li cations and the tubular or cage-like B 12 fragments, which is the main reason of such drastic structural changes, resulting in the smallest tubular (Li 2 B 12 ) and cage-like (Li 3 B 12 ) boron structures reported to date. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ion and electron Kappa distribution functions in the plasma sheet.

    NASA Astrophysics Data System (ADS)

    Moya, P. S.; Stepanova, M. V.; Espinoza, C.; Antonova, E. E.; Valdivia, J. A.

    2017-12-01

    We present a study of ion and electron flux spectra in the Earth's plasma sheet using kappa distribution functions. Satellite data from the THEMIS mission were collected for thousands of crossings through the plasma sheet, between 7 and 35 Re and during the years 2008-2009. The events were separated according to the geomagnetic activity at the time. Our results show the distribution of the kappa index and characteristic energies across the plasma sheet and its evolution with distance to Earth for quiet times and for the substorm expansion and recovery phases. For the ions, it is observed that the kappa values tend to decrease outwards and that this effect is more significant in the dusk sector, where the smallest values are found for distances beyond 15 Re. The main effect of the substorms appears as an enhancement of this behavior. The electrons show a much more homogeneous distribution in quiet times, with a mild tendency for larger kappa values at larger distances. During substorms, the kappa values tend to equalize and appear very homogenous during expansion. However, they exhibit a significant increase in the dusk sector during the recovery substorm phase. Finally, we observe that the characteristic energy of the particles during substorms increases and concentrate at distances less than 15 Re.

  16. Receptor activator of nuclear factor kappa B ligand and osteoprotegerin levels in gingival crevicular fluid

    PubMed Central

    Sarlati, Fatemeh; Sattari, Mandana; Razzaghi, Shilan; Nasiri, Malihe

    2012-01-01

    Background: Osteoclastogenesis is coordinated by the interaction of three members of the tumor necrosis factor (TNF) superfamily: Osteoprotegerin (OPG)/receptor activator of nuclear factor kappa B ligand (RANKL)/receptor activator of nuclear factor kappa B (RANK). The aim of this study was to investigate RANKL and OPG levels, and their relative ratio in gingival crevicular fluid (GCF) of patients with chronic and aggressive periodontitis, as well as healthy controls. Materials and Methods: In this analytical study, GCF was obtained from healthy (n = 10), mild chronic periodontitis (n = 18), moderate chronic periodontitis (n = 18), severe chronic periodontitis (n = 20), and generalized aggressive periodontitis (n = 20) subjects. RANKL and OPG concentrations were measured by enzyme-linked immunosorbent assay. Statistical tests used were Kruskal–Wallis test, Mann–Whitney U rank sum test, and Spearman's rank correlation analysis. The level of statistical significance was set at P < 0.05. Results: Mean RANKL concentration showed no statistically significant differences between groups (P = 0.58). There were also no significant differences between mean OPG concentration in the five groups (P = 0.0.56). Moreover, relative RANKL/OPG ratio did not reveal a significant difference between the three study group subjects: healthy, chronic periodontitis (mild, moderate, severe), and aggressive periodontitis (P = 0.41). There was statistically significant correlation between the concentration of sRANKL and Clinical Attachment Level (CAL) in moderate chronic periodontitis patients (R = 0.48, P = 0.04). There was also negative correlation between OPG concentration and CAL in moderate chronic periodontitis patients, although not significant (R = −0.13). Conclusion: RANKL was prominent in periodontitis sites, especially in moderate periodontitis patients, whereas OPG was not detectable in some diseased sites with bleeding on probing, supporting the role of these two molecules in

  17. Differential regulation of p65 and c-Rel NF-kappaB transactivating activity by Cot, protein kinase C zeta and NIK protein kinases in CD3/CD28 activated T cells.

    PubMed

    Sánchez-Valdepeñas, Carmen; Punzón, Carmen; San-Antonio, Belén; Martin, Angel G; Fresno, Manuel

    2007-03-01

    It has been shown that phosphorylation of p65/RelA and c-Rel plays a role in the regulation of transcriptional activity of NF-kappaB independent on IkappaB degradation. In this study, we show that anti CD3/CD28 activation induces the transactivation activity of both p65/RelA and c-Rel in T cells using Gal4 dependent assays. Moreover, protein kinase C (PKC)zeta, Cot kinase and NF-kappaB-inducing kinase (NIK) seem to be involved in those processes in a different manner. Thus, transfection of dominant negative forms of Cot and PKCzeta inhibits CD3/CD28 induction of Gal4-p65 transactivation, whereas the kinase inactive versions of the 3 kinases inhibit induction of Gal4-c-Rel. Cot induction of Gal4-c-Rel transactivating activity seems to be mediated sequentially through PKCzeta and NIK activation, since dominant negative form of NIK blocks Cot and PKCzeta induction, whereas kinase inactive PKCzeta only blocks Cot activity. In contrast, the contribution of NIK to the transactivation function of p65/RelA seems to be negligible and more importantly NIK-KD did not inhibit induction by Cot and PKCzeta. Besides, the enhancing effect of Cot on Gal4-p65 was not decreased in mouse embryo fibroblasts from NIK deficient aly/aly mice in contrast with a greatest reduction on Gal4-c-Rel. By using Ser to Ala mutants in p65 and c-Rel transactivation domains, PKCzeta and NIK activities seem to be dependent of a restricted set of Ser in both proteins. In contrast, the enhancing effect of Cot seems to be less dependent of a particular set of Ser residues being partially abrogated by mutation of several Ser residues.

  18. Persistent activation of nuclear factor-kappa B and expression of pro-inflammatory cytokines in bone marrow cells after exposure of mice to protons

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Reungpatthanaphong, Paiboon; Honikel, Louise; Whorton, Elbert

    Protons are the most abundant component of solar particle events (SPEs) in space. Information is limited on early-and late-occurring in vivo biological effects of exposure to protons at doses and dose rates that are similar to what astronauts encounter in space. We conducted a study series to fill this knowledge gap. We focused on the biological effects of 100 MeV/n protons, which are one of the most abundant types of protons induced during SPEs. We gave BALB/cJ mice a whole-body exposure to 0.5 or 1.0 Gy of 100 MeV/n protons, delivered at 0.5 or 1.0 cGy/min. These doses and dose rates of protons were selected because they are comparable to those of SPEs taking place in space. For each dose and dose rate of 100 MeV/n protons, mice exposed to 0 Gy of protons served as sham controls. Mice included in this study were also part of a study series conducted to examine the extent and the mechanisms involved in in vivo induction of genomic instability (expressed as late-occurring chromosome instability) by 100 MeV/n protons. Bone marrow (BM) cells were collected from groups of mice for analyses at different times post-exposure, i.e. early time-points (1.5, 3, and 24 hr) and late time-points (1 and 6 months). At each harvest time, there were five mice per treatment group. Several endpoints were used to investigate the biological effects of 100 MeV/n protons in BM cells from irradiated and sham control mice. The scope of this study was to determine the dose-rate effects of 0.5 Gy of 100 MeV/n protons in BM cells on the kinetics of nuclear factor-kappa B (NF-kappa B) activation and the expression of selected NF-kappa B target proteins known to be involved in inflammatory response, i.e. pro-inflammatory cytokines (TNF-alpha, IL-1 beta, and IL-6). Significantly high levels (p values ranging from p¡0.01 and p¡0.05) of activated NF-kappa B were observed in BM cells collected from irradiated mice, relative to those obtained from the corresponding sham controls, at all time

  19. Manipulation of NF-KappaBetta Activity in the Macrophage Lineage as a Novel Therapeutic Approach

    DTIC Science & Technology

    2007-05-01

    Sadikot, J. W. Christman, and T. S. Blackwell. 2003. Bioluminescent detection of endotoxin effects on HIV-1 LTR-driven transcription in vivo. J...differences in proliferation rates, expression of downstream gene expression and effects mediated by altered macrophages on associated epithelial...kappaB activity within macrophages has significant effects on mammary ductal development. 15. SUBJECT TERMS NF-kappaB, macrophages, mammary ductal

  20. Salicylic acid and aspirin inhibit the activity of RSK2 kinase and repress RSK2-dependent transcription of cyclic AMP response element binding protein- and NF-kappa B-responsive genes.

    PubMed

    Stevenson, M A; Zhao, M J; Asea, A; Coleman, C N; Calderwood, S K

    1999-11-15

    Sodium salicylate (NaSal) and other nonsteroidal anti-inflammatory drugs (NSAIDs) coordinately inhibit the activity of NF-kappa B, activate heat shock transcription factor 1 and suppress cytokine gene expression in activated monocytes and macrophages. Because our preliminary studies indicated that these effects could be mimicked by inhibitors of signal transduction, we have studied the effects of NSAIDs on signaling molecules potentially downstream of LPS receptors in activated macrophages. Our findings indicate that ribosomal S6 kinase 2 (RSK2), a 90-kDa ribosomal S6 kinase with a critical role as an effector of the RAS-mitogen-activated protein kinase pathway and a regulator of immediate early gene transcription is a target for inhibition by the NSAIDs. NSAIDs inhibited the activity of purified RSK2 kinase in vitro and of RSK2 in mammalian cells and suppressed the phosphorylation of RSK2 substrates cAMP response element binding protein (CREB) and I-kappa B alpha in vivo. Additionally, NaSal inhibited the phosphorylation by RSK2 of CREB and I-kappa B alpha on residues crucial for their transcriptional activity in vivo and thus repressed CREB and NF-kappa B-dependent transcription. These experiments suggest that RSK2 is a target for NSAIDs in the inhibition of monocyte-specific gene expression and indicate the importance of RSK2 and related kinases in cell regulation, indicating a new area for anti-inflammatory drug discovery.

  1. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less

  2. Small interfering RNA targeting nuclear factor kappa B to prevent vein graft stenosis in rat models.

    PubMed

    Meng, X B; Bi, X L; Zhao, H L; Feng, J B; Zhang, J P; Song, G M; Sun, W Y; Bi, Y W

    2013-01-01

    Intimal hyperplasia plays an important role in vein graft stenosis. Inflammatory injury, especially nuclear factor kappaB (NF-κB) gene activation, is highly involved in stenosis progression. We examined whether neointimal hyperplasia and vein graft stenosis could be inhibited by silencing the NF-κB gene with small interference RNA (siRNA). Sixty adult male Sprague-Dawley rats were randomly divided into a normal vein group, a vein graft group, a scrambled siRNA group, and an NF-κB siRNA group. We performed reverse interpositional grafting of the autologous external jugular vein to the abdominal aorta. Vein grafts were treated with liposome and gel complexes containing NF-κB siRNA or scrambled siRNA. The levels of monocyte chemoattractant protein -1, tumor necrosis factor-α, and NF-κB p65 in vessel tissues were evaluated after surgery for content of proliferating cell nuclear antigen (PCNA) and vascular wall thickness. NF-κB siRNA treated vein graft showed less neointimal formation and fewer positive PCNA cells (P < .05). In addition there were lower levels of, NF-κB p65 protein and of inflammatory mediators (P < .05) compared with the vein graft group. Our study suggested that siRNA transfection suppressed NF-κB expression, reduced inflammatory factors, lessened neointimal proliferation, and suppressed PCNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Constitutive Activation of NF-kappaB in Prostate Carcinoma Cells Through a Positive Feedback Loop: Implication of Inducible IKK-Related Kinase (IKKi)

    DTIC Science & Technology

    2004-08-01

    development in different tissues is strongly considered ( Greten and Karen, 2004). To assess the effect of w.t. IKKi and kinase inactive IKKi mutant...11: 1357-1362, 1999. 3. Greten FR, Karin M. The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett. 206(2

  4. Application of the kappa-omega Turbulence Model to Quasi-Three-Dimensional Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1996-01-01

    Many computational fluid dynamics codes for turbomachinery use the Baldwin-Lomax (B-L) turbulence model. It is easy to implement in two dimensions and works well for predicting overall turbomachinery performance. However, it is awkward to implement in three dimensions, often has difficulty finding the length scale, has a crude transition model, and neglects freestream turbulence, surface roughness, and mass injection. The kappa-omega model developed by Wilcox is an appealing alternative for several reasons. First, it is the only two-equation model that can be integrated to the wall without requiring damping functions or the distance to the wall, and hence, should behave well numerically. Second, the effects of freestream turbulence, surface roughness, and mass injection are easily included in the model. Finally, transition can be simulated using the low Reynolds number version of the model. Menter applied the kappa-model to external flows and showed very good results for flows with adverse pressure gradients. Liu and Zheng described their implementation of the kappa-model in a cascade code that included an area change term to account for endwall convergence. They validated the model for a flat plate, and compared the B-L and kappa-models to measured surface pressures for a low-pressure turbine cascade. Since they did not use the low Reynolds number version of the model, their results showed problems resulting from early transition. In this Note the low Reynolds number kappa-model was incorporated in the author's quasi-three-dimensional turbomachinery analysis code. The code includes the effects of rotation, radius change, and stream-surface thickness variation, and also includes the B-L turbulence model. The kappa-omega model was implemented using many of Menter's recommendations and an implicit approximate-factorization scheme described by Baldwin and Barth. The model was tested for a transonic compressor with rotation and variable stream-surface radius and height

  5. Rituximab-induced inhibition of YY1 and Bcl-xL expression in Ramos non-Hodgkin's lymphoma cell line via inhibition of NF-kappa B activity: role of YY1 and Bcl-xL in Fas resistance and chemoresistance, respectively.

    PubMed

    Vega, Mario I; Jazirehi, Ali R; Huerta-Yepez, Sara; Bonavida, Benjamin

    2005-08-15

    Rituximab treatment of B non-Hodgkin's lymphoma (NHL) cell lines inhibits the constitutive NF-kappaB activity and results in the sensitization of tumor cells to both chemotherapy and Fas-induced apoptosis. Cells expressing dominant active IkappaB or treated with NF-kappaB-specific inhibitors were sensitive to both drugs and Fas agonist mAb (CH-11)-induced apoptosis. Down-regulation of Bcl-xL expression via inhibition of NF-kappaB activity correlated with chemosensitivity. The direct role of Bcl-xL in chemoresistance was demonstrated by the use of Bcl-xL-overexpressing Ramos cells, Ramos hemagglutinin (HA)-Bcl-x, which were not sensitized by rituximab to drug-induced apoptosis. However, inhibition of Bcl-xL in Ramos HA-Bcl-x resulted in sensitization to drug-induced apoptosis. The role of Bcl-xL expression in the regulation of Fas resistance was not apparent; Ramos HA-Bcl-x cells were as sensitive as the wild type to CH-11-induced apoptosis. Several lines of evidence support the direct role of the transcription repressor yin-yang 1 (YY1) in the regulation of resistance to CH-11-induced apoptosis. Inhibition of YY1 activity by either rituximab or the NO donor DETANONOate or after transfection with YY1 small interfering RNA resulted in up-regulation of Fas expression and sensitization to CH-11-induced apoptosis. These findings suggest two mechanisms underlying the chemosensitization and immunosensitization of B-NHL cells by rituximab via inhibition of NF-kappaB. The regulation of chemoresistance by NF-kappaB is mediated via Bcl-xL expression, whereas the regulation of Fas resistance by NF-kappaB is mediated via YY1 expression and activity. The potential clinical significance of these findings is discussed.

  6. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Cheng, Jason Chia-Hsien

    2009-12-01

    To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.

  7. KAPPA -- Kernel Application Package

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.; Berry, David. S.

    KAPPA is an applications package comprising about 180 general-purpose commands for image processing, data visualisation, and manipulation of the standard Starlink data format---the NDF. It is intended to work in conjunction with Starlink's various specialised packages. In addition to the NDF, KAPPA can also process data in other formats by using the `on-the-fly' conversion scheme. Many commands can process data arrays of arbitrary dimension, and others work on both spectra and images. KAPPA operates from both the UNIX C-shell and the ICL command language. This document describes how to use KAPPA and its features. There is some description of techniques too, including a section on writing scripts. This document includes several tutorials and is illustrated with numerous examples. The bulk of this document comprises detailed descriptions of each command as well as classified and alphabetical summaries.

  8. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells

    PubMed Central

    Paimela, Tuomas; Ryhänen, Tuomas; Kauppinen, Anu; Marttila, Liisa; Salminen, Antero

    2012-01-01

    Purpose In numerous clinical and experimental studies, preservatives present in eye drops have had detrimental effects on ocular epithelial cells. The aim of this study was to compare the cytotoxic and inflammatory effects of the preservative polyquaternium-1 (PQ-1) containing Travatan (travoprost 0.004%) and Systane Ultra eye drops with benzalkonium chloride (BAK) alone or BAK-preserved Xalatan (0.005% latanoprost) eye drops in HCE-2 human corneal epithelial cell culture. Methods HCE-2 cells were exposed to the commercial eye drops Travatan, Systane Ultra, Xalatan, and the preservative BAK. Cell viability was determined using colorimetric MTT (3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by release of lactate dehydrogenase (LDH). Induction of apoptosis was measured with a using a colorimetric caspase-3 assay kit. DNA binding of the nuclear factor kappa B (NF-κB) transcription factor, and productions of the proinflammatory cytokines, interleukins IL-6 and IL-8, were determined using an enzyme-linked immunosorbent assay (ELISA) method. Results Cell viability, as measured by the MTT assay, declined by up to 50% after exposure to Travatan or Systane Ultra solutions which contain 0.001% PQ-1. BAK at 0.02% rather than at 0.001% concentration evoked total cell death signs on HCE-2 cells. In addition, cell membrane permeability, as measured by LDH release, was elevated by sixfold with Travatan and by a maximum threefold with Systane Ultra. Interestingly, Travatan and Systane Ultra activated NF-κB and elevated the secretion of inflammation markers IL-6 by 3 to eightfold and IL-8 by 1.5 to 3.5 fold, respectively, as analyzed with ELISA. Conclusions Eye drops containing PQ-1 evoke cytotoxicity and enhance the NF-κB driven inflammation reaction in cultured HCE-2 cells. Our results indicate that these harmful effects of ocular solutions preserved with PQ-1 should be further evaluated in vitro and in vivo. PMID:22605930

  9. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Hong; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, 107, Wenhua Xi Road, Jinan 250012; Wu, Xinyi, E-mail: xywu8868@163.com

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cellsmore » has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response

  10. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway.

    PubMed

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-05-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.

  11. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  12. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  13. Defense mechanism of heme oxygenase-1 against cytotoxic and receptor activator of nuclear factor-kappaB ligand inducing effects of hydrogen peroxide in human periodontal ligament cells.

    PubMed

    Pi, S-H; Kim, S-C; Kim, H-T; Lee, H-J; Lee, S-K; Kim, E-C

    2007-08-01

    Although induction of heme oxygenase-1 by H2O2 has been reported, the protective role of heme oxygenase-1 against the cytotoxic and osteoclastogenic effects of H2O2 have not been elucidated in human periodontal ligament cells. The aim of this work was to investigate the defense mechanism of heme oxygenase-1 on H2O2-induced cytotoxicity and to analyze the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin as markers for osteoclast differentiation in periodontal ligament cells. Using human periodontal ligament cells, cytotoxicity was measured by the 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) assay, and expression of heme oxygenase-1, RANKL, and osteoprotegerin mRNA was determined by reverse transcription-polymerase chain reaction. H2O2 produced a cytotoxic effect by reducing the cell viability and enhancing the expression of heme oxygenase-1 and RANKL mRNAs in a concentration- and time-dependent manner. Additional experiments revealed that heme oxygenase-1 inducer (hemin), a membrane-permeable cGMP analog (8-bromo-cGMP), carbon monoxide, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase inhibitor, protein kinase inhibitor (KT5823), and nuclear factor-kappaB inhibitor (pyrrolidine dithiocarbamate) also blocked the effects of H2O2 on cell viability and RANKL mRNA expression in periodontal ligament cells. These data suggest that heme oxygenase-1 induction plays a protective role in periodontal ligament cells against the cytotoxic and RANKL-inducing effects of H2O2, through multiple signaling pathways.

  14. The upregulation of receptor activator NF-kappaB ligand expression by interleukin-1alpha and Porphyromonas endodontalis in human osteoblastic cells.

    PubMed

    Chen, S-C; Huang, F-M; Lee, S-S; Li, M-Z; Chang, Y-C

    2009-04-01

    To investigate the receptor activator of nuclear factor-kappa B (NF-kappaB) ligand (RANKL) in osteoblastic cells stimulated with inflammatory mediators. The expression of RANKL in human osteoblastic cell line U2OS stimulated by pro-inflammatory cytokine interleukin (IL)-1alpha and black-pigmented bacteria Porphyromonas endodontalis was investigated by Western blot and enzyme-linked immunosorbent assay (ELISA). The significance of the results obtained from control and treated groups was statistically analysed by the paired Student's t-test. IL-1alpha was found to upregulate RANKL production in U2OS cells (P < 0.05). Investigations of the time dependence of RANKL expression in IL-1alpha-treated cells revealed a rapid accumulation of RANKL protein after 1 h of exposure; it remained elevated throughout the 24-h incubation period shown by Western blot and ELISA. In addition, P. endodontalis also increased RANKL expression in U2OS cells after 4-h incubation period demonstrated by Western blot and ELISA (P < 0.05). IL-1alpha and P. endodontalis may be involved in developing apical periodontitis through the stimulation of RANKL production.

  15. [NF-kappaB-induced gp96 up-regulation promotes hepatocyte growth, cell cycle progression and transition].

    PubMed

    Feng, Cong; Wu, Bo; Fan, Hongxia; Li, Changfei; Meng, Songdong

    2014-10-04

    To investigate the mechanism of gp96 raised during hepatitis B virus (HBV) infection and the pathological mechanism. The mechanism of NF-KB activating gp96 expression was determined by bioinformatics analysis, luciferase reporter assay, real-time PCR and Western blot. The effect of over-expression and knockdown gp96 expression by transfection or RNA interference on hepatocyte proliferation, apoptosis and cell cycle was examined by CCK-8 and flow cytometry. The role of gp96 for HCC development was determined by epithelial-mesenchymal transition (EMT) and colony formation assay. NF-kB significantly increased the gp96 expression by binding to the NF-kappaB binding site. Over-expression and knockdown studies both show that gp96 promoted hepatocyte proliferation, inhibited apoptosis, and induced G0/G1 to S phase cell cycle progression. Moreover, gp96 induced epithelial-mesenchymal transition and increased colony formation ability of hepatocytes. Our results therefore provide insights in chronic HBV infection-induced gp96 expression, and indicate that elevated gp96 may contribute to HCC development during chronic inflammation.

  16. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like

  17. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism

    PubMed Central

    2014-01-01

    Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism. PMID:25152696

  18. Low frequency electromagnetic fluctuations in Kappa magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Sunjung; Lazar, M.; Schlickeiser, R.; López, R. A.; Yoon, P. H.

    2018-07-01

    The present paper provides a theoretical approach for the evaluation of the low frequency spontaneously emitted electromagnetic (EM) fluctuations in Kappa magnetized plasmas, which include the kinetic Alfvén, fast magnetosonic/whistler, kinetic slow mode, ion Bernstein cyclotron modes, and higher-order modes. The model predictions are consistent with particle-in-cell simulations. Effects of suprathermal particles on low frequency fluctuations are studied by varying the power index, either for ions (κ i) or for electrons (κ e). Computations for an arbitrary wave vector orientation and wave polarization provide the intensity of spontaneous emissions to be enhanced in the presence of suprathermal populations. These results strongly suggest that spontaneous fluctuations may significantly contribute to the EM fluctuations observed in space plasmas, where suprathermal Kappa distributed particles are ubiquitous.

  19. Modulation of the nuclear factor-kappa B (NF-κB) signalling pathway by glutamine in peritoneal macrophages of a murine model of protein malnutrition.

    PubMed

    da Silva Lima, Fabiana; Rogero, Marcelo Macedo; Ramos, Mayara Caldas; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-06-01

    Protein malnutrition affects resistance to infection by impairing the inflammatory response, modifying the function of effector cells, such as macrophages. Recent studies have revealed that glutamine-a non-essential amino acid, which could become conditionally essential in some situations like trauma, infection, post-surgery and sepsis-is able to modulate the synthesis of cytokines. The aim of this study was to evaluate the effect of glutamine on the expression of proteins involved in the nuclear factor-kappa B (NF-κB) signalling pathway of peritoneal macrophages from malnourished mice. Two-month-old male Balb/c mice were submitted to protein-energy malnutrition (n = 10) with a low-protein diet containing 2 % protein, whereas control mice (n = 10) were fed a 12 % protein-containing diet. The haemogram and analysis of plasma glutamine and corticosterone were evaluated. Peritoneal macrophages were pre-treated in vitro with glutamine (0, 0.6, 2 and 10 mmol/L) for 24 h and then stimulated with 1.25 μg LPS for 30 min, and the synthesis of TNF-α and IL-1α and the expression of proteins related to the NF-κB pathway were evaluated. Malnourished animals had anaemia, leucopoenia, lower plasma glutamine and increased corticosterone levels. TNF-α production of macrophages stimulated with LPS was significantly lower in cells from malnourished animals when cultivated in supraphysiological (2 and 10 mmol/L) concentrations of glutamine. Further, glutamine has a dose-dependent effect on the activation of macrophages, in both groups, when stimulated with LPS, inducing a decrease in TNF-α and IL-1α production and negatively modulating the NF-κB signalling pathway. These data lead us to infer that the protein malnutrition state interferes with the activation of macrophages and that higher glutamine concentrations, in vitro, have the capacity to act negatively in the NF-κB signalling pathway.

  20. Reduced skeletal muscle inhibitor of kappaB beta content is associated with insulin resistance in subjects with type 2 diabetes: reversal by exercise training.

    PubMed

    Sriwijitkamol, Apiradee; Christ-Roberts, Christine; Berria, Rachele; Eagan, Phyllis; Pratipanawatr, Thongchai; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-03-01

    Skeletal muscle insulin resistance plays a key role in the pathogenesis of type 2 diabetes. It recently has been hypothesized that excessive activity of the inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB) inflammatory pathway is a mechanism underlying skeletal muscle insulin resistance. However, it is not known whether IkappaB/NFkappaB signaling in muscle from subjects with type 2 diabetes is abnormal. We studied IkappaB/NFkappaB signaling in vastus lateralis muscle from six subjects with type 2 diabetes and eight matched control subjects. Muscle from type 2 diabetic subjects was characterized by a 60% decrease in IkappaB beta protein abundance, an indicator of increased activation of the IkappaB/NFkappaB pathway. IkappaB beta abundance directly correlated with insulin-mediated glucose disposal (Rd) during a hyperinsulinemic (40 mU x m(-2) x min(-1))-euglycemic clamp (r = 0.63, P = 0.01), indicating that increased IkappaB/NFkappaB pathway activity is associated with muscle insulin resistance. We also investigated whether reversal of this abnormality could be a mechanism by which training improves insulin sensitivity. In control subjects, 8 weeks of aerobic exercise training caused a 50% increase in both IkappaB alpha and IkappaB beta protein. In subjects with type 2 diabetes, training increased IkappaB alpha and IkappaB beta protein to levels comparable with that of control subjects, and these increments were accompanied by a 40% decrease in tumor necrosis factor alpha muscle content and a 37% increase in insulin-stimulated glucose disposal. In summary, subjects with type 2 diabetes have reduced IkappaB protein abundance in muscle, suggesting excessive activity of the IkappaB/NFkappaB pathway. Moreover, this abnormality is reversed by exercise training.

  1. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells.

    PubMed

    Paik, Yong-Han; Schwabe, Robert F; Bataller, Ramón; Russo, Maria P; Jobin, Christian; Brenner, David A

    2003-05-01

    Bacterial lipopolysaccharide (LPS) stimulates Kupffer cells and participates in the pathogenesis of alcohol-induced liver injury. However, it is unknown whether LPS directly affects hepatic stellate cells (HSCs), the main fibrogenic cell type in the injured liver. This study characterizes LPS-induced signal transduction and proinflammatory gene expression in activated human HSCs. Culture-activated HSCs and HSCs isolated from patients with hepatitis C virus-induced cirrhosis express LPS-associated signaling molecules, including CD14, toll-like receptor (TLR) 4, and MD2. Stimulation of culture-activated HSCs with LPS results in a rapid and marked activation of NF-kappaB, as assessed by in vitro kinase assays for IkappaB kinase (IKK), IkappaBalpha steady-state levels, p65 nuclear translocation, NF-kappaB-dependent luciferase reporter gene assays, and electrophoretic mobility shift assays. Lipid A induces NF-kappaB activation in a similar manner. Both LPS- and lipid A-induced NF-kappaB activation is blocked by preincubation with either anti-TLR4 blocking antibody (HTA125) or Polymyxin B. Lipid A induces NF-kappaB activation in HSCs from TLR4-sufficient (C3H/OuJ) mice but not from TLR4-deficient (C3H/HeJ) mice. LPS also activates c-Jun N-terminal kinase (JNK), as assessed by in vitro kinase assays. LPS up-regulates IL-8 and MCP-1 gene expression and secretion. LPS-induced IL-8 secretion is completely inhibited by the IkappaB super repressor (Ad5IkappaB) and partially inhibited by a specific JNK inhibitor, SP600125. LPS also up-regulates cell surface expression of ICAM-1 and VCAM-1. In conclusion, human activated HSCs utilize components of TLR4 signal transduction cascade to stimulate NF-kappaB and JNK and up-regulate chemokines and adhesion molecules. Thus, HSCs are a potential mediator of LPS-induced liver injury.

  2. Kappa statistic to measure agreement beyond chance in free-response assessments.

    PubMed

    Carpentier, Marc; Combescure, Christophe; Merlini, Laura; Perneger, Thomas V

    2017-04-19

    The usual kappa statistic requires that all observations be enumerated. However, in free-response assessments, only positive (or abnormal) findings are notified, but negative (or normal) findings are not. This situation occurs frequently in imaging or other diagnostic studies. We propose here a kappa statistic that is suitable for free-response assessments. We derived the equivalent of Cohen's kappa statistic for two raters under the assumption that the number of possible findings for any given patient is very large, as well as a formula for sampling variance that is applicable to independent observations (for clustered observations, a bootstrap procedure is proposed). The proposed statistic was applied to a real-life dataset, and compared with the common practice of collapsing observations within a finite number of regions of interest. The free-response kappa is computed from the total numbers of discordant (b and c) and concordant positive (d) observations made in all patients, as 2d/(b + c + 2d). In 84 full-body magnetic resonance imaging procedures in children that were evaluated by 2 independent raters, the free-response kappa statistic was 0.820. Aggregation of results within regions of interest resulted in overestimation of agreement beyond chance. The free-response kappa provides an estimate of agreement beyond chance in situations where only positive findings are reported by raters.

  3. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways.

    PubMed

    Nair, Rajan P; Duffin, Kristina Callis; Helms, Cynthia; Ding, Jun; Stuart, Philip E; Goldgar, David; Gudjonsson, Johann E; Li, Yun; Tejasvi, Trilokraj; Feng, Bing-Jian; Ruether, Andreas; Schreiber, Stefan; Weichenthal, Michael; Gladman, Dafna; Rahman, Proton; Schrodi, Steven J; Prahalad, Sampath; Guthery, Stephen L; Fischer, Judith; Liao, Wilson; Kwok, Pui-Yan; Menter, Alan; Lathrop, G Mark; Wise, Carol A; Begovich, Ann B; Voorhees, John J; Elder, James T; Krueger, Gerald G; Bowcock, Anne M; Abecasis, Gonçalo R

    2009-02-01

    Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P < 5 x 10(-8)). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-alpha and regulate NF-kappaB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders.

  4. Rare and Common Variants in CARD14, Encoding an Epidermal Regulator of NF-kappaB, in Psoriasis

    PubMed Central

    Jordan, Catherine T.; Cao, Li; Roberson, Elisha D.O.; Duan, Shenghui; Helms, Cynthia A.; Nair, Rajan P.; Duffin, Kristina Callis; Stuart, Philip E.; Goldgar, David; Hayashi, Genki; Olfson, Emily H.; Feng, Bing-Jian; Pullinger, Clive R.; Kane, John P.; Wise, Carol A.; Goldbach-Mansky, Raphaela; Lowes, Michelle A.; Peddle, Lynette; Chandran, Vinod; Liao, Wilson; Rahman, Proton; Krueger, Gerald G.; Gladman, Dafna; Elder, James T.; Menter, Alan; Bowcock, Anne M.

    2012-01-01

    Psoriasis is a common inflammatory disorder of the skin and other organs. We have determined that mutations in CARD14, encoding a nuclear factor of kappa light chain enhancer in B cells (NF-kB) activator within skin epidermis, account for PSORS2. Here, we describe fifteen additional rare missense variants in CARD14, their distribution in seven psoriasis cohorts (>6,000 cases and >4,000 controls), and their effects on NF-kB activation and the transcriptome of keratinocytes. There were more CARD14 rare variants in cases than in controls (burden test p value = 0.0015). Some variants were only seen in a single case, and these included putative pathogenic mutations (c.424G>A [p.Glu142Lys] and c.425A>G [p.Glu142Gly]) and the generalized-pustular-psoriasis mutation, c.413A>C (p.Glu138Ala); these three mutations lie within the coiled-coil domain of CARD14. The c.349G>A (p.Gly117Ser) familial-psoriasis mutation was present at a frequency of 0.0005 in cases of European ancestry. CARD14 variants led to a range of NF-kB activities; in particular, putative pathogenic variants led to levels >2.5× higher than did wild-type CARD14. Two variants (c.511C>A [p.His171Asn] and c.536G>A [p.Arg179His]) required stimulation with tumor necrosis factor alpha (TNF-α) to achieve significant increases in NF-kB levels. Transcriptome profiling of wild-type and variant CARD14 transfectants in keratinocytes differentiated probably pathogenic mutations from neutral variants such as polymorphisms. Over 20 CARD14 polymorphisms were also genotyped, and meta-analysis revealed an association between psoriasis and rs11652075 (c.2458C>T [p.Arg820Trp]; p value = 2.1 × 10−6). In the two largest psoriasis cohorts, evidence for association increased when rs11652075 was conditioned on HLA-Cw∗0602 (PSORS1). These studies contribute to our understanding of the genetic basis of psoriasis and illustrate the challenges faced in identifying pathogenic variants in common disease. PMID:22521419

  5. Degraded λ-carrageenan activates NF-κB and AP-1 pathways in macrophages and enhances LPS-induced TNF-α secretion through AP-1.

    PubMed

    Chen, Haimin; Wang, Feng; Mao, Haihua; Yan, Xiaojun

    2014-07-01

    Carrageenan (CGN), a high molecular weight sulfated polysaccharide, is a traditional ingredient used in food industry. Its degraded forms have been identified as potential carcinogens, although the mechanism remains unclear. The effects of degraded λ-carrageenan (λ-dCGN) on murine RAW264.7 cells and human THP-1-derived macrophage cells were investigated by studying its actions on tumor necrosis factor alpha (TNF-α) secretion, Toll-like receptor 4 (TLR4) expression, and activation of nuclear factor-κb (NF-κB) and activation protein-1 (AP-1) pathways. We found that λ-dCGN was much stronger than native λ-CGN in the activation of macrophages to secrete TNF-α. Treatment of RAW264.7 cells with λ-dCGN resulted in the upregulation of TLR4, CD14 and MD-2 expressions, but it did not increase the binding of lipopolysacchride (LPS) with macrophages. Meanwhile, λ-dCGN treatment activated NF-κB via B-cell lymphoma/leukemia 10 (Bcl10) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation. In addition, λ-dCGN induced extracellular signal-regulated kinases/1/2/mitogen-activated protein kinases (ERK1/2/MAPK) and AP-1 activation. Interestingly, pretreatment of RAW264.7 cells with λ-dCGN markedly enhanced LPS-stimulated TNF-α secretion. This pretreatment resulted in the enhanced phosphorylation of ERK1/2 and c-Jun N-terminal kinase (JNK) and intensified activation of AP-1. λ-dCGN induced an inflammatory reaction via both NF-κB and AP-1, and enhanced the inflammatory effect of LPS through AP-1 activation. The study demonstrated the role of λ-dCGN to induce the inflammatory reaction and to aggravate the effect of LPS on macrophages, suggesting that λ-dCGN produced during food processing and gastric digestion may be a safety concern. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. FAP-1-mediated activation of NF-kappaB induces resistance of head and neck cancer to Fas-induced apoptosis.

    PubMed

    Wieckowski, Eva; Atarashi, Yoshinari; Stanson, Joanna; Sato, Taka-Aki; Whiteside, Theresa L

    2007-01-01

    Molecular mechanisms responsible for tumor resistance to apoptosis often involve the Fas/FasL pathway. While squamous cell carcinomas of the head and neck (SCCHN) express both Fas and FasL, their resistance to self-induced apoptosis or apoptosis mediated by Fas agonistic antibody (CH-11Ab) was independent of the level of Fas surface expression or the presence of soluble Fas in supernatants of primary or metastatic SCCHN cell lines. By in vitro immunoselection, using PCI-15A cell line treated with successive cycles of CH-11 Ab, Fas-resistant sublines with the parental genotype were selected. Such sublines failed to cleave caspase-8 upon Fas engagement and were resistant to CH-11 Ab, although they remained sensitive to VP-16 or staurosporin. In the presence of cycloheximide, the selected SCCHN sublines become susceptible to CH-11 Ab, and showed cleavage of caspase-8, suggesting that apoptosis resistance was mediated by an inhibitory protein(s) acting upstream of caspase-8. Overexpression of Fas-associated phosphatase 1 (FAP-1), but not cellular FLICE-inhibitory protein (cFLIP) in SCCHN sublines was documented by Western blots and RT-PCR analyses. The FAP-1+ selected sublines also downregulated cell surface Fas. A high phosphorylation level of IkappaB kappa, NFkappaB activation and upregulation of Bcl-2 expression were observed in the FAP-1+ sublines. Treatment with the phosphatase inhibitor, orthovanadate, or silencing of FAP-1 with siRNA abolished their resistance to apoptosis, suggesting that FAP-1 phosphatase activity could be responsible for NF-kappaB activation and resistance of SCCHN cells to Fas-mediated apoptosis. 2006 Wiley-Liss, Inc.

  7. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com; Wei, Cong-Cong; Shang, Ting-Ting

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B)more » p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.« less

  8. [Effects of tanshinone- II A sulfonate on expression of nuclear factor-kappaB, vascular cell adhesion molecule-1 and hemorrheology during spinal cord ischemia reperfusion injury].

    PubMed

    Zhang, Li; An, Guo-Yao; Zhang, Wen-Guang; Chen, Kai

    2012-12-01

    To observe effects of Tanshinone- II A sulfonate on expression of Nuclear factor-kappaB (NF-kappaB), Vascular Cell Adhesion Molecule-1 (VCAM-1) and hemorrheology during spinal cord ischemia reperfusion injury,and explore the function and mechnism. Fifty-four New Zealand rabbits (aged 3 months,weighted 2.0 +/- 0.2 kg) were randomly divided into 6 in sham group (lumbar artery were separated in operation,0.8 ml/kg saline were injected at 0.5 h before and after operation), 24 in ischemia group ( lumbar artery were clipped after seperation, and the same dose of saline), 24 in Tanshinone group (lumbar artery were clipped after seperation, and the same dose of Tanshinone- II A sulfonate) . Abdomincal aorta blood were drawed after treatment respectively at 0.5 h, 1 h, 4 h and 8 h, and tesetd whole blood viscosity [high cut (mpa.s)/150(l/s), middle cut (mpa.s)/60(l/s) and low cut (mpa.s)/10(l/s)], capillary plasma viscosity, red cell aggregation index, rigid index, deformation index and electrophoresis index. Spinal cord tissues were divided into two sections,one fixed in 4% paraformaldehyde, another stored in liquid nitrogen. Immunohistochemical method and ELISA were used to test change of content of NF-kappaB and VCAM-1. 1) The expression of NF-kappaB in Tanshinone group were lowest, and in ischemia group were highest. 2) Compared with sham group, VCAM-1 in ischemia group at different time were obviously increased,especially at 0.5, 1 and 4 h (P<0.01), and had meaning at 8 h (P<0.05). Compare between Tanshinone group and ischemia group, VCAM-1 at 0.5 h were obviously decreased (P<0.01), and had meaning at 1 h, 4 h and 8 h (P<0.05). 3) There were no postive vasvular expression in sham group, and at 0.5 h in Tanshinone group and ischemia group. The highest postive vasvular expression in ischemia group were at 1 h, 4 h and 8 h, and had significant meaning at 1 h and 4 h between ischemia group and Tanshinone group (P<0.05), and 8 h were obviously most. 4) The whole blood

  9. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. 721.10033 Section 721.10033 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1003...

  10. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. 721.10033 Section 721.10033 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1003...

  11. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. 721.10033 Section 721.10033 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1003...

  12. Endoplasmic reticulum degradation-enhancing α-mannosidase-like protein 1 targets misfolded HLA-B27 dimers for endoplasmic reticulum-associated degradation.

    PubMed

    Guiliano, David B; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J; Campbell, Elaine C; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J; Kellam, Paul; Hebert, Daniel N; Gould, Keith G; Powis, Simon J; Antoniou, Antony N

    2014-11-01

    HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). This study was undertaken to define the role of the UPR-induced ER-associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. HeLa cell lines expressing only 2 copies of a carboxy-terminally Sv5-tagged HLA-B27 were generated. The ER stress-induced protein ER degradation-enhancing α-mannosidase-like protein 1 (EDEM1) was overexpressed by transfection, and dimer levels were monitored by immunoblotting. EDEM1, the UPR-associated transcription factor X-box binding protein 1 (XBP-1), the E3 ubiquitin ligase hydroxymethylglutaryl-coenzyme A reductase degradation 1 (HRD1), and the degradation-associated proteins derlin 1 and derlin 2 were inhibited using either short hairpin RNA or dominant-negative mutants. The UPR-associated ERAD of HLA-B27 was confirmed using ER stress-inducing pharamacologic agents in kinetic and pulse chase assays. We demonstrated that UPR-induced machinery can target HLA-B27 dimers and that dimer formation can be controlled by alterations to expression levels of components of the UPR-induced ERAD pathway. HLA-B27 dimers and misfolded major histocompatibility complex class I monomeric molecules bound to EDEM1 were detected, and overexpression of EDEM1 led to inhibition of HLA-B27 dimer formation. EDEM1 inhibition resulted in up-regulation of HLA-B27 dimers, while UPR-induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1, and derlins 1 and 2. The present findings indicate that the UPR ERAD pathway can dispose of HLA-B27 dimers, thus presenting a potential novel therapeutic target for modulation of HLA-B27-associated inflammatory disease. Copyright © 2014 by the American College of Rheumatology.

  13. Two specific drugs, BMS-345541 and purvalanol A induce apoptosis of HTLV-1 infected cells through inhibition of the NF-kappaB and cell cycle pathways.

    PubMed

    Agbottah, Emmanuel; Yeh, Wen-I; Berro, Reem; Klase, Zachary; Pedati, Caitlin; Kehn-Hall, Kyleen; Wu, Weilin; Kashanchi, Fatah

    2008-06-10

    Human T-cell leukemia virus type-1 (HTLV-1) induces adult T-cell leukemia/lymphoma (ATL/L), a fatal lymphoproliferative disorder, and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic progressive disease of the central nervous system after a long period of latent infection. Although the mechanism of transformation and leukemogenesis is not fully elucidated, there is evidence to suggest that the viral oncoprotein Tax plays a crucial role in these processes through the regulation of several pathways including NF-kappaB and the cell cycle pathways. The observation that NF-kappaB, which is strongly induced by Tax, is indispensable for the maintenance of the malignant phenotype of HTLV-1 by regulating the expression of various genes involved in cell cycle regulation and inhibition of apoptosis provides a possible molecular target for these infected cells. To develop potential new therapeutic strategies for HTLV-1 infected cells, in this present study, we initially screened a battery of NF-kappaB and CDK inhibitors (total of 35 compounds) to examine their effects on the growth and survival of infected T-cell lines. Two drugs namely BMS-345541 and Purvalanol A exhibited higher levels of growth inhibition and apoptosis in infected cell as compared to uninfected cells. BMS-345541 inhibited IKKbeta kinase activity from HTLV-1 infected cells with an IC50 (the 50% of inhibitory concentration) value of 50 nM compared to 500 nM from control cells as measured by in vitro kinase assays. The effects of Purvalanol A were associated with suppression of CDK2/cyclin E complex activity as previously shown by us. Combination of both BMS-345541 and Purvalanol A showed a reduced level of HTLV-1 p19 Gag production in cell culture. The apparent apoptosis in these infected cells were associated with increased caspase-3 activity and PARP cleavage. The potent and selective apoptotic effects of these drugs suggest that both BMS-345541 and Purvalanol A, which target

  14. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} down-regulates CXCR4 on carcinoma cells through PPAR{gamma}- and NF{kappa}B-mediated pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Cynthia Lee; Lowthers, Erica Lauren; Blay, Jonathan

    2007-10-01

    The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE{sub 2}, PGA{sub 2}, PGD{sub 2}, PGJ{sub 2} and 15dPGJ{sub 2} each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD{sub 2} and its metabolites PGJ{sub 2} and 15dPGJ{sub 2}. Down-regulation was most rapid with the end-product 15dPGJ{sub 2} and was accompanied bymore » a marked reduction in CXCR4 mRNA. 15dPGJ{sub 2} is known to be a ligand for the nuclear receptor PPAR{gamma}. Down-regulation of CXCR4 was also observed with the PPAR{gamma} agonist rosiglitazone, while 15dPGJ{sub 2}-induced CXCR4 down-regulation was substantially diminished by the PPAR{gamma} antagonists GW9662 and T0070907. These data support the involvement of PPAR{gamma}. However, the 15dPGJ{sub 2} analogue CAY10410, which can act on PPAR{gamma} but which lacks the intrinsic cyclopentenone structure found in 15dPGJ{sub 2}, down-regulated CXCR4 substantially less potently than 15dPGJ{sub 2}. The cyclopentenone grouping is known to inhibit the activity of NF{kappa}B. Consistent with an additional role for NF{kappa}B, we found that the cyclopentenone prostaglandin PGA{sub 2} and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NF{kappa}B p50 and that 15dPGJ{sub 2} interfered with this p50 nuclear localization. These data suggest that 15dPGJ{sub 2} can down-regulate CXCR4 on cancer cells through both PPAR{gamma} and NF{kappa}B. 15dPGJ{sub 2}, present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.« less

  15. Pulsatile equibiaxial stretch inhibits thrombin-induced RhoA and NF-{kappa}B activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Jason H.; Kaunas, Roland; Radeff-Huang, Julie

    2008-07-18

    This study investigated interactions between the effects of mechanical stretch and thrombin on RhoA activation in rat aortic smooth muscle cells (RASMC). Equibiaxial, pulsatile stretch, or thrombin produced a significant increase in RhoA activation. Surprisingly, in combination, 30 min of stretch inhibited the ability of thrombin to activate RhoA. NO donors and 8-bromo-cGMP significantly inhibited thrombin-induced RhoA activation. Interestingly, the nitric oxide synthase (NOS) inhibitor L-NAME increased basal RhoA activity, suggesting that NOS activity exerts a tonic inhibition on RhoA. Stretching RASMC increases nitrite production, consistent with the idea that NO contributes to the inhibitory effects of stretch. Thrombin stimulatesmore » MAP kinase and NF-{kappa}B pathways through Rho and these responses were blocked by 8-bromo-cGMP or stretch and restored by L-NAME. These data suggest that stretch, acting through NO and cGMP, can prevent the ability of thrombin to stimulate Rho signaling pathways that contribute to pathophysiological proliferative and inflammatory responses.« less

  16. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  17. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-08-30

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.

  18. The disagreeable behaviour of the kappa statistic.

    PubMed

    Flight, Laura; Julious, Steven A

    2015-01-01

    It is often of interest to measure the agreement between a number of raters when an outcome is nominal or ordinal. The kappa statistic is used as a measure of agreement. The statistic is highly sensitive to the distribution of the marginal totals and can produce unreliable results. Other statistics such as the proportion of concordance, maximum attainable kappa and prevalence and bias adjusted kappa should be considered to indicate how well the kappa statistic represents agreement in the data. Each kappa should be considered and interpreted based on the context of the data being analysed. Copyright © 2014 John Wiley & Sons, Ltd.

  19. 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation.

    PubMed

    El-Bakly, Wesam M; Louka, Manal L; El-Halawany, Ali M; Schaalan, Mona F

    2012-12-01

    Doxorubicin is a widely used antitumour drug. Cardiotoxicity is considered a major limitation for its clinical use. The present study was designed to assess the possible antioxidant and antiapoptotic effects of 6-gingerol in attenuating doxorubicin-induced cardiac damage. Male albino rats were treated with either intraperitoneal doxorubicin (18 mg/kg divided into six equal doses for 2 weeks) and/or oral 6-gingerol (10 mg/kg starting 5 days before and continued till the end of the experiment). 6-gingerol significantly ameliorated the doxorubicin-induced elevation in the cardiac enzymes. The stimulation of oxidative stress by doxorubicin was evidenced by the significant decrease in the serum soluble receptor for advanced glycation endproduct allowing unopposed serum advanced glycation endproduct availability. Moreover, doxorubicin activated nuclear factor kappa B (NF-κB) which was indicated by an increase in its immunohistochemical staining in the nucleus. In addition, doxorubicin-induced cardiotoxicity was accompanied by elevation of cardiac caspase-3. Notably, pretreatment with 6-gingerol significantly ameliorated the changes in sRAGE, NF-κB and cardiac caspase-3. Cardiac enzymes showed significant positive correlation with NF-κB and caspase-3 but negative with serum sRAGE, suggesting their role in doxorubicin-induced cardiac injury. These findings were confirmed by cardiac tissue histopathology. 6-gingerol, a known single compound from ginger with anticancer activity, was shown to have a promising role in cardioprotection against doxorubicin-induced cardiotoxicity. This study suggested a novel mechanism for 6-gingerol cardioprotection, which might be mediated through its antioxidative effect and modulation of NF-κB as well as apoptosis.

  20. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benyhe, S.; Varga, E.; Hepp, J.

    1990-09-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain.more » Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.« less

  1. Spectral geometry of {kappa}-Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Andrea, Francesco

    After recalling Snyder's idea [Phys. Rev. 71, 38 (1947)] of using vector fields over a smooth manifold as 'coordinates on a noncommutative space', we discuss a two-dimensional toy-model whose 'dual' noncommutative coordinates form a Lie algebra: this is the well-known {kappa}-Minkowski space [Phys. Lett. B 334, 348 (1994)]. We show how to improve Snyder's idea using the tools of quantum groups and noncommutative geometry. We find a natural representation of the coordinate algebra of {kappa}-Minkowski as linear operators on an Hilbert space (a major problem in the construction of a physical theory), study its 'spectral properties', and discuss how tomore » obtain a Dirac operator for this space. We describe two Dirac operators. The first is associated with a spectral triple. We prove that the cyclic integral of Dimitrijevic et al. [Eur. Phys. J. C 31, 129 (2003)] can be obtained as Dixmier trace associated to this triple. The second Dirac operator is equivariant for the action of the quantum Euclidean group, but it has unbounded commutators with the algebra.« less

  2. Gossypium herbaceam extracts inhibited NF-kappaB activation to attenuate spatial memory impairment and hippocampal neurodegeneration induced by amyloid-beta in rats.

    PubMed

    Ji, Chao; Aisa, Haji Akber; Yang, Nan; Li, Qing; Wang, Tao; Zhang, Ling; Qu, Kai; Zhu, Hai-Bo; Zuo, Ping-Ping

    2008-07-01

    Amyloid-beta (Abeta) is considered to be responsible for the pathogenesis of Alzheimer's disease. In the present study, the protective effect of Gossypium herbaceam extracts (GHE) on learning and memory impairment induced by Abeta were examined in vivo using Morris water maze and step through task. Furthermore, the antioxidant activity and neuroprotective effect of GHE was investigated with methods of histochemistry and biochemistry. These data showed that oral administration with GHE at the doses of 35, 70 and 140 mg/kg exerted an improved effect on the learning and memory impairment in rats induced by intracerebroventricular (i.c.v.) injection of 10 microg of Abeta(25-35). Subsequently, the GHE afforded a beneficial action on promotion on the activity of glutathione peroxidase and catalase, as well as inhibition on the NF-kappaB activation in the hippocampus followed by the presence of Abeta(25-35). Meanwhile, the number of degenerating neurons with an apoptotic feature was dramatically decreased in hippocampus after treatment with GHE, implicating that its antioxidant stress and inhibition of NF-kappaB activation could be involved in the mechanism underlying neuroprotection of GHE against Abeta-induced cell death. These findings suggested that GHE might be a potential agent for treatment of Alzheimer's disease.

  3. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The kappa statistic in rehabilitation research: an examination.

    PubMed

    Tooth, Leigh R; Ottenbacher, Kenneth J

    2004-08-01

    The number and sophistication of statistical procedures reported in medical rehabilitation research is increasing. Application of the principles and methods associated with evidence-based practice has contributed to the need for rehabilitation practitioners to understand quantitative methods in published articles. Outcomes measurement and determination of reliability are areas that have experienced rapid change during the past decade. In this study, distinctions between reliability and agreement are examined. Information is presented on analytical approaches for addressing reliability and agreement with the focus on the application of the kappa statistic. The following assumptions are discussed: (1) kappa should be used with data measured on a categorical scale, (2) the patients or objects categorized should be independent, and (3) the observers or raters must make their measurement decisions and judgments independently. Several issues related to using kappa in measurement studies are described, including use of weighted kappa, methods of reporting kappa, the effect of bias and prevalence on kappa, and sample size and power requirements for kappa. The kappa statistic is useful for assessing agreement among raters, and it is being used more frequently in rehabilitation research. Correct interpretation of the kappa statistic depends on meeting the required assumptions and accurate reporting.

  5. Mechanisms generating kappa distributions in plasmas

    NASA Astrophysics Data System (ADS)

    Livadiotis, Georgios

    2017-10-01

    Kappa distributions have become increasingly widespread across plasma physics. Publication records reveal an exponential growth of papers relevant to kappa distributions. However, the vast majority of publications refer to statistical fits and applications of these distributions in plasmas. Up to date, there is no systematic analysis on the origin of kappa distributions, that is, the mechanisms that can generate kappa distributions in plasmas. The general scheme that characterizes these mechanisms is composed of two parts: (1) the generation of local correlations among particles, and (2) the thermalization, that is, the stabilization of the particle system into stationary states described by kappa distributions or combinations thereof. Several mechanisms are known in the literature, each characterized by a specific relationship between the plasma properties. These relationships serve as conditions that need to be fulfilled for the corresponding mechanisms to be applied in the plasma. Using these relationships, we identify three mechanisms that generate kappa distributions in the solar wind plasma: (i) Debye shielding, (ii) magnetic field binding, and (iii) thermal fluctuations, each one prevailing in different scales of the solar wind plasma and magnetic field properties. The work was supported in part by the project NNX17AB74G of NASA's HGI Program.

  6. Nuclear factor kappa B-dependent Zif268 expression in hippocampus is required for recognition memory in mice.

    PubMed

    Zalcman, Gisela; Federman, Noel; de la Fuente, Verónica; Romano, Arturo

    2015-03-01

    Long-term memory formation requires gene expression after acquisition of new information. The first step in the regulation of gene expression is the participation of transcription factors (TFs) such as nuclear factor kappa B (NF-кB), which are present before the neuronal activity induced by training. It was proposed that the activation of these types of TFs allows a second step in gene regulation by induction of immediate-early genes (IEGs) whose protein products are, in turn, TFs. Between these IEGs, zif268 has been found to play a critical role in long-term memory formation and reprocessing after retrieval. Here we found in mice hippocampus that, on one hand, NF-кB was activated 45 min after training in a novel object recognition (NOR) task and that inhibiting NF-кB immediately after training by intrahippocampal administration of NF-кB Decoy DNA impaired NOR memory consolidation. On the other hand, Zif268 protein expression was induced 45 min after NOR training and the administration of DNA antisense to its mRNA post-training impaired recognition memory. Finally, we found that the inhibition of NF-кB by NF-кB Decoy DNA reduced significantly the training-induced Zif268 increment, indicating that NF-кB is involved in the regulation of Zif268 expression. Thus, the present results support the involvement of NF-кB activity-dependent Zif268 expression in the hippocampus during recognition memory consolidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. B1 Cell IgE Impedes Mast Cell-Mediated Enhancement of Parasite Expulsion through B2 IgE Blockade.

    PubMed

    Martin, Rebecca K; Damle, Sheela R; Valentine, Yolander A; Zellner, Matthew P; James, Briana N; Lownik, Joseph C; Luker, Andrea J; Davis, Elijah H; DeMeules, Martha M; Khandjian, Laura M; Finkelman, Fred D; Urban, Joseph F; Conrad, Daniel H

    2018-02-13

    Helminth infection is known for generating large amounts of poly-specific IgE. Here we demonstrate that innate-like B1 cells are responsible for this IgE production during infection with the nematode parasites Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. In vitro analysis of B1 cell immunoglobulin class switch recombination to IgE demonstrated a requirement for anti-CD40 and IL-4 that was further enhanced when IL-5 was added or when the B1 source was helminth infected mice. An IL-25-induced upregulation of IgE in B1 cells was also demonstrated. In T cell-reconstituted RAG1 -/- mice, N. brasiliensis clearance was enhanced with the addition of B2 cells in an IgE-dependent manner. This enhanced clearance was impeded by reconstitution with IgE sufficient B1 cells. Mucosal mast cells mediated the B2 cell enhancement of clearance in the absence of B1 cells. The data support B1 cell IgE secretion as a regulatory response exploited by the helminth. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Mu/Kappa Opioid Interactions in Rhesus Monkeys: Implications for Analgesia and Abuse Liability

    PubMed Central

    Negus, S. Stevens; Katrina Schrode, KA; Stevenson, Glenn W.

    2008-01-01

    Mu opioid receptor agonists are clinically valuable as analgesics; however, their use is limited by high abuse liability. Kappa opioid agonists also produce antinociception, but they do not produce mu agonist-like abuse-related effects, suggesting that they may enhance the antinociceptive effects and/or attenuate the abuse-related effects of mu agonists. To evaluate this hypothesis, the present study examined interactions between the mu agonist fentanyl and the kappa agonist U69,593 in three behavioral assays in rhesus monkeys. In an assay of schedule-controlled responding, monkeys responded under a fixed-ratio 30 (FR 30) schedule of food presentation. Fentanyl and U69,593 each produced rate-decreasing effects when administered alone, and mixtures of 0.22:1, 0.65:1 and 1.96:1 U69,593/fentanyl usually produced subadditive effects. In an assay of thermal nociception, tail withdrawal latencies were measured from water heated to 50°C. Fentanyl and U69,593 each produced dose-dependent antinociception, and effects were additive for all mixtures. In an assay of drug self-administration, rhesus monkeys responded for i.v. drug injection, and both dose and FR values were manipulated. Fentanyl maintained self-administration, whereas U69,593 did not. Addition of U69,593 to fentanyl produced a proportion-dependent decrease in both rates of fentanyl self-administration and behavioral economic measures of the reinforcing efficacy of fentanyl. Taken together, these results suggest that simultaneous activation of mu and kappa receptors, either with a mixture of selective drugs or with a single drug that targets both receptors, may reduce abuse liability without reducing analgesic effects relative to selective mu agonists administered alone. PMID:18837635

  9. Targeting receptor-activator of nuclear kappaB ligand in aneurysmal bone cysts: verification of target and therapeutic response.

    PubMed

    Pelle, Dominic W; Ringler, Jonathan W; Peacock, Jacqueline D; Kampfschulte, Kevin; Scholten, Donald J; Davis, Mary M; Mitchell, Deanna S; Steensma, Matthew R

    2014-08-01

    Aneurysmal bone cyst (ABC) is a benign tumor of bone presenting as a cystic, expansile lesion in both the axial and appendicular skeleton. Axial lesions demand special consideration, because treatment-related morbidity can be devastating. In similar lesions, such as giant cell tumor of bone (GCTB), the receptor-activator of nuclear kappaB ligand (RANKL)-receptor-activator of nuclear kappaB (RANK) signaling axis is essential to tumor progression. Although ABC and GCTB are distinct entities, they both contain abundant multinucleated giant cells and are osteolytic characteristically. We hypothesize that ABCs express both RANKL and RANK similarly in a cell-type specific manner, and that targeted RANKL therapy will mitigate ABC tumor progression. Cellular expression of RANKL and RANK was determined in freshly harvested ABC samples using laser confocal microscopy. A consistent cell-type-specific pattern was observed: fibroblastlike stromal cells expressed RANKL strongly whereas monocyte/macrophage precursor and multinucleated giant cells expressed RANK. Relative RANKL expression was determined by quantitative real-time polymerase chain reaction in ABC and GCTB tissue samples; no difference in relative expression was observed (P > 0.05). In addition, we review the case of a 5-year-old boy with a large, aggressive sacral ABC. After 3 months of targeted RANKL inhibition with denosumab, magnetic resonance imaging demonstrated tumor shrinkage, bone reconstitution, and healing of a pathologic fracture. Ambulation, and bowel and bladder function were restored at 6 months. Denosumab treatment was well tolerated. Post hoc analysis demonstrated strong RANKL expression in the pretreatment tumor sample. These findings demonstrate that RANKL-RANK signal activation is essential to ABC tumor progression. RANKL-targeted therapy may be an effective alternative to surgery in select ABC presentations. Copyright © 2014 Mosby, Inc. All rights reserved.

  10. Antimicrobial activity-specific to Gram-negative bacteria and immune modulation-mediated NF-kappaB and Sp1 of a medaka beta-defensin.

    PubMed

    Zhao, Jiu-Gang; Zhou, Li; Jin, Jun-Yan; Zhao, Zhe; Lan, Jing; Zhang, Yi-Bin; Zhang, Qi-Ya; Gui, Jian-Fang

    2009-04-01

    Defensins are a group of cationic antimicrobial peptides which play an important role in the innate immune system by exerting their antimicrobial activity against pathogens. In this study, we cloned a novel beta-defensin cDNA from medaka (Oryzias latipes) by rapid amplification of cDNA ends (RACE) technique. The full-length cDNA consists of 480 bp, and the open reading frame (ORF) of 189 bp encodes a polypeptide of 63 amino acids (aa) with a predicted molecular weight of 7.44 kDa. Its genomic organization was analyzed, and Southern blot detection confirmed that only one copy of beta-defensin exists in the medaka HNI strain. RT-PCR, Western blot and immunohistochemistry detections showed that the beta-defensin transcript and protein could be detected in eyes, liver, kidney, blood, spleen and gill, and obviously prevalent expression was found in eyes. Antimicrobial activity of the medaka beta-defensin was evaluated, and the antibacterial activity-specific to Gram-negative bacteria was revealed. Furthermore, the lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, was demonstrated to be able to induce about 13-fold up-regulation of the beta-defensin within first 12h. In addition, promoter and promoter mutagenesis analysis were performed in the medaka beta-defensin. A proximal 100 base pair (bp) sequence (+26 to -73) and the next 1700 bp sequence (-73 to -1755) were demonstrated to be responsible for the basal promoter activity and for the transcription regulation. Three nuclear factor kappa B (NF-kappaB) cis-elements and a Sp1 cis-element were revealed by mutagenesis analysis to exist in the 5' flanking sequence, and they were confirmed to be responsible for the up-regulation of medaka beta-defensin stimulated by LPS. And, the Sp1 cis-element was further revealed to be related to the basal promoter activity, and transcriptional factor II D (TFIID) was found to be in charge of the gene transcription initiation. All the obtained

  11. Preliminary Estimation of Kappa Parameter in Croatia

    NASA Astrophysics Data System (ADS)

    Stanko, Davor; Markušić, Snježana; Ivančić, Ines; Mario, Gazdek; Gülerce, Zeynep

    2017-12-01

    Spectral parameter kappa κ is used to describe spectral amplitude decay “crash syndrome” at high frequencies. The purpose of this research is to estimate spectral parameter kappa for the first time in Croatia based on small and moderate earthquakes. Recordings of local earthquakes with magnitudes higher than 3, epicentre distances less than 150 km, and focal depths less than 30 km from seismological stations in Croatia are used. The value of kappa was estimated from the acceleration amplitude spectrum of shear waves from the slope of the high-frequency part where the spectrum starts to decay rapidly to a noise floor. Kappa models as a function of a site and distance were derived from a standard linear regression of kappa-distance dependence. Site kappa was determined from the extrapolation of the regression line to a zero distance. The preliminary results of site kappa across Croatia are promising. In this research, these results are compared with local site condition parameters for each station, e.g. shear wave velocity in the upper 30 m from geophysical measurements and with existing global shear wave velocity - site kappa values. Spatial distribution of individual kappa’s is compared with the azimuthal distribution of earthquake epicentres. These results are significant for a couple of reasons: to extend the knowledge of the attenuation of near-surface crust layers of the Dinarides and to provide additional information on the local earthquake parameters for updating seismic hazard maps of studied area. Site kappa can be used in the re-creation, and re-calibration of attenuation of peak horizontal and/or vertical acceleration in the Dinarides area since information on the local site conditions were not included in the previous studies.

  12. Inhibition of IKK/NF-κB Signaling Enhances Differentiation of Mesenchymal Stromal Cells from Human Embryonic Stem Cells.

    PubMed

    Deng, Peng; Zhou, Chenchen; Alvarez, Ruth; Hong, Christine; Wang, Cun-Yu

    2016-04-12

    Embryonic stem cell-derived mesenchymal stromal cells (MSCs; also known as mesenchymal stem cells) represent a promising source for bone regenerative medicine. Despite remarkable advances in stem cell biology, the molecular mechanism regulating differentiation of human embryonic stem cells (hESCs) into MSCs remains poorly understood. Here, we report that inhibition of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling enhances differentiation of hESCs into MSCs by expediting the loss of pluripotent markers and increasing the expression of MSC surface markers. In addition, a significantly higher quantity of MSCs was produced from hESCs with IKK/NF-κB suppression. These isolated MSCs displayed evident multipotency with capacity to terminally differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and to form bone in vivo. Collectively, our data provide important insights into the role of NF-κB in mesenchymal lineage specification during hESC differentiation, suggesting that IKK inhibitors could be utilized as an adjuvant in generating MSCs for cell-mediated therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The bile acid deoxycholic acid has a non-linear dose response for DNA damage and possibly NF-kappaB activation in oesophageal cells, with a mechanism of action involving ROS.

    PubMed

    Jenkins, G J S; Cronin, J; Alhamdani, A; Rawat, N; D'Souza, F; Thomas, T; Eltahir, Z; Griffiths, A P; Baxter, J N

    2008-09-01

    Deoxycholic acid (DCA) is a secondary bile acid implicated in various cancers of the gastrointestinal (GI) tract. In oesophageal adenocarcinoma, DCA is believed to contribute to carcinogenesis during reflux where stomach contents enter the lower oesophagus. It is imperative that we understand the mechanisms whereby oesophageal carcinogens function in order that therapeutic options may be developed. We have previously shown that DCA can damage chromosomes and does so through its generation of reactive oxygen species (ROS). We show here, after detailed experiments, that DCA appears to have a non-linear dose response for DNA damage. DCA induces DNA damage (as measured by the micronucleus assay) at doses of 100 microM and higher in oesophageal OE33 cells, but fails to induce such DNA damage below this cut-off dose. We also show that in terms of NF-kappaB activation (as measured by up-regulation of two NF-kappaB target genes) by DCA, a similar dose response is observed. This dose-response data may be important clinically as DCA exposure to the oesophagus may be used as a way to identify the 10% of Barrett's oesophagus patients currently progressing to cancer from the 90% of patients who do not progress. Only quantitative studies measuring DCA concentrations in refluxates correlated with histological progression will answer this question. We further show here that ROS are behind DCAs ability to activate NF-kappaB as antioxidants (epigallocatechin gallate, resveratrol and vitamin C) abrogate DCAs ability to up-regulate NF-kappaB-controlled genes. In conclusion, low doses of DCA appear to be less biologically significant in vitro. If this were to be confirmed in vivo, it might suggest that reflux patients with low DCA concentrations may be at a lower risk of cancer progression compared to patients with high levels of DCA in their refluxate. Either way, antioxidant supplementation may possibly help prevent the deleterious effects of DCA in the whole GI tract.

  14. Eupatilin inhibits T-cell activation by modulation of intracellular calcium flux and NF-kappaB and NF-AT activity.

    PubMed

    Kim, Young-Dae; Choi, Suck-Chei; Oh, Tae-Young; Chun, Jang-Soo; Jun, Chang-Duk

    2009-09-01

    Eupatilin, one of the pharmacologically active ingredients of Artemisia princeps, exhibits a potent anti-ulcer activity, but its effects on T-cell immunity have not been investigated. Here, we show that eupatilin has a profound inhibitory effect on IL-2 production in Jurkat T cells as well as in human peripheral blood leukocytes. Eupatilin neither influenced clustering of CD3 and LFA-1 to the immunological synapse nor inhibited conjugate formation between T cells and B cells in the presence or absence of superantigen (SEE). Eupatilin also failed to inhibit T-cell receptor (TCR) internalization, thereby, suggesting that eupatilin does not interfere with TCR-mediated signals on the membrane proximal region. In unstimulated T cells, eupatilin significantly induced apoptotic cell death, as evidenced by an increased population of annexin V(+)/PI(+) cells and cleavage of caspase-3 and PARP. To our surprise, however, once cells were activated, eupatilin had little effect on apoptosis, and instead slightly protected cells from activation-induced cell death, suggesting that apoptosis also is not a mechanism for eupatilin-induced T-cell suppression. On the contrary, eupatilin dramatically inhibited I-kappaBalpha degradation and NF-AT dephosphorylation and, consequently, inhibited NF-kappaB and NF-AT promoter activities in PMA/A23187-stimulated T cells. Interestingly, intracellular calcium flux was significantly perturbed in cells pre-treated with eupatilin, suggesting that calcium-dependent cascades might be targets for eupatilin action. Collectively, our results provide evidence for dual regulatory functions of eupatilin: (1) a pro-apoptotic effect on resting T cells and (2) an immunosuppressive effect on activated T cells, presumably through modulation of Ca(2+) flux. (c) 2009 Wiley-Liss, Inc.

  15. Anti-inflammatory activity of methylene chloride fraction from Glehnia littoralis extract via suppression of NF-kappa B and mitogen-activated protein kinase activity.

    PubMed

    Yoon, Taesook; Cheon, Myeong Sook; Lee, A Yeong; Lee, Do Yeon; Moon, Byeong Cheol; Chun, Jin Mi; Choo, Byung Kil; Kim, Ho Kyoung

    2010-01-01

    Glehnia littoralis (Umbelliferae) has been used traditionally in Korean, Japanese, and Chinese medicine for the treatment of immune-related diseases; however, its anti-inflammatory activity and underlying mechanism remain to be defined. We investigated the anti-inflammatory effect and inhibitory mechanism on inflammation by the methylene chloride fraction from Glehnia littoralis extract (MCF-GLE), which was more effective than Glehnia littoralis extract (GLE). MCF-GLE inhibited 12-O-Tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation in an inflammatory edema mouse model. Also, MCF-GLE strongly inhibited the releases of nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) and significantly suppressed the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW 264.7 macrophage cells in a dose-dependent manner. Furthermore, MCF-GLE suppressed NF-kappaB activation and IkappaB-alpha degradation. MCF-GLE also attenuated the activation of ERK and JNK in a dose-dependent manner. These results indicate that MCF-GLE has an inhibitory effect on the in vivo and in vitro inflammatory reaction and is a possible therapeutic agent. Our results suggest that the anti-inflammatory properties of MCF-GLE may result from the inhibition of pro-inflammatory mediators, such as NO, PGE(2), TNF-alpha, and IL-1beta via suppression of NF-kappaB- and mitogen-activated protein kinases-dependent pathways.

  16. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation.

    PubMed

    Zhou, Hong Yu; Shin, Eun Myoung; Guo, Lian Yu; Youn, Ui Joung; Bae, KiHwan; Kang, Sam Sik; Zou, Li Bo; Kim, Yeong Shik

    2008-05-31

    The extracts or constituents from the bark of Magnolia (M.) obovata are known to have many pharmacological activities. 4-Methoxyhonokiol, a neolignan compound isolated from the stem bark of M. obovata, was found to exhibit a potent anti-inflammatory effect in different experimental models. Pretreatment with 4-methoxyhonokiol (i.p.) dose-dependently inhibited the dye leakage and paw swelling in an acetic-acid-induced vascular permeability assay and a carrageenan-induced paw edema assay in mice, respectively. In the lipopolysaccharide (LPS)-induced systemic inflammation model, 4-methoxyhonokiol significantly inhibited plasma nitric oxide (NO) release in mice. To identify the mechanisms underlying this anti-inflammatory action, we investigated the effect of 4-methoxyhonokiol on LPS-induced responses in a murine macrophage cell line, RAW 264.7. The results demonstrated that 4-methoxyhonokiol significantly inhibited LPS-induced NO production as well as the protein and mRNA expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, 4-methoxyhonokiol inhibited LPS-mediated nuclear factor-kappaB (NF-kappaB) activation via the prevention of inhibitor kappaB (IkappaB) phosphorylation and degradation. 4-Methoxyhonokiol had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), whereas it attenuated the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) in a concentration-dependent manner. Taken together, our data suggest that 4-methoxyhonokiol is an active anti-inflammatory constituent of the bark of M. obovata, and that its anti-inflammatory property might be a function of the inhibition of iNOS and COX-2 expression via down-regulation of the JNK and p38 MAP kinase signal pathways and inhibition of NF-kappaB activation in RAW 264.7 macrophages.

  17. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bae, Yunju; Lee, Soyoung; Kim, Sang-Hyun, E-mail: shkim72@knu.ac.kr

    A great number of people are suffering from allergic inflammatory diseases such as asthma, atopic dermatitis, and sinusitis. Therefore discovery of drugs for the treatment of these diseases is an important subject in human health. Chrysin (5,7-dihydroxyflavone) is a natural flavonoid contained in propolis, blue passion flower, and fruits. Several studies reported that chrysin has beneficial effects including anti-tumor and anti-oxidant activities. The aim of the present study was to elucidate whether chrysin modulates the allergic inflammatory reaction and to study its possible mechanisms of action using mast cell-based in vitro and in vivo models. Chrysin inhibited immediate-type systemic hypersensitivitymore » and serum histamine release. Chrysin attenuated immunoglobulin E-mediated local anaphylaxis. These inhibitory effects of chrysin on the systemic and local allergic reaction were more potent than cromolyn, a known anti-allergic drug. Chrysin reduced histamine release from mast cells. The inhibitory effect of chrysin on the histamine release was mediated by the modulation of intracellular calcium. In addition, chrysin decreased gene expression of pro-inflammatory cytokines such as, tumor necrosis factor-{alpha}, IL (interleukin)-1{beta}, IL-4, and IL-6 in mast cells. The inhibitory effect of chrysin on the pro-inflammatory cytokine was nuclear factor-{kappa}B and caspase-1 dependent. Our findings provide evidence that chrysin inhibits mast cell-derived allergic inflammatory reactions by blocking histamine release and pro-inflammatory cytokine expression, and suggest the mechanisms of action. Furthermore, in vivo and in vitro anti-allergic inflammatory effect of chrysin suggests a possible therapeutic application of this agent in allergic inflammatory diseases. - Research Highlights: > Discovery of drugs for the allergic inflammation is important in human health. > Chrysin is a natural flavonoid contained in propolis, blue passion flower, and fruits

  18. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation.

    PubMed

    Kim, Won-Jung; Lee, Min-Young; Kim, Jung-Hee; Suk, Kyoungho; Lee, Won-Ha

    2010-10-01

    Inflammation is known to be closely associated with the development of cancer. Decursinol angelate (DA), a coumarin compound isolated from Angelica gigas and related compounds have been shown to possess potent anti-inflammatory activities. However, little is known about their effects on the inflammatory processes associated with cancer. In this study, the anti-inflammatory effect of DA was evaluated in cancer cell lines with respect to cellular invasion through the extracellular matrix (ECM) and the expression of pro-inflammatory mediators such as cytokine, cell adhesion molecules and matrix metalloproteinase (MMP)-9. DA inhibited the invasion of fibrosarcoma cell line, HT1080 and breast cancer cell line, MDA-MB-231 in the Matrigel invasion assay. DA-mediated suppression of cancer cell invasion was accomplished by suppression of PI3K activity known to be associated with cytoskeletal rearrangement related to cellular migration. DA also suppressed the adhesion of cancer cells to ECM mediated by down-regulation of beta(1)-integrin expression levels. Furthermore, DA inhibited the expression of pro-inflammatory cytokines and MMP-9 through suppression of PI3K, ERK and NF-kappaB activation. These results demonstrate that DA suppresses invasion and inflammatory activation of cancer cells through modulation of PI3K/AKT, ERK and NF-kappaB. These anti-inflammatory activities of DA may contribute to its anti-cancer activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Expression of apoptosis related proteins: RAIDD, ZIP kinase, Bim/BOD, p21, Bax, Bcl-2 and NF-kappaB in brains of patients with Down syndrome.

    PubMed

    Engidawork, E; Gulesserian, T; Seidl, R; Cairns, N; Lubec, G

    2001-01-01

    Down syndrome (DS) is a genetic disease that exhibits significant neuropathological parallels with Alzheimer's disease (AD). One of the features of DS, neuronal loss, has been hypothesized to occur as a result of apoptosis. An increasing number of proteins are implicated in apoptosis and several of them were shown to be altered in AD, however, the knowledge in DS is far from complete. To further substantiate the hypothesis that apoptosis is the underlying mechanism for neuronal loss and contribute towards the current knowledge of apoptosis in DS, we analyzed the expression of apoptosis related proteins in frontal cortex and cerebellum of DS by western blot and ELISA techniques. Quantitative analysis revealed a significant increase in DS frontal (P < 0.0001) and cerebellar (P < 0.05) Bim/BOD (Bcl-2 interacting mediator of cell death/Bcl-2 related ovarian death gene), cerebellar Bcl-2 (P < 0.01) as well as p21 (P < 0.05) levels compared to controls. No significant change was detected in Bax, RAIDD (receptor interacting protein (RIP)-associated ICH-1/CED-3-homologus protein with death domain), ZIP (Zipper interacting protein) kinase and NF-kappaB p65 levels in both regions, although frontal cortex levels of RAIDD, Bcl-2 and p21 levels tended to increase. In addition, a 45 kDa truncated form of NF-kappaB p65 displayed a significant elevation (P < 0.05) in DS cerebellum. No significant correlation had been obtained between postmortem interval and level of the proteins analyzed. With regard to age, it was only NF-kappaB p65 that showed significant correlation (r = -0.8964, P = 0.0155, n = 9) in frontal cortex of controls. These findings provide further evidence that apoptosis indeed accounts for the neuronal loss in DS but Bax and RAIDD do not appear to take part in this process.

  20. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits

  1. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes.

    PubMed

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11-7082. Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11-7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits production of cartilage degrading PGE2 via inhibition of COX-2 expression

  2. Tumor necrosis factor-{alpha} enhances IL-15-induced natural killer cell differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jiwon; Lee, Suk Hyung; Korea University of Science and Technology, Yusong, Daejeon 305-333

    2009-09-04

    The differentiation of natural killer (NK) cells is regulated by various factors including soluble growth factors and transcription factors. Here, we have demonstrated that tumor necrosis factor-{alpha} (TNF-{alpha}) is a positive regulator of NK cell differentiation. TNF-{alpha} augmented the IL-15-induced expression of NK1.1 and CD122 in mature NK cells, and TNF-{alpha} alone also induced NK cell maturation as well as IL-15. TNF-{alpha} also increased IFN-{gamma} production in NK cells in the presence of IL-15. Meanwhile, mRNA expression of several transcription factors, including T-bet and GATA-3, was increased by the addition of TNF-{alpha} and IL-15. In addition, TNF-{alpha} increased nuclear factor-kappamore » B (NF-{kappa}B) activity in NK cells and inhibition of NF-{kappa}B impeded TNF-{alpha}-enhanced NK cell maturation. Overall, these data suggest that TNF-{alpha} significantly increased IL-15-driven NK cell differentiation by increasing the expression of transcription factors that play crucial roles in NK cell maturation and inducing the NF-{kappa}B activity.« less

  3. Origins and properties of kappa distributions in space plasmas

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2016-07-01

    Classical particle systems reside at thermal equilibrium with their velocity distribution function stabilized into a Maxwell distribution. On the contrary, collisionless and correlated particle systems, such as the space and astrophysical plasmas, are characterized by a non-Maxwellian behavior, typically described by the so-called kappa distributions. Empirical kappa distributions have become increasingly widespread across space and plasma physics. However, a breakthrough in the field came with the connection of kappa distributions to the solid statistical framework of Tsallis non-extensive statistical mechanics. Understanding the statistical origin of kappa distributions was the cornerstone of further theoretical developments and applications, some of which will be presented in this talk: (i) The physical meaning of thermal parameters, e.g., temperature and kappa index; (ii) the multi-particle description of kappa distributions; (iii) the phase-space kappa distribution of a Hamiltonian with non-zero potential; (iv) the Sackur-Tetrode entropy for kappa distributions, and (v) the new quantization constant, h _{*}˜10 ^{-22} Js.

  4. High-frequency expression of a conserved kappa light-chain variable-region gene in chronic lymphocytic leukemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipps, T.J.; Fong, S.; Tomhave, E.

    Malignant B lymphocytes from several patients with chronic lymphocytic leukemia (CLL) were examined for reactivity with murine monoclonal antibody 17.109. This antibody, prepared against the rheumatoid factor (RF) paraprotein Sie, recognizes a cross reactive idiotype on 48% of human IgM RF paraproteins, but does not react with IgM paraproteins without RF activity or substantially with normal pooled immunoglobulin. The 17.109-reactive idiotype is a marker for a kappa III variable-region gene, designated V/sub kappa/RF, that is conserved in outbred human populations. In a limited study of 31 CLL patients, the leukemic cells from 5 of 20 patients with kappa light chain-expressingmore » CLL were recognized by the 17.109 monoclonal antibody. Despite having malignant cells specifically reactive with this antibody, patients with 17.109-positive CLL did not have elevated serum levels of circulating antibody bearing 17.109-reactive determinants. Total RNAs isolated from the CLL B lymphocytes, or from hybridomas produced by fusing the CLL cells with the WI-L2-729-HF/sub 2/ cell line, were fractionated electrophoretically and examined by blot hybridization. Under stringent hybridization conditions capable of discerning a single base-pair mismatch, RNA from the 17.109-idiotype-positive CLL cells hybridized to synthetic oligonucleotide probes corresponding to framework and complementary-determining regions in the V/sub kappa/RF gene. The high frequency of the 17.109-associated idiotype and the V/sub kappa/RF gene in CLL suggests that the disease may arise from B lymphocytes that express a restricted set of inherited immunoglobulin variable-region genes with little or no somatic mutation.« less

  5. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    PubMed

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  6. Phytomedicines prepared from Arnica flowers inhibit the transcription factors AP-1 and NF-kappaB and modulate the activity of MMP1 and MMP13 in human and bovine chondrocytes.

    PubMed

    Jäger, Christoph; Hrenn, Andrea; Zwingmann, Jörn; Suter, Andreas; Merfort, Irmgard

    2009-10-01

    Arnica preparations have long been used for the symptomatic treatment of rheumatic complaints and recent clinical trials have demonstrated the beneficial effects of Arnica preparations in the treatment of osteoarthritis (OA). The efficacy of Arnica is presumed to be mainly due to its anti-inflammatory properties and inhibition of the transcription factor NF-kappaB. Here we provide further insights into its molecular mode of action. Arnica preparations suppress MMP1 and MMP13 mRNA levels in bovine and human articular chondrocytes in a concentration-dependent manner and in a low concentration range. This suppression may be due to inhibition of DNA binding of the transcription factors AP-1 and NF-kappaB. Interestingly, sesquiterpene lactones present in the preparations were always more active than the pure compounds, demonstrating the advantage of using plant preparations. Georg Thieme Verlag KG Stuttgart, New York.

  7. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells.

    PubMed

    Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar

    2013-08-19

    Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.

  8. Berberine attenuates depressive-like behaviors by suppressing neuro-inflammation in stressed mice.

    PubMed

    Liu, Ya-Min; Niu, Le; Wang, Lin-Lin; Bai, Li; Fang, Xiao-Yan; Li, Yu-Cheng; Yi, Li-Tao

    2017-09-01

    Berberine, the major constituent alkaloid originally from the famous Chinese herb Huanglian (Coptis chinensis), has been shown to exert antidepressant-like effects in rodents. However, it is still not clear the involvement of neuro-inflammation suppression in the effects of berberine. The purpose of this study was to determine whether berberine affects the neuro-inflammation system in mice induced by chronic unpredictable mild stress (CUMS). Berberine was orally administrated in normal or CUMS mice for successive four weeks. Behavioral evaluation showed that berberine prevented the depressive deficits both in sucrose preference test and novelty-suppressed feeding test. The elevation of hippocampal pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), as well as the activation of microglia were decreased by berberine. In addition, chronic berberine treatment inhibited nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway as the phosphorylated proteins of NF-κB, IκB kinase (IKK)α and IKKβ in the hippocampus were suppressed after berberine administration. Furthermore, inducible nitric oxide synthase (iNOS), one downstream target of NF-κB signaling pathway was also inhibited by berberine. In conclusion, these findings suggest that administration of berberine could prevent depressive-like behaviors in CUMS mice by suppressing neuro-inflammation in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nonplanar ion acoustic waves with kappa-distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Biswajit

    2011-06-15

    Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing {kappa}) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. Themore » present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.« less

  10. A preferential p110alpha/gamma PI3K inhibitor attenuates experimental inflammation by suppressing the production of proinflammatory mediators in a NF-kappaB-dependent manner.

    PubMed

    Dagia, Nilesh M; Agarwal, Gautam; Kamath, Divya V; Chetrapal-Kunwar, Anshu; Gupte, Ravindra D; Jadhav, Mahesh G; Dadarkar, Shruta S; Trivedi, Jacqueline; Kulkarni-Almeida, Asha A; Kharas, Firuza; Fonseca, Lyle C; Kumar, Sanjay; Bhonde, Mandar R

    2010-04-01

    A promising therapeutic approach to diminish pathological inflammation is to inhibit the increased production and/or biological activity of proinflammatory cytokines (e.g., TNF-alpha, IL-6). The production of proinflammatory cytokines is controlled at the gene level by the activity of transcription factors, such as NF-kappaB. Phosphatidylinositol 3-kinase (PI3K), a lipid kinase, is known to induce the activation of NF-kappaB. Given this, we hypothesized that inhibitors of PI3K activation would demonstrate anti-inflammatory potential. Accordingly, we studied the effects of a preferential p110alpha/gamma PI3K inhibitor (compound 8C; PIK-75) in inflammation-based assays. Mechanism-based assays utilizing human cells revealed that PIK-75-mediated inhibition of PI3K activation is associated with dramatic suppression of downstream signaling events, including AKT phosphorylation, IKK activation, and NF-kappaB transcription. Cell-based assays revealed that PIK-75 potently and dose dependently inhibits in vitro and in vivo production of TNF-alpha and IL-6, diminishes the induced expression of human endothelial cell adhesion molecules (E-selectin, ICAM-1, and VCAM-1), and blocks human monocyte-endothelial cell adhesion. Most importantly, PIK-75, when administered orally in a therapeutic regimen, significantly suppresses the macroscopic and histological abnormalities associated with dextran sulfate sodium-induced murine colitis. The efficacy of PIK-75 in attenuating experimental inflammation is mediated, at least in part, due to the downregulation of pertinent inflammatory mediators in the colon. Collectively, these results provide first evidence that PIK-75 possesses anti-inflammatory potential. Given that PIK-75 is known to exhibit anti-cancer activity, the findings from this study thus reinforce the cross-therapeutic functionality of potential drugs.

  11. Dexamethasone inhibits IL-12p40 production in lipopolysaccharide-stimulated human monocytic cells by down-regulating the activity of c-Jun N-terminal kinase, the activation protein-1, and NF-kappa B transcription factors.

    PubMed

    Ma, Wei; Gee, Katrina; Lim, Wilfred; Chambers, Kelly; Angel, Jonathan B; Kozlowski, Maya; Kumar, Ashok

    2004-01-01

    IL-12 plays a critical role in the development of cell-mediated immune responses and in the pathogenesis of inflammatory and autoimmune disorders. Dexamethasone (DXM), an anti-inflammatory glucocorticoid, has been shown to inhibit IL-12p40 production in LPS-stimulated monocytic cells. In this study, we investigated the molecular mechanism by which DXM inhibits IL-12p40 production by studying the role of the mitogen-activated protein kinases (MAPKs), and the key transcription factors involved in human IL-12p40 production in LPS-stimulated monocytic cells. A role for c-Jun N-terminal kinase (JNK) MAPK in LPS-induced IL-12p40 regulation in a promonocytic THP-1/CD14 cell line was demonstrated by using specific inhibitors of JNK activation, SP600125 and a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase-1 mutant. To identify transcription factors regulating IL-12p40 gene transcription, extensive deletion analyses of the IL-12p40 promoter was performed. The results revealed the involvement of a sequence encompassing the AP-1-binding site, in addition to that of NF-kappaB. The role of AP-1 in IL-12p40 transcription was confirmed by using antisense c-fos and c-jun oligonucleotides. Studies conducted to understand the regulation of AP-1 and NF-kappaB activation by JNK MAPK revealed that both DXM and SP600125 inhibited IL-12p40 gene transcription by inhibiting the activation of AP-1 and NF-kappaB transcription factors as revealed by luciferase reporter and gel mobility shift assays. Taken together, our results suggest that DXM may inhibit IL-12p40 production in LPS-stimulated human monocytic cells by down-regulating the activation of JNK MAPK, the AP-1, and NF-kappaB transcription factors.

  12. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and alsomore » prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.« less

  13. Some Paradoxical Results for the Quadratically Weighted Kappa

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2012-01-01

    The quadratically weighted kappa is the most commonly used weighted kappa statistic for summarizing interrater agreement on an ordinal scale. The paper presents several properties of the quadratically weighted kappa that are paradoxical. For agreement tables with an odd number of categories "n" it is shown that if one of the raters uses the same…

  14. The AhR and NF-κB/Rel Proteins Mediate the Inhibitory Effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3′ Immunoglobulin Heavy Chain Regulatory Region

    PubMed Central

    Salisbury, Richard L.; Sulentic, Courtney E. W.

    2015-01-01

    Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3′Igh regulatory region (3′IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3′IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3′IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3′IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3′IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3′IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3′IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels. PMID:26377645

  15. Notch1 engagement by Delta-like-1 promotes differentiation of B lymphocytes to antibody-secreting cells

    PubMed Central

    Santos, Margarida Almeida; Sarmento, Leonor Morais; Rebelo, Manuel; Doce, Ana Agua; Maillard, Ivan; Dumortier, Alexis; Neves, Helia; Radtke, Freddy; Pear, Warren S.; Parreira, Leonor; Demengeot, Jocelyne

    2007-01-01

    Notch signaling regulates B and T lymphocyte development and T cell effector class decision. In this work, we tested whether Notch activity affects mature B cell activation and differentiation to antibody-secreting cells (ASC). We show increased frequency of ASC in cultures of splenic B cells activated with LPS or anti-CD40 when provided exogenous Notch ligand Delta-like-1 (Dll1). Our results indicate that Notch–Dll1 interaction releases a default pathway that otherwise inhibits Ig secretion upon B cell activation. Thus, Dll1 enhanced spontaneous Ig secretion by naturally activated marginal zone B and B1 cells and reversed the inhibition of ASC differentiation mediated by B cell receptor crosslinking during LPS. Moreover, suppression of Notch signaling in B cell expression of either a dominant-negative mutant form of Mastermind-like 1 or a null mutation of Notch1 not only prevented Dll1-mediated enhancement of ASC differentiation but also reduced dramatically LPS-induced Ig secretion. Finally, we show that Dll1 and Jagged-1 are differentially expressed in discrete areas of the spleen, and that the effect of Notch engagement on Ig secretion is ligand-specific. These results indicate that Notch ligands participate in the definition of the mature B cell microenvironment that influences their terminal differentiation. PMID:17878313

  16. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions.

    PubMed

    Townsend, Catherine L; Laffy, Julie M J; Wu, Yu-Chang Bryan; Silva O'Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K

    2016-01-01

    Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response.

  17. Significant Differences in Physicochemical Properties of Human Immunoglobulin Kappa and Lambda CDR3 Regions

    PubMed Central

    Townsend, Catherine L.; Laffy, Julie M. J.; Wu, Yu-Chang Bryan; Silva O’Hare, Joselli; Martin, Victoria; Kipling, David; Fraternali, Franca; Dunn-Walters, Deborah K.

    2016-01-01

    Antibody variable regions are composed of a heavy and a light chain, and in humans, there are two light chain isotypes: kappa and lambda. Despite their importance in receptor editing, the light chain is often overlooked in the antibody literature, with the focus being on the heavy chain complementarity-determining region (CDR)-H3 region. In this paper, we set out to investigate the physicochemical and structural differences between human kappa and lambda light chain CDR regions. We constructed a dataset containing over 29,000 light chain variable region sequences from IgM-transcribing, newly formed B cells isolated from human bone marrow and peripheral blood. We also used a published human naïve dataset to investigate the CDR-H3 properties of heavy chains paired with kappa and lambda light chains and probed the Protein Data Bank to investigate the structural differences between kappa and lambda antibody CDR regions. We found that kappa and lambda light chains have very different CDR physicochemical and structural properties, whereas the heavy chains with which they are paired do not differ significantly. We also observed that the mean CDR3 N nucleotide addition in the kappa, lambda, and heavy chain gene rearrangements are correlated within donors but can differ between donors. This indicates that terminal deoxynucleotidyl transferase may work with differing efficiencies between different people but the same efficiency in the different classes of immunoglobulin chain within one person. We have observed large differences in the physicochemical and structural properties of kappa and lambda light chain CDR regions. This may reflect different roles in the humoral immune response. PMID:27729912

  18. The discovery of thienopyridine analogues as potent IkappaB kinase beta inhibitors. Part II.

    PubMed

    Wu, Jiang-Ping; Fleck, Roman; Brickwood, Janice; Capolino, Alison; Catron, Katrina; Chen, Zhidong; Cywin, Charles; Emeigh, Jonathan; Foerst, Melissa; Ginn, John; Hrapchak, Matt; Hickey, Eugene; Hao, Ming-Hong; Kashem, Mohammed; Li, Jun; Liu, Weimin; Morwick, Tina; Nelson, Richard; Marshall, Daniel; Martin, Leslie; Nemoto, Peter; Potocki, Ian; Liuzzi, Michel; Peet, Gregory W; Scouten, Erika; Stefany, David; Turner, Michael; Weldon, Steve; Zimmitti, Clare; Spero, Denise; Kelly, Terence A

    2009-10-01

    An SAR study that identified a series of thienopyridine-based potent IkappaB Kinase beta (IKKbeta) inhibitors is described. With focuses on the structural optimization at C4 and C6 of structure 1 (Fig. 1), the study reveals that small alkyl and certain aromatic groups are preferred at C4, whereas polar groups with proper orientation at C6 efficiently enhance compound potency. The most potent analogues inhibit IKKbeta with IC50s as low as 40 nM, suppress LPS-induced TNF-alpha production in vitro and in vivo, display good kinase selectivity profiles, and are active in a HeLa cell NF-kappaB reporter gene assay, demonstrating that they directly interfere with the NF-kappaB signaling pathway.

  19. Protection of acetaminophen induced mitochondrial dysfunctions and hepatic necrosis via Akt-NF-kappaB pathway: role of a novel plant protein.

    PubMed

    Ghosh, Ayantika; Sil, Parames C

    2009-01-27

    Oxidative stress is a major cause of drug induced hepatic diseases. The present study aims to investigate the antioxidative signaling mechanism of a protein isolated from the herb, Cajanus indicus against acetaminophen induced necrotic cell death. We found that incubation of hepatocytes with the protein prevented acetaminophen-induced loss in cell viability, reduction in glutathione level and enhancement of reactive oxygen species generation. Treatment of mice with the protein before administration of acetaminophen also reduced serum nitrite and TNF-alpha formation. Moreover, it counteracted acetaminophen-induced loss in mitochondrial membrane potential, loss in adenosine tri phosphate and rise in intracellular calcium. Investigating the cell signaling pathways, we found that the protein exerts its protective action via the activation of NF-kappaB and Akt and deactivation of STAT-1. Surprisingly, no role of ERK1/2 or STAT-3 was found in the protein-mediated protection of hepatocytes during acetaminophen exposure. Finally, we found that acetaminophen introduces necrosis as the primary phenomena of cell death and protein treatment decreased the necrotic process as evident from the DNA fragmentation and flow-cytometry studies. In addition, administration of the protein to mice before acetaminophen application showed fewer number of TUNEL positive cells. Combining, data suggest that the protein possesses cytoprotective activity against acetaminophen-induced oxidative cellular damage and prevents hepatocytes from necrotic death.

  20. Generation of Kappa Distributions in Solar Wind at 1 au

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; Desai, M. I.; Wilson, L. B., III

    2018-02-01

    We examine the generation of kappa distributions in the solar wind plasma near 1 au. Several mechanisms are mentioned in the literature, each characterized by a specific relationship between the solar wind plasma features, the interplanetary magnetic field (IMF), and the kappa index—the parameter that governs the kappa distributions. This relationship serves as a signature condition that helps the identification of the mechanism in the plasma. In general, a mechanism that generates kappa distributions involves a single or a series of stochastic or physical processes that induces local correlations among particles. We identify three fundamental solar wind plasma conditions that can generate kappa distributions, noted as (i) Debye shielding, (ii) frozen IMF, and (iii) temperature fluctuations, each one prevailing in different scales of solar wind plasma and magnetic field properties. Moreover, our findings show that the kappa distributions, and thus, their generating mechanisms, vary significantly with solar wind features: (i) the kappa index has different dependence on the solar wind speed for slow and fast modes, i.e., slow wind is characterized by a quasi-constant kappa index, κ ≈ 4.3 ± 0.7, while fast wind exhibits kappa indices that increase with bulk speed; (ii) the dispersion of magnetosonic waves is more effective for lower kappa indices (i.e., further from thermal equilibrium); and (iii) the kappa and polytropic indices are positively correlated, as it was anticipated by the theory.

  1. Obliquely Propagating Waves in Bi-Kappa Plasmas

    NASA Astrophysics Data System (ADS)

    Gaelzer, R.; Ziebell, L. F.; Meneses, A. R.

    2016-12-01

    The effects of kappa velocity distribution functions (VDFs) have been the subjectof intense research. Such functions have beenfound to provide a better fitting to the VDFs measured by spacecraftin the solar wind. An anisotropic VDF contains free energy that can excite wavesin the plasma. The induced turbulence also determines the observed shape of the VDF.The general treatment for waves excited by (bi-)Maxwellian plasmas is well-established.However, for kappa distributions (isotropic or anisotropic), the majority of the studieswere restricted to the limiting cases of purely parallel or perpendicular propagation.Contributions to the general case of obliquely-propagating waves have been scarcely reported.The absence of a general treatment prevents a complete analysis of the wave-particle interactionin kappa plasmas, since some instabilities can operate both in the parallel and oblique directions.A series of papers published by the authors begin to remedy this situation. In a first work [1],we have obtained the dielectric tensor and dispersion relations for quasi-perpendicular dispersive Alfvén waves resulting from a kappa VDF. This approach was later generalized by [2],where the formalism was extended to the general case of electrostatic/electromagnetic waves propagatingin an isotropic kappa plasma in any frequency range and for arbitrary angles.In the present work [3], we generalize even further the formalism by the derivation of thegeneral dielectric tensor of an anisotropic bi-kappa plasma. We present the state-of-the-art of theformalism and show how it enables a systematic study of waves and instabilities propagating inarbitrary directions and frequencies in a bi-kappa plasma.[1] R. Gaelzer, L. F. Ziebell, J. Geophys. Res. 119, 9334 (2014), doi: 10.1002/2014JA020667.[2] R. Gaelzer, L. F. Ziebell, Phys. Plasmas 23, 022110 (2016), doi: 10.1063/1.4941260.[3] R. Gaelzer et al., Phys. Plasmas 23, 062108 (2016), doi: 10.1063/1.4953430.

  2. Resampling probability values for weighted kappa with multiple raters.

    PubMed

    Mielke, Paul W; Berry, Kenneth J; Johnston, Janis E

    2008-04-01

    A new procedure to compute weighted kappa with multiple raters is described. A resampling procedure to compute approximate probability values for weighted kappa with multiple raters is presented. Applications of weighted kappa are illustrated with an example analysis of classifications by three independent raters.

  3. Kappa-Electrons Downstream of the Solar Wind Termination Shock

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.

    2017-12-01

    A theoretical description of the solar wind electron distribution function downstream of the termination shock under the influence of the shock-induced injection of overshooting KeV-energetic electrons will be presented. A kinetic phasespace transport equation in the bulk frame of the heliosheath plasma flow is developed for the solar wind electrons, taking into account shock-induced electron injection, convective changes, magnetic cooling processes and whistler wave-induced energy diffusion. Assuming that the local electron distribution under the prevailing Non-LTE conditions can be represented by a local kappa function with a local kappa parameter that varies with the streamline coordinates, we determine the parameters of the resulting, initial kappa distribution for the downstream electrons. From this initial function spectral electron fluxes can be derived and can be compared with those measured by the VOYAGER-1 spacecraft in the range between 40 to 70 KeV. It can then be shown that with kappa values around kappa = 6 one can in fact fit these data very satisfactorily. In addition it is shown that for isentropic electron flows kappa-distributed electrons have to undergo simultaneous changes of both parameters, i.e. kappa and theta, of the electron kappa function. It is also shown then that under the influence of energy sinks and sources the electron flux becomes non-isentropic with electron entropies changing along the streamline.

  4. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonghua; Zhou, Zhenfang; Nie, Sen; Wang, Honghu; Peng, Hongrui; Li, Guicun; Chen, Kezheng

    2014-12-01

    Flower-like hydrogenated TiO2(B) nanostructures have been synthesized via a facile solvothermal approach combined with hydrogenation treatment. The obtained TiO2(B) nanostructures show uniform and hierarchical flower-like morphology with a diameter of 124 ± 5 nm, which are further constructed by primary nanosheets with a thickness of 10 ± 1.2 nm. The Ti3+ species and/or oxygen vacancies are well introduced into the structures of TiO2(B) after hydrogen reduction, resulting in an enhancement in the electronic conductivity (up to 2.79 × 10-3 S cm-1) and the modified surface electrochemical activity. When evaluated for lithium storage capacity, the hydrogenated TiO2(B) nanostructures exhibit enhanced electrochemical energy storage performances compared to the pristine TiO2(B) nanostructures, including high capacity (292.3 mA h g-1 at 0.5C), excellent rate capability (179.6 mA h g-1 at 10C), and good cyclic stability (98.4% capacity retention after 200 cycles at 10C). The reasons for these improvements are explored in terms of the increased electronic conductivity and the facilitation of lithium ion transport arising from the introduction of oxygen vacancies and the unique flower-like morphologies.

  5. Human placenta: relative content of antibodies of different classes and subclasses (IgG1-IgG4) containing lambda- and kappa-light chains and chimeric lambda-kappa-immunoglobulins.

    PubMed

    Lekchnov, Evgenii A; Sedykh, Sergey E; Dmitrenok, Pavel S; Buneva, Valentina N; Nevinsky, Georgy A

    2015-06-01

    The specific organ placenta is much more than a filter: it is an organ that protects, feeds and regulates the growth of the embryo. Affinity chromatography, ELISA, SDS-PAGE and matrix-assisted laser desorption ionization mass spectrometry were used. Using 10 intact human placentas deprived of blood, a quantitative analysis of average relative content [% of total immunoglobulins (Igs)] was carried out for the first time: (92.7), IgA (2.4), IgM (2.5), kappa-antibodies (51.4), lambda-antibodies (48.6), IgG1 (47.0), IgG2 (39.5), IgG3 (8.8) and IgG4 (4.3). It was shown for the first time that placenta contains sIgA (2.5%). In the classic paradigm, Igs represent products of clonal B-cell populations, each producing antibodies recognizing a single antigen. There is a common belief that IgGs in mammalian biological fluids are monovalent molecules having stable structures and two identical antigen-binding sites. However, similarly to human milk Igs, placenta antibodies undergo extensive half-molecule exchange and the IgG pool consists of 43.5 ± 15.0% kappa-kappa-IgGs and 41.6 ± 17.0% lambda-lambda-IgGs, while 15.0 ± 4.0% of the IgGs contained both kappa- and lambda-light chains. Kappa-kappa-IgGs and lambda-lambda-IgGs contained, respectively (%): IgG1 (47.7 and 34.4), IgG2 (36.3 and 44.5), IgG3 (7.4 and 11.8) and IgG4 (7.5 and 9.1), while chimeric kappa-lambda-IgGs consisted of (%): 43.5 IgG1, 41.0 IgG2, 5.6 IgG3 and 7.9 IgG4. Our data are indicative of the possibility of half-molecule exchange between placenta IgGs of various subclasses, raised against different antigens, which explains a very well-known polyspecificity and cross-reactivity of different human IgGs. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The Effect of Lunasin on Receptor Activator of Nuclear Factor Kappa-B Ligand-mediated Osteoclast Formation from RAW 264.7 Cells.

    PubMed

    Bachala, Daisy; El-Refai, Nivine; Greenfield, Edward; Aminoshariae, Anita; Mickel, Andre

    2018-06-01

    To date, no study has investigated the antiresorptive property of lunasin. Hence, the present study aimed to assess the ability of lunasin to inhibit the osteoclast formation using RAW 264.7 cells. We hypothesized that lunasin is able to inhibit osteoclast formation. In the present study, the murine monocytic cell line RAW 264.7 was induced to differentiate into mature osteoclasts in the presence of recombinant receptor activator of nuclear factor kappa-B ligand. Tartrate-resistant acid phosphatase, a marker of osteoclasts, was used to identify osteoclasts. Cell lines were divided into different groups and exposed to different concentrations of 50 μmol/L, 75 μmol/L, and 100 μmol/L active and inactive lunasin. The control group was RAW 264.7 cells with receptor activator of nuclear factor kappa-B ligand. Tartrate-resistant acid phosphatase-positive cells of 3 or more nuclei, indicative of mature osteoclasts, were counted by 3 observers. The mean number of the data collected was analyzed using 1-way analysis of variance and the multiple comparison post hoc Bonferroni correction. There was a significant difference in the reduction of osteoclast formation in all the active lunasin groups (P < .001) compared with the control group and the inactive lunasin group (P < .001). Considering the suppressive effect of lunasin on osteoclastogenesis, the use of lunasin as a potential antiresorptive agent can be evaluated in future studies. Copyright © 2018 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation.

    PubMed

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon

    2010-03-30

    Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-kappaB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-kappaB in MG-63 cells and MAPKs/NF-kappaB in SW-1353 cells.

  8. Paeonol attenuates TNBS-induced colitis by inhibiting NF-{kappa}B and STAT1 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu

    2006-11-15

    Paeonol, a major phenolic component of Moutan Cortex, is known to have anti-inflammatory activity. However, the effect of Paeonol on colitis has not been evaluated and the molecular mechanism of its anti-inflammatory action remains unknown. The aim of this study was to determine if Paeonol enema attenuates trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. We also investigated the effects of Paeonol in colon cancer-derived CW-2 cells and T cell leukemia-derived Jurkat cells treated with tumor necrosis factor {alpha} (TNF{alpha}) and/or interferon {gamma} (IFN{gamma}), which play critical roles in TNBS-induced colitis. Paeonol enema attenuated TNBS-induced colitis judging by body weigh reduction,more » colon length and histological score. Myeloperoxidase activity and inducible nitric oxide synthase (iNOS) production in the colon were also reduced with Paeonol enema. In CW-2 cells, Paeonol inhibited iNOS protein and mRNA expression induced by costimulation of TNF{alpha} and IFN{gamma}. Furthermore, Paeonol reduced TNF{alpha}-induced NF-{kappa}B transactivation and IFN{gamma}-induced STAT1 transactivation in CW-2 cells and also in Jurkat cells. These findings suggest that Paeonol enema may be useful for the treatment of colitis.« less

  9. Activation of kappa opioid receptors in the dorsal raphe have sex dependent effects on social behavior in California mice.

    PubMed

    Wright, Emily C; Parks, Tiffany V; Alexander, Jonathon O; Supra, Rajesh; Trainor, Brian C

    2018-06-06

    Kappa opioid receptor activation has been linked to stress and anxiety behavior, thus leading to kappa antagonists being popularized in research as potential anxiolytics. However, while these findings may hold true in standard models, the neuromodulatory effects of social defeat may change the behavioral outcome of kappa opioid receptor activation. Previous research has shown that social defeat can lead to hyperactivity of serotonergic neurons in the dorsal raphe nucleus, and that inhibition of this increase blocks the social deficits caused by defeat. Kappa opioid receptor activation in the dorsal raphe nucleus works to decrease serotonergic activity. We injected the kappa opioid receptor U50,488 directly into the dorsal raphe nucleus of male and female, defeat and control adult California mice. Here we show evidence that U50,488 induces anxiety behavior in control male California mice, but helps relieve it in defeated males. Consistent with previous literature, we find little effect in females adding evidence that there are marked and important sex differences in the kappa opioid system. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Nonequilibrium approach regarding metals from a linearised kappa distribution

    NASA Astrophysics Data System (ADS)

    Domenech-Garret, J. L.

    2017-10-01

    The widely used kappa distribution functions develop high-energy tails through an adjustable kappa parameter. The aim of this work is to show that such a parameter can itself be regarded as a function, which entangles information about the sources of disequilibrium. We first derive and analyse an expanded Fermi-Dirac kappa distribution. Later, we use this expanded form to obtain an explicit analytical expression for the kappa parameter of a heated metal on which an external electric field is applied. We show that such a kappa index causes departures from equilibrium depending on the physical magnitudes. Finally, we study the role of temperature and electric field on such a parameter, which characterises the electron population of a metal out of equilibrium.

  11. Pharmacological characterization of ATPM [(-)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed kappa-agonist and mu-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior.

    PubMed

    Wang, Yu-Jun; Tao, Yi-Min; Li, Fu-Ying; Wang, Yu-Hua; Xu, Xue-Jun; Chen, Jie; Cao, Ying-Lin; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen

    2009-04-01

    ATPM [(-)-3-amino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] was found to have mixed kappa- and mu-opioid activity and identified to act as a full kappa-agonist and a partial mu-agonist by in vitro binding assays. The present study was undertaken to characterize its in vivo effects on morphine antinociceptive tolerance in mice and heroin self-administration in rats. ATPM was demonstrated to yield more potent antinociceptive effects than (-)U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide). It was further found that the antinociceptive effects of ATPM were mediated by kappa- and mu-, but not delta-opioid, receptors. In addition to its agonist profile on the mu-receptor, ATPM also acted as a mu-antagonist, as measured by its inhibition of morphine-induced antinociception. It is more important that ATPM had a greater ratio of the ED(50) value of sedation to that of antinociception than (-)U50,488 (11.8 versus 3.7), indicative of a less sedative effect than (-)U50,488H. In addition, ATPM showed less potential to develop antinociceptive tolerance relative to (-)U50,488H and morphine. Moreover, it dose-dependently inhibited morphine-induced antinociceptive tolerance. Furthermore, it was found that chronic treatment of rats for 8 consecutive days with ATPM (0.5 mg/kg s.c.) produced sustained decreases in heroin self-administration. (-)U50,488H (2 mg/kg s.c.) also produced similar inhibitory effect. Taken together, our findings demonstrated that ATPM, a novel mixed kappa-agonist and mu-agonist/-antagonist, could inhibit morphine-induced antinociceptive tolerance, with less potential to develop tolerance and reduce heroin self-administration with less sedative effect. kappa-Agonists with some mu-activity appear to offer some advantages over selective kappa-agonists for the treatment of heroin abuse.

  12. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator.

    PubMed

    Hildt, E; Saher, G; Bruss, V; Hofschneider, P H

    1996-11-01

    It has been shown that a C-terminally truncated form of the middle-sized hepatitis B virus (HBV) surface protein (MHBst) functions as a transcriptional activator. This function is dependent on the cytosolic orientation of the N-terminal PreS2 domain of MHBst, but in the case of wild-type MHBs, the PreS2 domain is contranslationally translocated into the ER lumen. Recent reports demonstrated that the PreS2 domain of the large HBV surface protein (LHBs) initially remains on the cytosolic side of the ER membrane after translation. Therefore, the question arose as to whether the LHBs protein exhibits the same transcriptional activator function as MHBst. We show that LHBs, like MHBst, is indeed able to activate a variety of promoter elements. There is evidence for a PKC-dependent activation of AP-1 and NF-kappa B by LHBs. Downstream of the PKC the functionality of c-Raf-1 kinase is a prerequisite for LHBs-dependent activation of AP-1 and NF-kappa B since inhibition of c-Raf-1 kinase abolishes LHBs-dependent transcriptional activation of AP-1 and NF-kappa B.

  13. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger.

    PubMed

    Park, Se-Jeong; Lee, Mi-Young; Son, Bu-Soon; Youn, Hyung-Sun

    2009-07-01

    Toll-like receptors (TLRs) are primary sensors that detect a wide variety of microbial components involving induction of innate immune responses. After recognition of microbial components, TLRs trigger the activation of myeloid differential factor 88 (MyD88) and Toll-interleukin-1 (IL-1) receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent downstream signaling pathways. 6-Shoagol, an active ingredient of ginger, inhibits the MyD88-dependent signaling pathway by inhibiting inhibitor-kappaB kinase activity. Inhibitor-kappaB kinase is a key kinase in nuclear factor kappaB (NF-kappaB) activation. However, it is not known whether 6-shogaol inhibits the TRIF-dependent signaling pathway. Our goal was to identify the molecular target of 6-shogaol in the TRIF-dependent pathway of TLRs. 6-Shogaol inhibited the activation of interferon-regulatory factor 3 (IRF3) induced by lipopolysaccharide (LPS) and by polyriboinosinic polyribocytidylic acid (poly[I:C]), overexpression of TRIF, TANK-binding kinase1 (TBK1), and IRF3. Furthermore, 6-shogaol inhibited TBK1 activity in vitro. Together, these results suggest that 6-shogaol inhibits the TRIF-dependent signaling pathway of TLRs by targeting TBK1, and, they imply that 6-shogaol can modulate TLR-derived immune/inflammatory target gene expression induced by microbial infection.

  14. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography

    PubMed Central

    Yeo, Joon Hyung; Moon, Nam Ju

    2017-01-01

    Purpose To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Methods Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. Results The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p < 0.001). The two methods showed good reliability (intraclass correlation coefficient, 0.671; p < 0.001). Bland-Altman plots were used to demonstrate the agreement between the two methods. Conclusions We designed a new method using UBM and corneal topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. PMID:28471103

  15. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    PubMed

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p < 0.001). The two methods showed good reliability (intraclass correlation coefficient, 0.671; p < 0.001). Bland-Altman plots were used to demonstrate the agreement between the two methods. We designed a new method using UBM and corneal topography to calculate the angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device. © 2017 The Korean Ophthalmological Society

  16. Mechanisms of morphine enhancement of spontaneous seizure activity.

    PubMed

    Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam

    2007-12-01

    High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.

  17. Periodontitis contributes to adipose tissue inflammation through the NF-<kappa>B, JNK and ERK pathways to promote insulin resistance in a rat model.

    PubMed

    Huang, Yanli; Zeng, Jin; Chen, Guoqing; Xie, Xudong; Guo, Weihua; Tian, Weidong

    2016-12-01

    This study aimed to investigate the mechanism by which periodontitis affects the inflammatory response and systemic insulin resistance in the white adipose and liver tissues in an obese rat model. The obese model was generated by feeding rats a high fat diet. The periodontitis model was induced by ligatures and injection of "red complex", which consisted of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, for two weeks. When compared with rats without periodontitis, fasting glucose levels and homeostasis model assessment index were significantly increased in rats with periodontitis, suggesting that periodontitis promotes the development of insulin resistance in obese rats. Gene and protein expression analysis in white adipose and liver tissue revealed that experimental periodontitis stimulated the expression of inflammatory cytokines, such as tumor necrosis factors-alpha, interleukin-1 beta, toll-like receptor 2 and toll-like receptor 4. Signals associated with inflammation and insulin resistance, including nuclear factor-<kappa> B, c-Jun amino-terminal kinase and extracellular-signal regulated kinase were significantly activated in the white adipose tissue from obese rats with periodontitis compared to obese rats without periodontitis. Taken together, these findings suggest that periodontitis plays an important role in aggravating the development of local white adipose inflammation and systemic insulin resistance in rat models. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms.

    PubMed

    Cho, Hyun-Ji; Jeong, Yun-Jeong; Park, Kwan-Kyu; Park, Yoon-Yub; Chung, Il-Kyung; Lee, Kwang-Gill; Yeo, Joo-Hong; Han, Sang-Mi; Bae, Young-Seuk; Chang, Young-Chae

    2010-02-17

    Bee venom has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and for the relief of pain in traditional oriental medicine. The purpose of this study is to elucidate the effects of bee venom on MMP-9 expression and determine possible mechanisms by which bee venom relieves or prevents the expression of MMP-9 during invasion and metastasis of breast cancer cells. We examined the expression and activity of MMP-9 and possible signaling pathway affected in PMA-induced MCF-7 cells. Bee venom was obtained from the National Institute of Agricultural Science and Technology of Korea. Matrigel invasion assay, wound-healing assay, zymography assay, western blot assay, electrophoretic mobility shift assay and luciferase gene assay were used for assessment. Bee venom inhibited cell invasion and migration, and also suppressed MMP-9 activity and expression, processes related to tumor invasion and metastasis, in PMA-induced MCF-7 cells. Bee venom specifically suppressed the phosphorylation of p38/JNK and at the same time, suppressed the protein expression, DNA binding and promoter activity of NF-kappaB. The levels of phosphorylated ERK1/2 and c-Jun did not change. We also investigated MMP-9 inhibition by melittin, apamin and PLA(2), representative single component of bee venom. We confirmed that PMA-induced MMP-9 activity was significantly decreased by melittin, but not by apamin and phospholipase A(2). These data demonstrated that the expression of MMP-9 was abolished by melittin, the main component of bee venom. Bee venom inhibits PMA-induced MMP-9 expression and activity by inhibition of NF-kappaB via p38 MAPK and JNK signaling pathways in MCF-7 cells. These results indicate that bee venom can be a potential anti-metastatic and anti-invasive agent. This useful effect may lead to future clinical research on the anti-cancer properties of bee venom. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  19. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    PubMed Central

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression. PMID:26114099

  20. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression.

    PubMed

    Chang, Chia-Yu; Guo, How-Ran; Tsai, Wan-Chen; Yang, Kai-Lin; Lin, Li-Chuan; Cheng, Tain-Junn; Chuu, Jiunn-Jye

    2015-01-01

    Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water) on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM) and open field test (OFT) in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST) and forced swimming test (FST) in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  1. Enhanced kappa-Cygnid activity 2014

    NASA Astrophysics Data System (ADS)

    Rendtel, Jürgen; Molau, Sirko

    2015-04-01

    The κ-Cygnid (012 KCG) meteor shower produced about 3-4 times the average visual rate and video flux in August 2014 for about four days. We are able to trace the increased activity to one component of the Cygnid complex proposed by Koseki recently. Video data indicate that the population index of all shower components is lower than that of the sporadic meteors, probably r≈ 2.6. Our analysis supports the suggested 7-year periodicity in activity enhancement of the κ-Cygnids

  2. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  3. Preparation of nano cellulose fibers and its application in kappa-carrageenan based film.

    PubMed

    Savadekar, N R; Karande, V S; Vigneshwaran, N; Bharimalla, A K; Mhaske, S T

    2012-12-01

    Bio-based nanocomposite films were successfully developed using nanofibrillated cellulose (NFC) as the reinforcing phase and kappa-carrageenan (KCRG) as the matrix. NFC was successfully synthesis from short stable cotton fibers by chemo-mechanical process. The bionanocomposites were prepared by incorporating 0.1, 0.2, 0.3, 0.4, 0.5, and 1wt% of the NFC into a KCRG matrix using a solution casting method there characterization was done in terms of thermal properties (DSC), morphology (SEM), water vapor transmission rate (WVTR), oxygen transmission rate (OTR), X-ray diffractograms (XRD), and tensile properties. The main conclusion arising from the analysis of the result is that the bionanocomposites containing 0.4wt% of NFC exhibited the highest enhancement in tensile strength it is almost 44% improvement. WVTR and OTR results showed improvement of all nanocomposite film compare to control KCRG film. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways.

    PubMed

    Feng, Wei; Liu, Hongrui; Luo, Tingting; Liu, Di; Du, Juan; Sun, Jing; Wang, Wei; Han, Xiuchun; Yang, Kaiyun; Guo, Jie; Amizuka, Norio; Li, Minqi

    2017-01-27

    Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclast precursors in vitro. We found IL-6/sIL-6R significantly promoted and suppressed osteoclast differentiation induced by low- (10 ng/ml) and high-level (50 ng/ml) RANKL, respectively. Using a bone resorption pit formation assay, expression of osteoclastic marker genes and transcription factors confirmed differential regulation of RANKL-induced osteoclastogenesis by IL-6/sIL-6R. Intracellular signaling transduction analysis revealed IL-6/sIL-6R specifically upregulated and downregulated the phosphorylation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), ERK (extracellular signal-regulated kinase) and JNK (c-Jun N-terminal kinase) induced by low- and high level RANKL, respectively. Taken together, our findings demonstrate that IL-6/sIL-6R differentially regulate RANKL-induced osteoclast differentiation and activity through modulation of NF-κB, ERK and JNK signaling pathways. Thus, IL-6 likely plays a dual role in osteoclastogenesis either as a pro-resorption factor or as a protector of bone, depending on the level of RANKL within the local microenvironment.

  5. Molecular Imaging of Smoke-Induced Changes in Nuclear Factor-Kappa B Expression in Murine Tissues Including the Lung.

    PubMed

    Syrkina, Olga; Hales, Charles H; Bonab, Ali A; Hamrahi, Victoria; Paul, Kasie; Jung, Walter J; Tompkins, Ronald G; Fischman, Alan J; Carter, Edward A

    Many inflammatory responses are mediated by activation of the transcription factor, nuclear factor-kappa B (NF-κB), and a wide variety of human diseases involve abnormal regulation of its expression. In this investigation, we evaluated the effect of smoke inhalation injury on NF-κB expression in lung using two strains of NF-κB reporter mice. Groups of reporter mice with viral thymidine kinase (TK) or "fire fly" luciferase (Luc) genes under control by the NF-κB promoter (TK/NF-κB mice and Luc/NF-κB mice) were subjected to nonlethal smoke inhalation injury. Sham-treated animals served as controls. Twenty-four hours (each animal was injected intravenously with either 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (FHBG) (~ 1.0 mCi) or luciferin (1.0 mg). One hour later, the TK/NF-κB mice were studied by micro-positron emission tomography (µ-PET) imaging using a Concord P4 µ-PET camera, and the Luc/NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. The µ-PET data demonstrated that smoke injury produced massive increases in NF-κB expression (FHBG-standardized uptake value: 3.1 vs 0.0) 24 hours after smoke inhalation, which was reduced 48 hours after smoke inhalation, but still significantly different than the control. Qualitative analysis of the bioluminescence data revealed a remarkably similar effect of burn NF-κB luciferase expression in vivo. Biodistribution studies of FHBG uptake and luciferase activity in lung tissue demonstrated a similar increase 24 hours after injury, which was reduced 48 hours later, but still significantly higher than the sham. The present data with these models providing longitudinal imaging data on the same mouse may prove useful in the examination of the factors producing lung injury by smoke inhalation, as well as the treatment(s) for the damage produced with and without burn injury.

  6. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells

    PubMed Central

    2013-01-01

    Background Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells’ chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. Methods The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Results Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Conclusion Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells. PMID

  7. Activation of the transcription factor nuclear factor-kappa B in uterine luminal epithelial cells by interleukin 1 Beta 2: a novel interleukin 1 expressed by the elongating pig conceptus.

    PubMed

    Mathew, Daniel J; Newsom, Emily M; Guyton, Jennifer M; Tuggle, Christopher K; Geisert, Rodney D; Lucy, Matthew C

    2015-04-01

    Conceptus mortality is greatest in mammals during the peri-implantation period, a time when conceptuses appose and attach to the uterine surface epithelium while releasing proinflammatory molecules. Interleukin 1 beta (IL1B), a master proinflammatory cytokine, is released by the primate, rodent, and pig blastocyst during the peri-implantation period and is believed to be essential for establishment of pregnancy. The gene encoding IL1B has duplicated in the pig, resulting in a novel gene. Preliminary observations indicate that the novel IL1B is specifically expressed by pig conceptuses during the peri-implantation period. To verify this, IL1B was cloned from mRNA isolated from Day 12 pig conceptuses and compared with IL1B cloned from mRNA isolated from pig peripheral blood leukocytes (PBLs). The pig conceptuses, but not the PBLs, expressed a novel IL1B, referred to here as interleukin 1 beta 2 (IL1B2). Porcine endometrium was treated with recombinant porcine interleukin 1 beta 1 (IL1B1), the prototypical cytokine, and IL1B2 proteins. Immunohistochemistry and real-time RT-PCR were used to measure activation of nuclear factor-kappa B (NFKB) and NFKB-regulated transcripts, respectively, within the endometrium. Both IL1B1 and IL1B2 activated NFKB in the uterine luminal epithelium within 4 h. The NFKB activation and related gene expression, however, were lower in endometrium treated with IL1B2, suggesting that the conceptus-derived cytokine may have reduced activity within the uterus. In conclusion, the peri-implantation pig conceptus expresses a novel IL1B that can activate NFKB within the uterine surface epithelium, likely creating a proinflammatory microenvironment during establishment of pregnancy in the pig. © 2015 by the Society for the Study of Reproduction, Inc.

  8. Nuclear Factor kappa B is central to Marek’s Disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo

    PubMed Central

    2012-01-01

    Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor

  9. MicroRNA-10b regulates the renewal of spermatogonial stem cells through Kruppel-like factor 4.

    PubMed

    Li, Jiang; Liu, Xiang; Hu, Xiaopeng; Tian, Geng G; Ma, Wenzhi; Pei, Xiuying; Wang, Yanrong; Wu, Ji

    2017-04-01

    MicroRNAs (miRs) are functionally important in spermatogenesis, which is the self-renewal or differentiation of spermatogonial stem cells (SSCs). Here, we report a novel role for miR-10b in regulating the self-renewal of mouse SSCs. We showed that miR-10b was highly expressed in mouse SSCs in vitro and enhanced SSC proliferation. Knockdown of miR-10b significantly increased the apoptosis of SSCs compared with controls. Kruppel-like factor 4 was found to be a target gene of miR-10b in the enhancement of SSC proliferation. These findings further our understanding of the self-renewal and differentiation of SSCs and provide a basis for the diagnosis, treatment, and prevention of male infertility. Copyright © 2017 John Wiley & Sons, Ltd.

  10. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B.

    PubMed

    Fishman, Pnina; Bar-Yehuda, Sara; Ohana, Gil; Barer, Faina; Ochaion, Avivit; Erlanger, Abigail; Madi, Lea

    2004-04-01

    A(3) adenosine receptor (A(3)AR) activation with the specific agonist CF101 has been shown to inhibit the development of colon carcinoma growth in syngeneic and xenograft murine models. In the present study, we looked into the effect of CF101 on the molecular mechanisms involved in the inhibition of HCT-116 colon carcinoma in mice. In tumor lesions derived from CF101-treated mice, a decrease in the expression level of protein kinase A (PKA) and an increase in glycogen synthase kinase-3 beta (GSK-3 beta) was observed. This gave rise to downregulation of beta-catenin and its transcriptional gene products cyclin D1 and c-Myc. Further mechanistic studies in vitro revealed that these responses were counteracted by the selective A(3)AR antagonist MRS 1523 and by the GSK-3 beta inhibitors lithium and SB216763, confirming that the observed effects were A(3)AR and GSK-3 beta mediated. CF101 downregulated PKB/Akt expression level, resulting in a decrease in the level and DNA-binding capacity of NF-kappa B, both in vivo and in vitro. Furthermore, the PKA and PKB/Akt inhibitors H89 and Worthmannin mimicked the effect of CF101, supporting their involvement in mediating the response to the agonist. This is the first demonstration that A(3)AR activation induces colon carcinoma growth inhibition via the modulation of the key proteins GSK-3 beta and NF-kappa B.

  11. Suppression of lipopolysaccharide-induced nuclear factor-kappaB activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages.

    PubMed

    Pan, M H; Lin-Shiau, S Y; Ho, C T; Lin, J H; Lin, J K

    2000-02-15

    We investigated the inhibition of IkappaB kinase (IKK) activity in lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 cell line) by various polyphenols including (-)-epigallocatechin-3-gallate, theaflavin, a mixture of theaflavin-3 gallate and theaflavin-3'-gallate, theaflavin-3,3'-digallate (TF-3), pyrocyanidin B-3, casuarinin, geraniin, and penta-O-galloyl-beta-D-glucose (5GG). TF-3 inhibited IKK activity in activated macrophages more strongly than did the other polyphenols. TF-3 strongly inhibited both IKK1 and IKK2 activity and prevented the degradation of IkappaBalpha and IkappaBbeta in activated macrophage cells. The results suggested that the inhibition of IKK activity by TF-3 could occur by a direct effect on IKKs or on upstream events in the signal transduction pathway. Furthermore, geraniin, 5GG, and TF-3 all blocked phosphorylation of IKB from the cytosolic fraction, inhibited nuclear factor-kappaB (NFkappaB) activity, and inhibited increases in inducible nitric oxide synthase levels in activated macrophages. These results suggest that TF-3 may exert its anti-inflammatory and cancer chemopreventive actions by suppressing the activation of NFkappaB through inhibition of IKK activity.

  12. Single prolonged stress enhances hippocampal glucocorticoid receptor and phosphorylated protein kinase B levels

    PubMed Central

    Eagle, Andrew L.; Knox, Dayan; Roberts, Megan M.; Mulo, Kostika; Liberzon, Israel; Galloway, Matthew P.; Perrine, Shane A.

    2012-01-01

    Animal models of posttraumatic stress disorder (PTSD) can explore neurobiological mechanisms by which trauma enhances fear and anxiety reactivity. Single prolonged stress (SPS) shows good validity in producing PTSD-like behavior. While SPS-induced behaviors have been linked to enhanced glucocorticoid receptor (GR) expression, the molecular ramifications of enhanced GR expression have yet to be identified. Phosphorylated protein kinase B (pAkt) is critical for stress-mediated enhancement in general anxiety and memory, and may be regulated by GRs. However, it is currently unknown if pAkt levels are modulated by SPS, as well as if the specificity of GR and pAkt related changes contribute to anxiety-like behavior after SPS. The current study set out to examine the effects of SPS on GR and pAkt protein levels in the amygdala and hippocampus and to examine the specificity of these changes to unconditioned anxiety-like behavior. Levels of GR and pAkt were increased in the hippocampus, but not amygdala. Furthermore, SPS had no effect on unconditioned anxiety-like behavior suggesting that generalized anxiety is not consistently observed following SPS. The results suggest that SPS-enhanced GR expression is associated with phosphorylation of Akt, and also suggest that these changes are not related to an anxiogenic phenotype. PMID:23201176

  13. Signal-transducing mechanisms of ketamine-caused inhibition of interleukin-1{beta} gene expression in lipopolysaccharide-stimulated murine macrophage-like Raw 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.-L.; Chang, C.-C.; Lin, Y.-L.

    2009-10-01

    Ketamine may affect the host immunity. Interleukin-1{beta} (IL-1{beta}), IL-6, and tumor necrosis factor-{alpha} (TNF-{alpha}) are pivotal cytokines produced by macrophages. This study aimed to evaluate the effects of ketamine on the regulation of inflammatory cytokine gene expression, especially IL-1{beta}, in lipopolysaccharide (LPS)-activated murine macrophage-like Raw 264.7 cells and its possible signal-transducing mechanisms. Administration of Raw 264.7 cells with a therapeutic concentration of ketamine (100 {mu}M), LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. Exposure to 100 {mu}M ketamine decreased the binding affinity of LPS and LPS-binding protein but didmore » not affect LPS-induced RNA and protein synthesis of TLR4. Treatment with LPS significantly increased IL-1{beta}, IL-6, and TNF-{alpha} gene expressions in Raw 264.7 cells. Ketamine at a clinically relevant concentration did not affect the synthesis of these inflammatory cytokines, but significantly decreased LPS-caused increases in these cytokines. Immunoblot analyses, an electrophoretic mobility shift assay, and a reporter luciferase activity assay revealed that ketamine significantly decreased LPS-induced translocation and DNA binding activity of nuclear factor-kappa B (NF{kappa}B). Administration of LPS sequentially increased the phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK. However, a therapeutic concentration of ketamine alleviated such augmentations. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA reduced cellular TLR4 amounts and ameliorated LPS-induced RAS activation and IL-1{beta} synthesis. Co-treatment with ketamine and TLR4 siRNA synergistically ameliorated LPS-caused enhancement of IL-1{beta} production. Results of this study show that a therapeutic concentration of ketamine can inhibit gene expression of IL-1{beta} possibly through suppressing TLR4-mediated signal-transducing phosphorylations of Ras, Raf

  14. Cyclophilin B enhances HIV-1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael, E-mail: michaelbelshan@creighton.edu

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence,more » putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.« less

  15. B29 Gene Silencing in Pituitary Cells is Regulated by Its 3′ Enhancer

    PubMed Central

    Malone, Cindy S.; Kuraishy, Ali I.; Fike, Francesca M.; Loya, Ruchika G.; Mikkili, Minil R.; Teitell, Michael A.; Wall, Randolph

    2007-01-01

    Summary B cell-specific B29 (Igβ, CD79b) genes in rat, mouse, and human are situated between the 5′ growth hormone (GH) locus control region (LCR) and the 3′ GH gene cluster. The entire GH genomic region is DNase1 hypersensitive in GH-expressing pituitary cells, which predicts an “open” chromatin configuration, and yet B29 is not expressed. The B29 promoter and enhancers exhibit histone deacetylation in pituitary cells, but histone deacetylase inhibition failed to activate B29 expression. The B29 promoter and a 3′ enhancer showed local dense DNA methylation in both pituitary and non-lymphoid cells consistent with gene silencing. However, DNA methyltransferase inhibition did not activate B29 expression either. B29 promoter constructs were minimally activated in transfected pituitary cells. Co-transfection of the B cell-specific octamer transcriptional co-activator Bob1 with the B29 promoter construct resulted in high level promoter activity in pituitary cells comparable to B29 promoter activity in transfected B cells. Unexpectedly, inclusion of the B29 3′ enhancer in B29 promoter constructs strongly inhibited B29 transcriptional activity even when pituitary cells were co-transfected with Bob1. Both Oct-1 and Pit-1 bind the B29 3′ enhancer in in vitro EMSA and in in vivo chromatin immunoprecipitation analyses. These data indicate that the GH locus-embedded, tissue-specific B29 gene is silenced in GH-expressing pituitary cells by epigenetic mechanisms, the lack of a B cell-specific transcription factor, and likely by the B29 3′ enhancer acting as a powerful silencer in a context and tissue-specific manner. PMID:16920149

  16. Kappa angles in different positions in patients with myopia during LASIK

    PubMed Central

    Qi, Hui; Jiang, Jing-Jing; Jiang, Yan-Ming; Wang, Li-Qiang; Huang, Yi-Fei

    2016-01-01

    AIM To investigate the difference in kappa angle between sitting and supine positions during laser-assisted in situ keratomileusis (LASIK). METHODS A retrospective study was performed on 395 eyes from 215 patients with myopia that received LASIK. Low, moderate, and high myopia groups were assigned according to diopters. The horizontal and vertical components of kappa angle in sitting position were measured before the operation, and in supine position during the operation. The data from the two positions were compared and the relationship between kappa angle and diopters were analyzed. RESULTS Two hundred and twenty-three eyes (56.5%) in sitting position and 343 eyes (86.8%) in supine position had positive kappa angles. There were no significant differences in horizontal and vertical components of kappa angle in the sitting position or horizontal components of kappa angle in the supine position between the three groups (P>0.05). A significant difference in the vertical components of kappa angle in the supine position was seen in the three groups (P<0.01). Differences in both horizontal and vertical components of kappa angles were significant between the sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angles (P<0.05) were found and vertical components of kappa angle in sitting and supine positions were negatively correlated with the degree of myopia (sitting position: r=-0.109; supine position: r=-0.172; P<0.05). CONCLUSION There is a correlation in horizontal and vertical components of kappa angle in sitting and supine positions. Positive correlations in both horizontal and vertical components of kappa angle in sitting and supine positions till the end of the results. This result still needs further observation. Clinicians should take into account different postures when excimer laser surgery needs to be performed. PMID:27162734

  17. Transgenic analysis of the medaka mesp-b enhancer in somitogenesis.

    PubMed

    Terasaki, Harumi; Murakami, Ryohei; Yasuhiko, Yukuto; Shin-I, Tadasu; Kohara, Yuji; Saga, Yumiko; Takeda, Hiroyuki

    2006-04-01

    Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity.

  18. The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line.

    PubMed

    Wang, Fang; Qiao, Linan; Chen, Liwei; Zhang, Cong; Wang, Yan; Wang, Yinsong; Liu, Yuanyuan; Zhang, Ning

    2016-05-01

    In this study, acidic and alkaline pullulan derivates were synthesized and their immunomodulatory activities compared to pullulan were investigated in human pDC-like CAL-1 cell line. Pullulan was reacted respectively with succinic anhydride and N-(-2-aminoethyl)-1,3-propanediamine/N,N-carbonyl diimidazole to form acidic pullulan monosuccinate (SUPL) and alkaline pullulan-g-N-(-2-aminoethyl)-1,3-propanediamine (AMPL). In CAL-1 cells, pullulan, SUPL and AMPL up-regulated the mRNA expressions of type I interferons (IFN), including IFN-α and IFN-β1, and some other proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-23 (IL-23), and also significantly enhanced the protein expressions of IFN-α and TNF-α. The activation of nuclear factor kappa B (NF-κB) and the nuclear translocations of interferon regulation factors (IRFs), including IRF-3 and IRF-5, exhibited pivotal roles in the immune responses induced by pullulan, SUPL and AMPL. By comparison, pullulan and SUPL displayed weak effects on the activation of CAL-1 cells, but AMPL showed remarkably enhanced immunomodulatory activities, which were comparable to that induced by R848, an agonist for Toll-like receptor (TLR) 7/8. Our results suggested that AMPL, as an alkaline pullulan derivative, could be used as a potent immunomodulatory agent in the food and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells

    PubMed Central

    Liu, P; Brown, S; Goktug, T; Channathodiyil, P; Kannappan, V; Hugnot, J-P; Guichet, P-O; Bian, X; Armesilla, A L; Darling, J L; Wang, W

    2012-01-01

    Background: Glioblastoma multiforme (GBM) cells are resistant to anticancer drugs. Cancer stem cells (CSCs) are a key mediator of chemoresistance. We have reported that disulfiram (DS), an aldehyde dehydrogenase (ALDH) inhibitor, targets breast CSC-like cells. In this study, the effect of DS and combination of DS and gemcitabine (dFdC) on GBM cells and GBM stem-like cells was investigated. Methods: 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), combination index (CI)-isobologram, western blot, luciferase reporter gene assay, electrophoretic mobility-shift assay and ALDH analysis were used in this study. Results: Disulfiram is cytotoxic in GBM cell lines in a copper (Cu)-dependent manner. Disulfiram/copper enhances the cytotoxicity of dFdC. Combination index-isobologram analysis indicates a synergistic effect between DS/Cu and dFdC. Disulfiram/copper induces reactive oxygen species (ROS), activates JNK and p38 pathways and inhibits nuclear factor-kappa B activity in GBM cell lines. Disulfiram/copper may trigger intrinsic apoptotic pathway via modulation of the Bcl2 family. Disulfiram/copper abolishes stem-like cell population in GBM cell lines. Conclusion: Our findings indicate that the cytotoxicity of DS/Cu and the enhancing effect of DS/Cu on the cytotoxicity of dFdC in GBM stem-like cells may be caused by induction of ROS and inhibition of both ALDH and the NFkB pathway. Both DS and dFdC can traverse the blood–brain barrier. Further study may lead them into GBM chemotherapy. PMID:23033007

  20. TGF-beta-induced apoptosis in human thyrocytes is mediated by p27kip1 reduction and is overridden in neoplastic thyrocytes by NF-kappaB activation.

    PubMed

    Bravo, Susana B; Pampín, Sandra; Cameselle-Teijeiro, José; Carneiro, Carmen; Domínguez, Fernando; Barreiro, Francisco; Alvarez, Clara V

    2003-10-30

    Millions of people worldwide suffer goiter, a proliferative disease of the follicular cells of the thyroid that may become neoplastic. Thyroid neoplasms have low proliferative index, low apoptotic index and a high incidence of metastasis. TGF-beta is overexpressed in thyroid follicular tumor cells. To investigate the role of TGF-beta in thyroid tumor progression, we established cultures of human thyrocytes from different proliferative pathologies (Grave's disease, multinodular goiter, follicular adenoma, papillary carcinoma), lymph node metastasis, and a normal thyroid sample. All cultures maintained the thyrocyte phenotype. TGF-beta induced cell-cycle arrest in all cultures, in contrast with results reported for other epithelial tumors. In deprived medium, TGF-beta induced apoptosis in normal thyrocyte cultures and all neoplastic cultures except the metastatic cultures. This apoptosis was mediated by a reduction in p27kip1 levels, inducing cell-cycle initiation. Antisense p27 expression induced apoptosis in the absence of TGF-beta. By contrast, in cells in which p27 was overexpressed, TGF-beta had a survival effect. In growth medium, a net survival effect occurs in neoplastic thyrocytes only, not normal thyrocytes, due to activation of the NF-kappaB survival program. Together, these findings suggest that (a) thyroid neoplasms are due to reduced apoptosis, not increased division, in line with the low proliferative index of these pathologies, and (b) TGF-beta induces apoptosis in normal thyrocytes via p27 reduction, but that in neoplastic thyrocytes this effect is overridden by activation of the NF-kappaB program.

  1. Hyperforin, the active component of St. John's wort, induces IL-8 expression in human intestinal epithelial cells via a MAPK-dependent, NF-kappaB-independent pathway.

    PubMed

    Zhou, Changcheng; Tabb, Michelle M; Sadatrafiei, Asal; Grün, Felix; Sun, Aixu; Blumberg, Bruce

    2004-11-01

    St. John's wort is widely used as an herbal antidepressant and is among the top-selling botanical products in the United States. Although St. John's wort has been reported to have minimal side effects compared with other antidepressants, here we show that hyperforin, the active component of St. John's wort, can stimulate interleukin-8 (IL-8) expression in human intestinal epithelia cells (IEC) and primary hepatocytes. Hyperforin is also able to induce expression of mRNA, encoding another major inflammatory mediator--intercellular adhesion molecule-1 (ICAM-1). IEC participate in the intestinal inflammatory process and serve as a first line of defense through bidirectional communication between host and infectious pathogens. Although hyperforin is a potent ligand for the steroid and xenobiotic receptor (SXR), we found that hyperforin induced IL-8 mRNA through an SXR-independent transcriptional activation pathway. IL-8 induction by hyperforin required the activation of AP-1 but not the NF-kappaB transcription factor, thereby distinguishing it from the NF-kappaB-dependent IL-8 induction mediated by tumor necrosis factor alpha (TNFalpha). Further study revealed that extracellular signal-regulated kinase 1 and 2 (ERK1/2) were required for the hyperforin-induced expression of IL-8. Our results suggest a previously unsuspected effect of St. John's wort in modulating the immune and inflammatory responses.

  2. The Correlation between Angle Kappa and Ocular Biometry in Koreans

    PubMed Central

    Choi, Se Rang

    2013-01-01

    Purpose To investigate normative angle kappa data and to examine whether correlations exist between angle kappa and ocular biometric measurements (e.g., refractive error, axial length) and demographic features in Koreans. Methods Data from 436 eyes (213 males and 223 females) were analyzed in this study. The angle kappa was measured using Orbscan II. We used ocular biometric measurements, including refractive spherical equivalent, interpupillary distance and axial length, to investigate the correlations between angle kappa and ocular biometry. The IOL Master ver. 5.02 was used to obtain axial length. Results The mean patient age was 57.5 ± 12.0 years in males and 59.4 ± 12.4 years in females (p = 0.11). Angle kappa averaged 4.70 ± 2.70 degrees in men and 4.89 ± 2.14 degrees in women (p = 0.48). Axial length and spherical equivalent were correlated with angle kappa (r = -0.342 and r = 0.197, respectively). The correlation between axial length and spherical equivalent had a negative correlation (r = -0.540, p < 0.001). Conclusions Angle kappa increased with spherical equivalent and age. Thus, careful manipulation should be considered in older and hyperopic patients when planning refractive or strabismus surgery. PMID:24311927

  3. Inhibition of single Shaker K channels by kappa-conotoxin-PVIIA.

    PubMed Central

    Naranjo, David

    2002-01-01

    kappa-Conotoxin-PVIIA (kappa-PVIIA) is a 27-residue basic (+4) peptide from the venom of the predator snail Conus purpurascens. A single kappa-PVIIA molecule interrupts ion conduction by binding to the external mouth of Shaker K channels. The blockade of Shaker by kappa-PVIIA was studied at the single channel level in membrane patches from Xenopus oocytes. The amplitudes of blocked and closed events were undistinguishable, suggesting that the toxin interrupts ion conduction completely. Between -20 and 40 mV kappa-PVIIA increased the latency to the first opening by one order of magnitude in a concentration-independent fashion. Because kappa-PVIIA has higher affinity for the closed channels at high enough concentration to block >90% of the resting channels, the dissociation rate could be estimated from the analysis of the first latency. At 0 mV, the dissociation rate was 20 s(-1) and had an effective valence of 0.64. The apparent closing rate increased linearly with [kappa-PVIIA] indicating an association rate of 56 microM(-1) s(-1). The toxin did not modify the fraction of null traces. This result suggests that the structural rearrangements in the external mouth contributing to the slow inactivation preserve the main geometrical features of the toxin-receptor interaction. PMID:12023223

  4. Bromelain inhibits nuclear factor kappa-B translocation, driving human epidermoid carcinoma A431 and melanoma A375 cells through G(2)/M arrest to apoptosis.

    PubMed

    Bhui, Kulpreet; Tyagi, Shilpa; Srivastava, Amit Kumar; Singh, Madhulika; Roy, Preeti; Singh, Richa; Shukla, Yogeshwer

    2012-03-01

    Bromelain, obtained from pineapple, is already in use clinically as adjunct in chemotherapy. Our objective was to test its ability to act as a sole anti-cancer agent. Therefore, we describe its anti-proliferative, anti-inflammatory and subsequent anti-cancer effects in vitro, against human epidermoid carcinoma-A431 and melanoma-A375 cells. Bromelain exhibited reduction in proliferation of both these cell-lines and suppressed their potential for anchorage-independent growth. Further, suppression of inflammatory signaling by bromelain was evident by inhibition of Akt regulated-nuclear factor-kappaB activation via suppression of inhibitory-kappaBα phosphorylation and concomitant reduction in cyclooxygenase-2. Since, the inflammatory cascade is well-known to be closely allied to cancer; we studied the effect of bromelain on events/molecules central to it. Bromelain caused depletion of intracellular glutathione and generation of reactive oxygen-species followed by mitochondrial membrane depolarization. This led to bromelain-induced cell-cycle arrest at G(2)/M phase which was mediated by modulation of cyclin B1, phospho-cdc25C, Plk1, phospho-cdc2, and myt1. This was subsequently followed by induction of apoptosis, indicated by membrane-blebbing, modulation of Bax-Bcl-2 ratio, Apaf-1, caspase-9, and caspase-3; chromatin-condensation, increase in caspase-activity and DNA-fragmentation. Bromelain afforded substantial anti-cancer potential in these settings; hence we suggest it as a potential prospect for anti-cancer agent besides only an additive in chemotherapy. Copyright ©2011 Wiley Periodicals, Inc.

  5. Dual mechanisms of NF-kappaB inhibition in carnosol-treated endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, K.-C.; Chuang, J.-J.; Hsieh, C.-W.

    2010-05-15

    The increased adhesion of monocytes to injured endothelial layers is a critical early event in atherogenesis. Under inflammatory conditions, there is increased expression of specific cell adhesion molecules on activated vascular endothelial cells, which increases monocyte adhesion. In our current study, we demonstrate a putative mechanism for the anti-inflammatory effects of carnosol, a diterpene derived from the herb rosemary. Our results show that both carnosol and rosemary essential oils inhibit the adhesion of TNFalpha-induced monocytes to endothelial cells and suppress the expression of ICAM-1 at the transcriptional level. Moreover, carnosol was found to exert its inhibitory effects by blocking themore » degradation of the inhibitory protein IkappaBalpha in short term pretreatments but not in 12 h pretreatments. Our data show that carnosol reduces IKK-beta phosphorylation in pretreatments of less than 3 h. In TNFalpha-treated ECs, NF-kappaB nuclear translocation and transcriptional activity was abolished by up to 12 h of carnosol pretreatment and this was blocked by Nrf-2 siRNA. The long-term inhibitory effects of carnosol thus appear to be mediated through its induction of Nrf-2-related genes. The inhibition of ICAM-1 expression and p65 translocation is reversed by HO-1 siRNA. Carnosol also upregulates the Nrf-2-related glutathione synthase gene and thereby increases the GSH levels after 9 h of exposure. Treating ECs with a GSH synthesis inhibitor, BSO, blocks the inhibitory effects of carnosol. In addition, carnosol increases p65 glutathionylation. Hence, our present findings indicate that carnosol suppresses TNFalpha-induced singling pathways through the inhibition of IKK-beta activity or the upregulation of HO-1 expression. The resulting GSH levels are dependent, however, on the length of the carnosol pretreatment period.« less

  6. Pimecrolimus enhances TLR2/6-induced expression of antimicrobial peptides in keratinocytes.

    PubMed

    Büchau, Amanda S; Schauber, Jürgen; Hultsch, Thomas; Stuetz, Anton; Gallo, Richard L

    2008-11-01

    Calcineurin inhibitors are potent inhibitors of T-cell-receptor mediated activation of the adaptive immune system. The effects of this class of drug on the innate immune response system are not known. Keratinocytes are essential to innate immunity in skin and rely on toll-like receptors (TLRs) and antimicrobial peptides to appropriately recognize and respond to injury or microbes. In this study we examined the response of cultured human keratinocytes to pimecrolimus. We observed that pimecrolimus enhances distinct expression of cathelicidin, CD14, and human beta-defensin-2 and beta-defensin-3 in response to TLR2/6 ligands. Some of these responses were further enhanced by 1,25 vitamin D3. Pimecrolimus also increased the functional capacity of keratinocytes to inhibit growth of Staphylococcus aureus and decreased TLR2/6-induced expression of IL-10 and IL-1beta. Furthermore, pimecrolimus inhibited nuclear translocation of NFAT and NF-kappaB in keratinocytes. These observations uncover a previously unreported function for pimecrolimus in cutaneous innate host defense.

  7. Bis(acesulfamato-kappaO4)diaquabis(3-methylpyridine-kappaN)nickel(II).

    PubMed

    Dege, Necmi; Içbudak, Hasan; Adiyaman, Elif

    2007-01-01

    In the crystal structure of the title compound [systematic name: diaquabis(6-methyl-2,2-dioxo-1,2,3-oxathiazin-4-olato-kappaO4)bis(3-methylpyridine-kappaN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the Ni(II) centre resides on a centre of symmetry and has a distorted octahedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans-oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octahedron are occupied by two N atoms of two trans pyridine ligands. Molecules are stacked in columns running along the a axis. There are pi-pi stacking interactions between the molecules in each column, with a distance of 3.623 (2) A between the centroids of the pyridine rings. There are also O-H...O interactions between the columns.

  8. Extracts of Bauhinia championii (Benth.) Benth. inhibit NF-<kappa>B-signaling in a rat model of collagen-induced arthritis and primary synovial cells.

    PubMed

    Xu, Wei; Huang, Mingqing; Zhang, Yuqin; Li, Huang; Zheng, Haiyin; Yu, Lishuang; Chu, Kedan

    2016-06-05

    Bauhinia championii (Benth.) Benth. is used in Chinese traditional medicine to treat arthritis, especially has been used a long time ago on rheumatoid arthritis (RA) in She ethnic minority group. To investigate the anti-RA effect of Bauhinia championii (Benth.) Benth ethyl acetate extract (BCBEE) and the molecular bases of it. BCBEE was studied on a rat model of RA induced by Ⅱcollagen in vivo, as well as on primary synovial cells in vitro. After BCBEE treatment, in vivo, it was showed that paw and joint edema was inhibited, pathological joint changes was ameliorated and the levels of interleukin (IL)-1β and tumor necrosis factor-(TNF-α) was decreased significantly. The protein and mRNA expressions of nuclear factor-<kappa>B (NF-κB)(p65), IκB, p-IκB and IκB kinase beta (IκKβ) were also down-regulated. Moreover, the in vitro study revealed that BCBEE treatment inhibited primary synovial cells proliferation, and promoted down-regulation of NF-κB(p65), IκB, p-IκB and IκKβ. Taken together, the present study demonstrates that BCBEE produces a protection in a rat model of RA induced by Ⅱcollagen via inhibiting paw and joint edema, ameliorating pathological joint changes and regulating the levels of cytokines and its action mechanism maybe is via down-regulating NF-κB(p65), IκB, p-IκB and IκKβ expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Cyclophilin B enhances HIV-1 Infection

    PubMed Central

    DeBoer, Jason; Madson, Christian J.; Belshan, Michael

    2016-01-01

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. PMID:26774171

  10. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss

    PubMed Central

    2014-01-01

    Background The resistance of cancerous cells to chemotherapy remains the main limitation for cancer treatment at present. Doxorubicin (DOX) is a potent antitumor drug that activates the ubiquitin-proteasome system, but unfortunately it also activates the Nuclear factor kappa B (NF-кB) pathway leading to the promotion of tumor cell survival. MG132 is a drug that inhibits I kappa B degradation by the proteasome-avoiding activation of NF-кB. In this work, we studied the sensitizing effect of the MG132 proteasome inhibitor on the antitumor activity of DOX. Methods U937 human leukemia cells were treated with MG132, DOX, or both drugs. We evaluated proliferation, viability, apoptosis, caspase-3, -8, and −9 activity and cleavage, cytochrome c release, mitochondrial membrane potential, the Bcl-2 and Bcl-XL antiapoptotic proteins, senescence, p65 phosphorylation, and pro- and antiapoptotic genes. Results The greatest apoptosis percentage in U937 cells was obtained with a combination of MG132 + DOX. Likewise, employing both drugs, we observed a decrease in tumor cell proliferation and important caspase-3 activation, as well as mitochondrial membrane potential loss. Therefore, MG132 decreases senescence, p65 phosphorylation, and the DOX-induced Bcl-2 antiapoptotic protein. The MG132 + DOX treatment induced upregulation of proapoptotic genes BAX, DIABLO, NOXA, DR4, and FAS. It also induced downregulation of the antiapoptotic genes BCL-XL and SURVIVIN. Conclusion MG132 sensitizes U937 leukemia cells to DOX-induced apoptosis, increasing its anti-leukemic effectiveness. PMID:24495648

  11. Ultrasensitive automated RNA in situ hybridization for kappa and lambda light chain mRNA detects B-cell clonality in tissue biopsies with performance comparable or superior to flow cytometry.

    PubMed

    Guo, Ling; Wang, Zhen; Anderson, Courtney M; Doolittle, Emerald; Kernag, Siobhan; Cotta, Claudiu V; Ondrejka, Sarah L; Ma, Xiao-Jun; Cook, James R

    2018-03-01

    The assessment of B-cell clonality is a critical component of the evaluation of suspected lymphoproliferative disorders, but analysis from formalin-fixed, paraffin-embedded tissues can be challenging if fresh tissue is not available for flow cytometry. Immunohistochemical and conventional bright field in situ hybridization stains for kappa and lambda are effective for evaluation of plasma cells but are often insufficiently sensitive to detect the much lower abundance of light chains present in B-cells. We describe an ultrasensitive RNA in situ hybridization assay that has been adapted for use on an automated immunohistochemistry platform and compare results with flow cytometry in 203 consecutive tissues and 104 consecutive bone marrows. Overall, in 203 tissue biopsies, RNA in situ hybridization identified light chain-restricted B-cells in 85 (42%) vs 58 (29%) by flow cytometry. Within 83 B-cell non-Hodgkin lymphomas, RNA in situ hybridization identified restricted B-cells in 74 (89%) vs 56 (67%) by flow cytometry. B-cell clonality could be evaluated in only 23/104 (22%) bone marrow cases owing to poor RNA preservation, but evaluable cases showed 91% concordance with flow cytometry. RNA in situ hybridization allowed for recognition of biclonal/composite lymphomas not identified by flow cytometry and highlighted unexpected findings, such as coexpression of kappa and lambda RNA in 2 cases and the presence of lambda light chain RNA in a T lymphoblastic lymphoma. Automated RNA in situ hybridization showed excellent interobserver reproducibility for manual evaluation (average K=0.92), and an automated image analysis system showed high concordance (97%) with manual evaluation. Automated RNA in situ hybridization staining, which can be adopted on commonly utilized immunohistochemistry instruments, allows for the interpretation of clonality in the context of the morphological features in formalin-fixed, paraffin-embedded tissues with a clinical sensitivity similar or

  12. Ultrasensitive Automated RNA in situ Hybridization for Kappa and Lambda Light Chain mRNA Detects B-cell Clonality in Tissue Biopsies with Performance Comparable or Superior to Flow Cytometry

    PubMed Central

    Guo, Ling; Wang, Zhen; Anderson, Courtney M.; Doolittle, Emerald; Kernag, Siobhan; Cotta, Claudiu V.; Ondrejka, Sarah L.; Ma, Xiao-Jun; Cook, James R.

    2017-01-01

    The assessment of B-cell clonality is a critical component of the evaluation of suspected lymphoproliferative disorders, but analysis from formalin fixed paraffin embedded tissues can be challenging if fresh tissue is not available for flow cytometry. Immunohistochemical and conventional bright field in situ hybridization stains for kappa and lambda are effective for evaluation of plasma cells, but are often insufficiently sensitive to detect the much lower abundance of light chains present in B cells. We describe an ultrasensitive RNA in situ hybridization assay which has been adapted for use on an automated immunohistochemistry platform and compare results with flow cytometry in 203 consecutive tissues and 104 consecutive bone marrows. Overall, in 203 tissue biopsies, RNA in situ hybridization identified light chain restricted B-cells in 85 (42%) vs. 58 (29%) by flow cytometry. Within 83 B-cell non-Hodgkin lymphomas, RNA in situ hybridization identified a restricted B-cells in 74 (89%) vs. 56 (67%) by flow cytometry. B-cell clonality could be evaluated in only 23/104 (22%) bone marrow cases due to poor RNA preservation, but evaluable cases showed 91% concordance with flow cytometry. RNA in situ hybridization allowed for recognition of biclonal/composite lymphomas not identified by flow cytometry, and highlighted unexpected findings, such as coexpression of kappa and lambda RNA in 2 cases and the presence of lambda light chain RNA in a T lymphoblastic lymphoma. Automated RNA in situ hybridization showed excellent interobserver reproducibility for manual evaluation (average K=0.92), and an automated image analysis system showed high concordance (97%) with manual evaluation. Automated RNA in situ hybridization staining, which can be adopted on commonly utilized immunohistochemistry instruments, allows for the interpretation of clonality in the context of the morphologic features in formalin fixed, paraffin embedded tissues with a clinical sensitivity similar or

  13. B kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  14. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway.

    PubMed

    Xu, Yiming; Liu, Ling

    2017-09-01

    Influenza A viruses (IAV) result in severe public health problems with worldwide each year. Overresponse of immune system to IAV infection leads to complications, and ultimately causing morbidity and mortality. Curcumin has been reported to have anti-inflammatory ability. However, its molecular mechanism in immune responses remains unclear. We detected the pro-inflammatory cytokine secretion and nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB)-related protein expression in human macrophages or mice infected by IAV with or without curcumin treatment. We found that the IAV infection caused a dramatic enhancement of pro-inflammatory cytokine productions of human macrophages and mice immune cells. However, curcumin treatment after IAV infection downregulated these cytokines production in a dose-dependent manner. Moreover, the NF-κB has been activated in human macrophages after IAV infection, while administration of curcumin inhibited NF-κB signaling pathway via promoting the expression of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and inhibiting the translocation of p65 from cytoplasm to nucleus. In summary, IAV infection could result in the inflammatory responses of immune cells, especially macrophages. Curcumin has the therapeutic potentials to relieve these inflammatory responses through inhibiting the NF-κB signaling pathway. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  15. Kappa-receptor selective binding of opioid ligands with a heterocyclic bicyclo[3.3.1]nonan-9-one structure.

    PubMed

    Benyhe, S; Márki, A; Nachtsheim, Corina; Holzgrabe, Ulrike; Borsodi, Anna

    2003-01-01

    Previous pharmacological results have suggested that members of the heterocyclic bicyclo[3.3.1]nonan-9-one-like compounds are potent kappa-opioid receptor specific agonists. One lead molecule of this series. called compound 1 (dimethyl 7-methyl-2,4-di-2-pyridyl-3.7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate) exhibited high affinity for [3H]ethylketocyclazocine and [3H]U-69.593 binding sites in guinea pig cerebellar membranes which known to be a good source for kappa1 receptors. It was shown by molecular modelling that heterocyclic bicyclo[3.3.1]nonan-9-ones fit very well with the structure of ketazocine, a prototypic kappa-selective benzomorphan compound; when compared to the arylacetamide structure of U-69.593, a specific kappa1-receptor agonist, a similar geometry was found with a slightly different distribution of the charges. It is postulated, that the essential structural skeleton involved in the opioid activity is an aryl-propyl-amine element distributed along the N7-C6-C5-C4-aryl bonds.

  16. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  17. Eicosapentaenoic and docosahexaenoic acid ethyl esters differentially enhance B-cell activity in murine obesity[S

    PubMed Central

    Teague, Heather; Harris, Mitchel; Fenton, Jenifer; Lallemand, Perrine; Shewchuk, Brian M.; Shaikh, Saame Raza

    2014-01-01

    EPA and DHA are not biologically equivalent; however, their individual activity on B cells is unknown. We previously reported fish oil enhanced murine B-cell activity in obesity. To distinguish between the effects of EPA and DHA, we studied the ethyl esters of EPA and DHA on murine B-cell function as a function of time. We first demonstrate that EPA and DHA maintained the obese phenotype, with no improvements in fat mass, adipose inflammatory cytokines, fasting insulin, or glucose clearance. We then tested the hypothesis that EPA and DHA would increase the frequency of splenic B cells. EPA and DHA differentially enhanced the frequency and/or percentage of select B-cell subsets, correlating with increased natural serum IgM and cecal IgA. We next determined the activities of EPA and DHA on ex vivo production of cytokines upon lipopolysaccharide stimulation of B cells. EPA and DHA, in a time-dependent manner, enhanced B-cell cytokines with DHA notably increasing IL-10. At the molecular level, EPA and DHA differentially enhanced the formation of ordered microdomains but had no effect on Toll-like receptor 4 mobility. Overall, the results establish differential effects of EPA and DHA in a time-dependent manner on B-cell activity in obesity, which has implications for future clinical studies. PMID:24837990

  18. Kappa Cygnids (KCG) by TV observation results

    NASA Astrophysics Data System (ADS)

    Shiba, Yasuo

    2017-12-01

    The kappa Cygnids (KCG) and its nearby region were researched by using Japanese automatic TV observation network (SonotaCo network) results for 2007-2016. KCG in 2007 and 2014 were observed with an enhancement of eight times as many meteors than ordinary years at solar longitude 145 degrees. Also the 2013 KCG were enhanced with three times the number of meteors recorded than ordinary years at solar longitude 135 degrees. In years of observed enhanced KCG (2007, 2013, 2014) luminous magnitudes were brighter than in ordinary years. The 2007 and 2014 KCG radiant distributions were similar but shifted 5 degrees to the north in 2013. The 2013 KCG orbital elements were systematically different from 2007 and 2014. If a continuous meteoroid distribution in the solar system causes the enhanced KCG, it is suggested that a distorted `swarm' has been constructed. The annual KCG radiant distribution and distributions of every orbital element have some peaks which indicate a complex meteor shower. Luminous trajectory altitudes in years of observed enhanced KCG were higher than the annual KCG height. August Draconids (AUD) is an annual meteor shower, many meteors of which are decided to also belong to KCG by using the criterion, but each meteor shower is independent because they have different characteristics. AUD radiants on the celestial sphere drift to the west and form an arc lasting till the end of September. I recommend to create a standard to decide for two meteor showers whether they are truly two meteor showers or not.

  19. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ting; Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014; Hou, Wanru

    Acute lung injury (ALI) is an early pathophysiologic change in acute respiratory distress syndrome and its management can be challenging. Omalizumab (Xolair™) is a recombinant DNA-derived, humanized antibody. OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. Here, we found that intramuscular administration of OMZ-SPT significantly improved survival and attenuated lung inflammation in female C57BL/6 mice suffering from lipopolysaccharide (LPS)-induced ALI. We also demonstrated that OMZ-SPT can inhibit expression of the inflammatory cytokines tumor necrosis factor-α, interleukin-1β and interleukin-6 by ELISA in mice suffering from LPS-induced ALI and a mouse macrophage line (RAW264.7 cells). In addition, we showedmore » that OMZ-SPT inhibited LPS-induced activation of nuclear factor-kappa B (NF-κB) signaling and total expression of NF-κB by western blotting. These data suggest that OMZ-SPT could be a novel therapeutic choice for ALI. - Highlights: • OMZ-SPT is a polypeptide on the heavy chain of omalizumab monoclonal antibody. • Omalizumab (Xolair™) have anti-inflammatory effects. • OMZ-SPT can inhibit inflammatory responses and lung injury in LPS-induced ALI mice. • Protective effect of OMZ-SPT on ALI is due to inhibition of NF-κB signaling. • OMZ-SPT could be a novel therapeutic choice for ALI.« less

  20. Direct Activation of NADPH Oxidase 2 by 2-Deoxyribose-1-Phosphate Triggers Nuclear Factor Kappa B-Dependent Angiogenesis

    PubMed Central

    Vara, Dina; Watt, Joanna M.; Fortunato, Tiago M.; Mellor, Harry; Burgess, Matthew; Wicks, Kate; Mace, Kimberly; Reeksting, Shaun; Lubben, Anneke; Wheeler-Jones, Caroline P.D.

    2018-01-01

    Abstract Aims: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells. Results: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2−/− mice. Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex. Conclusions: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110–130. PMID:28793782