Sample records for kappa opioid antagonist

  1. Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn.

    PubMed

    Carey, A N; Borozny, K; Aldrich, J V; McLaughlin, J P

    2007-08-13

    Stress contributes to the reinstatement of cocaine-seeking behavior in abstinent subjects. Kappa-opioid receptor antagonists attenuate the behavioral effects of stress, potentially providing therapeutic value in treating cocaine abuse. Presently, the peptide arodyn produced long-lasting kappa-opioid receptor antagonism, suppressing kappa-opioid receptor agonist-induced antinociception at least 3 days after intracerebroventricular administration of 0.3 nmol. C57Bl/6J mice demonstrated cocaine-conditioned place preference, extinction over 3 weeks, and a subsequent reinstatement of place preference. Arodyn pretreatment suppressed stress-induced, but not cocaine-exposed, reinstatement of cocaine place preference. These results verify that arodyn and other kappa-opioid receptor antagonists may be useful therapeutics for cocaine abuse.

  2. Probing ligand recognition of the opioid pan antagonist AT-076 at nociceptin, kappa, mu, and delta opioid receptors through structure-activity relationships.

    PubMed

    Journigan, V Blair; Polgar, Willma E; Tuan, Edward W; Lu, James; Daga, Pankaj R; Zaveri, Nurulain T

    2017-10-16

    Few opioid ligands binding to the three classic opioid receptor subtypes, mu, kappa and delta, have high affinity at the fourth opioid receptor, the nociceptin/orphanin FQ receptor (NOP). We recently reported the discovery of AT-076 (1), (R)-7-hydroxy-N-((S)-1-(4-(3-hydroxyphenyl)piperidin-1-yl)-3-methylbutan-2-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide, a pan antagonist with nanomolar affinity for all four subtypes. Since AT-076 binds with high affinity at all four subtypes, we conducted a structure-activity relationship (SAR) study to probe ligand recognition features important for pan opioid receptor activity, using chemical modifications of key pharmacophoric groups. SAR analysis of the resulting analogs suggests that for the NOP receptor, the entire AT-076 scaffold is crucial for high binding affinity, but the binding mode is likely different from that of NOP antagonists C-24 and SB-612111 bound in the NOP crystal structure. On the other hand, modifications of the 3-hydroxyphenyl pharmacophore, but not the 7-hydroxy Tic pharmacophore, are better tolerated at kappa and mu receptors and yield very high affinity multifunctional (e.g. 12) or highly selective (e.g. 16) kappa ligands. With the availability of the opioid receptor crystal structures, our SAR analysis of the common chemotype of AT-076 suggests rational approaches to modulate binding selectivity, enabling the design of multifunctional or selective opioid ligands from such scaffolds.

  3. Kappa-Opioid Antagonists for Psychiatric Disorders: From Bench to Clinical Trials.

    PubMed

    Carlezon, William A; Krystal, Andrew D

    2016-10-01

    Kappa-opioid receptor (KOR) antagonists are currently being considered for the treatment of a variety of neuropsychiatric conditions, including depressive, anxiety, and substance abuse disorders. A general ability to mitigate the effects of stress, which can trigger or exacerbate these conditions, may explain their putative efficacy across such a broad array of conditions. The discovery of their potentially therapeutic effects evolved from preclinical research designed to characterize the molecular mechanisms by which experience causes neuroadaptations in the nucleus accumbens (NAc), a key element of brain reward circuitry. This research established that exposure to drugs of abuse or stress increases the activity of the transcription factor CREB (cAMP response element binding protein) in the NAc, which leads to elevated expression of the opioid peptide dynorphin that in turn causes core signs of depressive- and anxiety-related disorders. Disruption of KORs-the endogenous receptors for dynorphin-produces antidepressant- and anxiolytic-like actions in screening procedures that identify standard drugs of these classes, and reduces stress effects in tests used to study addiction and stress-related disorders. Although interest in this target is high, prototypical KOR antagonists have extraordinarily persistent pharmacodynamic effects that complicate clinical trials. The development of shorter acting KOR antagonists together with more rapid designs for clinical trials may soon provide insight on whether these drugs are efficacious as would be predicted by preclinical work. If successful, KOR antagonists would represent a unique example in psychiatry where the therapeutic mechanism of a drug class is understood before it is shown to be efficacious in humans. © 2016 Wiley Periodicals, Inc.

  4. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  5. Peripheral kappa-opioid agonist, ICI 204448, evokes hypothermia in cold-exposed rats.

    PubMed

    Rawls, Scott M; Ding, Zhe; Gray, Alex M; Cowan, Alan

    2005-05-01

    ICI 204448, a selective kappa-opioid agonist with limited CNS access, can be used to discriminate central and peripheral opioid actions on physiological systems such as pain and thermoregulation. Therefore, we investigated the effect of ICI 204448 (2.5, 5, and 10 mg/kg, s.c.) on male Sprague-Dawley rats exposed to ambient temperatures of 5, 20, or 32 degrees C. ICI 204448 did not alter the body temperature of rats maintained at 20 or 32 degrees C. However, 5 and 10 mg/kg of ICI 204448 evoked significant hypothermia in rats exposed to 5 degrees C. The i.c.v. administration of nor-BNI, a kappa-opioid antagonist, did not affect the hypothermia produced by the systemic injection of ICI 204448. Thus, an involvement of brain kappa-opioid receptors in ICI 204448-evoked hypothermia is unlikely. The present data demonstrate for the first time that ICI 204448 produces hypothermia in cold-exposed rats and suggest that the role of peripheral kappa-opioid receptors in thermoregulation becomes more significant at cold ambient temperatures. Copyright (c) 2005 S. Karger AG, Basel.

  6. Analysis of opioid receptor subtype antagonist effects upon mu opioid agonist-induced feeding elicited from the ventral tegmental area of rats.

    PubMed

    Lamonte, Nicole; Echo, Joyce A; Ackerman, Tsippa F; Christian, Garrison; Bodnar, Richard J

    2002-03-01

    The present study examined opioid receptor(s) mediation of feeding elicited by mu opioid agonists in the ventral tegmental area using general or selective opioid antagonist pretreatment. Naltrexone as well as equimolar doses of selective mu and kappa, but not delta opioid antagonists in the ventral tegmental area significantly reduced mu agonist-induced feeding, indicating a pivotal role for these receptor subtypes in the full expression of this response.

  7. Kappa opioid receptor antagonists: A possible new class of therapeutics for migraine prevention.

    PubMed

    Xie, Jennifer Y; De Felice, Milena; Kopruszinski, Caroline M; Eyde, Nathan; LaVigne, Justin; Remeniuk, Bethany; Hernandez, Pablo; Yue, Xu; Goshima, Naomi; Ossipov, Michael; King, Tamara; Streicher, John M; Navratilova, Edita; Dodick, David; Rosen, Hugh; Roberts, Ed; Porreca, Frank

    2017-07-01

    Background Stress is the most commonly reported migraine trigger. Dynorphin, an endogenous opioid peptide acting preferentially at kappa opioid receptors (KORs), is a key mediator of stress responses. The aim of this study was to use an injury-free rat model of functional cephalic pain with features of migraine and medication overuse headache (MOH) to test the possible preventive benefit of KOR blockade on stress-induced cephalic pain. Methods Following sumatriptan priming to model MOH, rats were hyper-responsive to environmental stress, demonstrating delayed cephalic and extracephalic allodynia and increased levels of CGRP in the jugular blood, consistent with commonly observed clinical outcomes during migraine. Nor-binaltorphimine (nor-BNI), a long-acting KOR antagonist or CYM51317, a novel short-acting KOR antagonist, were given systemically either during sumatriptan priming or immediately before environmental stress challenge. The effects of KOR blockade in the amygdala on stress-induced allodynia was determined by administration of nor-BNI into the right or left central nucleus of the amygdala (CeA). Results KOR blockade prevented both stress-induced allodynia and increased plasma CGRP. Stress increased dynorphin content and phosphorylated KOR in both the left and right CeA in sumatriptan-primed rats. However, KOR blockade only in the right CeA prevented stress-induced cephalic allodynia as well as extracephalic allodynia, measured in either the right or left hindpaws. U69,593, a KOR agonist, given into the right, but not the left, CeA, produced allodynia selectively in sumatriptan-primed rats. Both stress and U69,593-induced allodynia were prevented by right CeA U0126, a mitogen-activated protein kinase inhibitor, presumably acting downstream of KOR. Conclusions Our data reveal a novel lateralized KOR circuit that mediated stress-induced cutaneous allodynia and increased plasma CGRP in an injury-free model of functional cephalic pain with features of migraine

  8. Involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940 in male rats.

    PubMed

    Marín, S; Marco, E; Biscaia, M; Fernández, B; Rubio, M; Guaza, C; Schmidhammer, H; Viveros, M P

    2003-02-01

    We have studied the possible interaction between three selective opioid-receptor antagonists, nor-binaltorphimine (NB: kappa) (5 mg/kg), cyprodime (CY: mu) (10 mg/kg) and naltrindole (NTI: delta) (1 mg/kg), and the cannabinoid receptor agonist CP 55,940, in the modulation of anxiety (plus-maze) and adrenocortical activity (serum corticosterone levels by radioimmunoassay) in male rats. The holeboard was used to evaluate motor activity and directed exploration. CP 55,940 (75 microg/kg, but not 10 microg/kg) induced an anxiogenic-like effect, which was antagonised by NB. The other effects of CP 55,940 (75 microg/kg), a decreased holeboard activity and stimulation of adrenocortical activity, were not antagonised by any of the three opioid receptor antagonists. CY and NTI, when administered alone, induced marked reductions in motor activity, anxiogenic-like effects and stimulation of adrenocortical activity. The selective kappa-opioid receptor antagonist NB, on its own, did not modify the level of anxiety but stimulated adrenocortical activity. We provide the first pharmacological evidence about the involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940.

  9. The discriminative effects of the kappa-opioid hallucinogen salvinorin A in nonhuman primates: dissociation from classic hallucinogen effects.

    PubMed

    Butelman, Eduardo R; Rus, Szymon; Prisinzano, Thomas E; Kreek, Mary Jeanne

    2010-06-01

    The widely available hallucinogen salvinorin A is a unique example of a plant-derived compound selective for kappa-opioid receptors and may produce effects distinct from those of other compounds with classic hallucinogenic or dissociative properties which are also abused in humans. The objective of this study is to characterize the salvinorin A discriminative cue in nonhuman primates with high kappa-receptor genetic homology to humans. Adult rhesus monkeys (n = 3) were trained to discriminate salvinorin A (0.015 mg/kg, s.c.) from vehicle, in a food-reinforced operant discrimination assay. Parallel studies, using unconditioned behavioral endpoints (facial relaxation and ptosis) also evaluated the kappa-opioid receptor mediation of salvinorin A in vivo function. Monkeys trained to discriminate salvinorin A generalized structurally diverse, centrally penetrating kappa-agonists (bremazocine, U69,593, and U50,488). By contrast, mu- and delta-opioid agonists (fentanyl and SNC80, respectively) were not generalized, nor were the serotonergic 5HT2 hallucinogen psilocybin or the dissociative N-methyl-D-aspartic acid antagonist, ketamine. The discriminative effects of salvinorin A were blocked by the opioid antagonist quadazocine (0.32 mg/kg), but not by the 5HT2 antagonist ketanserin (0.1 mg/kg). Consistent with these findings, salvinorin and kappa-agonists (e.g., U69,593) produce effects in the unconditioned endpoints (e.g., ptosis), whereas psilocybin was inactive. These findings support the conclusion that the interoceptive/discriminative cue produced by salvinorin A is mediated by agonism at kappa-receptors and is mechanistically distinct from that produced by a classic serotonergic hallucinogen.

  10. General, kappa, delta and mu opioid receptor antagonists mediate feeding elicited by the GABA-B agonist baclofen in the ventral tegmental area and nucleus accumbens shell in rats: reciprocal and regional interactions.

    PubMed

    Miner, Patricia; Shimonova, Lyudmila; Khaimov, Arthur; Borukhova, Yaffa; Ilyayeva, Ester; Ranaldi, Robert; Bodnar, Richard J

    2012-03-14

    Food intake is significantly increased following administration of agonists of GABA and opioid receptors into the nucleus accumbens shell (NACs) and ventral tegmental area (VTA). GABA-A or GABA-B receptor antagonist pretreatment within the VTA or NACs differentially affects mu-opioid agonist-induced feeding elicited from the same site. Correspondingly, general or selective opioid receptor antagonist pretreatment within the VTA or NACs differentially affects GABA agonist-induced feeding elicited from the same site. Regional interactions have been evaluated in feeding studies by administering antagonists in one site prior to agonist administration in a second site. Thus, opioid antagonist-opioid agonist and GABA antagonist-GABA agonist feeding interactions have been identified between the VTA and NACs. However, pretreatment with GABA-A or GABA-B receptor antagonists in the VTA failed to affect mu opioid agonist-induced feeding elicited from the NACs, and correspondingly, these antagonists administered in the NACs failed to affect mu opioid-induced feeding elicited from the VTA. To evaluate whether regional and reciprocal VTA and NACs feeding interactions occur for opioid receptor modulation of GABA agonist-mediated feeding, the present study examined whether feeding elicited by the GABA-B agonist, baclofen microinjected into the NACs was dose-dependently blocked by pretreatment with general (naltrexone: NTX), mu (beta-funaltrexamine: BFNA), kappa (nor-binaltorphamine: NBNI) or delta (naltrindole: NTI) opioid antagonists in the VTA, and correspondingly, whether VTA baclofen-induced feeding was dose-dependently blocked by NACs pretreatment with NTX, BFNA, NBNI or NTI in rats. Bilateral pairs of cannulae aimed at the VTA and NACs were stereotaxically implanted in rats, and their food intakes were assessed following vehicle and baclofen (200 ng) in each site. Baclofen produced similar magnitudes of increased food intake following VTA and NACs treatment. Baclofen

  11. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    PubMed

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the

  12. Activation of kappa opioid receptors in the dorsal raphe have sex dependent effects on social behavior in California mice.

    PubMed

    Wright, Emily C; Parks, Tiffany V; Alexander, Jonathon O; Supra, Rajesh; Trainor, Brian C

    2018-06-06

    Kappa opioid receptor activation has been linked to stress and anxiety behavior, thus leading to kappa antagonists being popularized in research as potential anxiolytics. However, while these findings may hold true in standard models, the neuromodulatory effects of social defeat may change the behavioral outcome of kappa opioid receptor activation. Previous research has shown that social defeat can lead to hyperactivity of serotonergic neurons in the dorsal raphe nucleus, and that inhibition of this increase blocks the social deficits caused by defeat. Kappa opioid receptor activation in the dorsal raphe nucleus works to decrease serotonergic activity. We injected the kappa opioid receptor U50,488 directly into the dorsal raphe nucleus of male and female, defeat and control adult California mice. Here we show evidence that U50,488 induces anxiety behavior in control male California mice, but helps relieve it in defeated males. Consistent with previous literature, we find little effect in females adding evidence that there are marked and important sex differences in the kappa opioid system. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity.

    PubMed

    Leyton, M; Stewart, J

    1992-10-23

    Systemic injections of the kappa (kappa) opioid receptor agonist U-50,488H decreased male sexual behavior, locomotor activity, body temperature and bodily grooming, and induced body flattening. The U-50,488H-induced inhibitions of male sexual behavior were prevented by systemic injections of naloxone and by intra-cranial injections of the kappa opioid antagonist nor-binaltorphimine (NBNI). Injections of NBNI to either the ventral tegmental area (VTA) or the nucleus accumbens septi (NAS) increased female-directed behavior, and prevented the U-50,488H-induced decreases in female-directed behavior. Intra-VTA NBNI prevented U-50,488H-induced decreases in the mean number of ejaculations, intra-NAS NBNI prevented U-50,488H-induced increases in copulation latencies. Intra-medial preoptic area (mPOA) injections of NBNI increased female-directed behavior, and attenuated U-50,488H-induced decreases in female-directed behavior as well as U-50,488H-induced increases in both copulation and ejaculation latencies. Injections of NBNI dorsal to the mPOA were ineffective. Two of 26 days following the central injection of NBNI, systemic injections of U-50,488H remained behaviorally ineffective, leaving both sexual behavior and locomotor activity undiminished. These results suggest that the stimulation of central kappa opioid receptors inhibits sexual behavior in the male rat; perhaps endogenous kappa opioid agonists induce sexual refractory periods.

  14. Effects of kappa opioid agonists alone and in combination with cocaine on heart rate and blood pressure in conscious squirrel monkeys.

    PubMed

    Schindler, Charles W; Graczyk, Zofi; Gilman, Joanne P; Negus, S Stevens; Bergman, Jack; Mello, Nancy K; Goldberg, Steven R

    2007-12-08

    As kappa agonists have been proposed as treatments for cocaine abuse, the cardiovascular effects of the kappa opioid receptor agonists ethylketocyclazocine (EKC) and enadoline were investigated in conscious squirrel monkeys. Both EKC and enadoline increased heart rate with little effect on blood pressure. This effect appeared to be specific for kappa receptors as the mu opioid agonist morphine did not mimic the effects of the kappa agonists. The opioid antagonist naltrexone, at a dose of 1.0 mg/kg, blocked the effect of EKC. An action at both central and peripheral receptors may be responsible for the heart rate increase following kappa agonist treatment. The ganglionic blocker chlorisondamine partially antagonized the effect of EKC on heart rate, suggesting central involvement, while the peripherally-acting agonist ICI 204,448 ((+/-)-1-[2,3- (Dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride) also increased heart rate, supporting a peripheral site of action. When given in combination with cocaine, EKC produced effects that were sub-additive, suggesting that the kappa agonists may be used safely as cocaine abuse treatments.

  15. Kappa2 opioid receptor subtype binding requires the presence of the DOR-1 gene.

    PubMed

    Ansonoff, Michael A; Wen, Ting; Pintar, John E

    2010-01-01

    Over the past several years substantial evidence has documented that opioid receptor homo- and heterodimers form in cell lines expressing one or more of the opioid receptors. We used opioid receptor knockout mice to determine whether in vivo pharmacological characteristics of kappa1 and kappa2 opioid receptors changed following knockout of specific opioid receptors. Using displacement of the general opioid ligand diprenorphine, we observed that occupancy or knockout of the DOR-1 gene increases the binding density of kappa1 receptors and eliminates kappa2 receptors in crude membrane preparations while the total density of kappa opioid binding sites is unchanged. Further, the analgesic potency of U69,593 in cumulative dose response curves is enhanced in mice lacking the DOR-1 gene. These results demonstrate that the DOR-1 gene is required for the expression of the kappa2 opioid receptor subtype and are consistent with the possibility that a KOR-1/DOR-1 heterodimer mediates kappa2 pharmacology.

  16. A Clinical Study on Administration of Opioid Antagonists in Terminal Cancer Patients: 7 Patients Receiving Opioid Antagonists Following Opioids among 2443 Terminal Cancer Patients Receiving Opioids.

    PubMed

    Uekuzu, Yoshihiro; Higashiguchi, Takashi; Futamura, Akihiko; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Awa, Hiroko; Chihara, Takeshi

    2017-03-01

    There have been few detailed reports on respiratory depression due to overdoses of opioids in terminal cancer patients. We investigated the situation of treatment with opioid antagonists for respiratory depression that occurred after administration of opioid at optimal doses in terminal cancer patients, to clarify pathological changes as well as causative factors. In 2443 terminal cancer patients receiving opioids, 7 patients (0.3%) received opioid antagonists: 6, morphine (hydrochloride, 5; sulfate, 1); 1, oxycodone. The median dosage of opioids was 13.3 mg/d, as converted to morphine injection. Respiratory depression occurred on this daily dose in 4 patients and after changed dose and route in 3 patients. Opioids were given through the vein in 6 patients and by the enteral route in 1 patient. Concomitant drugs included nonsteroidal anti-inflammatory drugs in 3 patients and zoledronic acid in 2 patients. In morphine-receiving patients, renal functions were significantly worsened at the time of administration of an opioid antagonist than the day before the start of opioid administration. These findings indicate that the proper use of opioids was safe and acceptable in almost all terminal cancer patients. In rare cases, however, a risk toward respiratory depression onset is indicated because morphine and morphine-6-glucuronide become relatively excessive owing to systemic debility due to disease progression, especially respiratory and renal dysfunctions. At the onset of respiratory depression, appropriate administration of an opioid antagonist mitigated the symptoms. Thereafter, opioid switching or continuous administration at reduced dosages of the same opioids prevented the occurrence of serious adverse events.

  17. The selective kappa-opioid receptor agonist U50,488H attenuates voluntary ethanol intake in the rat.

    PubMed

    Lindholm, S; Werme, M; Brené, S; Franck, J

    2001-05-01

    Non-selective opioid receptor antagonists are increasingly used in the treatment of alcohol dependence. The clinical effects are significant but the effect size is rather small and unpleasant side effects may limit the benefits of the compounds. Ligands acting at mu- and/or delta- receptors can alter the voluntary intake of ethanol in various animal models. Therefore, the attenuating effects of selective opioid receptor ligands on ethanol intake may be of clinical interest in the treatment of alcoholism. The objective of this study was to examine the effects of a selective kappa-receptor agonist, U50,488H on voluntary ethanol intake in the rat. We used a restricted access model with a free choice between an ethanol solution (10% v/v) and water. During the 3-days baseline period, the rats received a daily saline injection (1 ml/kg, i.p.) 15 min before the 2 h access to ethanol. The animals had free access to water at all times. The control group received a daily saline injection during the 4-days treatment-period, whereas the treatment groups received a daily dose of U50,488H (2.5, 5.0 or 10 mg/kg per day). Animals treated with U50,488H dose-dependently decreased their ethanol intake. The effect of the highest dose of U50,488H was reduced by pre-treatment with the selective kappa-antagonist nor-binaltorphimine (nor-BNI). These results demonstrate that activation of kappa-opioid receptors can attenuate voluntary ethanol intake in the rat, and the data suggest that the brain dynorphin/kappa-receptor systems may represent a novel target for pharmacotherapy in the treatment of alcohol dependence.

  18. ICI 204448: a kappa-opioid agonist with limited access to the CNS.

    PubMed Central

    Shaw, J. S.; Carroll, J. A.; Alcock, P.; Main, B. G.

    1989-01-01

    1. A number of compounds were evaluated in an attempt to identify a kappa-opioid receptor agonist with limited access to the central nervous system. 2. Quaternary derivatives of the kappa-opioid agonists tifluadom, U-50488H and ethylketocyclazocine were essentially devoid of opioid activity in a range of isolated tissue preparations. 3. A novel compound - ICI 204448 - is described which produced a potent and naloxone-reversible inhibition of electrically-evoked contraction of the guinea-pig ileum, mouse vas deferens and rabbit vas deferens preparations. ICI 204448 was shown to displace the binding of the kappa-opioid ligand [3H]-bremazocine from guinea-pig cerebellum membranes. 4. Ex vivo binding studies in mice showed ICI 204448 to be well absorbed following subcutaneous administration. The brain levels achieved by ICI 20448 were substantially lower than those produced by kappa-agonists such as U-50488H and tifluadom. 5. A good correlation was found for a range of opioids between lipophilicity and degree of CNS penetration. PMID:2568146

  19. Exposure to ethanol on prenatal days 19-20 increases ethanol intake and palatability in the infant rat: involvement of kappa and mu opioid receptors.

    PubMed

    Díaz-Cenzano, Elena; Gaztañaga, Mirari; Gabriela Chotro, M

    2014-09-01

    Prenatal exposure to ethanol on gestation Days 19-20, but not 17-18, increases ethanol acceptance in infant rats. This effect seems to be a conditioned response acquired prenatally, mediated by the opioid system, which could be stimulated by ethanol's pharmacological properties (mu-opioid receptors) or by a component of the amniotic fluid from gestation-day 20 (kappa-inducing factor). The latter option was evaluated administering non-ethanol chemosensory stimuli on gestation Days 19-20 and testing postnatal intake and palatability. However, prenatal exposure to anise or vanilla increased neither intake nor palatability of these tastants on postnatal Day 14. In experiment 2, the role of ethanol's pharmacological effect was tested by administering ethanol and selective antagonists of mu and kappa opioid receptors prenatally. Blocking the mu-opioid receptor system completely reversed the effects on intake and palatability, while antagonizing kappa receptors only partially reduced the effects on palatability. This suggests that the pharmacological effect of ethanol on the fetal mu opioid system is the appetitive reinforcer, which induces the prenatally conditioned preference detected in the preweanling period. © 2013 Wiley Periodicals, Inc.

  20. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benyhe, S.; Varga, E.; Hepp, J.

    1990-09-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain.more » Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.« less

  1. Lateralized kappa opioid receptor signaling from the amygdala central nucleus promotes stress-induced functional pain.

    PubMed

    Nation, Kelsey M; De Felice, Milena; Hernandez, Pablo I; Dodick, David W; Neugebauer, Volker; Navratilova, Edita; Porreca, Frank

    2018-05-01

    The response of diffuse noxious inhibitory controls (DNIC) is often decreased, or lost, in stress-related functional pain syndromes. Because the dynorphin/kappa opioid receptor (KOR) pathway is activated by stress, we determined its role in DNIC using a model of stress-induced functional pain. Male, Sprague-Dawley rats were primed for 7 days with systemic morphine resulting in opioid-induced hyperalgesia. Fourteen days after priming, when hyperalgesia was resolved, rats were exposed to environmental stress and DNIC was evaluated by measuring hind paw response threshold to noxious pressure (test stimulus) after capsaicin injection in the forepaw (conditioning stimulus). Morphine priming without stress did not alter DNIC. However, stress produced a loss of DNIC in morphine-primed rats in both hind paws that was abolished by systemic administration of the KOR antagonist, nor-binaltorphimine (nor-BNI). Microinjection of nor-BNI into the right, but not left, central nucleus of the amygdala (CeA) prevented the loss of DNIC in morphine-primed rats. Diffuse noxious inhibitory controls were not modulated by bilateral nor-BNI in the rostral ventromedial medulla. Stress increased dynorphin content in both the left and right CeA of primed rats, reaching significance only in the right CeA; no change was observed in the rostral ventromedial medulla or hypothalamus. Although morphine priming alone is not sufficient to influence DNIC, it establishes a state of latent sensitization that amplifies the consequences of stress. After priming, stress-induced dynorphin/KOR signaling from the right CeA inhibits DNIC in both hind paws, likely reflecting enhanced descending facilitation that masks descending inhibition. Kappa opioid receptor antagonists may provide a new therapeutic strategy for stress-related functional pain disorders.

  2. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System.

    PubMed

    Massaly, Nicolas; Morón, Jose A; Al-Hasani, Ream

    2016-01-01

    Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes.

  3. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    PubMed

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  4. Opioid antagonists for smoking cessation

    PubMed Central

    David, Sean P; Lancaster, Tim; Stead, Lindsay F; Evins, A. Eden; Prochaska, Judith J

    2014-01-01

    Background The reinforcing properties of nicotine may be mediated through release of various neurotransmitters both centrally and systemically. People who smoke report positive effects such as pleasure, arousal, and relaxation as well as relief of negative affect, tension, and anxiety. Opioid (narcotic) antagonists are of particular interest to investigators as potential agents to attenuate the rewarding effects of cigarette smoking. Objectives To evaluate the efficacy of opioid antagonists in promoting long-term smoking cessation. The drugs include naloxone and the longer-acting opioid antagonist naltrexone. Search methods We searched the Cochrane Tobacco Addiction Group Specialised Register for trials of naloxone, naltrexone and other opioid antagonists and conducted an additional search of MEDLINE using ’Narcotic antagonists’ and smoking terms in April 2013. We also contacted investigators, when possible, for information on unpublished studies. Selection criteria We considered randomised controlled trials comparing opioid antagonists to placebo or an alternative therapeutic control for smoking cessation. We included in the meta-analysis only those trials which reported data on abstinence for a minimum of six months. We also reviewed, for descriptive purposes, results from short-term laboratory-based studies of opioid antagonists designed to evaluate psycho-biological mediating variables associated with nicotine dependence. Data collection and analysis We extracted data in duplicate on the study population, the nature of the drug therapy, the outcome measures, method of randomisation, and completeness of follow-up. The main outcome measure was abstinence from smoking after at least six months follow-up in patients smoking at baseline. Abstinence at end of treatment was a secondary outcome. We extracted cotinine- or carbon monoxide-verified abstinence where available. Where appropriate, we performed meta-analysis, pooling risk ratios using a Mantel

  5. Anti-arrhythmic activities of opioid agonists and antagonists and their stereoisomers.

    PubMed Central

    Sarne, Y.; Flitstein, A.; Oppenheimer, E.

    1991-01-01

    1. A series of opioid agonists, antagonists and their (+)-stereoisomers were tested for antiarrhythmic activity in the rat coronary artery occlusion model. 2. Naloxone (0.01-2 mg kg-1) significantly reduced the incidence and severity of cardiac arrhythmias, in accordance with previous published studies. 3. The non-opioid stereoisomer, (+)-naloxone, was equipotent with naloxone against occlusion-induced arrhythmia. 4. Similar non-stereospecific antiarrhythmic effects were induced by another opioid antagonist, Win 44,441-3 and its stereoisomer Win 44,441-2. 5. The opioid agonists, morphine and levorphanol, protected against occlusion-induced arrhythmia as did the opioid antagonists, and the (+)-stereoisomer, dextrorphan, was equipotent to levorphanol. 6. It is concluded that the antiarrhythmic effects of opioid drugs are not mediated by opioid receptors. A direct effect on ionic currents in cardiac muscle is suggested as the mechanism of opioid antiarrhythmic activity. PMID:1364840

  6. Pharmacological characterization of the cloned kappa opioid receptor as a kappa 1b subtype.

    PubMed

    Lai, J; Ma, S W; Zhu, R H; Rothman, R B; Lentes, K U; Porreca, F

    1994-10-27

    Substantial pharmacological evidence in vitro and in vivo has suggested the existence of subtypes of the kappa opioid receptor. Quantitative radioligand binding techniques resolved the presence of two high affinity binding sites for the kappa 1 ligand [3H]U69,593 in mouse brain membranes, termed kappa 1a and kappa 1b, respectively. Whereas the kappa 1a site has high affinity for fedotozine and oxymorphindole and low affinity for bremazocine and alpha-neoendorphin, site kappa 1b has high affinity for bremazocine and alpha-neoendorphin and low affinity for fedotozine and oxymorphindole. CI-977 and U69,593 bind equally well at both sites. To determine the relationship between these kappa 1 receptor subtypes and the recently cloned mouse kappa 1 receptor (KOR), we examined [3H]U69,593 binding to the KOR in stably transfected cells (KORCHN-8). Competition of [3H]U69,593 binding to the KOR by bremazocine, alpha-neoendorphin, fedotozine and oxymorphindole resolved a single class of binding sites at which these agents had binding affinities similar to that of the kappa 1b site present in mouse brain. These results suggest that the cloned KOR corresponds to the kappa 1 site in mouse brain defined as kappa 1b.

  7. Opioid Antagonist Impedes Exposure.

    ERIC Educational Resources Information Center

    Merluzzi, Thomas V.; And Others

    1991-01-01

    Thirty spider-phobic adults underwent exposure to 17 phobic-related, graded performance tests. Fifteen subjects were assigned to naltrexone, an opioid antagonist, and 15 were assigned to placebo. Naltrexone had a significant effect on exposure, with naltrexone subjects taking significantly longer to complete first 10 steps of exposure and with…

  8. Effects of ketoprofen, morphine, and kappa opioids on pain-related depression of nesting in mice.

    PubMed

    Negus, S Stevens; Neddenriep, Bradley; Altarifi, Ahmad A; Carroll, F Ivy; Leitl, Michael D; Miller, Laurence L

    2015-06-01

    Pain-related functional impairment and behavioral depression are diagnostic indicators of pain and targets for its treatment. Nesting is an innate behavior in mice that may be sensitive to pain manipulations and responsive to analgesics. The goal of this study was to develop and validate a procedure for evaluation of pain-related depression of nesting in mice. Male ICR mice were individually housed and tested in their home cages. On test days, a 5- × 5-cm Nestlet was subdivided into 6 pieces, the pieces were evenly distributed on the cage floor, and Nestlet consolidation was quantified during 100-minute sessions. Baseline nesting was stable within and between subjects, and nesting was depressed by 2 commonly used inflammatory pain stimuli (intraperitoneal injection of dilute acid; intraplantar injection of complete Freund adjuvant). Pain-related depression of nesting was alleviated by drugs from 2 classes of clinically effective analgesics (the nonsteroidal anti-inflammatory drug ketoprofen and the μ-opioid receptor agonist morphine) but not by a drug from a class that has failed to yield effective analgesics (the centrally acting kappa opioid agonist U69,593). Neither ketoprofen nor morphine alleviated depression of nesting by U69,593, which suggests that ketoprofen and morphine effects were selective for pain-related depression of nesting. In contrast to ketoprofen and morphine, the kappa opioid receptor antagonist JDTic blocked depression of nesting by U69,593 but not by acid or complete Freund adjuvant. These results support utility of this procedure to assess expression and treatment of pain-related depression in mice.

  9. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  10. Will peripherally restricted kappa-opioid receptor agonists (pKORAs) relieve pain with less opioid adverse effects and abuse potential?

    PubMed

    Albert-Vartanian, A; Boyd, M R; Hall, A L; Morgado, S J; Nguyen, E; Nguyen, V P H; Patel, S P; Russo, L J; Shao, A J; Raffa, R B

    2016-08-01

    Optimal utilization of opioid analgesics is significantly limited by the central nervous system adverse effects and misuse/abuse potential of currently available drugs. It has been postulated that opioid-associated adverse effects and abuse potential would be greatly reduced if opioids could be excluded from reaching the brain. We review the basic science and clinical evidence of one such approach - peripherally restricted kappa-opioid receptor (KOR) agonists (pKORAs). Published and unpublished literature, websites and other sources were searched for basic science and clinical information related to the potential benefits and development of peripherally restricted kappa-opioid receptor agonists. Each source was summarized, reviewed and assessed. The historical development of pKORAs can be traced from the design of increasingly KOR-selective agonists, elucidation of the pharmacologic attributes of such compounds and strategies to restrict passage across the blood-brain barrier. Novel compounds are under development and have progressed to clinical trials. The results from recent clinical trials suggest that peripherally restricted opioids can be successfully designed and that they can retain analgesic efficacy with a more favourable adverse effect profile. © 2016 John Wiley & Sons Ltd.

  11. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats.

    PubMed

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A; Andrés, María E

    2017-08-01

    Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  12. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

    PubMed

    Filho, Carlos B; Del Fabbro, Lucian; de Gomes, Marcelo G; Goes, André T R; Souza, Leandro C; Boeira, Silvana P; Jesse, Cristiano R

    2013-01-05

    The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Published by Elsevier B.V.

  13. (/sup 3/H)Ethylketocyclazocine binding to mouse brain membranes: evidence for a kappa opioid receptor type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.

    1984-10-01

    The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less

  14. Antagonists of toll like receptor 4 maybe a new strategy to counteract opioid-induced hyperalgesia and opioid tolerance.

    PubMed

    Li, Qian

    2012-12-01

    Long term opioid treatment results in hyperalgesia and tolerance, which is a troublesome phenomenon in clinic application. Recent studies have revealed a critical role of toll-like receptor 4 (TLR4) in the neuropathological process of opioid-induced hyperalgesia and tolerance. TLR4 is predominantly expressed by microglial cells and is a key modulator in the activation of the innate immune system. Activation of TLR4 may initiate the activation of microglia and hence a number of neurotransmitters and neuromodulators that could enhance neuronal excitability are released. Blockade of TLR4 activation by its antagonists alleviate neuropathic pain. We hypothesized that opioid antagonists such as naloxone and naltrexone, which were also demonstrated to be TLR4 antagonist, may have clinic application value in attenuation of opioid-induced hyperalgesia and tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy Mu Opioid Receptor (MOR) Agonist/Delta Opioid Receptor (DOR) Antagonist Ligands

    PubMed Central

    Mosberg, Henry I.; Yeomans, Larisa; Harland, Aubrie A.; Bender, Aaron M.; Sobczyk-Kojiro, Katarzyna; Anand, Jessica P.; Clark, Mary J.; Jutkiewicz, Emily M.; Traynor, John R.

    2013-01-01

    We have previously described opioid peptidomimetic, 1, employing a tetrahydroquinoline scaffold and modeled on a series of cyclic tetrapeptide opioid agonists. We have recently described modifications to these peptides that confer a mu opioid receptor (MOR) agonist, delta opioid receptor (DOR) antagonist profile, which has been shown to reduce the development of tolerance to the analgesic actions of MOR agonists. Several such bifunctional ligands have been reported, but none has been demonstrated to cross the blood brain barrier. Here we describe the transfer of structural features that evoked MOR agonist/DOR antagonist behavior in the cyclic peptides to the tetrahydroquinoline scaffold and show that the resulting peptidomimetics maintain the desired pharmacological profile. Further, the 4R diastereomer of 1 was fully efficacious and approximately equipotent to morphine in the mouse warm water tail withdrawal assay following intraperitoneal administration and thus a promising lead for the development of opioid analgesics with reduced tolerance. PMID:23419026

  16. Synthesis and characterization of a dual kappa-delta opioid receptor agonist analgesic blocking cocaine reward behavior.

    PubMed

    Váradi, András; Marrone, Gina F; Eans, Shainnel O; Ganno, Michelle L; Subrath, Joan J; Le Rouzic, Valerie; Hunkele, Amanda; Pasternak, Gavril W; McLaughlin, Jay P; Majumdar, Susruta

    2015-11-18

    3-Iodobenzoyl naltrexamine (IBNtxA) is a potent analgesic belonging to the pharmacologically diverse 6β-amidoepoxymorphinan group of opioids. We present the synthesis and pharmacological evaluation of five analogs of IBNtxA. The scaffold of IBNtxA was modified by removing the 14-hydroxy group, incorporating a 7,8 double bond and various N-17 alkyl substituents. The structural modifications resulted in analogs with picomolar affinities for opioid receptors. The lead compound (MP1104) was found to exhibit approximately 15-fold greater antinociceptive potency (ED50 = 0.33 mg/kg) compared with morphine, mediated through the activation of kappa- and delta-opioid receptors. Despite its kappa agonism, this lead derivative did not cause place aversion or preference in mice in a place-conditioning assay, even at doses 3 times the analgesic ED50. However, pretreatment with the lead compound prevented the reward behavior associated with cocaine in a conditioned place preference assay. Together, these results suggest the promise of dual acting kappa- and delta-opioid receptor agonists as analgesics and treatments for cocaine addiction.

  17. "Effects of the novel relatively short-acting kappa opioid receptor antagonist LY2444296 in behaviors observed after chronic extended-access cocaine self-administration in rats".

    PubMed

    Valenza, Marta; Butelman, Eduardo R; Kreek, Mary Jeanne

    2017-08-01

    The recruitment of the stress circuitry contributes to a shift from positive to negative reinforcement mechanisms sustaining long-term cocaine addiction. The kappa opioid receptor (KOPr) signaling is upregulated by stress and chronic cocaine exposure. While KOPr agonists induce anhedonia and dysphoria, KOPr antagonists display antidepressant and anxiolytic properties. Most of the knowledge on KOPr antagonism is based on drugs with unusual pharmacokinetic and pharmacodynamic properties, complicating interpretation of results. Here we characterized in vivo behavioral and neuroendocrine effects of the novel relatively short-acting KOPr antagonist LY2444296. To date, no study has investigated whether systemic KOPr blockade reduced anxiety-like and depressive-like behaviors in animals previously exposed to chronic extended access cocaine self-administration. We tested the effect of LY2444296 in blocking KOPr-mediated aversive and neuroendocrine effects. Then, we tested acute systemic LY2444296 in reducing anxiety- and depression-like behaviors, as well as releasing the stress hormone corticosterone (CORT), observed after chronic extended access (18 h/day for 14 days) cocaine self-administration. LY2444296 blocked U69,593-induced place aversion and -reduced motor activity as well as U69,593-induced release of serum CORT, confirming its major site of action, without exerting an effect per se. Acute systemic administration of LY2444296 reduced anxiety-like and depressive-like behaviors, as well as CORT release, in rats tested after chronic extended access cocaine self-administration, but not in cocaine-naïve rats. Results suggest that acute blockade of KOPr by a relatively short-acting antagonist produces therapeutic-like effects selectively in rats with a history of chronic extended access cocaine self-administration.

  18. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    PubMed

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  19. Unexpected opioid activity profiles of analogues of the novel peptide kappa opioid receptor ligand CJ-15,208.

    PubMed

    Aldrich, Jane V; Kulkarni, Santosh S; Senadheera, Sanjeewa N; Ross, Nicolette C; Reilley, Kate J; Eans, Shainnel O; Ganno, Michelle L; Murray, Thomas F; McLaughlin, Jay P

    2011-09-05

    An alanine scan was performed on the novel κ opioid receptor (KOR) peptide ligand CJ-15,208 to determine which residues contribute to the potent in vivo agonist activity observed for the parent peptide. These cyclic tetrapeptides were synthesized by a combination of solid-phase peptide synthesis of the linear precursors, followed by cyclization in solution. Like the parent peptide, each of the analogues exhibited agonist activity and KOR antagonist activity in an antinociceptive assay in vivo. Unlike the parent peptide, the agonist activity of the potent analogues was mediated predominantly, if not exclusively, by μ opioid receptors (MOR). Thus analogues 2 and 4, in which one of the phenylalanine residues was replaced by alanine, exhibited both potent MOR agonist activity and KOR antagonist activity in vivo. These peptides represent novel lead compounds for the development of peptide-based opioid analgesics. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. kappa-Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system.

    PubMed Central

    Simonin, F; Gavériaux-Ruff, C; Befort, K; Matthes, H; Lannes, B; Micheletti, G; Mattéi, M G; Charron, G; Bloch, B; Kieffer, B

    1995-01-01

    Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors. Images Fig. 3 Fig. 4 PMID:7624359

  1. Investigational opioid antagonists for treating opioid-induced bowel dysfunction.

    PubMed

    Mozaffari, Shilan; Nikfar, Shekoufeh; Abdollahi, Mohammad

    2018-03-01

    Opioids have been highlighted for their role in pain relief among cancer and non-cancer patients. Novel agents have been investigated to reduce opioid-induced constipation (OIC) as the main adverse effect that may lead to treatment discontinuation. Development of peripherally acting mu-opioid receptor antagonists (PAMORA) has resulted in a novel approach to preserve the efficacy of pain control along with less OIC. Areas covered: Clinical evidence for investigational PAMORAs was reviewed and clinical trials on investigational agents to reduce OIC were included. TD-1211 is currently being evaluated in Phase II clinical trial. Oxycodone-naltrexone and ADL-5945 went through Phase III clinical trials, but have been discontinued. Expert opinion: There is a substantial need to develop agents with specific pharmacokinetic properties to meet the needs of patients with underlying diseases. Holding the efficacy of a medicine with the highest selectivity on targeted receptors and the least adverse effects is the main approach in upcoming investigations to improve patients' quality of life (QoL). Novel agents to reduce opioid-induced bowel dysfunction (OIBD) that do not reverse peripherally mediated pain analgesia are of great interest. Direct comparison of available agents in this field is lacking in the literature.

  2. Opioid-receptor subtype agonist-induced enhancements of sucrose intake are dependent upon sucrose concentration.

    PubMed

    Ruegg, H; Yu, W Z; Bodnar, R J

    1997-07-01

    Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.

  3. μ Opioid receptor: novel antagonists and structural modeling

    NASA Astrophysics Data System (ADS)

    Kaserer, Teresa; Lantero, Aquilino; Schmidhammer, Helmut; Spetea, Mariana; Schuster, Daniela

    2016-02-01

    The μ opioid receptor (MOR) is a prominent member of the G protein-coupled receptor family and the molecular target of morphine and other opioid drugs. Despite the long tradition of MOR-targeting drugs, still little is known about the ligand-receptor interactions and structure-function relationships underlying the distinct biological effects upon receptor activation or inhibition. With the resolved crystal structure of the β-funaltrexamine-MOR complex, we aimed at the discovery of novel agonists and antagonists using virtual screening tools, i.e. docking, pharmacophore- and shape-based modeling. We suggest important molecular interactions, which active molecules share and distinguish agonists and antagonists. These results allowed for the generation of theoretically validated in silico workflows that were employed for prospective virtual screening. Out of 18 virtual hits evaluated in in vitro pharmacological assays, three displayed antagonist activity and the most active compound significantly inhibited morphine-induced antinociception. The new identified chemotypes hold promise for further development into neurochemical tools for studying the MOR or as potential therapeutic lead candidates.

  4. Pharmacological characterization of ATPM [(-)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed kappa-agonist and mu-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior.

    PubMed

    Wang, Yu-Jun; Tao, Yi-Min; Li, Fu-Ying; Wang, Yu-Hua; Xu, Xue-Jun; Chen, Jie; Cao, Ying-Lin; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen

    2009-04-01

    ATPM [(-)-3-amino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] was found to have mixed kappa- and mu-opioid activity and identified to act as a full kappa-agonist and a partial mu-agonist by in vitro binding assays. The present study was undertaken to characterize its in vivo effects on morphine antinociceptive tolerance in mice and heroin self-administration in rats. ATPM was demonstrated to yield more potent antinociceptive effects than (-)U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide). It was further found that the antinociceptive effects of ATPM were mediated by kappa- and mu-, but not delta-opioid, receptors. In addition to its agonist profile on the mu-receptor, ATPM also acted as a mu-antagonist, as measured by its inhibition of morphine-induced antinociception. It is more important that ATPM had a greater ratio of the ED(50) value of sedation to that of antinociception than (-)U50,488 (11.8 versus 3.7), indicative of a less sedative effect than (-)U50,488H. In addition, ATPM showed less potential to develop antinociceptive tolerance relative to (-)U50,488H and morphine. Moreover, it dose-dependently inhibited morphine-induced antinociceptive tolerance. Furthermore, it was found that chronic treatment of rats for 8 consecutive days with ATPM (0.5 mg/kg s.c.) produced sustained decreases in heroin self-administration. (-)U50,488H (2 mg/kg s.c.) also produced similar inhibitory effect. Taken together, our findings demonstrated that ATPM, a novel mixed kappa-agonist and mu-agonist/-antagonist, could inhibit morphine-induced antinociceptive tolerance, with less potential to develop tolerance and reduce heroin self-administration with less sedative effect. kappa-Agonists with some mu-activity appear to offer some advantages over selective kappa-agonists for the treatment of heroin abuse.

  5. Kappa Opioid Receptors Mediate where Fear Is Expressed Following Extinction Training

    ERIC Educational Resources Information Center

    Cole, Sindy; Richardson, Rick; McNally, Gavan P.

    2011-01-01

    Six experiments used a within-subjects renewal design to examine the involvement of kappa opioid receptors (KORs) in regulating the expression and recovery of extinguished fear. Rats were trained to fear a tone conditioned stimulus (CS) via pairings with foot shock in a distinctive context (A). This was followed by extinction training of the CS in…

  6. National Systematic Legal Review of State Policies on Emergency Medical Services Licensure Levels' Authority to Administer Opioid Antagonists.

    PubMed

    Kinsman, Jeremiah M; Robinson, Kathy

    2018-02-27

    Previous research conducted in November 2013 found there were a limited number of states and territories in the United States (US) that authorize emergency medical technicians (EMTs) and emergency medical responders (EMRs) to administer opioid antagonists. Given the continued increase in the number of opioid-related overdoses and deaths, many states have changed their policies to authorize EMTs and EMRs to administer opioid antagonists. The goal of this study is to provide an updated description of policy on EMS licensure levels' authority to administer opioid antagonists for all 50 US states, the District of Columbia (DC), and the Commonwealth of Puerto Rico (PR). State law and scopes of practice were systematically reviewed using a multi-tiered approach to determine each state's legally-defined EMS licensure levels and their authority to administer an opioid antagonist. State law, state EMS websites, and state EMS scope of practice documents were identified and searched using Google Advanced Search with Boolean Search Strings. Initial results of the review were sent to each state office of EMS for review and comment. As of September 1, 2017, 49 states and DC authorize EMTs to administer an opioid antagonist. Among the 40 US jurisdictions (39 states and DC) that define the EMR or a comparable first responder licensure level in state law, 37 states and DC authorize their EMRs to administer an opioid antagonist. Paramedics are authorized to administer opioid antagonists in all 50 states, DC, and PR. All 49 of the US jurisdictions (48 states and DC) that define the advanced emergency medical technician (AEMT) or a comparable intermediate EMS licensure level in state law authorize their AEMTs to administer an opioid antagonist. 49 out of 52 US jurisdictions (50 states, DC, and PR) authorize all existing levels of EMS licensure levels to administer an opioid antagonist. Expanding access to this medication can save lives, especially in communities that have limited

  7. Effects of the kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI) on cocaine versus food choice and extended-access cocaine intake in rhesus monkeys.

    PubMed

    Hutsell, Blake A; Cheng, Kejun; Rice, Kenner C; Negus, Sidney Stevens; Banks, Matthew L

    2016-03-01

    The dynorphin/kappa opioid receptor (KOR) system has been implicated as one potential neurobiological modulator of the abuse-related effects of cocaine and as a potential target for medications development. This study determined effects of the KOR antagonist nor-binaltorphimine (nor-BNI) on cocaine self-administration under a novel procedure that featured two daily components: (1) a 2-hour 'choice' component (9:00-11:00 am) when monkeys could choose between food pellets and cocaine injections (0-0.1 mg/kg per injection, intravenous) and (2) a 20-hour 'extended-access' component (noon to 8:00 am) when cocaine (0.1 mg/kg per injection) was available under a fixed-ratio schedule to promote high daily cocaine intakes. Rhesus monkeys (n = 4) were given 14 days of exposure to the choice + extended-access procedure then treated with nor-BNI (3.2 or 10.0 mg/kg, intramuscular), and cocaine choice and extended-access cocaine intake were evaluated for an additional 14 days. Consistent with previous studies, cocaine maintained both a dose-dependent increase in cocaine choice during choice components and a high level of cocaine intake during extended-access components. Neither 3.2 nor 10 mg/kg nor-BNI significantly altered cocaine choice or extended-access cocaine intake. In two additional monkeys, nor-BNI also had no effect on cocaine choice or extended-access cocaine intake when it was administered at the beginning of exposure to the extended-access components. Overall, these results do not support a major role for the dynorphin/KOR system in modulating cocaine self-administration under these conditions in non-human primates nor do they support the clinical utility of KOR antagonists as a pharmacotherapeutic strategy for cocaine addiction. © 2015 Society for the Study of Addiction.

  8. Effects of the kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI) on cocaine vs. food choice and extended-access cocaine intake in rhesus monkeys

    PubMed Central

    Hutsell, Blake A; Cheng, K; Rice, Kenner C; Negus, S Stevens; Banks, Matthew L

    2015-01-01

    The dynorphin/kappa opioid receptor system (KOR) has been implicated as one potential neurobiological modulator of the abuse-related effects of cocaine and as a potential target for medications development. This study determined effects of the KOR antagonist nor-binaltorphimine (nor-BNI) on cocaine self-administration under a novel procedure that featured two daily components: (1) a 2 h “choice” component (9-11 am) when monkeys could choose between food pellets and cocaine injections (0-0.1 mg/kg/inj, IV), and (2) a 20 h “extended-access” component (noon-8 am) when cocaine (0.1 mg/kg/inj) was available under a fixed-ratio schedule to promote high daily cocaine intakes. Rhesus monkeys (n=4) were given 14 days of exposure to the choice + extended-access procedure, then treated with nor-BNI (3.2 or 10.0 mg/kg, IM), and cocaine choice and extended-access cocaine intake were evaluated for an additional 14 days. Consistent with previous studies, cocaine maintained both a dose-dependent increase in cocaine choice during choice components and a high level of cocaine intake during extended-access components. Neither 3.2 nor 10 mg/kg nor-BNI significantly altered cocaine choice or extended-access cocaine intake. In two additional monkeys, nor-BNI also had no effect on cocaine choice or extended-access cocaine intake when it was administered at the beginning of exposure to the extended-access components. Overall, these results do not support a major role for the dynorphin/KOR system in modulating cocaine self-administration under these conditions in nonhuman primates, nor do they support the clinical utility of KOR antagonists as a pharmacotherapeutic strategy for cocaine addiction. PMID:25581305

  9. Opioid, cannabinoid, and transient receptor potential (TRP) systems: effects on body temperature

    PubMed Central

    Rawls, Scott M.; Benamar, Khalid

    2014-01-01

    Cannabinoid and opioid drugs produce marked changes in body temperature. Recent findings have extended our knowledge about the thermoregulatory effects of cannabinoids and opioids, particularly as related to delta opioid receptors, endogenous systems, and transient receptor potential (TRP) channels. Although delta opioid receptors were originally thought to play only a minor role in thermoregulation compared to mu and kappa opioid receptors, their activation has been shown to produce hypothermia in multiple species. Endogenous opioids and cannabinoids also regulate body temperature. Mu and kappa opioid receptors are thought to be in tonic balance, with mu and kappa receptor activation producing hyperthermia and hypothermia, respectively. Endocannabinoids participate in the febrile response, but more studies are needed to determine if a cannabinoid CB1 receptor tone exerts control over basal body temperature. A particularly intense research focus is TRP channels, where TRPV1 channel activation produces hypothermia whereas TRPA1 and TRPM8 channel activation causes hyperthermia. The marked hyperthermia produced by TRPV1 channel antagonists suggests these warm channels tonically control body temperature. A better understanding of the roles of cannabinoid, opioid, and TRP systems in thermoregulation may have broad clinical implications and provide insights into interactions among neurotransmitter systems involved in thermoregulation. PMID:21622235

  10. Mixed Kappa/Mu Opioid Receptor Agonists: The 6β-Naltrexamines

    PubMed Central

    Cami-Kobeci, Gerta; Neal, Adrian P.; Bradbury, Faye A.; Purington, Lauren C.; Aceto, Mario D.; Harris, Louis S.; Lewis, John W.; Traynor, John R.; Husbands, Stephen M.

    2011-01-01

    Ligands from the naltrexamine series have consistently demonstrated agonist activity at kappa opioid receptors (KOR), with varying activity at the mu opioid receptor (MOR). Various 6β-cinnamoylamino derivatives were made with the aim of generating ligands with a KOR agonist/MOR partial agonist profile, as ligands with this activity may be of interest as treatment agents for cocaine abuse. The ligands all displayed the desired high affinity, non-selective binding in vitro and in the functional assays were high efficacy KOR agonists with some partial agonist activity at MOR. Two of the new ligands (12a, 12b) have been evaluated in vivo, with 12a acting as a KOR agonist, and therefore somewhat similar to the previously evaluated analogues 3–6, while 12b displayed predominant MOR agonist activity. PMID:19253970

  11. Early-Life Social Isolation Stress Increases Kappa Opioid Receptor Responsiveness and Downregulates the Dopamine System

    PubMed Central

    Karkhanis, Anushree N; Rose, Jamie H; Weiner, Jeffrey L; Jones, Sara R

    2016-01-01

    Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly

  12. Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness "liking" and "wanting".

    PubMed

    Castro, Daniel C; Berridge, Kent C

    2014-03-19

    A specialized cubic-millimeter hotspot in the rostrodorsal quadrant of medial shell in nucleus accumbens (NAc) of rats may mediate opioid enhancement of gustatory hedonic impact or "liking". Here, we selectively stimulated the three major subtypes of opioid receptors via agonist microinjections [mu (DAMGO), delta (DPDPE), or kappa (U50488H)] and constructed anatomical maps for functional localizations of consequent changes in hedonic "liking" (assessed by affective orofacial reactions to sucrose taste) versus "wanting" (assessed by changes in food intake). Results indicated that the NAc rostrodorsal quadrant contains a shared opioid hedonic hotspot that similarly mediates enhancements of sucrose "liking" for mu, delta, and kappa stimulations. Within the rostrodorsal hotspot boundaries each type of stimulation generated at least a doubling or higher enhancement of hedonic reactions, with comparable intensities for all three types of opioid stimulation. By contrast, a negative hedonic coldspot was mapped in the caudal half of medial shell, where all three types of opioid stimulation suppressed "liking" reactions to approximately one-half normal levels. Different anatomical patterns were produced for stimulation of food "wanting", reflected in food intake. Altogether, these results indicate that the rostrodorsal hotspot in medial shell is unique for generating opioid-induced hedonic enhancement, and add delta and kappa signals to mu as hedonic generators within the hotspot. Also, the identification of a separable NAc caudal coldspot for hedonic suppression, and separate NAc opioid mechanisms for controlling food "liking" versus "wanting" further highlights NAc anatomical heterogeneity and localizations of function within subregions of medial shell.

  13. Opioid adjuvant strategy: improving opioid effectiveness.

    PubMed

    Bihel, Frédéric

    2016-01-01

    Opioid analgesics continue to be the mainstay of pharmacologic treatment of moderate to severe pain. Many patients, particularly those suffering from chronic pain, require chronic high-dose analgesic therapy. Achieving clinical efficacy and tolerability of such treatment regimens is hampered by the appearance of opioid-induced side effects such as tolerance, hyperalgesia and withdrawal syndrome. Among the therapeutic options to improve the opioid effectiveness, this current review focuses on strategies combining opioids to other drugs that can modulate opioid-mediated effects. We will discuss about experimental evidences reported for several potential opioid adjuvants, including N-methyl-D-aspartate receptor antagonists, 5-HT7 agonists, sigma-1 antagonists, I2-R ligands, cholecystokinin antagonists, neuropeptide FF-R antagonists and toll-like receptor 4 antagonists.

  14. Peripherally acting opioid antagonists in the treatment of opiate-related constipation: a systematic review.

    PubMed

    Becker, Gerhild; Galandi, Daniel; Blum, Hubert E

    2007-11-01

    Many patients treated with opioids suffer from constipation. Opiate- or opioid-related constipation is not only a frequent but also a distressing symptom and difficult to treat. There is emerging evidence regarding a novel approach to the management of opiate-related constipation. The aim of this paper is to collect, critically appraise, and summarize the evidence on the effectiveness of recently developed peripherally acting micro-receptor antagonists in the treatment of opiate-related constipation. A comprehensive search of 11 computerized databases was conducted and efforts were made to identify unpublished and ongoing research. Twenty studies were identified; 13 were randomized controlled trials (RCTs) and 7 were Phase II studies assessing toxicity. Studies were mainly executed in healthy volunteers or members of methadone programs with opioid-induced constipation as a model to mimic the condition of patients on opioids. Two RCTs were conducted in hospice patients. Quality of study design and validity of the findings was assessed in all studies. Data show proof of concept but do not allow a definitive answer concerning the effectiveness of the peripherally acting micro-opioid antagonists methylnaltrexone and alvimopan in managing opiate-related constipation. Further research is needed. If future Phase III trials provide supportive data, opioid antagonists may become a standard therapeutic option for the treatment of opiate-related constipation in patients with advanced cancer.

  15. Pharmacologic Profile of Naloxegol, a Peripherally Acting µ-Opioid Receptor Antagonist, for the Treatment of Opioid-Induced Constipation

    PubMed Central

    Floettmann, Eike; Sostek, Mark; Payza, Kemal; Eldon, Michael

    2017-01-01

    Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ-opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ-opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ-opioid receptor in vitro, naloxegol was a potent inhibitor of binding (Ki = 7.42 nM) and a neutral competitive antagonist (pA2 - 7.95); agonist effects were <10% up to 30 μM and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ-opioid receptor in the ENS while preserving CNS-mediated analgesia. PMID:28336575

  16. Role of the Dynorphin/Kappa Opioid Receptor System in the Motivational Effects of Ethanol.

    PubMed

    Anderson, Rachel I; Becker, Howard C

    2017-08-01

    Evidence has demonstrated that dynorphin (DYN) and the kappa opioid receptor (KOR) system contribute to various psychiatric disorders, including anxiety, depression, and addiction. More recently, this endogenous opioid system has received increased attention as a potential therapeutic target for treating alcohol use disorders. In this review, we provide an overview and synthesis of preclinical studies examining the influence of alcohol (ethanol [EtOH]) exposure on DYN/KOR expression and function, as well as studies examining the effects of DYN/KOR manipulation on EtOH's rewarding and aversive properties. We then describe work that has characterized effects of KOR activation and blockade on EtOH self-administration and EtOH dependence/withdrawal-related behaviors. Finally, we address how the DYN/KOR system may contribute to stress-EtOH interactions. Despite an apparent role for the DYN/KOR system in motivational effects of EtOH, support comes from relatively few studies. Nevertheless, review of this literature reveals several common themes: (i) rodent strains genetically predisposed to consume more EtOH generally appear to have reduced DYN/KOR tone in brain reward circuitry; (ii) acute and chronic EtOH exposure typically up-regulate the DYN/KOR system; (iii) KOR antagonists reduce behavioral indices of negative affect associated with stress and chronic EtOH exposure/withdrawal; and (iv) KOR antagonists are effective in reducing EtOH consumption, but are often more efficacious under conditions that engender high levels of consumption, such as dependence or stress exposure. These results support the contention that the DYN/KOR system plays a significant role in contributing to dependence- and stress-induced elevation in EtOH consumption. Overall, more comprehensive analyses (on both behavioral and mechanistic levels) are needed to provide additional insight into how the DYN/KOR system is engaged and adapts to influence the motivation effects of EtOH. This information

  17. Pharmacologic Profile of Naloxegol, a Peripherally Acting µ-Opioid Receptor Antagonist, for the Treatment of Opioid-Induced Constipation.

    PubMed

    Floettmann, Eike; Bui, Khanh; Sostek, Mark; Payza, Kemal; Eldon, Michael

    2017-05-01

    Opioid-induced constipation (OIC) is a common side effect of opioid pharmacotherapy for the management of pain because opioid agonists bind to µ -opioid receptors in the enteric nervous system (ENS). Naloxegol, a polyethylene glycol derivative of naloxol, which is a derivative of naloxone and a peripherally acting µ -opioid receptor antagonist, targets the physiologic mechanisms that cause OIC. Pharmacologic measures of opioid activity and pharmacokinetic measures of central nervous system (CNS) penetration were employed to characterize the mechanism of action of naloxegol. At the human µ -opioid receptor in vitro, naloxegol was a potent inhibitor of binding ( K i = 7.42 nM) and a neutral competitive antagonist (p A 2 - 7.95); agonist effects were <10% up to 30 μ M and identical to those of naloxone. The oral doses achieving 50% of the maximal effect in the rat for antagonism of morphine-induced inhibition of gastrointestinal transit and morphine-induced antinociception in the hot plate assay were 23.1 and 55.4 mg/kg for naloxegol and 0.69 and 1.14 mg/kg by for naloxone, respectively. In the human colon adenocarcinoma cell transport assay, naloxegol was a substrate for the P-glycoprotein transporter, with low apparent permeability in the apical to basolateral direction, and penetrated the CNS 15-fold slower than naloxone in a rat brain perfusion model. Naloxegol-derived radioactivity was poorly distributed throughout the rat CNS and was eliminated from most tissues within 24 hours. These findings corroborate phase 3 clinical studies demonstrating that naloxegol relieves OIC-associated symptoms in patients with chronic noncancer pain by antagonizing the µ -opioid receptor in the ENS while preserving CNS-mediated analgesia. Copyright © 2017 The Author(s).

  18. Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-dependent in Neurons and Astrocytes*

    PubMed Central

    Bruchas, Michael R.; Macey, Tara A.; Lowe, Janet D.; Chavkin, Charles

    2007-01-01

    AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (γ-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism. PMID:16648139

  19. Kappa-receptor selective binding of opioid ligands with a heterocyclic bicyclo[3.3.1]nonan-9-one structure.

    PubMed

    Benyhe, S; Márki, A; Nachtsheim, Corina; Holzgrabe, Ulrike; Borsodi, Anna

    2003-01-01

    Previous pharmacological results have suggested that members of the heterocyclic bicyclo[3.3.1]nonan-9-one-like compounds are potent kappa-opioid receptor specific agonists. One lead molecule of this series. called compound 1 (dimethyl 7-methyl-2,4-di-2-pyridyl-3.7-diazabicyclo[3.3.1]nonan-9-one-1,5-dicarboxylate) exhibited high affinity for [3H]ethylketocyclazocine and [3H]U-69.593 binding sites in guinea pig cerebellar membranes which known to be a good source for kappa1 receptors. It was shown by molecular modelling that heterocyclic bicyclo[3.3.1]nonan-9-ones fit very well with the structure of ketazocine, a prototypic kappa-selective benzomorphan compound; when compared to the arylacetamide structure of U-69.593, a specific kappa1-receptor agonist, a similar geometry was found with a slightly different distribution of the charges. It is postulated, that the essential structural skeleton involved in the opioid activity is an aryl-propyl-amine element distributed along the N7-C6-C5-C4-aryl bonds.

  20. Kappa Opioid Receptors Mediate Heterosynaptic Suppression of Hippocampal Inputs in the Rat Ventral Striatum

    PubMed Central

    2017-01-01

    Kappa opioid receptors (KORs) are highly enriched within the ventral striatum (VS) and are thought to modulate striatal neurotransmission. This includes presynaptic inhibition of local glutamatergic release from excitatory inputs to the VS. However, it is not known which inputs drive this modulation and what impact they have on the local circuit dynamics within the VS. Individual medium spiny neurons (MSNs) within the VS serve as a site of convergence for glutamatergic inputs arising from the PFC and limbic regions, such as the hippocampus (HP). Recent data suggest that competition can arise between these inputs with robust cortical activation leading to a reduction in ongoing HP-evoked MSN responses. Here, we investigated the contribution of KOR signaling in PFC-driven heterosynaptic suppression of HP inputs onto MSNs using whole-cell patch-clamp recordings in slices from adult rats. Optogenetically evoked HP EPSPs were greatly attenuated after a short latency (50 ms) following burst-like PFC electrical stimulation, and the magnitude of this suppression was partially reversed following blockade of GABAARs (GABA Type A receptors), but not GABABRs (GABA Type B receptors). A similar reduction in suppression was observed in the presence of the KOR antagonist, norBNI. Combined blockade of local GABAARs and KORs resulted in complete blockade of PFC-induced heterosynaptic suppression of less salient HP inputs. These findings highlight a mechanism by which strong, transient PFC activity can take precedence over other excitatory inputs to the VS. SIGNIFICANCE STATEMENT Emerging evidence suggests that kappa opioid receptor (KOR) activation can selectively modulate striatal glutamatergic inputs onto medium spiny neurons (MSNs). In this study, we found that robust cortical stimulation leads to a reduction in ongoing hippocampal-evoked MSNs responses through the combined recruitment of local inhibitory mechanisms and activation of presynaptic KORs in the ventral striatum (VS

  1. The contribution of activated peripheral kappa opioid receptors (kORs) in the inflamed knee joint to anti-nociception.

    PubMed

    Moon, Sun Wook; Park, Eui Ho; Suh, Hye Rim; Ko, Duk Hwan; Kim, Yang In; Han, Hee Chul

    2016-10-01

    The systemic administration of opioids can be used for their strong analgesic effect. However, extensive activation of opioid receptors (ORs) beyond the targeted tissue can cause dysphoria, pruritus, and constipation. Therefore, selective activation of peripheral ORs present in the afferent fibers of the targeted tissue can be considered a superior strategy in opioid analgesia to avoid potential adverse effects. The purpose of this study was to clarify the role of peripheral kappa opioid receptors (kORs) in arthritic pain for the possible use of peripheral ORs as a target in anti-nociceptive therapy. We administered U50488 or nor-BNI/DIPPA, a selective agonist or antagonist of kOR, respectively into arthritic rat knee joints induced using 1% carrageenan. After the injection of U50488 or U50488 with nor-BNI or DIPPA into the inflamed knee joint, we evaluated nociceptive behavior as indicated by reduced weight-bearing on the ipsilateral limbs of the rat and recorded the activity of mechanosensitive afferents (MSA). In the inflamed knee joint, the intra-articular application of 1μM, 10nM, or 0.1nM U50488 resulted in a significant reduction in nociceptive behavior. In addition, 1μM and 10nM U50488 decreased MSA activity. However, in a non-inflamed knee joint, 1μM U50488 had no effect on MSA activity. Additionally, intra-articular pretreatment with 20μM nor-BNI or 10μM DIPPA significantly blocked the inhibitory effects of 1μM U50488 on nociceptive behavior and MSA activity in the inflamed knee joint. These results implicate that peripheral kORs can contribute to anti-nociceptive processing in an inflamed knee joint. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Integrated Psychosocial and Opioid-Antagonist Treatment for Alcohol Dependence: A Systematic Review of Controlled Evaluations

    ERIC Educational Resources Information Center

    Vaughn, Michael G.; Howard, Matthew O.

    2004-01-01

    Methodological characteristics and outcomes of 14 controlled clinical investigations of integrated psychosocial and opioid-antagonist alcohol dependence treatment were evaluated. The 14 studies were identified through computerized bibliographic and manual literature searches. Clients receiving integrated psychosocial and opioid-antagonist…

  3. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    PubMed

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Opioid innervation of the caudal ventrolateral medulla is not critical for the expression of the aortic depressor nerve response in the rabbit.

    PubMed

    Drolet, G; Morilak, D A; Chalmers, J

    1991-01-01

    We investigated the influence of endogenous opioids in the caudal ventrolateral medulla (CVLM) on the expression of the baroreflex response induced by the electrical stimulation (50 Hz, 0.2 ms, 11 V, 10 s) of the aortic depressor nerve. We used microinjection of selective opioid antagonists into the functionally identified depressor area of the CVLM in chloralose-anesthetized rabbits. Injection of vehicles or the mu-antagonist beta-funaltrexamine (0.3 nmol) into the CVLM had no effects, while naloxone (20 nmol), ICI 174,864 (delta-antagonist, 0.3 nmol) or nor-binaltorphimine (kappa-antagonist, 1 nmol) abolished the depressor response, but themselves all elicited a tonic depressor effect as well. In contrast, intravenous naloxone (5 mg/kg) induced a small but significant increase in arterial pressure and did not alter the depressor response. Hypotensive hemorrhage induced a decrease in arterial pressure similar to that seen with local injection of naloxone into the CVLM, but did not change the reflex, suggesting that the reflex abolition was not due to the decrease in basal arterial pressure per se. CVLM injection of glutamate (10 nmol) or the GABA-antagonist bicuculline (0.1 nmol), non-opioid agents which activate CVLM and induce a tonic depressor effect, also abolished the depressor response suggesting that the reflex abolition was secondary to general activation or disinhibition of the CVLM. Thus, although the CVLM is tonically inhibited by endogenous opioid inputs acting via delta- and kappa-receptors, our data provide no evidence that opioid neurons which provide input to this region constitute a specific and integral component in mediating the aortic depressor response. However, the more general role that opioids play in tonically influencing the resting level of activity in the CVLM, is nevertheless very important in enabling the normal expression of this baroreflex.

  5. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  6. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  7. Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine.

    PubMed

    Ward, Melissa; Norman, Haval; D'Souza, Manoranjan S

    2018-02-15

    Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice.

    PubMed

    Smith, Craig M; Walker, Lesley L; Leeboonngam, Tanawan; McKinley, Michael J; Denton, Derek A; Lawrence, Andrew J

    2016-11-29

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior.

  9. N-Substituted cis-4a-(3-Hydroxyphenyl)-8a-methyloctahydroisoquinolines Are Opioid Receptor Pure Antagonists

    PubMed Central

    Carroll, F. Ivy; Chaudhari, Sachin; Thomas, James B.; Mascarella, S. Wayne; Gigstad, Kenneth M.; Deschamps, Jeffrey; Navarro, Hernán A.

    2008-01-01

    N-Substituted cis-4a-(3-hydroxyphenyl)-8a-methyloctahydroisoquinolines (6a–g) were designed and synthesized as conformationally constrained analogues of the trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidine (4) class of opioid receptor pure antagonists. The methyloctahydroisoquinolines 6a–g can exist in conformations where the 3-hydroxyphenyl substituent is either axial or equatorial similar to the (3-hydroxyphenyl)piperidines 4. The 3-hydroxyphenyl equatorial conformation is responsible for the antagonist activity observed in the (3-hydroxyphenyl)piperidine antagonists. Single crystal X-ray analysis of 6a shows that the 3-hydroxyphenyl equatorial conformation is favored in the solid state. Molecular modeling studies also suggest that the equatorial conformation has the lower potential energy relative to the axial conformation. Evaluation of compounds 6a–g in the [35S]GTP-γ-S in vitro functional assay showed that they were opioid receptor pure antagonists. N-[4a-(3-Hydroxyphenyl)-8a-methyl-2-(3-phenylpropyl)octahydroisoquinoline-6-yl]-3-(piperidin-1-yl)propionamide (6d) with a Ke of 0.27 nM at the κ opioid receptor with 154- and 46-fold selectively relative to the μ and δ receptors, respectively, possessed the best combination of κ potency and selectivity. PMID:16366600

  10. Mu/Kappa Opioid Interactions in Rhesus Monkeys: Implications for Analgesia and Abuse Liability

    PubMed Central

    Negus, S. Stevens; Katrina Schrode, KA; Stevenson, Glenn W.

    2008-01-01

    Mu opioid receptor agonists are clinically valuable as analgesics; however, their use is limited by high abuse liability. Kappa opioid agonists also produce antinociception, but they do not produce mu agonist-like abuse-related effects, suggesting that they may enhance the antinociceptive effects and/or attenuate the abuse-related effects of mu agonists. To evaluate this hypothesis, the present study examined interactions between the mu agonist fentanyl and the kappa agonist U69,593 in three behavioral assays in rhesus monkeys. In an assay of schedule-controlled responding, monkeys responded under a fixed-ratio 30 (FR 30) schedule of food presentation. Fentanyl and U69,593 each produced rate-decreasing effects when administered alone, and mixtures of 0.22:1, 0.65:1 and 1.96:1 U69,593/fentanyl usually produced subadditive effects. In an assay of thermal nociception, tail withdrawal latencies were measured from water heated to 50°C. Fentanyl and U69,593 each produced dose-dependent antinociception, and effects were additive for all mixtures. In an assay of drug self-administration, rhesus monkeys responded for i.v. drug injection, and both dose and FR values were manipulated. Fentanyl maintained self-administration, whereas U69,593 did not. Addition of U69,593 to fentanyl produced a proportion-dependent decrease in both rates of fentanyl self-administration and behavioral economic measures of the reinforcing efficacy of fentanyl. Taken together, these results suggest that simultaneous activation of mu and kappa receptors, either with a mixture of selective drugs or with a single drug that targets both receptors, may reduce abuse liability without reducing analgesic effects relative to selective mu agonists administered alone. PMID:18837635

  11. Effects of opioid- and non-opioid analgesics on responses to psychosocial stress in humans.

    PubMed

    Bershad, Anya K; Miller, Melissa A; Norman, Greg J; de Wit, Harriet

    2018-06-01

    Both preclinical and clinical evidence suggests that the endogenous opioid system is involved in responses to stress. For example, in animal models opioid agonists reduce isolation distress whereas opioid antagonists increase isolation distress. We recently reported that the mixed mu agonist and kappa antagonist buprenorphine dampened responses to acute psychosocial stress in humans. Now we extend this to study the effects of a pure mu-opioid agonist, hydromorphone, and a non-opioid analgesic, acetaminophen, on response to social stress. We compared the effect of hydromorphone (2 and 4 mg), acetaminophen (1000 mg) to a placebo using a between subject design. Healthy adult volunteers were randomly assigned to receive placebo (N = 13), 2 mg hydromorphone (N = 12), 4 mg hydromorphone (N = 12), or 1000 mg acetaminophen (paracetamol; N = 13) under double-blind conditions before undergoing a stress task or a control task on two separate sessions. The stress task, consisting of a standardized speaking task and the non-stressful control task were presented in counterbalanced order. Dependent measures included mood ratings, subjective appraisal of the stress (or no-stress) task, salivary cortisol, pupil diameter, heart rate, and blood pressure. The stress task produced its expected increase in heart rate, blood pressure, salivary cortisol, pupil diameter, and subjective ratings of anxiety and negative mood. Hydromorphone dose-dependently dampened cortisol responses to stress, and decreased ratings of how "challenging" participants found the task. Acetaminophen did not affect physiological responses, but, like hydromorphone, decreased ratings of how "challenging" the task was. The hydromorphone results support the idea that the mu-opioid system is involved in physiological responses to acute stress in humans, in line with results from preclinical studies. The non-opioid analgesic acetaminophen did not dampen physiological responses, but did reduce

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salomon, G.; Park, E.J.; Quock, R.M.

    This study was conducted to identify the opioid receptor subtype(s) responsible for RFR-induced analgesia. Male Swiss Webster mice, 20-25 g, were exposed to 20 mW/cm{sup 2} RFR in a 2,450-MHz waveguide system for 10 min, then tested 15 min later in the abdominal constriction paradigm which detects {mu}- and {kappa}-opioid activity. Immediately following RFR exposure, different groups of mice were pretreated intracerebroventricularly with different opioid receptor blockers with selectivity for {mu}- or {kappa}-opioid receptors. Results show that RFR-induced analgesia was attenuated by higher but not lower doses of the non-selective antagonist naloxone, but the selective {mu}-opioid antagonist {beta}-funaltrexamine and bymore » the selective {kappa}-opioid antagonist norbinaltorphimine. RFR-induced analgesia was also reduced by subcutaneous pretreatment with 5.0 mg/kg of the {mu}-/{kappa}-opioid antagonist({minus})-5,9-diethyl-{alpha}-5,9-dialkyl-2{prime}-hydroxy-6,7-benzomorphan(MR-2266). These findings suggest that RFR-induced analgesia may be mediated by both {mu}- and {kappa}-opioid mechanisms.« less

  13. Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities.

    PubMed

    Harland, Aubrie A; Yeomans, Larisa; Griggs, Nicholas W; Anand, Jessica P; Pogozheva, Irina D; Jutkiewicz, Emily M; Traynor, John R; Mosberg, Henry I

    2015-11-25

    In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.

  14. Hypothalamic kappa opioid receptor mediates both diet-induced and melanin concentrating hormone-induced liver damage through inflammation and endoplasmic reticulum stress.

    PubMed

    Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben

    2016-10-01

    The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on

  15. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice

    PubMed Central

    Smith, Craig M.; Walker, Lesley L.; Leeboonngam, Tanawan; McKinley, Michael J.; Denton, Derek A.; Lawrence, Andrew J.

    2016-01-01

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior. PMID:27849613

  16. Evolution of the Bifunctional Lead μ Agonist / δ Antagonist Containing the Dmt-Tic Opioid Pharmacophore.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Trapella, Claudio; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Neumeyer, John L

    2010-02-17

    Based on a renewed importance recently attributed to bi- or multifunctional opioids, we report the synthesis and pharmacological evaluation of some analogues derived from our lead μ agonist / δ antagonist, H-Dmt-Tic-Gly-NH-Bzl. Our previous studies focused on the importance of the C-teminal benzyl function in the induction of such bifunctional activity. The introduction of some substituents in the para position of the phenyl ring (-Cl, -CH(3), partially -NO(2), inactive -NH(2)) was found to give a more potent μ agonist / antagonist effect associated with a relatively unmodified δ antagonist activity (pA(2) = 8.28-9.02). Increasing the steric hindrance of the benzyl group (using diphenylmethyl and tetrahydroisoquinoline functionalities) substantially maintained the μ agonist and δ antagonist activities of the lead compound. Finally and quite unexpectedly D-Tic2, considered as a wrong opioid message now; inserted into the reference compound in lieu of L-Tic, provided a μ agonist / δ agonist better than our reference ligand (H-Dmt-Tic-Gly-NH-Ph) and was endowed with the same pharmacological profile.

  17. Noribogaine is a G-protein biased κ-opioid receptor agonist.

    PubMed

    Maillet, Emeline L; Milon, Nicolas; Heghinian, Mari D; Fishback, James; Schürer, Stephan C; Garamszegi, Nandor; Mash, Deborah C

    2015-12-01

    Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders. Copyright © 2015 The Authors. Published by Elsevier

  18. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they testedmore » the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.« less

  19. New opioid receptor antagonist: Naltrexone-14-O-sulfate synthesis and pharmacology.

    PubMed

    Zádor, Ferenc; Király, Kornél; Váradi, András; Balogh, Mihály; Fehér, Ágnes; Kocsis, Dóra; Erdei, Anna I; Lackó, Erzsébet; Zádori, Zoltán S; Hosztafi, Sándor; Noszál, Béla; Riba, Pál; Benyhe, Sándor; Fürst, Susanna; Al-Khrasani, Mahmoud

    2017-08-15

    Opioid antagonists, naloxone and naltrexone have long been used in clinical practice and research. In addition to their low selectivity, they easily pass through the blood-brain barrier. Quaternization of the amine group in these molecules, (e.g. methylnaltrexone) results in negligible CNS penetration. In addition, zwitterionic compounds have been reported to have limited CNS access. The current study, for the first time gives report on the synthesis and the in vitro [competition binding, G-protein activation, isolated mouse vas deferens (MVD) and mouse colon assay] pharmacology of the zwitterionic compound, naltrexone-14-O-sulfate. Naltrexone, naloxone, and its 14-O-sulfate analogue were used as reference compounds. In competition binding assays, naltrexone-14-O-sulfate showed lower affinity for µ, δ or κ opioid receptor than the parent molecule, naltrexone. However, the μ/κ opioid receptor selectivity ratio significantly improved, indicating better selectivity. Similar tendency was observed for naloxone-14-O-sulfate when compared to naloxone. Naltrexone-14-O-sulfate failed to activate [ 35 S]GTPγS-binding but inhibit the activation evoked by opioid agonists (DAMGO, Ile 5,6 deltorphin II and U69593), similarly to the reference compounds. Schild plot constructed in MVD revealed that naltrexone-14-O-sulfate acts as a competitive antagonist. In mouse colon, naltrexone-14-O-sulfate antagonized the inhibitory effect of morphine with lower affinity compared to naltrexone and higher affinity when compared to naloxone or naloxone-14-O-sulfate. In vivo (mouse tail-flick test), subcutaneously injected naltrexone-14-O-sulfate antagonized morphine's antinociception in a dose-dependent manner, indicating it's CNS penetration, which was unexpected from such zwitter ionic structure. Future studies are needed to evaluate it's pharmacokinetic profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism

    PubMed Central

    Wells, Audrey M.; Ridener, Elysia; Kim, Woori; Carroll, F. Ivy; Cohen, Bruce M.

    2017-01-01

    humans. Whereas some of these alterations recover quickly upon cessation of stress, others persist. Administration of a kappa-opioid receptor (KOR) antagonist reduced stress effects or hastened recovery, consistent with the previously reported antistress effects of this class of agents. Use of endpoints, such as sleep and circadian rhythm, that are homologous across species will facilitate the implementation of translational studies that better predict clinical outcomes in humans, improve the success of clinical trials, and facilitate the development of more effective therapeutics. PMID:28674176

  1. Effects of Chronic Social Defeat Stress on Sleep and Circadian Rhythms Are Mitigated by Kappa-Opioid Receptor Antagonism.

    PubMed

    Wells, Audrey M; Ridener, Elysia; Bourbonais, Clinton A; Kim, Woori; Pantazopoulos, Harry; Carroll, F Ivy; Kim, Kwang-Soo; Cohen, Bruce M; Carlezon, William A

    2017-08-09

    humans. Whereas some of these alterations recover quickly upon cessation of stress, others persist. Administration of a kappa-opioid receptor (KOR) antagonist reduced stress effects or hastened recovery, consistent with the previously reported antistress effects of this class of agents. Use of endpoints, such as sleep and circadian rhythm, that are homologous across species will facilitate the implementation of translational studies that better predict clinical outcomes in humans, improve the success of clinical trials, and facilitate the development of more effective therapeutics. Copyright © 2017 the authors 0270-6474/17/377656-13$15.00/0.

  2. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    PubMed

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  3. Prenatal exposure to vanilla or alcohol induces crawling after these odors in the neonate rat: The role of mu and kappa opioid receptor systems.

    PubMed

    Gaztañaga, Mirari; Aranda-Fernández, P Ezequiel; Chotro, M Gabriela

    2015-09-01

    Rat fetuses can perceive chemosensory stimuli derived from their mother's diet, and they may learn about those stimuli. In previous studies we have observed that prenatal exposure to alcohol during the last days of gestation increases the acceptance and liking of an alcohol flavor in infant and adolescent rats. While these results were not found after prenatal exposure to vanilla, cineole or anise, suggesting that the pharmacological properties of alcohol, mediated by the opioid system, underlie the effects observed with this drug. Considering that other studies report enhanced acceptance of non-alcohol flavors experienced prenatally when subjects were tested before infancy, we explore the possibility of observing similar results if testing 1-day old rats exposed prenatally to vanilla. Using an "odor-induced crawling" testing procedure, it was observed that neonates exposed prenatally to vanilla or alcohol crawl for a longer distance towards the experienced odor than to other odors or than control pups. Blocking mu, but not kappa opioid receptors, reduced the attraction of vanilla odor to neonates exposed to vanilla in utero, while the response to alcohol in pups exposed prenatally to this drug was affected by both antagonists. Results confirm that exposure to a non-alcohol odor enhances postnatal responses to it, observable soon after birth, while also suggesting that the mu opioid receptor system plays an important role in generating this effect. The results also imply that with alcohol exposure, the prenatal opioid system is wholly involved, which could explain the longer retention of the enhanced attraction to alcohol following prenatal experience with the drug. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Kinase cascades and ligand-directed signaling at the kappa opioid receptor.

    PubMed

    Bruchas, Michael R; Chavkin, Charles

    2010-06-01

    The dynorphin/kappa opioid receptor (KOR) system has been implicated as a critical component of the stress response. Stress-induced activation of dynorphin-KOR is well known to produce analgesia, and more recently, it has been implicated as a mediator of stress-induced responses including anxiety, depression, and reinstatement of drug seeking. Drugs selectively targeting specific KOR signaling pathways may prove potentially useful as therapeutic treatments for mood and addiction disorders. KOR is a member of the seven transmembrane spanning (7TM) G-protein coupled receptor (GPCR) superfamily. KOR activation of pertussis toxin-sensitive G proteins leads to Galphai/o inhibition of adenylyl cyclase production of cAMP and releases Gbetagamma, which modulates the conductances of Ca(+2) and K(+) channels. In addition, KOR agonists activate kinase cascades including G-protein coupled Receptor Kinases (GRK) and members of the mitogen-activated protein kinase (MAPK) family: ERK1/2, p38 and JNK. Recent pharmacological data suggests that GPCRs exist as dynamic, multi-conformational protein complexes that can be directed by specific ligands towards distinct signaling pathways. Ligand-induced conformations of KOR that evoke beta-arrestin-dependent p38 MAPK activation result in aversion; whereas ligand-induced conformations that activate JNK without activating arrestin produce long-lasting inactivation of KOR signaling. In this review, we discuss the current status of KOR signal transduction research and the data that support two novel hypotheses: (1) KOR selective partial agonists that do not efficiently activate p38 MAPK may be useful analgesics without producing the dysphoric or hallucinogenic effects of selective, highly efficacious KOR agonists and (2) KOR antagonists that do not activate JNK may be effective short-acting drugs that may promote stress-resilience.

  5. Nonpeptidic Delta (δ) Opioid Agonists and Antagonists of the Diarylmethylpiperazine Class: What Have We Learned?

    NASA Astrophysics Data System (ADS)

    Calderon, Silvia N.

    The discovery of the selective delta (δ) opioid agonists SNC 80 and BW373U86, which possess a diarylmethylpiperazine structure unique among opioids, represented a major advance in the field of δ-opioid ligands. Extensive research has recently been performed to uncover the structure-activity relationships (SAR) of this class of ligands, thereby providing valuable tools for the pharmacological characterization of the δ opioid receptor. This review focuses on the SAR of this unique series of ligands, and provides an overview of the various chemical routes that have been developed and optimized through the years to allow the syntheses of these ligands on a multigram scale. The search for selective δ opioid agonists and antagonists, as well as for those with mixed opioid agonist properties with potential therapeutic value, continues. Several questions regarding the interaction at the molecular level of diphenylmethylpiperazine derivatives and related analogs with opioid receptors and in particular with the δ opioid system still remain unanswered. Indeed, the development and pharmacological characterization of novel nonpeptidic δ opioid ligands remains an active area of research, as it may provide a better understanding of the role of this receptor in multiple disease states and disorders.

  6. Beta-methyl substitution of cyclohexylalanine in Dmt-Tic-Cha-Phe peptides results in highly potent delta opioid antagonists.

    PubMed

    Tóth, Géza; Ioja, Eniko; Tömböly, Csaba; Ballet, Steven; Tourwé, Dirk; Péter, Antal; Martinek, Tamás; Chung, Nga N; Schiller, Peter W; Benyhe, Sándor; Borsodi, Anna

    2007-01-25

    The opioid peptide TIPP (H-Tyr-Tic-Phe-Phe-OH, Tic:1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) was substituted with Dmt (2',6'-dimethyltyrosine) and a new unnatural amino acid, beta-MeCha (beta-methyl-cyclohexylalanine). This double substitution led to a new series of opioid peptides displaying subnanomolar delta antagonist activity and mu agonist or antagonist properties depending on the configuration of the beta-MeCha residue. The most promising analog, H-Dmt-Tic-(2S,3S)-beta-MeCha-Phe-OH was a very selective delta antagonist both in the mouse vas deferens (MVD) assay (Ke = 0.241 +/- 0.05 nM) and in radioligand binding assay (K i delta = 0.48 +/- 0.05 nM, K i mu/K i delta = 2800). The epimeric peptide H-Dmt-Tic-(2S,3R)-beta-MeCha-Phe-OH and the corresponding peptide amide turned out to be mixed partial mu agonist/delta antagonists in the guinea pig ileum and MVD assays. Our results constitute further examples of the influence of Dmt and beta-methyl substitution as well as C-terminal amidation on the potency, selectivity, and signal transduction properties of TIPP related peptides. Some of these compounds represent valuable pharmacological tools for opioid research.

  7. Novel pharmacology: asimadoline, a kappa-opioid agonist, and visceral sensation.

    PubMed

    Camilleri, M

    2008-09-01

    Asimadoline is a potent kappa-opioid receptor agonist with a diaryl acetamide structure. It has high affinity for the kappa receptor, with IC(50) of 5.6 nmol L(-1) (guinea pig) and 1.2 nmol L(-1) (human recombinant), and high selectively with kappa : micro : delta binding ratios of 1 : 501 : 498 in human recombinant receptors. It acts as a complete agonist in in vitro assay. Asimadoline reduced sensation in response to colonic distension at subnoxious pressures in healthy volunteers and in irritable bowel syndrome (IBS) patients without alteration of colonic compliance. Asimadoline reduced satiation and enhanced the postprandial gastric volume (in female volunteers). However, there were no significant effects on gastrointestinal transit, colonic compliance, fasting or postprandial colonic tone. In a clinical trial in 40 patients with functional dyspepsia (Rome II), asimadoline did not significantly alter satiation or symptoms over 8 weeks. However, asimadoline, 0.5 mg, significantly decreased satiation in patients with higher postprandial fullness scores, and daily postprandial fullness severity (over 8 weeks); the asimadoline 1.0 mg group was borderline significant. In a clinical trial in patients with IBS, average pain 2 h post-on-demand treatment with asimadoline was not significantly reduced. Post hoc analyses suggest that asimadoline was effective in mixed IBS. In a 12-week study in 596 patients, chronic treatment with 0.5 mg and 1.0 mg asimadoline was associated with adequate relief of pain and discomfort, improvement in pain score and number of pain-free days in patients with IBS-D. The 1.0 mg dose was also efficacious in IBS-alternating. There were also weeks with significant reduction in bowel frequency and urgency. Asimadoline has been well tolerated in human trials to date.

  8. Activators of potassium M currents have anticonvulsant actions in two rat models of encephalitis

    PubMed Central

    Solbrig, Marylou V.; Adrian, Russell; Wechsler, Steven L.; Koob, George F.

    2010-01-01

    Opioid systems in hippocampus regulate excitability and kappa opioids have a role in anticonvulsant protection, but their mechanisms of action are incompletely understood. We examined the ability of opioid and nonopioid agents with overlapping ionic mechanisms and actions similar to kappa opioid agonists, to block seizures in rat models of encephalitis due to Borna Disease virus and Herpes Simplex Virus Type-1. Naltrindole, a delta antagonist and thus a kappa opioid sparing agent, (10 mg/kg s.c.) blocked spontaneous and naloxone (opioid antagonist)-induced seizures in the models, but produced somatic signs similar to opioid withdrawal. Given that delta antagonists as well as kappa opioid agonists in hippocampus enhance potassium M currents (IM), we tested the effect of the IM augmenter flupirtine. Flupirtine (20 mg/kg i.p.) prevented seizures in Borna and herpes infected rats, without signs of withdrawal, hypotonia or sedation. The results support the efficacy of opioid and nonopioid drugs in modulating naloxone-induced seizures in critical illness due to viral encephalitis and by analogy, opioid withdrawal seizures. PMID:17126318

  9. Modulation of opioid analgesia by agmatine.

    PubMed

    Kolesnikov, Y; Jain, S; Pasternak, G W

    1996-01-18

    Administered alone, agmatine at doses of 0.1 or 10 mg/kg is without effect in the mouse tailflick assay. However, agmatine enhances morphine analgesia in a dose-dependent manner, shifting morphine's ED50 over 5-fold. A far greater effect is observed when morphine is given intrathecally (9-fold shift) than after intracerebroventricular administration (2-fold). In contrast to the potentiation of morphine analgesia, agmatine (10 mg/kg) has no effect on morphine's inhibition of gastrointestinal transit. delta-Opioid receptor-mediated analgesia also is potentiated by agmatine, but kappa1-receptor-mediated (U50,488H; trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] benzeneacetemide) and kappa3-opioid receptor-mediated (naloxone benzoylhydrazone) analgesia is not significantly enhanced by any dose of agmatine tested in this acute model. In chronic studies, agmatine at a low dose (0.1 mg/kg) which does not affect morphine analgesia acutely prevents tolerance following chronic morphine dosing for 10 days. A higher agmatine dose (10 mg/kg) has a similar effect. Agmatine also blocks tolerance to the delta-opioid receptor ligand [D-Pen2,D-Pen5]enkephalin given intrathecally, but not to the kappa3-opioid receptor agonist naloxone benzoylhydrazone. Despite its inactivity on kappa1-opioid analgesia in the acute model, agmatine prevents kappa1-opioid receptor-mediated tolerance. These studies demonstrate the dramatic interactions between agmatine and opioid analgesia and tolerance.

  10. Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats.

    PubMed

    Nemeth, Christina L; Paine, Tracie A; Rittiner, Joseph E; Béguin, Cécile; Carroll, F Ivy; Roth, Bryan L; Cohen, Bruce M; Carlezon, William A

    2010-06-01

    Disruptions in perception and cognition are characteristic of psychiatric conditions such as schizophrenia. Studies of pharmacological agents that alter perception and cognition in humans might provide a better understanding of the brain substrates of these complex processes. One way to study these states in rodents is with tests that require attention and visual perception for correct performance. We examined the effects of two drugs that cause disruptions in perception and cognition in humans-the kappa-opioid receptor (KOR) agonist salvinorin A (salvA; 0.125-4.0 mg/kg) and the non-competitive NMDA receptor antagonist ketamine (0.63-20 mg/kg)-on behavior in rats using the 5-choice serial reaction time task (5CSRTT), a food-motivated test that quantifies attention. We also compared the binding profiles of salvA and ketamine at KORs and NMDA receptors. SalvA and ketamine produced the same pattern of disruptive effects in the 5CSRTT, characterized by increases in signs often associated with reduced motivation (omission errors) and deficits in processing (elevated latencies to respond correctly). Sessions in which rats were fed before testing suggest that reduced motivation produces a subtly different pattern of behavior. Pretreatment with the KOR antagonist JDTic (10 mg/kg) blocked all salvA effects and some ketamine effects. Binding and function studies revealed that ketamine is a full agonist at KORs, although not as potent or selective as salvA. SalvA and ketamine have previously under-appreciated similarities in their behavioral effects and pharmacological profiles. By implication, KORs might be involved in some of the cognitive abnormalities observed in psychiatric disorders such as schizophrenia.

  11. Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats

    PubMed Central

    Nemeth, Christina L.; Paine, Tracie A.; Rittiner, Joseph E.; Béguin, Cécile; Carroll, F. Ivy; Roth, Bryan L.; Cohen, Bruce M.

    2010-01-01

    Background Disruptions in perception and cognition are characteristic of psychiatric conditions such as schizophrenia. Studies of pharmacological agents that alter perception and cognition in humans might provide a better understanding of the brain substrates of these complex processes. One way to study these states in rodents is with tests that require attention and visual perception for correct performance. Methods We examined the effects of two drugs that cause disruptions in perception and cognition in humans—the kappa-opioid receptor (KOR) agonist salvinorin A (salvA; 0.125–4.0 mg/kg) and the non-competitive NMDA receptor antagonist ketamine (0.63–20 mg/kg)—on behavior in rats using the 5-choice serial reaction time task (5CSRTT), a food-motivated test that quantifies attention. We also compared the binding profiles of salvA and ketamine at KORs and NMDA receptors. Results SalvA and ketamine produced the same pattern of disruptive effects in the 5CSRTT, characterized by increases in signs often associated with reduced motivation (omission errors) and deficits in processing (elevated latencies to respond correctly). Sessions in which rats were fed before testing suggest that reduced motivation produces a subtly different pattern of behavior. Pretreatment with the KOR antagonist JDTic (10 mg/kg) blocked all salvA effects and some ketamine effects. Binding and function studies revealed that ketamine is a full agonist at KORs, although not as potent or selective as salvA. Conclusions SalvA and ketamine have previously underappreciated similarities in their behavioral effects and pharmacological profiles. By implication, KORs might be involved in some of the cognitive abnormalities observed in psychiatric disorders such as schizophrenia. PMID:20358363

  12. Alterations in food intake elicited by GABA and opioid agonists and antagonists administered into the ventral tegmental area region of rats.

    PubMed

    Echo, Joyce A; Lamonte, Nicole; Ackerman, Tsippa F; Bodnar, Richard J

    2002-05-01

    Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.

  13. The novel micro-opioid receptor antagonist, [N-allyl-Dmt(1)]endomorphin-2, attenuates the enhancement of GABAergic neurotransmission by ethanol.

    PubMed

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A; Lazarus, Lawrence H; Swartzwelder, H S

    2009-01-01

    We investigated the effects of [N-allyl-Dmt(1)]endomorphin-2 (TL-319), a novel and highly potent micro-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABA(A) receptor-mediated synaptic activity in the hippocampus. Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 microM. These data indicate that blockade of micro-opioid receptors by low concentrations of [N-allyl-Dmt(1)]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction.

  14. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist

    PubMed Central

    Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Mathiesen, Jesper M.; Sunahara, Roger K.; Pardo, Leonardo; Weis, William I.; Kobilka, Brian K.; Granier, Sébastien

    2012-01-01

    Summary Opium is one of the world’s oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many of their undesirable side effects (sedation, apnea and dependence) by binding to and activating the G-protein-coupled μ-opioid receptor (μOR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the μOR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most GPCRs published to date, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the μOR crystallizes as a two-fold symmetric dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction. PMID:22437502

  15. Role of mu, but not delta or kappa, opioid receptors in context-induced reinstatement of oxycodone seeking.

    PubMed

    Bossert, Jennifer M; Hoots, Jennifer K; Fredriksson, Ida; Adhikary, Sweta; Zhang, Michelle; Venniro, Marco; Shaham, Yavin

    2018-05-19

    Relapse to nonmedical use of prescription opioids often occurs after exposure to places previously associated with drug use. Here, we describe a rat model of context-induced reinstatement of oxycodone seeking after repeated cycles of drug self-administration and extinction-induced abstinence. We also determined the role of mu, delta, and kappa opioid receptors (MOR, DOR, KOR) in this reinstatement. We trained rats to self-administer oxycodone for 6 h/d in Context A; lever pressing was paired with a discrete cue. Next, we extinguished the lever pressing in the presence of the discrete cue in Context B and then tested the rats for reinstatement of oxycodone seeking in both contexts. We retrained rats to self-administer oxycodone in Context A, re-extinguished their lever pressing in Context B, and retested them for reinstatement in both contexts. Prior to testing, we injected the rats with vehicle or antagonists of MOR (naltrexone; 0.5 or 1.0 mg/kg), DOR (naltrindole; 7.5 or 15 mg/kg), or KOR (LY2456302; 5 or 10 mg/kg). We also tested the effect of naltrexone, naltrindole, and LY2456302 on oxycodone self-administration under fixed-ratio-1 (FR1) and progressive-ratio (PR) reinforcement schedules. We observed context-induced reinstatement of oxycodone seeking after repeated cycles of drug self-administration and extinction. Naltrexone, but not naltrindole or LY2456302, injections decreased this reinstatement. Additionally, naltrexone increased oxycodone self-administration under the FR1 schedule and decreased oxycodone self-administration under the PR schedule; naltrindole and LY2456302 were ineffective. Results demonstrate a critical role of MOR, but not DOR or KOR, in context-induced reinstatement of oxycodone seeking and oxycodone self-administration. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction.

    PubMed

    Karkhanis, Anushree; Holleran, Katherine M; Jones, Sara R

    2017-01-01

    The dynorphin/kappa opioid receptor (KOR) system is implicated in the "dark side" of addiction, in which stress exacerbates maladaptive responses to drug and alcohol exposure. For example, acute stress and acute ethanol exposure result in an elevation in dynorphin, the KOR endogenous ligand. Activation of KORs results in modulation of several neurotransmitters; however, this chapter will focus on its regulatory effects on dopamine in mesolimbic areas. Specifically, KOR activation has an inhibitory effect on dopamine release, thereby influencing reward processing. Repeated stimulation of KORs, for example, via chronic drug and/or stress exposure, results in increased function of the dynorphin/KOR system. This augmentation in KOR function shifts the homeostatic balance in favor of an overall reduction in dopamine signaling via either by reducing dopamine release or by increasing dopamine transporter function. This chapter examines the effects of chronic ethanol exposure on KOR function and the downstream effects on dopamine transmission. Additionally, the impact of chronic cocaine exposure and its effects on KOR function will be explored. Further, KORs may also be involved in driving excessive consumption of food, contributing to the risk of developing obesity. While some studies have shown that KOR agonists reduce drug intake, other studies have shown that antagonists reduce addiction-like behaviors, demonstrating therapeutic potential. For example, KOR inhibition reduces ethanol intake in dependent animals, motivation to self-administer cocaine in chronic stress-exposed animals, and food consumption in obese animals. This chapter will delve into the mechanisms by which modulation of the dynorphin/KOR system may be therapeutic. © 2017 Elsevier Inc. All rights reserved.

  17. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    PubMed Central

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  18. Use of receptor chimeras to identify small molecules with high affinity for the dynorphin A binding domain of the kappa opioid receptor.

    PubMed

    Kumar, Virendra; Guo, Deqi; Marella, Michael; Cassel, Joel A; Dehaven, Robert N; Daubert, Jeffrey D; Mansson, Erik

    2008-06-15

    A series of 2-substituted sulfamoyl arylacetamides of general structure 2 were prepared as potent kappa opioid receptor agonists and the affinities of these compounds for opioid and chimeric receptors were compared with those of dynorphin A. Compounds 2e and 2i were identified as non-peptide small molecules that bound to chimeras 3 and 4 with high affinities similar to dynorphin A, resulting in K(i) values of 1.5 and 1.2 nM and 1.3 and 2.2 nM, respectively.

  19. Naloxegol, an opioid antagonist with reduced CNS penetration: Mode-of-action and human relevance for rat testicular tumours.

    PubMed

    Andersson, Håkan; Mitchard, Terri; Johnson, Nakpangi; Floettmann, Eike

    2017-08-15

    Naloxegol is an opioid antagonist which has been developed for the treatment of patients with opioid induced constipation. In the nonclinical safety program naloxegol was shown to have a very benign toxicity profile. In the rat, but not the mouse, 2-year carcinogenicity study a change in tumour pattern with an increase in testicular Leydig cell tumours (LCT) was observed after dosing at high (supra-pharmacological) concentrations. To establish the basis of the increase in LCT and to assess its potential relevance to humans, studies to exclude and potentially identify mode-of-action (MoA) were performed. A genotoxic mechanism was ruled out following negative results in the Ames, mouse lymphoma, and micronucleus assays. An effect on androgen metabolism was excluded since the treatment of rats with naloxegol for 14days did not result in any induction of CYP protein levels. It was demonstrated that administration of centrally restricted opioid antagonists naloxegol or methylnaltrexone at high doses induced an increase in LH release with no clear increase in testosterone, in contrast to the centrally acting opioid antagonist naloxone, which showed marked increases in both LH and testosterone. LCT due to increased LH stimulation is common in rats but not documented in humans. Collectively, the lack of genotoxicity signal, the lack of androgen effect, the increase in LH secretion in rats, which is no considered to be relevant for LCT formation in humans, and high margins to clinical exposures, the observed increase in LCT in the rat is not expected to be clinically relevant. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Selective kappa-opioid agonists: synthesis and structure-activity relationships of piperidines incorporating on oxo-containing acyl group.

    PubMed

    Giardina, G; Clarke, G D; Dondio, G; Petrone, G; Sbacchi, M; Vecchietti, V

    1994-10-14

    This study describes the synthesis and the structure-activity relationships (SARs) of the (S)-(-)-enantiomers of a novel class of 2-(aminomethyl)piperidine derivatives, using kappa-opioid binding affinity and antinociceptive potency as the indices of biological activity. Compounds incorporating the 1-tetralon-6-ylacetyl residue (30 and 34-45) demonstrated an in vivo antinociceptive activity greater than predicted on the basis of their kappa-binding affinities. In particular, (2S)-2-[(dimethylamino)methyl]-1-[(5,6,7,8-tetrahydro-5-oxo-2- naphthyl)acetyl]piperidine (34) was found to have a potency similar to spiradoline in animal models of antinociception after subcutaneous administration, with ED50s of 0.47 and 0.73 mumol/kg in the mouse and in the rat abdominal constriction tests, respectively. Further in vivo studies in mice and/or rats revealed that compound 34, compared to other selective kappa-agonists, has a reduced propensity to cause a number of kappa-related side effects, including locomotor impairment/sedation and diuresis, at antinociceptive doses. For example, it has an ED50 of 26.5 mumol/kg sc in the rat rotarod model, exhibiting a ratio of locomotor impairment/sedation vs analgesia of 36. Possible reasons for this differential activity and its clinical consequence are discussed.

  1. A Kappa Opioid Model of Atypical Altered Consciousness and Psychosis: U50488, DOI, AC90179 Effects on Prepulse Inhibition and Locomotion in Mice.

    PubMed

    Ruderman, Michael A; Powell, Susan B; Geyer, Mark A

    2009-07-01

    Sensorimortor gating and locomotion are behaviors that reflect pre-attentive sensory filtering and higher order, top-down, sensory processing, respectively. These processes are thought to affect either the perception of novelty in an environment (filtering) or cognition (higher order processing), salient features of models of altered states of consciousness (ASC). Drugs with highly selective receptor affinities that produce ASC can help to establish neural correlates, pathways, and mechanisms underlying ASC. Furthermore, screening for substances that selectively reverse drug-induced sensory processing departures is valuable for development of experimental antipsychotics. This study investigated the anomalous opioid sub-type, the kappa opioid (KA) system, within the two ASC models. Significant interaction and reversal effects between KA and the serotonin/2A (5-HT2A) system - the serotonin sub-type associated with classical psychedelics - were observed in three BPM measures. These measures showed that KA activation-induced effects could be reversed by 5-HT2A deactivation. These results suggest that KA could function as an atypical antipsychotic medications and/or as a screening tool for new antipsychotic medicines. The experimental work for this study comprised dose-response and reversal experiments with drugs that activate and deactivate kappa opioid and serotonin systems in the two behavioral models for the first time in mice.

  2. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism.

    PubMed

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-02-01

    The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i)  30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological

  3. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins.

    PubMed

    Bedini, Andrea

    2015-01-01

    Bioluminescence resonance energy transfer (BRET) is a very sensitive technique employed to study protein-protein interactions, including G-protein-coupled receptors (GPCRs) hetero- and homo-dimerization. Recently, BRET has also been used to investigate the interaction between GPCRs (e.g., β2 adrenergic receptor, muscarinic M2 receptor, dopaminergic D2 receptor) and non-visual arrestins. Here a BRET protocol is described to investigate interactions between the kappa opioid receptor (KOR) and non visual arrestins (arrestin-2 and arrestin-3) in HEK-293 cells, both under basal conditions and after exposure to KOR ligands.

  4. Opioid Antagonists and the A118G Polymorphism in the μ-Opioid Receptor Gene: Effects of GSK1521498 and Naltrexone in Healthy Drinkers Stratified by OPRM1 Genotype.

    PubMed

    Ziauddeen, Hisham; Nestor, Liam J; Subramaniam, Naresh; Dodds, Chris; Nathan, Pradeep J; Miller, Sam R; Sarai, Bhopinder K; Maltby, Kay; Fernando, Disala; Warren, Liling; Hosking, Louise K; Waterworth, Dawn; Korzeniowska, Anna; Win, Beta; Richards, Duncan B; Vasist Johnson, Lakshmi; Fletcher, Paul C; Bullmore, Edward T

    2016-10-01

    The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate-heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders.

  5. Opioid Antagonists and the A118G Polymorphism in the μ-Opioid Receptor Gene: Effects of GSK1521498 and Naltrexone in Healthy Drinkers Stratified by OPRM1 Genotype

    PubMed Central

    Ziauddeen, Hisham; Nestor, Liam J; Subramaniam, Naresh; Dodds, Chris; Nathan, Pradeep J; Miller, Sam R; Sarai, Bhopinder K; Maltby, Kay; Fernando, Disala; Warren, Liling; Hosking, Louise K; Waterworth, Dawn; Korzeniowska, Anna; Win, Beta; Richards, Duncan B; Vasist Johnson, Lakshmi; Fletcher, Paul C; Bullmore, Edward T

    2016-01-01

    The A118G single-nucleotide polymorphism (SNP rs1799971) in the μ-opioid receptor gene, OPRM1, has been much studied in relation to alcohol use disorders. The reported effects of allelic variation at this SNP on alcohol-related behaviors, and on opioid receptor antagonist treatments, have been inconsistent. We investigated the pharmacogenetic interaction between A118G variation and the effects of two μ-opioid receptor antagonists in a clinical lab setting. Fifty-six overweight and moderate–heavy drinkers were prospectively stratified by genotype (29 AA homozygotes, 27 carriers of at least 1 G allele) in a double-blind placebo-controlled, three-period crossover design with naltrexone (NTX; 25 mg OD for 2 days, then 50 mg OD for 3 days) and GSK1521498 (10 mg OD for 5 days). The primary end point was regional brain activation by the contrast between alcohol and neutral tastes measured using functional magnetic resonance imaging (fMRI). Secondary end points included other fMRI contrasts, subjective responses to intravenous alcohol challenge, and food intake. GSK1521498 (but not NTX) significantly attenuated fMRI activation by appetitive tastes in the midbrain and amygdala. GSK1521498 (and NTX to a lesser extent) significantly affected self-reported responses to alcohol infusion. Both drugs reduced food intake. Across all end points, there was less robust evidence for significant effects of OPRM1 allelic variation, or for pharmacogenetic interactions between genotype and drug treatment. These results do not support strong modulatory effects of OPRM1 genetic variation on opioid receptor antagonist attenuation of alcohol- and food-related behaviors. However, they do support further investigation of GSK1521498 as a potential therapeutic for alcohol use and eating disorders. PMID:27109624

  6. The Novel μ-Opioid Receptor Antagonist, [N-Allyl-Dmt1]Endomorphin-2, Attenuates the Enhancement of GABAergic Neurotransmission by Ethanol

    PubMed Central

    Li, Qiang; Okada, Yoshio; Marczak, Ewa; Wilson, Wilkie A.; Lazarus, Lawrence H.; Swartzwelder, H. S.

    2009-01-01

    Aims: We investigated the effects of [N-allyl-Dmt1]endomorphin-2 (TL-319), a novel and highly potent μ-opioid receptor antagonist, on ethanol (EtOH)-induced enhancement of GABAA receptor-mediated synaptic activity in the hippocampus. Methods: Evoked and spontaneous inhibitory postsynaptic currents (eIPSCs and sIPSCs) were isolated from CA1 pyramidal cells from brain slices of male rats using whole-cell patch-clamp techniques. Results: TL-319 had no effect on the baseline amplitude of eIPSCs or the frequency of sIPSCs. However, it induced a dose-dependent suppression of an ethanol-induced increase of sIPSC frequency with full reversal at concentrations of 500 nM and higher. The non-specific competitive opioid receptor antagonist naltrexone also suppressed EtOH-induced increases in sIPSC frequency but only at a concentration of 60 μM. Conclusion: These data indicate that blockade of μ-opioid receptors by low concentrations of [N-allyl-Dmt1]endomorphin-2 can reverse ethanol-induced increases in GABAergic neurotransmission and possibly alter its anxiolytic or sedative effects. This suggests the possibility that high potency opioid antagonists may emerge as possible candidate compounds for the treatment of ethanol addiction. PMID:18971291

  7. Are opioid antagonists effective in reducing self-injury in adults with intellectual disability? A systematic review.

    PubMed

    Roy, A; Roy, M; Deb, S; Unwin, G; Roy, A

    2015-01-01

    Self-injury in people with intellectual disability (ID) may be due to variety of factors both environmental and biological. As the drive in UK is to manage people with ID and problem behaviours in the community, it is important to critically examine all treatment options available. As abnormalities in the endogenous opioid system may be a factor in some people with ID, we undertook a systematic review to evaluate the evidence for the effectiveness of opioid antagonists. Four electronic databases were searched for relevant journal articles. In addition, cross-referencing of pertinent reviews and a hand search for articles in major international ID journals between the years 2010 and 2012 was carried out to ensure that all relevant articles were identified. We also searched databases for unpublished clinical trials to overcome publication bias. Each database was searched up to present (February 2013) with no restrictions on the date of publication. The search terms consisted of broad expressions used to describe ID and autistic spectrum disorder as well as terms relating to opioid antagonists and specific drugs. All studies identified by the electronic database search and hand search were examined on the basis of title alone for relevance and duplication. The abstracts of the remaining papers were then scrutinised against the inclusion criteria. Where abstracts failed to provide adequate information, the full texts for these papers were obtained. All the full texts were then evaluated against the inclusion proforma. Two reviewers carried out all the stages of the process independently. The reviewers met to discuss their selections and where disagreements arose, these were settled by discussion with a member of the study group. Data from each study meeting the inclusion criteria was extracted on a pre-piloted data extraction form. The quality of each study was further assessed using the Jadad scale, a tool developed to assess the quality of randomised controlled

  8. Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist ligands.

    PubMed

    Bender, Aaron M; Clark, Mary J; Agius, Michael P; Traynor, John R; Mosberg, Henry I

    2014-01-15

    In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Development of a robust, sensitive and selective liquid chromatography-tandem mass spectrometry assay for the quantification of the novel macrocyclic peptide kappa opioid receptor antagonist [D-Trp]CJ-15,208 in plasma and application to an initial pharmacokinetic study.

    PubMed

    Khaliq, Tanvir; Williams, Todd D; Senadheera, Sanjeewa N; Aldrich, Jane V

    2016-08-15

    Selective kappa opioid receptor (KOR) antagonists may have therapeutic potential as treatments for substance abuse and mood disorders. Since [D-Trp]CJ-15,208 (cyclo[Phe-d-Pro-Phe-d-Trp]) is a novel potent KOR antagonist in vivo, it is imperative to evaluate its pharmacokinetic properties to assist the development of analogs as potential therapeutic agents, necessitating the development and validation of a quantitative method for determining its plasma levels. A method for quantifying [D-Trp]CJ-15,208 was developed employing high performance liquid chromatography-tandem mass spectrometry in mouse plasma. Sample preparation was accomplished through a simple one-step protein precipitation method with acetonitrile, and [D-Trp]CJ-15,208 analyzed following HPLC separation on a Hypersil BDS C8 column. Multiple reaction monitoring (MRM), based on the transitions m/z 578.1→217.1 and 245.0, was specific for [D-Trp]CJ-15,208, and MRM based on the transition m/z 566.2→232.9 was specific for the internal standard without interference from endogenous substances in blank mouse plasma. The assay was linear over the concentration range 0.5-500ng/mL with a mean r(2)=0.9987. The mean inter-day accuracy and precision for all calibration standards were 93-118% and 8.9%, respectively. The absolute recoveries were 85±6% and 81±9% for [D-Trp]CJ-15,208 and the internal standard, respectively. The analytical method had excellent sensitivity with a lower limit of quantification of 0.5ng/mL using a sample volume of 20μL. The method was successfully applied to an initial pharmacokinetic study of [D-Trp]CJ-15,208 following intravenous administration to mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Development of a robust, sensitive and selective liquid chromatography-tandem mass spectrometry assay for the quantification of the novel macrocyclic peptide kappa opioid receptor antagonist [D-Trp]CJ-15,208 in plasma and application to an initial pharmacokinetic study

    PubMed Central

    Khaliq, Tanvir; Williams, Todd D.; Senadheera, Sanjeewa N.; Aldrich, Jane V.

    2016-01-01

    Selective kappa opioid receptor (KOR) antagonists may have therapeutic potential as treatments for substance abuse and mood disorders. Since [D-Trp]CJ-15,208 (cyclo[Phe-D-Pro-Phe-D-Trp]) is a novel potent KOR antagonist in vivo, it is imperative to evaluate its pharmacokinetic properties to assist the development of analogs as potential therapeutic agents, necessitating the development and validation of a quantitative method for determining its plasma levels. A method for quantifying [D-Trp]CJ-15,208 was developed employing high performance liquid chromatography-tandem mass spectrometry in mouse plasma. Sample preparation was accomplished through a simple one-step protein precipitation method with acetonitrile, and [D-Trp]CJ-15,208 analyzed following HPLC separation on a Hypersil BDS C8 column. Multiple reaction monitoring (MRM), based on the transitions m/z 578.1 → 217.1 and 245.0, was specific for [D-Trp]CJ-15,208, and MRM based on the transition m/z 566.2 → 232.9 was specific for the internal standard without interference from endogenous substances in blank mouse plasma. The assay was linear over the concentration range 0.5–500 ng/mL with a mean r2 = 0.9987. The mean inter-day accuracy and precision for all calibration standards was 93–118% and 8.9%, respectively. The absolute recoveries were 85±6% and 81±9% for [D-Trp]CJ-15,208 and the internal standard, respectively. The analytical method had excellent sensitivity with a lower limit of quantification of 0.5 ng/mL using a sample volume of 20 μL. The method was successfully applied to an initial pharmacokinetic study of [D-Trp]CJ-15,208 following intravenous administration to mice. PMID:27318293

  11. Opioids in Preclinical and Clinical Trials

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    Since 1952, when Gates determined the stereo structure of morphine, numerous groups have focused on discovering a nonnarcotic opioid drug [1]. Although several natural, semisynthetic, and synthetic opioid ligands (alkaloids and peptides) have been developed in clinical studies, very few were nonnarcotic opioid drugs [2]. One of the most important studies in the opioid field appeared in 1976, when Martin and colleagues [3] established types of opioid receptors (these are now classified into μ, δ, and κ types). Later, Portoghese discovered a highly selective μ type opioid receptor antagonist, β-funaltrexamine [4]. This led to the finding that the μ type opioid receptor was correlated to drug dependence [5]. Consequently, δ, and particularly κ, opioid agonists were expected to lead to ideal opioid drugs. Moreover, opioid antagonists were evaluated for the treatment of symptoms related to undesirable opioid system activation. In this chapter, we provide a short survey of opioid ligands in development and describe the discovery of the two most promising drugs, TRK-851 [6] and TRK-820 (nalfurafine hydrochloride) [7].

  12. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    PubMed Central

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  13. The ‘mystery’ of opioid-induced diarrhea

    PubMed Central

    Bril, Silviu; Shoham, Yoav; Marcus, Jeremy

    2011-01-01

    Bowel dysfunction, mainly constipation, is a well-known and anticipated side effect of opioids. The physician prescribing an opioid frequently confronts the challenge of preventing and treating bowel dysfunction. Different strategies have emerged for managing opioid-induced constipation. These strategies include physical activity, maintaining adequate fluid intake, adhering to regular daily bowel habits, using laxatives and other anticonstipation medications and, recently, using a peripheral opioid antagonist, either as a separate drug or in the form of an opioid agonist-antagonist combination pill. What options exist for the physician when a patient receiving opioids complains of diarrhea, cramps and bloating, rather than the expected constipation? The present article describes a possible cause of opioid-induced diarrhea and strategies for management. PMID:21766071

  14. Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist – neurokinin-1 antagonist peptidomimetics

    PubMed Central

    Guillemyn, Karel; Kleczkowska, Patrycia; Lesniak, Anna; Dyniewicz, Jolanta; Van der Poorten, Olivier; Van den Eynde, Isabelle; Keresztes, Attila; Varga, Eva; Lai, Josephine; Porreca, Frank; Chung, Nga N.; Lemieux, Carole; Mika, Joanna; Rojewska, Ewelina; Makuch, Wioletta; Van Duppen, Joost; Przewlocka, Barbara; Broeck, Jozef Vanden; Lipkowski, Andrzej W.; Schiller, Peter W.; Tourwé, Dirk; Ballet, Steven

    2014-01-01

    A reported mixed opioid agonist - neurokinin 1 receptor (NK1R) antagonist 4 (Dmt-D-Arg-Aba-Gly-(3’,5’-(CF3)2)NMe-benzyl) was modified to identify important features in both pharmacophores. The new dual ligands were tested in vitro and subsequently two compounds (lead structure 4 and one of the new analogues 22, Dmt-D-Arg-Aba-β-Ala-NMe-Bn) were selected for in vivo behavioral assays, which were conducted in acute (tail-flick) and neuropathic pain models (cold plate and von Frey) in rats. Compared to the parent opioid compound 33 (without NK1R pharmacophore), hybrid 22 was more active in the neuropathic pain models. Attenuation of neuropathic pain emerged from NK1R antagonism as demonstrated by the pure NK1R antagonist 6. Surprisingly, despite a lower in vitro activity at NK1R in comparison with 4, compound 22 was more active in the neuropathic pain models. Although potent analgesic effects were observed for 4 and 22, upon chronic administration, both manifested a tolerance profile similar to that of morphine and cross tolerance with morphine in a neuropathic pain model in rat. PMID:25544687

  15. Distinct Mu, Delta, and Kappa Opioid Receptor Mechanisms Underlie Low Sociability and Depressive-Like Behaviors During Heroin Abstinence

    PubMed Central

    Lutz, Pierre-Eric; Ayranci, Gulebru; Chu-Sin-Chung, Paul; Matifas, Audrey; Koebel, Pascale; Filliol, Dominique; Befort, Katia; Ouagazzal, Abdel-Mouttalib; Kieffer, Brigitte L

    2014-01-01

    Addiction is a chronic disorder involving recurring intoxication, withdrawal, and craving episodes. Escaping this vicious cycle requires maintenance of abstinence for extended periods of time and is a true challenge for addicted individuals. The emergence of depressive symptoms, including social withdrawal, is considered a main cause for relapse, but underlying mechanisms are poorly understood. Here we establish a mouse model of protracted abstinence to heroin, a major abused opiate, where both emotional and working memory deficits unfold. We show that delta and kappa opioid receptor (DOR and KOR, respectively) knockout mice develop either stronger or reduced emotional disruption during heroin abstinence, establishing DOR and KOR activities as protective and vulnerability factors, respectively, that regulate the severity of abstinence. Further, we found that chronic treatment with the antidepressant drug fluoxetine prevents emergence of low sociability, with no impact on the working memory deficit, implicating serotonergic mechanisms predominantly in emotional aspects of abstinence symptoms. Finally, targeting the main serotonergic brain structure, we show that gene knockout of mu opioid receptors (MORs) in the dorsal raphe nucleus (DRN) before heroin exposure abolishes the development of social withdrawal. This is the first result demonstrating that intermittent chronic MOR activation at the level of DRN represents an essential mechanism contributing to low sociability during protracted heroin abstinence. Altogether, our findings reveal crucial and distinct roles for all three opioid receptors in the development of emotional alterations that follow a history of heroin exposure and open the way towards understanding opioid system-mediated serotonin homeostasis in heroin abuse. PMID:24874714

  16. Alterations in the stereochemistry of the kappa-selective opioid agonist U50,488 result in high-affinity sigma ligands.

    PubMed

    de Costa, B R; Bowen, W D; Hellewell, S B; George, C; Rothman, R B; Reid, A A; Walker, J M; Jacobson, A E; Rice, K C

    1989-08-01

    The synthesis and in vitro sigma receptor activity of the two diastereomers of U50,488 [(+/-)-2], namely, (1R,2S)-(+)- cis-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacet ami de [(+)-1] and (1S,2R)-(-)-cis-3,4-dichloro- N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide [(-)-1], are described. (+)-1 and (-)-1 were synthesized from (+/-)-trans-N-methyl-2-aminocyclohexanol [(+/-)-3]. Pyridinium chlorochromate (PCC) oxidation of the N-t-Boc-protected derivative of (+/-)-3 afforded (+/-)-2-[N- [(tert-butyloxy)carbonyl]-N-methylamino]cyclohexanone [(+/-)-5]. The sequence of enamine formation with pyrrolidine, catalytic reduction, N-deprotection, and optical resolution afforded (1R,2S)-(-)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(-)-10] and (1S,2R)-(+)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(+)-10]. The optical purity (greater than 99.5%) of (-)-10 and (+)-10 was determined by HPLC analysis of the diastereomeric ureas formed by reaction with optically pure (R)-alpha-methylbenzyl isocyanate. The absolute configuration of (-)-10 and (+)-10 was determined by single-crystal X-ray diffractometry of the bis-(R)-mandelate salt. Condensation of optically pure (-)-10 and (+)-10 with 3,4-dichlorophenylacetic acid furnished (+)-1 and (-)-1, respectively. Compounds (+)-1, (-)-1, (-)-2, and (+)-2 were compared for their binding affinities at kappa opioid, sigma, D2-dopamine, and phencyclidine (PCP) receptors in competitive binding assays using [3H]bremazocine ([3H]BREM) or [3H]U69,593, [3H]-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [[3H]-(+)-3-PPP], or [3H]-1,3-di(o-tolyl)guanidine ([3H]DTG), [3H]-(-)-sulpiride [[3H]-(-)SULP], and [3H]-1- [1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP), respectively. In the systems examined, (-)-2 exhibited the highest affinity for kappa receptors, with a Ki of 44 +/- 8 nM. However, (-)-2 also showed moderate affinity for sigma receptors, with a Ki of 594 +/- 3 nM [[3H]-(+)-3-PPP]. The (1R,2R

  17. Endogenous opioid system: a promising target for future smoking cessation medications.

    PubMed

    Norman, Haval; D'Souza, Manoranjan S

    2017-05-01

    Nicotine addiction continues to be a health challenge across the world. Despite several approved medications, smokers continue to relapse. Several human and animal studies have evaluated the role of the endogenous opioid system as a potential target for smoking cessation medications. In this review, studies that have elucidated the role of the mu (MORs), delta (DORs), and kappa (KORs) opioid receptors in nicotine reward, nicotine withdrawal, and reinstatement of nicotine seeking will be discussed. Additionally, the review will discuss discrepancies in the literature and therapeutic potential of the endogenous opioid system, and suggest studies to address gaps in knowledge with respect to the role of the opioid receptors in nicotine dependence. Data available till date suggest that blockade of the MORs and DORs decreased the rewarding effects of nicotine, while activation of the MORs and DORs decreased nicotine withdrawal-induced aversive effects. In contrast, activation of the KORs decreased the rewarding effects of nicotine, while blockade of the KORs decreased nicotine withdrawal-induced aversive effects. Interestingly, blockade of the MORs and KORs attenuated reinstatement of nicotine seeking. In humans, MOR antagonists have shown benefits in select subpopulations of smokers and further investigation is required to realize their full therapeutic potential. Future work must assess the influence of polymorphisms in opioid receptor-linked genes in nicotine dependence, which will help in both identifying individuals vulnerable to nicotine addiction and the development of opioid-based smoking cessation medications. Overall, the endogenous opioid system continues to be a promising target for future smoking cessation medications.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huixian; Wacker, Daniel; Mileni, Mauro

    Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and - in the case of {kappa}-opioid receptor ({kappa}-OR) - dysphoria and psychotomimesis. Here we report the crystal structure of the human {kappa}-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 {angstrom} resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human {kappa}-OR. Modelling of other important {kappa}-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5'-guanidinonaltrindole, and the diterpenemore » agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure-activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for {kappa}-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human {kappa}-OR.« less

  19. Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans.

    PubMed

    Weber, S C; Beck-Schimmer, B; Kajdi, M-E; Müller, D; Tobler, P N; Quednow, B B

    2016-07-05

    Increased responding to drug-associated stimuli (cue reactivity) and an inability to tolerate delayed gratification (reward impulsivity) have been implicated in the development and maintenance of drug addiction. Whereas data from animal studies suggest that both the dopamine and opioid system are involved in these two reward-related processes, their role in humans is less clear. Moreover, dopaminergic and opioidergic drugs have not been directly compared with regard to these functions, even though a deeper understanding of the underlying mechanisms might inform the development of specific treatments for elevated cue reactivity and reward impulsivity. In a randomized, double-blind, between-subject design we administered the selective dopamine D2/D3 receptor antagonist amisulpride (400 mg, n=41), the unspecific opioid receptor antagonist naltrexone (50 mg, n=40) or placebo (n=40) to healthy humans and measured cue-induced responding with a Pavlovian-instrumental transfer task and reward impulsivity with a delay discounting task. Mood was assessed using a visual analogue scale. Compared with placebo, amisulpride significantly suppressed cue-induced responding and reward impulsivity. The effects of naltrexone were similar, although less pronounced. Both amisulpride and naltrexone decreased average mood ratings compared with placebo. Our results demonstrate that a selective blockade of dopamine D2/D3 receptors reduces cue-induced responding and reward impulsivity in healthy humans. Antagonizing μ-opioid receptors has similar effects for cue-induced responding and to a lesser extent for reward impulsivity.

  20. Involvement of μ- and κ-, but not δ-, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the guinea-pig intestine

    PubMed Central

    Shahbazian, Anaid; Heinemann, Akos; Schmidhammer, Helmut; Beubler, Eckhard; Holzer-Petsche, Ulrike; Holzer, Peter

    2002-01-01

    Opiates inhibit gastrointestinal propulsion, but it is not clear which opioid receptor types are involved in this action. For this reason, the effect of opioid receptor – selective agonists and antagonists on intestinal peristalsis was studied.Peristalsis in isolated segments of the guinea-pig small intestine was triggered by a rise of the intraluminal pressure and recorded via the intraluminal pressure changes associated with the peristaltic waves.μ-Opioid receptor agonists (DAMGO, morphine), κ-opioid receptor agonists (ICI-204,448 and BRL-52,537) and a δ-opioid receptor agonist (SNC-80) inhibited peristalsis in a concentration-related manner as deduced from a rise of the peristaltic pressure threshold (PPT) and a diminution of peristaltic effectiveness.Experiments with the δ-opioid receptor antagonists naltrindole (30 nM) and HS-378 (1 μM), the κ-opioid receptor antagonist nor-binaltorphimine (30 nM) and the μ-opioid receptor antagonist cyprodime (10 μM) revealed that the antiperistaltic effect of ICI-204,448 and BRL-52,537 was mediated by κ-opioid receptors and that of morphine and DAMGO by μ-opioid receptors. In contrast, the peristaltic motor inhibition caused by SNC-80 was unrelated to δ-opioid receptor activation.Cyprodime and nor-binaltorphimine, but not naltrindole and HS-378, were per se able to stimulate intestinal peristalsis as deduced from a decrease in PPT.The results show that the neural circuits controlling peristalsis in the guinea-pig small intestine are inhibited by endogenous and exogenous opioids acting via μ- and κ-, but not δ-, opioid receptors. PMID:11834622

  1. The effects of opioid receptor antagonists on electroacupuncture-produced anti-allodynia/hyperalgesia in rats with paclitaxel-evoked peripheral neuropathy.

    PubMed

    Meng, Xianze; Zhang, Yu; Li, Aihui; Xin, Jiajia; Lao, Lixing; Ren, Ke; Berman, Brian M; Tan, Ming; Zhang, Rui-Xin

    2011-09-26

    Research supports the effectiveness of acupuncture for conditions such as chronic low back and knee pain. In a five-patient pilot study the modality also improved the symptoms of chemotherapy-induced neuropathic pain. Using an established rat model of paclitaxel-induced peripheral neuropathy, we evaluated the effect of electroacupuncture (EA) on paclitaxel-induced hyperalgesia and allodynia that has not been studied in an animal model. We hypothesize that EA would relieve the paclitaxel-induced mechanical allodynia and hyperalgesia, which was assessed 30 min after EA using von Frey filaments. Beginning on day 13, the response frequency to von Frey filaments (4-15 g) was significantly increased in paclitaxel-injected rats compared to those injected with vehicle. EA at 10 Hz significantly (P<0.05) decreased response frequency at 4-15 g compared to sham EA; EA at 100 Hz only decreased response frequency at 15 g stimulation. Compared to sham EA plus vehicle, EA at 10 Hz plus either a μ, δ, or κ opioid receptor antagonist did not significantly decrease mechanical response frequency, indicating that all three antagonists blocked EA inhibition of allodynia and hyperalgesia. Since we previously demonstrated that μ and δ but not κ opioid receptors affect EA anti-hyperalgesia in an inflammatory pain model, these data show that EA inhibits pain through different opioid receptors under varying conditions. Our data indicate that EA at 10 Hz inhibits mechanical allodynia/hyperalgesia more potently than does EA at 100 Hz. Thus, EA significantly inhibits paclitaxel-induced allodynia/hyperalgesia through spinal opioid receptors, and EA may be a useful complementary treatment for neuropathic pain patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Opioid Antagonist Effects on Self-Injury in Adults with Mental Retardation: Response Form and Location as Determinants of Medication Effects.

    ERIC Educational Resources Information Center

    Thompson, Travis; And Others

    1994-01-01

    The opioid antagonist naltrexone was administered to eight adults with severe or profound mental retardation and self-injurious behaviors. During naltrexone administration, there were fewer days with frequent head-banging and self-biting. Experimental subjects were also found to sleep significantly less than controls both before and during…

  3. Multiple opioid receptors in endotoxic shock: evidence for delta involvement and mu-delta interactions in vivo.

    PubMed Central

    D'Amato, R; Holaday, J W

    1984-01-01

    The use of selective delta and mu opioid antagonists has provided evidence that delta opioid receptors within the brain mediate the endogenous opioid component of endotoxic shock hypotension. The selectivity of these delta and mu antagonists was demonstrated by their differing effects upon morphine analgesia and endotoxic hypotension. The mu antagonist beta-funaltrexamine, at doses that antagonized morphine analgesia, failed to alter shock, whereas the delta antagonist M 154,129: [N,N-bisallyl-Tyr-Gly-Gly-psi-(CH2S)-Phe-Leu-OH] (ICI) reversed shock at doses that failed to block morphine analgesia. Therefore, selective delta antagonists may have therapeutic value in reversing circulatory shock without altering the analgesic actions of endogenous or exogenous opioids. Additional data revealed that prior occupancy of mu binding sites by irreversible opioid antagonists may allosterically attenuate the actions of antagonists with selectivity for delta binding sites. For endogenous opioid systems, this observation provides an opportunity to link in vivo physiological responses with receptor-level biochemical interactions. PMID:6326151

  4. Noradrenaline induces peripheral antinociception by endogenous opioid release.

    PubMed

    Romero, Thiago Roberto Lima; Soares Santos, Raquel Rodrigues; Castor, Marina Gomes Miranda E; Petrocchi, Júlia Alvarenga; Guzzo, Luciana Souza; Klein, Andre; Duarte, Igor Dimitri Gama

    2018-02-23

    The aim of this study was to investigate this involvement in not inflammatory model of pain and which opioid receptor subtype mediates noradrenaline-induced peripheral antinociception. NA is involved in the intrinsic control of pain-inducing pro-nociceptive effects in the primary afferent nociceptors. However, inflammation can induce various plastic changes in the central and peripheral noradrenergic system that, upon interaction with the immune system, may contribute, in part, to peripheral antinociception. Hyperalgesia was induced by intraplantar injection of prostaglandin E 2 (PGE 2 , 2 μg) into the plantar surface of the right hind paw and the paw pressure test to evaluated the hyperalgesia was used. Noradrenaline (NA) was administered locally into right hind paw of Wistar rat (160-200 g) alone and after either agents, α 2 -adrenoceptor antagonist yohimbine, α 1 -adrenoceptor antagonist prazosin, β-adrenoceptor antagonist propranolol, μ-opioid antagonist clocinnamox, δ-opioid antagonist naltrindole and κ-opioid antagonist nor-binaltorfimina. In addition, the enkephalinase inhibitor bestatin was administered prior to NA low dose. Intraplantar injection of NA induced peripheral antinociception against hyperalgesia induced by PGE 2 . This effect was reversed, in dose dependent manner, by intraplantar injection of yohimbine, prazosin, propranolol, clocinnamox and naltrindole. However, injection of nor-binaltorfimina did not alter antinociception of NA after PGE 2 hyperalgesia. Bestatin intensified the antinociceptive effects of low-dose of NA. Besides the α 2 -adrenoceptor, the present data provide evidence that, in absence of inflammation, NA activating α 1 and β-adrenoceptor induce endogenous opioid release to produce peripheral antinociceptive effect by μ and δ opioid receptors. Copyright © 2018 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  5. A maternal "junk-food" diet reduces sensitivity to the opioid antagonist naloxone in offspring postweaning.

    PubMed

    Gugusheff, Jessica R; Ong, Zhi Yi; Muhlhausler, Beverly S

    2013-03-01

    Perinatal exposure to a maternal "junk-food" diet has been demonstrated to increase the preference for palatable diets in adult offspring. We aimed to determine whether this increased preference could be attributed to changes in μ-opioid receptor expression within the mesolimbic reward pathway. We report here that mRNA expression of the μ-opioid receptor in the ventral tegmental area (VTA) at weaning was 1.4-fold (males) and 1.9-fold (females) lower in offspring of junk-food (JF)-fed rat dams than in offspring of dams fed a standard rodent diet (control) (P<0.05). Administration of the opioid antagonist naloxone to offspring given a palatable diet postweaning significantly reduced fat intake in control offspring (males: 7.7 ± 0.7 vs. 5.4 ± 0.6 g/kg/d; females: 6.9 ± 0.3 vs. 3.9 ± 0.5 g/kg/d; P<0.05), but not in male JF offspring (8.6 ± 0.6 vs. 7.1 ± 0.5 g/kg/d) and was less effective at reducing fat intake in JF females (42.2 ± 6.0 vs. 23.1 ± 4.1% reduction, P<0.05). Similar findings were observed for total energy intake. Naloxone treatment did not affect intake of standard rodent feed in control or JF offspring. These findings suggest that exposure to a maternal junk-food diet results in early desensitization of the opioid system which may explain the increased preference for junk food in these offspring.

  6. Naltrexone alters the processing of social and emotional stimuli in healthy adults.

    PubMed

    Wardle, Margaret C; Bershad, Anya K; de Wit, Harriet

    2016-12-01

    Endogenous opioids have complex social effects that may depend on specific receptor actions and vary depending on the "stage" of social behavior (e.g., seeking vs. responding to social stimuli). We tested the effects of a nonspecific opioid antagonist, naltrexone (NTX), on social processing in humans. NTX is used to treat alcohol and opiate dependence, and may affect both mu and kappa-opioid systems. We assessed attention ("seeking"), and subjective and psychophysiological responses ("responding") to positive and negative social stimuli. Based on literature suggesting mu-opioid blockade impairs positive social responses, we hypothesized that NTX would decrease responses to positive social stimuli. We also tested responses to negative stimuli, which might be either increased by NTX's mu-opioid effects or decreased by its kappa-opioid effects. Thirty-four healthy volunteers received placebo, 25 mg, or 50 mg NTX across three sessions under double-blind conditions. At each session, participants completed measures of attention, identification, and emotional responses for emotional faces and scenes. NTX increased attention to emotional expressions, slowed identification of sadness and fear, and decreased ratings of arousal for social and nonsocial emotional scenes. These findings are more consistent with anxiolytic kappa-antagonist than mu-blocking effects, suggesting effects on kappa receptors may contribute to the clinical effects of NTX.

  7. The `One-Two Punch' of Alcoholism: Role of Central Amygdala Dynorphins / Kappa-Opioid Receptors

    PubMed Central

    Kissler, Jessica L.; Sirohi, Sunil; Reis, Daniel J.; Jansen, Heiko T.; Quock, Raymond M.; Smith, Daniel G.; Walker, Brendan M.

    2013-01-01

    Background The dynorphin (DYN)/κ-opioid receptor (KOR) system undergoes neuroadaptations following chronic alcohol exposure that promote excessive operant self-administration and negative affective-like states; however, the exact mechanisms are unknown. The present studies tested the hypothesis that an upregulated DYN/KOR system mediates excessive alcohol self-administration that occurs during withdrawal in alcohol-dependent rats by assessing DYN A peptide expression and KOR function, in combination with site-specific pharmacological manipulations. Methods Male Wistar rats were trained to self-administer alcohol using operant behavioral strategies and subjected to intermittent alcohol vapor- or air-exposure. Changes in self-administration were assessed by pharmacological challenges during acute withdrawal. In addition, 22-kHz ultrasonic vocalizations were utilized to measure negative affective-like states. Immunohistochemical techniques assessed DYN A peptide expression and [35S]GTPγS coupling assays were performed to assess KOR function. Results Alcohol-dependent rats displayed increased alcohol self-administration, negative affective-like behavior, DYN A-like immunoreactivity and KOR signaling in the amygdala compared to non-dependent controls. Site-specific infusions of a KOR antagonist selectively attenuated self-administration in dependent rats whereas, a MOR/DOR antagonist cocktail selectively reduced self-administration in non-dependent rats. A MOR antagonist/partial KOR agonist attenuated self-administration in both cohorts. Conclusion Increased DYN A and increased KOR signaling could set the stage for a `one-two punch' during withdrawal that drives excessive alcohol consumption in alcohol-dependence. Importantly, intra-CeA pharmacological challenges functionally confirmed a DYN/KOR system involvement in the escalated alcohol self-administration. Together, the DYN/KOR system is heavily dysregulated in alcohol dependence and contributes to the excessive

  8. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats

    PubMed Central

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats. PMID:28280461

  9. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats.

    PubMed

    Sánchez-Catalán, María-José; Orrico, Alejandro; Hipólito, Lucía; Zornoza, Teodoro; Polache, Ana; Lanuza, Enrique; Martínez-García, Fernando; Granero, Luis; Agustín-Pavón, Carmen

    2017-01-01

    Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.

  10. Phorbol ester suppression of opioid analgesia in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.J.; Wang, X.J.; Han, J.S.

    1990-01-01

    Protein kinase C (PKC) has been shown to be an important substrate in intracellular signal transduction. Very little is known concerning its possible role in mediating opiate-induced analgesia. In the present study, 12-O-tetradecanoylphorbol 13-acetate (TPA), a selective activator of PKC, was injected intrathecally (ith) to assess its influence on the analgesia induced by intrathecal injection of the mu opioid agonist PL017, the delta agonist DPDPE and the kappa agonist 66A-078. Radiant heat-induced tail flick latency (TFL) was taken as an index of nociception. TPA in the dose of 25-50 ng, which did not affect the baseline TFL, produced a markedmore » suppression of opioid antinociception, with a higher potency in blocking mu and delta than the kappa effect. In addition, mu and delta agonists induced remarkable decreases in spinal cyclic AMP (cAMP) content whereas the kappa effect was weak. The results suggest a cross-talk between the PKC system and the signal transduction pathway subserving opioid analgesia.« less

  11. Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain.

    PubMed

    Podolsky, Alexander T; Sandweiss, Alexander; Hu, Jackie; Bilsky, Edward J; Cain, Jim P; Kumirov, Vlad K; Lee, Yeon Sun; Hruby, Victor J; Vardanyan, Ruben S; Vanderah, Todd W

    2013-12-18

    Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids have highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists. © 2013. Published by Elsevier Inc. All rights reserved.

  12. Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain

    PubMed Central

    Podolsky, Alexander T.; Sandweiss, Alexander; Hu, Jackie; Bilsky, Edward J; Cain, Jim P; Kumirov, Vlad K.; Lee, Yeon Sun; Hruby, Victor J; Vardanyan, Ruben S.; Vanderah, Todd W.

    2014-01-01

    Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids has highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. Aims Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. Main Methods Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. Key findings RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. Significance This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists. PMID:24084045

  13. Dopamine D3/D2 Receptor Antagonist PF-4363467 Attenuates Opioid Drug-Seeking Behavior without Concomitant D2 Side Effects.

    PubMed

    Wager, Travis T; Chappie, Thomas; Horton, David; Chandrasekaran, Ramalakshmi Y; Samas, Brian; Dunn-Sims, Elizabeth R; Hsu, Cathleen; Nawreen, Nawshaba; Vanase-Frawley, Michelle A; O'Connor, Rebecca E; Schmidt, Christopher J; Dlugolenski, Keith; Stratman, Nancy C; Majchrzak, Mark J; Kormos, Bethany L; Nguyen, David P; Sawant-Basak, Aarti; Mead, Andy N

    2017-01-18

    Dopamine receptor antagonism is a compelling molecular target for the treatment of a range of psychiatric disorders, including substance use disorders. From our corporate compound file, we identified a structurally unique D3 receptor (D3R) antagonist scaffold, 1. Through a hybrid approach, we merged key pharmacophore elements from 1 and D3 agonist 2 to yield the novel D3R/D2R antagonist PF-4363467 (3). Compound 3 was designed to possess CNS drug-like properties as defined by its CNS MPO desirability score (≥4/6). In addition to good physicochemical properties, 3 exhibited low nanomolar affinity for the D3R (D3 K i = 3.1 nM), good subtype selectivity over D2R (D2 K i = 692 nM), and high selectivity for D3R versus other biogenic amine receptors. In vivo, 3 dose-dependently attenuated opioid self-administration and opioid drug-seeking behavior in a rat operant reinstatement model using animals trained to self-administer fentanyl. Further, traditional extrapyramidal symptoms (EPS), adverse side effects arising from D2R antagonism, were not observed despite high D2 receptor occupancy (RO) in rodents, suggesting that compound 3 has a unique in vivo profile. Collectively, our data support further investigation of dual D3R and D2R antagonists for the treatment of drug addiction.

  14. Dmt and opioid peptides: a potent alliance.

    PubMed

    Bryant, Sharon D; Jinsmaa, Yunden; Salvadori, Severo; Okada, Yoshio; Lazarus, Lawrence H

    2003-01-01

    The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance. Copyright 2003 Wiley Periodicals, Inc.

  15. Opiate Antagonists Do Not Interfere With the Clinical Benefits of Stimulants in ADHD: A Double-Blind, Placebo-Controlled Trial of the Mixed Opioid Receptor Antagonist Naltrexone.

    PubMed

    Spencer, Thomas J; Bhide, Pradeep; Zhu, Jinmin; Faraone, Stephen V; Fitzgerald, Maura; Yule, Amy M; Uchida, Mai; Spencer, Andrea E; Hall, Anna M; Koster, Ariana J; Biederman, Joseph

    Methylphenidate activates μ-opioid receptors, which are linked to euphoria. μ-Opioid antagonists, such as naltrexone, may attenuate the euphoric effects of stimulants, thereby minimizing their abuse potential. This study assessed whether the combination of naltrexone with methylphenidate is well-tolerated while preserving the clinical benefits of stimulants in subjects with attention-deficit/hyperactivity disorder (ADHD). We conducted a 6-week, double-blind, placebo-controlled, randomized clinical trial of naltrexone in adults with DSM-IV ADHD receiving open treatment with a long-acting formulation of methylphenidate from January 2013 to July 2015. Spheroidal Oral Drug Absorption System (SODAS) methylphenidate was administered twice daily, was titrated to approximately 1 mg/kg/d over 3 weeks, and was continued for 3 additional weeks depending on response and adverse effects. Subjects were adults with ADHD preselected for having experienced euphoria with a test dose of immediate-release methylphenidate. The primary outcome measure was the Adult ADHD Investigator Symptom Report Scale (AISRS). Thirty-seven subjects who experienced stimulant-induced (mild) euphoria at a baseline visit were started in the open trial of SODAS methylphenidate and randomly assigned to naltrexone 50 mg or placebo. Thirty-one subjects completed the study through week 3, and 25 completed through week 6. Throughout 6 weeks of blinded naltrexone and open methylphenidate treatment, the coadministration of naltrexone with methylphenidate did not interfere with the clinical effectiveness of methylphenidate for ADHD symptoms. Additionally, the combination of naltrexone and methylphenidate did not produce an increase in adverse events compared with methylphenidate alone. Our findings provide support for the concept of combining opioid receptor antagonists with stimulants to provide an effective stimulant formulation with less abuse potential. ClinicalTrials.gov identifier: NCT01673594​.

  16. Novel selective kappa-opioid ligands.

    PubMed

    Peeters, O M; Jamroz, D; Blaton, N M; De Ranter, C J

    1999-03-15

    The single-crystal X-ray structures of (-)-dimethyl[(2S)-1-(5,6,7,8- tetrahydro-5-oxonaphthalene-2-acetyl)piperidin-2-ylmethyl ]ammonium chloride, C20H29N2O2+.Cl-(BRL-53001A), and (-)-ethylmethyl[(2S)-1-(5,6,7,8-tetrahydro-5-oxonaphthalene- 2- acetyl)piperidin-2-ylmethyl]-ammonium chloride dihydrate, C21H31N2O2+.Cl-.2H2O (BRL-53188A), have been determined. The two molecules have different conformations in the 1-tetralon-6-ylacetyl residue but the same conformation in the 1-acetyl-2-(dialkylaminomethyl)piperidine moiety. The conformations found are in agreement with the required chemical features for kappa affinity and antinociceptive potency.

  17. Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics

    PubMed Central

    Banghart, Matthew R.; Shah, Ruchir C.; Lavis, Luke D.

    2013-01-01

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis. PMID:23960100

  18. Opioid systems in the response to inflammatory pain: sustained blockade suggests role of kappa- but not mu-opioid receptors in the modulation of nociception, behaviour and pathology.

    PubMed

    Millan, M J; Colpaert, F C

    1991-01-01

    One day after intraplantar inoculation of Mycobacterium butyricum into the right hind-paw, unilaterally inflamed and control rats were implanted subcutaneously with osmotic mini-pumps delivering naloxone at 0.16 or 3.0 mg/kg/h or vehicle. As determined three days after implantation, 0.16 mg/kg/h of naloxone completely antagonized the antinociceptive action of the mu-agonist, morphine, but did not affect antinociception evoked by the kappa-agonist, U69,593. In contrast, at 3.0 mg/kg/h, naloxone blocked both morphine- and U69,593-induced antinociception. Thus, 0.16 mg/kg ("low dose") and 3.0 mg/kg ("high dose") of naloxone block mu, or mu- plus kappa-opioid receptors, respectively. Pumps were removed one week following their implantation. Inoculation was associated with a sustained hyperalgesia of the inflamed paw to noxious pressure, and elevation in resting core temperature, a loss of body weight, hypophagia, hypodipsia and a reduction in mobility. These parameters were differentially modified by the high as compared to the low dose of naloxone. Two days following implantation of pumps delivering the high dose of naloxone, the hyperalgesia of the inflamed paw was potentiated: by six days, this effect was lost. Further, one day after removal of pumps yielding the high dose, the inflamed paw showed a normalization of thresholds, that is a "rebound antinociception". One day later, this effect had subsided. In distinction, at no time did the low dose of naloxone modify nociceptive thresholds. The high dose of naloxone enhanced the reduction in body weight and food intake shown by unilaterally inflamed rats whereas the low dose was ineffective. Neither dose affected the reduction in water intake or hypothermia of unilaterally inflamed animals. The high dose of naloxone reduced the mobility of unilaterally inflamed rats whereas the low dose was ineffective. Finally, by 10 days following pump removal, pathology had transferred to the contralateral paw. In rats which had

  19. A Cyclic Tetrapeptide (“Cyclodal”) and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists

    PubMed Central

    Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.

    2016-01-01

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089

  20. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging.

    PubMed

    Ryu, Eun Kyoung; Wu, Zhanhong; Chen, Kai; Lazarus, Lawrence H; Marczak, Ewa D; Sasaki, Yusuke; Ambo, Akihiro; Salvadori, Severo; Ren, Chuancheng; Zhao, Heng; Balboni, Gianfranco; Chen, Xiaoyuan

    2008-03-27

    Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.

  1. Rationally designed chimeric peptide of met-enkephalin and FMRFa-[D-Ala2,p-Cl-Phe4]YFa induce multiple opioid receptors mediated antinociception and up-regulate their expression.

    PubMed

    Vats, Ishwar Dutt; Chaudhary, Snehlata; Sharma, Ahuti; Nath, Mahendra; Pasha, Santosh

    2010-07-25

    The physiological role of NPFF/FMRFa family of peptides appears to be complex and exact mechanism of action of these peptides is not yet completely understood. In same line of scrutiny, another analog of YGGFMKKKFMRFamide (YFa), a chimeric peptide of met-enkephalin and FMRFamide, was rationally designed and synthesized which contain D-alanine and p-Cl-phenylalanine residues at 2nd and 4th positions, respectively i.e., Y-(D-Ala)-G-(p-Cl-Phe)-MKKKFMRFamide ([D-Ala(2), p-Cl-Phe(4)]YFa) in order to achieve improved bioavailability and blood brain barrier penetration. Therefore, present study investigates the possible antinociceptive effect of [D-Ala(2), p-Cl-Phe(4)]YFa on intra-peritoneal (i.p.) administration using tail-flick test in rats followed by its opioid receptor(s) specificity using mu, delta and kappa receptor antagonists. Further, its antinociceptive effect was examined during 6 days of chronic i.p. treatment and assessed effect of this treatment on differential expression of opioid receptors. [D-Ala(2), p-Cl-Phe(4)]YFa in comparison to parent peptide YFa, induce significantly higher dose dependent antinociception in rats which was mediated by all three opioid receptors (mu, delta and kappa). Importantly, it induced comparable antinociception in rats throughout the chronic i.p. treatment and significantly up-regulated the overall expression (mRNA and protein) of mu, delta and kappa opioid receptors. Therefore, pharmacological and molecular behavior of [D-Ala(2), p-Cl-Phe(4)]YFa demonstrate that incorporation of D-alanine and p-Cl-phenylalanine residues at appropriate positions in chimeric peptide leads to altered opioid receptor selectivity and enhanced antinociceptive potency, relative to parent peptide. (c) 2010 Elsevier B.V. All rights reserved.

  2. Effect of lysine at C-terminus of the Dmt-Tic opioid pharmacophore.

    PubMed

    Balboni, Gianfranco; Onnis, Valentina; Congiu, Cenzo; Zotti, Margherita; Sasaki, Yusuke; Ambo, Akihiro; Bryant, Sharon D; Jinsmaa, Yunden; Lazarus, Lawrence H; Trapella, Claudio; Salvadori, Severo

    2006-09-07

    Substitution of Gly with side-chain-protected or unprotected Lys in lead compounds containing the opioid pharmacophore Dmt-Tic [H-Dmt-Tic-Gly-NH-CH(2)-Ph, mu agonist/delta antagonist; H-Dmt-Tic-Gly-NH-Ph, mu agonist/delta agonist; and H-Dmt-Tic-NH-CH(2)-Bid, delta agonist (Bid = 1H-benzimidazole-2-yl)] yielded a new series of compounds endowed with distinct pharmacological activities. Compounds (1-10) included high delta- (Ki(delta) = 0.068-0.64 nM) and mu-opioid affinities (Ki(mu) = 0.13-5.50 nM), with a bioactivity that ranged from mu-opioid agonism {10, H-Dmt-Tic-NH-CH[(CH2)4-NH2]-Bid (IC50 GPI = 39.7 nM)} to a selective mu-opioid antagonist [3, H-Dmt-Tic-Lys-NH-CH2-Ph (pA2(mu) = 7.96)] and a selective delta-opioid antagonist [5, H-Dmt-Tic-Lys(Ac)-NH-Ph (pA2(delta) = 12.0)]. The presence of a Lys linker provides new lead compounds in the formation of opioid peptidomimetics containing the Dmt-Tic pharmacophore with distinct agonist and/or antagonist properties.

  3. The automated radiosynthesis and purification of the opioid receptor antagonist, [6-O-methyl-11C]diprenorphine on the GE TRACERlab FXFE radiochemistry module.

    PubMed

    Fairclough, Michael; Prenant, Christian; Brown, Gavin; McMahon, Adam; Lowe, Jonathan; Jones, Anthony

    2014-05-15

    [6-O-Methyl-(11)C]diprenorphine ([(11)C]diprenorphine) is a positron emission tomography ligand used to probe the endogenous opioid system in vivo. Diprenorphine acts as an antagonist at all of the opioid receptor subtypes, that is, μ (mu), κ (kappa) and δ (delta). The radiosynthesis of [(11)C]diprenorphine using [(11)C]methyl iodide produced via the 'wet' method on a home-built automated radiosynthesis set-up has been described previously. Here, we describe a modified synthetic method to [(11)C]diprenorphine performed using [(11)C]methyl iodide produced via the gas phase method on a GE TRACERlab FXFE radiochemistry module. Also described is the use of [(11)C]methyl triflate as the carbon-11 methylating agent for the [(11)C]diprenorphine syntheses. [(11)C]Diprenorphine was produced to good manufacturing practice standards for use in a clinical setting. In comparison to previously reported [(11)C]diprenorphine radiosyntheisis, the method described herein gives a higher specific activity product which is advantageous for receptor occupancy studies. The radiochemical purity of [(11)C]diprenorphine is similar to what has been reported previously, although the radiochemical yield produced in the method described herein is reduced, an issue that is inherent in the gas phase radiosynthesis of [(11)C]methyl iodide. The yields of [(11)C]diprenorphine are nonetheless sufficient for clinical research applications. Other advantages of the method described herein are an improvement to both reproducibility and reliability of the production as well as simplification of the purification and formulation steps. We suggest that our automated radiochemistry route to [(11)C]diprenorphine should be the method of choice for routine [(11)C]diprenorphine productions for positron emission tomography studies, and the production process could easily be transferred to other radiochemistry modules such as the TRACERlab FX C pro. Copyright © 2014 John Wiley & Sons, Ltd.

  4. In vivo neurochemical evidence that delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, inhibit acetylcholine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi

    2016-10-15

    Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Targinact--opioid pain relief without constipation?

    PubMed

    2010-12-01

    Targinact (Napp Pharmaceuticals Ltd) is a modified-release combination product containing the strong opioid oxycodone plus the opioid antagonist naloxone. It is licensed for "severe pain, which can be adequately managed only with opioid analgesics".1 The summary of product characteristics (SPC) states that "naloxone is added to counteract opioid-induced constipation by blocking the action of oxycodone at opioid receptors locally in the gut". Advertising for the product claims "better pain relief", "superior GI [gastrointestinal] tolerability" and "improved quality of life" "compared to previous treatment in a clinical practice study (n=7836)". Here we consider whether Targinact offers advantages over using strong opioids plus laxatives where required.

  6. Distinct functions of opioid-related peptides and gastrin-releasing peptide in regulating itch and pain in the spinal cord of primates.

    PubMed

    Lee, Heeseung; Ko, Mei-Chuan

    2015-06-29

    How neuropeptides in the primate spinal cord regulate itch and pain is largely unknown. Here we elucidate the sensory functions of spinal opioid-related peptides and gastrin-releasing peptide (GRP) in awake, behaving monkeys. Following intrathecal administration, β-endorphin (10-100 nmol) and GRP (1-10 nmol) dose-dependently elicit the same degree of robust itch scratching, which can be inhibited by mu-opioid peptide (MOP) receptor and GRP receptor (BB2) antagonists, respectively. Unlike β-endorphin, which produces itch and attenuates inflammatory pain, GRP only elicits itch without affecting pain. In contrast, enkephalins (100-1000 nmol) and nociceptin-orphanin FQ (3-30 nmol) only inhibit pain without eliciting itch. More intriguingly, dynorphin A(1-17) (10-100 nmol) dose-dependently attenuates both β-endorphin- and GRP-elicited robust scratching without affecting pain processing. The anti-itch effects of dynorphin A can be reversed by a kappa-opioid peptide (KOP) receptor antagonist nor-binaltorphimine. These nonhuman primate behavioral models with spinal delivery of ligands advance our understanding of distinct functions of neuropeptides for modulating itch and pain. In particular, we demonstrate causal links for itch-eliciting effects by β-endorphin-MOP receptor and GRP-BB2 receptor systems and itch-inhibiting effects by the dynorphin A-KOP receptor system. These studies will facilitate transforming discoveries of novel ligand-receptor systems into future therapies as antipruritics and/or analgesics in humans.

  7. Opioid-induced preconditioning: recent advances and future perspectives.

    PubMed

    Peart, Jason N; Gross, Eric R; Gross, Garrett J

    2005-01-01

    Opioids, named by Acheson for compounds with morphine-like actions despite chemically distinct structures, have received much research interest, particularly for their central nervous system (CNS) actions involved in pain management, resulting in thousands of scientific papers focusing on their effects on the CNS and other organ systems. A more recent area which may have great clinical importance concerns the role of opioids, either endogenous or exogenous compounds, in limiting the pathogenesis of ischemia-reperfusion injury in heart and brain. The role of endogenous opioids in hibernation provides tantalizing evidence for the protective potential of opioids against ischemia or hypoxia. Mammalian hibernation, a distinct energy-conserving state, is associated with depletion of energy stores, intracellular acidosis and hypoxia, similar to those which occur during ischemia. However, despite the potentially detrimental cellular state induced with hibernation, the myocardium remains resilient for many months. What accounts for the hypoxia-tolerant state is of great interest. During hibernation, circulating levels of opioid peptides are increased dramatically, and indeed, are considered a "trigger" of hibernation. Furthermore, administration of opioid antagonists can effectively reverse hibernation in mammals. Therefore, it is not surprising that activation of opioid receptors has been demonstrated to preserve cellular status following a hypoxic insult, such as ischemia-reperfusion in many model systems including the intestine [Zhang, Y., Wu, Y.X., Hao, Y.B., Dun, Y. Yang, S.P., 2001. Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine. Life Sci. 68, 1013-1019], skeletal muscle [Addison, P.D., Neligan, P.C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C.R., Pang, C.Y., 2003. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ

  8. Continuous delivery of naltrexone and nalmefene leads to tolerance in reducing alcohol drinking and to supersensitivity of brain opioid receptors.

    PubMed

    Korpi, Esa R; Linden, Anni-Maija; Hytönen, Heidi R; Paasikoski, Nelli; Vashchinkina, Elena; Dudek, Mateusz; Herr, Deron R; Hyytiä, Petri

    2017-07-01

    Opioid antagonist treatments reduce alcohol drinking in rodent models and in alcohol-dependent patients, with variable efficacy across different studies. These treatments may suffer from the development of tolerance and opioid receptor supersensitivity, as suggested by preclinical models showing activation of these processes during and after subchronic high-dose administration of the short-acting opioid antagonist naloxone. In the present study, we compared equipotent low and moderate daily doses of naltrexone and nalmefene, two opioid antagonists in the clinical practice for treatment of alcoholism. The antagonists were given here subcutaneously for 7 days either as daily injections or continuous osmotic minipump-driven infusions to alcohol-preferring AA rats having trained to drink 10% alcohol in a limited access protocol. One day after stopping the antagonist treatment, [ 35 S]GTPγS autoradiography on brain cryostat sections was carried out to examine the coupling of receptors to G protein activation. The results prove the efficacy of repeated injections over infused opioid antagonists in reducing alcohol drinking. Tolerance to the reducing effect on alcohol drinking and to the enhancement of G protein coupling to μ-opioid receptors in various brain regions were consistently detected only after infused antagonists. Supersensitivity of κ-opioid receptors was seen in the ventral and dorsal striatal regions especially by infused nalmefene. Nalmefene showed no clear agonistic activity in rat brain sections or at human recombinant κ-opioid receptors. The findings support the as-needed dosing practice, rather than the standard continual dosing, in the treatment of alcoholism with opioid receptor antagonists. © 2016 Society for the Study of Addiction.

  9. Convulsions may alter the specificity of kappa-opiate receptors.

    PubMed

    Mansour, A; Valenstein, E S

    1986-06-01

    Morphine, a mu-opiate agonist, and ethylketazocine, a kappa-opiate agonist, produce distinct behavioral, pharmacologic, and biochemical effects. In the mouse, large doses of morphine produce convulsions that are usually lethal and that cannot be blocked by naltrexone, whereas ethylketazocine produces nonlethal clonic convulsions that can be blocked by naltrexone. Moreover, mice made tolerant to morphine failed to show cross-tolerance to ethylketazocine, suggesting that the convulsions induced by these drugs are not mediated via a common opioid mechanism. Following a series of electroconvulsive shocks, both morphine and ethylketazocine produced clonic convulsions that were not lethal and that could be blocked by naltrexone. Furthermore, electroconvulsive shock-treated animals made tolerant to morphine-induced convulsions showed cross-tolerance to ethylketazocine. These data suggest that electroconvulsive shock may alter kappa-opioid systems in such a way as to allow mu-agonists to be functional at these sites.

  10. Synthesis and characterization of potent and selective mu-opioid receptor antagonists, [Dmt(1), D-2-Nal(4)]endomorphin-1 (Antanal-1) and [Dmt(1), D-2-Nal(4)]endomorphin-2 (Antanal-2).

    PubMed

    Fichna, Jakub; do-Rego, Jean-Claude; Chung, Nga N; Lemieux, Carole; Schiller, Peter W; Poels, Jeroen; Broeck, Jozef Vanden; Costentin, Jean; Janecka, Anna

    2007-02-08

    To synthesize potent antagonists of the mu-opioid receptor, we prepared a series of endomorphin-1 and endomorphin-2 analogues with 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal) in position 4. Some of these analogues displayed weak antagonist properties. We tried to strengthen these properties by introducing the structurally modified tyrosine residue 2,6-dimethyltyrosine (Dmt) in place of Tyr1. Among the synthesized compounds, [Dmt1, d-2-Nal4]endomorphin-1, designated antanal-1, and [Dmt1, d-2-Nal4]endomorphin-2, designated antanal-2, turned out to be highly potent and selective mu-opioid receptor antagonists, as judged on the basis of two functional assays, the receptor binding assay and the hot plate test of analgesia. Interestingly, another analogue of this series, [Dmt1, d-1-Nal4]endomorphin-1, turned out to be a moderately potent mixed mu-agonist/delta-antagonist.

  11. Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.

    PubMed

    Shamima, Abdul Rahman; Fakurazi, Sharida; Hidayat, Mohamad Taufik; Hairuszah, Ithnin; Moklas, Mohamad Aris Mohd; Arulselvan, Palanisamy

    2012-01-01

    Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.

  12. Neuraxial Opioid-Induced Itch and Its Pharmacological Antagonism

    PubMed Central

    2015-01-01

    Given its profound analgesic nature, neuraxial opioids are frequently used for pain management. Unfortunately, the high incident rate of itch/pruritus after spinal administration of opioid analgesics reported in postoperative and obstetric patients greatly diminishes patient satisfaction and thus the value of the analgesics. Many endeavors to solve the mystery behind neuraxial opioid-induced itch had not been successful, as the pharmacological antagonism other than the blockade of mu opioid receptors remains elusive. Nevertheless, as the characteristics of all opioid receptor subtypes have become more understood, more studies have shed light on the potential effective treatments. This review discusses the mechanisms underlying neuraxial opioid-induced itch and compares pharmacological evidence in nonhuman primates with clinical findings across diverse drugs. Both nonhuman primate and human studies corroborate that mixed mu/kappa opioid partial agonists seem to be the most effective drugs in ameliorating neuraxial opioid-induced itch while retaining neuraxial opioid-induced analgesia. PMID:25861787

  13. Targeting Dynorphin/Kappa Opioid Receptor Systems to Treat Alcohol Abuse and Dependence

    PubMed Central

    Walker, Brendan M.; Valdez, Glenn R.; McLaughlin, Jay P.; Bakalkin, Georgy

    2012-01-01

    This review represents the focus of a symposium that was presented at the “Alcoholism and Stress: A Framework for Future Treatment Strategies” conference in Volterra, Italy on May 3–6, 2011 and organized / chaired by Dr. Brendan M. Walker. The primary goal of the symposium was to evaluate and disseminate contemporary findings regarding the emerging role of kappa-opioid receptors (KORs) and their endogenous ligands dynorphins (DYNs) in the regulation of escalated alcohol consumption, negative affect and cognitive dysfunction associated with alcohol dependence, as well as DYN / KOR mediation of the effects of chronic stress on alcohol reward and seeking behaviors. Dr. Glenn Valdez described a role for KORs in the anxiogenic effects of alcohol withdrawal. Dr. Jay McLaughlin focused on the role of KORs in repeated stress-induced potentiation of alcohol reward and increased alcohol consumption. Dr. Brendan Walker presented data characterizing the effects of KOR antagonism within the extended amygdala on withdrawal-induced escalation of alcohol self-administration in dependent animals. Dr. Georgy Bakalkin concluded with data indicative of altered DYNs and KORs in the prefrontal cortex of alcohol dependent humans that could underlie diminished cognitive performance. Collectively, the data presented within this symposium identified the multifaceted contribution of KORs to the characteristics of acute and chronic alcohol-induced behavioral dysregulation and provided a foundation for the development of pharmacotherapeutic strategies to treat certain aspects of alcohol use disorders. PMID:22459870

  14. Immunomodulatory properties of kappa opioids and synthetic cannabinoids in HIV-1 neuropathogenesis.

    PubMed

    Hu, Shuxian; Sheng, Wen S; Rock, Robert Bryan

    2011-12-01

    Anti-retroviral therapy (ART) has had a tremendous impact on the clinical outcomes of HIV-1 infected individuals. While ART has produced many tangible benefits, chronic, long-term consequences of HIV infection have grown in importance. HIV-1-associated neurocognitive disorder (HAND) represents a collection of neurological syndromes that have a wide range of functional cognitive impairments. HAND remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Based upon work in other models of neuroinflammation, kappa opioid receptors (KOR) and synthetic cannabinoids have emerged as having neuroprotective properties and the ability to dampen pro-inflammatory responses of glial cells; properties that may have a positive influence in HIV-1 neuropathogenesis. The ability of KOR ligands to inhibit HIV-1 production in human microglial cells and CD4 T lymphocytes, demonstrate neuroprotection, and dampen chemokine production in astrocytes provides encouraging data to suggest that KOR ligands may emerge as potential therapeutic agents in HIV neuropathogenesis. Based upon findings that synthetic cannabinoids inhibit HIV-1 expression in human microglia and suppress production of inflammatory mediators such as nitric oxide (NO) in human astrocytes, as well as a substantial literature demonstrating neuroprotective properties of cannabinoids in other systems, synthetic cannabinoids have also emerged as potential therapeutic agents in HIV neuropathogenesis. This review focuses on these two classes of compounds and describes the immunomodulatory and neuroprotective properties attributed to each in the context of HIV neuropathogenesis.

  15. Effect of Peripheral μ-, δ-, and κ-Opioid Ligands on the Development of Tolerance to Ethanol-Induced Analgesia.

    PubMed

    Sudakov, S K; Alekseeva, E V; Nazarova, G A

    2017-06-01

    We studied the rate of development of tolerance to the ethanol-induced analgesia under the effect of μ-, δ-, and κ-opioid agonists and antagonists not crossing the blood-brain barrier and rapidly inactivated by gastric and duodenal proteolytic enzymes. Activation of gastric κ-opioid receptors eliminated the analgesic effect of ethanol and accelerated the development of tolerance to ethanol-induced analgesia. In contrast, activation of gastric μ-opioid receptors decelerated the development of this tolerance. Activation of gastric δ-opioid receptors produced no effect on examined tolerance. μ-Opioid receptor antagonist decelerated and δ-opioid receptor antagonist accelerated the development of tolerance to ethanol-induced analgesia. Thus, the state of gastric opioid receptors affects the manifestation of ethanol-induced analgesia and the development of tolerance to this effect.

  16. Polymorphisms of the Kappa Opioid Receptor and Prodynorphin Genes: HIV risk and HIV Natural History

    PubMed Central

    Proudnikov, Dmitri; Randesi, Matthew; Levran, Orna; Yuferov, Vadim; Crystal, Howard; Ho, Ann; Ott, Jurg; Kreek, Mary Jeanne

    2013-01-01

    Objective Studies indicate cross-desensitization between opioid receptors (e.g., kappa opioid receptor, OPRK1), and chemokine receptors (e.g., CXCR4) involved in HIV infection. We tested whether gene variants of OPRK1 and its ligand, prodynorphin (PDYN), influence the outcome of HIV therapy. Methods Three study points, admission to the Women’s Interagency HIV Study (WIHS), initiation of highly active antiretroviral therapy (HAART) and the most recent visit were chosen for analysis as crucial events in the clinical history of the HIV patients. Regression analyses of 17 variants of OPRK1, and 11 variants of PDYN with change of viral load (VL) and CD4 count between admission and initiation of HAART, and initiation of HAART to the most recent visit to WIHS were performed in 598 HIV+ subjects including African Americans, Hispanics and Caucasians. Association with HIV status was done in 1009 subjects. Results Before HAART, greater VL decline (improvement) in carriers of PDYN IVS3+189C>T, and greater increase of CD4 count (improvement) in carriers of OPRK1 −72C>T, were found in African Americans. Also, greater increase of CD4 count in carriers of OPRK1 IVS2+7886A>G, and greater decline of CD4 count (deterioration) in carriers of OPRK1 −1205G>A, were found in Caucasians. After HAART, greater decline of VL in carriers of OPRK1 IVS2+2225G>A, and greater increase of VL in carriers of OPRK1 IVS2+10658G>T and IVS2+10963A>G, were found in Caucasians. Also, a lesser increase of CD4 count was found in Hispanic carriers of OPRK1 IVS2+2225G>A. Conclusion OPRK1 and PDYN polymorphisms may alter severity of HIV infection and response to treatment. PMID:23392455

  17. Participation of dorsal periaqueductal gray 5-HT1A receptors in the panicolytic-like effect of the κ-opioid receptor antagonist Nor-BNI.

    PubMed

    Maraschin, Jhonatan Christian; Almeida, Camila Biesdorf; Rangel, Marcel Pereira; Roncon, Camila Marroni; Sestile, Caio César; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-06-01

    Panic patients may have abnormalities in serotonergic and opioidergic neurotransmission. The dorsal periaqueductal gray (dPAG) plays an important role in organizing proximal defense, related to panic attacks. The 5-HT 1A receptor (5-HT 1A -R) is involved in regulating escape behavior that is organized in the dPAG. Activation of κ-opioid receptor (KOR) in this region causes anxiogenic effects. In this study, we investigated the involvement of KOR in regulating escape behavior, using systemic and intra-dPAG injection of the KOR antagonist Nor-BNI. As panic models, we used the elevated T-maze (ETM) and the dPAG electrical stimulation test (EST). We also evaluated whether activation of the 5-HT 1A -R or the μ-opioid receptor (MOR) in the dPAG contributes to the Nor-BNI effects. The results showed that systemic administration of Nor-BNI, either subcutaneously (2.0 and 4.0mg/kg) or intraperitoneally (2.0mg/kg), impaired escape in the EST, indicating a panicolytic-like effect. Intra-dPAG injection of this antagonist (6.8nmol) caused the same effect in the EST and in the ETM. Association of ineffective doses of Nor-BNI and the 5-HT 1A -R agonist 8-OH-DPAT caused panicolytic-like effect in these two tests. Previous administration of the 5-HT 1A -R antagonist WAY-100635, but not of the MOR antagonist CTOP, blocked the panicolytic-like effect of Nor-BNI. These results indicate that KOR enhances proximal defense in the dPAG through 5-HT 1A -R modulation, independently of MOR. Because former results indicate that the 5-HT 1A -R is involved in the antipanic action of antidepressants, KOR antagonists may be useful as adjunctive or alternative drug treatment of panic disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Low doses of cyclic AMP-phosphodiesterase inhibitors rapidly evoke opioid receptor-mediated thermal hyperalgesia in naïve mice which is converted to prominent analgesia by cotreatment with ultra-low-dose naltrexone.

    PubMed

    Crain, Stanley M; Shen, Ke-Fei

    2008-09-22

    Systemic (s.c.) injection in naïve mice of cyclic AMP-phosphodiesterase (cAMP-PDE) inhibitors, e.g. 3-isobutyl-1-methylxanthine [(IBMX) or caffeine, 10 mg/kg] or the more specific cAMP-PDE inhibitor, rolipram (1 mug/kg), rapidly evokes thermal hyperalgesia (lasting >5 h). These effects appear to be mediated by enhanced excitatory opioid receptor signaling, as occurs during withdrawal in opioid-dependent mice. Cotreatment of these mice with ultra-low-dose naltrexone (NTX, 0.1 ng/kg-1 pg/kg, s.c.) results in prominent opioid analgesia (lasting >4 h) even when the dose of rolipram is reduced to 1 pg/kg. Cotreatment of these cAMP-PDE inhibitors in naïve mice with an ultra-low-dose (0.1 ng/kg) of the kappa-opioid receptor antagonist, nor-binaltorphimine (nor-BNI) or the mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA) also results in opioid analgesia. These excitatory effects of cAMP-PDE inhibitors in naïve mice may be mediated by enhanced release of small amounts of endogenous bimodally-acting (excitatory/inhibitory) opioid agonists by neurons in nociceptive networks. Ultra-low-dose NTX, nor-BNI or beta-FNA selectively antagonizes high-efficacy excitatory (hyperalgesic) Gs-coupled opioid receptor-mediated signaling in naïve mice and results in rapid conversion to inhibitory (analgesic) Gi/Go-coupled opioid receptor-mediated signaling which normally requires activation by much higher doses of opioid agonists. Cotreatment with a low subanalgesic dose of kelatorphan, an inhibitor of multiple endogenous opioid peptide-degrading enzymes, stabilizes endogenous opioid agonists released by cAMP-PDE inhibitors, resulting in conversion of the hyperalgesia to analgesia without requiring selective blockade of excitatory opioid receptor signaling. The present study provides a novel pharmacologic paradigm that may facilitate development of valuable non-narcotic clinical analgesics utilizing cotreatment with ultra-low-dose rolipram plus ultra-low-dose NTX or related

  19. Mu-opioid receptors modulate the stability of dendritic spines

    PubMed Central

    Liao, Dezhi; Lin, Hang; Law, Ping Yee; Loh, Horace H.

    2005-01-01

    Opioids classically regulate the excitability of neurons by suppressing synaptic GABA release from inhibitory neurons. Here, we report a role for opioids in modulating excitatory synaptic transmission. By activating ubiquitously clustered μ-opioid receptor (MOR) in excitatory synapses, morphine caused collapse of preexisting dendritic spines and decreased synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Meanwhile, the opioid antagonist naloxone increased the density of spines. Chronic treatment with morphine decreased the density of dendritic spines even in the presence of Tetrodotoxin, a sodium channel blocker, indicating that the morphine's effect was not caused by altered activity in neural network through suppression of GABA release. The effect of morphine on dendritic spines was absent in transgenic mice lacking MORs and was blocked by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-ThrNH2), a μ-receptor antagonist. These data together with others suggest that endogenous opioids and/or constitutive activity of MORs participate in maintaining normal morphology and function of spines, challenging the classical model of opioids. Abnormal alteration of spines may occur in drug addiction when opioid receptors are overactivated by exogenous opiates. PMID:15659552

  20. The Mixed Opioid Receptor Antagonist Naltrexone Mitigates Stimulant-Induced Euphoria: A Double-Blind, Placebo-Controlled Trial of Naltrexone.

    PubMed

    Spencer, Thomas J; Bhide, Pradeep; Zhu, Jinmin; Faraone, Stephen V; Fitzgerald, Maura; Yule, Amy M; Uchida, Mai; Spencer, Andrea E; Hall, Anna M; Koster, Ariana J; Feinberg, Leah; Kassabian, Sarah; Storch, Barbara; Biederman, Joseph

    Supratherapeutic doses of methylphenidate activate μ-opioid receptors, which are linked to euphoria. This study assessed whether naltrexone, a mixed μ-opioid antagonist, may attenuate the euphoric effects of stimulants, thereby minimizing their abuse potential in subjects with attention-deficit/hyperactivity disorder (ADHD). We conducted a 6-week, double-blind, placebo-controlled, randomized clinical trial of naltrexone in adults with DSM-IV ADHD receiving open treatment with a long-acting formulation of methylphenidate (January 2013 to June 2015). Spheroidal Oral Drug Absorption System methylphenidate (SODAS-MPH) was administered twice daily, was titrated to ~1 mg/kg/d over 3 weeks, and was continued for 3 additional weeks depending on response and adverse effects. Subjects were adults with ADHD preselected for having experienced euphoria with an oral test dose of 60 mg of immediate-release methylphenidate (IR-MPH). The primary outcome measure was Question 2 (Liking a Drug Effect) on the Drug Rating Questionnaire, Subject version, which was assessed after oral test doses of 60 mg of IR-MPH were administered after the third and sixth weeks of treatment with SODAS-MPH. Thirty-seven subjects who experienced stimulant-induced (mild) euphoria at a baseline visit were started in the open trial of SODAS-MPH and randomized to naltrexone 50 mg/d or placebo. Thirty-one subjects completed through week 3, and 25 completed through week 6. Naltrexone significantly diminished the euphoric effect of IR-MPH during the heightened-risk titration phase (primary outcome; first 3 weeks) (χ² = 5.07, P = .02) but not the maintenance phase (weeks 4-6) (χ² = 0.22, P = .64) of SODAS-MPH treatment. Preclinical findings are extended to humans showing that naltrexone may mitigate stimulant-associated euphoria. Our findings provide support for further studies combining opioid receptor antagonists with stimulants to reduce abuse potential. ClinicalTrials.gov identifier: NCT01673594.

  1. Time-dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction.

    PubMed

    Teklezgi, Belin G; Pamreddy, Annapurna; Baijnath, Sooraj; Kruger, Hendrik G; Naicker, Tricia; Gopal, Nirmala D; Govender, Thavendran

    2018-02-14

    Opioid addiction is a serious public health concern with severe health and social implications; therefore, extensive therapeutic efforts are required to keep users drug free. The two main pharmacological interventions, in the treatment of addiction, involve management with methadone an mu (μ)-opioid agonist and treatment with naltrexone, μ-opioid, kappa (κ)-opioid and delta (δ)-opioid antagonist. MET and NAL are believed to help individuals to derive maximum benefit from treatment and undergo a full recovery. The aim of this study was to determine the localization and distribution of MET and NAL, over a 24-hour period in rodent brain, in order to investigate the differences in their respective regional brain distributions. This would provide a better understanding of the role of each individual drug in the treatment of addiction, especially NAL, whose efficacy is controversial. Tissue distribution was determined by using mass spectrometric imaging (MSI), in combination with quantification via liquid chromatography tandem mass spectrometry. MSI image analysis showed that MET was highly localized in the striatal and hippocampal regions, including the nucleus caudate, putamen and the upper cortex. NAL was distributed with high intensities in the mesocorticolimbic system including areas of the cortex, caudate putamen and ventral pallidum regions. Our results demonstrate that MET and NAL are highly localized in the brain regions with a high density of μ-receptors, the primary sites of heroin binding. These areas are strongly implicated in the development of addiction and are the major pathways that mediate brain stimulation during reward. © 2018 Society for the Study of Addiction.

  2. CoMFA analyses of C-2 position salvinorin A analogs at the kappa-opioid receptor provides insights into epimer selectivity.

    PubMed

    McGovern, Donna L; Mosier, Philip D; Roth, Bryan L; Westkaemper, Richard B

    2010-04-01

    The highly potent and kappa-opioid (KOP) receptor-selective hallucinogen Salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOP receptor and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of Salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [(3)H]diprenorphine or [(125)I]6 beta-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([(125)I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [(125)I]IOXY set (Model 1) and [(3)H]diprenorphine set (Model 2) gave q(2) values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r(2)=0.833; Model 2 PSET r(2)=0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing Salvinorin A analogs that provides a rationale for the observation that the beta-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding alpha-epimers (S-configuration). (c) 2010. Published by Elsevier Inc.

  3. Emerging therapies for patients with symptoms of opioid-induced bowel dysfunction

    PubMed Central

    Leppert, Wojciech

    2015-01-01

    Opioid-induced bowel dysfunction (OIBD) comprises gastrointestinal (GI) symptoms, including dry mouth, nausea, vomiting, gastric stasis, bloating, abdominal pain, and opioid-induced constipation, which significantly impair patients’ quality of life and may lead to undertreatment of pain. Traditional laxatives are often prescribed for OIBD symptoms, although they display limited efficacy and exert adverse effects. Other strategies include prokinetics and change of opioids or their administration route. However, these approaches do not address underlying causes of OIBD associated with opioid effects on mostly peripheral opioid receptors located in the GI tract. Targeted management of OIBD comprises purely peripherally acting opioid receptor antagonists and a combination of opioid receptor agonist and antagonist. Methylnaltrexone induces laxation in 50%–60% of patients with advanced diseases and OIBD who do not respond to traditional oral laxatives without inducing opioid withdrawal symptoms with similar response (45%–50%) after an oral administration of naloxegol. A combination of prolonged-release oxycodone with prolonged-release naloxone (OXN) in one tablet (a ratio of 2:1) provides analgesia with limited negative effect on the bowel function, as oxycodone displays high oral bioavailability and naloxone demonstrates local antagonist effect on opioid receptors in the GI tract and is totally inactivated in the liver. OXN in daily doses of up to 80 mg/40 mg provides equally effective analgesia with improved bowel function compared to oxycodone administered alone in patients with chronic non-malignant and cancer-related pain. OIBD is a common complication of long-term opioid therapy and may lead to quality of life deterioration and undertreatment of pain. Thus, a complex assessment and management that addresses underlying causes and patomechanisms of OIBD is recommended. Newer strategies comprise methylnaltrexone or OXN administration in the management of OIBD

  4. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction

    PubMed Central

    Chartoff, Elena H.; Mavrikaki, Maria

    2015-01-01

    Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we

  5. Treatment of opioid dependence with buprenorphine: current update

    PubMed Central

    Soyka, Michael

    2017-01-01

    Opioid maintenance treatment is the first-line approach in opioid dependence. Both the full opioid agonist methadone (MET) and the partial agonist buprenorphine (BUP) are licensed for the treatment of opioid dependence. BUP differs significantly from MET in its pharmacology, side effects, and safety issues. For example, the risk of respiratory depression is lower than with MET. The risk of diversion and injection of BUP have been reduced by also making it available as a tablet containing the opioid antagonist naloxone. This review summarizes the clinical effects of BUP and examines possible factors that can support decisions regarding the use of BUP or MET in opioid-dependent people. PMID:29302227

  6. Molecular Mechanisms of Opioid Receptor-Dependent Signaling and Behavior

    PubMed Central

    Al-Hasani, Ream; Bruchas, Michael R.

    2013-01-01

    Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years, and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled, and activate inhibitory G-proteins. These receptors form homo- and hetereodimeric complexes, signal to kinase cascades, and scaffold a variety of proteins. In this review, we discuss classical mechanisms and developments in understanding opioid tolerance, opioid receptor signaling, and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. We put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, we conclude that there is a continued need for more translational work on opioid receptors in vivo. PMID:22020140

  7. A novel non-opioid protocol for medically supervised opioid withdrawal and transition to antagonist treatment.

    PubMed

    Rudolf, Gregory; Walsh, Jim; Plawman, Abigail; Gianutsos, Paul; Alto, William; Mancl, Lloyd; Rudolf, Vania

    2018-01-01

    The clinical feasibility of a novel non-opioid and benzodiazepine-free protocol was assessed for the treatment of medically supervised opioid withdrawal and transition to subsequent relapse prevention strategies. A retrospective chart review of DSM-IV diagnosed opioid-dependent patients admitted for inpatient medically supervised withdrawal examined 84 subjects (52 males, 32 females) treated with a 4-day protocol of scheduled tizanidine, hydroxyzine, and gabapentin. Subjects also received ancillary medications as needed, and routine counseling. Primary outcomes were completion of medically supervised withdrawal, and initiation of injectable extended release (ER) naltrexone treatment. Secondary outcomes included the length of hospital stay, Clinical Opiate Withdrawal Scale (COWS) scores, and facilitation to substance use disorder treatment intervention. Ancillary medication use and adverse effects were also assessed. A total of 79 (94%) of subjects completed medically supervised withdrawal. A total of 27 (32%) subjects chose to pursue transition to ER naltrexone, and 24 of the 27 (89%) successfully received the injection prior to hospital discharge. The protocol subjects had a mean length of hospital stay of 3.6 days, and the mean COWS scores was 3.3, 3.4, 2.8, and 2.4 on Day 1, 2, 3, and 4, respectively. Furthermore, 71 (85%) engaged in an inpatient or outpatient substance use disorder (SUD) treatment program following protocol completion. This retrospective chart review suggests the feasibility of a novel protocol for medically supervised opioid withdrawal and transition to relapse prevention strategies, including injectable ER naltrexone. This withdrawal protocol does not utilize opioid agonists or other controlled substances.‬‬‬‬.

  8. Magnesium ions and opioid agonists in vincristine-induced neuropathy.

    PubMed

    Bujalska, Magdalena; Makulska-Nowak, Helena; Gumułka, Stanisław W

    2009-01-01

    Neuropathic pain is difficult to treat. Classic analgesics (i.e., opioid receptor agonists) usually possess low activity. Therefore other agents such as antidepressants, anticonvulsants, and corticosteroids are used. It is commonly known that NMDA antagonists increase analgesic activity of opioids. Unfortunately, clinical use of NMDA antagonists is limited because of the relatively frequent occurrence of adverse effects e.g., memory impairment, psychomimetic effects, ataxia and motor in-coordination. Magnesium ions (Mg(2+)) are NMDA receptor blockers in physiological conditions. Therefore, in this study the effect of opioid receptor agonists and the influence of Mg(2+) on the action of opioid agonists in vincristine-induced hyperalgesia were examined. Opioid agonists such as morphine (5 mg/kg, ip), and fentanyl (0.0625 mg/kg, ip), as well as the partial agonist buprenorphine (0.075 mg/kg, ip) administered alone on 5 consecutives days did not modify the hyperalgesia in vincristine rats. In contrast, pretreatment with a low dose of magnesium sulfate (30 mg/kg, ip) resulted in a progressive increase of the analgesic action of all three investigated opioids. After discontinuation of drug administration, the effect persisted for several days.

  9. 14-Alkoxy- and 14-acyloxypyridomorphinans: μ agonist/δ antagonist opioid analgesics with diminished tolerance and dependence side effects.

    PubMed

    Ananthan, Subramaniam; Saini, Surendra K; Dersch, Christina M; Xu, Heng; McGlinchey, Nicholas; Giuvelis, Denise; Bilsky, Edward J; Rothman, Richard B

    2012-10-11

    In the search for opioid ligands with mixed functional activity, a series of 5'-(4-chlorophenyl)-4,5α-epoxypyridomorphinans possessing alkoxy or acyloxy groups at C-14 was synthesized and evaluated. In this series, the affinity and functional activity of the ligands were found to be influenced by the nature of the substituent at C-14 as well as by the substituent at N-17. Whereas the incorporation of a 3-phenylpropoxy group at C-14 on N-methylpyridomorhinan gave a dual MOR agonist/DOR agonist 17h, its incorporation on N-cyclopropylmethylpyridomorphinan gave a MOR agonist/DOR antagonist 17d. Interestingly, 17d, in contrast to 17h, did not produce tolerance or dependence effects upon prolonged treatment in cells expressing MOR and DOR. Moreover, 17d displayed greatly diminished analgesic tolerance as compared to morphine upon repeated administration, thus supporting the hypothesis that ligands with MOR agonist/DOR antagonist functional activity could emerge as novel analgesics devoid of tolerance, dependence, and related side effects.

  10. Peripheral Antinociception Induced by Aripiprazole Is Mediated by the Opioid System.

    PubMed

    Ferreira, Renata Cristina Mendes; Almeida-Santos, Ana Flávia; Duarte, Igor Dimitri Gama; Aguiar, Daniele C; Moreira, Fabricio A; Romero, Thiago Roberto Lima

    2017-01-01

    Aripiprazole is an antipsychotic drug used to treat schizophrenia and related disorders. Our previous study showed that this compound also induces antinociceptive effects. The present study aimed to assess the participation of the opioid system in this effect. Male Swiss mice were submitted to paw pressure test and hyperalgesia was induced by intraplantar injection of prostaglandin E 2 (PGE 2 , 2  μ g). Aripiprazole was injected 10 min before the measurement. Naloxone, clocinnamox, naltrindole, nor-binaltorphimine, and bestatin were given 30 min before aripiprazole. Nociceptive thresholds were measured in the 3rd hour after PGE 2 injection. Aripiprazole (100  μ g/paw) injected locally into the right hind paw induced an antinociceptive effect that was blocked by naloxone (50  μ g/paw), a nonselective opioid receptor antagonist. The role of μ -, δ -, and κ -opioid receptors was investigated using the selective antagonists, clocinnamox (40  μ g/paw), naltrindole (15, 30, and 60  μ g/paw), and nor-binaltorphimine (200  μ g/paw), respectively. The data indicated that only the δ -opioid receptor antagonist inhibited the peripheral antinociception induced by aripiprazole. Bestatin (400  μ g), an aminopeptidase-N inhibitor, significantly enhanced low-dose (25  μ g/paw) aripiprazole-induced peripheral antinociception. The results suggest the participation of the opioid system via δ -opioid receptor in the peripheral antinociceptive effect induced by aripiprazole.

  11. DOR(2)-selective but not DOR(1)-selective antagonist abolishes anxiolytic-like effects of the δ opioid receptor agonist KNT-127.

    PubMed

    Sugiyama, Azusa; Nagase, Hiroshi; Oka, Jun-Ichiro; Yamada, Mitsuhiko; Saitoh, Akiyoshi

    2014-04-01

    Recently, we reported that the δ opioid receptor (DOR) agonist KNT-127 produces anxiolytic-like effects in behaving rats. Here, we report on the roles of DOR subtypes ( DOR(1) and DOR(2)) play in mediating KNT-127-induced anxiolytic-like effects. Pretreatment with the DOR(2)-selective antagonist naltriben (NTB; 0.05mg/kg, s.c.) completely abolished KNT-127 (3.0mg/kg, s.c.)-induced anxiolytic-like effects in rats performing the elevated plus-maze task. By contrast, the DOR(1)-selective antagonist 7-benzylidenenaltrexone (BNTX; 0.5mg/kg, s.c.) produced no effect at a dose that completely blocked the antinociceptive effects of KNT-127. These findings were also supported by results from a light/dark test and open-field test. We clearly demonstrated that the DOR(2)-selective antagonist, but not the DOR(1)-selective antagonist, abolishes the anxiolytic-like effects of the DOR agonist KNT-127, suggesting different roles of these DOR subtypes in anxiety. We propose that DOR(2)-selective agonists would be good candidates for future development of anxiolytic drugs. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Central effects of some peptide and non-peptide opioids and naloxone on thermoregulation in the rabbit

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The effects of several peptide and non-peptide opiods and naloxone on induced hyperthermia is studied in rabbits. The effect of tyical mu, kappa, and sigma receptor antagonists (morphine, ketocyclazcine and SKF 10,0 10, 047) and some opioid peptides (Beta-endorphin /BE/, methionine-enkaphalin /ME/, and D-Ala2-methionine-enkaphalin-amide /DAME/ are determined. The role of prostaglandins (PG), cAMP, and norepinephrine (NE) in morphine, BE, and DAME induced hyperthermia is investigated. In addition, the effect of naloxone on pyrogen, arachidonic acid, PGE2, prostacyclin, dibutyryl cAMP, and NE induced hyperthermia is determined. Among other results, it is found that the three receptor antagonists induced hyperthermia in rabbits. BE, ME, and DAME were also found to cause hyperthermia, and it is suggested that they act on the same type of receptor. It is also determined that neither NE nor cAMP is involved in the hyperthermia due to morphine, BE, and DAME. It is suggested that an action of endogenous peptides on naloxone sensitive receptors plays little role in normal thermoregulation or in hyperthermia.

  13. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A.

    PubMed

    Drinovac, V; Bach-Rojecky, L; Matak, I; Lacković, Z

    2013-07-01

    Botulinum toxin A (BTX-A) is approved for treatment of chronic migraine and has been investigated in various other painful conditions. Recent evidence demonstrated retrograde axonal transport and suggested the involvement of CNS in antinociceptive effect of BTX-A. However, the mechanism of BTX-A central antinociceptive action is unknown. In this study we investigated the potential role of opioid receptors in BTX-A's antinociceptive activity. In formalin-induced inflammatory pain we assessed the effect of opioid antagonists on antinociceptive activity of BTX-A. Naltrexone was injected subcutaneously (0.02-2 mg/kg) or intrathecally (0.07 μg/10 μl-350 μg/10 μl), while selective μ-antagonist naloxonazine was administered intraperitoneally (5 mg/kg) prior to nociceptive testing. The influence of naltrexone (2 mg/kg s.c.) on BTX-A antinociceptive activity was examined additionally in an experimental neuropathy induced by partial sciatic nerve transection. To investigate the effects of naltrexone and BTX-A on neuronal activation in spinal cord, c-Fos expression was immunohistochemically examined in a model of formalin-induced pain. Antinociceptive effects of BTX-A in formalin and sciatic nerve transection-induced pain were prevented by non-selective opioid antagonist naltrexone. Similarly, BTX-A-induced pain reduction was abolished by low dose of intrathecal naltrexone and by selective μ-antagonist naloxonazine. BTX-A-induced decrease in dorsal horn c-Fos expression was prevented by naltrexone. Prevention of BTX-A effects on pain and c-Fos expression by opioid antagonists suggest that the central antinociceptive action of BTX-A might be associated with the activity of endogenous opioid system (involving μ-opioid receptor). These results provide first insights into the mechanism of BTX-A's central antinociceptive activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Site-specific effects of the nonsteroidal anti-inflammatory drug lysine clonixinate on rat brain opioid receptors.

    PubMed

    Ortí, E; Coirini, H; Pico, J C

    1999-04-01

    In addition to effects in the periphery through inhibition of prostaglandin synthesis, several lines of evidence suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) act in the central nervous system. The possibility that the central action of NSAIDs involves regulation of opioid receptors was investigated by quantitative autoradiography of mu, delta, and kappa sites in rat brain slices. Increased (p < 0.05) labeling of mu receptors was observed in thalamic nuclei, gyrus dentate, and layers of the parietal cortex of rats treated for 10 days with lysine clonixinate. Labeling of delta receptors was lower in the lateral septum, and kappa sites decreased in thalamic nuclei. These effects were not mediated through direct interaction with opioid-binding sites, since receptor-binding assays using rat brain membranes confirmed that clonixinate up to 1 x 10(-4) mol/l does not inhibit mu, delta, and kappa receptor specific binding. Central effects of NSAIDs might, therefore, involve interaction with the opioid receptor system through indirect mechanisms.

  15. Peripheral Antinociception Induced by Aripiprazole Is Mediated by the Opioid System

    PubMed Central

    Ferreira, Renata Cristina Mendes; Almeida-Santos, Ana Flávia; Aguiar, Daniele C.; Moreira, Fabricio A.

    2017-01-01

    Background Aripiprazole is an antipsychotic drug used to treat schizophrenia and related disorders. Our previous study showed that this compound also induces antinociceptive effects. The present study aimed to assess the participation of the opioid system in this effect. Methods Male Swiss mice were submitted to paw pressure test and hyperalgesia was induced by intraplantar injection of prostaglandin E2 (PGE2, 2 μg). Aripiprazole was injected 10 min before the measurement. Naloxone, clocinnamox, naltrindole, nor-binaltorphimine, and bestatin were given 30 min before aripiprazole. Nociceptive thresholds were measured in the 3rd hour after PGE2 injection. Results Aripiprazole (100 μg/paw) injected locally into the right hind paw induced an antinociceptive effect that was blocked by naloxone (50 μg/paw), a nonselective opioid receptor antagonist. The role of μ-, δ-, and κ-opioid receptors was investigated using the selective antagonists, clocinnamox (40 μg/paw), naltrindole (15, 30, and 60 μg/paw), and nor-binaltorphimine (200 μg/paw), respectively. The data indicated that only the δ-opioid receptor antagonist inhibited the peripheral antinociception induced by aripiprazole. Bestatin (400 μg), an aminopeptidase-N inhibitor, significantly enhanced low-dose (25 μg/paw) aripiprazole-induced peripheral antinociception. Conclusion The results suggest the participation of the opioid system via δ-opioid receptor in the peripheral antinociceptive effect induced by aripiprazole. PMID:28758123

  16. Potency of three opiate antagonists to reverse the inhibitory activity of dynorphin, enkephalins and opioid-like alkaloids on the guinea pig ileum.

    PubMed

    Yoshimura, K; Huidobro-Toro, J P; Way, E L

    1982-10-15

    To test the hypothesis that dynorphin is a K-opiate agonist acting on the myenteric plexus, the potency of two benzomorphan antagonists (Win 44, 441 and Mr 2266) to block the inhibitory action of dynorphin, enkephalins and opioid alkaloids was determined on the longitudinal muscle preparation of the guinea pig ileum. The effectiveness of these antagonists was compared to that of naloxone. Antagonistic potency was established by calculating the apparent antagonist dissociation constant, Ke, as derived from Schild plots. Win 44, 441 and Mr 2266 were about 7-8 times more potent than naloxone against dynorphin, dynorphin-(1-13) or ethylketocyclazocine. Although the Ke obtained with Win 44, 441 or Mr 2266 against dynorphin or ethylketocyclazocine were significantly lower than those of naloxone, the values obtained for these antagonists did not differ significantly in the case of each of these agonists. With respect to the antagonism of the enkephalins or normorphine, Win 44, 441 was the most potent antagonist. Its Ke value for the enkephalins was 2.5-3 times lower than those for dynorphin or ethylketocyclazocine and in comparison to naloxone, Win 44, 441 was about 5 times more potent. Although Mr 2266 was a potent antagonist of dynorphin, ethylketocyclazocine, the enkephalins or normorphine, it showed no selectivity of action. The fact that the 3 opiate antagonists evidenced similar Ke values for dynorphin and ethylketocyclazocine, but different ones for the enkephalins or normorphine supports the conclusion that dynorphin activates preferentially K- but not mu-opiate receptors in the myenteric plexus.

  17. Endogenous opioids encode relative taste preference.

    PubMed

    Taha, Sharif A; Norsted, Ebba; Lee, Lillian S; Lang, Penelope D; Lee, Brian S; Woolley, Joshua D; Fields, Howard L

    2006-08-01

    Endogenous opioid signaling contributes to the neural control of food intake. Opioid signaling is thought to regulate palatability, the reward value of a food item as determined by orosensory cues such as taste and texture. The reward value of a food reflects not only these sensory properties but also the relative value of competing food choices. In the present experiment, we used a consummatory contrast paradigm to manipulate the relative value of a sucrose solution for two groups of rats. Systemic injection of the nonspecific opioid antagonist naltrexone suppressed sucrose intake; for both groups, however, this suppression was selective, occurring only for the relatively more valuable sucrose solution. Our results indicate that endogenous opioid signaling contributes to the encoding of relative reward value.

  18. Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation.

    PubMed

    Panneerselvam, Mathivadhani; Tsutsumi, Yasuo M; Bonds, Jacqueline A; Horikawa, Yousuke T; Saldana, Michelle; Dalton, Nancy D; Head, Brian P; Patel, Piyush M; Roth, David M; Patel, Hemal H

    2010-11-01

    Epicatechin, a flavonoid, is a well-known antioxidant linked to a variety of protective effects in both humans and animals. In particular, its role in protection against cardiovascular disease has been demonstrated by epidemiologic studies. Low-dose epicatechin, which does not have significant antioxidant activity, is also protective; however, the mechanism by which low-dose epicatechin induces this effect is unknown. Our laboratory tested the hypothesis that low-dose epicatechin mediates cardiac protection via opioid receptor activation. C57BL/6 mice were randomly assigned to 1 of 10 groups: control, epicatechin, naloxone (nonselective opioid receptor antagonist), epicatechin + naloxone, naltrindole (δ-specific opioid receptor antagonist), epicatechin + naltrindole, norbinaltorphimine (nor-BNI, κ-specific opioid receptor antagonist), epicatechin + nor-BNI, 5-hydroxydecanoic acid [5-HD, ATP-sensitive potassium channel antagonist], and epicatechin + 5-HD. Epicatechin (1 mg/kg) or other inhibitors (5 mg/kg) were administered by oral gavage or intraperitoneal injection, respectively, daily for 10 days. Mice were subjected to 30 min coronary artery occlusion followed by 2 h of reperfusion, and infarct size was determined via planimetry. Whole heart homogenates were assayed for downstream opioid receptor signaling targets. Infarct size was significantly reduced in epicatechin- and epicatechin + nor-BNI-treated mice compared with control mice. This protection was blocked by naloxone, naltrindole, and 5-HD. Epicatechin and epicatechin + nor-BNI increased the phosphorylation of Src, Akt, and IκBα, while simultaneously decreasing the expression of c-Jun NH(2)-terminal kinase and caspase-activated DNase. All signaling effects are consistent with opioid receptor stimulation and subsequent cardiac protection. Naloxone, naltrindole, and 5-HD attenuated these effects. In conclusion, epicatechin acts via opioid receptors and more specifically through the δ-opioid receptor to

  19. Impact of the opioid system on the reproductive axis.

    PubMed

    Böttcher, Bettina; Seeber, Beata; Leyendecker, Gerhard; Wildt, Ludwig

    2017-08-01

    Endogenous opioids, first described more than 40 years ago, have long been recognized for their main role as important neuromodulators within the central nervous system. More recently endogenous opioids and their receptor have been identified in a variety of reproductive and nonreproductive tissues outside the central nervous system. Their role within these tissues and organs, however, is only incompletely understood. In the central nervous system, endogenous opioids inhibit pulsatile GnRH release, in part mediating the stress response within the central nervous-pituitary gonadal axis, resulting in hypothalamic amenorrhea. In the ovary, the presence of endogenous opioids primarily produced by granulosa cells has been demonstrated within the follicular fluid, likely influencing oocyte maturation. In hypothalamic amenorrhea, normal cycles can be restored by the administration of opioid antagonists, such as naltrexone. In polycystic ovarian syndrome, endogenous opioids have found to be elevated and may stimulate insulin secretion from the endocrine pancreas. This effect can be inhibited by opioid antagonists, resulting in a decrease of circulating insulin levels in response to glucose challenge. Endogenous opioids may also play a role in the pathogenesis of ovarian hyperstimulation syndrome. In summary, endogenous opioids exert a wide variety of actions within the reproductive system and are worthy of further scientific study. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Effects of N-Substitutions on the Tetrahydroquinoline (THQ) Core of Mixed-Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Ligands.

    PubMed

    Harland, Aubrie A; Bender, Aaron M; Griggs, Nicholas W; Gao, Chao; Anand, Jessica P; Pogozheva, Irina D; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I

    2016-05-26

    N-Acetylation of the tetrahydroquinoline (THQ) core of a series of μ-opioid receptor (MOR) agonist/δ-opioid receptor (DOR) antagonist ligands increases DOR affinity, resulting in ligands with balanced MOR and DOR affinities. We report a series of N-substituted THQ analogues that incorporate various carbonyl-containing moieties to maintain DOR affinity and define the steric and electronic requirements of the binding pocket across the opioid receptors. 4h produced in vivo antinociception (ip) for 1 h at 10 mg/kg.

  1. 14-Alkoxy- and 14-Acyloxypyridomorphinans: Mu Agonist/Delta Antagonist Opioid Analgesics with Diminished Tolerance and Dependence Side Effects

    PubMed Central

    Ananthan, Subramaniam; Saini, Surendra K.; Dersch, Christina M.; Xu, Heng; McGlinchey, Nicholas; Giuvelis, Denise; Bilsky, Edward J.; Rothman, Richard B.

    2012-01-01

    In the search for opioid ligands with mixed functional activity, a series of 5′-(4-chlorophenyl)-4,5α-epoxypyridomorphinans possessing alkoxy or acyloxy groups at C-14 was synthesized and evaluated. In this series, the affinity and functional activity of the ligands were found to be influenced by the nature of the substituent at C-14 as well as by the substituent at N-17. Whereas the incorporation of a 3-phenylpropoxy group at C-14 on N-methylpyridomorhinan gave a dual MOR agonist/DOR agonist 17h its incorporation on N-cyclopropylmethylpyridomorphinan gave a MOR agonist/DOR antagonist 17d. Interestingly, 17d, in contrast to 17h, did not produce tolerance or dependence effects on prolonged treatment in cells expressing MOR and DOR. Moreover, 17d displayed greatly diminished analgesic tolerance as compared to morphine on repeated administration, thus supporting the hypothesis that ligands with MOR agonist/DOR antagonist functional activity could emerge as novel analgesics devoid of tolerance, dependence and related side effects. PMID:23016952

  2. Homologous kappa-neurotoxins exhibit residue-specific interactions with the alpha 3 subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for kappa-bungarotoxin and kappa-flavitoxin binding.

    PubMed

    McLane, K E; Weaver, W R; Lei, S; Chiappinelli, V A; Conti-Tronconi, B M

    1993-07-13

    kappa-Flavotoxin (kappa-FTX), a snake neurotoxin that is a selective antagonist of certain neuronal nicotinic acetylcholine receptors (AChRs), has recently been isolated and characterized [Grant, G. A., Frazier, M. W., & Chiappinelli, V. A. (1988) Biochemistry 27, 1532-1537]. Like the related snake toxin kappa-bungarotoxin (kappa-BTX), kappa-FTX binds with high affinity to alpha 3 subtypes of neuronal AChRs, even though there are distinct sequence differences between the two toxins. To further characterize the sequence regions of the neuronal AChR alpha 3 subunit involved in formation of the binding site for this family of kappa-neurotoxins, we investigated kappa-FTX binding to overlapping synthetic peptides screening the alpha 3 subunit sequence. A sequence region forming a "prototope" for kappa-FTX was identified within residues alpha 3 (51-70), confirming the suggestions of previous studies on the binding of kappa-BTX to the alpha 3 subunit [McLane, K. E., Tang, F., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 1537-1544] and alpha-bungarotoxin to the Torpedo AChR alpha subunit [Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230] that this sequence region is involved in formation of a cholinergic site. Single residue substituted analogues, where each residue of the sequence alpha 3 (51-70) was sequentially replaced by a glycine, were used to identify the amino acid side chains involved in the interaction of this prototope with kappa-FTX.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls—antagonistic effects between opioid and serotonin-related genes

    PubMed Central

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-01-01

    Abstract Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH. PMID:28282362

  4. Gene-to-gene interactions regulate endogenous pain modulation in fibromyalgia patients and healthy controls-antagonistic effects between opioid and serotonin-related genes.

    PubMed

    Tour, Jeanette; Löfgren, Monika; Mannerkorpi, Kaisa; Gerdle, Björn; Larsson, Anette; Palstam, Annie; Bileviciute-Ljungar, Indre; Bjersing, Jan; Martin, Ingvar; Ernberg, Malin; Schalling, Martin; Kosek, Eva

    2017-07-01

    Chronic pain is associated with dysfunctional endogenous pain modulation, involving both central opioid and serotonergic (5-HT) signaling. Fibromyalgia (FM) is a chronic pain syndrome, characterized by widespread musculoskeletal pain and reduced exercise-induced hypoalgesia (EIH). In this study, we assessed the effects of 3 functional genetic polymorphisms on EIH in 130 patients with FM and 132 healthy controls. Subjects were genotyped regarding the mu-opioid receptor (OPRM1) gene (rs1799971), the serotonin transporter (5-HTT) gene (5-HTTLPR/rs25531), and the serotonin-1a receptor (5-HT1a) gene (rs6296). The patients with FM had increased pain sensitivity and reduced EIH compared with healthy controls. None of the polymorphisms had an effect on EIH on their own. We found significant gene-to-gene interactions between OPRM1 x 5-HTT and OPRM1 x 5-HT1a regarding activation of EIH, with no statistically significant difference between groups. Better EIH was found in individuals with genetically inferred strong endogenous opioid signaling (OPRM1 G) in combination with weak 5-HT tone (5-HTT low/5-HT1a G), compared with strong 5-HT tone (5-HTT high/5-HT1a CC). Based on the proposed mechanisms of these genetic variants, the findings indicate antagonistic interactions between opioid and serotonergic mechanisms during EIH. Moreover, despite different baseline pain level, similar results were detected in FM and controls, not supporting an altered interaction between opioid and 5-HT mechanisms as the basis for dysfunction of EIH in patients with FM. In summary, our results suggest that, by genetic association, the mu-opioid receptor interacts with 2 major serotonergic structures involved in 5-HT reuptake and release, to modulate EIH.

  5. Endogenous Opioid Antagonism in Physiological Experimental Pain Models: A Systematic Review

    PubMed Central

    Werner, Mads U.; Pereira, Manuel P.; Andersen, Lars Peter H.; Dahl, Jørgen B.

    2015-01-01

    Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double-blind studies using ʻinhibitoryʼ or ʻsensitizingʼ, physiological test paradigms in healthy human subjects. The databases PubMed and Embase were searched according to predefined criteria. Out of a total of 2,142 records, 63 studies (1,477 subjects [male/female ratio = 1.5]) were considered relevant. Twenty-five studies utilized ʻinhibitoryʼ test paradigms (ITP) and 38 studies utilized ʻsensitizingʼ test paradigms (STP). The ITP-studies were characterized as conditioning modulation models (22 studies) and repetitive transcranial magnetic stimulation models (rTMS; 3 studies), and, the STP-studies as secondary hyperalgesia models (6 studies), ʻpainʼ models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and rTMS. In the remaining 14 conditioning modulation studies either absence of effects or ambiguous effects by MOR-antagonists, were observed. In the STP-studies, no effect of the opioid-blockade could be demonstrated in 5 out of 6 secondary hyperalgesia studies. The direction of MOR-antagonist dependent effects upon pain ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 ʻpainʼ model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect, presumably mediated by an EOS-dependent mechanisms of analgesia and hyperalgesia. PMID:26029906

  6. Hot Topics in Primary Care: Management of Opioid-induced Constipation.

    PubMed

    Johnson, David A; Argoff, Charles E

    2015-12-01

    Constipation is a common complication of opioid therapy that contributes to substantial patient morbidity, decreased productivity, and opioid nonadherence. Other causes of constipation may occur concomitantly and should be investigated. Although evidence supporting their use is limited, the use of fiber, water, laxatives, and/or exercise is recommended in current guidelines as initial management. Peripherally acting μ-opioid receptor antagonists are important treatment options, are well-tolerated, and improve many signs and symptoms of OIC in patients taking an opioid for chronic noncancer pain.

  7. Opioid Dependence Treatment: Options In Pharmacotherapy

    PubMed Central

    Stotts, Angela L.; Dodrill, Carrie L.; Kosten, Thomas R.

    2010-01-01

    The development of effective treatments for opioid dependence is of great importance given the devastating consequences of the disease. Pharmacotherapies for opioid addiction include opioid agonists, partial agonists, opioid antagonists, and alpha-2-adrenergic agonists, which are targeted toward either detoxification or long-term agonist maintenance. Agonist maintenance therapy is currently the recommended treatment for opioid dependence due to its superior outcomes relative to detoxification. Detoxification protocols have limited long term efficacy and patient discomfort remains a significant therapy challenge. Buprenorphine’s effectiveness relative to methadone remains a controversy and may be most appropriate for patients in need of low doses of agonist treatment. Buprenorphine appears superior to alpha-2 agonists, however, and office-based treatment with buprenorphine in the US is gaining support. Studies of sustained-release formulations of naltrexone suggest improved effectiveness for retention and sustained abstinence, however, randomized clinical trials are needed. PMID:19538000

  8. Involvement of the opioid system in the hypokinetic state induced in cockroaches by a parasitoid wasp.

    PubMed

    Gavra, Tali; Libersat, Frederic

    2011-03-01

    The parasitoid wasp Ampulex compressa stings and injects venom into the cockroach brain to induce a long-lasting hypokinetic state. This state is characterized by decreased responsiveness to aversive stimuli, suggesting the manipulation of a neuromodulatory system in the cockroach's central nervous system. A likely candidate is the opioid system, which is known to affect responsiveness to stimuli in insects. To explore this possibility, we injected cockroaches with different opioid receptor agonists or antagonists before they were stung by a wasp and tested the escape behavior of these cockroaches to electric foot shocks. Antagonists significantly decreased the startle threshold in stung individuals, whereas agonists led to an increased startle threshold in controls. Yet, neither agonists nor antagonists had any effect on grooming. To further characterize the interaction between the venom and opioid receptors, we used an antenna-heart preparation. In un-stung individuals external application of crude venom completely inhibits antenna-heart contractions. In stung individuals the antenna-heart showed no contractions. Although acetylcholine restored contractions, the opioid receptor antagonist naloxone was unable to antagonize the venom inhibition. These results suggest that the venom of A. compressa might contribute to the manipulation of cockroach behavior by affecting the opioid system.

  9. Rational use of opioids.

    PubMed

    Mastronardi, P; Cafiero, T

    2001-04-01

    The role of analgesia and sedation in intensive care units (ICU) is ancillary to other intensive care strategies, nevertheless they permit that every other diagnostic and therapeutic procedure is safely performed by keeping the patient pain-free, anxiety-free and cooperative. Commonly used opioids in ICU include morphine, fentanyl, sufentanil and remifentanil. The choice among opioid drugs relies on their pharmacokinetics and their pharmacodynamic effects. Cardiovascular stability observed with fentanyl and sufentanil indicates their use in hemodynamically compromised patients. Short-acting remifentanil offers several advantages in patients requiring prolonged infusions. The organ-independent metabolism of this newer molecule may be valuable in patients with multiple organ failure. The main indications for opioid analgesia and sedation in ICU include: 1) Anxiety, pain and agitation: in turn, they can increase cardiac workload, myocardial oxygen consumption and rate of dysarrhythmias; 2) immediate postoperative period after major surgery; 3) short-term invasive procedures. Potential advantages offered by opioids in the ICU setting also include: a) Cardiac protection: in animal models, it has been observed that delta-opiate receptor stimulation confers a preconditioning-like protective effects against myocardial ischemia; b) Neuroprotection: recent studies suggest that mu- and kappa-opiate receptors are involved in ischemic preconditioning against seizures in the brain. During opioid therapy in the ICU, drug tolerance and withdrawal symptoms should be anticipated and the dose adjusted accordingly.

  10. mu-Opioid receptor-independent fashion of the suppression of sodium currents by mu-opioid analgesics in thalamic neurons.

    PubMed

    Hashimoto, Keisuke; Amano, Taku; Kasakura, Akiko; Uhl, George R; Sora, Ichiro; Sakai, Norio; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2009-03-27

    Most reports in the literature have shown that the effects of opioid analgesics are primarily mediated by mu-opioid receptor (MOR), whereas other potential targets of opioid analgesics have not been thoroughly characterized. In this study, we found that extracellular application of morphine, fentanyl or oxycodone, which are all considered to be MOR agonists, at relatively high concentrations, but not endogenous mu-opioid peptides, produced a concentration-dependent suppression of sodium currents in cultured thalamic neurons. These effects of opioids were not affected by either a MOR antagonist naloxone or a deletion of MOR gene. Among these opioids, fentanyl strongly suppressed sodium currents to the same degree as lidocaine, and both morphine and oxycodone slightly but significantly reduced sodium currents when they were present extracellularly. In contrast, the intracellular application of morphine, but not oxycodone, fentanyl or lidocaine, reduced sodium currents. These results suggest that morphine, fentanyl and oxycodone each produce the MOR-independent suppression of sodium currents by distinct mechanisms in thalamic neurons.

  11. δ opioid receptor antagonist, ICI 174,864, is suitable for the early treatment of uncontrolled hemorrhagic shock in rats.

    PubMed

    Liu, Liangming; Tian, Kunlun; Zhu, Yu; Ding, Xiaoli; Li, Tao

    2013-08-01

    Fluid resuscitation is the essential step for early treatment of traumatic hemorrhagic shock. However, its implementation is greatly limited before hospital or during evacuation. The authors investigated whether δ opioid receptor antagonist ICI 174,864 was suitable for the early treatment of traumatic hemorrhagic shock. With uncontrolled hemorrhagic-shock rats, the antishock effects of six dosages of ICI 174,864 (0.1, 0.3, 0.5, 1, 3, and 5 mg/kg) infused with or without a small volume of lactated Ringer's solution (LR) before bleeding controlled or bleeding cessation at different times were observed. ICI 174,864 (0.1-3 mg/kg) with or without 1/4 volume of LR infusion showed dose-dependent increase in the mean arterial blood pressure, and significantly prolonged the survival time and 8-h survival rate, as compared with ICI 174,864 plus 1/2 volume of LR infusion. The best effect was shown with 3 mg/kg of ICI 174,864. Bleeding cessation at 1, 2, or 3 h during infusion of ICI 174,864 (3 mg/kg) plus 1/4 volume of LR improved subsequent treatment (70% 24-h survival rate vs. 50 and 10% 24-h survival rate in hypotensive resuscitation and LR group, respectively). There was significant improvement in hemodynamic parameters, oxygen delivery, and tissue perfusion of hemorrhagic-shock rats with 3 mg/kg of ICI 174,864 plus 1/4 volume of LR infusion. δ Opioid receptor antagonist ICI 174,864 alone or with small volume of fluid infusion has good beneficial effect on uncontrolled hemorrhagic shock. Its early application can "buy" time for subsequent treatment of traumatic shock.

  12. Behavioral stress may increase the rewarding valence of cocaine-associated cues through a dynorphin/kappa-opioid receptor-mediated mechanism without affecting associative learning or memory retrieval mechanisms.

    PubMed

    Schindler, Abigail G; Li, Shuang; Chavkin, Charles

    2010-08-01

    Stress exposure increases the risk of addictive drug use in human and animal models of drug addiction by mechanisms that are not completely understood. Mice subjected to repeated forced swim stress (FSS) before cocaine develop significantly greater conditioned place preference (CPP) for the drug-paired chamber than unstressed mice. Analysis of the dose dependency showed that FSS increased both the maximal CPP response and sensitivity to cocaine. To determine whether FSS potentiated CPP by enhancing associative learning mechanisms, mice were conditioned with cocaine in the absence of stress, then challenged after association was complete with the kappa-opioid receptor (KOR) agonist U50,488 or repeated FSS, before preference testing. Mice challenged with U50,488 60 min before CPP preference testing expressed significantly greater cocaine-CPP than saline-challenged mice. Potentiation by U50,488 was dose and time dependent and blocked by the KOR antagonist norbinaltorphimine (norBNI). Similarly, mice subjected to repeated FSS before the final preference test expressed significantly greater cocaine-CPP than unstressed controls, and FSS-induced potentiation was blocked by norBNI. Novel object recognition (NOR) performance was not affected by U50,488 given 60 min before assay, but was impaired when given 15 min before NOR assay, suggesting that KOR activation did not potentiate CPP by facilitating memory retrieval or expression. The results from this study show that the potentiation of cocaine-CPP by KOR activation does not result from an enhancement of associative learning mechanisms and that stress may instead enhance the rewarding valence of cocaine-associated cues by a dynorphin-dependent mechanism.

  13. Endogenous opioids and feeding behavior: a 30-year historical perspective.

    PubMed

    Bodnar, Richard J

    2004-04-01

    This invited review, based on the receipt of the Third Gayle A. Olson and Richard D. Olson Prize for the publication of the outstanding behavioral article published in the journal Peptides in 2002, examines the 30-year historical perspective of the role of the endogenous opioid system in feeding behavior. The review focuses on the advances that this field has made over the past 30 years as a result of the timely discoveries that were made concerning this important neuropeptide system, and how these discoveries were quickly applied to the analysis of feeding behavior and attendant homeostatic processes. The discoveries of the opioid receptors and opioid peptides, and the establishment of their relevance to feeding behavior were pivotal in studies performed in the 1970s. The 1980s were characterized by the establishment of opioid receptor subtype agonists and antagonists and their relevance to the modulation of feeding behavior as well as by the use of general opioid antagonists in demonstrating the wide array of ingestive situations and paradigms involving the endogenous opioid system. The more recent work from the 1990s to the present, utilizes the advantages created by the cloning of the opioid receptor genes, the development of knockout and knockdown techniques, the systematic utilization of a systems neuroscience approach, and establishment of the reciprocity of how manipulations of opioid peptides and receptors affect feeding behavior with how feeding states affect levels of opioid peptides and receptors. The role of G-protein effector systems in opioid-mediated feeding responses, which was the subject of the prize-winning article, is then reviewed. Copyright 2004 Elsevier Inc.

  14. Novel pharmaco-types and trafficking-types induced by opioid receptor heteromerization

    PubMed Central

    van Rijn, Richard M; Whistler, Jennifer L; Waldhoer, Maria

    2009-01-01

    Homo- and heteromerization of 7 transmembrane spanning (7TM)/G-protein coupled receptors (GPCRs) has been an important field of study. Whereas initial studies were performed in artificial cell systems, recent publications are shifting the focus to the in vivo relevance of heteromerization. This is especially apparent for the field of opioid receptors. Drugs have been identified that selectively target opioid heteromers of the delta opioid receptor with the kappa and the mu opioid receptors, that influence nociception and ethanol consumption, respectively. In addition, in several cases, the specific physiological response produced by the heteromer may be directly attributed to a difference in receptor trafficking properties of the heteromers compared to their homomeric counterparts. This review attempts to highlight some of the latest developments with regard to opioid receptor heteromer trafficking and pharmacology. PMID:19846340

  15. Co-administration of delta- and mu-opioid receptor agonists promotes peripheral opioid receptor function

    PubMed Central

    Schramm, Cicely L.; Honda, Christopher N.

    2010-01-01

    Enhancement of peripheral opioid analgesia following tissue injury or inflammation in animal models is well-documented, but clinical results of peripheral opioid therapy remain inconsistent. Previous studies in the central nervous system have shown that co-administration of μ- and δ-opioid receptor agonists can enhance analgesic outcomes; however, less is known about the functional consequences of opioid receptor interactions in the periphery. The present study examines the effects of intraplantar injection of the μ- and δ-opioid receptor agonists, morphine and deltorphin, alone and in combination on behavioral tests of nociception in naïve rats and on potassium-evoked release of CGRP from sciatic nerves of naïve rats. Neither drug alone affected nociceptive behaviors or CGRP release. Two separate measures of mechanical nociceptive sensitivity remained unchanged after co-administration of the two drugs. In contrast, when deltorphin was co-injected with morphine, dose-dependent and peripherally-restricted increases in paw withdrawal latencies to radiant heat were observed. Similarly, concentration-dependent inhibition of CGRP release was observed when deltorphin and morphine were administered in sequence prior to potassium stimulation. However, no inhibition was observed when morphine was administered prior to deltorphin. All combined opioid effects were blocked by co-application of antagonists. Deltorphin exposure also enhanced the in vivo and in vitro effects of another μ-opioid receptor agonist, DAMGO. Together, these results suggest that under normal conditions, δ-opioid receptor agonists enhance the effect of μ-opioid receptor agonists in the periphery, and local co-administration of δ- and μ-opioid receptor agonists may improve results of peripheral opioid therapy for the treatment of pain. PMID:20970925

  16. THE ROLE OF DELTA OPIOID RECEPTORS IN THE ANXIOLYTIC ACTIONS OF BENZODIAZEPINES

    PubMed Central

    Primeaux, Stefany D.; Wilson, Steven P.; McDonald, Alexander J.; Mascagni, Franco; Wilson, Marlene A.

    2007-01-01

    The anxiolytic effects of benzodiazepines appear to involve opioid processes in the amygdala. In previous experiments, overexpression of enkephalin in the amygdala enhanced the anxiolytic actions of the benzodiazepine agonist diazepam in the elevated plus maze. The effects of systemically administered diazepam are also blocked by injections of naltrexone into the central nucleus of the amygdala. The current studies investigated the role of delta opioid receptors in the anxiety-related effects of diazepam. Three days following bilateral stereotaxic injections of viral vectors containing cDNA encoding proenkephalin or β-galactosidase (control vector), the delta opioid receptor antagonist naltrindole (10 mg/kg, s.c.) attenuated the enhanced anxiolytic effects of 1–2 mg/kg diazepam in rats overexpressing preproenkephalin in the amygdala. Despite this effect, naltrindole failed to attenuate the anxiolytic action of higher diazepam doses (3 mg/kg) in animals with normal amygdalar enkephalin expression. Similarly, the mu opioid receptor antagonist, β-funaltrexamine (20mg/kg, sc), had no effect on the anxiolytic effect of diazepam alone. These data support a role for delta opioid receptors in the opioid-enhanced anxiolytic effects of diazepam. PMID:17109943

  17. Involvement of central opioid systems in human interferon-α induced immobility in the mouse forced swimming test

    PubMed Central

    Makino, Mitsuhiro; Kitano, Yutaka; Komiyama, Chika; Hirohashi, Masaaki; Takasuna, Kiyoshi

    2000-01-01

    We investigated the mechanism by which human interferon-α (IFN-α) increases the immobility time in a forced swimming test, an animal model of depression.Central administration of IFN-α (0.05–50 IU per mouse, i.cist.) increased the immobility time in the forced swimming test in mice in a dose-dependent manner.Neither IFN-β nor -γ possessed any effect under the same experimental conditions.Pre-treatment with an opioid receptor antagonist, naloxone (1 mg kg−1, s.c.) inhibited the prolonged immobility time induced by IFN-α (60 KIU kg−1, i.v. or 50 IU per mouse. i.cist.).Peripheral administration of naloxone methiodide (1 mg kg−1, s.c.), which does not pass the blood–brain barrier, failed to block the effect of IFN-α, while intracisternal administration of naloxone methiodide (1 nmol per mouse) completely blocked.The effect of IFN-α was inhibited by a μ1-specific opioid receptor antagonist, naloxonazine (35 mg kg−1, s.c.) and a μ1/μ2 receptor antagonist, β-FNA (40 mg kg−1, s.c.). A selective δ-opioid receptor antagonist, naltrindole (3 mg kg−1, s.c.) and a κ-opioid receptor antagonist, nor-binaltorphimine (20 mg kg−1, s.c.), both failed to inhibit the increasing effect of IFN-α.These results suggest that the activator of the central opioid receptors of the μ1-subtype might be related to the prolonged immobility time of IFN-α, but δ and κ-opioid receptors most likely are not involved. PMID:10903965

  18. Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain.

    PubMed

    McGaraughty, Steve; Honore, Prisca; Wismer, Carol T; Mikusa, Joseph; Zhu, Chang Z; McDonald, Heath A; Bianchi, Bruce; Faltynek, Connie R; Jarvis, Michael F

    2005-09-01

    P2X3/P2X2/3 receptors have emerged as important components of nociception. However, there is limited information regarding the neurochemical systems that are affected by antagonism of the P2X3/P2X2/3 receptor and that ultimately contribute to the ensuing antinociception. In order to determine if the endogenous opioid system is involved in this antinociception, naloxone was administered just prior to the injection of a selective P2X3/P2X2/3 receptor antagonist, A-317491, in rat models of neuropathic, chemogenic, and inflammatory pain. Naloxone (1-10 mg kg(-1), i.p.), dose-dependently reduced the antinociceptive effects of A-317491 (1-300 micromol kg(-1), s.c.) in the CFA model of thermal hyperalgesia and the formalin model of chemogenic pain (2nd phase), but not in the L5-L6 spinal nerve ligation model of neuropathic allodynia. In comparison experiments, the same doses of naloxone blocked or attenuated the actions of morphine (2 or 8 mg kg(-1), s.c.) in each of these behavioral models. Injection of a peripheral opioid antagonist, naloxone methiodide (10 mg kg(-1), i.p.), did not affect A-317491-induced antinociception in the CFA and formalin assays, suggesting that the opioid component of this antinociception occurred within the CNS. Furthermore, this utilization of the central opioid system could be initiated by antagonism of spinal P2X3/P2X2/3 receptors since the antinociceptive actions of intrathecally delivered A-317491 (30 nmol) in the formalin model were reduced by both intrathecally (10-50 nmol) and systemically (10 mg kg(-1), i.p.) administered naloxone. This utilization of the opioid system was not specific to A-317491 since suramin-, a nonselective P2X receptor antagonist, induced antinociception was also attenuated by naloxone. In in vitro studies, A-317491 (3-100 microM) did not produce any agonist response at delta opioid receptors expressed in NG108-15 cells. A-317491 had been previously shown to be inactive at the kappa and mu opioid receptors

  19. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    PubMed

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  20. Is there a role for opioids in the treatment of fibromyalgia?

    PubMed

    Littlejohn, Geoffrey O; Guymer, Emma K; Ngian, Gene-Siew

    2016-05-01

    The use of opioids for chronic pain has increased significantly due to a combination of the high patient burden of pain and the more widespread availability of a range of long-acting opioid preparations. This increased opioid use has translated into the care of many patients with fibromyalgia. The pain mechanism in fibromyalgia is complex but does not seem to involve disturbance of opioid analgesic functions. Hence, there is general concern about the harms in the absence of benefits of opioids in this setting. There is no evidence that pure opioids are effective in fibromyalgia but there is some evidence that opioids with additional actions on the norepinephrine-related pain modulatory pathways, such as tramadol, can be clinically useful in some patients. Novel actions of low-dose opioid antagonists may lead to better understanding of the role of opioid function in fibromyalgia.

  1. Using natural language processing to identify problem usage of prescription opioids.

    PubMed

    Carrell, David S; Cronkite, David; Palmer, Roy E; Saunders, Kathleen; Gross, David E; Masters, Elizabeth T; Hylan, Timothy R; Von Korff, Michael

    2015-12-01

    Accurate and scalable surveillance methods are critical to understand widespread problems associated with misuse and abuse of prescription opioids and for implementing effective prevention and control measures. Traditional diagnostic coding incompletely documents problem use. Relevant information for each patient is often obscured in vast amounts of clinical text. We developed and evaluated a method that combines natural language processing (NLP) and computer-assisted manual review of clinical notes to identify evidence of problem opioid use in electronic health records (EHRs). We used the EHR data and text of 22,142 patients receiving chronic opioid therapy (≥70 days' supply of opioids per calendar quarter) during 2006-2012 to develop and evaluate an NLP-based surveillance method and compare it to traditional methods based on International Classification of Disease, Ninth Edition (ICD-9) codes. We developed a 1288-term dictionary for clinician mentions of opioid addiction, abuse, misuse or overuse, and an NLP system to identify these mentions in unstructured text. The system distinguished affirmative mentions from those that were negated or otherwise qualified. We applied this system to 7336,445 electronic chart notes of the 22,142 patients. Trained abstractors using a custom computer-assisted software interface manually reviewed 7751 chart notes (from 3156 patients) selected by the NLP system and classified each note as to whether or not it contained textual evidence of problem opioid use. Traditional diagnostic codes for problem opioid use were found for 2240 (10.1%) patients. NLP-assisted manual review identified an additional 728 (3.1%) patients with evidence of clinically diagnosed problem opioid use in clinical notes. Inter-rater reliability among pairs of abstractors reviewing notes was high, with kappa=0.86 and 97% agreement for one pair, and kappa=0.71 and 88% agreement for another pair. Scalable, semi-automated NLP methods can efficiently and

  2. Evidence for the involvement of the opioid system in the antidepressant-like effect of folic acid in the mouse forced swimming test.

    PubMed

    Brocardo, Patrícia S; Budni, Josiane; Lobato, Kelly R; Santos, Adair Roberto S; Rodrigues, Ana Lúcia S

    2009-06-08

    The opioid system has been implicated in major depression and in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of the water-soluble B-vitamin folic acid in the forced swimming test (FST). The effect of folic acid (10 nmol/site, i.c.v.) was prevented by the pretreatment of mice with naloxone (1 mg/kg, i.p., a nonselective opioid receptor antagonist), naltrindole (3 mg/kg, i.p., a selective delta-opioid receptor antagonist), naloxonazine (10 mg/kg, i.p., a selective mu(1)-opioid receptor antagonist, 24 h before), but not with naloxone methiodide (1 mg/kg, s.c., a peripherally acting opioid receptor antagonist). In addition, a sub-effective dose of folic acid (1 nmol/site, i.c.v.) produced a synergistic antidepressant-like effect in the FST with a sub-effective dose of morphine (1 mg/kg, s.c.). A further approach was designed to investigate the possible relationship between the opioid system and NMDA receptors in the mechanism of action of folic acid in the FST. Pretreatment of the animals with naloxone (1 mg/kg, i.p.) prevented the synergistic antidepressant-like effect of folic acid (1 nmol/site, i.c.v.) and MK-801 (0.001 mg/kg, i.p., a non-competitive NMDA receptor antagonist). Together the results firstly indicate that the anti-immobility effect of folic acid in the FST is mediated by an interaction with the opioid system (mu(1) and delta), likely dependent on the inhibition of NMDA receptors elicited by folic acid.

  3. Comparison of kappa opioids in rhesus monkeys: behavioral effects and receptor binding affinities.

    PubMed

    France, C P; Medzihradsky, F; Woods, J H

    1994-01-01

    Bremazocine, [5R-(5,7,8 beta)]-N-methyl-N-[7-(1-pyrrolidinyl)1-oxaspiro [4,5]dec-8-yl]-4-benzofuranacetamide (Cl-977), (+-)-trans-3,4-dichloro-N- methyl-(2-(pyrrolidin-1-yl)-5-methoxy-1,2,3,4-tetrahydronapth++ +-1-yl benzeneacetamide methanesulfonate (DUP 747), ethylketocyclazocine (EKC), nalorphine, (+/-)-trans-N-methyl-N-[2-(1- pyrrolidnyl)-cyclohexyl]benzo[b]thiophene-4-acetamide (PD117302), trans-(+/-)-3,4-dichloro-N-methyl-[2-(1-pyrrolidinyl)- cyclohexyl]benzeneacetamide (U-50,488), (5,7,8 beta)-N-methyl-N[2-(1- pyrrolidinyl), 1-oxaspiro[4,5]dec-8-yl benzeneacetamide (U-69,593) and spiradoline were compared in rhesus monkeys for their discriminative stimulus, analgesic and respiratory effects. Selected compounds also were studied for their binding affinities at mu [[3H](D-Ala2-Me-Phe4,Glyol5)enkephalin], kappa ([3H]U-69,593) and delta [[3H](D-Pen2-D-Pen5) enkephalin], opioid receptors in monkey brain membranes. All compounds substituted completely (> or = 90%) for EKC in monkeys discriminating between EKC and saline, with the exception that DUP 747 produced a maximum of 74% EKC responding. None of the compounds reversed naltrexone responding in morphine-abstinent monkeys; all of the compounds substituted for naltrexone in morphine-treated monkeys discriminating between naltrexone and saline, with the exception that spiradoline produced a maximum of 68% naltrexone responding. Eight compounds produced maximum analgesic effects in a tail withdrawal procedure and quadazocine antagonized these effects; nalorphine did not have analgesic effects, but it antagonized analgesic effects of several other compounds. U-50,488 did not decrease respiratory function, whereas U-69,593 decreased frequency of respiration and volume of respiration to less than 40% of control values; Cl-977, DUP 747, PD117302 and spiradoline had limited effects on respiratory function. Larger doses of each compound increased both respiration and motor activity.

  4. Synthesis, Modeling, and Pharmacological Evaluation of UMB 425, a Mixed μ Agonist/δ Antagonist Opioid Analgesic with Reduced Tolerance Liabilities

    PubMed Central

    2013-01-01

    Opioid narcotics are used for the treatment of moderate-to-severe pain and primarily exert their analgesic effects through μ receptors. Although traditional μ agonists can cause undesired side effects, including tolerance, addition of δ antagonists can attenuate said side effects. Herein, we report 4a,9-dihydroxy-7a-(hydroxymethyl)-3-methyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one (UMB 425) a 5,14-bridged morphinan-based orvinol precursor synthesized from thebaine. Although UMB 425 lacks δ-specific motifs, conformationally sampled pharmacophore models for μ and δ receptors predict it to have efficacy similar to morphine at μ receptors and similar to naltrexone at δ receptors, due to the compound sampling conformations in which the hydroxyl moiety interacts with the receptors similar to orvinols. As predicted, UMB 425 exhibits a mixed μ agonist/δ antagonist profile as determined in receptor binding and [35S]GTPγS functional assays in CHO cells. In vivo studies in mice show that UMB 425 displays potent antinociception in the hot plate and tail-flick assays. The antinociceptive effects of UMB 425 are blocked by naloxone, but not by the κ-selective antagonist norbinaltorphimine. During a 6-day tolerance paradigm, UMB 425 maintains significantly greater antinociception compared to morphine. These studies thus indicate that, even in the absence of δ-specific motifs fused to the C-ring, UMB 425 has mixed μ agonist/δ antagonist properties in vitro that translate to reduced tolerance liabilities in vivo. PMID:23713721

  5. Mechanisms of morphine enhancement of spontaneous seizure activity.

    PubMed

    Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam

    2007-12-01

    High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.

  6. Peptide and non-peptide opioid-induced hyperthermia in rabbits

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl-normetazocine was found to induce hyperthermia in rabbits. The similar administration of peptide opioids like beta-endorphin (BE), methionine-enkephalin (ME), and its synthetic analogue D-ala2-methionine-enkephalinamide (DAME) was also found to cause hyperthermia. Results indicate that only the liver-like transport system is important to the ventricular inactivation of BE and DAME. Prostaglandins and norepinephrine were determined not to be involved in peptide and nonpeptide opioid-induced hyperthermia. In addition, cAMP was not required since a phosphodiesterase inhibitor, theophylline, did not accentuate the hyperthermia due to peptide and nonpeptide opioids. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine, BE, ME, and DAME since naloxone attenuated them. However, the hyperthermic response to ketocyclazocine and N-allyl-normetazocine was not antagonized by naloxone.

  7. Isobolographic analysis of the opioid-opioid interactions in a tonic and a phasic mouse model of induced nociceptive pain.

    PubMed

    Miranda, Hugo F; Noriega, Viviana; Zanetta, Pilar; Prieto, Juan Carlos; Prieto-Rayo, Juan Carlos; Aranda, Nicolás; Sierralta, Fernando

    2014-07-15

    Opioids have been used for the management of pain and coadministration of two opioids may induce synergism. In a model of tonic pain, the acetic acid writhing test and in a phasic model, the hot plate, the antinociceptive interaction between fentanyl, methadone, morphine, and tramadol was evaluated. The potency of opioids in the writhing test compared to the hot plate assay was from 2.5 (fentanyl) to 15.5 (morphine) times, respectively. The ED50 was used in a fixed ratio for each of the six pairs of opioid combinations, which, resulted in a synergistic antinociception except for methadone/tramadol and fentanyl/tramadol which were additive, in the hot plate. The opioid antagonists naltrexone, naltrindole and nor-binaltorphimine, suggests that the synergism of morphine combinations are due to the activation of MOR subtypes with partially contribution of DOR and KOR, however fentanyl and methadone combinations are partially due to the activation of MOR and DOR subtypes and KOR lack of participation. The antinociceptive effects of tramadol combinations, are partially due to the activation of MOR, DOR and KOR opioid subtypes. These results suggets that effectiveness and magnitude of the interactions between opioids are dependent on pain stimulus intensity.

  8. Treating Opioid-Induced Constipation in Older Adults: New Options.

    PubMed

    Sani, Halima; Mahan, Rebecca J

    2015-10-01

    Numerous factors, such as changes in gastrointestinal physiology, reduced mobility, decreased liquid and nutritional intake, and certain comorbidities, predispose older adults to constipation. Use of opioid medications further compounds this problem. Unlike other side effects associated with opioid use, patients do not develop tolerance to constipation and other opioid-induced bowel dysfunctions. Although opioid-induced constipation has a prevalence rate of 80% in this population, it remains highly undertreated. Despite this problem, there have been limited therapeutic options available for older adults suffering from opioid-induced constipation. On September 16, 2014, a new oral agent, naloxegol, a peripherally acting muopioid receptor antagonist (PAMORA), approved by the Food and Drug Administration, provides new hope for patients. This paper explores clinical complications associated with opioid-induced constipation in older adults, analyzes the efficacy and safety of laxatives and PAMORAs, and defines the future role of naloxegol in this vulnerable population.

  9. Methylnaltrexone mechanisms of action and effects on opioid bowel dysfunction and other opioid adverse effects.

    PubMed

    Yuan, Chun-Su

    2007-06-01

    To review the mechanisms of action of methylnaltrexone and its effects on opioid bowel dysfunction, as well as its effects on other opioid-induced adverse effects (ADEs), and its potential roles in clinical practice. A literature search using the MEDLINE and Cochrane Collaboration databases for articles published between 1966 and March 2007 was performed. Additional data sources were obtained from manual searches of recent journal articles, book chapters, and monographs. An updated literature search showed no additional publications. Abstracts and original preclinical and clinical research reports published in the English language were identified for review. Review articles, commentaries, and news reports of this compound were excluded. Literature related to opioids, opioid receptors, opioid antagonists, methylnaltrexone, opioid-induced bowel dysfunction, constipation, nausea, and vomiting was evaluated and selected based on consideration of the support shown for the proof of concept, mechanistic findings, and timeliness. Fifty-eight original articles from preclinical studies and clinical trials using methylnaltrexone were identified. Pharmacologic action, benefits, and ADEs of methylnaltrexone were reviewed, with a focus on its effects on bowel dysfunction after opioids. Emphases were placed on its receptor binding activities and therapeutically relevant sites of action (peripheral vs central), in which peripheral opioid receptors in the body contribute to physiological and drug-induced effects. Morphine and related opioids are associated with a number of limiting ADEs, including opioid-induced bowel dysfunction. Methylnaltrexone, a quaternary derivative of naltrexone, blocks peripheral effects of opioids while sparing central analgesic effects. It is currently under late-stage clinical investigation for the treatment of opioid-induced constipation in patients with advanced illness. Reported results showed the drug to be generally well-tolerated. The rapid

  10. Low-dose naltrexone targets the opioid growth factor-opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-09-01

    Naltrexone (NTX) is an opioid antagonist that inhibits or accelerates cell proliferation in vivo when utilized in a low (LDN) or high (HDN) dose, respectively. The mechanism of opioid antagonist action on growth is not well understood. We established a tissue culture model of LDN and HDN using short-term and continuous opioid receptor blockade, respectively, in human ovarian cancer cells, and found that the duration of opioid receptor blockade determines cell proliferative response. The alteration of growth by NTX also was detected in cells representative of pancreatic, colorectal and squamous cell carcinomas. The opioid growth factor (OGF; [Met(5)]-enkephalin) and its receptor (OGFr) were responsible for mediating the action of NTX on cell proliferation. NTX upregulated OGF and OGFr at the translational but not at the transcriptional level. The mechanism of inhibition by short-term NTX required p16 and/or p21 cyclin-dependent inhibitory kinases, but was not dependent on cell survival (necrosis, apoptosis). Sequential administration of short-term NTX and OGF had a greater inhibitory effect on cell proliferation than either agent alone. Given the parallels between short-term NTX in vitro and LDN in vivo, we now demonstrate at the molecular level that the OGF-OGFr axis is a common pathway that is essential for the regulation of cell proliferation by NTX.

  11. The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    PubMed Central

    Schoell, Eszter D.; Bingel, Ulrike; Eippert, Falk; Yacubian, Juliana; Christiansen, Kerrin; Andresen, Hilke; May, Arne; Buechel, Christian

    2010-01-01

    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone. PMID:20811582

  12. Blunted endogenous opioid release following an oral dexamphetamine challenge in abstinent alcohol-dependent individuals.

    PubMed

    Turton, Samuel; Myers, James Fm; Mick, Inge; Colasanti, Alessandro; Venkataraman, Ashwin; Durant, Claire; Waldman, Adam; Brailsford, Alan; Parkin, Mark C; Dawe, Gemma; Rabiner, Eugenii A; Gunn, Roger N; Lightman, Stafford L; Nutt, David J; Lingford-Hughes, Anne

    2018-06-25

    Addiction has been proposed as a 'reward deficient' state, which is compensated for with substance use. There is growing evidence of dysregulation in the opioid system, which plays a key role in reward, underpinning addiction. Low levels of endogenous opioids are implicated in vulnerability for developing alcohol dependence (AD) and high mu-opioid receptor (MOR) availability in early abstinence is associated with greater craving. This high MOR availability is proposed to be the target of opioid antagonist medication to prevent relapse. However, changes in endogenous opioid tone in AD are poorly characterised and are important to understand as opioid antagonists do not help everyone with AD. We used [ 11 C]carfentanil, a selective MOR agonist positron emission tomography (PET) radioligand, to investigate endogenous opioid tone in AD for the first time. We recruited 13 abstinent male AD and 15 control participants who underwent two [ 11 C]carfentanil PET scans, one before and one 3 h following a 0.5 mg/kg oral dose of dexamphetamine to measure baseline MOR availability and endogenous opioid release. We found significantly blunted dexamphetamine-induced opioid release in 5 out of 10 regions-of-interest including insula, frontal lobe and putamen in AD compared with controls, but no significantly higher MOR availability AD participants compared with HC in any region. This study is comparable to our previous results of blunted dexamphetamine-induced opioid release in gambling disorder, suggesting that this dysregulation in opioid tone is common to both behavioural and substance addictions.

  13. Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area

    PubMed Central

    Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Cortés, Antoni

    2017-01-01

    The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin–opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR–Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. SIGNIFICANCE STATEMENT The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant

  14. Functional μ-Opioid-Galanin Receptor Heteromers in the Ventral Tegmental Area.

    PubMed

    Moreno, Estefanía; Quiroz, César; Rea, William; Cai, Ning-Sheng; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; Ferré, Sergi

    2017-02-01

    The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders. The μ-opioid receptor (MOR) localized in the ventral tegmental area (VTA) plays a key role in the reinforcing and addictive properties of opioids. With parallel in vitro experiments in mammalian transfected cells and in situ and in vivo experiments in rat VTA, we demonstrate that a significant population of these MORs form

  15. Mother root of Aconitum carmichaelii Debeaux exerts antinociceptive effect in Complet Freund's Adjuvant-induced mice: roles of dynorpin/kappa-opioid system and transient receptor potential vanilloid type-1 ion channel.

    PubMed

    Wang, Chao; Sun, Danni; Liu, Chunfang; Zhu, Chunyan; Jing, Xianghong; Chen, Shuping; Liu, Cuiling; Zhi, Kai; Xu, Tengfei; Wang, Hui; Liu, Junling; Xu, Ying; Liu, Zhiqiang; Lin, Na

    2015-08-30

    Processed Chuanwu (PCW), the mother root of Aconitum carmichaelii Debeauxv, has been widely used as a classic Traditional Chinese Medicine for pain relieve for over two millennia clinically. However, its action on chronic inflammatory pain has not been clarified. Here, we investigated the antinociceptive effect of PCW in complete freund's adjuvant (CFA)-induced mice and its possible mechanisms associated with opioid system and TRPV1 ion channel. Male ICR mice were intraplantarly injected with CFA. PCW (0.34, 0.68 and 1.35 g/kg) was orally given to mice once a day for 7 days. Von frey hairs and planter test were assessed to evaluate the antinociceptive effect of PCW. To investigate the participation of dynorphin/opioid system in PCW antinociception, subtype-specific opioid receptor antagonists or anti-dynorphin A antiserum were used. To eliminate other central mechanisms that contribute to PCW antinociception, hot plate (50 °C) test were performed. Further, involvements of TRPV1 in PCW antinociception were evaluated in CFA-induced TRPV1(-/-) and TRPV1(+/+) C57BL/6 male mice, and in capsaicin-induced nociception ICR naive mice pretreated with nor-BNI. Meanwhile, calcium imaging was performed in HEK293T-TRPV1 cells. Finally, rotarod, open-field tests and body temperature measurement were carried out to assess side effects of PCW. PCW dose-dependently attenuated mechanical and heat hypersensitivities with no tolerance, which could be partially attenuated by coadministration of k-opioid receptor antagonist nor-binaltorphimine (nor-BNI) or anti-dynorphin A (1-13) antiserum. And PCW antinociception was totally erased by pretreatment with nor-BNI in the hot plate test. In addition, PCW antinociception was decreased in TRPV1(-/-) mice compared to TRPV1(+/+) group. And PCW still manifested inhibitory effects in capsaicin-induced nociception with nor-BNI pretreatment. PCW significantly inhibited capsaicin-induced calcium influx in HEK293T-TRPV1 cells. Finally, no

  16. Pathway and Cell-Specific Kappa-Opioid Receptor Modulation of Excitatory-Inhibitory Balance Differentially Gates D1 and D2 Accumbens Neuron Activity

    PubMed Central

    Tejeda, Hugo A.; Wu, Jocelyn; Kornspun, Alana R.; Pignatelli, Marco; Kashtelyan, Vadim; Krashes, Michael J.; Lowell, Brad B.; Carlezon, William A.; Bonci, Antonello

    2018-01-01

    Endogenous dynorphin signaling via the kappa-opioid receptor (KOR) in the nucleus accumbens (NAcc) powerfully mediates negative affective states and stress reactivity. Excitatory inputs from the hippocampus and amygdala play a fundamental role in shaping the activity of both NAcc D1 and D2 MSNs, which encode positive and negative motivational valences, respectively. However, a circuit-based mechanism by which KOR modulation of excitation-inhibition balance modifies D1 and D2 MSN activity is lacking. Here, we provide a comprehensive synaptic framework wherein presynaptic KOR inhibition decreases excitatory drive of D1 MSN activity by the amygdala, but not hippocampus. Conversely, presynaptic inhibition by KORs of inhibitory synapses on D2 MSNs enhances integration of excitatory drive by the amygdala and hippocampus. In conclusion, we describe a circuit-based mechanism showing differential gating of afferent control of D1 and D2 MSN activity by KORs in a pathway specific manner. PMID:28056342

  17. Opioid receptors mediate direct predictive fear learning: evidence from one-trial blocking.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-04-01

    Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including mu-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear learning. Four experiments reported here used a within-subject one-trial blocking design to study whether opioid receptors mediate a direct or indirect action of predictive error on Pavlovian association formation. In Stage I, rats were trained to fear conditioned stimulus (CS) A by pairing it with shock. In Stage II, CSA and CSB were co-presented once and co-terminated with shock. Two novel stimuli, CSC and CSD, were also co-presented once and co-terminated with shock in Stage II. The results showed one-trial blocking of fear learning (Experiment 1) as well as one-trial unblocking of fear learning when Stage II training employed a higher intensity footshock than was used in Stage I (Experiment 2). Systemic administrations of the opioid receptor antagonist naloxone (Experiment 3) or intra-vlPAG administrations of the selective mu-opioid receptor antagonist CTAP (Experiment 4) prior to Stage II training prevented one-trial blocking. These results show that opioid receptors mediate the direct actions of predictive error on Pavlovian association formation.

  18. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse.

    PubMed

    Charbogne, Pauline; Kieffer, Brigitte L; Befort, Katia

    2014-01-01

    The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. pEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. This article is part of a Special Issue entitled 'NIDA

  19. Clinically Employed Opioid Analgesics Produce Antinociception via μ-δ Opioid Receptor Heteromers in Rhesus Monkeys

    PubMed Central

    2012-01-01

    Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans. PMID:23019498

  20. Clinically employed opioid analgesics produce antinociception via μ-δ opioid receptor heteromers in Rhesus monkeys.

    PubMed

    Yekkirala, Ajay S; Banks, Matthew L; Lunzer, Mary M; Negus, Stevens S; Rice, Kenner C; Portoghese, Philip S

    2012-09-19

    Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans.

  1. Impact of Internet pharmacy regulation on opioid analgesic availability.

    PubMed

    Boyer, Edward W; Wines, James D

    2008-09-01

    Access to prescription opioid analgesics has made Internet pharmacies the object of increased regulatory scrutiny, but the effectiveness of regulatory changes in curtailing availability of opioid analgesics from online sources has been not assessed. As part of an ongoing investigation into the relationship between the Internet and substance abuse, we examined the availability of prescription opioid analgesics from online pharmacies. From a pharmacy watch Web site, we constructed a data set of postings entered every 3 months beginning November 1, 2005, that were related to the purchase of prescription opioid analgesics. Trained examiners assessed whether the final post described accessibility of pain medications that was increasing or decreasing. We identified 45 threads related to the availability of opioid analgesics from Internet pharmacies. Of the 41 (91%) threads describing the declining availability of opioid analgesic agents from Internet pharmacies, 34 (82%) received posts on November 1, 2007. Despite the subjective nature of the research question, there was high interobserver agreement between coders (kappa= .845) that availability of opioid analgesics from online pharmacies had decreased. This finding was supported by a dramatic rise in the number of pageviews (an accepted measure of Web site visitor interest in a page's content) of Web pages describing decreased availability of opioid analgesics. These data suggest striking decreases in the availability of prescription opioid analgesic pharmaceuticals. This self-reported change in drug availability may be related to increased regulation of and law enforcement operations directed against Internet pharmacies.

  2. Isobolographic analysis of the opioid-opioid interactions in a tonic and a phasic mouse model of induced nociceptive pain

    PubMed Central

    2014-01-01

    Background Opioids have been used for the management of pain and coadministration of two opioids may induce synergism. In a model of tonic pain, the acetic acid writhing test and in a phasic model, the hot plate, the antinociceptive interaction between fentanyl, methadone, morphine, and tramadol was evaluated. Results The potency of opioids in the writhing test compared to the hot plate assay was from 2.5 (fentanyl) to 15.5 (morphine) times, respectively. The ED50 was used in a fixed ratio for each of the six pairs of opioid combinations, which, resulted in a synergistic antinociception except for methadone/tramadol and fentanyl/tramadol which were additive, in the hot plate. The opioid antagonists naltrexone, naltrindole and nor-binaltorphimine, suggests that the synergism of morphine combinations are due to the activation of MOR subtypes with partially contribution of DOR and KOR, however fentanyl and methadone combinations are partially due to the activation of MOR and DOR subtypes and KOR lack of participation. The antinociceptive effects of tramadol combinations, are partially due to the activation of MOR, DOR and KOR opioid subtypes. Conclusion These results suggets that effectiveness and magnitude of the interactions between opioids are dependent on pain stimulus intensity. PMID:25017386

  3. Gonadal Hormone Modulation of Mu, Kappa, and Delta Opioid Antinociception in Male and Female Rats

    PubMed Central

    Stoffel, Erin C.; Ulibarri, Catherine M.; Folk, John E.; Rice, Kenner C.

    2005-01-01

    Previous studies suggest that sex differences in morphine antinociception in rodents might be attributed to the activational effects of gonadal hormones. The present study determined whether hormonal modulation of opioid antinociception in adult rats extends to opioids other than the prototypic mu agonist morphine. Male and female rats were sham-gonadectomized (sham-GDX) or gonadectomized (GDX) and replaced with no hormone, estradiol (E2, females), progesterone (P4, females), E2+P4 (females), or testosterone (males). Approximately 28 days later, nociception was evaluated on the 50°C hot plate and warm water tail withdrawal tests before and after subcutaneous administration of hydromorphone, buprenorphine, U50,488, or SNC 80. In sham-GDX (gonadally intact) rats, the mu agonists and U50,488 were less effective in females than in males in at least one nociceptive test, and the delta agonist SNC 80 was less effective in males than in females. In males, gonadectomy tended to decrease, and testosterone tended to increase antinociception produced by 3 of the 4 agonists. In females, gonadectomy and hormone treatment had more variable effects, although E2 tended to decrease mu opioid antinociception. The present results suggest that activational effects of gonadal hormones are relatively modest and somewhat inconsistent on antinociception produced by various opioid agonists in the adult rat. Perspective: This study demonstrates that reproductive hormones such as testosterone in males and estradiol in females do not consistently modulate sensitivity to the analgesic effects of opioids in the adult organism. PMID:15820914

  4. The role of the dynorphin/κ opioid receptor system in anxiety.

    PubMed

    Hang, Ai; Wang, Yu-jun; He, Ling; Liu, Jing-gen

    2015-07-01

    Anxiety disorders are the most common and prevalent forms of psychiatric disease, although the biological basis of anxiety is not well understood. The dynorphin/κ opioid receptor system is widely distributed in the central nervous system and has been shown to play a critical role in modulating mood and emotional behaviors. In the present review, we summarize current literature relating to the role played by the dynorphin/κ opioid receptor system in anxiety and κ opioid receptor antagonists as potential therapeutic agents for the treatment of anxiety disorders.

  5. Tramadol and Tramadol+Caffeine Synergism in the Rat Formalin Test Are Mediated by Central Opioid and Serotonergic Mechanisms

    PubMed Central

    Carrillo-Munguía, Norma; González-Trujano, Ma. Eva; Huerta, Miguel; Trujillo, Xochitl; Díaz-Reval, M. Irene

    2015-01-01

    Different analgesic combinations with caffeine have shown this drug to be capable of increasing the analgesic effect. Many combinations with nonsteroidal anti-inflammatory drugs (NSAIDs) have been carried out, but, in regard to opioids, only combinations with morphine and tramadol have been reported. The antinociceptive synergism mechanism of these combinations is not well understood. The purpose of the present study was to determine the participation of spinal and supraspinal opioidergic and serotonergic systems in the synergic effect of the tramadol+caffeine combination in the rat formalin test. At the supraspinal level, the opioid antagonist, naloxone, completely reversed the effect of the drug combination, whereas ketanserin, a 5-HT2 receptor antagonist, inhibited the effect by 60%; however, ondansetron, a 5-HT3 receptor antagonist, did not alter the combination effect. When the antagonists were intrathecally administered, there was a significant reduction in all tramadol-caffeine combination effects. With respect to tramadol alone, there was significant participation of the opioid system at the supraspinal level, whereas it was the serotonergic system that participated at the spinal level by means of the two receptors studied. In conclusion, the tramadol+caffeine combination synergically activated the opioid and serotonergic systems at the supraspinal level, as well as at the spinal level, to produce the antinociception. PMID:26146627

  6. Hyperthermic responses to central injections of some peptide and non-peptide opioids in the guinea-pig

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.

  7. Buprenorphine-naloxone buccal soluble film for the treatment of opioid dependence: current update.

    PubMed

    Soyka, Michael

    2015-02-01

    Opioid dependence is a severe medical disorder with a high psychiatric and somatic comorbidity and mortality rate. The opioid agonist methadone, mixed agonist-antagonist buprenorphine and the combination of buprenorphine with the opioid antagonist naloxone are the first-line maintenance treatments for opioid dependence. Risk of diversion and accidental intoxications, especially in children, are of great concern. To lower these risks, a novel buprenorphine-naloxone film has been developed and introduced in the USA and Australia. This review evaluates the available preclinical and clinical data on the novel buprenorphine-naloxone film for treatment of opioid dependence. Literature was identified through a comprehensive PubMed search. Data sources also included official FDA information and material made public by the manufacturer. Few preclinical and clinical data on safety and efficacy have been published. The pharmacological differences between the novel film and the conventional buprenorphine/naloxone are small. In an experimental study, the new formulation suppressed symptoms of opioid withdrawal. The spectrum of adverse events seems to be similar to that of the conventional sublingual tablet. Recent data show that patients prefer the novel film over the conventional sublingual tablet. Emerging surveillance data indicate a lower risk of accidental poisoning in children compared with the conventional formulation. Further clinical and preclinical data are needed to explore additional possible advantages of the new formulation.

  8. Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin

    PubMed Central

    Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.

    2007-01-01

    Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806

  9. Tolerance to Non-Opioid Analgesics is Opioid Sensitive in the Nucleus Raphe Magnus.

    PubMed

    Tsagareli, Merab G; Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz

    2011-01-01

    Repeated injection of opioid analgesics can lead to a progressive loss of effect. This phenomenon is known as tolerance. Several lines of investigations have shown that systemic, intraperitoneal administration or the microinjection of non-opioid analgesics, non-steroidal anti-inflammatory drugs (NSAIDs) into the midbrain periaqueductal gray matter induces antinociception with some effects of tolerance. Our recent study has revealed that microinjection of three drugs analgin, ketorolac, and xefocam into the central nucleus of amygdala produce tolerance to them and cross-tolerance to morphine. Here we report that repeated administrations of these NSAIDs into the nucleus raphe magnus (NRM) in the following 4 days result in progressively less antinociception compare to the saline control, i.e., tolerance develops to these drugs in male rats. Special control experiments showed that post-treatment with the μ-opioid antagonist naloxone into the NRM significantly decreased antinociceptive effects of NSAIDs on the first day of testing in the tail-flick (TF) reflex and hot plate (HP) latency tests. On the second day, naloxone generally had trend effects in both TF and HP tests and impeded the development of tolerance to the antinociceptive effect of non-opioid analgesics. These findings strongly support the suggestion of endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain-control system. Moreover, repeated injections of NSAIDs progressively lead to tolerance to them, cross-tolerance to morphine, and the risk of a withdrawal syndrome. Therefore, these results are important for human medicine too.

  10. Opioids in Gastroenterology: Treating Adverse Effects and Creating Therapeutic Benefits.

    PubMed

    Camilleri, Michael; Lembo, Anthony; Katzka, David A

    2017-09-01

    The use of opioid medications on both an acute and chronic basis is ubiquitous in the United States. As opioid receptors densely populate the gastrointestinal tract, symptoms and side effects can be expected in these patients. In the esophagus, dysmotility may result, manifesting with dysphagia and a syndrome indistinguishable from primary achalasia. In the stomach, a marked delay in gastric emptying may occur with postprandial nausea and early satiety. Postoperatively, particularly with abdominal surgery, opioid-induced ileus may ensue. In the colon, opioid-induced constipation is common. A unique syndrome termed narcotic bowel syndrome is characterized by chronic abdominal pain often accompanied by nausea and vomiting in the absence of other identifiable causes. With the recognition of the important role of opioids on gastrointestinal function, novel drugs have been developed that use this physiology. These medications include peripheral acting opioid agonists to treat opioid-induced constipation and combination agonist and antagonists used for diarrhea-predominant irritable bowel syndrome. This review summarizes the most recent data in these areas. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Novel Oral Therapies for Opioid-induced Bowel Dysfunction in Patients with Chronic Noncancer Pain.

    PubMed

    Holder, Renee M; Rhee, Diane

    2016-03-01

    Opioid analgesics are frequently prescribed and play an important role in chronic pain management. Opioid-induced bowel dysfunction, which includes constipation, hardened stool, incomplete evacuation, gas, and nausea and vomiting, is the most common adverse event associated with opioid use. Mu-opioid receptors are specifically responsible for opioid-induced bowel dysfunction, resulting in reduced peristaltic and secretory actions. Agents that reverse these actions in the bowel without reversing pain control in the central nervous system may be preferred over traditional laxatives. The efficacy and safety of these agents in chronic noncancer pain were assessed from publications identified through Ovid and PubMed database searches. Trials that evaluated the safety and efficacy of oral agents for opioid-induced constipation or opioid-induced bowel dysfunction, excluding laxatives, were reviewed. Lubiprostone and naloxegol are approved in the United States by the Food and Drug Administration for use in opioid-induced constipation. Axelopran (TD-1211) and sustained-release naloxone have undergone phase 2 and phase 1 studies, respectively, for the same indication. Naloxegol and axelopran are peripherally acting μ-opioid receptor antagonists. Naloxone essentially functions as a peripherally acting μ-opioid receptor antagonist when administered orally in a sustained-release formulation. Lubiprostone is a locally acting chloride channel (CIC-2) activator that increases secretions and peristalsis. All agents increase spontaneous bowel movements and reduce other bowel symptoms compared with placebo in patients with noncancer pain who are chronic opioid users. The most common adverse events were gastrointestinal in nature, and none of the drugs were associated with severe adverse or cardiovascular events. Investigations comparing these agents to regimens using standard laxative and combination therapy and trials in special populations and patients with active cancer are

  12. Interacting Cannabinoid and Opioid Receptors in the Nucleus Accumbens Core Control Adolescent Social Play

    PubMed Central

    Manduca, Antonia; Lassalle, Olivier; Sepers, Marja; Campolongo, Patrizia; Cuomo, Vincenzo; Marsicano, Giovanni; Kieffer, Brigitte; Vanderschuren, Louk J. M. J; Trezza, Viviana; Manzoni, Olivier J. J.

    2016-01-01

    Social play behavior is a highly rewarding, developmentally important form of social interaction in young mammals. However, its neurobiological underpinnings remain incompletely understood. Previous work has suggested that opioid and endocannabinoid neurotransmission interact in the modulation of social play. Therefore, we combined behavioral, pharmacological, electrophysiological, and genetic approaches to elucidate the role of the endocannabinoid 2-arachidonoylglycerol (2-AG) in social play, and how cannabinoid and opioid neurotransmission interact to control social behavior in adolescent rodents. Systemic administration of the 2-AG hydrolysis inhibitor JZL184 or the opioid receptor agonist morphine increased social play behavior in adolescent rats. These effects were blocked by systemic pretreatment with either CB1 cannabinoid receptor (CB1R) or mu-opioid receptor (MOR) antagonists. The social play-enhancing effects of systemic morphine or JZL184 treatment were also prevented by direct infusion of the CB1R antagonist SR141716 and the MOR antagonist naloxone into the nucleus accumbens core (NAcC). Searching for synaptic correlates of these effects in adolescent NAcC excitatory synapses, we observed that CB1R antagonism blocked the effect of the MOR agonist DAMGO and, conversely, that naloxone reduced the effect of a cannabinoid agonist. These results were recapitulated in mice, and completely abolished in CB1R and MOR knockout mice, suggesting that the functional interaction between CB1R and MOR in the NAcC in the modulation of social behavior is widespread in rodents. The data shed new light on the mechanism by which endocannabinoid lipids and opioid peptides interact to orchestrate rodent socioemotional behaviors. PMID:27899885

  13. State-dependent μ-opioid modulation of social motivation

    PubMed Central

    Loseth, Guro E.; Ellingsen, Dan-Mikael; Leknes, Siri

    2014-01-01

    Social mammals engage in affiliative interactions both when seeking relief from negative affect and when searching for pleasure and joy. These two motivational states are both modulated by μ-opioid transmission. The μ-opioid receptor (MOR) system in the brain mediates pain relief and reward behaviors, and is implicated in social reward processing and affiliative bonding across mammalian species. However, pharmacological manipulation of the μ-opioid system has yielded opposite effects on rodents and primates: in rodents, social motivation is generally increased by MOR agonists and reduced by antagonists, whereas the opposite pattern has been shown in primates. Here, we address this paradox by taking into account differences in motivational state. We first review evidence for μ-opioid mediation of reward processing, emotion regulation, and affiliation in humans, non-human primates, rodents and other species. Based on the consistent cross-species similarities in opioid functioning, we propose a unified, state-dependent model for μ-opioid modulation of affiliation across the mammalian species. Finally, we show that this state-dependent model is supported by evidence from both rodent and primate studies, when species and age differences in social separation response are taken into account. PMID:25565999

  14. Chronic nicotine-induced changes in gene expression of delta and kappa-opioid receptors and their endogenous ligands in the mesocorticolimbic system of the rat.

    PubMed

    Ugur, Muzeyyen; Kaya, Egemen; Gozen, Oguz; Koylu, Ersin O; Kanit, Lutfiye; Keser, Aysegul; Balkan, Burcu

    2017-09-01

    Delta and kappa opioid receptors (DOR and KOR, respectively) and their endogenous ligands, proenkephalin (PENK) and prodynorphin (PDYN)-derived opioid peptides are proposed as important mediators of nicotine reward. This study investigated the regulatory effect of chronic nicotine treatment on the gene expression of DOR, KOR, PENK and PDYN in the mesocorticolimbic system. Three groups of rats were injected subcutaneously with nicotine at doses of 0.2, 0.4, or 0.6 mg/kg/day for 6 days. Rats were decapitated 1 hr after the last dose on day six, as this timing coincides with increased dopamine release in the mesocorticolimbic system. mRNA levels in the ventral tegmental area (VTA), lateral hypothalamic area (LHA), amygdala (AMG), dorsal striatum (DST), nucleus accumbens, and medial prefrontal cortex were measured by quantitative real-time PCR. Our results showed that nicotine upregulated DOR mRNA in the VTA at all of the doses employed, in the AMG at the 0.4 and 0.6 mg/kg doses, and in the DST at the 0.4 mg/kg dose. Conversely, PDYN mRNA was reduced in the LHA with 0.6 mg/kg nicotine and in the AMG with 0.4 mg/kg nicotine. KOR mRNA was also decreased in the DST with 0.6 mg/kg nicotine. Nicotine did not regulate PENK mRNA in any brain region studied. © 2017 Wiley Periodicals, Inc.

  15. Combined administration of buprenorphine and naltrexone produces antidepressant-like effects in mice

    PubMed Central

    Almatroudi, Abdulrahman; Husbands, Stephen M.; Bailey, Christopher P.; Bailey, Sarah J.

    2016-01-01

    Opiates have been used historically for the treatment of depression. Renewed interest in the use of opiates as antidepressants has focussed on the development of kappa opioid receptor (κ-receptor) antagonists. Buprenorphine acts as a partial μ-opioid receptor agonist and a κ-receptor antagonist. By combining buprenorphine with the opioid antagonist naltrexone, the activation of μ-opioid receptors would be reduced and the κ-antagonist properties enhanced. We have established that a combination dose of buprenorphine (1mg/kg) with naltrexone (1mg/kg) functions as a short-acting κ-antagonist in the mouse tail withdrawal test. Furthermore, this dose combination is neither rewarding nor aversive in the conditioned place preference paradigm and is without significant locomotor effects. We have shown for the first time that systemic co-administration of buprenorphine (1mg/kg) with naltrexone (1mg/kg) in CD-1 mice produced significant antidepressant-like responses in behaviours in both the forced swim test and novelty induced hypophagia task. Behaviours in the elevated plus maze and light dark box were not significantly altered by treatment with buprenorphine alone, or in combination with naltrexone. We propose that the combination of buprenorphine with naltrexone represents a novel, and potentially a readily translatable approach, to the treatment of depression. PMID:26045511

  16. The influence of opioids on urokinase plasminogen activator on protein and mRNA level in MCF-7 breast cancer cell line.

    PubMed

    Gach, Katarzyna; Szemraj, Janusz; Fichna, Jakub; Piestrzeniewicz, Mariola; Delbro, Dick S; Janecka, Anna

    2009-10-01

    Urokinase plasminogen activator plays a key role in tumor-associated processes, increasing cancer cell invasion and metastasis, and is therefore used as a marker in cancer prognosis. In this study, we have determined the effect of mu-opioid receptor agonists and antagonists on the urokinase plasminogen activator secretion in MCF-7 cell line. It was shown that mu-opioid receptor agonists, such as morphine and endomorphins, greatly stimulate urokinase plasminogen activator secretion, while naloxone and MOR-selective antagonists elicit the opposite effect. The same tendency was observed also on the urokinase plasminogen activator mRNA level. However, neither agonists nor antagonists had any effect on proliferation of MCF-7 cells. The findings reported in this study may be useful in designing further experiments aimed at elucidating the role of the opioid system in cancer cells.

  17. Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay

    PubMed Central

    Hansen, Randi Westh; Wang, Xiaole; Golab, Agnieszka; Bornert, Olivier; Oswald, Christine; Wagner, Renaud; Martinez, Karen Laurence

    2016-01-01

    Long-term functional stability of isolated membrane proteins is crucial for many in vitro applications used to elucidate molecular mechanisms, and used for drug screening platforms in modern pharmaceutical industry. Compared to soluble proteins, the understanding at the molecular level of membrane proteins remains a challenge. This is partly due to the difficulty to isolate and simultaneously maintain their structural and functional stability, because of their hydrophobic nature. Here we show, how scintillation proximity assay can be used to analyze time-resolved high-affinity ligand binding to membrane proteins solubilized in various environments. The assay was used to establish conditions that preserved the biological function of isolated human kappa opioid receptor. In detergent solution the receptor lost high-affinity ligand binding to a radiolabelled ligand within minutes at room temperature. After reconstitution in Nanodiscs made of phospholipid bilayer the half-life of high-affinity ligand binding to the majority of receptors increased 70-fold compared to detergent solubilized receptors—a level of stability that is appropriate for further downstream applications. Time-resolved scintillation proximity assay has the potential to screen numerous conditions in parallel to obtain high levels of stable and active membrane proteins, which are intrinsically unstable in detergent solution, and with minimum material consumption. PMID:27035823

  18. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells

    PubMed Central

    Babcock, Jennifer; Herrera, Alberto; Coricor, George; Karch, Christopher; Liu, Alexander H.; Rivera-Gines, Aida; Ko, Jane L.

    2017-01-01

    Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR) and hypoxia inducible factor-1α (HIF-1α). The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D) out of four potential HIF response elements of the hKOR gene (HIFA–D) synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing) produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing), suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation. PMID:28117678

  19. Corticotropin-Releasing Factor (CRF)-Induced Disruption of Attention in Rats Is Blocked by the κ-Opioid Receptor Antagonist JDTic

    PubMed Central

    Van'T Veer, Ashlee; Yano, Jessica M; Carroll, F Ivy; Cohen, Bruce M; Carlezon, William A

    2012-01-01

    Stress often disrupts behavior and can lead to psychiatric illness. Considerable evidence suggests that corticotropin-releasing factor (CRF) plays an important role in regulating the effects of stress. CRF administration produces stress-like effects in humans and laboratory animals, and CRF levels are elevated in individuals with stress-related illness. Recent work indicates that κ-opioid receptor (KOR) antagonists can block CRF effects, raising the possibility that at least some of the effects of stress are mediated via KORs. Here we examined the effects of CRF on performance in the 5-choice serial reaction time task (5CSRTT), a test used to quantify attention in rodents, as well as functional interactions between CRF and KORs. Male Sprague-Dawley rats were trained in the 5CSRTT and then each was implanted with an intracerebroventricular (ICV) cannula. After recovery and restabilization of performance, they received a single intraperitoneal (IP) injection of vehicle or JDTic (10 mg/kg), a KOR antagonist with long-lasting (>14 days) effects. In subsequent sessions, rats received ICV infusions of CRF (0.25–1.0 μg) or vehicle and were tested 60 min later. CRF dose-dependently disrupted performance as reflected by decreases in correct responding, increases in omission errors, increases in latencies to respond correctly, and increases in time to complete the session. JDTic attenuated each of these CRF-induced deficits while having no effects on its own. The persistent ability of JDTic to disrupt KOR function was confirmed using the tail immersion assay. These findings indicate that KOR antagonists can prevent acute stress-related effects that degrade performance in tasks requiring attention. PMID:22948977

  20. Using [11C]diprenorphine to image opioid receptor occupancy by methadone in opioid addiction: clinical and preclinical studies.

    PubMed

    Melichar, Jan K; Hume, Susan P; Williams, Tim M; Daglish, Mark R C; Taylor, Lindsay G; Ahmad, Rabia; Malizia, Andrea L; Brooks, David J; Myles, Judith S; Lingford-Hughes, Anne; Nutt, David J

    2005-01-01

    Substitute methadone prescribing is one of the main modes of treatment for opioid dependence with established evidence for improved health and social outcomes. However, the pharmacology underpinning the effects of methadone is little studied despite controversies about dosing in relation to outcome. We therefore examined the relationship between methadone dose and occupation of opioid receptors in brain using the positron emission tomography (PET) radioligand [(11)C]diprenorphine in humans and rats. Eight opioid-dependent subjects stable on their substitute methadone (18-90 mg daily) had an [(11)C]diprenorphine PET scan at predicted peak plasma levels of methadone. These were compared with eight healthy controls. No difference in [(11)C]diprenorphine binding was found between the groups, with no relationship between methadone dose and occupancy. Adult male Sprague-Dawley rats that had been given an acute i.v. injection of methadone hydrochloride (0.35, 0.5, 0.7, or 1.0 mg kg(-1)) before [(11)C]diprenorphine showed a dose-dependent increase in biodistribution but no reduction in [(11)C]diprenorphine binding. We suggest that the lack of a dose-dependent relationship between methadone dose, either given chronically in human or acutely in rat, and occupancy of opioid receptor measured with [(11)C]diprenorphine PET is related to efficacy of this opioid agonist at very low levels of opioid receptor occupancy. This has implications for understanding the actions of methadone in comparison with other opioid drugs such as partial agonists and antagonists.

  1. Safety and efficacy of an oxycodone vaccine: Addressing some of the unique considerations posed by opioid abuse

    PubMed Central

    Peterson, S. J.; Laudenbach, M.; Baruffaldi, F.; Carroll, F. I.; Comer, S. D.; Navarro, H. A.; Langston, T. L.; Runyon, S. P.; Winston, S.; Pravetoni, M.; Pentel, P. R.

    2017-01-01

    Among vaccines aimed at treating substance use disorders, those targeting opioids present several unique medication development challenges. 1) Opioid overdose is a common complication of abuse, so it is desirable for an opioid vaccine to block the toxic as well as the addictive effects of opioids. 2) It is important that an opioid vaccine not interfere with the action of opioid antagonists used to reverse opioid overdose or treat addiction. 3) Some opioids are immunosuppressive and chronic ongoing opioid use could interfere with vaccine immunogenicity. 4) Although antibody-bound oxycodone is unable to enter the brain because of its size, it might still be able to activate peripheral opioid receptors. To assess vaccine impact on opioid toxicity, rats vaccinated with oxycodone conjugated to keyhole limpet hemocyanin subunit dimer (OXY-dKLH) adsorbed to alum or controls vaccinated with dKLH were compared with regard to oxycodone-induced hotplate analgesia and oxycodone-induced respiratory depression and bradycardia. Vaccination shifted the dose-response curves to the right, representing protection, for each of these endpoints. Naloxone was equally effective in both OXY-dKLH and control groups, providing complete and rapid reversal of respiratory depression. The administration of a long-acting naltrexone formulation during vaccination did not impair vaccine immunogenicity in mice. Similarly, serum anti-oxycodone antibody titers were not altered by continuous morphine infusion during vaccination compared to opioid-naïve controls. Competitive ELISA assay showed negligible or low affinity of immune antiserum for endogenous opioids or opioid antagonists. In vitro receptor binding assays showed that antibody-bound oxycodone does not activate mu opioid receptors. These data support further study of OXY-dKLH as a potential treatment for oxycodone abuse and suggest that vaccination might also reduce the severity of oxycodone overdose. PMID:29194445

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structuresmore » of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.« less

  3. Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids

    PubMed Central

    Adler-Neal, Adrienne L.; Wells, Rebecca E.; Stagnaro, Emily; May, Lisa M.; Eisenach, James C.; McHaffie, John G.; Coghill, Robert C.

    2016-01-01

    Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. SIGNIFICANCE STATEMENT Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptidemore » N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.« less

  5. Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain.

    PubMed

    Lagard, Camille; Chevillard, Lucie; Guillemyn, Karel; Risède, Patricia; Laplanche, Jean-Louis; Spetea, Mariana; Ballet, Steven; Mégarbane, Bruno

    2017-03-01

    Drugs able to treat both nociceptive and neuropathic pain effectively without major side effects are lacking. We developed a bifunctional peptide-based hybrid (KGNOP1) that structurally combines a mu-opioid receptor agonist (KGOP1) with antinociceptive activity and a weak nociceptin receptor antagonist (KGNOP3) with anti-neuropathic pain activity. We investigated KGNOP1-related behavioral effects after intravenous administration in rats by assessing thermal nociception, cold hyperalgesia in a model of neuropathic pain induced by chronic constriction injury of the sciatic nerve, and plethysmography parameters including inspiratory time (TI) and minute ventilation (VM) in comparison to the well-known opioid analgesics, tramadol and morphine. Time-course and dose-dependent effects were investigated for all behavioral parameters to determine the effective doses 50% (ED50). Pain-related effects on cold hyperalgesia were markedly increased by KGNOP1 as compared to KGNOP3 and tramadol (ED50: 0.0004, 0.32, and 12.1 μmol/kg, respectively), whereas effects on thermal nociception were significantly higher with KGNOP1 as compared to morphine (ED50: 0.41 and 14.7 μmol/kg, respectively). KGNOP1 and KGOP1 produced a larger increase in TI and deleterious decrease in VM in comparison to morphine and tramadol (ED50(TI): 0.63, 0.52, 12.2, and 50.9 μmol/kg; ED50(VM): 0.57, 0.66, 10.6, and 50.0 μmol/kg, respectively). Interestingly, the calculated ratios of anti-neuropathic pain/antinociceptive to respiratory effects revealed that KGNOP1 was safer than tramadol (ED50 ratio: 5.44 × 10 vs 0.24) and morphine (ED50 ratio: 0.72 vs 1.39). We conclude that KGNOP1 is able to treat both experimental neuropathic and nociceptive pain, more efficiently and safely than tramadol and morphine, respectively, and thus should be a candidate for future clinical developments.

  6. Alanine analogues of [D-Trp]CJ-15,208: novel opioid activity profiles and prevention of drug- and stress-induced reinstatement of cocaine-seeking behaviour.

    PubMed

    Aldrich, J V; Senadheera, S N; Ross, N C; Reilley, K A; Ganno, M L; Eans, S E; Murray, T F; McLaughlin, J P

    2014-07-01

    The novel macrocyclic peptide cyclo[Phe-D-Pro-Phe-D-Trp] ([D-Trp]CJ-15,208) exhibits κ opioid (KOP) receptor antagonist activity in both in vitro and in vivo assays. The four alanine analogues of this peptide were synthesized and characterized both in vitro and in vivo to assess the contribution of different amino acid residues to the activity of [D-Trp]CJ-15,208. The peptides were synthesized by a combination of solid phase peptide synthesis and cyclization in solution. The analogues were evaluated in vitro in receptor binding and functional assays, and in vivo with mice using a tail-withdrawal assay for antinociceptive and opioid antagonist activity. Mice demonstrating extinction of cocaine conditioned-place preference (CPP) were pretreated with selected analogues to evaluate prevention of stress or cocaine-induced reinstatement of CPP. The alanine analogues displayed pharmacological profiles in vivo distinctly different from [D-Trp]CJ-15,208. While the analogues exhibited varying opioid receptor affinities and κ and μ opioid receptor antagonist activity in vitro, they produced potent opioid receptor-mediated antinociception (ED50 = 0.28-4.19 nmol, i.c.v.) in vivo. Three of the analogues also displayed KOP receptor antagonist activity in vivo. Pretreatment with an analogue exhibiting both KOP receptor agonist and antagonist activity in vivo prevented both cocaine- and stress-induced reinstatement of cocaine-seeking behaviour in the CPP assay in a time-dependent manner. These unusual macrocyclic peptides exhibit in vivo opioid activity profiles different from the parent compound and represent novel compounds for potential development as therapeutics for drug abuse and possibly as analgesics. © 2014 The British Pharmacological Society.

  7. Alanine analogues of [D-Trp]CJ-15,208: novel opioid activity profiles and prevention of drug- and stress-induced reinstatement of cocaine-seeking behaviour

    PubMed Central

    Aldrich, J V; Senadheera, S N; Ross, N C; Reilley, K A; Ganno, M L; Eans, S E; Murray, T F; McLaughlin, J P

    2014-01-01

    BACKGROUND AND PURPOSE The novel macrocyclic peptide cyclo[Phe-D-Pro-Phe-D-Trp] ([D-Trp]CJ-15,208) exhibits κ opioid (KOP) receptor antagonist activity in both in vitro and in vivo assays. The four alanine analogues of this peptide were synthesized and characterized both in vitro and in vivo to assess the contribution of different amino acid residues to the activity of [D-Trp]CJ-15,208. EXPERIMENTAL APPROACH The peptides were synthesized by a combination of solid phase peptide synthesis and cyclization in solution. The analogues were evaluated in vitro in receptor binding and functional assays, and in vivo with mice using a tail-withdrawal assay for antinociceptive and opioid antagonist activity. Mice demonstrating extinction of cocaine conditioned-place preference (CPP) were pretreated with selected analogues to evaluate prevention of stress or cocaine-induced reinstatement of CPP. KEY RESULTS The alanine analogues displayed pharmacological profiles in vivo distinctly different from [D-Trp]CJ-15,208. While the analogues exhibited varying opioid receptor affinities and κ and μ opioid receptor antagonist activity in vitro, they produced potent opioid receptor-mediated antinociception (ED50 = 0.28–4.19 nmol, i.c.v.) in vivo. Three of the analogues also displayed KOP receptor antagonist activity in vivo. Pretreatment with an analogue exhibiting both KOP receptor agonist and antagonist activity in vivo prevented both cocaine- and stress-induced reinstatement of cocaine-seeking behaviour in the CPP assay in a time-dependent manner. CONCLUSIONS AND IMPLICATIONS These unusual macrocyclic peptides exhibit in vivo opioid activity profiles different from the parent compound and represent novel compounds for potential development as therapeutics for drug abuse and possibly as analgesics. PMID:24588614

  8. Type and location of fluorescent probes incorporated into the potent mu-opioid peptide [Dmt]DALDA affect potency, receptor selectivity and intrinsic efficacy.

    PubMed

    Schiller, P W; Berezowska, I; Weltrowska, G; Chen, H; Lemieux, C; Chung, N N

    2005-06-01

    The dermorphin-derived tetrapeptide H-Dmt-d-Arg-Phe-Lys-NH(2) (Dmt = 2',6'-dimethyltyrosine) ([Dmt(1)]DALDA) is a highly potent and selective mu-opioid agonist capable of crossing the blood-brain barrier and producing a potent, centrally mediated analgesic effect when given systemically. For the purpose of biodistribution studies by fluorescence techniques, [Dmt(1)]DALDA analogues containing various fluorescent labels [dansyl, anthraniloyl (atn), fluorescein, or 6-dimethylamino-2'-naphthoyl] in several different locations of the peptide were synthesized and characterized in vitro in the guinea-pig ileum and mouse vas deferens assays, and in mu-, delta- and kappa-opioid receptor-binding assays. The analogues showed various degrees of mu receptor-binding selectivity, but all of them were less mu-selective than the [Dmt(1)]DALDA parent peptide. Most analogues retained potent, full mu-agonist activity, except for one with fluorescein attached at the C-terminus (3a) (partial mu-agonist) and one containing beta-(6'-dimethylamino-2'-naphthoyl)alanine (aladan) in place of Phe(3) (4) (mu- and kappa-antagonist). The obtained data indicate that the receptor-binding affinity, receptor selectivity and intrinsic efficacy of the prepared analogues vary very significantly, depending on the type of fluorescent label used and on its location in the peptide. The results suggest that the biological activity profile of fluorescence-labeled peptide analogues should always be carefully determined prior to their use in biodistribution studies or other studies. One of the analogues containing the atn group (2a) proved highly useful in a study of cellular uptake and intracellular distribution by confocal laser scanning microscopy.

  9. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons.

    PubMed

    Ardianto, C; Yonemochi, N; Yamamoto, S; Yang, L; Takenoya, F; Shioda, S; Nagase, H; Ikeda, H; Kamei, J

    2016-04-21

    The hypothalamus controls feeding behavior. Since central opioid systems may regulate feeding behavior, we examined the role of μ-, δ- and κ-opioid receptors in the lateral hypothalamus (LH), the hunger center, in feeding behavior of mice. Non-selective (naloxone; 3 mg/kg, s.c.) and selective μ- (β-funaltrexamine, β-FNA; 10 mg/kg, s.c.), δ- (naltrindole; 3 mg/kg, s.c.) and κ- (norbinaltorphimine, norBNI; 20 mg/kg, s.c.) opioid receptor antagonists significantly decreased food intake in food-deprived mice. The injection of naloxone (20 μg/side) into the LH significantly decreased food intake whereas the injection of naloxone (20 μg/side) outside of the LH did not affect food intake. The injection of β-FNA (2 μg/side), naltrindole (1 μg/side) or norBNI (2 μg/side) into the LH significantly decreased food intake. Furthermore, all these antagonists significantly decreased the mRNA level of preproorexin, but not those of other hypothalamic neuropeptides. In addition, the injection of the GABAA receptor agonist muscimol (5 μg/side) into the LH significantly decreased food intake, and this effect was abolished by the GABAA receptor antagonist bicuculline (50 μg/side). Muscimol (1mg/kg, i.p.) decreased the mRNA level of preproorexin in the hypothalamus. Naloxone (3mg/kg, s.c.) significantly increased the GABA level in the LH and both bicuculline and the GABA release inhibitor 3-mercaptopropionic acid (3-MP, 5 μg/side) attenuated the inhibitory effect of naloxone on feeding behavior. 3-MP also attenuated the effects of β-FNA and norBNI, but not that of naltrindole. These results show that opioid systems in the LH regulate feeding behavior through orexin neurons. Moreover, μ- and κ-, but not δ-, opioid receptor antagonists inhibit feeding behavior by activating GABA neurons in the LH. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Naloxone Administration for Suspected Opioid Overdose: An Expanded Scope of Practice by a Basic Life Support Collegiate-Based Emergency Medical Services Agency

    ERIC Educational Resources Information Center

    Jeffery, Ryan M.; Dickinson, Laura; Ng, Nicholas D.; DeGeorge, Lindsey M.; Nable, Jose V.

    2017-01-01

    Opioid abuse is a growing and significant public health concern in the United States. Naloxone is an opioid antagonist that can rapidly reverse the respiratory depression associated with opioid toxicity. Georgetown University's collegiate-based emergency medical services (EMS) agency recently adopted a protocol, allowing providers to administer…

  11. Peptidases prevent mu-opioid receptor internalization in dorsal horn neurons by endogenously released opioids.

    PubMed

    Song, Bingbing; Marvizón, Juan Carlos G

    2003-03-01

    To evaluate the effect of peptidases on mu-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and alpha-neoendorphin, but not endomorphins or beta-endorphin. The omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 microm) or 50 mm KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and were Ca(2+) dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are primarily cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, because the potencies of endomorphin-1 and endomorphin-2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons.

  12. Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids

    PubMed Central

    Song, Bingbing; Marvizón, Juan Carlos G.

    2008-01-01

    To evaluate the effect of peptidases on μ-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and α-neoendorphin, but not endomorphins or β-endorphin. Omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 μM) or 50 mM KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP and were Ca2+-dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are mainly cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, since the potencies of endomorphin-1 and -2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons. PMID:12629189

  13. Ghrelin interacts with neuropeptide Y Y1 and opioid receptors to increase food reward.

    PubMed

    Skibicka, Karolina P; Shirazi, Rozita H; Hansson, Caroline; Dickson, Suzanne L

    2012-03-01

    Ghrelin, a stomach-derived hormone, is an orexigenic peptide that was recently shown to potently increase food reward behavior. The neurochemical circuitry that links ghrelin to the mesolimbic system and food reward behavior remains unclear. Here we examined the contribution of neuropeptide Y (NPY) and opioids to ghrelin's effects on food motivation and intake. Both systems have well-established links to the mesolimbic ventral tegmental area (VTA) and reward/motivation control. NPY mediates the effect of ghrelin on food intake via activation of NPY-Y1 receptor (NPY-Y1R); their connection with respect to motivated behavior is unexplored. The role of opioids in any aspect of ghrelin's action on food-oriented behaviors is unknown. Rats were trained in a progressive ratio sucrose-induced operant schedule to measure food reward/motivation behavior. Chow intake was measured immediately after the operant test. In separate experiments, we explored the suppressive effects of a selective NPY-Y1R antagonist or opioid receptor antagonist naltrexone, injected either intracerebroventricularly or intra-VTA, on ghrelin-induced food reward behavior. The ventricular ghrelin-induced increase in sucrose-motivated behavior and chow intake were completely blocked by intracerebroventricular pretreatment with either an NPY-Y1R antagonist or naltrexone. The intra-VTA ghrelin-induced sucrose-motivated behavior was blocked only by intra-VTA naltrexone. In contrast, the intra-VTA ghrelin-stimulated chow intake was attenuated only by intra-VTA NPY-Y1 blockade. Finally, ghrelin infusion was associated with an elevated VTA μ-opioid receptor expression. Thus, we identify central NPY and opioid signaling as the necessary mediators of food intake and reward effects of ghrelin and localize these interactions to the mesolimbic VTA.

  14. Structure-Activity Relationships of Bifunctional Cyclic Disulfide Peptides Based on Overlapping Pharmacophores at Opioid and Cholecystokinin Receptors

    PubMed Central

    Agnes, Richard S.; Ying, Jinfa; Kövér, Katalin E.; Lee, Yeon Sun; Davis, Peg; Ma, Shou-wu; Badghisi, Hamid; Porreca, Frank; Lai, Josephine; Hruby, Victor J.

    2008-01-01

    Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system, where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors. Compound 1 (Tyr-c[D-Cys-Gly-Trp-Cys]-Asp-Phe-NH2) showed potent binding and agonist activities at δ and µ opioid receptors while displaying some binding to CCK receptors. The NMR structure of the lead compound displayed similar conformational features of opioid and CCK ligands. PMID:18502541

  15. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic.

    PubMed

    Balboni, Gianfranco; Salvadori, Severo; Marczak, Ewa D; Knapp, Brian I; Bidlack, Jean M; Lazarus, Lawrence H; Peng, Xuemei; Si, Yu Gui; Neumeyer, John L

    2011-02-01

    Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  16. Kappa Opioid Receptor-Mediated Dysregulation of GABAergic Transmission in the Central Amygdala in Cocaine Addiction

    PubMed Central

    Kallupi, Marsida; Wee, Sunmee; Edwards, Scott; Whitfield, Tim W.; Oleata, Christopher S.; Luu, George; Schmeichel, Brooke E.; Koob, George F.; Roberto, Marisa

    2013-01-01

    Background Studies have demonstrated an enhanced dynorphin/kappa-opioid receptor (KOR) system following repeated cocaine exposure, but few reports have focused on neuroadaptations within the central amygdala (CeA). Methods We identified KOR-related physiological changes in the CeA following escalation of cocaine self-administration in rats. We used in vitro slice electrophysiological (intracellular and whole-cell recordings) methods to assess whether differential cocaine access in either 1h (short access, ShA) or 6h (long access, LgA) sessions induced plasticity at CeA GABAergic synapses, or altered the sensitivity of these synapses to KOR agonism (U50488) or antagonism (nor-BNI). We then determined the functional effects of CeA KOR blockade in cocaine-related behaviors. Results Baseline evoked GABAergic transmission was enhanced in the CeA from ShA and LgA rats compared to cocaine-naïve rats. Acute cocaine (1 uM) application significantly decreased GABA release in all groups (naïve, ShA, and LgA rats). Application of U50488 (1 uM) significantly decreased GABAergic transmission in the CeA from naïve rats, but increased it in LgA rats. Conversely, nor-BNI (200 nM) significantly increased GABAergic transmission in the CeA from naïve rats, but decreased it in LgA rats. Nor-BNI did not alter the acute cocaine-induced inhibition of GABAergic responses. Finally, CeA microinfusion of nor-BNI blocked cocaine-induced locomotor sensitization and attenuated the heightened anxiety-like behavior observed during withdrawal from chronic cocaine exposure in the defensive burying paradigm. Conclusion Together these data demonstrate that CeA dynorphin/KOR systems are dysregulated following excessive cocaine exposure and suggest KOR antagonism as a viable therapeutic strategy for cocaine addiction. PMID:23751206

  17. Opiate-induced constipation related to activation of small intestine opioid μ2-receptors.

    PubMed

    Chen, Wency; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-03-28

    To investigate the role of opioid μ-receptor subtype in opiate-induced constipation (OIC). The effect of loperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumulative administration of 0.1-10 μmol/L loperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreatment to compare the changes in loperamide-induced relaxation. In addition to the delay in intestinal transit, loperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime, a selective opioid μ-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by loperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K+ (K(ATP)) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP). Loperamide induces intestinal relaxation by activation of opioid μ-2 receptors via the cAMP-PKA pathway to open K(ATP) channels, relates to OIC.

  18. Asymmetric synthesis and in vitro and in vivo activity of tetrahydroquinolines featuring a diverse set of polar substitutions at the 6 position as mixed-efficacy μ opioid receptor/δ opioid receptor ligands.

    PubMed

    Bender, Aaron M; Griggs, Nicholas W; Anand, Jessica P; Traynor, John R; Jutkiewicz, Emily M; Mosberg, Henry I

    2015-08-19

    We previously reported a small series of mixed-efficacy μ opioid receptor (MOR) agonist/δ opioid receptor (DOR) antagonist peptidomimetics featuring a tetrahydroquinoline scaffold and showed the promise of this series as effective analgesics after intraperitoneal administration in mice. We report here an expanded structure-activity relationship study of the pendant region of these compounds and focus in particular on the incorporation of heteroatoms into this side chain. These analogues provide new insight into the binding requirements for this scaffold at MOR, DOR, and the κ opioid receptor (KOR), and several of them (10j, 10k, 10m, and 10n) significantly improve upon the overall MOR agonist/DOR antagonist profile of our previous compounds. In vivo data for 10j, 10k, 10m, and 10n are also reported and show the antinociceptive potency and duration of action of compounds 10j and 10m to be comparable to those of morphine.

  19. Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats.

    PubMed

    Uhari-Väänänen, Johanna; Raasmaja, Atso; Bäckström, Pia; Oinio, Ville; Airavaara, Mikko; Piepponen, Petteri; Kiianmaa, Kalervo

    2016-10-01

    The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats. Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm. CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm. The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward. Copyright © 2016 by the Research Society on Alcoholism.

  20. Opioid Challenge Evaluation of Blockade by Extended-Release Naltrexone in Opioid-Abusing Adults: Dose-Effects and Time-Course

    PubMed Central

    Bigelow, George E.; Preston, Kenzie L.; Schmittner, John; Dong, Qunming; Gastfriend, David R.

    2013-01-01

    Background Oral naltrexone's effectiveness as an opioid antagonist has been limited due to poor patient adherence. A long-acting naltrexone formulation may be beneficial. This study evaluated the effects of extended-release injectable naltrexone (XR-NTX), targeted for a one-month duration of action, in blocking opioid agonist challenge effects in humans. Methods Outpatient non-dependent opioid abusers (N=27) were randomly assigned to a single double-blind IM administration of 75, 150, or 300 mg XR-NTX. To assess the extent of opioid blockade, hydromorphone challenges (0, 3, 4.5, 6 mg IM in ascending order at 1-hr intervals [up to 13.5 mg total]) were given at pretreatment baseline and on days 7, 14, 21, 28, 42, and 56. Opioid blockade was assessed via (1) tolerability of the ascending hydromorphone doses; (2) Visual Analog Scale (VAS) ratings of subjective opioid effects and (3) pupil diameter. Effects on the VAS and pupils were assessed via the slope of the time-action function over ascending hydromorphone doses, with zero slope indicating complete blockade. Results Blockade of the VAS “any drug effect” response to 3 mg hydromorphone was complete for 14, 21, and 28 days, respectively, for the XR-NTX doses of 75, 150 and 300 mg. Subjective effects were more readily blocked than was pupil constriction. Higher hydromorphone doses produced only modest increases in agonist effects. With the 300 mg XR-NTX dose the slope of VAS responses remained at or near zero for one month even with maximal cumulative hydromorphone dosing. Conclusions These data quantify the month-long opioid blockade underlying XR-NTX's efficacy in opioid dependence treatment. PMID:22079773

  1. Buprenorphine implants in medical treatment of opioid addiction.

    PubMed

    Chavoustie, Steven; Frost, Michael; Snyder, Ole; Owen, Joel; Darwish, Mona; Dammerman, Ryan; Sanjurjo, Victoria

    2017-08-01

    Opioid use disorder is a chronic, relapsing disease that encompasses use of both prescription opioids and heroin and is associated with a high annual rate of overdose deaths. Medical treatment has proven more successful than placebo treatment or psychosocial intervention, and the partial µ-opioid receptor agonist and κ-opioid receptor antagonist buprenorphine is similar in efficacy to methadone while offering lower risk of respiratory depression. However, frequent dosing requirements and potential for misuse and drug diversion contribute to significant complications with treatment adherence for available formulations. Areas covered: This review describes the development of and preliminary data from clinical trials of an implantable buprenorphine formulation. Efficacy and safety data from comparative studies with other administrations of buprenorphine, including tablets and sublingual film, will be described. Key premises of the Risk Evaluation and Mitigation Strategy program for safely administering buprenorphine implants, which all prescribing physicians must complete, are also discussed. Expert commentary: Long-acting implantable drug formulations that offer consistent drug delivery and lower risk of misuse, diversion, or accidental pediatric exposure over traditional formulations represent a promising development for the effective treatment of opioid use disorder.

  2. Purinergic signaling is required for fluid shear stress-induced NF-{kappa}B translocation in osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genetos, Damian C., E-mail: dgenetos@ucdavis.edu; Karin, Norman J.; Geist, Derik J.

    2011-04-01

    Fluid shear stress regulates gene expression in osteoblasts, in part by activation of the transcription factor NF-{kappa}B. We examined whether this process was under the control of purinoceptor activation. MC3T3-E1 osteoblasts under static conditions expressed the NF-{kappa}B inhibitory protein I{kappa}B{alpha} and exhibited cytosolic localization of NF-{kappa}B. Under fluid shear stress, I{kappa}B{alpha} levels decreased, and concomitant nuclear localization of NF-{kappa}B was observed. Cells exposed to fluid shear stress in ATP-depleted medium exhibited no significant reduction in I{kappa}B{alpha}, and NF-{kappa}B remained within the cytosol. Similar results were found using oxidized ATP or Brilliant Blue G, P2X{sub 7} receptor antagonists, indicating that themore » P2X{sub 7} receptor is responsible for fluid shear-stress-induced I{kappa}B{alpha} degradation and nuclear accumulation of NF-{kappa}B. Pharmacologic blockage of the P2Y6 receptor also prevented shear-induced I{kappa}B{alpha} degradation. These phenomena involved neither ERK1/2 signaling nor autocrine activation by P2X{sub 7}-generated lysophosphatidic acid. Our results suggest that fluid shear stress regulates NF-{kappa}B activity through the P2Y{sub 6} and P2X{sub 7} receptor.« less

  3. Dextromethorphan differentially affects opioid antinociception in rats

    PubMed Central

    Chen, Shiou-Lan; Huang, Eagle Yi-Kung; Chow, Lok-Hi; Tao, Pao-Luh

    2005-01-01

    Opioid drugs such as morphine and meperidine are widely used in clinical pain management, although they can cause some adverse effects. A number of studies indicate that N-methyl-D-aspartate (NMDA) receptors may play a role in the mechanism of morphine analgesia, tolerance and dependence. Being an antitussive with NMDA antagonist properties, dextromethorphan (DM) may have some therapeutic benefits when coadministered with morphine. In the present study, we investigated the effects of DM on the antinociceptive effects of different opioids. We also investigated the possible pharmacokinetic mechanisms involved. The antinociceptive effects of the μ-opioid receptor agonists morphine (5 mg kg−1, s.c.), meperidine (25 mg kg−1, s.c.) and codeine (25 mg kg−1, s.c.), and the κ-opioid agonists nalbuphine (8 mg kg−1, s.c.) and U-50,488H (20 mg kg−1, s.c.) were studied using the tail-flick test in male Sprague–Dawley rats. Coadministration of DM (20 mg kg−1, i.p.) with these opioids was also performed and investigated. The pharmacokinetic effects of DM on morphine and codeine were examined, and the free concentration of morphine or codeine in serum was determined by HPLC. It was found that DM potentiated the antinociceptive effects of some μ-opioid agonists but not codeine or κ-opioid agonists in rats. DM potentiated morphine's antinociceptive effect, and acutely increased the serum concentration of morphine. In contrast, DM attenuated the antinociceptive effect of codeine and decreased the serum concentration of its active metabolite (morphine). The pharmacokinetic interactions between DM and opioids may partially explain the differential effects of DM on the antinociception caused by opioids. PMID:15655510

  4. Opioid receptor agonists may favorably affect bone mechanical properties in rats with estrogen deficiency-induced osteoporosis.

    PubMed

    Janas, Aleksandra; Folwarczna, Joanna

    2017-02-01

    The results of epidemiological, clinical, and in vivo and in vitro experimental studies on the effect of opioid analgesics on bone are inconsistent. The aim of the present study was to investigate the effect of morphine (an agonist of opioid receptors), buprenorphine (a partial μ opioid receptor agonist and κ opioid receptor antagonist), and naloxone (an antagonist of opioid receptors) on the skeletal system of female rats in vivo. The experiments were carried out on 3-month-old Wistar rats, divided into two groups: nonovariectomized (intact; NOVX) rats and ovariectomized (OVX) rats. The bilateral ovariectomy was performed 7 days before the start of drug administration. Morphine hydrochloride (20 mg/kg/day s.c.), buprenorphine (0.05 mg/kg/day s.c.), or naloxone hydrochloride dihydrate (2 mg/kg/day s.c.) were administered for 4 weeks to NOVX and OVX rats. In OVX rats, the use of morphine and buprenorphine counteracted the development of osteoporotic changes in the skeletal system induced by estrogen deficiency. Morphine and buprenorphine beneficially affected also the skeletal system of NOVX rats, but the effects were much weaker than those in OVX rats. Naloxone generally did not affect the rat skeletal system. The results confirmed the role of opioid receptors in the regulation of bone remodeling processes and demonstrated, in experimental conditions, that the use of opioid analgesics at moderate doses may exert beneficial effects on the skeletal system, especially in estrogen deficiency.

  5. Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems.

    PubMed

    Brüning, César Augusto; Souza, Ana Cristina Guerra; Gai, Bibiana Mozzaquatro; Zeni, Gilson; Nogueira, Cristina Wayne

    2011-05-11

    Serotonergic and opioid systems have been implicated in major depression and in the action mechanism of antidepressants. The organoselenium compound m-trifluoromethyl-diphenyl diselenide (m-CF(3)-PhSe)(2) shows antioxidant and anxiolytic activities and is a selective inhibitor of monoamine oxidase A activity. The present study was designed to investigate the antidepressant-like effect of (m-CF(3)-PhSe)(2) in female mice, employing the forced swimming test. The involvement of the serotonergic and opioid systems in the antidepressant-like effect of (m-CF(3)-PhSe)(2) was appraised. (m-CF(3)-PhSe)(2) at doses of 50 and 100mg/kg (p.o.) exhibited antidepressant-like action in the forced swimming test. The effect of (m-CF(3)-PhSe)(2) (50mg/kg p.o.) was prevented by pretreatment of mice with WAY100635 (0.1mg/kg, s.c. a selective 5-HT(1A) receptor antagonist), ritanserin (4 mg/kg, i.p., a non-selective 5HT(2A/2C) receptor antagonist), ondansetron (1mg/kg, i.p., a selective 5-HT(3) receptor antagonist) and naloxone (1mg/kg, i.p., a non-selective antagonist of opioid receptors). These results suggest that (m-CF(3)-PhSe)(2) produced an antidepressant-like effect in the mouse forced swimming test and this effect seems most likely to be mediated through an interaction with serotonergic and opioid systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Oxytocin under opioid antagonism leads to supralinear enhancement of social attention.

    PubMed

    Dal Monte, Olga; Piva, Matthew; Anderson, Kevin M; Tringides, Marios; Holmes, Avram J; Chang, Steve W C

    2017-05-16

    To provide new preclinical evidence toward improving the efficacy of oxytocin (OT) in treating social dysfunction, we tested the benefit of administering OT under simultaneously induced opioid antagonism during dyadic gaze interactions in monkeys. OT coadministered with a μ-opioid receptor antagonist, naloxone, invoked a supralinear enhancement of prolonged and selective social attention, producing a stronger effect than the summed effects of each administered separately. These effects were consistently observed when averaging over entire sessions, as well as specifically following events of particular social importance, including mutual eye contact and mutual reward receipt. Furthermore, attention to various facial regions was differentially modulated depending on social context. Using the Allen Institute's transcriptional atlas, we further established the colocalization of μ-opioid and κ-opioid receptor genes and OT genes at the OT-releasing sites in the human brain. These data across monkeys and humans support a regulatory relationship between the OT and opioid systems and suggest that administering OT under opioid antagonism may boost the therapeutic efficacy of OT for enhancing social cognition.

  7. Oxytocin under opioid antagonism leads to supralinear enhancement of social attention

    PubMed Central

    Dal Monte, Olga; Anderson, Kevin M.; Tringides, Marios; Holmes, Avram J.

    2017-01-01

    To provide new preclinical evidence toward improving the efficacy of oxytocin (OT) in treating social dysfunction, we tested the benefit of administering OT under simultaneously induced opioid antagonism during dyadic gaze interactions in monkeys. OT coadministered with a μ-opioid receptor antagonist, naloxone, invoked a supralinear enhancement of prolonged and selective social attention, producing a stronger effect than the summed effects of each administered separately. These effects were consistently observed when averaging over entire sessions, as well as specifically following events of particular social importance, including mutual eye contact and mutual reward receipt. Furthermore, attention to various facial regions was differentially modulated depending on social context. Using the Allen Institute’s transcriptional atlas, we further established the colocalization of μ-opioid and κ-opioid receptor genes and OT genes at the OT-releasing sites in the human brain. These data across monkeys and humans support a regulatory relationship between the OT and opioid systems and suggest that administering OT under opioid antagonism may boost the therapeutic efficacy of OT for enhancing social cognition. PMID:28461466

  8. Physicochemical and Pharmacological Characterization of Permanently Charged Opioids.

    PubMed

    Mazak, Karoly; Noszal, Bela; Hosztafi, Sandor

    2017-01-01

    The main aim of synthesizing permanently charged opioids is to ensure that they do not enter the central nervous system. Such drugs can provide analgesic activity with reduced sedation and other side effects on the central nervous system. We undertook a search of bibliographic databases for peer-reviewed research literature and also summarized our published results in this field. The present review focuses on the characterization of permanently charged opioids by various physicochemical methods, and in vitro as well as in vivo tests. The basicity and lipophilicity of opioid alkaloids are discussed at the microscopic, speciesspecific level. Glucuronide conjugates of opioids are also reviewed. Whereas the primary metabolite morphine-3-glucuronide does not bind to opioid receptors with high affinity, morphine-6-glucuronide is a potent analgesic, at least, partly due to its unexpectedly high lipophilicity. We discuss the quaternary ammonium opioid derivatives of a permanent positive charge, detailing their antinociceptive activity and effects on gastrointestinal motility in various in vivo animal tests and in vitro studies. Compounds with antagonistic activity are also reviewed. The last part of our study concentrates on sulfate conjugates of morphine derivatives that display unique pharmacological properties because they carry a negative charge at any pH value in the human body. In conclusion, the findings of this review confirm the importance of permanently charged opioids in the investigated fields of pharmacology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Abuse-Deterrent Opioid Formulations: Pharmacokinetic and Pharmacodynamic Considerations.

    PubMed

    Walter, Carmen; Knothe, Claudia; Lötsch, Jörn

    2016-07-01

    Abuse-deterrent formulations (ADFs) are technologically sophisticated pharmaceutical formulations that impede manipulation and extraction of opioids and/or provoke unpleasant effects when they are taken in excessive quantity. This is implemented by creating physical barriers, inseparably combining the opioid with an opioid antagonist or adding aversive agents to the formulation. These pharmaceutical changes may potentially alter the pharmacokinetics and consequently the pharmacodynamics of the opioid. In this review, comparative evidence on pharmacokinetic differences between abuse-deterrent and classical formulations of the same opioids is summarized; furthermore, pharmacodynamic differences, with a focus on analgesia and abuse-related symptoms, are addressed. Most of the 12 studies comparing opioid pharmacokinetics have judged the physically intact ADF as being bioequivalent to the corresponding classical formulation. Pharmacokinetic differences have, however, been reported with physically manipulated ADFs and have ranged from moderate deviations from bioequivalence to complete changes in the pharmacokinetic profile (e.g. from a sustained-release formulation to a fast-release formulation). Pharmacodynamic effects were assessed in 14 comparative studies, which reported that intact ADFs usually provided clinically equivalent analgesia and clear advantages with respect to their addiction potential. However, withdrawal symptoms could be induced by the ADFs, although rarely and, in particular, when the ADFs had been physically altered. This evidence suggests that opioid ADFs are a working concept resulting in mostly minor pharmacokinetic and pharmacodynamic differences in comparison with classical formulations; however, they may deviate from this equivalence when physically altered.

  10. Stimulation of accumbal GABAA receptors inhibits delta2-, but not delta1-, opioid receptor-mediated dopamine efflux in the nucleus accumbens of freely moving rats.

    PubMed

    Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi

    2017-11-15

    The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Advances in the delivery of buprenorphine for opioid dependence.

    PubMed

    Rosenthal, Richard N; Goradia, Viral V

    2017-01-01

    Opioid use disorders (OUDs) have long been a global problem, but the prevalence rates have increased over 20 years to epidemic proportions in the US, with concomitant increases in morbidity and all-cause mortality, but especially opioid overdose. These increases are in part attributable to a several-fold expansion in the prescription of opioid pain medications over the same time period. Opioid detoxification and psychosocial treatments alone have each not yielded sufficient efficacy for OUD, but μ-opioid receptor agonist, partial agonist, and antagonist medications have demonstrated the greatest overall benefit in OUD treatment. Buprenorphine, a μ-opioid receptor partial agonist, has been used successfully on an international basis for several decades in sublingual tablet and film preparations for the treatment of OUD, but the nature of formulation, which is typically self-administered, renders it susceptible to nonadherence, diversion, and accidental exposure. This article reviews the clinical trial data for novel buprenorphine delivery systems in the form of subcutaneous depot injections, transdermal patches, and subdermal implants for the treatment of OUD and discusses both the clinical efficacy of longer-acting formulations through increasing consistent medication exposure and their potential utility in reducing diversion. These new delivery systems also offer new dosing opportunities for buprenorphine and strategies for dosing intervals in the treatment of OUD.

  12. Opiate-induced constipation related to activation of small intestine opioid μ2-receptors

    PubMed Central

    Chen, Wency; Chung, Hsien-Hui; Cheng, Juei-Tang

    2012-01-01

    AIM: To investigate the role of opioid μ-receptor subtype in opiate-induced constipation (OIC). METHODS: The effect of loperamide on intestinal transit was investigated in mice. Ileum strips were isolated from 12-wk-old male BALB/c mice for identification of isometric tension. The ileum strips were precontracted with 1 μmol/L acetylcholine (ACh). Then, decrease in muscle tone (relaxation) was characterized after cumulative administration of 0.1-10 μmol/L loperamide into the organ bath, for a concentration-dependent study. Specific blockers or antagonists were used for pretreatment to compare the changes in loperamide-induced relaxation. RESULTS: In addition to the delay in intestinal transit, loperamide produced a marked relaxation in isolated ileum precontracted with ACh, in a dose-dependent manner. This relaxation was abolished by cyprodime, a selective opioid μ-receptor antagonist, but not modified by naloxonazine at a dose sufficient to block opioid μ-1 receptors. Also, treatment with opioid μ-1 receptor agonist failed to modify the muscle tone. Moreover, the relaxation by loperamide was attenuated by glibenclamide at a dose sufficient to block ATP-sensitive K+ (KATP) channels, and by protein kinase A (PKA) inhibitor, but was enhanced by an inhibitor of phosphodiesterase for cyclic adenosine monophosphate (cAMP). CONCLUSION: Loperamide induces intestinal relaxation by activation of opioid μ-2 receptors via the cAMP-PKA pathway to open KATP channels, relates to OIC. PMID:22493554

  13. Putative kappa opioid heteromers as targets for developing analgesics free of adverse effects.

    PubMed

    Le Naour, Morgan; Lunzer, Mary M; Powers, Michael D; Kalyuzhny, Alexander E; Benneyworth, Michael A; Thomas, Mark J; Portoghese, Philip S

    2014-08-14

    It is now generally recognized that upon activation by an agonist, β-arrestin associates with G protein-coupled receptors and acts as a scaffold in creating a diverse signaling network that could lead to adverse effects. As an approach to reducing side effects associated with κ opioid agonists, a series of β-naltrexamides 3-10 was synthesized in an effort to selectively target putative κ opioid heteromers without recruiting β-arrestin upon activation. The most potent derivative 3 (INTA) strongly activated KOR-DOR and KOR-MOR heteromers in HEK293 cells. In vivo studies revealed 3 to produce potent antinociception, which, when taken together with antagonism data, was consistent with the activation of both heteromers. 3 was devoid of tolerance, dependence, and showed no aversive effect in the conditioned place preference assay. As immunofluorescence studies indicated no recruitment of β-arrestin2 to membranes in coexpressed KOR-DOR cells, this study suggests that targeting of specific putative heteromers has the potential to identify leads for analgesics devoid of adverse effects.

  14. Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids.

    PubMed

    Zeidan, Fadel; Adler-Neal, Adrienne L; Wells, Rebecca E; Stagnaro, Emily; May, Lisa M; Eisenach, James C; McHaffie, John G; Coghill, Robert C

    2016-03-16

    Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline. The results

  15. Endogenous opioid systems: physiological role in the self-limitation of seizures.

    PubMed

    Tortella, F C; Long, J B; Holaday, J W

    1985-04-15

    Immediately following a seizure, the severity of subsequent seizures is significantly reduced. The involvement of endogenous opioid systems as a physiological regulator of this postseizure inhibition was studied in rats using repeated maximal electroshock (MES) seizures. Both the opiate antagonist (-)-naloxone and morphine tolerance abolished the progressive seizure protection associated with repeated MES. We propose that endogenous opioids, activated by a prior seizure, provide a central homeostatic inhibitory mechanism which may be responsible for the initiation of a postictal refractory state in the epileptic.

  16. Adrenergic Agonists Bind to Adrenergic-Receptor-Like Regions of the Mu Opioid Receptor, Enhancing Morphine and Methionine-Enkephalin Binding: A New Approach to "Biased Opioids"?

    PubMed

    Root-Bernstein, Robert; Turke, Miah; Subhramanyam, Udaya K Tiruttani; Churchill, Beth; Labahn, Joerg

    2018-01-17

    Extensive evidence demonstrates functional interactions between the adrenergic and opioid systems in a diversity of tissues and organs. While some effects are due to receptor and second messenger cross-talk, recent research has revealed an extracellular, allosteric opioid binding site on adrenergic receptors that enhances adrenergic activity and its duration. The present research addresses whether opioid receptors may have an equivalent extracellular, allosteric adrenergic binding site that has similar enhancing effects on opioid binding. Comparison of adrenergic and opioid receptor sequences revealed that these receptors share very significant regions of similarity, particularly in some of the extracellular and transmembrane regions associated with adrenergic binding in the adrenergic receptors. Five of these shared regions from the mu opioid receptor (muOPR) were synthesized as peptides and tested for binding to adrenergic, opioid and control compounds using ultraviolet spectroscopy. Adrenergic compounds bound to several of these muOPR peptides with low micromolar affinity while acetylcholine, histamine and various adrenergic antagonists did not. Similar studies were then conducted with purified, intact muOPR with similar results. Combinations of epinephrine with methionine enkephalin or morphine increased the binding of both by about half a log unit. These results suggest that muOPR may be allosterically enhanced by adrenergic agonists.

  17. Effects of opioid peptides on thermoregulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate thatmore » stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.« less

  18. Bifunctional peptide-based opioid agonist/nociceptin antagonist ligand for dual treatment of nociceptive and neuropathic pain

    PubMed Central

    Lagard, Camille; Chevillard, Lucie; Guillemyn, Karel; Risède, Patricia; Laplanche, Jean-Louis; Spetea, Mariana; Ballet, Steven; Mégarbane, Bruno

    2016-01-01

    Abstract Drugs able to treat both nociceptive and neuropathic pain effectively without major side effects are lacking. We developed a bifunctional peptide-based hybrid (KGNOP1) that structurally combines a mu-opioid receptor agonist (KGOP1) with antinociceptive activity and a weak nociceptin receptor antagonist (KGNOP3) with anti-neuropathic pain activity. We investigated KGNOP1-related behavioral effects after intravenous administration in rats by assessing thermal nociception, cold hyperalgesia in a model of neuropathic pain induced by chronic constriction injury of the sciatic nerve, and plethysmography parameters including inspiratory time (TI) and minute ventilation (VM) in comparison to the well-known opioid analgesics, tramadol and morphine. Time-course and dose-dependent effects were investigated for all behavioral parameters to determine the effective doses 50% (ED50). Pain-related effects on cold hyperalgesia were markedly increased by KGNOP1 as compared to KGNOP3 and tramadol (ED50: 0.0004, 0.32, and 12.1 μmol/kg, respectively), whereas effects on thermal nociception were significantly higher with KGNOP1 as compared to morphine (ED50: 0.41 and 14.7 μmol/kg, respectively). KGNOP1 and KGOP1 produced a larger increase in TI and deleterious decrease in VM in comparison to morphine and tramadol (ED50(TI): 0.63, 0.52, 12.2, and 50.9 μmol/kg; ED50(VM): 0.57, 0.66, 10.6, and 50.0 μmol/kg, respectively). Interestingly, the calculated ratios of anti-neuropathic pain/antinociceptive to respiratory effects revealed that KGNOP1 was safer than tramadol (ED50 ratio: 5.44 × 10−3 vs 0.24) and morphine (ED50 ratio: 0.72 vs 1.39). We conclude that KGNOP1 is able to treat both experimental neuropathic and nociceptive pain, more efficiently and safely than tramadol and morphine, respectively, and thus should be a candidate for future clinical developments. PMID:28135212

  19. Evolving paradigms in the treatment of opioid-induced bowel dysfunction.

    PubMed

    Poulsen, Jakob Lykke; Brock, Christina; Olesen, Anne Estrup; Nilsson, Matias; Drewes, Asbjørn Mohr

    2015-11-01

    In recent years prescription of opioids has increased significantly. Although effective in pain management, bothersome gastrointestinal adverse effects are experienced by a substantial proportion of opioid-treated patients. This can lead to difficulties with therapy and subsequently inadequate pain relief. Collectively referred to as opioid-induced bowel dysfunction, these adverse effects are the result of binding of exogenous opioids to opioid receptors in the gastrointestinal tract. This leads to disturbance of three important gastrointestinal functions: motility, coordination of sphincter function and secretion. In the clinic this manifests in a wide range of symptoms such as reflux, bloating, abdominal cramping, hard, dry stools, and incomplete evacuation, although the most known adverse effect is opioid-induced constipation. Traditional treatment with laxatives is often insufficient, but in recent years a number of novel pharmacological approaches have been introduced. In this review the pathophysiology, symptomatology and prevalence of opioid-induced bowel dysfunction is presented along with the benefits and caveats of a suggested consensus definition for opioid-induced constipation. Finally, traditional treatment is appraised and compared with the latest pharmacological developments. In conclusion, opioid antagonists restricted to the periphery show promising results, but use of different definitions and outcome measures complicate comparison. However, an international working group has recently suggested a consensus definition for opioid-induced constipation and relevant outcome measures have also been proposed. If investigators within this field adapt the suggested consensus and include symptoms related to dysfunction of the upper gut, it will ease comparison and be a step forward in future research.

  20. Opioids with abuse-deterrent properties: A regulatory and technological overview.

    PubMed

    Haddox, J David

    Three concurrent public health problems coexist in the United States: endemic nonmedical use/misuse of opioid analgesics, epidemic overdose fatalities involving opioid analgesics, and endemic chronic pain in adults. These intertwined issues comprise an opioid crisis that has spurred the development of formulations of opioids with abuse-deterrent properties and label claims (OADP). To reduce abuse and misuse of prescription opioids, the federal Food and Drug Administration (FDA) has issued a formal Guidance to drug developers that delineates four categories of testing to generate data sufficient for a description of a product's abuse-deterrent properties, along with associated claims, in its Full Prescribing Information (FPI). This article reviews the epidemiology of the crisis as background for the development of OADP, summarizes the FDA Guidance for Industry regarding abuse-deterrent technologies, and provides an overview of some technologies that are currently employed or are under study for incorporation into OADP. Such technologies include physical and chemical barriers to abuse, combined formulations of opioid agonists and antagonists, inclusion of aversive agents, use of delivery systems that deter abuse, development of new molecular entities and prodrugs, and formulation of products that include some combination of these approaches. Opioids employing these novel technologies are one part of a comprehensive intervention strategy that can deter abuse of prescription opioid analgesics without creating barriers to the safe use of prescription opioids. The maximal public health contribution of OADP will probably occur only when all opioids have FDA-recognized abuse-deterrent properties and label claims.

  1. Orienting patients to greater opioid safety: models of community pharmacy-based naloxone.

    PubMed

    Green, Traci C; Dauria, Emily F; Bratberg, Jeffrey; Davis, Corey S; Walley, Alexander Y

    2015-08-06

    The leading cause of adult injury death in the U.S.A. is drug overdose, the majority of which involves prescription opioid medications. Outside of the U.S.A., deaths by drug overdose are also on the rise, and overdose is a leading cause of death for drug users. Reducing overdose risk while maintaining access to prescription opioids when medically indicated requires careful consideration of how opioids are prescribed and dispensed, how patients use them, how they interact with other medications, and how they are safely stored. Pharmacists, highly trained professionals expert at detecting and managing medication errors and drug-drug interactions, safe dispensing, and patient counseling, are an under-utilized asset in addressing overdose in the U.S. and globally. Pharmacies provide a high-yield setting where patient and caregiver customers can access naloxone-an opioid antagonist that reverses opioid overdose-and overdose prevention counseling. This case study briefly describes and provides two US state-specific examples of innovative policy models of pharmacy-based naloxone, implemented to reduce overdose events and improve opioid safety: Collaborative Pharmacy Practice Agreements and Pharmacy Standing Orders.

  2. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    DTIC Science & Technology

    2016-08-01

    approximately halfway into the solution. All animals were tested at 60, 15 and 0 min before drug injection. For each animal , the first reading was discarded...approval (December 31, 2015), hiring new personnel, conducting baseline testing for procedures not involving animals , testing equipment, developing...treatment; Analgesia; Nociception; Antinociception; Inflammation; Chemokines; Chemokine receptor antagonists; Opioid analgesics; Animal models of pain

  3. Structural basis for bifunctional peptide recognition at human δ-opioid receptor

    DOE PAGES

    Fenalti, Gustavo; Zatsepin, Nadia A.; Betti, Cecilia; ...

    2015-02-16

    Bi-functional μ- and δ- opioid receptor (OR) ligands are potential therapeutic alternatives to alkaloid opiate analgesics with diminished side effects. We solved the structure of human δ-OR bound to the bi-functional δ-OR antagonist and μ-OR agonist tetrapeptide H-Dmt-Tic-Phe-Phe-NH 2 (DIPP-NH 2) by serial femtosecond crystallography, revealing a cis-peptide bond between H-Dmt and Tic. In summary, the observed receptor-peptide interactions are critical to understand the pharmacological profiles of opioid peptides, and to develop improved analgesics.

  4. The role of endogenous opioids in mediating pain reduction by orally administered glucose among newborns.

    PubMed

    Gradin, Maria; Schollin, Jens

    2005-04-01

    It has been demonstrated clearly that sweet-tasting solutions given before a painful intervention can reduce pain among newborns. There is no fully accepted explanation for this effect, but activation of endogenous opioids has been suggested as a possible mechanism. The aim of this study was to obtain deeper knowledge of the underlying mechanism by investigating whether administration of an opioid antagonist would reduce the effect of orally administered glucose at heel stick among term newborns. A randomized, placebo-controlled, double-blind trial with a validated, neonatal, pain-rating scale. The trial included 30 term newborns undergoing heel stick, who were assigned randomly to 1 of 2 groups, ie, group I, with naloxone hydrochloride (opioid antagonist) 0.01 mg/kg administered intravenously before oral administration of 1 mL of 30% glucose, or group II, with a corresponding amount of placebo (saline solution) administered intravenously before oral administration of glucose. Pain-related behavior during blood sampling was measured with the Premature Infants Pain Profile. Crying time and heart rate were also recorded. The 2 groups did not differ significantly in Premature Infant Pain Profile scores during heel stick. The median crying time during the first 3 minutes was 14 seconds (range: 0-174 seconds) for the naloxone group and 105 seconds (range: 0-175 seconds) for the placebo group. There was no significant difference in heart rate between the 2 groups. Administration of an opioid antagonist did not decrease the analgesic effect of orally administered glucose given before blood sampling.

  5. Current and Potential Pharmacological Treatment Options for Maintenance Therapy in Opioid-Dependent Individuals

    PubMed Central

    Tetrault, Jeanette M.; Fiellin, David A.

    2013-01-01

    Opioid dependence, manifesting as addiction to heroin and pharmaceutical opioids is increasing. Internationally, there are an estimated 15.6 million illicit opioid users. The global economic burden of opioid dependence is profound both in terms of HIV and hepatitis C virus transmission, direct healthcare costs, and indirectly through criminal activity, absenteeism and lost productivity. Opioid agonist medications, such as methadone and buprenorphine, that stabilize neuronal systems and provide narcotic blockade are the most effective treatments. Prolonged provision of these medications, defined as maintenance treatment, typically produces improved outcomes when compared with short-duration tapers and withdrawal. The benefits of opioid agonist maintenance include decreased illicit drug use, improved retention in treatment, decreased HIV risk behaviours and decreased criminal behaviour. While regulations vary by country, these medications are becoming increasingly available internationally, especially in regions experiencing rapid transmission of HIV due to injection drug use. In this review, we describe the rationale for maintenance treatment of opioid dependence, discuss emerging uses of opioid antagonists such as naltrexone, and sustained-release formulations of naltrexone and buprenorphine, and provide a description of the experimental therapies. PMID:22235870

  6. Opioid receptor involvement in the effect of AgRP- (83-132) on food intake and food selection.

    PubMed

    Hagan, M M; Rushing, P A; Benoit, S C; Woods, S C; Seeley, R J

    2001-03-01

    Agouti-related peptide (AgRP) is a receptor antagonist of central nervous system (CNS) melanocortin receptors and appears to have an important role in the control of food intake since exogenous CNS administration in rats and overexpression in mice result in profound hyperphagia and weight gain. Given that AgRP is heavily colocalized with neuropeptide Y (NPY) and that orexigenic effects of NPY depend on activity at opioid receptors, we hypothesized that AgRP's food-intake effects are also mediated by opioid receptors. Subthreshold doses of the opioid receptor antagonist naloxone blocked AgRP-induced intake when given simultaneously but not 24 h after AgRP injection. Opioids not only influence food intake but food selection as well. Hence, we tested AgRP's effect to alter food choice between matched diets with differing dietary fat content. AgRP selectively enhanced intake of the high-fat but not the low-fat diet. Additionally, AgRP selectively increased chow intake in rats given ad libitum access to a 20% sucrose solution and standard rat chow. The current results indicate that AgRP influences not only caloric intake but food selection as well and that the early effects of AgRP depend critically on an interaction with opioid receptors.

  7. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    PubMed

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  8. Single-dose evaluation of safety, tolerability and pharmacokinetics of newly formulated hydromorphone immediate-release and hydrophilic matrix extended-release tablets in healthy Japanese subjects without co-administration of an opioid antagonist.

    PubMed

    Toyama, Kaoru; Uchida, Naoki; Ishizuka, Hitoshi; Sambe, Takehiko; Kobayashi, Shinichi

    2015-09-01

    This single dose, open-label study investigated the safety, tolerability and pharmacokinetics of single oral doses of newly formulated immediate-release (IR) and hydrophilic matrix extended-release (ER) hydromorphone tablets in healthy Japanese subjects without co-administration of an opioid antagonist under fasting and fed conditions. Plasma and urinary concentrations of hydromorphone and metabolites were measured by liquid-chromatography tandem mass-spectroscopy. Following administration of the ER tablet, plasma concentrations of hydromorphone slowly increased with a median tmax of 5.0 h and the Cmax decreased to 37% of the IR tablet, while the AUC0-inf was comparable with that of the IR tablet when administered at the same dose. The degree of fluctuation in the plasma concentration for the ER tablet was much lower than that of the IR tablet and certain levels of plasma concentrations were maintained after 24 h of ER dosing. The AUC0-inf and Cmax increased with food for both IR and ER tablets. The AUC0-inf of hydromorphone-3-glucoside was one-tenth of that of hydromorphone-3-glucuronide. A single oral administration of the hydromorphone tablets would be well-tolerated in healthy Japanese subjects despite a lack of co-administration of an opioid antagonist and the newly developed ER hydromorphone tablets may have the appropriate PK characteristics for once-daily dosing. © 2015, The American College of Clinical Pharmacology.

  9. Extended-release naltrexone opioid treatment at jail reentry (XOR)

    PubMed Central

    McDonald, Ryan D.; Tofighi, Babak; Laska, Eugene; Goldfeld, Keith; Bonilla, Wanda; Flannery, Mara; Santana-Correa, Nadina; Johnson, Christopher W.; Leibowitz, Neil; Rotrosen, John; Gourevitch, Marc N.; Lee, Joshua D.

    2017-01-01

    Background Extended-release naltrexone (XR-NTX) is an injectable monthly sustained-release mu opioid receptor antagonist, which blocks the typical effects of heroin and other opioid agonists. Use of XR-NTX among opioid dependent persons leaving jails and prisons is increasing despite scant high-quality evidence regarding XR-NTX’s effectiveness at re-entry. Methods This 24-week, open-label randomized controlled trial examines the effectiveness of XR-NTX as opioid relapse prevention at release from jail (N = 85) compared to enhanced treatment as usual (ETAU, N = 85). A third, non-randomized, quasi-experimental naturalistic arm of participants who have newly initiated a jail-to-community methadone treatment program (MTP, N = 85) allows for comparisons to a methadone standard-of-care. Results We describe the rationale, design, and primary and secondary outcomes of the study. The primary outcome is an opioid relapse event; the primary contrast is a time-to-relapse comparison of XR-NTX and ETAU over a 24-week treatment phase. Secondary outcomes are rates of: (a) post-release opioid treatment participation, (b) opioid, alcohol, and cocaine use, (c) injection drug use and HIV sexual risk behaviors, (d) overdose (fatal and non-fatal) and all-cause mortality, and, (e) re-incarceration. Conclusions XR-NTX is a potentially important, effective treatment and relapse prevention option for a large US population of persons with opioid use disorders leaving jails. This study will estimate XR-NTX’s effectiveness relative to existing standards of care, including counseling-only treatment-as-usual and methadone maintenance. PMID:27178765

  10. Naloxegol: A Novel Therapy in the Management of Opioid-Induced Constipation.

    PubMed

    Jones, Rachel; Prommer, Eric; Backstedt, David

    2016-11-01

    Opioid-related bowel dysfunction is a common and potentially severe adverse effect from treatment with opioid analgesics. Its development is not dose related, nor do patients develop tolerance. Opioid-induced constipation (OIC) can lead to fecal impaction, bowel obstruction, and bowel perforation as well as noncompliance with opioid analgesics and poor quality of life. Routine administration of laxatives is necessary to maintain bowel function, and, in refractory cases, other modalities must be pursued. Available options are limited but include peripherally acting μ-opioid receptor antagonists (PAMORAs), including methylnaltrexone. Naloxegol is a newly developed PAMORA that is available through the oral route. At the therapeutic dose of 25 mg daily, naloxegol is effective and safe, with a limited side effect profile and is associated with preservation of centrally mediated analgesia. In this article, we discuss the pharmacokinetics, pharmacodynamics, adverse effects, clinical trials, and cost considerations of naloxegol. Finally, we discuss its potential role as a novel key treatment for OIC in palliative medicine patients. © The Author(s) 2015.

  11. The role of abuse-deterrent formulations in countering opioid misuse and abuse.

    PubMed

    Nguyen, V; Raffa, R B; Taylor, R; Pergolizzi, J V

    2015-12-01

    Pain is a prevalent, and due to the ageing population, increasing medical problem. Opioids are frequently prescribed to meet the unmet medical need. Unfortunately, with the increase in the legitimate use of opioids, there has been a corresponding increase in abuse. A practical way to retain the pain relief afforded by opioids while decreasing opportunities for abuse is to make it more difficult to extract the opioid from the product or to make it less desirable to do so by designing an abuse-deterrent formulation (ADF). We provide a brief overview of the strategies and early evidence related to opioid ADFs. Published and unpublished literature, websites, and other sources were searched for current opioid formulation options, including immediate-release and extended-release products. Each was summarized, reviewed and assessed. The strategies that have been used to design the current opioid ADFs involve one or more of four approaches: a physical barrier; incorporation of an opioid receptor antagonist (e.g. naloxone) that self-limits opioid action when taken in excess amount; inclusion of a noxious agent that is released during inappropriate use; or a pro-drug. Legitimate use of opioid analgesics carries with it certain risks, including the risk of abuse. The new ADFs utilize four major strategies and provide innovative additions to the armamentarium. They likely will become an important part of a comprehensive approach to limiting, although not eliminating, opioid misuse and abuse. © 2015 John Wiley & Sons Ltd.

  12. Opioids and social bonding: naltrexone reduces feelings of social connection

    PubMed Central

    Ray, Lara A.; Irwin, Michael R.; Way, Baldwin M.; Eisenberger, Naomi I.

    2016-01-01

    Close social bonds are critical to a happy and fulfilled life and yet little is known, in humans, about the neurochemical mechanisms that keep individuals feeling close and connected to one another. According to the brain opioid theory of social attachment, opioids may underlie the contented feelings associated with social connection and may be critical to continued bonding. However, the role of opioids in feelings of connection toward close others has only begun to be examined in humans. In a double-blind, placebo-controlled, crossover study of naltrexone (an opioid antagonist), 31 volunteers took naltrexone for 4 days and placebo for 4 days (separated by a 10-day washout period). Participants came to the laboratory once on the last day of taking each drug to complete a task designed to elicit feelings of social connection. Participants also completed daily reports of feelings of social connection while on naltrexone and placebo. In line with hypotheses, and for the first time in humans, results demonstrated that naltrexone (vs placebo) reduced feelings of connection both in the laboratory and in daily reports. These results highlight the importance of opioids for social bonding with close others, lending support to the brain opioid theory of social attachment. PMID:26796966

  13. Utilizing buprenorphine–naloxone to treat illicit and prescription-opioid dependence

    PubMed Central

    Mauger, Sofie; Fraser, Ronald; Gill, Kathryn

    2014-01-01

    Objectives To review current evidence on buprenorphine–naloxone (bup/nx) for the treatment of opioid-use disorders, with a focus on strategies for clinical management and office-based patient care. Quality of evidence Medline and the Cochrane Database of Systematic Reviews were searched. Consensus reports, guidelines published, and other authoritative sources were also included in this review. Apart from expert guidelines, data included in this review constitute level 1 evidence. Findings Bup/nx is a partial μ-opioid agonist combined with the opioid antagonist naloxone in a 4:1 ratio. It has a lower abuse potential, carries less stigma, and allows for more flexibility than methadone. Bup/nx is indicated for both inpatient and ambulatory medically assisted withdrawal (acute detoxification) and long-term substitution treatment (maintenance) of patients who have a mild-to-moderate physical dependence. A stepwise long-term substitution treatment with regular monitoring and follow-up assessment is usually preferred, as it has better outcomes in reducing illicit opioid use, minimizing concomitant risks such as human immunodeficiency virus and hepatitis C transmission, retaining patients in treatment and improving global functioning. Conclusion Bup/nx is safe and effective for opioid detoxification and substitution treatment. Its unique pharmaceutical properties make it particularly suitable for office-based maintenance treatment of opioid-use disorder. PMID:24741316

  14. Advances in the delivery of buprenorphine for opioid dependence

    PubMed Central

    Rosenthal, Richard N; Goradia, Viral V

    2017-01-01

    Opioid use disorders (OUDs) have long been a global problem, but the prevalence rates have increased over 20 years to epidemic proportions in the US, with concomitant increases in morbidity and all-cause mortality, but especially opioid overdose. These increases are in part attributable to a several-fold expansion in the prescription of opioid pain medications over the same time period. Opioid detoxification and psychosocial treatments alone have each not yielded sufficient efficacy for OUD, but μ-opioid receptor agonist, partial agonist, and antagonist medications have demonstrated the greatest overall benefit in OUD treatment. Buprenorphine, a μ-opioid receptor partial agonist, has been used successfully on an international basis for several decades in sublingual tablet and film preparations for the treatment of OUD, but the nature of formulation, which is typically self-administered, renders it susceptible to nonadherence, diversion, and accidental exposure. This article reviews the clinical trial data for novel buprenorphine delivery systems in the form of subcutaneous depot injections, transdermal patches, and subdermal implants for the treatment of OUD and discusses both the clinical efficacy of longer-acting formulations through increasing consistent medication exposure and their potential utility in reducing diversion. These new delivery systems also offer new dosing opportunities for buprenorphine and strategies for dosing intervals in the treatment of OUD. PMID:28894357

  15. Evidence that opioids may have toll-like receptor 4 and MD-2 effects.

    PubMed

    Hutchinson, Mark R; Zhang, Yingning; Shridhar, Mitesh; Evans, John H; Buchanan, Madison M; Zhao, Tina X; Slivka, Peter F; Coats, Benjamen D; Rezvani, Niloofar; Wieseler, Julie; Hughes, Travis S; Landgraf, Kyle E; Chan, Stefanie; Fong, Stephanie; Phipps, Simon; Falke, Joseph J; Leinwand, Leslie A; Maier, Steven F; Yin, Hang; Rice, Kenner C; Watkins, Linda R

    2010-01-01

    Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.

  16. Opioid agonist efficacy predicts the magnitude of tolerance and the regulation of mu-opioid receptors and dynamin-2.

    PubMed

    Pawar, Mohit; Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Walker, Ellen A; Yoburn, Byron C

    2007-06-01

    It has been proposed that opioid agonist efficacy may play a role in tolerance and the regulation of opioid receptor density. To address this issue, the present studies estimated the in vivo efficacy of three opioid agonists and then examined changes in spinal mu-opioid receptor density following chronic treatment in the mouse. In addition, tolerance and regulation of the trafficking protein dynamin-2 were determined. To evaluate efficacy, the method of irreversible receptor alkylation was employed and the efficacy parameter tau estimated. Mice were injected with the irreversible mu-opioid receptor antagonist clocinnamox (0.32-25.6 mg/kg, i.p), and 24 h later, the analgesic potency of s.c. morphine, oxycodone and etorphine were determined. Clocinnamox dose-dependently antagonized the analgesic effects of morphine, etorphine and oxycodone. The shift to the right of the dose-response curves was greater for morphine and oxycodone compared to etorphine and the highest dose of clocinnamox reduced the maximal effect of morphine and oxycodone, but not etorphine. The order of efficacy calculated from these results was etorphine>morphine>oxycodone. Other mice were infused for 7 days with oxycodone (10-150 mg/kg/day, s.c.) or etorphine (50-250 microg/kg/day, s.c.) and the analgesic potency of s.c. morphine determined. The low efficacy agonist (oxycodone) produced more tolerance than the high efficacy agonist (etorphine) at equi-effective infusion doses. In saturation binding experiments, the low efficacy opioid agonists (morphine, oxycodone) did not regulate the density of spinal mu-opioid receptors, while etorphine produced approximately 40% reduction in mu-opioid receptor density. Furthermore, etorphine increased spinal dynamin-2 abundance, while oxycodone did not produce any significant change in dynamin-2 abundance. Overall, these data indicate that high efficacy agonists produce less tolerance at equi-effective doses. Furthermore, increased efficacy was associated with

  17. Palonosetron and Hydroxyzine Pre-treatment Reduces the Objective Signs of Experimentally-Induced Acute Opioid Withdrawal in Humans: A Double-Blinded, Randomized, Placebo-Controlled Crossover Study

    PubMed Central

    Erlendson, Matthew; D'Arcy, Nicole; Encisco, Ellen; Yu, Jeff; Rincon-Cruz, Lorena; Peltz, Gary; Clark, J. David

    2017-01-01

    Background Treatments for reducing opioid withdrawal are limited and prone to problematic side effects. Laboratory studies, clinical observations, and limited human trial data suggest 5-HT3-receptor antagonists and antihistamines may be effective. Objectives This double-blind, crossover, placebo-controlled study employing an acute physical dependence model evaluated whether (i) treatment with a 5-HT3-receptor antagonist (palonosetron) would reduce opioid withdrawal symptoms, and (ii) co-administration of an antihistamine (hydroxyzine) would enhance any treatment effect. Methods At timepoint T=0, healthy (non-opioid dependent, non-substance abuser) male volunteers (N=10) were pre-treated with either a) placebo, b) palonosetron IV (0.75 mg), or c) palonosetron IV (0.75 mg) and hydroxyzine PO (100 mg) in a crossover study design. This was followed at T=30 by intravenous morphine (10mg/70kg). At T=165, 10mg/70kg naloxone IV was given to precipitate opioid withdrawal. The objective opioid withdrawal score (OOWS) and subjective opioid withdrawal score (SOWS) were determined 5 and 15 minutes after naloxone administration (T=170, 180, respectively). Baseline measurements were recorded at T=-30 and T=-15. Results Comparison of average baseline OOWS scores with OOWS scores obtained fifteen minutes after naloxone was significant (p=0.0001). Scores from fifteen minutes post-naloxone infusion showed significant differences in OOWS scores between treatment groups: placebo, 3.7 ± 2.4; palonosetron, 1.5± 0.97; and palonosetron with hydroxyzine, 0.2 ± .1333. Conclusions Pretreatment with palonosetron significantly reduced many signs of experimental-induced opioid withdrawal. Co-administration with hydroxyzine further reduced opioid withdrawal severity. These results suggest that 5-HT3 receptor antagonists, alone or in combination with an antihistamine, may be useful in the treatment of opioid withdrawal. PMID:27712113

  18. Mu-opioid antagonists for opioid-induced bowel dysfunction in people with cancer and people receiving palliative care.

    PubMed

    Candy, Bridget; Jones, Louise; Vickerstaff, Victoria; Larkin, Philip J; Stone, Patrick

    2018-06-05

    Opioid-induced bowel dysfunction (OIBD) is characterised by constipation, incomplete evacuation, bloating, and gastric reflux. It is one of the major adverse events of treatment for pain in cancer and in palliative care, resulting in increased morbidity and reduced quality of life.This is an update of two Cochrane reviews. One was published in 2011, Issue 1 on laxatives and methylnaltrexone for the management of constipation in people receiving palliative care; this was updated in 2015 and excluded methylnaltrexone. The other was published in 2008, Issue 4 on mu-opioid antagonists (MOA) for OIBD. In this updated review, we only included trials on MOA (including methylnaltrexone) for OIBD in people with cancer and people receiving palliative care. To assess the effectiveness and safety of MOA for OIBD in people with cancer and people receiving palliative care. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, CINAHL, and Web of Science to August 2017. We also searched clinical trial registries and regulatory websites. We contacted manufacturers of MOA to identify further data. We included randomised controlled trials (RCTs) that assessed the effectiveness and safety of MOA for OIBD in people with cancer and people at a palliative stage irrespective of the type of terminal disease they experienced. Two review authors assessed risk of bias and extracted data. The appropriateness of combining data from the trials depended upon sufficient homogeneity across the trials. Our primary outcomes were laxation, impact on pain relief, and adverse events. Impact on pain relief was a primary outcome because a possible adverse effect of MOAs is a reduction in pain relief from opioids. We assessed the evidence on these outcomes using GRADE. We identified four new trials for this update, bringing the total number included in this review to eight. In total, 1022 men and women with cancer irrespective of stage or at a palliative care stage of any disease

  19. Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure

    PubMed Central

    Liang, De-Yong; Shi, Xiao-You; Sun, Yuan; Clark, J David

    2016-01-01

    Background Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Results Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Conclusions Spinal epigenetic changes

  20. Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure.

    PubMed

    Sahbaie, Peyman; Liang, De-Yong; Shi, Xiao-You; Sun, Yuan; Clark, J David

    2016-01-01

    Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Spinal epigenetic changes involving Bdnf and Pdyn may

  1. Modification of kindled amygdaloid seizures by opiate agonists and antagonists.

    PubMed

    Albertson, T E; Joy, R M; Stark, L G

    1984-03-01

    The effects of 19 opiate agonists and antagonists on kindled amygdaloid seizures in the rat were studied. The mu agonists tended to reduce the length of elicited afterdischarges and behavioral ranks, while markedly increasing postictal electroencephalogram spikes and behavioral arrest time. These effects were reversed by naloxone. The kappa agonists reduced behavioral rank and variably reduced afterdischarge length with a concomitant lengthening of postictal behavioral arrest time and number of electroencephalogram spikes. The putative sigma agonist, SKF 10,047, reduced afterdischarge durations only at the higher doses tested. The decreases found after the sigma agonists in postictal electroencephalogram spiking and time of behavioral arrest were not reversed by naloxone. Only the lower doses of normeperidine were found to decrease seizure thresholds. The mixed agonist/antagonists (MAA) cyclazocine and cyclorphan markedly increased seizure threshold and reduced afterdischarge duration and behavioral rank. Only the MAA pentazocine tended to increase threshold but not suprathreshold afterdischarge durations. The order of ability to modify the ictal events was MAA (selected) greater than kappa agonists greater than mu agonists greater than sigma agonists. The increase in postictal events (behavior arrest and spikes) was caused most effectively by pretreatment with mu agonist greater than kappa agonist greater than selected MAA greater than sigma agonists.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Very low dose naltrexone addition in opioid detoxification: a randomized, controlled trial.

    PubMed

    Mannelli, Paolo; Patkar, Ashwin A; Peindl, Kathi; Gorelick, David A; Wu, Li-Tzy; Gottheil, Edward

    2009-04-01

    Although current treatments for opioid detoxification are not always effective, medical detoxification remains a required step before long-term interventions. The use of opioid antagonist medications to improve detoxification has produced inconsistent results. Very low dose naltrexone (VLNTX) was recently found to reduce opioid tolerance and dependence in animal and clinical studies. We decided to evaluate safety and efficacy of VLNTX adjunct to methadone in reducing withdrawal during detoxification. In a multi-center, double-blind, randomized study at community treatment programs, where most detoxifications are performed, 174 opioid-dependent subjects received NTX 0.125 mg, 0.250 mg or placebo daily for 6 days, together with methadone in tapering doses. VLNTX-treated individuals reported attenuated withdrawal symptoms [F = 7.24 (2,170); P = 0.001] and reduced craving [F = 3.73 (2,107); P = 0.03]. Treatment effects were more pronounced at discharge and were not accompanied by a significantly higher retention rate. There were no group differences in use of adjuvant medications and no treatment-related adverse events. Further studies should explore the use of VLNTX, combined with full and partial opioid agonist medications, in detoxification and long-term treatment of opioid dependence.

  3. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception.

    PubMed

    Felippotti, Tatiana Tocchini; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2012-02-01

    The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Mu Opioid Mediated Discriminative-Stimulus Effects of Tramadol: An Individual Subjects Analysis

    PubMed Central

    Strickland, Justin C.; Rush, Craig R.; Stoops, William W.

    2015-01-01

    Drug discrimination procedures use dose-dependent generalization, substitution, and pretreatment with selective agonists and antagonists to evaluate receptor systems mediating interoceptive effects of drugs. Despite the extensive use of these techniques in the nonhuman animal literature, few studies have used human subjects. Specifically, human studies have not routinely used antagonist administration as a pharmacological tool to elucidate the mechanisms mediating the discriminative stimulus effects of drugs. This study evaluated the discriminative-stimulus effects of tramadol, an atypical analgesic with monoamine and mu opioid activity. Three human subjects first learned to discriminate 100 mg tramadol from placebo. A range of tramadol doses (25 to 150 mg) and hydromorphone (4 mg) with and without naltrexone pretreatment (50 mg) were then administered to subjects after acquiring the discrimination. Tramadol produced dose-dependent increases in drug-appropriate responding and hydromorphone partially or fully substituted for tramadol in all subjects. These effects were attenuated by naltrexone. Individual subject records indicated a relationship between mu opioid activity (i.e., miosis) and drug discrimination performance. Our findings indicate that mu opioid activity may mediate the discriminative-stimulus effects of tramadol in humans. The correspondence of generalization, substitution, and pretreatment findings with the animal literature supports the neuropharmacological specificity of the drug discrimination procedure. PMID:25664525

  5. Evidence that opioids may have toll like receptor 4 and MD-2 effects

    PubMed Central

    Hutchinson, Mark R.; Zhang, Yingning; Shridhar, Mitesh; Evans, John H.; Buchanan, Madison M.; Zhao, Tina X.; Slivka, Peter F.; Coats, Benjamen D.; Rezvani, Niloofar; Wieseler, Julie; Hughes, Travis S.; Landgraf, Kyle E.; Chan, Stefanie; Fong, Stephanie; Phipps, Simon; Falke, Joseph J.; Leinwand, Leslie A.; Maier, Steven F.; Yin, Hang; Rice, Kenner C.; Watkins, Linda R.

    2009-01-01

    Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling. PMID:19679181

  6. Opioid Overdose Prevention Programs Providing Naloxone to Laypersons - United States, 2014.

    PubMed

    Wheeler, Eliza; Jones, T Stephen; Gilbert, Michael K; Davidson, Peter J

    2015-06-19

    Drug overdose deaths in the United States have more than doubled since 1999. During 2013, 43,982 drug overdose deaths (unintentional, intentional [suicide or homicide], or undetermined intent) were reported. Among these, 16,235 (37%) were associated with prescription opioid analgesics (e.g., oxycodone and hydrocodone) and 8,257 (19%) with heroin. For many years, community-based programs have offered opioid overdose prevention services to laypersons who might witness an overdose, including persons who use drugs, their families and friends, and service providers. Since 1996, an increasing number of programs provide laypersons with training and kits containing the opioid antagonist naloxone hydrochloride (naloxone) to reverse the potentially fatal respiratory depression caused by heroin and other opioids. In July 2014, the Harm Reduction Coalition (HRC), a national advocacy and capacity-building organization, surveyed 140 managers of organizations in the United States known to provide naloxone kits to laypersons. Managers at 136 organizations completed the survey, reporting on the amount of naloxone distributed, overdose reversals by bystanders, and other program data for 644 sites that were providing naloxone kits to laypersons as of June 2014. From 1996 through June 2014, surveyed organizations provided naloxone kits to 152,283 laypersons and received reports of 26,463 overdose reversals. Providing opioid overdose training and naloxone kits to laypersons who might witness an opioid overdose can help reduce opioid overdose mortality.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allescher, H.D.; Ahmad, S.; Classen, M.

    Receptor binding of the opioid receptor antagonist, ({sup 3}H)diprenorphine, which has a similar affinity to the various opioid receptor subtypes, was characterized in subcellular fractions derived from either longitudinal or circular smooth muscle of the canine small intestine with their plexuses (myenteric plexus and deep muscular plexus, respectively) attached. The distribution of opioid binding activity showed a good correlation in the different fractions with the binding of the neuronal marker ({sup 3}H)saxitoxin but no correlation to the smooth muscle plasma membrane marker 5'-nucleotidase. The saturation data (Kd = 0.12 +/- 0.04 nM and maximum binding = 400 +/- 20 fmol/mg)more » and the data from kinetic experiments (Kd = 0.08 nmol) in the myenteric plexus were in good agreement with results obtained previously from the circular muscle/deep muscular plexus preparation. Competition experiments using selective drugs for mu (morphiceptin-analog (N-MePhe3-D-Pro4)-morphiceptin), delta (D-Pen2,5-enkephalin) and kappa (dynorphin 1-13, U50488-H) ligands showed the existence of all three receptor subtypes. The existence of kappa receptors was confirmed in saturation experiments using ({sup 3}H) ethylketocycloazocine as labeled ligand. Two putative opioid agonists, with effects on gastrointestinal motility, trimebutine and JO-1196 (fedotozin), were also examined. Trimebutine (Ki = 0.18 microM), Des-Met-trimebutine (Ki = 0.72 microM) and Jo-1196 (Ki = 0.19 microM) displaced specific opiate binding. The relative affinity for the opioid receptor subtypes was mu = 0.44, delta = 0.30 and kappa = 0.26 for trimebutine and mu = 0.25, delta = 0.22 and kappa = 0.52 for Jo-1196.« less

  8. Community-based opioid overdose prevention programs providing naloxone - United States, 2010.

    PubMed

    2012-02-17

    Drug overdose death rates have increased steadily in the United States since 1979. In 2008, a total of 36,450 drug overdose deaths (i.e., unintentional, intentional [suicide or homicide], or undetermined intent) were reported, with prescription opioid analgesics (e.g., oxycodone, hydrocodone, and methadone), cocaine, and heroin the drugs most commonly involved . Since the mid-1990s, community-based programs have offered opioid overdose prevention services to persons who use drugs, their families and friends, and service providers. Since 1996, an increasing number of these programs have provided the opioid antagonist naloxone hydrochloride, the treatment of choice to reverse the potentially fatal respiratory depression caused by overdose of heroin and other opioids. Naloxone has no effect on non-opioid overdoses (e.g., cocaine, benzodiazepines, or alcohol) . In October 2010, the Harm Reduction Coalition, a national advocacy and capacity-building organization, surveyed 50 programs known to distribute naloxone in the United States, to collect data on local program locations, naloxone distribution, and overdose reversals. This report summarizes the findings for the 48 programs that completed the survey and the 188 local programs represented by the responses. Since the first opioid overdose prevention program began distributing naloxone in 1996, the respondent programs reported training and distributing naloxone to 53,032 persons and receiving reports of 10,171 overdose reversals. Providing opioid overdose education and naloxone to persons who use drugs and to persons who might be present at an opioid overdose can help reduce opioid overdose mortality, a rapidly growing public health concern.

  9. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor.

    PubMed

    Guerrieri, Elena; Mallareddy, Jayapal Reddy; Tóth, Géza; Schmidhammer, Helmut; Spetea, Mariana

    2015-03-18

    Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.

  10. Postoperative Pain and Analgesia: Is There a Genetic Basis to the Opioid Crisis?

    PubMed

    Elmallah, Randa K; Ramkumar, Prem N; Khlopas, Anton; Ramkumar, Rathika R; Chughtai, Morad; Sodhi, Nipun; Sultan, Assem A; Mont, Michael A

    2018-06-01

    Multiple factors have been implicated in determining why certain patients have increased postoperative pain, with the potential to develop chronic pain. The purpose of this study was to: 1) identify and describe genes that affect postoperative pain perception and control; 2) address modifiable risk factors that result in epigenetic altered responses to pain; and 3) characterize differences in pain sensitivity and thresholds between opioid-naïve and opioid-dependent patients. Three electronic databases were used to conduct the literature search: Pubmed, EBSCO host, and SCOPUS. A total of 372 abstracts were reviewed, of which 46 studies were deemed relevant and are included in this review. Specific gene alterations that were shown to affect postoperative pain control included single nucleotide polymorphisms in the mu, kappa, and delta opioid receptors, ion channel genes, cytotoxic T-cells, glutamate receptors and cytokine genes, among others. Alcoholism, obesity, and smoking were all linked with genetic polymorphisms that altered pain sensitivity. Opioid abuse was found to be associated with a poorer response to analgesics postoperatively, as well as a risk for prescription overdose. Although pain perception has multiple complex influences, the greatest variability seen in response to opioids among postoperative patients known to date can be traced to genetic differences in opioid metabolism. Further study is needed to determine the clinical significance of these genetic associations.

  11. μ-Opioid and 5-HT1A receptors in the dorsomedial hypothalamus interact for the regulation of panic-related defensive responses.

    PubMed

    Roncon, Camila Marroni; Yamashita, Paula Shimene de Melo; Frias, Alana Tercino; Audi, Elisabeth Aparecida; Graeff, Frederico Guilherme; Coimbra, Norberto Cysne; Zangrossi, Helio

    2017-06-01

    The dorsomedial hypothalamus (DMH) and the dorsal periaqueductal gray (DPAG) have been implicated in the genesis and regulation of panic-related defensive behaviors, such as escape. Previous results point to an interaction between serotonergic and opioidergic systems within the DPAG to inhibit escape, involving µ-opioid and 5-HT1A receptors (5-HT1AR). In the present study we explore this interaction in the DMH, using escape elicited by electrical stimulation of this area as a panic attack index. The obtained results show that intra-DMH administration of the non-selective opioid receptor antagonist naloxone (0.5 nmol) prevented the panicolytic-like effect of a local injection of serotonin (20 nmol). Pretreatment with the selective μ-opioid receptor (MOR) antagonist CTOP (1 nmol) blocked the panicolytic-like effect of the 5-HT1AR agonist 8-OHDPAT (8 nmol). Intra-DMH injection of the selective MOR agonist DAMGO (0.3 nmol) also inhibited escape behavior, and a previous injection of the 5-HT1AR antagonist WAY-100635 (0.37 nmol) counteracted this panicolytic-like effect. These results offer the first evidence that serotonergic and opioidergic systems work together within the DMH to inhibit panic-like behavior through an interaction between µ-opioid and 5-HT1A receptors, as previously described in the DPAG.

  12. Effect of N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan on Opioid Analgesia in Pediatric Intensive Care Unit

    PubMed Central

    Al Alem, Hala; Al Shehri, Ali; Al-Jeraisy, Majed

    2016-01-01

    Objective. Pain control is an essential goal in the management of critical children. Narcotics are the mainstay for pain control. Patients frequently need escalating doses of narcotics. In such cases an adjunctive therapy may be beneficial. Dextromethorphan (DM) is NMDA receptor antagonist and may prevent tolerance to narcotics; however, its definitive role is still unclear. We sought whether dextromethorphan addition could decrease the requirements of fentanyl to control pain in critical children. Design. Double-blind, randomized control trial (RCT). Setting. Pediatric multidisciplinary ICU in tertiary care center. Patients. Thirty-six pediatric patients 2–14 years of age in a multidisciplinary PICU requiring analgesia were randomized into dextromethorphan and placebo. The subjects in both groups showed similarity in most of the characteristics. Interventions. Subjects while receiving fentanyl for pain control received dextromethorphan or placebo through nasogastric/orogastric tubes for 96 hours. Pain was assessed using FLACC and faces scales. Measurements and Main Results. This study found no statistical significant difference in fentanyl requirements between subjects receiving dextromethorphan and those receiving placebo (p = 0.127). Conclusions. Dextromethorphan has no effect on opioid requirement for control of acute pain in children admitted with acute critical care illness in PICU. The registration number for this trial is NCT01553435. PMID:27867308

  13. Effect of N-Methyl-D-Aspartate Receptor Antagonist Dextromethorphan on Opioid Analgesia in Pediatric Intensive Care Unit.

    PubMed

    Naeem, Mohammed; Al Alem, Hala; Al Shehri, Ali; Al-Jeraisy, Majed

    2016-01-01

    Objective . Pain control is an essential goal in the management of critical children. Narcotics are the mainstay for pain control. Patients frequently need escalating doses of narcotics. In such cases an adjunctive therapy may be beneficial. Dextromethorphan (DM) is NMDA receptor antagonist and may prevent tolerance to narcotics; however, its definitive role is still unclear. We sought whether dextromethorphan addition could decrease the requirements of fentanyl to control pain in critical children. Design . Double-blind, randomized control trial (RCT). Setting . Pediatric multidisciplinary ICU in tertiary care center. Patients . Thirty-six pediatric patients 2-14 years of age in a multidisciplinary PICU requiring analgesia were randomized into dextromethorphan and placebo. The subjects in both groups showed similarity in most of the characteristics. Interventions . Subjects while receiving fentanyl for pain control received dextromethorphan or placebo through nasogastric/orogastric tubes for 96 hours. Pain was assessed using FLACC and faces scales. Measurements and Main Results . This study found no statistical significant difference in fentanyl requirements between subjects receiving dextromethorphan and those receiving placebo ( p = 0.127). Conclusions . Dextromethorphan has no effect on opioid requirement for control of acute pain in children admitted with acute critical care illness in PICU. The registration number for this trial is NCT01553435.

  14. Effective Use of Naloxone by Law Enforcement in Response to Multiple Opioid Overdoses.

    PubMed

    Kitch, Bryan B; Portela, Roberto C

    2016-01-01

    Growing rates of opioid abuse and overdose throughout the nation have lead some community organizations to develop naloxone administration programs. In Pitt County North Carolina, two of our law enforcement agencies were trained in the identification of opioid overdose and use of naloxone therapy. Attributed partially to introduction of fentanyl into the illicit drug market, our community experienced a 48-hour period in which officers successfully deployed five doses of antagonist medication to four individuals. This article presents case descriptions demonstrating the feasibility and safety of law enforcement naloxone programs.

  15. Opioid antagonism of cannabinoid effects: differences between marijuana smokers and nonmarijuana smokers.

    PubMed

    Haney, Margaret

    2007-06-01

    In non-human animals, opioid antagonists block the reinforcing and discriminative-stimulus effects of Delta(9)-tetrahydrocannabinol (THC), while in human marijuana smokers, naltrexone (50 mg) enhances the reinforcing and subjective effects of THC. The objective of this study was to test a lower, more opioid-selective dose of naltrexone (12 mg) in combination with THC. The influence of marijuana-use history and sex was also investigated. Naltrexone (0, 12 mg) was administered 30 min before oral THC (0-40 mg) or methadone (0-10 mg) capsules, and subjective effects, task performance, pupillary diameter, and cardiovascular parameters were assessed in marijuana smoking (Study 1; n=22) and in nonmarijuana smoking (Study 2; n=21) men and women. The results show that in marijuana smokers, low-dose naltrexone blunted the intoxicating effects of a low THC dose (20 mg), while increasing ratings of anxiety at a higher THC dose (40 mg). In nonmarijuana smokers, low-dose naltrexone shifted THC's effects in the opposite direction, enhancing the intoxicating effects of a low THC dose (2.5 mg) and decreasing anxiety ratings following a high dose of THC (10 mg). There were no sex differences in these interactions, although among nonmarijuana smokers, men were more sensitive to the effects of THC alone than women. To conclude, a low, opioid-selective dose of naltrexone blunted THC intoxication in marijuana smokers, while in nonmarijuana smokers, naltrexone enhanced THC intoxication. These data demonstrate that the interaction between opioid antagonists and cannabinoid agonists varies as a function of marijuana use history.

  16. A Subanalgesic Dose of Morphine Eliminates Nalbuphine Anti-analgesia in Postoperative Pain

    PubMed Central

    Gear, Robert W.; Gordon, Newton C.; Hossaini-Zadeh, Mehran; Lee, Janice S.; Miaskowski, Christine; Paul, Steven M.; Levine, Jon D.

    2008-01-01

    The agonist-antagonist kappa-opioid nalbuphine administered for postoperative pain produces greater analgesia in females than in males. In fact, males administered nalbuphine (5 mg) experience pain greater than those receiving placebo, suggesting the existence of an anti-analgesic effect. These sexually dimorphic effects on postoperative pain can be eliminated by co-administration of a fixed ratio of the prototypical opioid receptor antagonist naloxone with nalbuphine, implying a role for opioid receptors in the anti-analgesic as well as analgesic effects of nalbuphine. In the present study, we further evaluated the role of opioid receptors in the sex-specific effects on pain produced by nalbuphine by co-administering a dose of morphine low enough that it does not produce analgesia. Following extraction of bony impacted third molar teeth, nalbuphine (5 mg) was administered alone or in combination with either of two low doses of morphine (2 mg or 4 mg). Both doses of morphine reversed nalbuphine-induced anti-analgesia in males, but only the lower dose (2 mg) reached statistical significance. Neither dose affected nalbuphine-induced analgesia in females, and when administered alone in either males or females, morphine (2 mg) had no analgesic effect. Though not observed in females, the effect of morphine in males argues that, like naloxone, low dose morphine may act as an anti-analgesia opioid receptor antagonist. Perspective Previously we reported that the nalbuphine produces both analgesic and anti-analgesic effects, and that the opioid antagonist naloxone can enhance nalbuphine analgesia by selectively antagonizing the anti-analgesic effect. Here we show that morphine, given in a subanalgesic dose, reverses nalbuphine-induced anti-analgesia in males, perhaps by a similar mechanism. PMID:18201935

  17. Sufentanil, Morphine, Met-enkephalin, and κ-Agonist (U-50,488H) Inhibit Substance P Release from Primary Sensory-Neurons: A Model for Presynaptic Spinal Opioid Actions

    PubMed Central

    Chang, H. Ming; Berde, Charles B.; Holz, George G.; Steward, Grieg F.; Kream, Richard M.

    2010-01-01

    An in vitro model system for analysis of presynaptic inhibitory actions of spinal opioids has been applied. Embryonic sensory neurons derived from chick dorsal root ganglia were grown in primary cell culture, and the release of substance P was evoked by electrical field stimulation during exposure to drugs with well-demonstrated affinity for opioid receptors. This allowed a pharmacologic characterization of the inhibitory actions of specific opioid agonists on the release of substance P as measured by radioimmunoassay (RIA). Sufentanil (0.5 µm), a high affinity µ receptor agonist, U-50,488H (25 µm), a selective κ receptor agonist, and morphine (10 µm), an agonist with high affinity for µ and δ receptors, inhibited the evoked release of substance P by approximately 60%, 40%, and 50%, respectively. For sufentanil the response was demonstrated to be dose-dependent. As is the case for its analgesic action in vivo, morphine was approximately 50-fold less potent than sufentanil on a molar basis in this assay. The actions of sufentanil, U-50-488H and morphine were mimicked by the endogenous opioid peptide met-enkephalin, and its stable synthetic analog D-ala2-met5-enkephalinamide (DAME). Naloxone (25 µm), an opioid receptor antagonist, blocked the inhibitory action of sufentanil (0.5 µm), morphine (5 µm), and DAME (5 µm), but not U-50,488H (10 µm). The action of U-50,488H was partially blocked by the antagonist naltrexone (25 µm). Stereo-selectivity of agonist action was confirmed by the failure of dextrorphan (50 µm), an inactive opioid isomer, to inhibit the release of substance P. Actions mediated by specific opioid receptors were thus demonstrated by high affinity responses to agonists, blockade of agonist responses by opioid antagonists, and stereoselectivity. These findings suggest that in the spinal cord presynaptic inhibition of evoked substance P release is mediated by µ, K and δ opioid receptors located on primary sensory nerve terminals

  18. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics.

    PubMed

    Knezevic, Nebojsa Nick; Yekkirala, Ajay; Yaksh, Tony L

    2017-11-01

    Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.

  19. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  20. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  1. Endogenous Opioid Signaling in the Medial Prefrontal Cortex is Required for the Expression of Hunger-Induced Impulsive Action.

    PubMed

    Selleck, Ryan A; Lake, Curtis; Estrada, Viridiana; Riederer, Justin; Andrzejewski, Matthew; Sadeghian, Ken; Baldo, Brian A

    2015-09-01

    Opioid transmission and dysregulated prefrontal cortex (PFC) activity have both been implicated in the inhibitory-control deficits associated with addiction and binge-type eating disorders. What remains unknown, however, is whether endogenous opioid transmission within the PFC modulates inhibitory control. Here, we compared intra-PFC opioid manipulations with a monoamine manipulation (d-amphetamine), in two sucrose-reinforced tasks: progressive ratio (PR), which assays the motivational value of an incentive, and differential reinforcement of low response rates (DRLs), a test of inhibitory control. Intra-PFC methylnaloxonium (M-NX, a limited diffusion opioid antagonist) was given to rats in a 'low-drive' condition (2-h food deprivation), and also after a motivational shift to a 'high-drive' condition (18-h food deprivation). Intra-PFC DAMGO (D-[Ala2,N-MePhe4, Gly-ol]-enkephalin; a μ-opioid agonist) and d-amphetamine were also tested in both tasks, under the low-drive condition. Intra-PFC M-NX nearly eliminated impulsive action in DRL engendered by hunger, at a dose (1 μg) that significantly affected neither hunger-induced PR enhancement nor hyperactivity. At a higher dose (3 μg), M-NX eliminated impulsive action and returned PR breakpoint to low-drive levels. Conversely, intra-PFC DAMGO engendered 'high-drive-like' effects: enhancement of PR and impairment of DRL performance. Intra-PFC d-amphetamine failed to produce effects in either task. These results establish that endogenous PFC opioid transmission is both necessary and sufficient for the expression of impulsive action in a high-arousal, high-drive appetitive state, and that PFC-based opioid systems enact functionally unique effects on food impulsivity and motivation relative to PFC-based monoamine systems. Opioid antagonists may represent effective treatments for a range of psychiatric disorders with impulsivity features.

  2. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Magnesium enhances opioid-induced analgesia - What we have learnt in the past decades?

    PubMed

    Bujalska-Zadrożny, Magdalena; Tatarkiewicz, Jan; Kulik, Kamila; Filip, Małgorzata; Naruszewicz, Marek

    2017-03-01

    Opioids are increasingly used in alleviating pain, including cancer-related pain and postoperative pain. Unfortunately, the development of tolerance, the resistance of neuropathic pain on opioid analgesia or other undesirable effects may limit their utility. In order to reduce opioid doses, and thereby to avoid the risk of side effects and sudden deaths due to overdosing, attempts have been made to introduce co-analgesics. Due to an increasing amount of data concerning a potential enhance of opioid analgesia by the physiological antagonist of N-methyl-d-aspartate receptors, magnesium ions (Mg 2+ ), a concomitant use of such a combination seems to be interesting from a clinical point of view. Therefore, the aim of this review is to provide an analysis of existing preclinical and clinical studies in the context of the benefits of using this combination in clinical practice. A potential mechanism of magnesium - opioid interaction is also suggested. The potential influence of Mg on opioid adverse/side effects as well as conclusions on the safety of combined administration of magnesium and opioid drugs were also summarized. Data from animal studies indicate that magnesium increases opioid analgesia in chronic (e.g., neuropathic, inflammatory) as well as acute pain. In clinical trials, most authors confirmed that magnesium reduces opioid consumption and alleviates postoperative pain scores while not increasing the risk of side effects after opioids. However, more clinical studies are needed concerning an influence of Mg on opioid activity in other difficult to treat types of pain, especially neuropathic and inflammatory. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. CC12, A High Affinity Ligand for 3H-Cimetidine Binding, is an Improgan Antagonist

    PubMed Central

    Hough, Lindsay B.; Nalwalk, Julia W.; Phillips, James G.; Kern, Brian; Shan, Zhixing; Wentland, Mark P.; de Esch, Iwan J.P.; Janssen, Elwin; Barr, Travis; Stadel, Rebecca

    2007-01-01

    Summary Improgan, a chemical congener of cimetidine, is a highly effective non-opioid analgesic when injected into the CNS. Despite extensive characterization, neither the improgan receptor, nor a pharmacological antagonist of improgan has been previously described. Presently, the specific binding of 3H-cimetidine (3HCIM) in brain fractions was used to discover 4(5)-((4-iodobenzyl)thiomethyl)-1H-imidazole, which behaved in vivo as the first improgan antagonist. The synthesis and pharmacological properties of this drug (named CC12) are described herein. In rats, CC12 (50 – 500 nmol, icv) produced dose-dependent inhibition of improgan (200 – 400 nmol) antinociception on the tail flick and hot plate tests. When given alone to rats, CC12 had no effects on nociceptive latencies, or on other observable behavioral or motor functions. Maximal inhibitory effects of CC12 (500 nmol) were fully surmounted with a large icv dose of improgan (800 nmol), demonstrating competitive antagonism. In mice, CC12 (200-400 nmol, icv) behaved as a partial agonist, producing incomplete improgan antagonism, but also limited antinociception when given alone. Radioligand binding, receptor autoradiography, and electrophysiology experiments showed that CC12's antagonist properties are not explained by activity at 25 sites relevant to analgesia, including known receptors for cannabinoids, opioids or histamine. The use of CC12 as an improgan antagonist will facilitate the characterization of improgan analgesia. Furthermore, because CC12 was also found presently to inhibit opioid and cannabinoid antinociception, it is suggested that this drug modifies a biochemical mechanism shared by several classes of analgesics. Elucidation of this mechanism will enhance understanding of the biochemistry of pain relief. PMID:17336343

  5. Intraplantar injection of bergamot essential oil induces peripheral antinociception mediated by opioid mechanism.

    PubMed

    Sakurada, Tsukasa; Mizoguchi, Hirokazu; Kuwahata, Hikari; Katsuyama, Soh; Komatsu, Takaaki; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Sakurada, Shinobu

    2011-01-01

    This study investigated the effect of bergamot essential oil (BEO) containing linalool and linalyl acetate as major volatile components in the capsaicin test. The intraplantar injection of capsaicin (1.6 μg) produced a short-lived licking/biting response toward the injected paw. The nociceptive behavioral response evoked by capsaicin was inhibited dose-dependently by intraplantar injection of BEO. Both linalool and linalyl acetate, injected into the hindpaw, showed a significant reduction of nociceptive response, which was much more potent than BEO. Intraperitoneal (i.p.) and intraplantar pretreatment with naloxone hydrochloride, an opioid receptor antagonist, significantly reversed BEO- and linalool-induced antinociception. Pretreatment with naloxone methiodide, a peripherally acting μ-opioid receptor preferring antagonist, resulted in a significant antagonizing effect on antinociception induced by BEO and linalool. Antinociception induced by i.p. or intrathecal morphine was enhanced by the combined injection of BEO or linalool. The enhanced effect of combination of BEO or linalool with morphine was antagonized by pretreatment with naloxone hydrochloride. Our results provide evidence for the involvement of peripheral opioids, in the antinociception induced by BEO and linalool. Combined administration of BEO or linalool acting at the peripheral site, and morphine may be a promising approach in the treatment of clinical pain. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Opiate antagonist prevents μ- and δ-opiate receptor dimerization to facilitate ability of agonist to control ethanol-altered natural killer cell functions and mammary tumor growth.

    PubMed

    Sarkar, Dipak K; Sengupta, Amitabha; Zhang, Changqing; Boyadjieva, Nadka; Murugan, Sengottuvelan

    2012-05-11

    In the natural killer (NK) cells, δ-opiate receptor (DOR) and μ-opioid receptor (MOR) interact in a feedback manner to regulate cytolytic function with an unknown mechanism. Using RNK16 cells, a rat NK cell line, we show that MOR and DOR monomer and dimer proteins existed in these cells and that chronic treatment with a receptor antagonist reduced protein levels of the targeted receptor but increased levels of opposing receptor monomer and homodimer. The opposing receptor-enhancing effects of MOR and DOR antagonists were abolished following receptor gene knockdown by siRNA. Ethanol treatment increased MOR and DOR heterodimers while it decreased the cellular levels of MOR and DOR monomers and homodimers. The opioid receptor homodimerization was associated with an increased receptor binding, and heterodimerization was associated with a decreased receptor binding and the production of cytotoxic factors. Similarly, in vivo, opioid receptor dimerization, ligand binding of receptors, and cell function in immune cells were promoted by chronic treatment with an opiate antagonist but suppressed by chronic ethanol feeding. Additionally, a combined treatment of an MOR antagonist and a DOR agonist was able to reverse the immune suppressive effect of ethanol and reduce the growth and progression of mammary tumors in rats. These data identify a role of receptor dimerization in the mechanism of DOR and MOR feedback interaction in NK cells, and they further elucidate the potential for the use of a combined opioid antagonist and agonist therapy for the treatment of immune incompetence and cancer and alcohol-related diseases.

  7. μ-Opioid receptor activation inhibits N- and P-type Ca2+ channel currents in magnocellular neurones of the rat supraoptic nucleus

    PubMed Central

    Soldo, Brandi L; Moises, Hylan C

    1998-01-01

    The whole-cell voltage-clamp technique was used to examine opioid regulation of Ba2+ currents (IBa) through voltage-sensitive Ca2+ channels in isolated magnocellular supraoptic neurones (MNCs). The effects of local application of μ-, δ- or κ-opioid receptor selective agonists were examined on specific components of high voltage-activated (HVA) IBa, pharmacologically isolated by use of Ca2+ channel-subtype selective antagonists. The μ-opioid receptor selective agonist, DAMGO, suppressed HVA IBa (in 64/71 neurones) in a naloxone-reversible and concentration-dependent manner (EC50 = 170 nm, Emax = 19.5 %). The DAMGO-induced inhibition was rapid in onset, associated with kinetic slowing and voltage dependent, being reversed by strong depolarizing prepulses. Low-voltage activated (LVA) IBa was not modulated by DAMGO. Administration of κ- (U69 593) or δ-selective (DPDPE) opioid receptor agonists did not affect IBa. However, immunostaining of permeabilized MNCs with an antibody specific for κ1-opioid receptors revealed the presence of this opioid receptor subtype in a large number of isolated somata. μ-Opioid-induced inhibition in IBa was largely abolished after blockade of N-type and P-type channel currents by ω-conotoxin GVIA (1 μm) and ω-agatoxin IVA (100 nm), respectively. Quantitation of antagonist effects on DAMGO-induced reductions in IBa revealed that N- and P-type channels contributed roughly equally to the μ-opioid sensitive portion of total IBa. These results indicate that μ-opioid receptors are negatively coupled to N- and P-type Ca2+ channels in the somatodendritic regions of MNCs, possibly via a membrane-delimited G-protein-dependent pathway. They also support a scheme in which opioids may act in part to modulate cellular activity and regulate neurosecretory function by their direct action on the neuroendocrine neurones of the hypothalamic supraoptic neucleus. PMID:9824718

  8. Downregulation of the neuronal opioid gene expression concomitantly with neuronal decline in dorsolateral prefrontal cortex of human alcoholics.

    PubMed

    Bazov, Igor; Sarkisyan, Daniil; Kononenko, Olga; Watanabe, Hiroyuki; Karpyak, Victor M; Yakovleva, Tatiana; Bakalkin, Georgy

    2018-06-20

    Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.

  9. Substance P-induced respiratory excitation is blunted by delta-receptor specific opioids in the rat medulla oblongata.

    PubMed

    Chen, Z; Hedner, J; Hedner, T

    1996-06-01

    The effects of substance P (SP) and the naturally occurring met-enkephalin and the synthetic mu-specific opioid agonist, DAGO (Tyr-D-Ala-Gly-N-Methy-Phe-Gly-ol) and the delta-specific opioid agonist DADL (Tyr-D-Ala-Gly-Phe-D-Leu) on basal ventilation were investigated in halothane-anaesthetized rats. Local injections of SP (0.75-1.5 nmol) in the ventrolateral medulla oblongata (VLM), e.g. nucleus paragigantocellularis, and nucleus reticularis lateralis increased ventilation because of an elevation of tidal volume. Met-enkephalin induced a short-lasting ventilatory depression mainly because of a depression of tidal volume. Activation of delta- and mu-opioid receptors in the VLM by local application of DADL and DAGO, respectively, induced ventilatory depression, which was later in onset and more long-lasting. Local administration of met-enkephalin into the VLM also produced a long-lasting inhibition of the SP-induced ventilatory excitation. A similar blockade of the SP-induced excitatory ventilatory response could be elicited by DADL but not by DAGO. This antagonistic effect was attenuated by local application of the delta-opioid receptor antagonist ICI 154. 129. We conclude that the naturally occurring met-enkephalin as well as synthetic mu- and delta-specific enkephalin analogues (DAGO and DADL, respectively) in VLM depress basal ventilation by an effect on inspiratory drive. There is a functional antagonism between activation of delta-opioid receptors and SP receptors into the VLM in respect to respiratory regulation.

  10. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3,3-dibromoflavanone in mice.

    PubMed

    Higgs, Josefina; Wasowski, Cristina; Loscalzo, Leonardo M; Marder, Mariel

    2013-09-01

    The pharmacotherapy for the treatment of pain is an active area of investigation. There are effective drugs to treat this problem, but there is also a need to find alternative treatments free of undesirable side effects. In the present work the capacity of a series of flavonoids to bind to the μ opioid receptor was evaluated. The most active compound, 3,3-dibromoflavanone (31), a synthetic flavonoid, presented a significant inhibition of the binding of the selective μ opioid ligand [(3)H]DAMGO, with a Ki of 0.846 ± 0.263 μM. Flavanone 31 was further synthesized using a simple and cheap procedure with good yield. Its in vivo effects in mice, after acute treatments, were studied using antinociceptive and behavioral assays. It showed no sedative, anxiolytic, motor incoordination effects or inhibition of the gastrointestinal transit in mice at the doses tested. It evidenced antinociceptive activity on the acetic acid-induced nociception, hot plate and formalin tests (at 10 mg/kg and 30 mg/kg). The results showed that the 5-HT2 receptor and the adrenoceptors seem unlikely to be involved in its antinociceptive effects. Naltrexone, a nonselective opioid receptors antagonist, totally blocked compound 31 antinociceptive effects on the hot plate test, but naltrindole (δ opioid antagonist) and nor-binaltorphimine (κ opioid antagonist) did not. These findings demonstrated that 3,3-dibromoflavanone (31), at doses that did not interfere with the motor performance, exerted clear dose dependent antinociception when assessed in the chemical and thermal models of nociception in mice and it seems that its action is related to the activation of the μ opioid receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Opioid Detoxification and Naltrexone Induction Strategies: Recommendations for Clinical Practice

    PubMed Central

    Sigmon, Stacey C.; Bisaga, Adam; Nunes, Edward V.; O'Connor, Patrick G.; Kosten, Thomas; Woody, George

    2015-01-01

    Background Opioid dependence is a significant public health problem associated with high risk for relapse if treatment is not ongoing. While maintenance on opioid agonists (i.e., methadone, buprenorphine) often produces favorable outcomes, detoxification followed by treatment with the μ-opioid receptor antagonist naltrexone may offer a potentially useful alternative to agonist maintenance for some patients. Method Treatment approaches for making this transition are described here based on a literature review and solicitation of opinions from several expert clinicians and scientists regarding patient selection, level of care, and detoxification strategies. Conclusion Among the current detoxification regimens, the available clinical and scientific data suggest that the best approach may be using an initial 2–4 mg dose of buprenorphine combined with clonidine, other ancillary medications, and progressively increasing doses of oral naltrexone over 3–5 days up to the target dose of naltrexone. However, more research is needed to empirically validate the best approach for making this transition. PMID:22404717

  12. Peripheral antinociceptive effects of the cyclic endomorphin-1 analog c[YpwFG] in a mouse visceral pain model.

    PubMed

    Bedini, Andrea; Baiula, Monica; Gentilucci, Luca; Tolomelli, Alessandra; De Marco, Rossella; Spampinato, Santi

    2010-11-01

    We previously described a novel cyclic endomorphin-1 analog c[Tyr-D-Pro-D-Trp-Phe-Gly] (c[YpwFG]), acting as a mu-opioid receptor (MOR) agonist. This study reports that c[YpwFG] is more lipophilic and resistant to enzymatic hydrolysis than endomorphin-1 and produces preemptive antinociception in a mouse visceral pain model when injected intraperitoneally (i.p.) or subcutaneously (s.c.) before 0.6% acetic acid, employed to evoke abdominal writhing (i.p. ED(50)=1.24 mg/kg; s.c. ED(50)=2.13 mg/kg). This effect is reversed by the selective MOR antagonist β-funaltrexamine and by a high dose of the mu(1)-opioid receptor-selective antagonist naloxonazine. Conversely, the kappa-opioid receptor antagonist nor-binaltorphimine and the delta-opioid receptor antagonist naltrindole are ineffective. c[YpwFG] produces antinociception when injected i.p. after acetic acid (ED(50)=4.80 mg/kg), and only at a dose of 20mg/kg did it elicit a moderate antinociceptive response in the mouse, evaluated by the tail flick assay. Administration of a lower dose of c[YpwFG] (10mg/kg i.p.) apparently produces a considerable part of antinociception on acetic acid-induced writhes through peripheral opioid receptors as this action is fully prevented by i.p. naloxone methiodide, which does not readily cross the blood-brain barrier; whereas this opioid antagonist injected intracerebroventricularly (i.c.v.) is not effective. Antinociception produced by a higher dose of c[YpwFG] (20mg/kg i.p.) is partially reversed by naloxone methiodide i.c.v. administered. Thus, only at the dose of 20mg/kg c[YpwFG] can produce antinociception through both peripheral and central opioid receptors. In conclusion, c[YpwFG] displays sufficient metabolic stability to be effective after peripheral administration and demonstrates the therapeutic potential of endomorphin derivatives as novel analgesic agents to control visceral pain. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems

    PubMed Central

    Bruchas, Michael R.; Calo', Girolamo; Cox, Brian M.; Zaveri, Nurulain T.

    2016-01-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  14. ``In silico'' study of the binding of two novel antagonists to the nociceptin receptor

    NASA Astrophysics Data System (ADS)

    Della Longa, Stefano; Arcovito, Alessandro

    2018-02-01

    Antagonists of the nociceptin receptor (NOP) are raising interest for their possible clinical use as antidepressant drugs. Recently, the structure of NOP in complex with some piperidine-based antagonists has been revealed by X-ray crystallography. In this study, a multi-flexible docking (MF-docking) procedure, i.e. docking to multiple receptor conformations extracted by preliminary molecular dynamics trajectories, together with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have been carried out to provide the binding mode of two novel NOP antagonists, one of them selective (BTRX-246040, formerly named LY-2940094) and one non selective (AT-076), i.e. able to inactivate NOP as well as the classical µ- k- and δ-opioid receptors (MOP KOP and DOP). According to our results, the pivotal role of residue D1303,32 (upper indexes are Ballesteros-Weinstein notations) is analogous to that enlighten by the already known X-ray structures of opioid receptors: binding of the molecules are predicted to require a slight readjustment of the hydrophobic pocket (residues Y1313,33, M1343,36, I2195,43, Q2806,52 and V2836,55) in the orthosteric site of NOP, accommodating either the pyridine-pyrazole (BTRX-246040) or the isoquinoline (AT-076) moiety of the ligand, in turn allowing the protonated piperidine nitrogen to maximize interaction (salt-bridge) with residue D1303,32 of the NOP, and the aromatic head to be sandwiched in optimal π-stacking between Y1313,33 and M1343,36. The QM/MM optimization after the MF-docking procedure has provided the more likely conformations for the binding to the NOP receptor of BTRX-246040 and AT-076, based on different pharmacophores and exhibiting different selectivity profiles. While the high selectivity for NOP of BTRX-246040 can be explained by interactions with NOP specific residues, the lack of selectivity of AT-076 could be associated to its ability to penetrate into the deep hydrophobic pocket of NOP, while retaining a

  15. Count on kappa.

    PubMed

    Czodrowski, Paul

    2014-11-01

    In the 1960s, the kappa statistic was introduced for the estimation of chance agreement in inter- and intra-rater reliability studies. The kappa statistic was strongly pushed by the medical field where it could be successfully applied via analyzing diagnoses of identical patient groups. Kappa is well suited for classification tasks where ranking is not considered. The main advantage of kappa is its simplicity and the general applicability to multi-class problems which is the major difference to receiver operating characteristic area under the curve. In this manuscript, I will outline the usage of kappa for classification tasks, and I will evaluate the role and uses of kappa in specifically machine learning and cheminformatics.

  16. Human psychopharmacology and dose-effects of salvinorin A, a kappa opioid agonist hallucinogen present in the plant Salvia divinorum.

    PubMed

    Johnson, Matthew W; MacLean, Katherine A; Reissig, Chad J; Prisinzano, Thomas E; Griffiths, Roland R

    2011-05-01

    Salvinorin A is a potent, selective nonnitrogenous kappa opioid agonist and the known psychoactive constituent of Salvia divinorum, a member of the mint family that has been used for centuries by Mazatec shamans of Mexico for divination and spiritual healing. S. divinorum has over the last several years gained increased popularity as a recreational drug. This is a double-blind, placebo controlled study of salvinorin A in 4 psychologically and physically healthy hallucinogen-using adults. Across sessions, participants inhaled 16 ascending doses of salvinorin A and 4 intermixed placebo doses under comfortable and supportive conditions. Doses ranged from 0.375 μg/kg to 21 μg/kg. Subject-rated drug strength was assessed every 2 min for 60 min after inhalation. Orderly time- and dose-related effects were observed. Drug strength ratings peaked at 2 min (first time point) and definite subjective effects were no longer present at approximately 20 min after inhalation. Dose-related increases were observed on questionnaire measures of mystical-type experience (Mysticism Scale) and subjective effects associated with classic serotonergic (5-HT2(A)) hallucinogens (Hallucinogen Rating Scale). Salvinorin A did not significantly increase heart rate or blood pressure. Participant narratives indicated intense experiences characterized by disruptions in vestibular and interoceptive signals (e.g., change in spatial orientation, pressure on the body) and unusual and sometimes recurring themes across sessions such as revisiting childhood memories, cartoon-like imagery, and contact with entities. Under these prepared and supportive conditions, salvinorin A occasioned a unique profile of subjective effects having similarities to classic hallucinogens, including mystical-type effects. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  18. Porcine arterivirus activates the NF-{kappa}B pathway through I{kappa}B degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Myeong; Kleiboeker, Steven B.

    2005-11-10

    Nuclear factor-kappaB (NF-{kappa}B) is a critical regulator of innate and adaptive immune function as well as cell proliferation and survival. The present study demonstrated for the first time that a virus belonging to the Arteriviridae family activates NF-{kappa}B in MARC-145 cells and alveolar macrophages. In porcine reproductive and respiratory syndrome virus (PRRSV)-infected cells, NF-{kappa}B activation was characterized by translocation of NF-{kappa}B from the cytoplasm to the nucleus, increased DNA binding activity, and NF-{kappa}B-regulated gene expression. NF-{kappa}B activation was increased as PRRSV infection progressed and in a viral dose-dependent manner. UV-inactivation of PRRSV significantly reduced the level of NF-{kappa}B activation. Degradationmore » of I{kappa}B protein was detected late in PRRSV infection, and overexpression of the dominant negative form of I{kappa}B{alpha} (I{kappa}B{alpha}DN) significantly suppressed NF-{kappa}B activation induced by PRRSV. However, I{kappa}B{alpha}DN did not affect viral replication and viral cytopathic effect. PRRSV infection induced oxidative stress in cells by generating reactive oxygen species (ROS), and antioxidants inhibited NF-{kappa}B DNA binding activity in PRRSV-infected cells, suggesting ROS as a mechanism by which NF-{kappa}B was activated by PRRSV infection. Moreover, NF-{kappa}B-dependent expression of matrix metalloproteinase (MMP)-2 and MMP-9 was observed in PRRSV-infected cells, an observation which implies that NF-{kappa}B activation is a biologically significant aspect of PRRSV pathogenesis. The results presented here provide a basis for understanding molecular pathways of pathology and immune evasion associated with disease caused by PRRSV.« less

  19. RF313, an orally bioavailable neuropeptide FF receptor antagonist, opposes effects of RF-amide-related peptide-3 and opioid-induced hyperalgesia in rodents.

    PubMed

    Elhabazi, Khadija; Humbert, Jean-Paul; Bertin, Isabelle; Quillet, Raphaelle; Utard, Valérie; Schneider, Séverine; Schmitt, Martine; Bourguignon, Jean-Jacques; Laboureyras, Emilie; Ben Boujema, Meric; Simonnet, Guy; Ancel, Caroline; Simonneaux, Valérie; Beltramo, Massimiliano; Bucher, Bernard; Sorg, Tania; Meziane, Hamid; Schneider, Elodie; Petit-Demoulière, Benoit; Ilien, Brigitte; Bihel, Frédéric; Simonin, Frédéric

    2017-05-15

    Although opiates represent the most effective analgesics, their use in chronic treatments is associated with numerous side effects including the development of pain hypersensitivity and analgesic tolerance. We recently identified a novel orally active neuropeptide FF (NPFF) receptor antagonist, RF313, which efficiently prevents the development of fentanyl-induced hyperalgesia in rats. In this study, we investigated the properties of this compound into more details. We show that RF313 exhibited a pronounced selectivity for NPFF receptors, antagonist activity at NPFF1 receptor (NPFF1R) subtype both in vitro and in vivo and no major side effects when administered in mice up to 30 mg/kg. When co-administered with opiates in rats and mice, it improved their analgesic efficacy and prevented the development of long lasting opioid-induced hyperalgesia. Moreover, and in marked contrast with the dipeptidic NPFF receptor antagonist RF9, RF313 displayed negligible affinity and no agonist activity (up to 100 μM) toward the kisspeptin receptor. Finally, in male hamster, RF313 had no effect when administered alone but fully blocked the increase in LH induced by RFRP-3, while RF9 per se induced a significant increase in LH levels which is consistent with its ability to activate kisspeptin receptors. Altogether, our data indicate that RF313 represents an interesting compound for the development of therapeutic tools aiming at improving analgesic action of opiates and reducing adverse side effects associated with their chronic administration. Moreover, its lack of agonist activity at the kisspeptin receptor indicates that RF313 might be considered a better pharmacological tool, when compared to RF9, to examine the regulatory roles of RF-amide-related peptides and NPFF1R in reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Caring for Pregnant Women with Opioid Use Disorder in the USA: Expanding and Improving Treatment.

    PubMed

    Saia, Kelley A; Schiff, Davida; Wachman, Elisha M; Mehta, Pooja; Vilkins, Annmarie; Sia, Michelle; Price, Jordana; Samura, Tirah; DeAngelis, Justin; Jackson, Clark V; Emmer, Sawyer F; Shaw, Daniel; Bagley, Sarah

    Opioid use disorder in the USA is rising at an alarming rate, particularly among women of childbearing age. Pregnant women with opioid use disorder face numerous barriers to care, including limited access to treatment, stigma, and fear of legal consequences. This review of opioid use disorder in pregnancy is designed to assist health care providers caring for pregnant and postpartum women with the goal of expanding evidence-based treatment practices for this vulnerable population. We review current literature on opioid use disorder among US women, existing legislation surrounding substance use in pregnancy, and available treatment options for pregnant women with opioid use disorder. Opioid agonist treatment (OAT) remains the standard of care for treating opioid use disorder in pregnancy. Medically assisted opioid withdrawal ("detoxification") is not recommended in pregnancy and is associated with high maternal relapse rates. Extended release naltrexone may confer benefit for carefully selected patients. Histories of trauma and mental health disorders are prevalent in this population; and best practice recommendations incorporate gender-specific, trauma-informed, mental health services. Breastfeeding with OAT is safe and beneficial for the mother-infant dyad. Further research investigating options of OAT and the efficacy of opioid antagonists in pregnancy is needed. The US health care system can adapt to provide quality care for these mother-infant dyads by expanding comprehensive treatment services and improving access to care.

  1. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    PubMed

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  2. Involvement of opioid signaling in food preference and motivation: Studies in laboratory animals.

    PubMed

    Morales, I; Font, L; Currie, P J; Pastor, R

    2016-01-01

    Motivation is a complex neurobiological process that initiates, directs, and maintains goal-oriented behavior. Although distinct components of motivated behavior are difficult to investigate, appetitive and consummatory phases of motivation are experimentally separable. Different neurotransmitter systems, particularly the mesolimbic dopaminergic system, have been associated with food motivation. Over the last two decades, however, research focusing on the role of opioid signaling has been particularly growing in this area. Opioid receptors seem to be involved, via neuroanatomically distinct mechanisms, in both appetitive and consummatory aspects of food reward. In the present chapter, we review the pharmacology and functional neuroanatomy of opioid receptors and their endogenous ligands, in the context of food reinforcement. We examine literature aimed at the development of laboratory animal techniques to better understand different components of motivated behavior. We present recent data investigating the effect of opioid receptor antagonists on food preference and effort-related decision making in rats, which indicate that opioid signaling blockade selectively affects intake of relatively preferred foods, resulting in reduced willingness to exert effort to obtain them. Finally, we elaborate on the potential role of opioid system manipulations in disorders associated with excessive eating and obesity. © 2016 Elsevier B.V. All rights reserved.

  3. Characterization of methadone as a β-arrestin-biased μ-opioid receptor agonist

    PubMed Central

    Doi, Seira; Mori, Tomohisa; Uzawa, Naoki; Arima, Takamichi; Takahashi, Tomoyuki; Uchida, Masashi; Yawata, Ayaka; Narita, Michiko; Uezono, Yasuhito; Suzuki, Tsutomu

    2016-01-01

    Background Methadone is a unique µ-opioid receptor agonist. Although several researchers have insisted that the pharmacological effects of methadone are mediated through the blockade of NMDA receptor, the underlying mechanism by which methadone exerts its distinct pharmacological effects compared to those of other µ-opioid receptor agonists is still controversial. In the present study, we further investigated the pharmacological profile of methadone compared to those of fentanyl and morphine as measured mainly by the discriminative stimulus effect and in vitro assays for NMDA receptor binding, µ-opioid receptor-internalization, and µ-opioid receptor-mediated β-arrestin recruitment. Results We found that fentanyl substituted for the discriminative stimulus effects of methadone, whereas a relatively high dose of morphine was required to substitute for the discriminative stimulus effects of methadone in rats. Under these conditions, the non-competitive NMDA receptor antagonist MK-801 did not substitute for the discriminative stimulus effects of methadone. In association with its discriminative stimulus effect, methadone failed to displace the receptor binding of MK801 using mouse brain membrane. Methadone and fentanyl, but not morphine, induced potent µ-opioid receptor internalization accompanied by the strong recruitment of β-arrestin-2 in µ-opioid receptor-overexpressing cells. Conclusions These results suggest that methadone may, at least partly, produce its pharmacological effect as a β-arrestin-biased µ-opioid receptor agonist, similar to fentanyl, and NMDA receptor blockade is not the main contributor to the pharmacological profile of methadone. PMID:27317580

  4. Pain, opioids, and sleep: implications for restless legs syndrome treatment.

    PubMed

    Trenkwalder, Claudia; Zieglgänsberger, Walter; Ahmedzai, Sam H; Högl, Birgit

    2017-03-01

    Opioid receptor agonists are known to relieve restless legs syndrome (RLS) symptoms, including both sensory and motor events, as well as improving sleep. The mechanisms of action of opioids in RLS are still a matter of speculation. The mechanisms by which endogenous opioids contribute to the pathophysiology of this polygenetic disorder, in which there are a number of variants, including developmental factors, remains unknown. A summary of the cellular mode of action of morphine and its (partial) antagonist naloxone via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the involvement of dendritic spine activation is described. By targeting pain and its consequences, opioids are the first-line treatment in many diseases and conditions with both acute and chronic pain and have thus been used in both acute and chronic pain conditions over the last 40 years. Addiction, dependence, and tolerability of opioids show a wide variability interindividually, as the response to opioids is influenced by a complex combination of genetic, molecular, and phenotypic factors. Although several trials have now addressed opioid treatment in RLS, hyperalgesia as a complication of long-term opioid treatment, or opioid-opioid interaction have not received much attention so far. Therapeutic opioids may act not only on opioid receptors but also via histamine or N-methyl-d-aspartate (NMDA) receptors. In patients with RLS, one of the few studies investigating opioid bindings found that possible brain regions involved in the severity of RLS symptoms are similar to those known to be involved in chronic pain, such as the medial pain system (medial thalamus, amygdala, caudate nucleus, anterior cingulate gyrus, insular cortex, and orbitofrontal cortex). The results of this diprenorphine positron emission tomography study suggested that the more severe the RLS, the greater the release of endogenous opioids. Since 1993, when the first small controlled study was performed with

  5. Injectable and implantable sustained release naltrexone in the treatment of opioid addiction

    PubMed Central

    Kunøe, Nikolaj; Lobmaier, Philipp; Ngo, Hanh; Hulse, Gary

    2014-01-01

    Sustained release technologies for administering the opioid antagonist naltrexone (SRX) have the potential to assist opioid-addicted patients in their efforts to maintain abstinence from heroin and other opioid agonists. Recently, reliable SRX formulations in intramuscular or implantable polymers that release naltrexone for 1–7 months have become available for clinical use and research. This qualitative review of the literature provides an overview of the technologies currently available for SRX and their effectiveness in reducing opioid use and other relevant outcomes. The majority of studies indicate that SRX is effective in reducing heroin use, and the most frequently studied SRX formulations have acceptable adverse events profiles. Registry data indicate a protective effect of SRX on mortality and morbidity. In some studies, SRX also seems to affect other outcomes, such as concomitant substance use, vocational training attendance, needle use, and risk behaviour for blood-borne diseases such as hepatitis or human immunodeficiency virus. There is a general need for more controlled studies, in particular to compare SRX with agonist maintenance treatment, to study combinations of SRX with behavioural interventions, and to study at-risk groups such as prison inmates or opioid-addicted pregnant patients. The literature suggests that sustained release naltrexone is a feasible, safe and effective option for assisting abstinence efforts in opioid addiction. PMID:23088328

  6. Injectable and implantable sustained release naltrexone in the treatment of opioid addiction.

    PubMed

    Kunøe, Nikolaj; Lobmaier, Philipp; Ngo, Hanh; Hulse, Gary

    2014-02-01

    Sustained release technologies for administering the opioid antagonist naltrexone (SRX) have the potential to assist opioid-addicted patients in their efforts to maintain abstinence from heroin and other opioid agonists. Recently, reliable SRX formulations in intramuscular or implantable polymers that release naltrexone for 1-7 months have become available for clinical use and research. This qualitative review of the literature provides an overview of the technologies currently available for SRX and their effectiveness in reducing opioid use and other relevant outcomes. The majority of studies indicate that SRX is effective in reducing heroin use, and the most frequently studied SRX formulations have acceptable adverse events profiles. Registry data indicate a protective effect of SRX on mortality and morbidity. In some studies, SRX also seems to affect other outcomes, such as concomitant substance use, vocational training attendance, needle use, and risk behaviour for blood-borne diseases such as hepatitis or human immunodeficiency virus. There is a general need for more controlled studies, in particular to compare SRX with agonist maintenance treatment, to study combinations of SRX with behavioural interventions, and to study at-risk groups such as prison inmates or opioid-addicted pregnant patients. The literature suggests that sustained release naltrexone is a feasible, safe and effective option for assisting abstinence efforts in opioid addiction. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  7. Opioid receptor subtypes: fact or artifact?

    PubMed

    Dietis, N; Rowbotham, D J; Lambert, D G

    2011-07-01

    There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.

  8. Control of glutamate release by calcium channels and κ-opioid receptors in rodent and primate striatum

    PubMed Central

    Hill, M P; Brotchie, J M

    1999-01-01

    The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by κ-opioid receptor activation and blockade of voltage-dependent Ca2+-channels has been investigated in synaptosomes prepared from rat and marmoset striatum.4-Aminopyridine (4-AP)-stimulated, Ca2+-dependent glutamate release was inhibited by enadoline, a selective κ-opioid receptor agonist, in a concentration-dependent and nor-binaltorphimine (nor-BNI, selective κ-opioid receptor antagonist)-sensitive manner in rat (IC50=4.4±0.4 μM) and marmoset (IC50=2.9±0.7 μM) striatal synaptosomes. However, in the marmoset, there was a significant (≈23%) nor-BNI-insensitive component.In rat striatal synaptosomes, the Ca2+-channel antagonists ω-agatoxin-IVA (P/Q-type blocker), ω-conotoxin-MVIIC (N/P/Q-type blocker) and ω-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+-dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5±0.9 nM, 75.5±5.9 nM and 106.5±8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+-dependent glutamate release was significantly inhibited by ω-agatoxin-IVA (30 nM, 57.6±2.3%, inhibition), ω-conotoxin-MVIIC (300 nM, 57.8±3.1%) and ω-conotoxin-GVIA (1 μM, 56.7±2%).Studies utilizing combinations of Ca2+-channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+-channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+-channel activation.Studies using combinations of enadoline and the Ca2+-channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+-influx through P-type Ca2+-channels in the rat but via N-type Ca2+-channels in the marmoset.In conclusion, the results presented suggest that there are species differences in the control of glutamate release

  9. Does adding low doses of oral naltrexone to morphine alter the subsequent opioid requirements and side effects in trauma patients?

    PubMed

    Farahmand, Shervin; Ahmadi, Omid; Dehpour, Ahmadreza; Khashayar, Patricia

    2012-01-01

    The present study aims to assess the influence of ultra-low doses of opioid antagonists on the analgesic properties of opioids and their side effects. In the present randomized, double-blind controlled trial, the influence of the combination of ultra-low-dose naltrexone and morphine on the total opioid requirement and the frequency of the subsequent side effects was compared with that of morphine alone (added with placebo) in patients with trauma in the upper or lower extremities. Although the morphine and naltrexone group required 0.04 mg more opioids during the study period, there was no significant difference between the opioid requirements of the 2 groups. Nausea was less frequently reported in patients receiving morphine and naltrexone. The combination of ultra-low-dose naltrexone and morphine in extremity trauma does not affect the opioid requirements; it, however, lowers the risk of nausea. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Interaction between the mu-agonist dermorphin and the delta-agonist [D-Ala2, Glu4]deltorphin in supraspinal antinociception and delta-opioid receptor binding.

    PubMed Central

    Negri, L.; Improta, G.; Lattanzi, R.; Potenza, R. L.; Luchetti, F.; Melchiorri, P.

    1995-01-01

    1. In rats, the interaction between the mu-opioid agonist dermorphin and the delta-opioid agonist [D-Ala2, Glu4]deltorphin was studied in binding experiments to delta-opioid receptors and in the antinociceptive test to radiant heat. 2. When injected i.c.v., doses of [D-Ala2, Glu4]deltorphin higher than 20 nmol produced antinociception in the rat tail-flick test to radiant heat. Lower doses were inactive. None of the doses tested elicited the maximum achievable response. This partial antinociception was accomplished with an in vivo occupancy of more than 97% of brain delta-opioid receptors and of 17% of mu-opioid receptors. Naloxone (0.1 mg kg-1, s.c.), and naloxonazine (10 mg kg-1, i.v., 24 h before), but not the selective delta-opioid antagonist naltrindole, antagonized the antinociception. 3. In vitro competitive inhibition studies in rat brain membranes showed that [D-Ala2, Glu4]deltorphin displaced [3H]-naltrindole from two delta-binding sites of high and low affinity. The addition of 100 microM Gpp[NH]p produced a three fold increase in the [D-Ala2, Glu4]deltorphin Ki value for both binding sites. The addition of 10 nM dermorphin increased the Ki value of the delta-agonist for the high affinity site five times. When Gpp[NH]p was added to the incubation medium together with 10 nM dermorphin, the high affinity Ki of the delta-agonist increased 15 times. 4. Co-administration into the rat brain ventricles of subanalgesic doses of dermorphin and [D-Ala2, Glu4]deltorphin resulted in synergistic antinociceptive responses. 5. Pretreatment with naloxone or with the non-equilibrium mu-antagonists naloxonazine and beta-funaltrexamine completely abolished the antinociceptive response of the mu-delta agonist combinations. 6. Pretreatment with the delta-opioid antagonists naltrindole and DALCE reduced the antinociceptive response of the dermorphin-[D-Ala2, Glu4]deltorphin combinations to a value near that observed after the mu-agonist alone. At the dosage used, naltrindole

  11. Ventrolateral orbital cortex oxytocin attenuates neuropathic pain through periaqueductal gray opioid receptor.

    PubMed

    Taati, Mina; Tamaddonfard, Esmaeal

    2018-06-01

    Oxytocin plays an important role in supraspinal modulation of pain. In the present study, we investigated the effects of ventrolateral orbital cortex (VLOC) microinjection of oxytocin on neuropathic pain after blockade of opioid receptors in this area and ventrolateral periaqueductal gray (vlPAG). Neuropathic pain was induced by complete transcection of preoneal and tibial branches of sciatic nerve. The VLOC and vlPAG were unilaterally (contralateral to the sciatic nerve-injured side) and bilaterally implanted with guide cannulas, respectively. Mechanical paw withdrawal threshold (PWT) was measured using von Frey filaments. Area under curve (AUC) was also calculated. Microinjection of oxytocin (5, 10 and 20 ng/site) into the VLOC increased PWT. Antiallodynia induced by oxytocin (20 ng/site) was inhibited by prior intra-VLOC administration of atosiban (an oxytocin receptor antagonist, 100 ng/site) and naloxone (an opioid receptor antagonist, 500 ng/site). Prior microinjection of naloxone (500 ng/site) into the vlPAG also inhibited antiallodynia induced by intra-VLOC microinjection of oxytocin (20 ng/site). All the VLOC and vlPAG microinjected drugs did not alter locomotor activity. It is concluded that oxytocin and its receptor may be involved in modulation of neuropathic pain at the VLOC level. Opioid receptors of VLOC and vlPAG might be involved in the antiallodynic effect of the VLOC-microinjected oxytocin. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Low efficacy of non-opioid drugs in opioid withdrawal symptoms.

    PubMed

    Hermann, Derik; Klages, Eckard; Welzel, Helga; Mann, Karl; Croissant, Bernhard

    2005-06-01

    Opioid withdrawal, stress or cues associated with opioid consumption can induce opioid craving. If opioids are not available, opioid-dependent patients usually search for alternative drugs. Because several non-opioid drugs stimulate the endogenous opioidergic system, this concept may explain their frequent use by opioid-dependent patients. We hypothesized that non-opioid drugs alleviate opioid withdrawal symptoms and are therefore consumed by opioid addicts. We asked 89 opioid-dependent patients participating in an out-patient opioid maintenance program to estimate the potential of several non-opioid drugs in being able to alleviate opioid withdrawal. We applied a five-point Lickert scale (1 = very good reduction of opioid withdrawal; 5 = no reduction of opioid withdrawal). Patients could also indicate a worsening of opioid withdrawal. Values (mean +/- SD) were: for benzodiazepines, 3.2 +/- 1.1; tricyclic antidepressants, 3.6 +/- 1.1; cannabis, 3.6 +/- 1.0; alcohol, 4.1 +/- 1.1; cocaine, 4.2 +/- 1.1; amphetamine, 4.4 +/- 0.9; nicotine, 4.7 +/- 0.7; and caffeine, 4.9 +/- 0.5. A worsening of opioid withdrawal was reported by 62% of the patients for cocaine, 62% for amphetamine, 50% for caffeine, 37.5% for cannabis, 27% for nicotine, 26% for alcohol, 8% for tricyclic antidepressants and 3% for benzodiazepines. Our study shows a low efficacy of non-opioid drugs in alleviating opioid withdrawal symptoms. The data basis of this study was good and the sample was suitable to be asked for estimations of drug-drug interactions. Of the patients, 26 - 62% even reported a worsening of opioid withdrawal for cannabis, alcohol, cocaine and amphetamine. Only benzodiazepines and tricyclic antidepressants were reported to have a moderate positive effect on opioid withdrawal.

  13. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors

    PubMed Central

    Karkhanis, Anushree N.; Huggins, Kimberly N.; Rose, Jamie H.; Jones, Sara R.

    2016-01-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs “rescued” dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  14. Ondansetron does not prevent physical dependence in patients taking opioid medications chronically for pain control.

    PubMed

    Chu, Larry F; Rico, Tom; Cornell, Erika; Obasi, Hannah; Encisco, Ellen M; Vertelney, Haley; Gamble, Jamison G; Crawford, Clayton W; Sun, John; Clemenson, Anna; Erlendson, Matthew J; Okada, Robin; Carroll, Ian; Clark, J David

    2018-02-01

    In this study, we investigated the co-administration of ondansetron with morphine, and whether it could prevent the development of physical dependence in patients taking opioids for the treatment of chronic pain. A total of 48 chronic back pain patients (N = 48) participated in this double-blinded, placebo-controlled, randomized study. Patients were titrated onto sustained-release oral morphine and randomized to take 8 mg ondansetron or placebo three times daily concurrently with morphine during the 30-day titration. Following titration, patients underwent Naloxone induced opioid withdrawal. Opioid withdrawal signs and symptoms were then assessed by a blinded research assistant (objective opioid withdrawal score: OOWS) and by the research participant (subjective opioid withdrawal score: SOWS). We observed clinically significant signs of naloxone-precipitated opioid withdrawal in all participants (ΔOOWS = 4.3 ± 2.4, p < 0.0001; ΔSOWS = 14.1 ± 11.7, p < 0.0001), however no significant differences in withdrawal scores were detected between treatment groups. We hypothesized that ondansetron would prevent the development of physical dependence in human subjects when co-administered with opioids, but found no difference in naloxone-precipitated opioid withdrawal scores between ondansetron and placebo treatment groups. These results suggest that further studies are needed to determine if 5HT 3 receptor antagonists are useful in preventing opioid physical dependence. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Heteromerization of the μ- and δ-Opioid Receptors Produces Ligand-Biased Antagonism and Alters μ-Receptor TraffickingS⃞

    PubMed Central

    Milan-Lobo, Laura

    2011-01-01

    Heteromerization of opioid receptors has been shown to alter opioid receptor pharmacology. However, how receptor heteromerization affects the processes of endocytosis and postendocytic sorting has not been closely examined. This question is of particular relevance for heteromers of the μ-opioid receptor (MOR) and δ-opioid receptor (DOR), because the MOR is recycled primarily after endocytosis and the DOR is degraded in the lysosome. Here, we examined the endocytic and postendocytic fate of MORs, DORs, and DOR/MOR heteromers in human embryonic kidney 293 cells stably expressing each receptor alone or coexpressing both receptors. We found that the clinically relevant MOR agonist methadone promotes endocytosis of MOR but also the DOR/MOR heteromer. Furthermore, we show that DOR/MOR heteromers that are endocytosed in response to methadone are targeted for degradation, whereas MORs in the same cell are significantly more stable. It is noteworthy that we found that the DOR-selective antagonist naltriben mesylate could block both methadone- and [d-Ala2,NMe-Phe4,Gly-ol5]-enkephalin-induced endocytosis of the DOR/MOR heteromers but did not block signaling from this heteromer. Together, our results suggest that the MOR adopts novel trafficking properties in the context of the DOR/MOR heteromer. In addition, they suggest that the heteromer shows “biased antagonism,” whereby DOR antagonist can inhibit trafficking but not signaling of the DOR/MOR heteromer. PMID:21422164

  16. The long-term effects of stress and kappa opioid receptor activation on conditioned place aversion in male and female California mice.

    PubMed

    Laman-Maharg, Abigail R; Copeland, Tiffany; Sanchez, Evelyn Ordoñes; Campi, Katharine L; Trainor, Brian C

    2017-08-14

    Psychosocial stress leads to the activation of kappa opioid receptors (KORs), which induce dysphoria and facilitate depression-like behaviors. However, less is known about the long-term effects of stress and KORs in females. We examined the long-term effects of social defeat stress on the aversive properties of KOR activation in male and female California mice (Peromyscus californicus) using a conditioned place aversion paradigm. Female California mice naïve to social defeat, formed a place aversion following treatment with 2.5mg/kg of the KOR agonist U50,488, but females exposed to defeat did not form a place aversion to this dose. This supports the finding by others that social defeat weakens the aversive properties of KOR agonists. In contrast, both control and stressed males formed an aversion to 10mg/kg of U50,488. We also examined EGR1 immunoreactivity, an indirect marker of neuronal activity, in the nucleus accumbens (NAc) and found that stress and treatment with 10mg/kg of U50,488 increased EGR1 immunoreactivity in the NAc core in females but reduced activation in males. The effects of stress and U50,488 on EGR1 were specific to the NAc, as we found no differences in the bed nucleus of the stria terminalis. In summary, our data indicate important sex differences in the long-term effects of stress and indicate the need for further study of the molecular mechanisms mediating the behavioral effects of KOR in both males and females. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Central effects of ethanol interact with endogenous mu opioid activity to control isolation-induced analgesia in maternally separated infant rats

    PubMed Central

    Nizhnikov, Michael E.; Kozlov, Andrey P.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.

    2014-01-01

    Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12–day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol–mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu- opioid activity that increases the pup’s sensitivity to appetitive taste

  18. Naloxone administration for suspected opioid overdose: An expanded scope of practice by a basic life support collegiate-based emergency medical services agency.

    PubMed

    Jeffery, Ryan M; Dickinson, Laura; Ng, Nicholas D; DeGeorge, Lindsey M; Nable, Jose V

    2017-04-01

    Opioid abuse is a growing and significant public health concern in the United States. Naloxone is an opioid antagonist that can rapidly reverse the respiratory depression associated with opioid toxicity. Georgetown University's collegiate-based emergency medical services (EMS) agency recently adopted a protocol, allowing providers to administer intranasal naloxone for patients with suspected opioid overdose. While normally not within the scope of practice of basic life support prehospital agencies, the recognition of an increasing epidemic of opioid abuse has led many states, including the District of Columbia, to expand access to naloxone for prehospital providers of all levels of training. In particular, intranasal naloxone is a method of administering this medication that potentially avoids needlestick injuries among EMS providers. Universities with collegiate-based EMS agencies are well positioned to provide life-saving treatments for patients acutely ill from opioid overdose.

  19. Panicolytic-like effect of tramadol is mediated by opioid receptors in the dorsal periaqueductal grey.

    PubMed

    Fiaes, Gislaine Cardoso de Souza; Roncon, Camila Marroni; Sestile, Caio Cesar; Maraschin, Jhonatan Christian; Souza, Rodolfo Luis Silva; Porcu, Mauro; Audi, Elisabeth Aparecida

    2017-05-30

    Tramadol is a synthetic opioid prescribed for the treatment of moderate to severe pain, acting as agonist of μ-opioid receptors and serotonin (5-HT) and noradrenaline (NE) reuptake inhibitor. This study evaluated the effects of tramadol in rats submitted to the elevated T-maze (ETM), an animal model that evaluates behavioural parameters such as anxiety and panic. Male Wistar rats were intraperitoneally (i.p.) treated acutely with tramadol (16 and 32mg/kg) and were submitted to the ETM. Tramadol (32mg/kg) promoted a panicolytic-like effect. Considering that dorsal periaqueductal grey (dPAG) is the main brain structure related to the pathophysiology of panic disorder (PD), this study also evaluated the participation of 5-HT and opioid receptors located in the dPAG in the panicolytic-like effect of tramadol. Seven days after stereotaxic surgery for implantation of a cannula in the dPAG, the animals were submitted to the test. To assess the involvement of 5-HT 1A receptors on the effect of tramadol, we combined the 5-HT 1A receptor antagonist, WAY100635 (0.37nmol), microinjected intra-dPAG, 10min prior to the administration of tramadol (32mg/kg, i.p.). WAY100635 did not block the panicolytic-like effect of tramadol. We also associated the non-selective opioid receptor antagonist, naloxone, systemically (1mg/kg, i.p.) or intra-dPAG (0.5nmol) administered 10min prior to tramadol (32mg/kg, i.p.). Naloxone blocked the panicolytic-like effect of tramadol in both routes of administrations, showing that tramadol modulates acute panic defensive behaviours through its interaction with opioid receptors located in the dPAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Promising roles for pharmacists in addressing the U.S. opioid crisis.

    PubMed

    Compton, Wilson M; Jones, Christopher M; Stein, Jack B; Wargo, Eric M

    2017-12-31

    Overdoses of prescription or illicit opioids claimed the lives of 116 Americans each day in 2016, and the crisis continues to escalate. As healthcare systems evolve to address the crisis, the potential of pharmacists to make a positive difference is significant. In addition to utilizing available prescription drug monitoring programs to help prevent diversion of opioids, practicing pharmacists can be alert for signs of opioid misuse by patients (e.g., multiple prescriptions from different physicians) as well as inappropriate prescribing or hazardous drug combinations that physicians may not be aware of (e.g., opioid analgesics combined with benzodiazepines). They can also supply patients with information on risks of opioids, proper storage and disposal of medications, and the harms (and illegality) of sharing medications with other people. Increasingly, pharmacies are sites of distribution of the opioid antagonist naloxone, which has been shown to save lives when made available to opioid users and their families or other potential bystanders to an overdose; and pharmacists can provide guidance about its use and even legal protections for bystanders to an overdose that customers may not be aware of. Pharmacists can also recommend addiction treatment to patients and be a resource for information on addiction treatment options in the community. As addiction treatment becomes more integrated with general healthcare, pharmacies are also increasingly dispensing medications like buprenorphine and, in the future, possibly methadone. Pharmacists in private research labs and at universities are helping to develop the next generation of addiction treatments and safer, non-addictive pain medications; they can also play a role in implementation research to enhance the delivery of addiction interventions and medications in pharmacy settings. Meanwhile, pharmacists in educational settings can promote improved education about the neurobiology and management of pain and its links

  1. Spinal interaction between the highly selective μ agonist DAMGO and several δ opioid receptor ligands in naive and morphine-tolerant mice.

    PubMed

    Szentirmay, A K; Király, K P; Lenkey, N; Lackó, E; Al-Khrasani, M; Friedmann, T; Timár, J; Gyarmati, S; Tóth, G; Fürst, S; Riba, P

    2013-01-01

    Since the discovery of opioid receptor dimers their possible roles in opioid actions were intensively investigated. Here we suggest a mechanism that may involve the μ-δ opioid heterodimers. The exact role of δ opioid receptors in antinociception and in the development of opioid tolerance is still unclear. While receptor up-regulation can be observed during the development of opioid tolerance no μ receptor down-regulation could be detected within five days. In our present work we investigated how the selective δ opioid receptor agonists and antagonists influence the antinociceptive effect of the selective μ receptor agonist DAMGO in naïve and morphine-tolerant mice. We treated male NMRI mice with 200 μmol/kg subcutaneous (s.c.) morphine twice daily for three days. On the fourth day we measured the antinociceptive effect of DAMGO alone and combined with delta ligands: DPDPE, deltorphin II (agonists), TIPP and TICPψ (antagonists), respectively, administered intrathecally (i.t.) in mouse tail-flick test. In naive control mice none of the δ ligands caused significant changes in the antinociceptive action of DAMGO. The treatment with s.c. morphine resulted in approximately four-fold tolerance to i.t. DAMGO, i.e. the ED₅₀ value of DAMGO was four times as high as in naive mice. 500 and 1000 pmol/mouse of the δ₁ selective agonist DPDPE enhanced the tolerance to DAMGO while 1000 pmol/mouse of the δ₂ selective agonist deltorphin II did not influence the degree of tolerance. However, both δ antagonists TIPP and TICPψ potentiated the antinociceptive effect of i.t. DAMGO, thus they restored the potency of DAMGO to the control level. The inhibitory action of DPDPE against the antinociceptive effect of DAMGO could be antagonized by TIPP and TICPψ. We hypothesize that during the development of morphine tolerance the formation of μδ heterodimers may contribute to the spinal opioid tolerance. δ ligands may affect the dimer formation differently. Those, like

  2. Panicolytic-like action of bradykinin in the dorsal periaqueductal gray through μ-opioid and B2-kinin receptors.

    PubMed

    Sestile, Caio César; Maraschin, Jhonatan Christian; Gama, Vanessa Scalco; Zangrossi, Hélio; Graeff, Frederico Guilherme; Audi, Elisabeth Aparecida

    2017-09-01

    A wealth of evidence has shown that opioid and kinin systems may control proximal defense in the dorsal periaqueductal gray matter (dPAG), a critical panic-associated area. Studies with drugs that interfere with serotonin-mediated neurotransmission suggest that the μ-opioid receptor (MOR) synergistically interacts with the 5-HT 1A receptor in the dPAG to inhibit escape, a panic-related behavior. A similar inhibitory effect has also been reported after local administration of bradykinin (BK), which is blocked by the non-selective opioid receptor antagonist naloxone. The latter evidence, points to an interaction between BK and opioids in the dPAG. We further explored the existence of this interaction through the dPAG electrical stimulation model of panic. We also investigated whether intra-dPAG injection of captopril, an inhibitor of the angiotensin-converting enzyme (ACE) that also degrades BK, causes a panicolytic-like effect. Our results showed that intra-dPAG injection of BK inhibited escape performance in a dose-dependent way, and this panicolytic-like effect was blocked by the BK type 2 receptor (B2R) antagonist HOE-140, and by the selective MOR antagonist CTOP. Conversely, the panicolytic-like effect caused by local administration of the selective MOR agonist DAMGO was antagonized by pre-treatment with either CTOP or HOE-140, indicating cross-antagonism between MOR and B2R. Finally, intra-dPAG injection of captopril also impaired escape in a dose-dependent way, and this panicolytic-like effect was blocked by pretreatment with HOE-140, suggesting mediation by endogenous BK. The panicolytic-like effect of captopril indicates that the use of ACE inhibitors in the clinical management of panic disorder may be worth exploring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of opioid therapy on gonadal hormones: focus on buprenorphine.

    PubMed

    Varma, Anjali; Sapra, Mamta; Iranmanesh, Ali

    2018-02-17

    Objective The USA is in the midst of an opioid crisis. Understanding the impact of opioids and commonly used treatments for opioid dependence is essential for clinicians and researchers in order to educate and treat the nation's growing population with opioid use disorders. As a relatively new treatment for opioid dependence, buprenorphine is gaining popularity to the extent of becoming not only a preferred approach to the maintenance of opiate addiction, but also an option for chronic pain management. The purpose of this report is to review the available evidence on the endocrine effects of buprenorphine, particularly as it relates to the hypothalamic-pituitary-gonadal (HPG) axis, which is controversial and not fully defined. Method We conducted a Pubmed search (2000-2017) for human studies in the English language for articles that were available as full length regarding buprenorphine, endocrinopathy, hypogonadism, bone density, opioids. Case reports were also reviewed, although prospective studies and randomized controlled trials received more weight. Results Opioid induced hypogonadism is well established. Most studies report that buprenorphine being a partial agonist/antagonist may not be impacting the pituitary trophic hormones as much. There are reports of sexual dysfunction in subjects maintained on buprenorphine, some without hormonal correlation. Thus with the understanding that pertinent clinical studies are limited in number, varied in methodology, mostly cross sectional, predominantly in men and small number of participants, more research in this area is warranted. Conclusion Based on a comprehensive review of the available literature, we conclude that despite its increasing popularity, buprenorphine has not been adequately studied in respect to its long-term effects on the hypothalamic-pituitary-adrenal (HPA) axis. There is a great need for longitudinal systematic trials to define the potential buprenorphine-induced endocrine consequences.

  4. Stress-evoked opioid release inhibits pain in major depressive disorder.

    PubMed

    Frew, Ashley K; Drummond, Peter D

    2008-10-15

    To determine whether stress-evoked release of endogenous opioids might account for hypoalgesia in major depressive disorder (MDD), the mu-opioid antagonist naltrexone (50mg) or placebo was administered double-blind to 24 participants with MDD and to 31 non-depressed controls. Eighty minutes later participants completed a painful foot cold pressor test and, after a 5-min interval, began a 25-min arithmetic task interspersed with painful electric shocks. Ten minutes later participants completed a second cold pressor test. Negative affect was greater in participants with MDD than in non-depressed controls throughout the experiment, and increased significantly in both groups during mental arithmetic. Before the math task, naltrexone unmasked direct linear relationships between severity of depression, negative affect while resting quietly, and cold-induced pain in participants with MDD. In contrast, facilitatory effects of naltrexone on cold- and shock-induced pain were greatest in controls with the lowest depression scores. Naltrexone strengthened the relationship between negative affect and shock-induced pain during the math task, particularly in the depressed group, and heightened anxiety in both groups toward the end of the task. Thus, mu-opioid activity apparently masked a positive association between negative affect and pain in the most distressed participants. These findings suggest that psychological distress inhibits pain via stress-evoked release of opioid peptides in severe cases of MDD. In addition, tonic endogenous opioid neurotransmission could inhibit depressive symptoms and pain in people with low depression scores.

  5. Misuse of Novel Synthetic Opioids: A Deadly New Trend

    PubMed Central

    Prekupec, Matthew P.; Mansky, Peter A.; Baumann, Michael H.

    2017-01-01

    Novel synthetic opioids (NSOs) include various analogs of fentanyl and newly emerging non-fentanyl compounds. Together with illicitly manufactured fentanyl (IMF), these drugs have caused a recent spike in overdose deaths, whereas deaths from prescription opioids have stabilized. NSOs are used as stand-alone products, as adulterants in heroin, or as constituents of counterfeit prescription medications. During 2015 alone, there were 9580 deaths from synthetic opioids other than methadone. Most of these fatalities were associated with IMF rather than diverted pharmaceutical fentanyl. In opioid overdose cases, where the presence of fentanyl analogs was examined, analogs were implicated in 17% of fatalities. Recent data from law enforcement sources show increasing confiscation of acetylfentanyl, butyrylfentanyl, and furanylfentanyl, in addition to non-fentanyl compounds such as U-47700. Since 2013, deaths from NSOs in the United States were 52 for acetylfentanyl, 40 for butyrylfentanyl, 128 for furanylfentanyl, and 46 for U-47700. All of these substances induce a classic opioid toxidrome, which can be reversed with the competitive antagonist naloxone. However, due to the putative high potency of NSOs and their growing prevalence, it is recommended to forgo the 0.4 mg initial dose of naloxone and start with 2 mg. Because NSOs offer enormous profit potential, and there is strong demand for their use, these drugs are being trafficked by organized crime. NSOs present major challenges for medical professionals, law enforcement agencies, and policymakers. Resources must be distributed equitably to enhance harm reduction though public education, medication-assisted therapies, and improved access to naloxone. PMID:28590391

  6. Tryptophan-Containing Non-Cationizable Opioid Peptides - a new chemotype with unusual structure and in vivo activity.

    PubMed

    Marco, Rossella De; Gentilucci, Luca

    2017-11-01

    Recently, a new family of opioid peptides containing tryptophan came to the spotlight for the absence of the fundamental protonable tyramine 'message' pharmacophore. Structure-activity relationship investigations led to diverse compounds, characterized by different selectivity profiles and agonist or antagonist effects. Substitution at the indole of Trp clearly impacted peripheral/central antinociceptivity. These peculiarities prompted to gather all the compounds in a new class, and to coin the definition 'Tryptophan-Containing Non-Cationizable Opioid Peptides', in short 'TryCoNCOPs'. Molecular docking analysis suggested that the TryCoNCOPs can still interact with the receptors in an agonist-like fashion. However, most TryCoNCOPs showed significant differences between the in vitro and in vivo activities, suggesting that opioid activity may be elicited also via alternative mechanisms.

  7. The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours.

    PubMed

    Kelly, Eamonn; Mundell, Stuart J; Sava, Anna; Roth, Adelheid L; Felici, Antonio; Maltby, Kay; Nathan, Pradeep J; Bullmore, Edward T; Henderson, Graeme

    2015-01-01

    The novel opioid receptor antagonist, GSK1421498, has been shown to attenuate reward-driven compulsive behaviours, such as stimulant drug seeking or binge eating, in animals and humans. Here, we report new data on the receptor pharmacology of GSK121498, in comparison to naltrexone, naloxone, 6-β-naltrexol and nalmefene. To determine whether the novel opioid antagonist, GSK1521498, is an orthosteric or allosteric antagonist at the μ opioid receptor (MOPr) and whether it has neutral antagonist or inverse agonist properties. A combination of radioligand binding assays and [(35)S]GTPγS binding assays was employed. GSK1521498 completely displaced [(3)H]naloxone binding to MOPr and did not alter the rate of [(3)H]naloxone dissociation from MOPr observations compatible with it binding to the orthosteric site on MOPr. GSK1521498 exhibited inverse agonism when MOPr was overexpressed but not when the level of MOPr expression was low. In parallel studies under conditions of high receptor expression density, naloxone, naltrexone, 6-β-naltrexol and nalmefene exhibited partial agonism, not inverse agonism as has been reported previously for naloxone and naltrexone. In brain tissue from mice receiving a prolonged morphine pre-treatment, GSK1521498 exhibited slight inverse agonism. Differences between GSK1521498 and naltrexone in their effects on compulsive reward seeking are arguably linked to the more selective and complete MOPr antagonism of GSK1521498 versus the partial MOPr agonism of naltrexone. GSK1521498 is also pharmacologically differentiated by its inverse agonist efficacy at high levels of MOPr expression, but this may be less likely to contribute to behavioural differentiation at patho-physiological levels of expression.

  8. National Institute on Drug Abuse International Program: improving opioid use disorder treatment through international research training.

    PubMed

    Gust, Steven W; McCormally, Judy

    2018-07-01

    For more than 25 years, the National Institute on Drug Abuse (NIDA) has supported research-training programs, establishing a global research network and expanding the knowledge base on substance use disorders. International research to inform approaches to opioid addiction is particularly important and relevant to the United States, where opioid misuse, addiction, and overdose constitute an emerging public health crisis. This article summarizes the NIDA International Program and illustrates its impact by reviewing recent articles about treatment approaches for opioid use disorders (OUD). Studies in several countries have demonstrated the effectiveness of physician office-based opioid substitution therapies. Other research has demonstrated the effectiveness of different formulations and doses of the opioid antagonist naltrexone, as well as different approaches to providing naloxone to treat opioid overdose. Continuing research into implementation of evidence-based treatment in international settings with limited resources is applicable to US regions that face similar structural, legal, and fiscal constraints. The current review describes international research on OUD treatment and opioid overdose, most coauthored by former NIDA fellows. The findings from outside the United States have important implications for best practices domestically and in other countries that are experiencing increases in OUD prevalence and related overdose deaths.

  9. Opioid Analgesics.

    PubMed

    Jamison, Robert N; Mao, Jianren

    2015-07-01

    Chronic pain is an international health issue of immense importance that is influenced by both physical and psychological factors. Opioids are useful in treating chronic pain but have accompanying complications. It is important for clinicians to understand the basics of opioid pharmacology, the benefits and adverse effects of opioids, and related problematic issues of tolerance, dependence, and opioid-induced hyperalgesia. In this article, the role of psychiatric comorbidity and the use of validated assessment tools to identify individuals who are at the greatest risk for opioid misuse are discussed. Additionally, interventional treatment strategies for patients with chronic pain who are at risk for opioid misuse are presented. Specific behavioral interventions designed to improve adherence with prescription opioids among persons treated for chronic pain, such as frequent monitoring, periodic urine screens, opioid therapy agreements, opioid checklists, and motivational counseling, are also reviewed. Use of state-sponsored prescription drug monitoring programs is also encouraged. Areas requiring additional investigation are identified, and the future role of abuse-deterrent opioids and innovative technology in addressing issues of opioid therapy and pain are presented. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  10. Conformationally constrained opioid ligands: the Dmt-Aba and Dmt-Aia versus Dmt-Tic scaffold.

    PubMed

    Ballet, Steven; Feytens, Debby; Wachter, Rien De; Vlaeminck, Magali De; Marczak, Ewa D; Salvadori, Severo; Graaf, Chris de; Rognan, Didier; Negri, Lucia; Lattanzi, Roberta; Lazarus, Lawrence H; Tourwé, Dirk; Balboni, Gianfranco

    2009-01-15

    Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent mu-selective agonists (Structures 5 and 12) as well as potent and selective delta-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure-activity data.

  11. Conformationally constrained opioid ligands: The Dmt-Aba and Dmt-Aia vs. Dmt-Tic scaffold

    PubMed Central

    Ballet, Steven; Feytens, Debby; De Wachter, Rien; De Vlaeminck, Magali; Marczak, Ewa D.; Salvadori, Severo; de Graaf, Chris; Rognan, Didier; Negri, Lucia; Lattanzi, Roberta; Lazarus, Lawrence H.; Tourwé, Dirk; Balboni, Gianfranco

    2009-01-01

    Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent μ-selective agonists (Structures 5 and 12) as well as potent and selective δ-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure-activity data. PMID:19062273

  12. Sex versus sweet: opposite effects of opioid drugs on the reward of sucrose and sexual pheromones.

    PubMed

    Agustín-Pavón, Carmen; Martínez-Ricós, Joana; Martínez-García, Fernando; Lanuza, Enrique

    2008-04-01

    Endogenous opioids mediate some reward processes involving both natural (food, sweet taste) and artificial (morphine, heroin) rewards. In contrast, sexual behavior (which is also reinforcing) is generally inhibited by opioids. To establish the role of endogenous opioids for a newly described natural reinforcer, namely male sexual pheromones for female mice, we checked the effects of systemic injections of the general opioid antagonist naloxone (1-10 mg/kg) and the agonist fentanyl (0.1- 0.5 mg/kg) in a number of behavioral tests. Naloxone affected neither the innate preference for male-soiled bedding (vs. female-soiled bedding) in 2-choice tests nor the induction of place conditioning using male pheromones as rewarding stimuli, although it effectively blocked the preference for consuming a sucrose solution. In contrast, fentanyl inhibited the preference for male chemosignals without altering sucrose preference. These results suggest that, in macrosmatic animals such as rodents, opioidergic inhibition of sexual behavior might be due, at least partially, to an impaired processing of pheromonal cues and that the hedonic value of sweet-tasting solutions and sexual pheromones are under different opioid modulation.

  13. Individual variation in the motivational and neurobiological effects of an opioid cue.

    PubMed

    Yager, Lindsay M; Pitchers, Kyle K; Flagel, Shelly B; Robinson, Terry E

    2015-03-13

    A discrete cue associated with intravenous injections of cocaine acquires greater control over motivated behavior in some rats ('sign-trackers', STs) than others ('goal-trackers', GTs). It is not known, however, if such variation generalizes to cues associated with other drugs. We asked, therefore, whether a discrete cue (a light) associated with the intravenous administration of an opioid drug (the short-acting mu receptor agonist, remifentanil) acquires incentive motivational properties differently in STs and GTs, as indicated by tests of Pavlovian conditioned approach and conditioned reinforcement. Consistent with studies using cocaine, STs approached a classically conditioned opioid cue more readily than GTs, and in a test of conditioned reinforcement worked more avidly to get it. Interestingly, STs and GTs did not differ in the acquisition of a conditioned orienting response. In addition, the performance of conditioned approach behavior, but not conditioned orientation, was attenuated by pretreatment with the dopamine receptor antagonist, flupenthixol, into the core of the nucleus accumbens. Lastly, food and opioid cues engaged similar amygdalo-striatal-thalamic circuitry to a much greater extent in STs than GTs, as indicated by Fos expression. Taken together, these data demonstrate that, similar to food and cocaine cues: (1) a discrete opioid cue attains greater incentive motivational value in STs than GTs; (2) the attribution of incentive motivational properties to an opioid cue is dopamine dependent; and (3) an opioid cue engages the so-called 'motive circuit' only if it is imbued with incentive salience.

  14. Non-analgesic effects of opioids: opioids and the endocrine system.

    PubMed

    Elliott, Jennifer A; Opper, Susan E; Agarwal, Sonali; Fibuch, Eugene E

    2012-01-01

    Opioids are among the oldest known and most widely used analgesics. The application of opioids has expanded over the last few decades, especially in the treatment of chronic non-malignant pain. This upsurge in opioid use has been accompanied by the increasingly recognized occurrence of opioid-associated endocrinopathy. This may arise after exposure to enteral, parenteral, or neuraxial opioids. Opioid-associated endocrinopathy consists primarily of hypothalamic-pituitary-gonadal axis or hypothalamic-pituitary-adrenal axis dysfunction and may manifest with symptoms of hypogonadism, adrenal dysfunction, and other hormonal disturbances. Additionally, opioid related endocrine dysfunction may be coupled with such disorders as osteoporosis and mood disturbances including depression. Undesirable changes in pain sensitivity such as opioid-induced hyperalgesia, and reduced potency of opioid analgesia may also be potential consequences of chronic opioid consumption. Few studies to date have been able to establish what degree of opioid exposure, in terms of dose or duration of therapy, may predispose patients to opioid-associated endocrinopathy. This article will review the currently available literature concerning opioid-associated endocrinopathy and will provide recommendations for the evaluation, monitoring, and management of opioid-associated endocrinopathy and its other accompanying undesired effects.

  15. Opiate-agonist induced taste aversion learning in the Fischer 344 and Lewis inbred rat strains: evidence for differential mu opioid receptor activation.

    PubMed

    Davis, Catherine M; Rice, Kenner C; Riley, Anthony L

    2009-10-01

    The Fischer 344 (F344) and Lewis (LEW) inbred rat strains react differently to morphine in a number of behavioral and physiological preparations, including the acquisition of aversions induced by this compound. The present experiment tested the ability of various compounds with relative selectivity at kappa, delta and mu receptor subtypes to assess the relative roles of these subtypes in mediating the differential aversive effects of morphine in the two strains. In the assessment of the role of the kappa receptor in morphine-induced aversions, animals in both strains were given access to saccharin followed by varying doses of the kappa agonist (-)-U50,488H (0.0, 0.28, 0.90 and 1.60 mg/kg). Although (-)-U50,488H induced aversions in both strains, no strain differences emerged. A separate subset of subjects was trained with the selective delta opioid agonist, SNC80 (0.0, 5.6, 10.0 and 18.0 mg/kg), and again although SNC80 induced aversions, there were no strain differences. Finally, a third subset of subjects was trained with heroin (0.0, 3.2, 5.6 and 10.0 mg/kg), a compound with activity at all three opiate receptor subtypes. Although heroin induced aversions in both strains, the aversions were significantly greater in the F344 strain, suggesting that differential activation of the mu opioid receptor likely mediates the reported strain differences in morphine-induced aversion learning. These data were discussed in terms of strain differences in opioid system functioning and the implications of such differences for other morphine-induced behavioral effects reported in F344 and LEW rats.

  16. Enhanced incentive motivation for sucrose-paired cues in adolescent rats: possible roles for dopamine and opioid systems.

    PubMed

    Burton, Christie L; Noble, Kevin; Fletcher, Paul J

    2011-07-01

    Vulnerability to the effects of drugs of abuse during adolescence may be related to altered incentive motivation, a process believed to be important in addiction. Incentive motivation can be seen when a neutral stimulus acquires motivational properties through repeated association with a primary reinforcer. We compared adolescent (postnatal day (PND) 24-50) and adult (>PND 70) rats on a measure of incentive motivation: responding for a conditioned reinforcer (CR). Rats learned to associate the delivery of 0.1 ml of 10% sucrose with a conditioned stimulus (CS; light and tone); 30 pairings per day were given over 14 days. Then, we measured responding on a lever delivering the CS (now a CR) after injections of amphetamine (0, 0.25 or 0.5 mg/kg). We also examined responding for CR when the CS and sucrose were paired or unpaired during conditioning, and responding for the primary reinforcer (10% sucrose) in control experiments. Finally, we examined the effects of D(1) and D(2) dopamine receptor antagonists (SCH 39166 and eticlopride, respectively) and an opioid receptor antagonist (naltrexone) on responding for a CR in adolescent rats. Adolescents but not adults acquired responding for a CR, but adolescents responded less than adults for the primary reinforcer. Responding for a CR depended upon the pairing of the CS and sucrose during conditioning. Both dopamine and opioid receptor antagonists reduced responding for the CR. Therefore, incentive motivation may be enhanced in adolescents compared with adults, and incentive motivation may be mediated in part by both dopamine and opioid systems.

  17. Role of the brain dopaminergic and opioid system in the regulation of "child's" (maternal bonding) behavior of newborn albino rats.

    PubMed

    Stovolosov, I S; Dubynin, V A; Kamensky, A A

    2011-01-01

    Administration of D(2) receptor antagonist clebopride in a dose not affecting locomotor activity was followed by a decrease in maternal bonding behavior of 10-day-old and 15-day-old albino rat pups. D(1) receptor antagonist SCH23390 had a stimulatory effect only on the behavior of 10-day-old newborns. Opioid peptide β-casomorphin-7 abolished the effect of clebopride in rat pups of the older age group.

  18. Are Prescription Opioids Driving the Opioid Crisis? Assumptions vs Facts.

    PubMed

    Rose, Mark Edmund

    2018-04-01

    Sharp increases in opioid prescriptions, and associated increases in overdose deaths in the 2000s, evoked widespread calls to change perceptions of opioid analgesics. Medical literature discussions of opioid analgesics began emphasizing patient and public health hazards. Repetitive exposure to this information may influence physician assumptions. While highly consequential to patients with pain whose function and quality of life may benefit from opioid analgesics, current assumptions about prescription opioid analgesics, including their role in the ongoing opioid overdose epidemic, have not been scrutinized. Information was obtained by searching PubMed, governmental agency websites, and conference proceedings. Opioid analgesic prescribing and associated overdose deaths both peaked around 2011 and are in long-term decline; the sharp overdose increase recorded in 2014 was driven by illicit fentanyl and heroin. Nonmethadone prescription opioid analgesic deaths, in the absence of co-ingested benzodiazepines, alcohol, or other central nervous system/respiratory depressants, are infrequent. Within five years of initial prescription opioid misuse, 3.6% initiate heroin use. The United States consumes 80% of the world opioid supply, but opioid access is nonexistent for 80% and severely restricted for 4.1% of the global population. Many current assumptions about opioid analgesics are ill-founded. Illicit fentanyl and heroin, not opioid prescribing, now fuel the current opioid overdose epidemic. National discussion has often neglected the potentially devastating effects of uncontrolled chronic pain. Opioid analgesic prescribing and related overdoses are in decline, at great cost to patients with pain who have benefited or may benefit from, but cannot access, opioid analgesic therapy.

  19. Current Impact and Application of Abuse-Deterrent Opioid Formulations in Clinical Practice.

    PubMed

    Lee, Ya-Han; Brown, Daniel L; Chen, Hsiang-Yin

    2017-11-01

    Abuse-deterrent formulations (ADFs) represent one novel strategy for curbing the potential of opioid abuse. We aim to compare and contrast the characteristics and applications of current abuse-deterrent opioid products in clinical practice. Literature searches were conducted in databases (Pubmed Medline, International Pharmaceutical Abstracts, Google Scholar) and official reports. Relevant data were screened and organized into: 1) epidemiology of opioid abuse, 2) mitigation strategies for reducing opioid abuse, 3) development of ADFs, and 4) clinical experience with these formulations. Increasing trends of opioid abuse and misuse have been reported globally. There are 5 types of abuse-deterrent opioid products: physical chemical barrier, combined agonist/antagonist, sequestered aversive agent, prodrug, and novel delivery system. The advantages and disadvantages of the 5 options are discussed in this review. A total of 9 products with abuse-deterrent labels have been approved by the Food and Drug Administration (FDA). The rates of abuse, diversion, and overdose deaths of these new products are also discussed. A framework for collecting in-time data on the efficacy, benefit and risk ratio, and cost-effectiveness of these new products is suggested to facilitate their optimal use. The present review did not utilize systematic review standards or meta-analytic techniques, given the large heterogeneity of data and outcomes reviewed. ADFs provide an option for inhibiting the abuse or misuse of oral opioid products by hindering extraction of the active ingredient, preventing alternative routes of administration, or causing aversion. Their relatively high costs, uncertain insurance policies, and limited data on pharmacoeconomics warrant collaborative monitoring and assessment by government agencies, pharmaceutical manufacturers, and data analysis services to define their therapeutic role in the future. Opioid abuse, abuse-deterrent formulations, ADF, post-marketing, FDA

  20. Hydromorphone efficacy and treatment protocol impact on tolerance and mu-opioid receptor regulation.

    PubMed

    Kumar, Priyank; Sunkaraneni, Soujanya; Sirohi, Sunil; Dighe, Shveta V; Walker, Ellen A; Yoburn, Byron C

    2008-11-12

    This study examined the antinociceptive (analgesic) efficacy of hydromorphone and hydromorphone-induced tolerance and regulation of mu-opioid receptor density. Initially s.c. hydromorphone's time of peak analgesic (tail-flick) effect (45 min) and ED50 using standard and cumulative dosing protocols (0.22 mg/kg, 0.37 mg/kg, respectively) were determined. The apparent analgesic efficacy (tau) of hydromorphone was then estimated using the operational model of agonism and the irreversible mu-opioid receptor antagonist clocinnamox. Mice were injected with clocinnamox (0.32-25.6 mg/kg, i.p.) and 24 h later, the analgesic potency of hydromorphone was determined. The tau value for hydromorphone was 35, which suggested that hydromorphone is a lower analgesic efficacy opioid agonist. To examine hydromorphone-induced tolerance, mice were continuously infused s.c. with hydromorphone (2.1-31.5 mg/kg/day) for 7 days and then morphine cumulative dose response studies were performed. Other groups of mice were injected with hydromorphone (2.2-22 mg/kg/day) once, or intermittently every 24 h for 7 days. Twenty-four hours after the last injection, mice were tested using morphine cumulative dosing studies. There was more tolerance with infusion treatments compared to intermittent treatment. When compared to higher analgesic efficacy opioids, hydromorphone infusions induced substantially more tolerance. Finally, the effect of chronic infusion (31.5 mg/kg/day) and 7 day intermittent (22 mg/kg/day) hydromorphone treatment on spinal cord mu-opioid receptor density was determined. Hydromorphone did not produce any change in mu-opioid receptor density following either treatment. These results support suggestions that analgesic efficacy is correlated with tolerance magnitude and regulation of mu-opioid receptors when opioid agonists are continuously administered. Taken together, these studies indicate that analgesic efficacy and treatment protocol are important in determining tolerance and

  1. Inhibition of Opioid Transmission at the μ-Opioid Receptor Prevents Both Food Seeking and Binge-Like Eating

    PubMed Central

    Giuliano, Chiara; Robbins, Trevor W; Nathan, Pradeep J; Bullmore, Edward T; Everitt, Barry J

    2012-01-01

    Endogenous opioids, and in particular μ-opioid receptors, have been linked to hedonic and rewarding mechanisms engaged during palatable food intake. The aim of this study was to investigate the effects of GSK1521498, a novel μ-opioid receptor antagonist, on food-seeking behavior and on binge-like eating of a highly preferred chocolate diet. Food seeking was measured in rats trained to respond for chocolate under a second-order schedule of reinforcement, in which prolonged periods of food-seeking behavior were maintained by contingent presentation of a reward-associated conditioned reinforcer. After reaching a stable baseline in both procedures, animals were treated with GSK1521498 (0.1, 1, and 3 mg/kg; IP) or naltrexone (NTX, 0.1, 1, and 3 mg/kg; SC). The binge eating model was characterized by four temporally contiguous phases: 1-h chow access, 2-h food deprivation, 10-min chow access, and 10-min access to either chocolate-flavoured food or standard chow. During training the rats developed binge-like hyperphagia of palatable food and anticipatory chow hypophagia (anticipatory negative contrast). Both compounds reduced binge-like palatable food hyperphagia. However, GSK1521498 reduced the impact of high hedonic value on ingestion more specifically than NTX, abolishing anticipatory chow hypophagia. GSK1521498 also dose-dependently reduced food seeking both before and after food ingestion, whereas NTX reduced food seeking only after food ingestion. Thus, while both drugs affected the hedonic value of the preferred food, GSK1521498 also directly decreased incentive motivation for chocolate. Selective μ-opioid receptor antagonism by GSK1521498 may have utility as a treatment for reducing maladaptive, palatability-driven eating behavior by reducing the motivational properties of stimuli that elicit the binge eating commonly associated with obesity. PMID:22805601

  2. Kappa Agonists as a Novel Therapy for Menopausal Hot Flashes

    PubMed Central

    Oakley, Amy E.; Steiner, Robert A.; Chavkin, Charles; Clifton, Donald K.; Ferrara, Laura K.; Reed, Susan D.

    2015-01-01

    Objective Postmenopausal hot flash etiology is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing Kisspeptin, Neurokinin B, and Dynorphin (KNDy neurons), located adjacent to the thermoregulatory center, regulate pulsatile secretion of GnRH and LH. Dynorphin may inhibit this system by binding kappa opioid receptors within the vicinity of KNDy neurons. We hypothesize that hot flashes are reduced by KNDy neuron manipulation. Methods A double-blind, cross-over, placebo-controlled pilot study evaluated the effect of a kappa agonist (KA).Hot flash frequency was the primary outcome. Twelve healthy postmenopausal women with moderate-severe hot flashes, ages 48-60 years, were randomized. Eight women with sufficient baseline hot flashes for statistical analysis completed all 3 interventions: placebo, standard Pentazocine/Naloxone (50/0.5 mg) or low-dose Pentazocine/Naloxone (25/0.25 mg). In an inpatient research setting, each participant received the 3 interventions, in randomized order, on 3 separate days. On each day, an intravenous catheter was inserted for luteinizing hormone (LH) blood sampling, and skin conductance and Holter monitors were placed. Subjective hot flash frequency and severity were recorded. Results Mean hot flash frequency 2-7 hours following therapy initiation was lower than that for placebo (KA standard-dose: 4.75 ± 0.67; KA low-dose: 4.50 ± 0.57; and placebo: 5.94 ± 0.78 hot flashes/5 hours; p =0.025). Hot flash intensity did not vary between interventions. LH pulsatility mirrored objective hot flashes in some, but not all women. Conclusions This pilot suggests that kappa agonists may affect menopausal vasomotor symptoms. PMID:25988798

  3. Emergency Department Patient Perspectives on the Risk of Addiction to Prescription Opioids.

    PubMed

    Conrardy, Michael; Lank, Patrick; Cameron, Kenzie A; McConnell, Ryan; Chevrier, Alison; Sears, Jill; Ahlstrom, Eric; Wolf, Michael S; Courtney, D Mark; McCarthy, Danielle M

    2016-01-01

    To characterize emergency department (ED) patients' knowledge and beliefs about the addictive potential of opioids. Mixed methods analysis of data from a randomized controlled trial. Urban academic ED (>88,000 visits). One hundred and seventy four discharged ED patients prescribed hydrocodone-acetaminophen for acute pain. The study analyzed data collected from a randomized controlled trial investigating patients' knowledge of opioids. ED patients discharged with hydrocodone-acetaminophen completed an audio-recorded phone interview 4–7 days later. This analysis focuses on responses about addiction. Responses were categorized using content analysis; thematic analysis identified broad themes common across different categories. Participants' mean age was 45.5 years (SD, 14.8), 58.6% female, 50.6% white, and the majority had an orthopedic diagnosis (24.1% back pain, 52.3% other injuries). Responses were categorized first based on whether the patient believed that opioids could be addictive (categorized as: yes, 58.7%; no, 19.5%; depends, 17.2%; or do not know, 4.6%), and second based on whether or not the patient discussed his/her own experience with the medication (categorized as: personalized, 35.6%; or not personalized, 64.4%). Cohen's Kappa was 0.84 for all categories. Three themes emerged in the thematic analysis: theme 1) patients expect to “feel” addicted if they are addicted, theme 2) patients fear addiction, and theme 3) side effects affected patient views of addiction. In this sample, patients had misconceptions about opioid addiction. Some patients did not know opioids could be addictive, others underestimated their personal risk of addiction, and others overtly feared addiction and, therefore, risked inadequate pain management. Despite limited data, we recommend providers discuss opioid addiction with their patients. Published by Oxford University Press on behalf of the American Academy of Pain Medicine. 2016. This work is written by US Government

  4. Presynaptic inhibition of diverse afferents to the locus ceruleus by kappa-opiate receptors: a novel mechanism for regulating the central norepinephrine system.

    PubMed

    Kreibich, Arati; Reyes, Beverly A S; Curtis, Andre L; Ecke, Laurel; Chavkin, Charles; Van Bockstaele, Elisabeth J; Valentino, Rita J

    2008-06-18

    The norepinephrine nucleus, locus ceruleus (LC), is activated by diverse stimuli and modulates arousal and behavioral strategies in response to these stimuli through its divergent efferent system. Afferents communicating information to the LC include excitatory amino acids (EAAs), corticotropin-releasing factor (CRF), and endogenous opioids acting at mu-opiate receptors. Because the LC is also innervated by the endogenous kappa-opiate receptor (kappa-OR) ligand dynorphin and expresses kappa-ORs, this study investigated kappa-OR regulation of LC neuronal activity in rat. Immunoelectron microscopy revealed a prominent localization of kappa-ORs in axon terminals in the LC that also contained either the vesicular glutamate transporter or CRF. Microinfusion of the kappa-OR agonist (trans)-3,4-dichloro-N-methyl-N-[2-1-pyrrolidinyl)-cyclo-hexyl] benzeneacetamide (U50488) into the LC did not alter LC spontaneous discharge but attenuated phasic discharge evoked by stimuli that engage EAA afferents to the LC, including sciatic nerve stimulation and auditory stimuli and the tonic activation associated with opiate withdrawal. Inhibitory effects of the kappa-OR agonist were not restricted to EAA afferents, as U50488 also attenuated tonic LC activation by hypotensive stress, an effect mediated by CRF afferents. Together, these results indicate that kappa-ORs are poised to presynaptically inhibit diverse afferent signaling to the LC. This is a novel and potentially powerful means of regulating the LC-norepinephrine system that can impact on forebrain processing of stimuli and the organization of behavioral strategies in response to environmental stimuli. The results implicate kappa-ORs as a novel target for alleviating symptoms of opiate withdrawal, stress-related disorders, or disorders characterized by abnormal sensory responses, such as autism.

  5. THE ROLE OF AMYGDALAR MU OPIOID RECEPTORS IN ANXIETY-RELATED RESPONSES IN TWO RAT MODELS

    PubMed Central

    Wilson, Marlene A.; Junor, Lorain

    2009-01-01

    Amygdala opioids such as enkephalin appear to play some role in the control of anxiety and the anxiolytic effects of benzodiazepines, although the opioid receptor subtypes mediating such effects are unclear. This study compared the influences of mu opioid receptor (MOR) activation in the central nucleus of the amygdala (CEA) on unconditioned fear or anxiety-like responses in two models, the elevated plus maze and the defensive burying test. The role of MOR in the anxiolytic actions of the benzodiazepine agonist diazepam was also examined using both models. Either the MOR agonist [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO) or the MOR antagonists Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) or β-funaltrexamine (FNA) were bilaterally infused into the CEA of rats prior to testing. The results show that microinjection of DAMGO in the CEA decreased open arm time in the plus maze, while CTAP increased open arm behaviors. In contrast, DAMGO injections in the CEA reduced burying behaviors and increased rearing following exposure to a predator odor, suggesting a shift in the behavioral response in this context. Amygdala injections of the MOR agonist DAMGO or the MOR antagonist CTAP failed to change the anxiolytic effects of diazepam in either test. Our results demonstrate that MOR activation in the central amygdala exerts distinctive effects in two different models of unconditioned fear or anxiety-like responses, and suggest that opioids may exert context-specific regulation of amygdala output circuits and behavioral responses during exposure to potential threats (open arms of the maze) versus discrete threats (predator odor). PMID:18216773

  6. The combination very low-dose naltrexone-clonidine in the management of opioid withdrawal.

    PubMed

    Mannelli, Paolo; Peindl, Kathleen; Wu, Li-Tzy; Patkar, Ashwin A; Gorelick, David A

    2012-05-01

    The management of withdrawal absorbs substantial clinical efforts in opioid dependence (OD). The real challenge lies in improving current pharmacotherapies. Although widely used, clonidine causes problematic adverse effects and does not alleviate important symptoms of opioid withdrawal, alone or in combination with the opioid antagonist naltrexone. Very low-dose naltrexone (VLNTX) has been shown to attenuate withdrawal intensity and noradrenaline release following opioid agonist taper, suggesting a combination with clonidine may result in improved safety and efficacy. We investigated the effects of a VLNTX-clonidine combination in a secondary analysis of data from a double-blind, randomized opioid detoxification trial. Withdrawal symptoms and treatment completion were compared following VLNTX (.125 or .25 mg/day) and clonidine (.1-.2 mg q6h) in 127 individuals with OD undergoing 6-day methadone inpatient taper at a community program. VLNTX was more effective than placebo or clonidine in reducing symptoms and signs of withdrawal. The use of VLNTX in combination with clonidine was associated with attenuated subjective withdrawal compared with each medication alone, favoring detoxification completion in comparison with clonidine or naltrexone placebo. VLNTX/clonidine was effective in reducing symptoms that are both undertreated and well controlled with clonidine treatment and was not associated with significant adverse events compared with other treatments. Preliminary results elucidate neurobiological mechanisms of OD and support the utility of controlled studies on a novel VLNTX + low-dose clonidine combination for the management of opioid withdrawal.

  7. International Narcotics Research Conference-35th Meeting. Current developments in medicinal chemistry in the opioid field 17-24 July 2004, Kyoto, Japan.

    PubMed

    Kitchen, Ian

    2004-09-01

    Research in the opioid field underwent a lull in the 1990's but much new research has recently been stimulated, firstly by the cloning of all of the opioid receptors and then by the development of gene knockout mice and their phenotype characterization. These developments have led to a a reappraisal of the potential utility of opioid agonists and antagonists not only for the treatment of pain but also for mood-related conditions and peripheral indications. Medicinal chemistry groups are still moving the field forward, and the pharmaceutical industry continues to keep a watching brief. Opioids are no longer exclusively the province of pain scientists, and potential for treatment of limbic disorders, itch and addiction are only now beginning to be considered seriously.

  8. Contribution of GABAA, Glycine, and Opioid Receptors to Sacral Neuromodulation of Bladder Overactivity in Cats.

    PubMed

    Jiang, Xuewen; Fuller, Thomas W; Bandari, Jathin; Bansal, Utsav; Zhang, Zhaocun; Shen, Bing; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-12-01

    In α-chloralose-anesthetized cats, we examined the role of GABA A , glycine, and opioid receptors in sacral neuromodulation-induced inhibition of bladder overactivity elicited by intravesical infusion of 0.5% acetic acid (AA). AA irritation significantly (P < 0.01) reduced bladder capacity to 59.5 ± 4.8% of saline control. S1 or S2 dorsal root stimulation at threshold intensity for inducing reflex twitching of the anal sphincter or toe significantly (P < 0.01) increased bladder capacity to 105.3 ± 9.0% and 134.8 ± 8.9% of saline control, respectively. Picrotoxin, a GABA A receptor antagonist administered i.v., blocked S1 inhibition at 0.3 mg/kg and blocked S2 inhibition at 1.0 mg/kg. Picrotoxin (0.4 mg, i.t.) did not alter the inhibition induced during S1 or S2 stimulation, but unmasked a significant (P < 0.05) poststimulation inhibition that persisted after termination of stimulation. Naloxone, an opioid receptor antagonist (0.3 mg, i.t.), significantly (P < 0.05) reduced prestimulation bladder capacity and removed the poststimulation inhibition. Strychnine, a glycine receptor antagonist (0.03-0.3 mg/kg, i.v.), significantly (P < 0.05) increased prestimulation bladder capacity but did not reduce sacral S1 or S2 inhibition. After strychnine (0.3 mg/kg, i.v.), picrotoxin (0.3 mg/kg, i.v.) further (P < 0.05) increased prestimulation bladder capacity and completely blocked both S1 and S2 inhibition. These results indicate that supraspinal GABA A receptors play an important role in sacral neuromodulation of bladder overactivity, whereas glycine receptors only play a minor role to facilitate the GABA A inhibitory mechanism. The poststimulation inhibition unmasked by blocking spinal GABA A receptors was mediated by an opioid mechanism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Attentional Bias For Prescription Opioid Cues Among Opioid Dependent Chronic Pain Patients

    PubMed Central

    Garland, Eric L.; Froeliger, Brett; Passik, Steven D.; Howard, Matthew O.

    2012-01-01

    Recurrent use of prescription opioid analgesics by chronic pain patients may result in opioid dependence, which involves implicit neurocognitive operations that organize and impel craving states and compulsive drug taking behavior. Prior studies have identified an attentional bias (AB) towards heroin among heroin dependent individuals. The aim of this study was to determine whether opioid-dependent chronic pain patients exhibit an AB towards prescription opioidrelated cues. Opioid-dependent chronic pain patients (n = 32) and a comparison group of non-dependent opioid users with chronic pain (n = 33) completed a dot probe task designed to measure opioid AB. Participants also rated their opioid craving and self-reported arousal associated with opioid-related and neutral images, pain severity, and relief from pain treatments. Repeated-measures ANOVA revealed a significant group (opioid-dependent vs. non-dependent opioid user) × presentation duration (200 ms. vs. 2000 ms.) interaction, such that opioid-dependent individuals evidenced a significant AB towards opioid cues presented for 200 ms but not for cues presented for 2000 ms, whereas non-dependent opioid users did not exhibit a significant mean AB at either stimulus duration. Among opioid-dependent individuals, 200 ms opioid AB was significantly associated with opioid craving, while among non-dependent opioid users, 200 ms opioid AB was significantly associated with relief from pain treatments. Furthermore, dependent and non-dependent opioid users experienced opioid cues as significantly more arousing than neutral cues. Opioid dependence among chronic pain patients appears to involve an automatic AB towards opioid-related cues. When coupled with chronic pain, attentional fixation on opioid cues may promote compulsive drug use and addictive behavior. PMID:22968666

  10. Attentional bias for prescription opioid cues among opioid dependent chronic pain patients.

    PubMed

    Garland, Eric L; Froeliger, Brett E; Passik, Steven D; Howard, Matthew O

    2013-12-01

    Recurrent use of prescription opioid analgesics by chronic pain patients may result in opioid dependence, which involves implicit neurocognitive operations that organize and impel craving states and compulsive drug taking behavior. Prior studies have identified an attentional bias (AB) towards heroin among heroin dependent individuals. The aim of this study was to determine whether opioid-dependent chronic pain patients exhibit an AB towards prescription opioid-related cues. Opioid-dependent chronic pain patients (n = 32) and a comparison group of non-dependent opioid users with chronic pain (n = 33) completed a dot probe task designed to measure opioid AB. Participants also rated their opioid craving and self-reported arousal associated with opioid-related and neutral images, pain severity, and relief from pain treatments. Repeated-measures ANOVA revealed a significant group (opioid-dependent vs. non-dependent opioid user) × presentation duration (200. vs. 2,000 ms.) interaction, such that opioid-dependent individuals evidenced a significant AB towards opioid cues presented for 200 ms but not for cues presented for 2,000 ms, whereas non-dependent opioid users did not exhibit a significant mean AB at either stimulus duration. Among opioid-dependent individuals, 200 ms opioid AB was significantly associated with opioid craving, while among non-dependent opioid users, 200 ms opioid AB was significantly associated with relief from pain treatments. Furthermore, dependent and non-dependent opioid users experienced opioid cues as significantly more arousing than neutral cues. Opioid dependence among chronic pain patients appears to involve an automatic AB towards opioid-related cues. When coupled with chronic pain, attentional fixation on opioid cues may promote compulsive drug use and addictive behavior.

  11. Partial purification of the mu opioid receptor irreversibly labeled with (/sup 3/H)b-funaltrexamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu-Chen, L.Y.; Phillips, C.A.; Tam, S.W.

    1986-03-01

    The mu opioid receptor in bovine striatal membranes was specifically and irreversibly labeled by incubation with 5 nM (/sup 3/H)..beta..-funaltrexamine (approx.-FNA) at 37/sup 0/C for 90 min in the presence of 100 mM NaCl. The specific and irreversible binding of (/sup 3/H)..beta..-FNA as defined by that blocked by 1 /sup +/M naloxone was about 60% of total irreversible binding. The specific irreversible binding was saturable, stereospecific, time-, temperature, and tissue-dependent. Mu opioid ligands were much more potent than delta or kappa ligands in inhibiting the specific irreversible labeling. SDS polyacrylamide gel electrophoresis of solubilized membranes in the presence of 2-mercaptoethanolmore » yielded a major radiolabeled broad band of MW 68-97K daltons, characteristic of a glycoprotein band. This band was not observed in membranes labeled in the presence of excess unlabeled naloxone. The glycoprotein nature of the (/sup 3/H)..beta..-FNA-labeled opioid receptor was confirmed by its binding to a wheat germ agglutinin-Sepharose column and its elution with N-acetylglucosamine.« less

  12. Antinociceptive Effect of Ghrelin in a Rat Model of Irritable Bowel Syndrome Involves TRPV1/Opioid Systems.

    PubMed

    Mao, Yuqing; Li, Zhengyang; Chen, Kan; Yu, Huafang; Zhang, Shaoren; Jiang, Miao; Ma, Yuanhua; Liang, Chunli; Liu, Hongyan; Li, Huanqing; Hua, Qian; Zhou, Hao; Sun, Yonghong; Fan, Xiaoming

    2017-01-01

    Irritable bowel syndrome (IBS), defined as recurrent abdominal pain and changes in bowel habits, seriously affects quality of life and ability to work. Ghrelin is a brain-gut hormone, which has been reported to show antinociceptive effects in peripheral pain. We investigated the effect of ghrelin on visceral hypersensitivity and pain in a rat model of IBS. Maternal deprivation (MD) was used to provide a stress-induced model of IBS in Wistar rats. Colorectal distension (CRD) was used to detect visceral sensitivity, which was evaluated by abdominal withdrawal reflex (AWR) scores. Rats that were confirmed to have visceral hypersensitivity after MD were injected with ghrelin (10 µg/kg) subcutaneously twice a week from weeks 7 to 8. [D-Lys3]-GHRP-6 (100 nmol/L) and naloxone (100 nmol/L) were administered subcutaneously to block growth hormone secretagogue receptor 1α (GHS-R1α) and opioid receptors, respectively. Expression of transient receptor potential vanilloid type 1 (TRPV1) and µ and κ opioid receptors (MOR and KOR) in colon, dorsal root ganglion (DRG) and cerebral cortex tissues were detected by western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemical analyses and immunofluorescence. Ghrelin treatment increased expression of opioid receptors and inhibited expression of TRPV1 in colon, dorsal root ganglion (DRG) and cerebral cortex. The antinociceptive effect of ghrelin in the rat model of IBS was partly blocked by both the ghrelin antagonist [D-Lys3]-GHRP-6 and the opioid receptor antagonist naloxone. The results indicate that ghrelin exerted an antinociceptive effect, which was mediated via TRPV1/opioid systems, in IBS-induced visceral hypersensitivity. Ghrelin might potentially be used as a new treatment for IBS. © 2017 The Author(s). Published by S. Karger AG, Basel.

  13. Satiety and the role of μ-opioid receptors in the portal vein.

    PubMed

    De Vadder, Filipe; Gautier-Stein, Amandine; Mithieux, Gilles

    2013-12-01

    Mu-opioid receptors (MORs) are known to influence food intake at the brain level, through their involvement in the food reward system. MOR agonists stimulate food intake. On the other hand, MOR antagonists suppress food intake. MORs are also active in peripheral organs, especially in the small intestine where they control the gut motility. Recently, an indirect role in the control of food intake was ascribed to MORs in the extrinsic gastrointestinal neural system. MORs present in the neurons of the portal vein walls sense blood peptides released from the digestion of dietary protein. These peptides behave as MOR antagonists. Their MOR antagonist action initiates a gut-brain circuitry resulting in the induction of intestinal gluconeogenesis, a function controlling food intake. Thus, periportal MORs are a key mechanistic link in the satiety effect of protein-enriched diets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Clinical interpretation of opioid tolerance versus opioid-induced hyperalgesia.

    PubMed

    Chen, Lucy; Sein, Michael; Vo, Trang; Amhmed, Shihab; Zhang, Yi; Hilaire, Kristin St; Houghton, Mary; Mao, Jianren

    2014-01-01

    Opioid analgesics are commonly used to manage moderate to severe pain. However, the long-term use of opioids could lead to opioid tolerance (OT) and opioid-induced hyperalgesia (OIH). Distinguishing OIH from OT would impact the practice of opioid therapy because opioid dose adjustment may differentially influence OT and OIH. Currently, there are no standard criteria of OT versus OIH causing considerable ambiguity in clinical interpretation and management of these conditions. The authors designed a practitioner-based survey consisting of 20 targeted questions. Answering these questions would require responders' actual clinical experiences with opioid therapy. The survey was conducted between 2011 and 2012 through direct mails or e-mails to 1,408 physicians who are currently practicing in the United States. The authors find that certain clinical characteristics (eg, increased pain despite opioid dose escalation) are often used by practitioners to make differential diagnosis of OT and OIH despite some overlap in their clinical presentation. A key difference in clinical outcome is that OT and OIH could be improved and exacerbated by opioid dose escalation, respectively. Our survey results revealed a significant knowledge gap in some responders regarding differential diagnosis and management of OT and OIH. The results also identified several issues, such as opioid dose adjustment and clinical comorbidities related to OT and OIH, which require future patient-based studies.

  15. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  16. Synthesis and Structure-Activity Relationships of (-)-cis-N-Normetazocine-Based LP1 Derivatives.

    PubMed

    Pasquinucci, Lorella; Parenti, Carmela; Amata, Emanuele; Georgoussi, Zafiroula; Pallaki, Paschalina; Camarda, Valeria; Calò, Girolamo; Arena, Emanuela; Montenegro, Lucia; Turnaturi, Rita

    2018-05-05

    (−)- cis - N -Normetazocine represents a rigid scaffold able to mimic the tyramine moiety of endogenous opioid peptides, and the introduction of different N -substituents influences affinity and efficacy of respective ligands at MOR (mu opioid receptor), DOR (delta opioid receptor), and KOR (kappa opioid receptor). We have previously identified LP1, a MOR/DOR multitarget opioid ligand, with an N -phenylpropanamido substituent linked to (−)- cis - N -Normetazocine scaffold. Herein, we report the synthesis, competition binding and calcium mobilization assays of new compounds 10 ⁻ 16 that differ from LP1 by the nature of the N -substituent. In radioligand binding experiments, the compounds 10 ⁻ 13 , featured by an electron-withdrawing or electron-donating group in the para position of phenyl ring, displayed improved affinity for KOR (K i = 0.85⁻4.80 μM) in comparison to LP1 (7.5 μM). On the contrary, their MOR and DOR affinities were worse (K i = 0.18⁻0.28 μM and K i = 0.38⁻1.10 μM, respectively) with respect to LP1 values (K i = 0.049 and 0.033 μM). Analogous trends was recorded for the compounds 14 ⁻ 16 , featured by indoline, tetrahydroquinoline, and diphenylamine functionalities in the N -substituent. In calcium mobilization assays, the compound 10 with a p -fluorophenyl in the N -substituent shared the functional profile of LP1 (pEC 50 MOR = 7.01), although it was less active. Moreover, the p -methyl- ( 11 ) and p -cyano- ( 12 ) substituted compounds resulted in MOR partial agonists and DOR/KOR antagonists. By contrast, the derivatives 13 ⁻ 15 resulted as MOR antagonists, and the derivative 16 as a MOR/KOR antagonist (pK B MOR = 6.12 and pK B KOR = 6.11). Collectively, these data corroborated the critical role of the N -substituent in (−)- cis - N -Normetazocine scaffold. Thus, the new synthesized compounds could represent a template to achieve a specific agonist, antagonist, or mixed agonist/antagonist functional

  17. Neonatal opioid withdrawal and antenatal opioid prescribing

    PubMed Central

    Gomes, Tara; Camacho, Ximena; Yao, Zhan; Guttmann, Astrid; Mamdani, Muhammad M.; Juurlink, David N.; Dhalla, Irfan A.

    2015-01-01

    Background The incidence of neonatal opioid withdrawal is increasing in both Canada and the United States. However, the degree to which the treatment of pain with opioids, rather than the misuse of prescription opioids or heroin, contributes to the prevalence of neonatal opioid withdrawal remains unknown. Methods We conducted a retrospective, population-based, cross-sectional study between 1992 and 2011 in Ontario with 2 objectives. First, we determined the annual incidence of neonatal abstinence syndrome. Second, using data from a subset of women eligible for publicly funded prescription drugs, we determined what proportion of women who deliver an infant with neonatal abstinence syndrome were given a prescription for an opioid before and during pregnancy. Results The incidence of neonatal abstinence syndrome in Ontario increased 15-fold during the study period, from 0.28 per 1000 live births in 1992 to 4.29 per 1000 live births in 2011. During the final 5 years of the study, we identified 927 deliveries of infants with neonatal abstinence syndrome to mothers who were public drug plan beneficiaries. Of these mothers, 67% had received an opioid prescription in the 100 days preceding delivery, including 53.3% who received methadone, an increase from 28.6% in the interval spanning 1 to 2 years before delivery (p < 0.001). Prescription for nonmethadone opioids decreased from 38% to 17% (p < 0.001). Interpretation The incidence of neonatal opioid withdrawal in Ontario has increased substantially over the last 20 years. Most of the women in this cohort who delivered an infant with neonatal abstinence syndrome had received a prescription for an opioid both before and during their pregnancy. PMID:25844370

  18. Opioid system genes in alcoholism: a case-control study in Croatian population.

    PubMed

    Cupic, B; Stefulj, J; Zapletal, E; Matosic, A; Bordukalo-Niksic, T; Cicin-Sain, L; Gabrilovac, J

    2013-10-01

    Due to their involvement in dependence pathways, opioid system genes represent strong candidates for association studies investigating alcoholism. In this study, single nucleotide polymorphisms within the genes for mu (OPRM1) and kappa (OPRK1) opioid receptors and precursors of their ligands - proopiomelanocortin (POMC), coding for beta-endorphin and prodynorphin (PDYN) coding for dynorphins, were analyzed in a case-control study that included 354 male alcohol-dependent and 357 male control subjects from Croatian population. Analysis of allele and genotype frequencies of the selected polymorphisms of the genes OPRM1/POMC and OPRK1/PDYN revealed no differences between the tested groups. The same was true when alcohol-dependent persons were subdivided according to the Cloninger's criteria into type-1 and type-2 groups, known to differ in the extent of genetic control. Thus, the data obtained suggest no association of the selected polymorphisms of the genes OPRM1/POMC and OPRK1/PDYN with alcoholism in Croatian population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Bioactive Conformations of Two Seminal Delta Opioid Receptor Penta-peptides Inferred from Free-Energy Profiles

    PubMed Central

    Scarabelli, Guido; Provasi, Davide; Negri, Ana; Filizola, Marta

    2013-01-01

    Delta-opioid (DOP) receptors are members of the G protein-coupled receptor (GPCR) sub-family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu-opioid (MOP), kappa-opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr-D-Ala-GlyPhe-D-Leu) and DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta-peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over-simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond-scale molecular dynamics and bias-exchange metadynamics simulations. Free-energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. PMID:23564013

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zukin, R.S.; Eghbali, M.; Olive, D.

    {kappa} opioid receptors ({kappa} receptors) have been characterized in homogenates of guinea pig and rat brain under in vitro binding conditions. {kappa} receptors were labeled by using the tritiated prototypic {kappa} opioid ethylketocyclazocine under conditions in which {mu} and {delta} opioid binding was suppressed. In the case of guinea pig brain membranes, a single population of high-affinity {kappa} opioid receptor sites was observed. In contrast, in the case of rat brain, two populations of {kappa} sites were observed. To test the hypothesis that the high- and low-affinity {kappa} sites represent two distinct {kappa} receptor subtypes, a series of opioids weremore » tested for their abilities to compete for binding to the two sites. U-69,593 and Cambridge 20 selectively displaced the high-affinity {kappa} site in both guinea pig and rat tissue, but were inactive at the rat-brain low-affinity site. Other {kappa} opioid drugs competed for binding to both sites, but with different rank orders of potency. Quantitative light microscopy in vitro autoradiography was used to visualize the neuroanatomical pattern of {kappa} receptors in rat and guinea pig brain. The distribution patterns of the two {kappa} receptor subtypes of rat brain were clearly different. Collectively, these data provide direct evidence for the presence of two {kappa} receptor subtypes; the U-69,593-sensitive, high-affinity {kappa}{sub 1} site predominates in guinea pig brain, and the U-69,593-insensitive, low-affinity {kappa}{sub 2} site predominates in rat brain.« less

  1. Delta opioid receptor on equine sperm cells: subcellular localization and involvement in sperm motility analyzed by computer assisted sperm analyzer (CASA)

    PubMed Central

    2010-01-01

    Background Opioid receptors and endogenous opioid peptides act not only in the control of nociceptive pathways, indeed several reports demonstrate the effects of opiates on sperm cell motility and morphology suggesting the importance of these receptors in the modulation of reproduction in mammals. In this study we investigated the expression of delta opioid receptors on equine spermatozoa by western blot/indirect immunofluorescence and its relationship with sperm cell physiology. Methods We analyzed viability, motility, capacitation, acrosome reaction and mitochondrial activity in the presence of naltrindole and DPDPE by means of a computer assisted sperm analyzer and a fluorescent confocal microscope. The evaluation of viability, capacitation and acrosome reaction was carried out by the double CTC/Hoechst staining, whereas mitochondrial activity was assessed by means of MitoTracker Orange dye. Results We showed that in equine sperm cells, delta opioid receptor is expressed as a doublet of 65 and 50 kDa molecular mass and is localized in the mid piece of tail; we also demonstrated that naltrindole, a delta opioid receptor antagonist, could be utilized in modulating several physiological parameters of the equine spermatozoon in a dose-dependent way. We also found that low concentrations of the antagonist increase sperm motility whereas high concentrations show the opposite effect. Moreover low concentrations hamper capacitation, acrosome reaction and viability even if the percentage of cells with active mitochondria seems to be increased; the opposite effect is exerted at high concentrations. We have also observed that the delta opioid receptor agonist DPDPE is scarcely involved in affecting the same parameters at the employed concentrations. Conclusions The results described in this paper add new important details in the comprehension of the mammalian sperm physiology and suggest new insights for improving reproduction and for optimizing equine breeding. PMID

  2. Antinociceptive Interactions between the Imidazoline I2 Receptor Agonist 2-BFI and Opioids in Rats: Role of Efficacy at the μ-Opioid Receptor

    PubMed Central

    Siemian, Justin N.; Obeng, Samuel; Zhang, Yan; Zhang, Yanan

    2016-01-01

    Although μ-opioids have been reported to interact favorably with imidazoline I2 receptor (I2R) ligands in animal models of chronic pain, the dependence on the μ-opioid receptor ligand efficacy on these interactions had not been previously investigated. This study systematically examined the interactions between the selective I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) and three μ-opioid receptor ligands of varying efficacies: fentanyl (high efficacy), buprenorphine (medium-low efficacy), and 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3′-isoquinolyl) acetamido] morphine (NAQ; very low efficacy). The von Frey test of mechanical nociception and Hargreaves test of thermal nociception were used to examine the antihyperalgesic effects of drug combinations in complete Freund’s adjuvant–induced inflammatory pain in rats. Food-reinforced schedule-controlled responding was used to examine the rate-suppressing effects of each drug combination. Dose-addition and isobolographical analyses were used to characterize the nature of drug-drug interactions in each assay. 2-BFI and fentanyl fully reversed both mechanical and thermal nociception, whereas buprenorphine significantly reversed thermal but only slightly reversed mechanical nociception. NAQ was ineffective in both nociception assays. When studied in combination with fentanyl, NAQ acted as a competitive antagonist (apparent pA2 value: 6.19). 2-BFI/fentanyl mixtures produced additive to infra-additive analgesic interactions, 2-BFI/buprenorphine mixtures produced supra-additive to infra-additive interactions, and 2-BFI/NAQ mixtures produced supra-additive to additive interactions in the nociception assays. The effects of all combinations on schedule-controlled responding were generally additive. Results consistent with these were found in experiments using female rats. These findings indicate that lower-efficacy μ-opioid receptor agonists may interact more favorably with I2R

  3. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1... Specific Chemical Substances § 721.10033 Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as zinc...

  4. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1... Specific Chemical Substances § 721.10033 Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as zinc...

  5. "Weak" opioid analgesics. Codeine, dihydrocodeine and tramadol: no less risky than morphine.

    PubMed

    2016-02-01

    So-called weak opioid analgesics are often used to treat severe pain, or when paracetamol or a nonsteroidal anti-inflammatory drug (NSAID) proves inadequate. But are weak opioids any more effective than paracetamol or NSAIDs on nociceptive pain, and are they better tolerated than morphine? To answer these questions, we conducted a review of literature using the standard Prescrire methodology. The potency of codeine and tramadol is strongly influenced by the cytochrome P450 isoenzyme CYP2D6 genotype, which varies widely from one person to another. This explains reports of overdosing or underdosing after administration of standard doses of the two drugs. The potency of morphine and that of buprenorphine, an opioid receptor agonist-antagonist, appears to be independent of CYP2D6 activity. All "weak" opioids can have the same dose-dependent adverse effects as morphine. There is no evidence that, at equivalent analgesic efficacy, weak opioids carry a lower risk of addiction than low-dose morphine. Respiratory depression can occur in ultrarapid metabolisers after brief exposure to standard doses of codeine or tramadol. Similar cases have been reported with dihydrocodeine in patients with renal failure. In addition, tramadol can cause a serotonin syndrome, hypoglycaemia, hyponatraemia and seizures. Several trials have compared different weak opioids in patients with post-operative pain. A single dose of a weak opioid, possibly combined with paracetamol, has greater analgesic efficacy than paracetamol alone but is not more effective than an NSAID alone. There is a dearth of evidence on weak opioids in patients with chronic pain. Available trials fail to show that a weak opioid has markedly superior analgesic efficacy to paracetamol or an NSAID. Sublingual buprenorphine at analgesic doses appears less likely to cause respiratory depression, but it seems to have weak analgesic efficacy. In practice, when opioid therapy is needed, there is no evidence that codeine

  6. The Combination Very Low-Dose Naltrexone–Clonidine in the Management of Opioid Withdrawal

    PubMed Central

    Mannelli, Paolo; Peindl, Kathleen; Wu, Li-Tzy; Patkar, Ashwin A.; Gorelick, David A.

    2013-01-01

    Background The management of withdrawal absorbs substantial clinical efforts in opioid dependence (OD). The real challenge lies in improving current pharmacotherapies. Although widely used, clonidine causes problematic adverse effects and does not alleviate important symptoms of opioid withdrawal, alone or in combination with the opioid antagonist naltrexone. Very low-dose naltrexone (VLNTX) has been shown to attenuate withdrawal intensity and noradrenaline release following opioid agonist taper, suggesting a combination with clonidine may result in improved safety and efficacy. Objectives We investigated the effects of a VLNTX–clonidine combination in a secondary analysis of data from a double-blind, randomized opioid detoxification trial. Methods Withdrawal symptoms and treatment completion were compared following VLNTX (.125 or .25 mg/day) and clonidine (.1–.2 mg q6h) in 127 individuals with OD undergoing 6-day methadone inpatient taper at a community program. Results VLNTX was more effective than placebo or clonidine in reducing symptoms and signs of withdrawal. The use of VLNTX in combination with clonidine was associated with attenuated subjective withdrawal compared with each medication alone, favoring detoxification completion in comparison with clonidine or naltrexone placebo. VLNTX/clonidine was effective in reducing symptoms that are both undertreated and well controlled with clonidine treatment and was not associated with significant adverse events compared with other treatments. Conclusions and Scientific Significance Preliminary results elucidate neurobiological mechanisms of OD and support the utility of controlled studies on a novel VLNTX + low-dose clonidine combination for the management of opioid withdrawal. PMID:22233189

  7. Frog skin opioid peptides: a case for environmental mimicry.

    PubMed Central

    Lazarus, L H; Bryant, S D; Attila, M; Salvadori, S

    1994-01-01

    Naturally occurring environmental substances often mimic endogenous substances found in mammals and are capable of interacting with specific proteins, such as receptors, with a high degree of fidelity and selectivity. Narcotic alkaloids and amphibian skin secretions, introduced into human society through close association with plants and animals through folk medicine and religious divination practices, were incorporated into the armamentarium of the early pharmacopoeia. These skin secretions contain a myriad of potent bioactive substances, including alkaloids, biogenic amines, peptides, enzymes, mucus, and toxins (noxious compounds notwithstanding); each class exhibits a broad range of characteristic properties. One specific group of peptides, the opioids, containing the dermorphins (dermal morphinelike substances) and the deltorphins (delta-selective opioids), display remarkable analgesic properties and include an amino acid with the rare (in a mammalian context) D-enantiomer in lieu of the normal L-isomer. Synthesis of numerous stereospecific analogues and conformational analyses of these peptides provided essential insights into the tertiary composition and microenvironment of the receptor "pocket" and the optimal interactions between receptor and ligand that trigger a biological response; new advances in the synthesis and receptor-binding properties of the deltorphins are discussed in detail. These receptor-specific opioid peptides act as more than mimics of endogenous opioids: their high selectivity for either the mu or delta receptor makes them formidable environmentally derived agents in the search for new antagonists for treating opiate addiction and in the treatment of a wide variety of human disorders. Images p648-a Figure 2. Figure 3. PMID:7895704

  8. Opioid Analgesics for Chronic Non-Cancer Pain: A Guideline on Opioid Prescribing.

    PubMed

    Van Demark, Robert; Chang, Peter; Heinemann, Daniel

    2016-01-01

    Over the past decade, the use of opioid analgesics has risen dramatically both in the U.S. and South Dakota. Opioids have been increasingly used to treat chronic non-cancer pain; however, the utilization of opioids for this role has limited and questionable utility. The U.S. has also seen a rise of opioid abuse, addiction, misuse, and overdose. The various pharmacological and non-pharmacological strategies to help physicians manage chronic non-cancer pain and a guideline on appropriate opioid prescribing are presented. Before the decision is made to begin opioid therapy for chronic non-cancer pain, other pharmacological and non-pharmacological therapeutic strategies should be explored. The schema for responsible opioid prescribing can be dived into the following: the initial assessment, initiating opioid therapy, maintenance therapy, and the discontinuation of opioid treatment. These categories are explored, and a general approach to prescribing opioids for chronic non-cancer pain is presented. The Centers for Disease Control and Prevention (CDC) has declared opioid prescription abuse an "epidemic." There are a variety of methods clinicians can utilize to relieve chronic non-cancer pain. If opioid therapy is sought, clinicians should be mindful of the current state of opioid abuse and misuse. This guideline may aid clinicians in appropriate opioid prescribing.

  9. Inhibitory effects of opioids on compound action potentials in frog sciatic nerves and their chemical structures.

    PubMed

    Mizuta, Kotaro; Fujita, Tsugumi; Nakatsuka, Terumasa; Kumamoto, Eiichi

    2008-08-01

    An opioid tramadol more effectively inhibits compound action potentials (CAPs) than its metabolite mono-O-demethyl-tramadol (M1). To address further this issue, we examined the effects of opioids (morphine, codeine, ethylmorphine and dihydrocodeine) and cocaine on CAPs by applying the air-gap method to the frog sciatic nerve. All of the opioids at concentrations less than 10 mM reduced the peak amplitude of the CAP in a reversible and dose-dependent manner. The sequence of the CAP peak amplitude reductions was ethylmorphine>codeine>dihydrocodeine> or = morphine; the effective concentration for half-maximal inhibition (IC(50)) of ethylmorphine was 4.6 mM. All of the CAP inhibitions by opioids were resistant to a non-specific opioid-receptor antagonist naloxone. The CAP peak amplitude reductions produced by morphine, codeine and ethylmorphine were related to their chemical structures in such that this extent enhanced with an increase in the number of -CH(2) in a benzene ring, as seen in the inhibitory actions of tramadol and M1. Cocaine reduced CAP peak amplitudes with an IC(50) value of 0.80 mM. It is concluded that opioids reduce CAP peak amplitudes in a manner being independent of opioid-receptor activation and with an efficacy being much less than that of cocaine. It is suggested that the substituted groups of -OH bound to the benzene ring of morphine, codeine and ethylmorphine as well as of tramadol and M1, the structures of which are quite different from those of the opioids, may play an important role in producing nerve conduction block.

  10. The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C.

    PubMed

    Mestek, A; Hurley, J H; Bye, L S; Campbell, A D; Chen, Y; Tian, M; Liu, J; Schulman, H; Yu, L

    1995-03-01

    Opioids are some of the most efficacious analgesics used in humans. Prolonged administration of opioids, however, often causes the development of drug tolerance, thus limiting their effectiveness. To explore the molecular basis of those mechanisms that may contribute to opioid tolerance, we have isolated a cDNA for the human mu opioid receptor, the target of such opioid narcotics as morphine, codeine, methadone, and fentanyl. The receptor encoded by this cDNA is 400 amino acids long with 94% sequence similarity to the rat mu opioid receptor. Transient expression of this cDNA in COS-7 cells produced high-affinity binding sites to mu-selective agonists and antagonists. This receptor displays functional coupling to a recently cloned G-protein-activated K+ channel. When both proteins were expressed in Xenopus oocytes, functional desensitization developed upon repeated stimulation of the mu opioid receptor, as observed by a reduction in K+ current induced by the second mu receptor activation relative to that induced by the first. The extent of desensitization was potentiated by both the multifunctional calcium/calmodulin-dependent protein kinase and protein kinase C. These results demonstrate that kinase modulation is a molecular mechanism by which the desensitization of mu receptor signaling may be regulated at the cellular level, suggesting that this cellular mechanism may contribute to opioid tolerance in humans.

  11. YFa and analogs: Investigation of opioid receptors in smooth muscle contraction

    PubMed Central

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-01-01

    AIM: To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. METHODS: The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. RESULTS: YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. CONCLUSION: YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction. PMID:22110284

  12. YFa and analogs: investigation of opioid receptors in smooth muscle contraction.

    PubMed

    Kumar, Krishan; Goyal, Ritika; Mudgal, Annu; Mohan, Anita; Pasha, Santosh

    2011-10-28

    To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity. The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI. YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays. YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction.

  13. Opioid Addiction and Abuse in Primary Care Practice: A Comparison of Methadone and Buprenorphine as Treatment Options

    PubMed Central

    Bonhomme, Jean; Shim, Ruth S.; Gooden, Richard; Tyus, Dawn; Rust, George

    2014-01-01

    Opioid abuse and addiction have increased in frequency in the United States over the past 20 years. In 2009, an estimated 5.3 million persons used opioid medications nonmedically within the past month, 200 000 used heroin, and approximately 9.6% of African Americans used an illicit drug. Racial and ethnic minorities experience disparities in availability and access to mental health care, including substance use disorders. Primary care practitioners are often called upon to differentiate between appropriate, medically indicated opioid use in pain management vs inappropriate abuse or addiction. Racial and ethnic minority populations tend to favor primary care treatment settings over specialty mental health settings. Recent therapeutic advances allow patients requiring specialized treatment for opioid abuse and addiction to be managed in primary care settings. The Drug Addiction Treatment Act of 2000 enables qualified physicians with readily available short-term training to treat opioid-dependent patients with buprenorphine in an office-based setting, potentially making primary care physicians active partners in the diagnosis and treatment of opioid use disorders. Methadone and buprenorphine are effective opioid replacement agents for maintenance and/or detoxification of opioid-addicted individuals. However, restrictive federal regulations and stigmatization of opioid addiction and treatment have limited the availability of methadone. The opioid partial agonist-antagonist buprenorphine/naloxone combination has proven an effective alternative. This article reviews the literature on differences between buprenorphine and methadone regarding availability, efficacy, safety, side-effects, and dosing, identifying resources for enhancing the effectiveness of medication-assisted recovery through coordination with behavioral/psychological counseling, embedded in the context of recovery-oriented systems of care. PMID:23092049

  14. β-Endorphin via the Delta Opioid Receptor is a Major Factor in the Incubation of Cocaine Craving

    PubMed Central

    Dikshtein, Yahav; Barnea, Royi; Kronfeld, Noam; Lax, Elad; Roth-Deri, Ilana; Friedman, Alexander; Gispan, Iris; Elharrar, Einat; Levy, Sarit; Ben-Tzion, Moshe; Yadid, Gal

    2013-01-01

    Cue-induced cocaine craving intensifies, or ‘incubates', during the first few weeks of abstinence and persists over extended periods of time. One important factor implicated in cocaine addiction is the endogenous opioid β-endorphin. In the present study, we examined the possible involvement of β-endorphin in the incubation of cocaine craving. Rats were trained to self-administer cocaine (0.75 mg/kg, 10 days, 6 h/day), followed by either a 1-day or a 30-day period of forced abstinence. Subsequent testing for cue-induced cocaine-seeking behavior (without cocaine reinforcement) was performed. Rats exposed to the drug-associated cue on day 1 of forced abstinence demonstrated minimal cue-induced cocaine-seeking behavior concurrently with a significant increase in β-endorphin release in the nucleus accumbens (NAc). Conversely, exposure to the cue on day 30 increased cocaine seeking, while β-endorphin levels remained unchanged. Intra-NAc infusion of an anti-β-endorphin antibody (4 μg) on day 1 increased cue-induced cocaine seeking, whereas infusion of a synthetic β-endorphin peptide (100 ng) on day 30 significantly decreased cue response. Both intra-NAc infusions of the δ opioid receptor antagonist naltrindole (1 μg) on day 1 and naltrindole together with β-endorphin on day 30 increased cue-induced cocaine-seeking behavior. Intra-NAc infusion of the μ opioid receptor antagonist CTAP (30 ng and 3 μg) had no behavioral effect. Altogether, these results demonstrate a novel role for β-endorphin and the δ opioid receptor in the development of the incubation of cocaine craving. PMID:23800967

  15. Using behavioral economics to predict opioid use during prescription opioid dependence treatment.

    PubMed

    Worley, Matthew J; Shoptaw, Steven J; Bickel, Warren K; Ling, Walter

    2015-03-01

    Research grounded in behavioral economics has previously linked addictive behavior to disrupted decision-making and reward-processing, but these principles have not been examined in prescription opioid addiction, which is currently a major public health problem. This study examined whether pre-treatment drug reinforcement value predicted opioid use during outpatient treatment of prescription opioid addiction. Secondary analyses examined participants with prescription opioid dependence who received 12 weeks of buprenorphine-naloxone and counseling in a multi-site clinical trial (N=353). Baseline measures assessed opioid source and indices of drug reinforcement value, including the total amount and proportion of income spent on drugs. Weekly urine drug screens measured opioid use. Obtaining opioids from doctors was associated with lower pre-treatment drug spending, while obtaining opioids from dealers/patients was associated with greater spending. Controlling for demographics, opioid use history, and opioid source frequency, patients who spent a greater total amount (OR=1.30, p<.001) and a greater proportion of their income on drugs (OR=1.31, p<.001) were more likely to use opioids during treatment. Individual differences in drug reinforcement value, as indicated by pre-treatment allocation of economic resources to drugs, reflects propensity for continued opioid use during treatment among individuals with prescription opioid addiction. Future studies should examine disrupted decision-making and reward-processing in prescription opioid users more directly and test whether reinforcer pathology can be remediated in this population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Using behavioral economics to predict opioid use during prescription opioid dependence treatment

    PubMed Central

    Worley, Matthew J.; Shoptaw, Steven J.; Bickel, Warren K.; Ling, Walter

    2015-01-01

    Background Research grounded in behavioral economics has previously linked addictive behavior to disrupted decision-making and reward-processing, but these principles have not been examined in prescription opioid addiction, which is currently a major public health problem. This study examined whether pre-treatment drug reinforcement value predicted opioid use during outpatient treatment of prescription opioid addiction. Methods Secondary analyses examined participants with prescription opioid dependence who received 12 weeks of buprenorphine-naloxone and counseling in a multi-site clinical trial (N = 353). Baseline measures assessed opioid source and indices of drug reinforcement value, including the total amount and proportion of income spent on drugs. Weekly urine drug screens measured opioid use. Results Obtaining opioids from doctors was associated with lower pre-treatment drug spending, while obtaining opioids from dealers/patients was associated with greater spending. Controlling for demographics, opioid use history, and opioid source frequency, patients who spent a greater total amount (OR = 1.30, p < .001) and a greater proportion of their income on drugs (OR = 1.31, p < .001) were more likely to use opioids during treatment. Conclusions Individual differences in drug reinforcement value, as indicated by pre-treatment allocation of economic resources to drugs, reflects propensity for continued opioid use during treatment among individuals with prescription opioid addiction. Future studies should examine disrupted decision-making and reward-processing in prescription opioid users more directly and test whether reinforcer pathology can be remediated in this population. PMID:25622776

  17. Tumor Targeting and Pharmacokinetics of a Near-Infrared Fluorescent-Labeled δ-Opioid Receptor Antagonist Agent, Dmt-Tic-Cy5.

    PubMed

    Huynh, Amanda Shanks; Estrella, Veronica; Stark, Valerie E; Cohen, Allison S; Chen, Tingan; Casagni, Todd J; Josan, Jatinder S; Lloyd, Mark C; Johnson, Joseph; Kim, Jongphil; Hruby, Victor J; Vagner, Josef; Morse, David L

    2016-02-01

    Fluorescence molecular imaging can be employed for the development of novel cancer targeting agents. Herein, we investigated the pharmacokinetics (PK) and cellular uptake of Dmt-Tic-Cy5, a delta-opioid receptor (δOR) antagonist-fluorescent dye conjugate, as a tumor-targeting molecular imaging agent. δOR expression is observed normally in the CNS, and pathologically in some tumors, including lung liver and breast cancers. In vitro, in vivo, and ex vivo experiments were conducted to image and quantify the fluorescence signal associated with Dmt-Tic-Cy5 over time using in vitro and intravital fluorescence microscopy and small animal fluorescence imaging of tumor-bearing mice. We observed specific retention of Dmt-Tic-Cy5 in tumors with maximum uptake in δOR-expressing positive tumors at 3 h and observable persistence for >96 h; clearance from δOR nonexpressing negative tumors by 6 h; and systemic clearance from normal organs by 24 h. Live-cell and intravital fluorescence microscopy demonstrated that Dmt-Tic-Cy5 had sustained cell-surface binding lasting at least 24 h with gradual internalization over the initial 6 h following administration. Dmt-Tic-Cy5 is a δOR-targeted agent that exhibits long-lasting and specific signal in δOR-expressing tumors, is rapidly cleared from systemic circulation, and is not retained in non-δOR-expressing tissues. Hence, Dmt-Tic-Cy5 has potential as a fluorescent tumor imaging agent.

  18. New developments in managing opioid addiction: impact of a subdermal buprenorphine implant

    PubMed Central

    Itzoe, MariaLisa; Guarnieri, Michael

    2017-01-01

    Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT). For decades, oral or intravenous (IV) MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone), antagonists (naltrexone, naloxone), and combinations of the two (buprenorphine/naloxone). While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016) is Probuphine®, which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed. PMID:28546740

  19. New developments in managing opioid addiction: impact of a subdermal buprenorphine implant.

    PubMed

    Itzoe, MariaLisa; Guarnieri, Michael

    2017-01-01

    Opioid addiction to prescription and illicit drugs is a serious and growing problem. In the US alone, >2.4 million people suffer from opioid use disorder. Government and pharmaceutical agencies have begun to address this crisis with recently released and revised task forces and medication-assisted therapies (MAT). For decades, oral or intravenous (IV) MATs have helped patients in their recovery by administration of opioid agonists (methadone, buprenorphine, oxycodone), antagonists (naltrexone, naloxone), and combinations of the two (buprenorphine/naloxone). While shown to be successful, particularly when combined with psychological counseling, oral and IV forms of treatment come with constraints and challenges. Patients can become addicted to the agonists themselves, and there is increased risk for diversion, abuse, or missed dosages. Consequently, long-acting implants have begun to be developed as a potentially preferable method of agonist delivery. To date, the newest implant approved by the US Food and Drug Administration (May 2016) is Probuphine ® , which delivers steady-state levels of buprenorphine over the course of 6 months. Numerous studies have demonstrated its efficacy and safety. Yet, implants come with their own risks such as surgical site irritation, possible movement, and protrusion of implant out of skin. This review introduces the opioid abuse epidemic, examines existing medications used for therapy, and highlights Probuphine as a new treatment option. Costs associated with MATs are also discussed.

  20. Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone.

    PubMed

    Mallik, Adiel; Chanda, Mona Lisa; Levitin, Daniel J

    2017-02-08

    Music's universality and its ability to deeply affect emotions suggest an evolutionary origin. Previous investigators have found that naltrexone (NTX), a μ-opioid antagonist, may induce reversible anhedonia, attenuating both positive and negative emotions. The neurochemical basis of musical experience is not well-understood, and the NTX-induced anhedonia hypothesis has not been tested with music. Accordingly, we administered NTX or placebo on two different days in a double-blind crossover study, and assessed participants' responses to music using both psychophysiological (objective) and behavioral (subjective) measures. We found that both positive and negative emotions were attenuated. We conclude that endogenous opioids are critical to experiencing both positive and negative emotions in music, and that music uses the same reward pathways as food, drug and sexual pleasure. Our findings add to the growing body of evidence for the evolutionary biological substrates of music.

  1. Use of a narcotic antagonist (nalmefene) to suppress self-mutilative behavior in a stallion.

    PubMed

    Dodman, N H; Shuster, L; Court, M H; Patel, J

    1988-06-01

    Nalmefene, an opioid antagonist, caused a decrease in self-mutilative behavior in a 500-kg stallion. Self-mutilative attempts were counted during a control period and on 4 subsequent occasions after the IM administration of 100 mg, 200 mg, 400 mg, or 800 mg of nalmefene. The frequency of self-mutilation decreased with increasing doses of nalmefene and was virtually abolished with the 800-mg dose.

  2. Extended-release intramuscular naltrexone (VIVITROL®): a review of its use in the prevention of relapse to opioid dependence in detoxified patients.

    PubMed

    Syed, Yahiya Y; Keating, Gillian M

    2013-10-01

    Naltrexone is a μ-opioid receptor antagonist that blocks the euphoric effects of heroin and prescription opioids. In order to improve treatment adherence, a once-monthly, intramuscular, extended-release formulation of naltrexone (XR-NTX) [VIVITROL(®)] has been developed, and approved in the USA and Russia for the prevention of relapse to opioid dependence, after opioid detoxification. The clinical efficacy of this formulation in patients with opioid dependence was demonstrated in a 24-week, randomized, double-blind, placebo-controlled, multicentre, phase III trial (ALK21-013; n = 250). In this trial, opioid-detoxified patients receiving XR-NTX 380 mg once every 4 weeks, in combination with psychosocial support, had a significantly higher median proportion of weeks of confirmed opioid abstinence during weeks 5-24, compared with those receiving placebo (primary endpoint). A significantly higher proportion of patients receiving XR-NTX achieved total confirmed abstinence during this period than those receiving placebo. XR-NTX was also associated with a significantly greater reduction in opioid craving and a significantly longer treatment retention period than placebo. XR-NTX was generally well tolerated in the phase III trial. The most common (incidence ≥5 %) treatment-emergent adverse events that also occurred more frequently with XR-NTX than with placebo were hepatic enzyme abnormalities, nasopharyngitis, insomnia, hypertension, influenza and injection-site pain. Thus, XR-NTX is a useful treatment option for the prevention of relapse to opioid dependence, following opioid detoxification.

  3. Development of the Chronic Pain Coding System (CPCS) for Characterizing Patient-Clinician Discussions About Chronic Pain and Opioids.

    PubMed

    Henry, Stephen G; Chen, Meng; Matthias, Marianne S; Bell, Robert A; Kravitz, Richard L

    2016-10-01

    To describe the development and initial application of the Chronic Pain Coding System. Secondary analysis of data from a randomized clinical trial. Six primary care clinics in northern California. Forty-five primary care visits involving 33 clinicians and 45 patients on opioids for chronic noncancer pain. The authors developed a structured coding system to accurately and objectively characterize discussions about pain and opioids. Two coders applied the final system to visit transcripts. Intercoder agreement for major coding categories was moderate to substantial (kappa = 0.5-0.7). Mixed effects regression was used to test six hypotheses to assess preliminary construct validity. Greater baseline pain interference was associated with longer pain discussions (P = 0.007) and more patient requests for clinician action (P = 0.02) but not more frequent negative patient evaluations of pain (P = 0.15). Greater clinician-reported visit difficulty was associated with more frequent disagreements with clinician recommendations (P = 0.003) and longer discussions of opioid risks (P = 0.049) but not more frequent requests for clinician action (P = 0.11). Rates of agreement versus disagreement with patient requests and clinician recommendations were similar for opioid-related and non-opioid-related utterances. This coding system appears to be a reliable and valid tool for characterizing patient-clinician communication about opioids and chronic pain during clinic visits. Objective data on how patients and clinicians discuss chronic pain and opioids are necessary to identify communication patterns and strategies for improving the quality and productivity of discussions about chronic pain that may lead to more effective pain management and reduce inappropriate opioid prescribing. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Will abuse-deterrent formulations of opioid analgesics be successful in achieving their purpose?

    PubMed

    Bannwarth, Bernard

    2012-09-10

    During the last 2 decades, there has been a dramatic increase in the use of strong opioids for chronic non-cancer pain. This increase has been accompanied by a steep increase in abuse, misuse, and both fatal and non-fatal overdoses involving prescription opioids. The situation is already alarming in the US. Prescription opioid-related harm is a complex, multifactorial issue that requires a multifaceted solution. In this respect, formulations of opioid analgesics designed to resist or deter abuse may be a useful component of a comprehensive opioid risk minimization programme. Such formulations have or are being developed. Abuse-resistant opioids include those that use some kind of physical barrier to prevent tampering with the formulation. Abuse-deterrent opioids are not necessarily resistant to tampering, but contain substances that are designed to make the formulation less attractive to abusers. This article focuses on two products intended to deter abuse that were reviewed by the US Food and Drug Administration (FDA). The first (Embeda®) consists of extended-release morphine with sequestered naltrexone, an opioid antagonist that is released if the tablet is compromised by chewing or crushing. Although Embeda® exhibited abuse-deterrent features, its label warns that it can be abused in a manner similar to other opioid agonists. Furthermore, tampering with Embeda® will result in the release of naltrexone, which may precipitate withdrawal in opioid-tolerant individuals. In March 2011, all dosage forms of Embeda® were recalled because the product failed to meet routine stability standards, and its return date to the market is currently unknown. The second product (Acurox®) was intended to be both tamper resistant and abuse deterrent. It consisted of an immediate-release oxycodone tablet with subtherapeutic niacin as an aversive agent and used a gel-forming ingredient designed to inhibit inhalation and prevent extraction of the drug for injection. The new drug

  5. Effects of naltrexone are influenced by childhood adversity during negative emotional processing in addiction recovery.

    PubMed

    Savulich, G; Riccelli, R; Passamonti, L; Correia, M; Deakin, J F W; Elliott, R; Flechais, R S A; Lingford-Hughes, A R; McGonigle, J; Murphy, A; Nutt, D J; Orban, C; Paterson, L M; Reed, L J; Smith, D G; Suckling, J; Tait, R; Taylor, E M; Sahakian, B J; Robbins, T W; Ersche, K D

    2017-03-07

    Naltrexone is an opioid receptor antagonist used in the management of alcohol dependence. Although the endogenous opioid system has been implicated in emotion regulation, the effects of mu-opioid receptor blockade on brain systems underlying negative emotional processing are not clear in addiction. Individuals meeting criteria for alcohol dependence alone (n=18, alcohol) and in combination with cocaine and/or opioid dependence (n=21, alcohol/drugs) and healthy individuals without a history of alcohol or drug dependence (n=21) were recruited. Participants were alcohol and drug abstinent before entered into this double-blind, placebo-controlled, randomized, crossover study. Functional magnetic resonance imaging was used to investigate brain response while viewing aversive and neutral images relative to baseline on 50 mg of naltrexone and placebo. We found that naltrexone modulated task-related activation in the medial prefrontal cortex and functional connectivity between the anterior cingulate cortex and the hippocampus as a function of childhood adversity (for aversive versus neutral images) in all groups. Furthermore, there was a group-by-treatment-by-condition interaction in the right amygdala, which was mainly driven by a normalization of response for aversive relative to neutral images under naltrexone in the alcohol/drugs group. We conclude that early childhood adversity is one environmental factor that influences pharmacological response to naltrexone. Pharmacotherapy with naltrexone may also have some ameliorative effects on negative emotional processing in combined alcohol and drug dependence, possibly due to alterations in endogenous opioid transmission or the kappa-opioid receptor antagonist actions of naltrexone.

  6. Effects of naltrexone are influenced by childhood adversity during negative emotional processing in addiction recovery

    PubMed Central

    Savulich, G; Riccelli, R; Passamonti, L; Correia, M; Deakin, J F W; Elliott, R; Flechais, R S A; Lingford-Hughes, A R; McGonigle, J; Murphy, A; Nutt, D J; Orban, C; Paterson, L M; Reed, L J; Smith, D G; Suckling, J; Tait, R; Taylor, E M; Sahakian, B J; Robbins, T W; Ersche, K D

    2017-01-01

    Naltrexone is an opioid receptor antagonist used in the management of alcohol dependence. Although the endogenous opioid system has been implicated in emotion regulation, the effects of mu-opioid receptor blockade on brain systems underlying negative emotional processing are not clear in addiction. Individuals meeting criteria for alcohol dependence alone (n=18, alcohol) and in combination with cocaine and/or opioid dependence (n=21, alcohol/drugs) and healthy individuals without a history of alcohol or drug dependence (n=21) were recruited. Participants were alcohol and drug abstinent before entered into this double-blind, placebo-controlled, randomized, crossover study. Functional magnetic resonance imaging was used to investigate brain response while viewing aversive and neutral images relative to baseline on 50 mg of naltrexone and placebo. We found that naltrexone modulated task-related activation in the medial prefrontal cortex and functional connectivity between the anterior cingulate cortex and the hippocampus as a function of childhood adversity (for aversive versus neutral images) in all groups. Furthermore, there was a group-by-treatment-by-condition interaction in the right amygdala, which was mainly driven by a normalization of response for aversive relative to neutral images under naltrexone in the alcohol/drugs group. We conclude that early childhood adversity is one environmental factor that influences pharmacological response to naltrexone. Pharmacotherapy with naltrexone may also have some ameliorative effects on negative emotional processing in combined alcohol and drug dependence, possibly due to alterations in endogenous opioid transmission or the kappa-opioid receptor antagonist actions of naltrexone. PMID:28267152

  7. Development of the Chronic Pain Coding System (CPCS) for Characterizing Patient-Clinician Discussions About Chronic Pain and Opioids

    PubMed Central

    Chen, Meng; Matthias, Marianne S.; Bell, Robert A.; Kravitz, Richard L.

    2016-01-01

    Objective. To describe the development and initial application of the Chronic Pain Coding System. Design. Secondary analysis of data from a randomized clinical trial. Setting. Six primary care clinics in northern California. Subjects. Forty-five primary care visits involving 33 clinicians and 45 patients on opioids for chronic noncancer pain. Methods. The authors developed a structured coding system to accurately and objectively characterize discussions about pain and opioids. Two coders applied the final system to visit transcripts. Intercoder agreement for major coding categories was moderate to substantial (kappa = 0.5–0.7). Mixed effects regression was used to test six hypotheses to assess preliminary construct validity. Results. Greater baseline pain interference was associated with longer pain discussions (P = 0.007) and more patient requests for clinician action (P = 0.02) but not more frequent negative patient evaluations of pain (P = 0.15). Greater clinician-reported visit difficulty was associated with more frequent disagreements with clinician recommendations (P = 0.003) and longer discussions of opioid risks (P = 0.049) but not more frequent requests for clinician action (P = 0.11). Rates of agreement versus disagreement with patient requests and clinician recommendations were similar for opioid-related and non-opioid–related utterances. Conclusions. This coding system appears to be a reliable and valid tool for characterizing patient-clinician communication about opioids and chronic pain during clinic visits. Objective data on how patients and clinicians discuss chronic pain and opioids are necessary to identify communication patterns and strategies for improving the quality and productivity of discussions about chronic pain that may lead to more effective pain management and reduce inappropriate opioid prescribing. PMID:26936453

  8. Exploring Molecular Mechanisms of Ligand Recognition by Opioid Receptors with Metadynamics†

    PubMed Central

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-01-01

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible entry pathways of the non-selective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the β2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates), and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs. PMID:19785461

  9. Exploring molecular mechanisms of ligand recognition by opioid receptors with metadynamics.

    PubMed

    Provasi, Davide; Bortolato, Andrea; Filizola, Marta

    2009-10-27

    Opioid receptors are G protein-coupled receptors (GPCRs) of utmost significance in the development of potent analgesic drugs for the treatment of severe pain. An accurate evaluation at the molecular level of the ligand binding pathways into these receptors may play a key role in the design of new molecules with more desirable properties and reduced side effects. The recent characterization of high-resolution X-ray crystal structures of non-rhodopsin GPCRs for diffusible hormones and neurotransmitters presents an unprecedented opportunity to build improved homology models of opioid receptors, and to study in more detail their molecular mechanisms of ligand recognition. In this study, possible pathways for entry of the nonselective antagonist naloxone (NLX) from the water environment into the well-accepted alkaloid binding pocket of a delta opioid receptor (DOR) molecular model based on the beta2-adrenergic receptor crystal structure are explored using microsecond-scale well-tempered metadynamics simulations. Using as collective variables distances that account for the position of NLX and of the receptor extracellular loop 2 in relation to the DOR binding pocket, we were able to distinguish between the different states visited by the ligand (i.e., docked, undocked, and metastable bound intermediates) and to predict a free energy of binding close to experimental values after correcting for possible drawbacks of the sampling approach. The strategy employed herein holds promise for its application to the docking of diverse ligands to the opioid receptors as well as to other GPCRs.

  10. Orally administered H-Dmt-Tic-Lys-NH-CH2-Ph (MZ-2), a potent mu/delta-opioid receptor antagonist, regulates obese-related factors in mice.

    PubMed

    Marczak, Ewa D; Jinsmaa, Yunden; Myers, Page H; Blankenship, Terry; Wilson, Ralph; Balboni, Gianfranco; Salvadori, Severo; Lazarus, Lawrence H

    2009-08-15

    Orally active dual mu-/delta-opioid receptor antagonist, H-Dmt-Tic-Lys-NH-CH(2)-Ph (MZ-2) was applied to study body weight gain, fat content, bone mineral density, serum insulin, cholesterol and glucose levels in female ob/ob (B6.V-Lep/J homozygous) and lean wild mice with or without voluntary exercise on wheels for three weeks, and during a two week post-treatment period under the same conditions. MZ-2 (10mg/kg/day, p.o.) exhibited the following actions: (1) reduced body weight gain in sedentary obese mice that persisted beyond the treatment period without effect on lean mice; (2) stimulated voluntary running on exercise wheels of both groups of mice; (3) decreased fat content, enhanced bone mineral density (BMD), and decreased serum insulin and glucose levels in obese mice; and (4) MZ-2 (30 microM) increased BMD in human osteoblast cells (MG-63) comparable to naltrexone, while morphine inhibited mineral nodule formation. Thus, MZ-2 has potential application in the clinical management of obesity, insulin and glucose levels, and the amelioration of osteoporosis.

  11. An analysis of errors, discrepancies, and variation in opioid prescriptions for adult outpatients at a teaching hospital

    PubMed Central

    Bicket, Mark C.; Kattail, Deepa; Yaster, Myron; Wu, Christopher L.; Pronovost, Peter

    2017-01-01

    Objective To determine opioid prescribing patterns and rate of three types of errors, discrepancies, and variation from ideal practice. Design Retrospective review of opioid prescriptions processed at an outpatient pharmacy Setting Tertiary institutional medical center Patients We examined 510 consecutive opioid medication prescriptions for adult patients processed at an institutional outpatient pharmacy in June 2016 for patient, provider, and prescription characteristics. Main Outcome Measure(s) We analyzed prescriptions for deviation from best practice guidelines, lack of two patient identifiers, and noncompliance with Drug Enforcement Agency (DEA) rules. Results Mean patient age (SD) was 47.5 years (17.4). The most commonly prescribed opioid was oxycodone (71%), usually not combined with acetaminophen. Practitioners prescribed tablet formulation to 92% of the sample, averaging 57 (47) pills. We identified at least one error on 42% of prescriptions. Among all prescriptions, 9% deviated from best practice guidelines, 21% failed to include two patient identifiers, and 41% were noncompliant with DEA rules. Errors occurred in 89% of handwritten prescriptions, 0% of electronic health record (EHR) computer-generated prescriptions, and 12% of non-EHR computer-generated prescriptions. Inter-rater reliability by kappa was 0.993. Conclusions Inconsistencies in opioid prescribing remain common. Handwritten prescriptions continue to demonstrate higher associations of errors, discrepancies, and variation from ideal practice and government regulations. All computer-generated prescriptions adhered to best practice guidelines and contained two patient identifiers, and all EHR prescriptions were fully compliant with DEA rules. PMID:28345746

  12. Synthesis and pharmacology of halogenated δ-opioid-selective [d-Ala(2)]deltorphin II peptide analogues.

    PubMed

    Pescatore, Robyn; Marrone, Gina F; Sedberry, Seth; Vinton, Daniel; Finkelstein, Netanel; Katlowitz, Yitzchak E; Pasternak, Gavril W; Wilson, Krista R; Majumdar, Susruta

    2015-06-17

    Deltorphins are naturally occurring peptides produced by the skin of the giant monkey frog (Phyllomedusa bicolor). They are δ-opioid receptor-selective agonists. Herein, we report the design and synthesis of a peptide, Tyr-d-Ala-(pI)Phe-Glu-Ile-Ile-Gly-NH2 3 (GATE3-8), based on the [d-Ala(2)]deltorphin II template, which is δ-selective in in vitro radioligand binding assays over the μ- and κ-opioid receptors. It is a full agonist in [(35)S]GTPγS functional assays and analgesic when administered supraspinally to mice. Analgesia of 3 (GATE3-8) is blocked by the selective δ receptor antagonist naltrindole, indicating that the analgesic action of 3 is mediated by the δ-opioid receptor. We have established a radioligand in which (125)I is incorporated into 3 (GATE3-8). The radioligand has a KD of 0.1 nM in Chinese hamster ovary (CHO) cells expressing the δ receptor. Additionally, a series of peptides based on 3 (GATE3-8) was synthesized by incorporating various halogens in the para position on the aromatic ring of Phe(3). The peptides were characterized for binding affinity at the μ-, δ-, and κ-opioid receptors, which showed a linear correlation between binding affinity and the size of the halogen substituent. These peptides may be interesting tools for probing δ-opioid receptor pharmacology.

  13. Synthesis and Pharmacology of Halogenated δ-Opioid-Selective [D-Ala2]Deltorphin II Peptide Analogues

    PubMed Central

    Pescatore, Robyn; Marrone, Gina F.; Sedberry, Seth; Vinton, Daniel; Finkelstein, Netanel; Katlowitz, Yitzchak E.; Pasternak, Gavril W.; Wilson, Krista R.; Majumdar, Susruta

    2015-01-01

    Deltorphins are naturally occurring peptides produced by the skin of the giant monkey frog (Phyllomedusa bicolor). They are δ-opioid receptor-selective agonists. Herein, we report the design and synthesis of a peptide, Tyr-D-Ala-(pI)Phe-Glu-Ile-Ile-Gly-NH2 3 (GATE3-8), based on the [D-Ala2]deltorphin II template, which is δ-selective in in vitro radioligand binding assays over the μ- and κ-opioid receptors. It is a full agonist in [35S]GTPγS functional assays and analgesic when administered supraspinally to mice. Analgesia of 3 (GATE3-8) is blocked by the selective δ receptor antagonist naltrindole, indicating that the analgesic action of 3 is mediated by the δ-opioid receptor. We have established a radioligand in which 125I isincorporated into 3 (GATE3-8). The radioligand has a KD of 0.1 nM in Chinese hamster ovary (CHO) cells expressing the δ receptor. Additionally, a series of peptides based on 3 (GATE3-8) was synthesized by incorporating various halogens in the para position on the aromatic ring of Phe3. The peptides were characterized for binding affinity at the μ-, δ-, and κ-opioid receptors, which showed a linear correlation between binding affinity and the size of the halogen substituent. These peptides may be interesting tools for probing δ-opioid receptor pharmacology. PMID:25844930

  14. Synthesis and evaluation of novel opioid ligands with a C-homomorphinan skeleton.

    PubMed

    Ishikawa, Kyoko; Mochizuki, Yusuke; Hirayama, Shigeto; Nemoto, Toru; Nagai, Kenichiro; Itoh, Kennosuke; Fujii, Hideaki

    2016-05-15

    As the reports about C-homomorphinans with the seven-membered C-ring are much fewer than those of morphinan derivatives with a six-membered C-ring, we attempted to synthesize C-homomorphinan derivatives and to evaluate their opioid activities. C-Homomorphinan 5 showed sufficient binding affinities to the opioid receptors. C-Homomorphinan derivatives possessing the δ address moiety such as indole (NTI-type), quinoline, or benzylidene (BNTX-type) functionalities showed the strongest binding affinities for the δ receptor among the three types of opioid receptors, which indicated that the C-homomorphinan skeleton sufficiently functions as a message-part in the ligand. Although NTI-type compound 8 and quinoline compound 9 with C-homomorphinan scaffold exhibited lower affinities and selectivities for the δ receptor than the corresponding morphinan derivatives did, both the binding affinity and selectivity for the δ receptor of BNTX-type compound 12 with a seven-membered C-ring were improved compared with the corresponding compounds with a six-membered C-ring including BNTX itself. BNTX-Type compound 12 was the most selective δ receptor antagonist among the tested compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Long-term aquaretic efficacy of a selective nonpeptide V(2)-vasopressin receptor antagonist, SR121463, in cirrhotic rats.

    PubMed

    Jiménez, W; Gal, C S; Ros, J; Cano, C; Cejudo, P; Morales-Ruiz, M; Arroyo, V; Pascal, M; Rivera, F; Maffrand, J P; Rodés, J

    2000-10-01

    Water retention in experimental cirrhosis can be reversed by blocking V(2)-vasopressin (AVP) receptors with the nonpeptide antagonist OPC-31260 or by using the kappa-opioid receptor agonist niravoline, a compound inhibiting central AVP release. However, reluctance to use these drugs in human beings has emerged because the former loses aquaretic efficacy in rats after 2 days of treatment and the latter may have adverse effects in humans. Recently, a new potent and selective nonpeptide V(2)-AVP receptor antagonist, SR121463, has been developed that could be useful for the treatment of dilutional hyponatremia in human cirrhosis. The current study assessed the aquaretic efficacy of 10-day chronic oral administration of SR121463 (0.5 mg/kg/day) in cirrhotic rats with ascites and impaired water excretion after a water load (minimum urinary osmolality >160 mOsm/kg and percentage of water load excreted <60%). Urine volume (UV), osmolality (U(Osm)V), and sodium excretion (U(Na)V) were measured daily. At the end of the 10-day treatment, mean arterial pressure also was measured. In basal conditions cirrhotic rats showed ascites, sodium retention, and impaired water excretion. UV, U(Osm)V, and U(Na)V did not change throughout the study in cirrhotic rats receiving the vehicle. In contrast, SR121463 increased UV and reduced U(Osm)V during the 10-day treatment. This resulted in a greater renal ability to excrete a water load and normalization in serum sodium and osmolality. During the first 6 days of treatment, SR121463 also increased U(Na)V without affecting mean arterial pressure. These data suggest that SR121463 could be of therapeutical value for chronic management of human cirrhosis.

  16. Effect of Iboga Alkaloids on µ-Opioid Receptor-Coupled G Protein Activation

    PubMed Central

    Antonio, Tamara; Childers, Steven R.; Rothman, Richard B.; Dersch, Christina M.; King, Christine; Kuehne, Martin; Bornmann, William G.; Eshleman, Amy J.; Janowsky, Aaron; Simon, Eric R.; Reith, Maarten E. A.; Alper, Kenneth

    2013-01-01

    Objective The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids. Methods Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([35S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices. Results And Significance In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [35S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [35S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [35S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a

  17. Effect of Iboga alkaloids on µ-opioid receptor-coupled G protein activation.

    PubMed

    Antonio, Tamara; Childers, Steven R; Rothman, Richard B; Dersch, Christina M; King, Christine; Kuehne, Martin; Bornmann, William G; Eshleman, Amy J; Janowsky, Aaron; Simon, Eric R; Reith, Maarten E A; Alper, Kenneth

    2013-01-01

    The iboga alkaloids are a class of small molecules defined structurally on the basis of a common ibogamine skeleton, some of which modify opioid withdrawal and drug self-administration in humans and preclinical models. These compounds may represent an innovative approach to neurobiological investigation and development of addiction pharmacotherapy. In particular, the use of the prototypic iboga alkaloid ibogaine for opioid detoxification in humans raises the question of whether its effect is mediated by an opioid agonist action, or if it represents alternative and possibly novel mechanism of action. The aim of this study was to independently replicate and extend evidence regarding the activation of μ-opioid receptor (MOR)-related G proteins by iboga alkaloids. Ibogaine, its major metabolite noribogaine, and 18-methoxycoronaridine (18-MC), a synthetic congener, were evaluated by agonist-stimulated guanosine-5´-O-(γ-thio)-triphosphate ([(35)S]GTPγS) binding in cells overexpressing the recombinant MOR, in rat thalamic membranes, and autoradiography in rat brain slices. In rat thalamic membranes ibogaine, noribogaine and 18-MC were MOR antagonists with functional Ke values ranging from 3 uM (ibogaine) to 13 uM (noribogaine and 18MC). Noribogaine and 18-MC did not stimulate [(35)S]GTPγS binding in Chinese hamster ovary cells expressing human or rat MORs, and had only limited partial agonist effects in human embryonic kidney cells expressing mouse MORs. Ibogaine did not did not stimulate [(35)S]GTPγS binding in any MOR expressing cells. Noribogaine did not stimulate [(35)S]GTPγS binding in brain slices using autoradiography. An MOR agonist action does not appear to account for the effect of these iboga alkaloids on opioid withdrawal. Taken together with existing evidence that their mechanism of action also differs from that of other non-opioids with clinical effects on opioid tolerance and withdrawal, these findings suggest a novel mechanism of action, and further

  18. The Kappa Opioid Agonist U-50, 488H Antagonizes Respiratory Effects of Mu Opioid Receptor Agonists in Conscious Rats

    DTIC Science & Technology

    1993-01-01

    AD 263 043 •1TATION PAGEl ,,, ’, .~- AD- A263 043 §1(d4A 𔃾f *. V A II t~ji lw A I L L A I t C At ( 0 4. ti11 !f AND SUSTITLIf 7 ik’h LiA 6. AUTHOR...and mu antagonistic properties of U-S0,488H were blocked corn- increased arterial PCO2 and blood pressure. Morphine and a low pletely after...I’Nkl IOF AM A (󈧏,00V AND FXP5FHI’-INIAt To IIFHAVFITI)’. Vol , 24, •, *,,iq nr:1ii ,, 11. hv 𔃻’h1. American S .io, fir I’hnrniar ,,.gv and IF rlmn

  19. Past-year Prescription Drug Monitoring Program Opioid Prescriptions and Self-reported Opioid Use in an Emergency Department Population With Opioid Use Disorder.

    PubMed

    Hawk, Kathryn; D'Onofrio, Gail; Fiellin, David A; Chawarski, Marek C; O'Connor, Patrick G; Owens, Patricia H; Pantalon, Michael V; Bernstein, Steven L

    2017-11-22

    Despite increasing reliance on prescription drug monitoring programs (PDMPs) as a response to the opioid epidemic, the relationship between aberrant drug-related behaviors captured by the PDMP and opioid use disorder is incompletely understood. How PDMP data should guide emergency department (ED) assessment has not been studied. The objective was to evaluate a relationship between PDMP opioid prescription records and self-reported nonmedical opioid use of prescription opioids in a cohort of opioid-dependent ED patients enrolled in a treatment trial. PDMP opioid prescription records during 1 year prior to study enrollment on 329 adults meeting Diagnostic and Statistical Manual IV criteria for opioid dependence entering a randomized clinical trial in a large, urban ED were cross-tabulated with data on 30-day nonmedical prescription opioid use self-report. The association among these two types of data was assessed by the Goodman and Kruskal's gamma; a logistic regression was used to explore characteristics of participants who had PDMP record of opioid prescriptions. During 1 year prior to study enrollment, 118 of 329 (36%) patients had at least one opioid prescription (range = 1-51) in our states' PDMP. Patients who reported ≥15 of 30 days of nonmedical prescription opioid use were more likely to have at least four PDMP opioid prescriptions (20/38; 53%) than patients reporting 1 to 14 days (14/38, 37%) or zero days of nonmedical prescription opioid use (4/38, 11%; p = 0.002). Female sex and having health insurance were significantly more represented in the PDMP (p < 0.05 for both). PDMPs may be helpful in identifying patients with certain aberrant drug-related behavior, but are unable to detect many patients with opioid use disorder. The majority of ED patients with opioid use disorder were not captured by the PDMP, highlighting the importance of using additional methods such as screening and clinical history to identify opioid use disorders in ED patients and the

  20. Involvement of opioid and other systems in ethanol abstinence audiogenic seizures in the rat?

    PubMed

    Kotlińska, J; Langwiński, R

    1985-01-01

    The action of opiate receptor agonists: (D-Ala2)-methionine enkephalinamide (D-MEA), morphine, heroin, etorphine, and antagonists: naloxone and diprenorphine on audiogenic seizures was tested during ethanol abstinence. The action of diazepam and clonidine was also tested Morphine (5 and 20 mg/kg), but not heroin and etorphine, given intraperitoneally inhibited the seizures, similarly as intraventricularly administered D-MEA did. However, morphine given by this route was ineffective. Diazepam and clonidine inhibited audiogenic seizures: the action of clonidine was counteracted by yohimbine, but not by prazosin. The results may be considered as supporting the hypothesis on the participation of opioid system in ethanol abstinence. However, the participation of gabergic and noradrenergic systems cannot be ruled out: these systems may possibly interact with the opioid system in evoking the symptoms of ethanol abstinence.

  1. Analgesia and Opioids: A Pharmacogenetics Shortlist for Implementation in Clinical Practice.

    PubMed

    Matic, Maja; de Wildt, Saskia N; Tibboel, Dick; van Schaik, Ron H N

    2017-07-01

    The use of opioids to alleviate pain is complicated by the risk of severe adverse events and the large variability in dose requirements. Pharmacogenetics (PGx) could possibly be used to tailor pain medication based on an individual's genetic background. Many potential genetic markers have been described, and the importance of genetic predisposition in opioid efficacy and toxicity has been demonstrated in knockout mouse models and human twin studies. Such predictors are especially of value for neonates and young children, in whom the assessment of efficacy or side effects is complicated by the inability of the patient to communicate this properly. The current problem is determining which of the many potential candidates to focus on for clinical implementation. We systematically searched publications on PGx for opioids in 5 databases, aiming to identify PGx markers with sufficient robust data and high enough occurrence for potential clinical application. The initial search yielded 4257 unique citations, eventually resulting in 852 relevant articles covering 24 genes. From these genes, we evaluated the evidence and selected the most promising 10 markers: cytochrome P450 family 2 subfamily D member 6 ( CYP2D6 ), cytochrome P450 family 3 subfamily A member 4 ( CYP3A4 ), cytochrome P450 family 3 subfamily A member 5 ( CYP3A5 ), UDP glucuronosyltransferase family 2 member B7 ( UGT2B7 ), ATP binding cassette subfamily B member 1 ( ABCB1 ), ATP binding cassette subfamily C member 3 ( ABCC3 ), solute carrier family 22 member 1 ( SLC22A1 ), opioid receptor kappa 1 ( OPRM1 ), catechol- O -methyltransferase ( COMT ), and potassium voltage-gated channel subfamily J member 6 ( KCNJ6 ). Treatment guidelines based on genotype are already available only for CYP2D6 . The application of PGx in the management of pain with opioids has the potential to improve therapy. We provide a shortlist of 10 genes that are the most promising markers for clinical use in this context. © 2016

  2. Possible involvement of opioid receptors in moclobemide-induced hypothermia in mice.

    PubMed

    Ginawi, O T

    2003-09-01

    Effect of moclobemide, a selective monoamine oxidase-type A enzyme inhibitor, was investigated on the body temperature of male mice. Moclobemide (15-30 mg kg(-1), i.p.) produced significant reductions of body temperature in both normal and yeast-induced hyperthermic male mice. The hypothermic effect of moclobemide was moderate and short-lasting. Moclobemide-induced hypothermia was not antagonized by previous administration of prazosin (10 and 20 mg kg(-1), s.c.), propranolol (5, 10, and 20 mg kg(-1), s.c.), haloperidol (2 and 10 mg kg(-1), s.c.), atropine (10 and 20 mg kg(-1), s.c.), mepyramine (25 and 50 mg kg(-1), s.c.), or methysergide (0.5, 1, and 2 mg kg(-1), s.c.). Pretreatment with the opioid antagonist naloxone (10 mg kg(-1), s.c.), however, was able to reverse the hypothermic effect of moclobemide (30 mg kg(-1), i.p.) in both normal and yeast-induced hyperthermic mice. The present results indicate a possible role for central opioid receptors in the hypothermic effect of moclobemide. Also, a peripheral component for this effect of moclobemide at the mitochondria of peripheral tissues is suspected. The peripheral tissue mitochondria could be considered a common target for moclobemide and opioids actions on body temperature.

  3. Crosswalk between DSM-IV Dependence and DSM-5 Substance Use Disorders for Opioids, Cannabis, Cocaine and Alcohol

    PubMed Central

    Compton, Wilson M.; Dawson, Deborah A.; Goldstein, Risë B.; Grant, Bridget F.

    2013-01-01

    Background Ascertaining agreement between DSM-IV and DSM-5 is important to determine the applicability of treatments for DSM-IV conditions to persons diagnosed according to the proposed DSM-5. Methods Data from a nationally representative sample of US adults were used to compare concordance of past-year DSM-IV Opioid, Cannabis, Cocaine and Alcohol Dependence with past-year DSM-5 disorders at thresholds of 3+, 4+ 5+ and 6+ positive DSM-5 criteria among past-year users of opioids (n=264), cannabis (n=1,622), cocaine (n=271) and alcohol (n=23,013). Substance-specific 2×2 tables yielded overall concordance (kappa), sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV). Results For DSM-IV Alcohol, Cocaine and Opioid Dependence, optimal concordance occurred when 4+ DSM-5 criteria were endorsed, corresponding to the threshold for moderate DSM-5 Alcohol, Cocaine and Opioid Use Disorders. Maximal concordance of DSM-IV Cannabis Dependence and DSM-5 Cannabis Use Disorder occurred when 6+ criteria were endorsed, corresponding to the threshold for severe DSM-5 Cannabis Use Disorder. At these optimal thresholds, sensitivity, specificity, PPV and NPV generally exceeded 85% (>75% for cannabis). Conclusions Overall, excellent correspondence of DSM-IV Dependence with DSM-5 Substance Use Disorders was documented in this general population sample of alcohol, cannabis, cocaine and opioid users. Applicability of treatments tested for DSM-IV Dependence is supported by these results for those with a DSM-5 Alcohol, Cocaine or Opioid Use Disorder of at least moderate severity or Severe Cannabis Use Disorder. Further research is needed to provide evidence for applicability of treatments for persons with milder substance use disorders. PMID:23642316

  4. High-Dose Opioid Prescribing and Opioid-Related Hospitalization: A Population-Based Study.

    PubMed

    Fernandes, Kimberly; Martins, Diana; Juurlink, David; Mamdani, Muhammad; Paterson, J Michael; Spooner, Luke; Singh, Samantha; Gomes, Tara

    2016-01-01

    To examine the impact of national clinical practice guidelines and provincial drug policy interventions on prevalence of high-dose opioid prescribing and rates of hospitalization for opioid toxicity. Interventional time-series analysis. Ontario, Canada, from 2003 to 2014. Ontario Drug Benefit (ODB) beneficiaries aged 15 to 64 years from 2003 to 2014. Publication of Canadian clinical practice guidelines for use of opioids in chronic non-cancer pain (May 2010) and implementation of Ontario's Narcotics Safety and Awareness Act (NSAA; November 2011). Three outcomes were explored: the rate of opioid use among ODB beneficiaries, the prevalence of opioid prescriptions exceeding 200 mg and 400 mg morphine equivalents per day, and rates of opioid-related emergency department visits and hospital admissions. Over the 12 year study period, the rate of opioid use declined 15.2%, from 2764 to 2342 users per 10,000 ODB eligible persons. The rate of opioid use was significantly impacted by the Canadian clinical practice guidelines (p-value = .03) which led to a decline in use, but no impact was observed by the enactment of the NSAA (p-value = .43). Among opioid users, the prevalence of high-dose prescribing doubled (from 4.2% to 8.7%) over the study period. By 2014, 40.9% of recipients of long-acting opioids exceeded daily doses of 200 mg morphine or equivalent, including 55.8% of long-acting oxycodone users and 76.3% of transdermal fentanyl users. Moreover, in the last period, 18.7% of long-acting opioid users exceeded daily doses of 400 mg morphine or equivalent. Rates of opioid-related emergency department visits and hospital admissions increased 55.0% over the study period from 9.0 to 14.0 per 10,000 ODB beneficiaries from 2003 to 2013. This rate was not significantly impacted by the Canadian clinical practice guidelines (p-value = .68) or enactment of the NSAA (p-value = .59). Although the Canadian clinical practice guidelines for use of opioids in chronic non-cancer pain led

  5. COMPARISON OF INTRAOPERATIVE KETAMINE VS. FENTANYL USE DECREASES POSTOPERATIVE OPIOID REQUIREMENTS IN TRAUMA PATIENTS UNDERGOING CERVICAL SPINE SURGERY.

    PubMed

    Berkowitz, Aviva C; Ginsburg, Aryeh M; Pesso, Raymond M; Angus, George L D; Kang, Amiee; Ginsburg, Dov B

    2016-02-01

    Postoperative airway compromise following cervical spine surgery is a potentially serious adverse event. Residual effects of anesthesia and perioperative opioids that can cause both sedation and respiratory depression further increase this risk. Ketamine is an N-methyl-d-aspartate (NMDA) receptor antagonist that provides potent analgesia without noticeable respiratory depression. We investigated whether intraoperative ketamine administration could decrease perioperative opioid requirements in trauma patients undergoing cervical spine surgery. We retrospectively reviewed anesthesia records identifying cervical spine surgeries performed between March 2014 and February 2015. All patients received a balanced anesthetic technique utilizing sevoflurane 0.5 minimum alveolar concentration (MAC) and propofol infusion (50-100 mcg/kg/min). For intraoperative analgesia, one group of patients received ketamine (N=25) and a second group received fentanyl (N=27). Cumulative opioid doses in the recovery room and until 24 hours postoperatively were recorded. Fewer patients in the ketamine group (11/25 [44%] vs. 20/27 [74%], respectively; p = 0.03) required analgesics in the recovery room. Additionally, the total cumulative opioid requirements in the ketamine group decreased postoperatively at both 3 and 6 hours (p = 0.01). Ketamine use during cervical spine surgery decreased opioid requirements in both the recovery room and in the first 6 hours postoperatively. This may have the potential to minimize opioid induced respiratory depression in a population at increased risk of airway complications related to the surgical procedure.

  6. Anhedonia to music and mu-opioids: Evidence from the administration of naltrexone

    PubMed Central

    Mallik, Adiel; Chanda, Mona Lisa; Levitin, Daniel J.

    2017-01-01

    Music’s universality and its ability to deeply affect emotions suggest an evolutionary origin. Previous investigators have found that naltrexone (NTX), a μ-opioid antagonist, may induce reversible anhedonia, attenuating both positive and negative emotions. The neurochemical basis of musical experience is not well-understood, and the NTX-induced anhedonia hypothesis has not been tested with music. Accordingly, we administered NTX or placebo on two different days in a double-blind crossover study, and assessed participants’ responses to music using both psychophysiological (objective) and behavioral (subjective) measures. We found that both positive and negative emotions were attenuated. We conclude that endogenous opioids are critical to experiencing both positive and negative emotions in music, and that music uses the same reward pathways as food, drug and sexual pleasure. Our findings add to the growing body of evidence for the evolutionary biological substrates of music. PMID:28176798

  7. Pain as a reward: changing the meaning of pain from negative to positive co-activates opioid and cannabinoid systems.

    PubMed

    Benedetti, Fabrizio; Thoen, Wilma; Blanchard, Catherine; Vighetti, Sergio; Arduino, Claudia

    2013-03-01

    Pain is a negative emotional experience that is modulated by a variety of psychological factors through different inhibitory systems. For example, endogenous opioids and cannabinoids have been found to be involved in stress and placebo analgesia. Here we show that when the meaning of the pain experience is changed from negative to positive through verbal suggestions, the opioid and cannabinoid systems are co-activated and these, in turn, increase pain tolerance. We induced ischemic arm pain in healthy volunteers, who had to tolerate the pain as long as possible. One group was informed about the aversive nature of the task, as done in any pain study. Conversely, a second group was told that the ischemia would be beneficial to the muscles, thus emphasizing the usefulness of the pain endurance task. We found that in the second group pain tolerance was significantly higher compared to the first one, and that this effect was partially blocked by the opioid antagonist naltrexone alone and by the cannabinoid antagonist rimonabant alone. However, the combined administration of naltrexone and rimonabant antagonized the increased tolerance completely. Our results indicate that a positive approach to pain reduces the global pain experience through the co-activation of the opioid and cannabinoid systems. These findings may have a profound impact on clinical practice. For example, postoperative pain, which means healing, can be perceived as less unpleasant than cancer pain, which means death. Therefore, the behavioral and/or pharmacological manipulation of the meaning of pain can represent an effective approach to pain management. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  8. Heterogeneity of cell firing properties and opioid sensitivity in the thalamic reticular nucleus.

    PubMed

    Brunton, J; Charpak, S

    1997-05-01

    The thalamic reticular nucleus receives afferents from the dorsal thalamus, cortex and brainstem, and projects back onto most cortically projecting thalamic nuclei thus playing a key role in the synchronization of the thalamocortical network. Although this nucleus was initially thought to consist of a homogeneous population of cells using GABA as a transmitter, and sharing identical intrinsic membrane properties, some heterogeneity was subsequently reported. The morphological diversity is generally acknowledged, but only two studies have shown functional differences between two classes of cells which vary in their ability to discharge in bursts. However, the location of the non-bursting cells was not characterized with anatomical techniques. Our recent work on the action of mu-opioid agonists in the thalamus revealed a widespread K+-mediated inhibition of most, if not all, thalamic relay and diffuse projection neurons. However, in the reticular nucleus, preliminary experiments suggested that the opioid sensitivity was variable. Based on these results and on observations of a discrete localization of mu-opioid receptors in the reticular nucleus, we investigated cellular heterogeneity within the nucleus using opioid agonists as markers. Using the whole cell patch clamp technique in young rat thalamic slices, we tested the responses of 28 neurons to opioids, the intrinsic membrane properties of each cell, and their relative location within the nucleus. Two types of intrinsic membrane properties underlying distinct discharge behaviours were seen in neurobiotin-labelled cells clearly located in the reticular nucleus: type I with the typical bursting behaviour previously reported in reticularis neurons, and type II in which bursting was greatly reduced or absent. Each class of cell could be further divided into subpopulations based on their opioid sensitivity. About half of both bursting (20) and non-bursting or tonic (8) cells were strongly inhibited by the mu-opioid

  9. Opioid Modulation of Value-Based Decision-Making in Healthy Humans.

    PubMed

    Eikemo, Marie; Biele, Guido; Willoch, Frode; Thomsen, Lotte; Leknes, Siri

    2017-08-01

    Modifying behavior to maximize reward is integral to adaptive decision-making. In rodents, the μ-opioid receptor (MOR) system encodes motivation and preference for high-value rewards. Yet it remains unclear whether and how human MORs contribute to value-based decision-making. We reasoned that if the human MOR system modulates value-based choice, this would be reflected by opposite effects of agonist and antagonist drugs. In a double-blind pharmacological cross-over study, 30 healthy men received morphine (10 mg), placebo, and the opioid antagonist naltrexone (50 mg). They completed a two-alternative decision-making task known to induce a considerable bias towards the most frequently rewarded response option. To quantify MOR involvement in this bias, we fitted accuracy and reaction time data with the drift-diffusion model (DDM) of decision-making. The DDM analysis revealed the expected bidirectional drug effects for two decision subprocesses. MOR stimulation with morphine increased the preference for the stimulus with high-reward probability (shift in starting point). Compared to placebo, morphine also increased, and naltrexone reduced, the efficiency of evidence accumulation. Since neither drug affected motor-coordination, speed-accuracy trade-off, or subjective state (indeed participants were still blinded after the third session), we interpret the MOR effects on evidence accumulation efficiency as a consequence of changes in effort exerted in the task. Together, these findings support a role for the human MOR system in value-based choice by tuning decision-making towards high-value rewards across stimulus domains.

  10. Opioid modulation of reflex versus operant responses following stress in the rat.

    PubMed

    King, C D; Devine, D P; Vierck, C J; Mauderli, A; Yezierski, R P

    2007-06-15

    In pre-clinical models intended to evaluate nociceptive processing, acute stress suppresses reflex responses to thermal stimulation, an effect previously described as stress-induced "analgesia." Suggestions that endogenous opioids mediate this effect are based on demonstrations that stress-induced hyporeflexia is enhanced by high dose morphine (>5 mg/kg) and is reversed by naloxone. However, reflexes and pain sensations can be modulated differentially. Therefore, in the present study direct comparisons were made of opioid agonist and antagonist actions, independently and in combination with acute restraint stress in Long Evans rats, on reflex lick-guard (L/G) and operant escape responses to nociceptive thermal stimulation (44.5 degrees C). A high dose of morphine (>8 mg/kg) was required to reduce reflex responding, but a moderate dose of morphine (1 mg/kg) significantly reduced escape responding. The same moderate dose (and also 5 mg/kg) of morphine significantly enhanced reflex responding. Naloxone (3 mg/kg) significantly enhanced escape responding but did not affect L/G responding. Restraint stress significantly suppressed L/G reflexes (hyporeflexia) but enhanced escape responses (hyperalgesia). Stress-induced hyperalgesia was significantly reduced by morphine and enhanced by naloxone. In contrast, stress-induced hyporeflexia was blocked by both naloxone and 1 mg/kg of morphine. Thus, stress-induced hyperalgesia was opposed by endogenous opioid release and by administration of morphine. Stress-induced hyporeflexia was dependent upon endogenous opioid release but was counteracted by a moderate dose of morphine. These data demonstrate a differential modulation of reflex and operant outcome measures by stress and by separate or combined opioid antagonism or administration of morphine.

  11. KAPPA -- Kernel Application Package

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.; Berry, David. S.

    KAPPA is an applications package comprising about 180 general-purpose commands for image processing, data visualisation, and manipulation of the standard Starlink data format---the NDF. It is intended to work in conjunction with Starlink's various specialised packages. In addition to the NDF, KAPPA can also process data in other formats by using the `on-the-fly' conversion scheme. Many commands can process data arrays of arbitrary dimension, and others work on both spectra and images. KAPPA operates from both the UNIX C-shell and the ICL command language. This document describes how to use KAPPA and its features. There is some description of techniques too, including a section on writing scripts. This document includes several tutorials and is illustrated with numerous examples. The bulk of this document comprises detailed descriptions of each command as well as classified and alphabetical summaries.

  12. Pharmacological activities of Vitex agnus-castus extracts in vitro.

    PubMed

    Meier, B; Berger, D; Hoberg, E; Sticher, O; Schaffner, W

    2000-10-01

    The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.

  13. Opioids for neuropathic pain.

    PubMed

    Katz, Nathaniel; Benoit, Christine

    2005-06-01

    Whether opioids are effective for neuropathic pain has been a matter of controversy for decades. Within limits, it is clear that opioids in general are effective for neuropathic pain. Furthermore, there is no evidence that opioids are any less effective for neuropathic pain than for non-neuropathic pain, no evidence that opioids are less effective for neuropathic pain than are other medications, and no evidence that one opioid is any more effective than another for neuropathic pain. It remains uncertain whether opioids are effective for central pain, although they may have a role. Although some patients appear to enjoy long-term benefits, most studies have been short-term. Opioids have an important role in the treatment of neuropathic pain; however, skillful opioid use balances the benefits with management of side effects and prevention and treatment of abuse and addiction.

  14. Prevalence of prescription opioid use disorder among chronic opioid therapy patients after health plan opioid dose and risk reduction initiatives.

    PubMed

    Von Korff, Michael; Walker, Rod L; Saunders, Kathleen; Shortreed, Susan M; Thakral, Manu; Parchman, Michael; Hansen, Ryan N; Ludman, Evette; Sherman, Karen J; Dublin, Sascha

    2017-08-01

    No studies have assessed the comparative effectiveness of guideline-recommended interventions to reduce risk of prescription opioid use disorder among chronic opioid therapy (COT) patients. We compared the prevalence of prescription opioid use disorder among COT patients from intervention clinics that had implemented opioid dose and risk reduction initiatives for more than 4 years relative to control clinics that had not. After a healthcare system in Washington State implemented interventions to reduce opioid dose and risks, we surveyed 1588 adult primary care COT patients to compare the prevalence of prescription opioid use disorder among COT patients from the intervention and control clinics. Intervention clinics managed COT patients at lower COT doses and with more consistent use of risk reduction practices. Control clinics cared for similar COT patients but prescribed higher opioid doses and used COT risk reduction practices inconsistently. Prescription opioid use disorder was assessed with the Psychiatric Research Interview for Substance and Mental Disorders. The prevalence of prescription opioid use disorder was 21.5% (95% CI=18.9% to 24.4%) among COT patients in the intervention clinics and 23.9% (95% CI=20.5% to 27.6%) among COT patients in the control clinics. The adjusted relative risk of prescription opioid use disorder was 1.08 (95% CI=0.89, 1.32) among the control clinic patients relative to the intervention clinic patients. Long-term implementation of opioid dose and risk reduction initiatives was not associated with lower rates of prescription opioid use disorder among prevalent COT patients. Extreme caution should be exercised by clinicians considering COT for patients with chronic non-cancer pain until benefits of this treatment and attendant risks are clarified. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Role of 2',6'-dimethyl-l-tyrosine (Dmt) in some opioid lead compounds.

    PubMed

    Balboni, Gianfranco; Marzola, Erika; Sasaki, Yusuke; Ambo, Akihiro; Marczak, Ewa D; Lazarus, Lawrence H; Salvadori, Severo

    2010-08-15

    Here we evaluated how the interchange of the amino acids 2',6'-dimethyl-L-tyrosine (Dmt), 2',6'-difluoro-L-tyrosine (Dft), and tyrosine in position 1 can affect the pharmacological characterization of some reference opioid peptides and pseudopeptides. Generally, Dft and Tyr provide analogues with a similar pharmacological profile, despite different pK(a) values. Dmt/Tyr(Dft) replacement gives activity changes depending on the reference opioid in which the modification was made. Whereas, H-Dmt-Tic-Asp *-Bid is a potent and selective delta agonist (MVD, IC(50)=0.12nM); H-Dft-Tic-Asp *-Bid and H-Tyr-Tic-Asp *-Bid are potent and selective delta antagonists (pA(2)=8.95 and 8.85, respectively). When these amino acids are employed in the synthesis of deltorphin B and its Dmt(1) and Dft(1) analogues, the three compounds maintain a very similar delta agonism (MVD, IC(50) 0.32-0.53 nM) with a decrease in selectivity relative to the Dmt(1) analogue. In the less selective H-Dmt-Tic-Gly *-Bid the replacement of Dmt with Dft and Tyr retains the delta agonism but with a decrease in potency. Antagonists containing the Dmt-Tic pharmacophore do not support the exchange of Dmt with Dft or Tyr. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Opioid system of the brain and ethanol.

    PubMed

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  18. The opioid growth factor (OGF) and low dose naltrexone (LDN) suppress human ovarian cancer progression in mice.

    PubMed

    Donahue, Renee N; McLaughlin, Patricia J; Zagon, Ian S

    2011-08-01

    The opioid growth factor (OGF) and its receptor, OGFr, serve as a tonically active inhibitory axis regulating cell proliferation in normal cells and a variety of cancers, including human ovarian cancer. Blockade of OGF and OGFr with the nonselective opioid receptor antagonist naltrexone (NTX) upregulates expression of OGF and OGFr. Administration of a low dosage of NTX (LDN) blocks endogenous opioids from opioid receptors for a short period of time (4-6 h) each day, providing a window of 18-20 h for the upregulated opioids and receptors to interact. The present study investigated the repercussions of upregulating the OGF-OGFr axis by treatment with OGF or LDN on human ovarian tumorigenesis in vivo. Female nude mice were transplanted intraperitoneally with SKOV-3 human ovarian cancer cells and treated on a daily basis with OGF (10 mg/kg), LDN (0.1 mg/kg), or an equivalent volume of vehicle (saline). Tumor burden, as well as DNA synthesis, apoptosis, and angiogenesis was assessed in tumor tissue following 40 days of treatment. OGF and LDN markedly reduced ovarian tumor burden (tumor nodule number and weight). The mechanism of action was targeted to an inhibition of tumor cell proliferation and angiogenesis; no changes in cell survival were noted. This study shows that a native opioid pathway can suppress human ovarian cancer in a xenograft model, and provides novel non-toxic therapies for the treatment of this lethal neoplasia. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Interrater reliability: the kappa statistic.

    PubMed

    McHugh, Mary L

    2012-01-01

    The kappa statistic is frequently used to test interrater reliability. The importance of rater reliability lies in the fact that it represents the extent to which the data collected in the study are correct representations of the variables measured. Measurement of the extent to which data collectors (raters) assign the same score to the same variable is called interrater reliability. While there have been a variety of methods to measure interrater reliability, traditionally it was measured as percent agreement, calculated as the number of agreement scores divided by the total number of scores. In 1960, Jacob Cohen critiqued use of percent agreement due to its inability to account for chance agreement. He introduced the Cohen's kappa, developed to account for the possibility that raters actually guess on at least some variables due to uncertainty. Like most correlation statistics, the kappa can range from -1 to +1. While the kappa is one of the most commonly used statistics to test interrater reliability, it has limitations. Judgments about what level of kappa should be acceptable for health research are questioned. Cohen's suggested interpretation may be too lenient for health related studies because it implies that a score as low as 0.41 might be acceptable. Kappa and percent agreement are compared, and levels for both kappa and percent agreement that should be demanded in healthcare studies are suggested.

  20. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis

    PubMed Central

    Regan, Patrick M.; Langford, T. Dianne; Khalili, Kamel

    2015-01-01

    Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology. PMID:26529364

  1. The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats.

    PubMed

    Yousofizadeh, Shahnaz; Tamaddonfard, Esmaeal; Farshid, Amir Abbas

    2015-07-05

    Nicotinic acetylcholine and opioid receptors are involved in modulation of pain. In the present study, we investigated the effects of microinjection of nicotinic acetylcholine and opioid compounds into the ventral orbital cortex (VOC) on the formalin-induced orofacial pain in rats. For this purpose, two guide cannulas were placed into the left and right sides of the VOC of the brain. Orofacial pain was induced by subcutaneous injection of a diluted formalin solution (50μl, 1.5%) into the right vibrissa pad and face rubbing durations were recorded at 3-min blocks for 45min. Formalin produced a marked biphasic pain response (first phase: 0-3min and second phase: 15-33min). Epibatidine (a nicotinic receptor agonist) at doses of 0.05, 0.1 and 0.2μg/site, morphine (an opioid receptor agonist) at doses of 0.5, 1 and 2μg/site and their sub-analgesic doses (0.025μg/site epibatidine with 0.25μg/site morphine) combination treatment suppressed the second phase of pain. The antinociceptive effect induced by 0.2μg/site of epibatidine, but not morphine (2μg/site), was prevented by 2μg/site of mecamylamine (a nicotinic receptor antagonist). Naloxone (an opioid receptor antagonist) at a dose of 2μg/site prevented the antinociceptive effects induced by 2μg/site of morphine and 0.2μg/site of epibatidine. No above-mentioned chemical compounds affected locomotor activity. These results showed that at the VOC level, epibatidine and morphine produced antinociception. In addition, opioid receptor might be involved in epibatidine-induced antinociception, but the antinociception induced by morphine was not mediated through nicotinic acetylcholine receptor. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria filiformis in induced temporomandibular joint pain.

    PubMed

    Araújo, Ianna Wivianne Fernandes; Chaves, Hellíada Vasconcelos; Pachêco, José Mário; Val, Danielle Rocha; Vieira, Lorena Vasconcelos; Santos, Rodrigo; Freitas, Raul Sousa; Rivanor, Renata Line; Monteiro, Valdécio Silvano; Clemente-Napimoga, Juliana Trindade; Bezerra, Mirna Marques; Benevides, Norma Maria Barros

    2017-03-01

    This study aimed to investigate the effect of sulfated polysaccharide from red seaweed Solieria filiformis (Fraction F II) in the inflammatory hypernociception in the temporomandibular joint (TMJ) of rats. Male Wistar rats were pretreated (30min) with a subcutaneous injection (s.c.) of vehicle or FII (0.03, 0.3 or 3.0mg/kg) followed by intra-TMJ injection of 1.5% Formalin or 5-hydroxytryptamine (5-HT, 225μg/TMJ). In other set of experiments rats were pretreated (15min) with an intrathecal injection of the non-selective opioid receptors Naloxone, or μ-opioid receptor antagonist CTOP, or δ-opioid receptor Naltridole hydrochloride, or κ-opioid receptor antagonist Nor-Binaltorphimine (Nor-BNI) followed by injection of FII (s.c.). After 30min, the animals were treated with an intra-TMJ injection of 1.5% formalin. After TMJ treatment, behavioral nociception response was evaluated for a 45-min observation period, animals were terminally anesthetized and periarticular tissue, trigeminal ganglion and subnucleus caudalis (SC) were collected plasma extravasation and ELISA analysis. Pretreatment with F II significantly reduced formalin- and serotonin-induced TMJ nociception, inhibit the plasma extravasation and inflammatory cytokines release induced by 1.5% formalin in the TMJ. Pretreatment with intrathecal injection of Naloxone, CTOP, Naltridole or Nor-BNI blocked the antinociceptive effect of F II in the 1.5% formalin-induced TMJ nociception. In addition, F II was able to significantly increase the β-endorphin release in the subnucleus caudalis. The results suggest that F II has a potential antinociceptive and anti-inflammatory effect in the TMJ mediated by activation of opioid receptors in the subnucleus caudalis and inhibition of the release of inflammatory mediators in the periarticular tissue. Copyright © 2017. Published by Elsevier B.V.

  3. Work Enabling Opioid Management.

    PubMed

    Lavin, Robert A; Kalia, Nimisha; Yuspeh, Larry; Barry, Jill A; Bernacki, Edward J; Tao, Xuguang Grant

    2017-08-01

    This study describes the relationship between opioid prescribing and ability to work. The opioid prescription patterns of 4994 claimants were studied. Three groups were constructed: 1) at least 3 consecutive months prescribed (chronic opioid therapy; COT); 2) less than 3 consecutive months prescribed (acute opioid therapy; AOT); and 3) no opioids prescribed. Variables included sex, age, daily morphine equivalent dose (MED), days opioids were prescribed, temporary total days (TTDs), and medical/indemnity/total costs. The COT versus AOT claimants had higher opioid costs ($8618 vs $94), longer TTD (636.2 vs 182.3), and average MED (66.8 vs 34.9). Only 2% of the COT cohort were not released to work. Fifty-seven percent of patients in the COT category (64 of 112) were released to work while still receiving opioids. COT does not preclude ability to work when prescribing within established guidelines.

  4. Distance traveled and frequency of interstate opioid dispensing in opioid shoppers and nonshoppers.

    PubMed

    Cepeda, M Soledad; Fife, Daniel; Yuan, Yingli; Mastrogiovanni, Greg

    2013-10-01

    Little is known about how far opioid shoppers travel or how often they cross state lines to fill their opioid prescriptions. This retrospective cohort study evaluated these measures for opioid shoppers and nonshoppers using a large U.S. prescription database. Patients with ≥3 opioid dispensings were followed for 18 months. A subject was considered a shopper when he or she filled overlapping opioid prescriptions written by >1 prescriber at ≥3 pharmacies. A heavy shopper had ≥5 shopping episodes. Outcomes assessed were distance traveled among pharmacies and number of states visited to fill opioid prescriptions. A total of 10,910,451 subjects were included; .7% developed any shopping behavior and their prescriptions accounted for 8.6% of all opioid dispensings. Shoppers and heavy shoppers were younger than the nonshoppers. Shoppers traveled a median of 83.8 miles, heavy shoppers 199.5 miles, and nonshoppers 0 miles. Almost 20% of shoppers or heavy shoppers, but only 4% of nonshoppers, visited >1 state. Shoppers traveled greater distances and more often crossed state borders to fill opioid prescriptions than nonshoppers, and their dispensings accounted for a disproportionate number of opioid dispensings. Sharing of data among prescription-monitoring programs will likely strengthen those programs and may decrease shopping behavior. This study shows that opioid shoppers travel greater distances and more often cross state borders to fill opioid prescriptions than nonshoppers, and their dispensings accounted for a disproportionate number of opioid dispensings. The findings support the need for data sharing among prescription-monitoring programs to deter opioid shopping behavior. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. Reinforcement of wheel running in BALB/c mice: role of motor activity and endogenous opioids.

    PubMed

    Vargas-Pérez, Héctor; Sellings, Laurie H L; Paredes, Raúl G; Prado-Alcalá, Roberto A; Díaz, José-Luis

    2008-11-01

    The authors investigated the effect of the opioid antagonist naloxone on wheel-running behavior in Balb/c mice. Naloxone delayed the acquisition of wheel-running behavior, but did not reduce the expression of this behavior once acquired. Delayed acquisition was not likely a result of reduced locomotor activity, as naloxone-treated mice did not exhibit reduced wheel running after the behavior was acquired, and they performed normally on the rotarod test. However, naloxone-blocked conditioned place preference for a novel compartment paired previously with wheel running, suggesting that naloxone may delay wheel-running acquisition by blocking the rewarding or reinforcing effects of the behavior. These results suggest that the endogenous opioid system mediates the initial reinforcing effects of wheel running that are important in acquisition of the behavior.

  6. Nonopioid substance use disorders and opioid dose predict therapeutic opioid addiction.

    PubMed

    Huffman, Kelly L; Shella, Elizabeth R; Sweis, Giries; Griffith, Sandra D; Scheman, Judith; Covington, Edward C

    2015-02-01

    Limited research examines the risk of therapeutic opioid addiction (TOA) in patients with chronic noncancer pain. This study examined TOA among 199 patients undergoing long-term opioid therapy at the time of admission to a pain rehabilitation program. It was hypothesized that nonopioid substance use disorders and opioid dosage would predict TOA. Daily mean opioid dose was 132.85 mg ± 175.39. Patients with nonopioid substance use disorders had 28 times the odds (odds ratio [OR] = 28.58; 95% confidence interval [CI] = 10.86, 75.27) of having TOA. Each 50-mg increase in opioid dose nearly doubled the odds of TOA (OR = 1.73; 95% CI = 1.29, 2.32). A 100-mg increase was associated with a 3-fold increase in odds (OR = 3.00; 95% CI = 1.67, 5.41). Receiver operating characteristic analysis revealed that opioid dose was a moderately accurate predictor (area under the curve = .75; 95% CI = .68, .82) of TOA. The sensitivity (.70) and specificity (.68) of opioid dose in predicting TOA was maximized at 76.10 mg; in addition, 46.00 mg yielded 80% sensitivity in identifying TOA. These results underscore the importance of obtaining a substance use history prior to prescribing and suggest a low screening threshold for TOA in patients who use opioids in the absence of improvement in pain or functional impairment. This article examines TOA in patients with chronic noncancer pain undergoing long-term opioid therapy. Results suggest that patients should be screened for nonopioid substance use disorders prior to prescribing. In the absence of improvement in pain or function, there is a low threshold (∼50 mg daily opioid dose) for addiction screening. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  7. The Role of the Asn40Asp Polymorphism of the Mu Opioid Receptor Gene (OPRM1) on Alcoholism Etiology and Treatment: A Critical Review

    PubMed Central

    Ray, Lara A.; Barr, Christina S.; Blendy, Julie A.; Oslin, David; Goldman, David; Anton, Raymond F.

    2011-01-01

    The endogenous opioid system has been implicated in the pathophysiology of alcoholism as it modulates the neurobehavioral effects of alcohol. A variant in the mu opioid receptor gene (OPRM1), the Asn40Asp polymorphism, has received attention as a functional variant that may influence a host of behavioral phenotypes for alcoholism as well as clinical response to opioid antagonists. This paper will review converging lines of evidence on the effect of the Asn40Asp SNP on alcoholism phenotypes, including: (i) genetic association studies; (ii) behavioral studies of alcoholism; (iii) neuroimaging studies; (iv) pharmacogenetic studies and clinical trials; and (v) preclinical animal studies. Together, these lines of research seek to elucidate the effects of this functional polymorphism on alcoholism etiology and treatment response. PMID:21895723

  8. Nalbuphine and pentazocine in an opioid-benzodiazepine sedative technique: a double-blind comparison.

    PubMed Central

    Graham, J. L.; McCaughey, W.; Bell, P. F.

    1988-01-01

    Sedation by a combination of an opioid drug such as pentazocine with a benzodiazepine is commonly used for minor surgical and investigative procedures. Nalbuphine is a newer drug which, like pentazocine, is an opioid agonist-antagonist. Its actions are similar, but it has theoretical advantages in its profile of cardiovascular side effects. Nalbuphine or pentazocine in combination with diazepam were compared as components of a sedative technique for invasive radiology. The doses used were in the ratio of 2.5:1--ie nalbuphine 0.2 mg kg-1 and pentazocine 0.5 mg kg-1. Both regimens gave satisfactory results, and no difference could be detected between them in terms of sedation, analgesic efficacy, cardiovascular or respiratory changes, or recovery. Nalbuphine provides a safe and effective alternative to pentazocine in this situation. The study confirmed the need for caution because of the respiratory depressant effects of both drugs. PMID:3046465

  9. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating I{kappa}B kinase renaturation and blocking its further denaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan

    2005-07-01

    Heat shock (HS) treatment has been previously shown to suppress the I{kappa}B/nuclear factor-{kappa}B (NF-{kappa}B) cascade by denaturing, and thus inactivating I{kappa}B kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayedmore » TNF-{alpha}-induced I{kappa}B{alpha} degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the I{kappa}B{alpha} stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating the renaturation of IKK and blocking its further denaturation.« less

  10. Effects on Hedonic Feeding, Energy Expenditure and Balance of the Non-opioid Peptide DYN-A2-17.

    PubMed

    Alvarez, B; Barrientos, T; Gac, L; Teske, J A; Perez-Leighton, C E

    2018-02-10

    The dynorphin (DYN) peptide family includes opioid and non-opioid peptides, yet the physiological role of the non-opioid DYN peptides remains poorly understood. Recent evidence shows that administering the non-opioid peptide DYN-A 2-17 into the paraventricular hypothalamic nucleus (PVN) simultaneously increased short-term intake of standard rodent chow and spontaneous physical activity (SPA). The present studies aimed to expand upon the mechanisms and role of DYN-A 2-17 on food intake and energy expenditure. Injection of DYN-A 2-17 in PVN increased SPA, energy expenditure and wheel running in the absence of food. Repeated DYN-A 2-17 injection in PVN increased short-term chow intake, but this effect habituated over time and failed to alter cumulative food intake, body weight or adiposity. Pre-treatment with a CRF receptor antagonist into PVN blocked the effects of DYN-A 2-17 on food intake while injection of DYN-A 2-17 in PVN increased plasma ACTH. Finally, as DYN peptides are co-released with orexin peptides, we compared the effects of DYN-A 2-17 to orexin-A and the opioid peptide DYN-A 1-13 on food choice and intake in PVN when palatable snacks and chow were available. DYN-A 1-13 selectively increased intake of palatable snacks. DYN-A 2-17 and orexin-A decreased palatable snack intake while orexin-A also increased chow intake. These findings demonstrate that the non-opioid peptide DYN-A 2-17 acutely regulates physical activity, energy expenditure and food intake without long-term effects on energy balance. These data also propose different roles of opioid, non-opioid DYN and orexin peptides on food choice and intake when palatable and non-palatable food options are available. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Physician Introduction to Opioids for Pain Among Patients with Opioid Dependence and Depressive Symptoms

    PubMed Central

    Tsui, Judith I.; Herman, Debra S.; Kettavong, Malyna; Alford, Daniel; Anderson, Bradley J.; Stein, Michael D.

    2011-01-01

    This study determined the frequency of reporting being introduced to opioids by a physician among opioid dependent patients. Cross-sectional analyses were performed using baseline data from a cohort of opioid addicts seeking treatment with buprenorphine. The primary outcome was response to the question: “Who introduced you to opiates?” Covariates included sociodemographics, depression, pain, current and prior substance use. Of 140 participants, 29% reported that they had been introduced to opioids by a physician. Of those who were introduced to opioids by a physician, all indicated that they had initially used opioids for pain, versus only 11% of those who did not report being introduced to opioids by a physician (p<0.01). There was no difference in current pain (78% vs. 85%, p=0.29), however participants who were introduced to opioids by a physician were more likely to have chronic pain (63% vs. 43%, p=0.04). A substantial proportion of individuals with opioid dependence seeking treatment may have been introduced to opioids by a physician. PMID:20727704

  12. Delay discounting in opioid use disorder: Differences between heroin and prescription opioid users.

    PubMed

    Karakula, Sterling L; Weiss, Roger D; Griffin, Margaret L; Borges, Allison M; Bailey, Allen J; McHugh, R Kathryn

    2016-12-01

    Among those with opioid use disorder, heroin use is associated with poorer prognosis relative to use of prescription opioids alone. However, relatively little is known about distinguishing features between those who use heroin relative to those who use prescription opioids. In the present study we evaluated differences in delay discounting in those with opioid use disorder based on primary opioid of use. Delay discounting is associated with a range of negative outcomes and is an important therapeutic target in this population. Treatment-seeking adults with opioid dependence completed self-report measures including past-month opioid use and the Monetary Choice Questionnaire (Kirby and Marakovic, 1996; Kirby et al., 1999), a measure of delay discounting. Participants were divided into two groups based on whether they used any heroin in the past 30days or only prescription opioids, and delay discounting scores were compared between the groups. Group differences in sociodemographic or clinical variables were included in the analysis as covariates. Results from a forward stepwise linear regression indicated that heroin use was associated with significantly higher delay discounting (B=-0.99, SE B =0.34, t=-2.88, p=0.005), even when considering covariates. Adults with opioid dependence who exclusively used prescription opioids had lower delay discounting relative to those who used heroin. This finding contributes further to the literature suggesting that heroin use is associated with greater clinical severity among those with opioid use disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Induction of hyperphagia and carbohydrate intake by mu-opioid receptor stimulation in circumscribed regions of frontal cortex

    PubMed Central

    Mena, Jesus D.; Sadeghian, Ken; Baldo, Brian A.

    2011-01-01

    Frontal cortical regions are activated by food-associated stimuli, and this activation appears to be dysregulated in individuals with eating disorders. Nevertheless, frontal control of basic unconditioned feeding responses remains poorly understood. Here we show that hyperphagia can be driven by μ-opioid receptor stimulation in restricted regions of ventral medial prefrontal cortex (vmPFC) and orbitofrontal cortex. In both ad libitum-fed and food-restricted male Sprague-Dawley rats, bilateral infusions of the μ-opioid agonist, DAMGO, markedly increased intake of standard rat chow. When given a choice between palatable fat- versus carbohydrate enriched test diets, intra-vmPFC DAMGO infusions selectively increased carbohydrate intake, even in rats with a baseline fat preference. Rats also exhibited motor hyperactivity characterized by rapid switching between brief bouts of investigatory and ingestive behaviors. Intra-vmPFC DAMGO affected neither water intake nor non-specific oral behavior. Similar DAMGO infusions into neighboring areas of lateral orbital or anterior motor cortex had minimal effects on feeding. Neither stimulation of vmPFC-localized delta-opioid, kappa-opioid, dopaminergic, serotonergic, or noradrenergic receptors, nor antagonism of D1, 5HT1A, or alpha- or beta-adrenoceptors, reproduced the profile of DAMGO effects. Muscimol-mediated inactivation of the vmPFC, and intra-vmPFC stimulation of κ-opioid receptors or blockade of 5HT2A receptors, suppressed motor activity and increased feeding bout duration-a profile opposite to that seen with DAMGO. Hence, μ-opioid-induced hyperphagia and carbohydrate intake can be elicited with remarkable pharmacological and behavioral specificity from discrete subterritories of the frontal cortex. These findings may have implications for understanding affect-driven feeding and loss of restraint in eating disorders. PMID:21368037

  14. Opioid dependence

    PubMed Central

    2011-01-01

    Introduction Dependence on opioids is a multifactorial condition involving genetic and psychosocial factors. There are three stages to treating opioid dependence. Stabilisation is usually by opioid substitution treatments, and aims to ensure that the drug use becomes independent of mental state (such as craving and mood) and independent of circumstances (such as finance and physical location). The next stage is to withdraw (detox) from opioids. The final stage is relapse prevention. This treatment process contributes to recovery of the individual, which also includes improved overall health and wellbeing, as well as engagement in society. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for stabilisation (maintenance) in people with opioid dependence? What are the effects of drug treatments for withdrawal in people with opioid dependence? What are the effects of drug treatments for relapse prevention in people with opioid dependence? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 26 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: buprenorphine; clonidine; lofexidine; methadone; naltrexone; and ultra-rapid withdrawal regimens. PMID:21929827

  15. Opioid dependence.

    PubMed

    Praveen, K Thyarappa; Law, Fergus; O'Shea, Jacinta; Melichar, Jan

    2011-09-20

    Dependence on opioids is a multifactorial condition involving genetic and psychosocial factors. There are three stages to treating opioid dependence. Stabilisation is usually by opioid substitution treatments, and aims to ensure that the drug use becomes independent of mental state (such as craving and mood) and independent of circumstances (such as finance and physical location). The next stage is to withdraw (detox) from opioids. The final stage is relapse prevention. This treatment process contributes to recovery of the individual, which also includes improved overall health and wellbeing, as well as engagement in society. We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for stabilisation (maintenance) in people with opioid dependence? What are the effects of drug treatments for withdrawal in people with opioid dependence? What are the effects of drug treatments for relapse prevention in people with opioid dependence? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). We found 26 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. In this systematic review, we present information relating to the effectiveness and safety of the following interventions: buprenorphine; clonidine; lofexidine; methadone; naltrexone; and ultra-rapid withdrawal regimens.

  16. Differential effect of opioid and cannabinoid receptor blockade on heroin-seeking reinstatement and cannabinoid substitution in heroin-abstinent rats

    PubMed Central

    Fattore, L; Spano, MS; Melis, V; Fadda, P; Fratta, W

    2011-01-01

    BACKGROUND AND PURPOSE Opioids and cannabinoids interact in drug addiction and relapse. We investigated the effect of the opioid receptor antagonist naloxone and/or the cannabinoid CB1 receptor antagonist rimonabant on cannabinoid-induced reinstatement of heroin seeking and on cannabinoid substitution in heroin-abstinent rats. EXPERIMENTAL APPROACH Rats were trained to self-administer heroin (30 µg·kg−1 per infusion) under a fixed-ratio 1 reinforcement schedule. After extinction of self-administration (SA) behaviour, we confirmed the effect of naloxone (0.1–1 mg·kg−1) and rimonabant (0.3–3 mg·kg−1) on the reinstatement of heroin seeking induced by priming with the CB1 receptor agonist WIN55,212-2 (WIN, 0.15–0.3 mg·kg−1). Then, in a parallel set of heroin-trained rats, we evaluated whether WIN (12.5 µg·kg−1 per infusion) SA substituted for heroin SA after different periods of extinction. In groups of rats in which substitution occurred, we studied the effect of both antagonists on cannabinoid intake. KEY RESULTS Cannabinoid-induced reinstatement of heroin seeking was significantly attenuated by naloxone (1 mg·kg−1) and rimonabant (3 mg·kg−1) and fully blocked by co-administration of sub-threshold doses of the two antagonists. Moreover, contrary to immediate (1 day) or delayed (90 days) drug substitution, rats readily self-administered WIN when access was given after 7, 14 or 21 days of extinction from heroin, and showed a response rate that was positively correlated with the extinction period. In these animals, cannabinoid intake was increased by naloxone (1 mg·kg−1) and decreased by rimonabant (3 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Our findings extend previous research on the crosstalk between cannabinoid and opioid receptors in relapse mechanisms, which suggests a differential role in heroin-seeking reinstatement and cannabinoid substitution in heroin-abstinent rats. LINKED ARTICLES This article is part of a themed issue on

  17. Opioid intoxication

    MedlinePlus

    ... treat severe cough or diarrhea. The illegal drug heroin is also an opioid. When abused , opioids cause ... Abuse. What are the medical complications of chronic heroin use? National Institute on Drug Abuse Web site. ...

  18. Maintenance on naltrexone+amphetamine decreases cocaine-vs.-food choice in male rhesus monkeys.

    PubMed

    Moerke, Megan J; Banks, Matthew L; Cheng, Kejun; Rice, Kenner C; Negus, S Stevens

    2017-12-01

    Cocaine use disorder remains a significant public health issue for which there are no FDA-approved pharmacotherapies. Amphetamine maintenance reduces cocaine use in preclinical and clinical studies, but the mechanism of this effect is unknown. Previous studies indicate a role for endogenous opioid release and subsequent opioid receptor activation in some amphetamine effects; therefore, the current study examined the role of mu-opioid receptor activation in d-amphetamine treatment effects in an assay of cocaine-vs-food choice. Adult male rhesus monkeys with double-lumen intravenous catheters responded for concurrently available food pellets and cocaine injections (0-0.1mg/kg/injection) during daily sessions. Cocaine choice and overall reinforcement rates were evaluated during 7-day treatments with saline or test drugs. During saline treatment, cocaine maintained a dose-dependent increase in cocaine-vs.-food choice. The mu-opioid receptor agonist morphine (0.032-0.32mg/kg/h) dose-dependently increased cocaine choice and decreased rates of reinforcement. A dose of the mu-selective opioid receptor antagonist naltrexone (0.0032mg/kg/h) that completely blocked morphine effects had no effect on cocaine choice when it was administered alone, but it enhanced the effectiveness of a threshold dose of 0.032mg/kg/h amphetamine to decrease cocaine choice without also enhancing nonselective behavioral disruption by this dose of amphetamine. Conversely, the kappa-selective opioid antagonist norbinalorphimine did not enhance amphetamine effects on cocaine choice. These results suggest that amphetamine maintenance produces mu opioid-receptor mediated effects that oppose its anti-cocaine effects. Co-administration of naltrexone may selectively enhance amphetamine potency to decrease cocaine choice without increasing amphetamine potency to produce general behavioral disruption. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Opioid/NMDA receptors blockade reverses the depressant-like behavior of foot shock stress in the mouse forced swimming test.

    PubMed

    Haj-Mirzaian, Arya; Ostadhadi, Sattar; Kordjazy, Nastaran; Dehpour, Ahmad Reza; Ejtemaei Mehr, Shahram

    2014-07-15

    Opioid and glutamatergic receptors have a key role in depression following stress. In this study, we assessed opioid and glutamatergic receptors interaction with the depressant-like behavior of acute foot-shock stress in the mouse forced swimming test. Stress was induced by intermittent foot shock stimulation during 30min and swim periods were afterwards conducted by placing mice in separated glass cylinders filled with water for 6min. The immobility time during the last 4min of the test was considered. Acute foot-shock stress significantly increased the immobility time of mice compared to non-stressed control group (P≤0.01). Administration of non-selective opioid receptors antagonist, naltrexone (1 and 2mg/kg, i.p.), and the selective non-competitive NMDA receptor antagonist, MK-801 (0.05mg/kg, i.p.), and the selective serotonin reuptake inhibitor, fluoxetine (5mg/kg), significantly reduced the immobility time in stressed animals (P≤0.01). Lower doses of MK-801 (0.01mg/kg), naltrexone (0.3mg/kg), NMDA (75mg/kg) and morphine(5mg/kg) had no effect on foot-shock stressed mice. Combined treatment of sub-effective doses of naltrexone and MK-801 significantly showed an antidepressant-like effect (P≤0.001). On the other hand, co-administration of non-effective doses of NMDA and morphine with effective doses of naltrexone and MK-801 reversed the anti-immobility effect of these drugs. Taken together, we have for the first time demonstrated the possible role of opioid/NMDA receptors signaling in the depressant-like effect of foot-shock stress, and proposed the use of drugs that act like standard anti-depressants in stress-induced depression. Copyright © 2014. Published by Elsevier B.V.

  20. Cafestol, a coffee-specific diterpene, induces peripheral antinociception mediated by endogenous opioid peptides.

    PubMed

    Guzzo, Luciana S; Perez, Andrea C; Romero, Thiago Rl; Azevedo, Adolfo O; Duarte, Igor Dg

    2012-05-01

    The opioid peptides have been implicated in peripheral antinociception induced by non-opioidergic compounds, including non-steroidal anti-inflammatory drugs and α(2) -adrenoceptor agonists. The aims of the present study were to investigate the possible peripheral antinociceptive effect of cafestol, a diterpene present in the oil derived from coffee beans, and to evaluate the involvement of opioid peptides in its effect. The rat paw pressure test was used to assess antinocipeptive effects. Hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (2 μg/paw). All drugs were locally administered into the hind-paws of male Wistar rats. Intraplantar injection of cafestol (20, 40 and 80 μg) induced peripheral antinociception. The antinociceptive effect of cafestol was due to a local action because the higher dose (80 μg/paw) did not produce any effect in the contralateral paw. The opioid receptor antagonist naloxone (25, 50 and 100 μg/paw) prevented the action of cafestol (80 μg/paw), whereas the aminopeptidase inhibitor bestatin (400 μg/paw) potentiated the antinociceptive effect of cafestol (40 μg/paw). The results of the present study provide evidence that cafestol treatment has a peripheral antinociceptive effect and suggest that this effect is mediated by the release of endogenous opioids. © 2012 The Authors Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.

  1. Opioid analgesics: does potency matter?

    PubMed

    Passik, Steven D; Webster, Lynn

    2014-01-01

    Prescription opioid analgesics with a wide range of potencies are currently used for the treatment of chronic pain. Yet understanding the clinical relevance and therapeutic consequences of opioid potency remains ill defined. Both patients and clinicians alike have misperceptions about opioid potency, expecting that less-potent opioids will be less effective or fearing that more-potent opioids are more dangerous or more likely to be abused. In this review, common myths about the potency of opioid analgesics will be discussed. Clinicians should understand that pharmacologic potency per se does not necessarily imply more effective analgesia or higher abuse liability. Published dose conversion tables may not accurately calculate the dose for effective and safe rotation from one opioid to another in patients receiving long-term opioid therapy because they are based on limited data that may not apply to chronic pain. Differences in pharmacologic potency are largely accounted for by the actual doses prescribed, according to individualized patient need. Factors for achieving effective analgesia and reducing the risks involved with opioid use include careful medication selection based on patient characteristics, appropriate dosing titration and opioid rotation practices, knowledge of product formulation characteristics (eg, extended release, immediate release, and tamper-resistant features), and an awareness of differences in opioid pharmacokinetics and metabolism. Clinicians should remain vigilant in monitoring patients on any opioid medication, regardless of classification along the opioid potency continuum.

  2. Improved memory for reward cues following acute buprenorphine administration in humans.

    PubMed

    Syal, Supriya; Ipser, Jonathan; Terburg, David; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A; Montoya, Estrella R; Stein, Dan J; van Honk, Jack

    2015-03-01

    In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are disregarded by subjects scoring high on depressive mood who are low in reward drive. We investigated whether a single 0.2mg administration of the mixed mu-opioid agonist/kappa-antagonist, buprenorphine, would influence short-term memory for happy, angry or fearful expressions relative to neutral faces. Healthy human subjects (n38) participated in a randomized placebo-controlled within-subject design, and performed an emotional face relocation task after administration of buprenorphine and placebo. We show that, compared to placebo, buprenorphine administration results in a significant improvement of memory for happy faces. Our data demonstrate that acute manipulation of the opioid system by buprenorphine increases short-term memory for social reward cues. Copyright © 2015. Published by Elsevier Ltd.

  3. Discovery of Potent and Selective Agonists of δ Opioid Receptor by Revisiting the "Message-Address" Concept.

    PubMed

    Shen, Qing; Qian, Yuanyuan; Huang, Xiaoqin; Xu, Xuejun; Li, Wei; Liu, Jinggen; Fu, Wei

    2016-04-14

    The classic "message-address" concept was proposed to address the binding of endogenous peptides to the opioid receptors and was later successfully applied in the discovery of the first nonpeptide δ opioid receptor (DOR) antagonist naltrindole. By revisiting this concept, and based on the structure of tramadol, we designed a series of novel compounds that act as highly potent and selective agonists of DOR among which (-)-6j showed the highest affinity (K i = 2.7 nM), best agonistic activity (EC50 = 2.6 nM), and DOR selectivity (more than 1000-fold over the other two subtype opioid receptors). Molecular docking studies suggest that the "message" part of (-)-6j interacts with residue Asp128(3.32) and a neighboring water molecule, and the "address" part of (-)-6j packs with hydrophobic residues Leu300(7.35), Val281(6.55), and Trp284(6.58), rendering DOR selectivity. The discovery of novel compound (-)-6j, and the obtained insights into DOR-agonist binding will help us design more potent and selective DOR agonists.

  4. Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans

    PubMed Central

    Lofwall, Michelle R.; Babalonis, Shanna; Nuzzo, Paul A.; Elayi, Samy Claude; Walsh, Sharon L.

    2016-01-01

    Background The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal. Methods Twelve opioid dependent adults participated in this 5-week, inpatient, double-blind, randomized, placebo-controlled study. Volunteers were maintained on double-blind oxycodone (30mg oral, four times/day) and participated in a training session followed by 7 experimental sessions, each testing a single oral test dose (placebo, oxycodone 30 and 60mg, dronabinol 5, 10, 20, and 30mg [decreased from 40mg]). Placebo was substituted for oxycodone maintenance doses for 21 hours before each session in order to produce measurable opioid withdrawal. Outcomes included observer- and participant-ratings of opioid agonist, opioid withdrawal and psychomotor/cognitive performance. Results Oxycodone produced prototypic opioid agonist effects (i.e., suppressing withdrawal and increasing subjective effects indicative of abuse liability). Dronabinol 5 and 10mg produced effects most similar to placebo, while the 20 and 30mg doses produced modest signals of withdrawal suppression that were accompanied by dose-related increases in high, sedation, bad effects, feelings of heart racing, and tachycardia. Dronabinol was not liked more than placebo, showed some impairment in cognitive performance, and was identified as marijuana with increasing dose. Conclusion CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal. PMID:27234658

  5. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  6. Inequalities between Kappa and Kappa-Like Statistics for "k x k" Tables

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2010-01-01

    The paper presents inequalities between four descriptive statistics that can be expressed in the form [P-E(P)]/[1-E(P)], where P is the observed proportion of agreement of a "kappa x kappa" table with identical categories, and E(P) is a function of the marginal probabilities. Scott's "pi" is an upper bound of Goodman and Kruskal's "lambda" and a…

  7. Co-morbid pain and opioid addiction: Long term effect of opioid maintenance on acute pain

    PubMed Central

    Wachholtz, Amy; Gonzalez, Gerardo

    2014-01-01

    Introduction Medication assisted treatment for opioid dependence alters the pain experience. This study will evaluate changes pain sensitivity and tolerance with opioid treatments; and duration of this effect after treatment cessation. Method 120 individuals with chronic pain were recruited in 4 groups (n=30): 1-methadone for opioid addiction; 2-buprenorphine for opioid addiction; 3-history of opioid maintenance treatment for opioid addiction but with prolonged abstinence (M=121 weeks; SD=23.3); and 4-opioid naïve controls. Participants completed a psychological assessment and a cold water task including, time to first pain (sensitivity) and time to stopping the pain task (tolerance). Data analysis used survival analyses. Results A Kaplan-Meier-Cox survival analysis showed group differences for both pain sensitivity (Log rank=15.50; p<.001) and tolerance (Log rank=20.11; p<.001). Current or historical use of opioid maintenance resulted in differing pain sensitivity compared to opioid naïve (p’s<.01). However, tolerance to pain was better among those with a history of opioid maintenance compared to active methadone patients (p<.05), with the highest tolerance found among opioid naïve control group participants (p’s<.001). Correlations within the prolonged abstinent group indicated pain tolerance was significantly improved as length of opioid abstinence increased (R=.37; p<.05); but duration of abstinence did not alter sensitivity (ns). Conclusion Among individuals with a history of prolonged opioid maintenance, there appears to be long-term differences in pain sensitivity that do not resolve with discontinuation of opioid maintenance. Although pain sensitivity does not change, pain tolerance does improve after opioid maintenance cessation. Implications for treating co-morbid opioid addiction and pain (acute and chronic) are discussed. PMID:25456326

  8. Co-morbid pain and opioid addiction: long term effect of opioid maintenance on acute pain.

    PubMed

    Wachholtz, Amy; Gonzalez, Gerardo

    2014-12-01

    Medication assisted treatment for opioid dependence alters the pain experience. This study will evaluate changes pain sensitivity and tolerance with opioid treatments; and duration of this effect after treatment cessation. 120 Individuals with chronic pain were recruited in 4 groups (N = 30): 1-methadone for opioid addiction; 2-buprenorphine for opioid addiction; 3-history of opioid maintenance treatment for opioid addiction but with prolonged abstinence (M = 121 weeks; SD = 23.3); and 4-opioid naïve controls. Participants completed a psychological assessment and a cold water task including, time to first pain (sensitivity) and time to stopping the pain task (tolerance). Data analysis used survival analyses. A Kaplan-Meier-Cox survival analysis showed group differences for both pain sensitivity (log rank = 15.50; p < .001) and tolerance (log rank = 20.11; p < .001). Current or historical use of opioid maintenance resulted in differing pain sensitivity compared to opioid naïve (p's < .01). However, tolerance to pain was better among those with a history of opioid maintenance compared to active methadone patients (p < .05), with the highest tolerance found among opioid naïve control group participants (p's < .001). Correlations within the prolonged abstinent group indicated pain tolerance was significantly improved as length of opioid abstinence increased (R = .37; p < .05); but duration of abstinence did not alter sensitivity (ns). Among individuals with a history of prolonged opioid maintenance, there appears to be long-term differences in pain sensitivity that do not resolve with discontinuation of opioid maintenance. Although pain sensitivity does not change, pain tolerance does improve after opioid maintenance cessation. Implications for treating co-morbid opioid addiction and pain (acute and chronic) are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Long-Term Opioid Therapy Reconsidered

    PubMed Central

    Von Korff, Michael; Kolodny, Andrew; Deyo, Richard A.; Chou, Roger

    2012-01-01

    In the past 20 years, primary care physicians have greatly increased prescribing of long-term opioid therapy. However, the rise in opioid prescribing has outpaced the evidence regarding this practice. Increased opioid availability has been accompanied by an epidemic of opioid abuse and overdose. The rate of opioid addiction among patients receiving long-term opioid therapy remains unclear, but research suggests that opioid misuse is not rare. Recent studies report increased risks for serious adverse events, including fractures, cardiovascular events, and bowel obstruction, although further research on medical risks is needed. New data indicate that opioid-related risks may increase with dose. From a societal perspective, higher-dose regimens account for the majority of opioids dispensed, so cautious dosing may reduce both diversion potential and patient risks for adverse effects. Limiting long-term opioid therapy to patients for whom it provides decisive benefits could also reduce risks. Given the warning signs and knowledge gaps, greater caution and selectivity are needed in prescribing long-term opioid therapy. Until stronger evidence becomes available, clinicians should err on the side of caution when considering this treatment. PMID:21893626

  10. Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex

    PubMed Central

    Storer, R J; Akerman, S; Goadsby, P J

    2003-01-01

    Opioid agonists have been used for many years to treat all forms of headache, including migraine. We sought to characterize opioid receptors involved in craniovascular nociceptive pathways by in vivo microiontophoresis of μ-receptor agonists and antagonists onto neurons in the trigeminocervical complex of the cat. Cats were anaesthetized with α-chloralose 60 mg kg−1, i.p. and 20 mg kg−1, i.v. supplements after induction and surgical preparation using halothane. Units were identified in the trigeminocervical complex responding to supramaximal electrical stimulation of the superior sagittal sinus, and extracellular recordings of activity made. Seven- or nine-barrelled glass micropipettes incorporating tungsten recording electrodes in their centre barrels were used for microiontophoresis of test substances onto cell bodies. Superior sagittal sinus (SSS)-linked cells whose firing was evoked by microiontophoretic application of L-glutamate (n=8 cells) were reversibly inhibited by microiontophoresis of H2N-Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (n=12), a selective μ-receptor agonist, in a dose dependent manner, but not by control ejection of sodium or chloride ions from a barrel containing saline. The inhibition by DAMGO of SSS-linked neurons activated with L-glutamate could be antagonized by microiontophoresis of selective μ-receptor antagonists D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), or both, in all cells tested (n=4 and 6, respectively). Local iontophoresis of DAMGO during stimulation of the superior sagittal sinus resulted in a reduction in SSS-evoked activity. This effect was substantially reversed 10 min after cessation of iontophoresis. The effect of DAMGO was markedly inhibited by co-iontophoresis of CTAP. Thus, we found that μ-receptors modulate nociceptive input to the trigeminocervical complex. Characterizing the sub-types of opioid receptors that influence trigeminovascular nociceptive

  11. A non-rewarding, non-aversive buprenorphine/naltrexone combination attenuates drug-primed reinstatement to cocaine and morphine in rats in a conditioned place preference paradigm.

    PubMed

    Cordery, Sarah F; Taverner, Alistair; Ridzwan, Irna E; Guy, Richard H; Delgado-Charro, M Begoña; Husbands, Stephen M; Bailey, Christopher P

    2014-07-01

    Concurrent use of cocaine and heroin is a major public health issue with no effective relapse prevention treatment currently available. To this purpose, a combination of buprenorphine and naltrexone, a mixed very-low efficacy mu-opioid receptor agonist/kappa-opioid receptor antagonist/nociceptin receptor agonist, was investigated. The tail-withdrawal and the conditioned place preference (CPP) assays in adult Sprague Dawley rats were used to show that naltrexone dose-dependently blocked the mu-opioid receptor agonism of buprenorphine. Furthermore, in the CPP assay, a combination of 0.3 mg/kg buprenorphine and 3.0 mg/kg naltrexone was aversive. A combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone was neither rewarding nor aversive, but still possessed mu-opioid receptor antagonist properties. In the CPP extinction and reinstatement method, a combination of 0.3 mg/kg buprenorphine and 1.0 mg/kg naltrexone completely blocked drug-primed reinstatement in cocaine-conditioned rats (conditioned with 3 mg/kg cocaine, drug prime was 3 mg/kg cocaine) and attenuated drug-primed reinstatement in morphine-conditioned rats (conditioned with 5 mg/kg morphine, drug prime was 1.25 mg/kg morphine). These data add to the growing evidence that a buprenorphine/naltrexone combination may be protective against relapse in a polydrug abuse situation. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  12. Opioid Utilization and Opioid-Related Adverse Events in Non-Surgical Patients in U.S. Hospitals

    PubMed Central

    Herzig, Shoshana J.; Rothberg, Michael B.; Cheung, Michael; Ngo, Long H.; Marcantonio, Edward R.

    2014-01-01

    Background Recent studies in the outpatient setting have demonstrated high rates of opioid prescribing and overdose-related deaths. Prescribing practices in hospitalized patients are unexamined. Objective To investigate patterns and predictors of opioid utilization in non-surgical admissions to U.S. hospitals, variation in use, and the association between hospital-level use and rates of severe opioid-related adverse events. Design, Setting, and Patients Adult non-surgical admissions to 286 U.S. hospitals. Measurements Opioid exposure and severe opioid-related adverse events during hospitalization, defined using hospital charges and ICD-9-CM codes. Results Of 1.14 million admissions, opioids were used in 51%. The mean ± s.d. daily dose received in oral morphine equivalents (OME) was 68 ± 185 mg; 23% of exposed received a total daily dose of ≥ 100 mg OME. Opioid prescribing rates ranged from 5% in the lowest to 72% in the highest prescribing hospital (mean 51% ± 10%). After adjusting for patient characteristics, the adjusted opioid prescribing rates ranged from 33–64% (mean 50% ± s.d. 4%). Among exposed, 0.97% experienced severe opioid-related adverse events. Hospitals with higher opioid prescribing rates had higher adjusted relative risk of a severe opioid-related adverse event per patient exposed (RR 1.23 [1.14–1.33] for highest compared to lowest prescribing quartile). Conclusions The majority of hospitalized non-surgical patients were exposed to opioids, often at high doses. Hospitals that used opioids most frequently had increased adjusted risk of a severe opioid-related adverse event per patient exposed. Interventions to standardize and enhance the safety of opioid prescribing in hospitalized patients should be investigated. PMID:24227700

  13. On subclasses of opioid analgesics.

    PubMed

    Raffa, Robert B

    2014-12-01

    The history of discovery of analgesic drugs has followed a trajectory from original serendipitous discovery of plant-derived substances to laboratory creation of customized molecules that are intentionally designed to interact with specific receptors of neurotransmitters involved in either the transmission of the pain signal or the attenuation of such a signal. The drugs most recently developed have been designed to provide incremental greater separation between pain relief and adverse effects. The result has been drugs that have individualized pharmacodynamic and pharmacokinetic characteristics that represent specific advances in basic science and translate into unique clinical profiles. Several of the drugs include non-opioid components. They retain some of the features of opioids, but have distinct clinical characteristics that differentiate them from traditional opioids. Thus they defy simple classification as opioids. A summary is provided of the development of the modern view of multi-mechanistic pain and its treatment using analgesics that have multi-mechanisms of action (consisting of both opioid and non-opioid components). Descriptions of examples of such current analgesics and of those that have pharmacokinetic characteristics that result in atypical opioid clinical profiles are given. By serendipity or design, several current strong analgesics have opioid components of action, but have an additional non-opioid mechanism of action or some pharmacokinetic feature that gives them an atypical opioid clinical profile and renders them not easily classified as classical opioids. An appreciation that there are now opioid analgesics that differentiate from classical opioids in ways that defy their simplistic classification as opioids suggests that recognition of subclasses of opioid analgesics would be more accurate scientifically and would be more informative for healthcare providers and regulators. This would likely lead to positive outcomes for the clinical

  14. Novel multiple opioid ligands based on 4-aminobenzazepinone (Aba), azepinoindole (Aia) and tetrahydroisoquinoline (Tic) scaffolds

    PubMed Central

    Ballet, Steven; Marczak, Ewa D.; Feytens, Debby; Salvadori, Severo; Sasaki, Yusuke; Abell, Andrew D.; Lazarus, Lawrence H.; Balboni, Gianfranco; Tourwé, Dirk

    2010-01-01

    The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds. PMID:20137938

  15. Bifunctional [2’,6’-Dimethyl-l-tyrosine1]Endomorphin-2 Analogues Substituted at Position 3 with Alkylated Phenylalanine Derivatives Yield Potent Mixed μ-Agonist/δ-Antagonist and Dual μ-/δ-Agonist Opioid Ligands

    PubMed Central

    Li, Tingyou; Shiotani, Kimitaka; Miyazaki, Anna; Tsuda, Yuko; Ambo, Akihiro; Sasaki, Yusuke; Jinsmaa, Yunden; Marczak, Ewa; Bryant, Sharon D.; Lazarus, Lawrence H.; Okada, Yoshio

    2009-01-01

    Endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH2) and [Dmt1]EM-2 (Dmt = 2’,6’-dimethyl-l-tyrosine) analogues were synthesized containing alkylated Phe3 derivatives, 2’-monomethyl (2, 2’), 3’,5’- and 2’,6’-dimethyl (3, 3’, and 4’, respectively), 2’,4’,6’-trimethyl (6, 6’), 2’-ethyl-6’-methyl (7, 7’) and 2’-isopropyl-6’-methyl (8, 8’) groups or Dmt (5, 5’). They had the following characteristics: (i) [Xaa3]EM-2 analogues improved μ- and δ-opioid receptor affinities, the latter were inconsequential (Kiδ= 491–3,451 nM); (ii) [Dmt1,Xaa3]EM-2 analogues enhanced μ- and δ-opioid receptor affinities (Kiμ = 0.069–0.32 nM; Kiδ = 1.83–99.8 nM) and lacked interaction with κ-opioid receptors, and (iii) elevated μ-bioactivity (IC50 = 0.12–14.4 nM) and abolished δ-agonism (IC50 > 10 µM; 2’, 3’, 4’, 5’, 6’); however, 4’ and 6’ exhibited mixed μ-agonism/δ-antagonism (4’: IC50μ = 0.12, pA2 = 8.15; 6’: IC50μ = 0.21 nM, pA2 = 9.05), and 7’ was a dual μ-/δ -agonist (IC50μ = 0.17 nM; IC50δ = 0.51 nM). Alteration of EM-2 activity by Dmt1 and alkylated Phe3 residues retained μ-receptor bioactivity and formed dual μ-/δ -agonists and mixed μ-agonists/δ-antagonists. PMID:17497839

  16. Yohimbine Increases Opioid-Seeking Behavior in Heroin-Dependent, Buprenorphine-Maintained Individuals

    PubMed Central

    Greenwald, Mark K.; Lundahl, Leslie H.; Steinmiller, Caren L.

    2012-01-01

    Rationale In laboratory animals, the biological stressor yohimbine (α2-noradrenergic autoreceptor antagonist) promotes drug seeking. Human laboratory studies have demonstrated that psychological stressors can increase drug craving but not that stressors alter drug seeking. Objectives This clinical study tested whether yohimbine increases opioid seeking behavior. Methods Ten heroin-dependent, buprenorphine (8-mg/day) stabilized volunteers, sampled two doses of hydromorphone (12 and 24 mg IM in counterbalanced order, labeled Drug A [session 1] and Drug B [session 2]). During each of six later sessions (within-subject, double blind, randomized crossover design), volunteers could respond on a 12-trial choice progressive ratio task to earn units (1 or 2 mg) of the sampled hydromorphone dose (Drug A or B) vs. money ($2) following different oral yohimbine pretreatment doses (0, 16.2 and 32.4 mg). Results Behavioral economic demand intensity and peak responding (Omax) were significantly higher for hydromorphone 2-mg than 1-mg. Relative to placebo, yohimbine significantly increased hydromorphone demand inelasticity, more so for hydromorphone 1-mg units (Pmax = 909, 3647 and 3225 for placebo, 16.2 and 32.4 mg yohimbine doses, respectively) than hydromorphone 2-mg units (Pmax = 2656, 3193 and 3615, respectively). Yohimbine produced significant but clinically modest dose-dependent increases in blood pressure (systolic ≈15 and diastolic ≈10 mmHg) and opioid withdrawal symptoms, and decreased opioid agonist symptoms and elated mood. Conclusions These findings concur with preclinical data by demonstrating that yohimbine increases drug seeking; in this study, these effects occurred without clinically significant subjective distress or elevated craving, and partly depended on opioid unit dose. PMID:23161001

  17. Interaction of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and opioid receptors in spinal cord nociceptive reflexes.

    PubMed

    Ramos-Zepeda, Guillermo; Herrero, Juan F

    2013-08-14

    We previously observed that the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) is a very effective antinociceptive agent on intact but not on spinalized adult rats with inflammation. Since a close connection between opioid and adenosine A1 receptors has been described, we studied a possible relationship between these systems in the spinal cord. CPA-mediated antinociception was challenged by the selective adenosine A1 receptor antagonist 8-cyclopentyl-1, 3-dimethylxanthine (CPT) and by the opioid receptor antagonist naloxone on male adult Wistar rats with carrageenan-induced inflammation. Withdrawal reflexes activated by noxious mechanical and electrical stimulation were recorded using the single motor technique in intact and sham-spinalized animals. CPA was very effective in intact and sham spinalized rats but not in spinalized animals. Full reversal of CPA antinociception was observed with i.v. 1mg/kg of naloxone but not with 20mg/kg of CPT i.v. in responses to noxious mechanical and electrical stimulation. CPT fully prevented CPA from any antinociceptive action whereas naloxone did not modify CPA activity. These results suggest a centrally-mediated action, since CPA depressed the wind-up phenomenon which is derived of the activity of spinal cord neurons. The present study provides strong in vivo evidence of an antinociceptive activity mediated by the adenosine A1 receptor system in the spinal cord, linked to an activation of opioid receptors in adult animals with inflammation. © 2013.

  18. Combination of intrathecal opioids with bupivacaine attenuates opioid dose escalation in chronic noncancer pain patients.

    PubMed

    Veizi, I Elias; Hayek, Salim M; Narouze, Samer; Pope, Jason E; Mekhail, Nagy

    2011-10-01

    The purpose of this study was to examine the effect of intrathecal (IT) coadministration of bupivacaine with opioids during the initial phase of opioid titration and up to 1 year after implantation of an IT drug delivery system (IDDS). The study was designed as a retrospective study. OUTCOMES ANALYZED: The outcomes analyzed for this study were pain relief, oral opioid consumption, IT opioid, and bupivacaine dosage. METHODS AND PATIENT POPULATION: The patient population for this study were consecutively implanted patients over a period of 6 years in a tertiary single center with multiple practitioners. In this retrospective study, 126 consecutive noncancer intractable pain patients were implanted with IDDS and initiated with an IT opioid (O) as a single medication or an IT opioid and bupivacaine (O + B). Pain intensity, amount of oral opioids, dose, rate, and concentration of IT opioids and bupivacaine, and number and type of IT medication used were recorded at preimplant, implant, and at 3, 6, and 12 months postimplant. The intervention used for the study was the IT delivery device implant. Significant reduction in pain intensity was observed in both groups at 12 months postimplant (O group: baseline 7.42 ± 2.1 to 5.85 ± 2.8 [n = 72, P < 0.001]; O + B group 7.35 ± 2 to 5.03 ± 2.4 (n = 54; P < 0.001]). The combination of opioids with bupivacaine from the start of IT infusion treatment resulted in a reduced progression of opioid dose escalation in comparison to patients started with opioids (O group). The rate of increase of IT opioids in the O group at 12 months was 535 ± 180%, whereas in the O + B, the dose increase was significantly lower at 185 ± 85% (P < 0.004). In both groups, there was a statistically significant decrease in oral opioid consumption compared with preimplant doses. Concomitant initial coadministration of IT bupivacaine with opioids blunts the rate of IT opioid dose escalation during the first year after implant of an IDDS. More studies are

  19. Using Opioids Safely After Surgery

    MedlinePlus

    ... Adult , Geriatric Using Opioids Safely After Surgery Using Opioids Safely After Surgery Stick to the lowest dose ... need opioid pain medicine. If your doctor says opioids aren’t necessary. If your doctor thinks you ...

  20. 40 CFR 721.10033 - Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc, [ethanedioato(2-)-. kappa. O1, . kappa. O2]-. 721.10033 Section 721.10033 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1003...