Sample records for kapur-peierls method

  1. Pressure Dependence of the Peierls Stress in Aluminum

    NASA Astrophysics Data System (ADS)

    Dang, Khanh; Spearot, Douglas

    2018-03-01

    The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.

  2. Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide

    NASA Astrophysics Data System (ADS)

    Cui, Chang-Xing; Kertesz, Miklos

    1990-06-01

    A new type of Peierls-like distortion, the formation of a helix due to the existence of partially filled crossing bands, is reported for polyketone and polyisocyanide. The torsional potential curves, optimized geometries, band structures and phonon dispersion curves are derived. A comparison with the well-known Peierls-distorted all-trans polyacetylene indicates close similarity between the two types of Peierls distortions.

  3. Study of Y and Lu iron garnets using Bethe-Peierls-Weiss method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, G.; Mukhopadhyay, P.

    1994-11-01

    We study here the magnetic properties of Y- and Lu- Iron Garnets using the Bethe- Peierls-Weiss method modified to suit complex systems like these Garnets. We consider these Garnets as described by Heisenberg Hamiltonian with two sublattices (a,d) and determine the exchange interaction parameters Jad, Jaa and Jdd by matching the exerimental susceptibility curves. We find Jaa and Jdd to be much smaller than those determined by Néel theory, and consistent with those obtained by the study of spin wave spectra; the spin wave dispersion relation constant obtained using these parameters gives good agreement with the experimental values.

  4. Peierls-Nabarro modeling of dislocations in UO2

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2017-11-01

    Under conditions of high stress or low temperature, glide of dislocations plays an important role in the deformation of UO2. In this paper, the Peierls-Nabarro model is used to calculate the core widths and Peierls stresses of ½<110> edge and screw dislocations gliding on {100}, {110}, and {111}. The energy of the inelastic displacement field in the dislocation core is parameterized using generalized stacking fault energies, which are calculated atomistically using interatomic potentials. We use seven different interatomic potential models, representing the variety of different models available for UO2. The different models broadly agree on the relative order of the strengths of the different slip systems, with the 1/2<110>{100} edge dislocation predicted to be the weakest slip system and 1/2<110>{110} the strongest. However, the calculated Peierls stresses depend strongly on the interatomic potential used, with values ranging between 2.7 and 12.9 GPa for glide of 1/2<110>{100} edge dislocations, 16.4-32.3 GPa for 1/2<110>{110} edge dislocations, and 6.8-13.6 GPa for 1/2<110>{111} edge dislocations. The glide of 1/2<110> screw dislocations in UO2 is also found to depend on the interatomic potential used, with some models predicting similar Peierls stresses for glide on {100} and {111}, while others predict a unique easy glide direction. Comparison with previous fully atomistic calculations show that the Peierls-Nabarro model can accurately predict dislocation properties in UO2.

  5. The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.

    PubMed

    Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi

    2009-08-26

    The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.

  6. Atomically informed nonlocal semi-discrete variational Peierls-Nabarro model for planar core dislocations

    PubMed Central

    Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao

    2017-01-01

    Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds. PMID:28252102

  7. Local Variability of the Peierls Barrier of Screw Dislocations in Ta-10W.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foiles, Stephen M.

    2017-10-01

    It is well know that the addition of substitutional elements changes the mechanical behavior of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC) metals, screw dislocation play a key role in the mechanical properties. Here the detailed modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional atoms is computing using density functional theory (DFT). A reduced order model (ROM) of the influence of W substitution on the Peierls barrier is developed. The mean field change in the Peierls barrier for a Ta10W alloy is determined and shown to be larger than anticipatedmore » based on simple elasticity considerations. The ROM could be used in future calculations to determine the local variability of the Peierls barrier and the resultant influence on the motion of screw dislocation in this alloy.« less

  8. Not-Post-Peierls compatibility under noisy channels

    NASA Astrophysics Data System (ADS)

    Ducuara, Andrés F.; Susa, Cristian E.; Reina, John H.

    2017-06-01

    The Pusey-Barrett-Rudolph (PBR) theorem deals with the realism of the quantum states. It establishes that every pure quantum state is real, in the context of quantum ontological models. Specifically, by guaranteeing the property of not-Post-Peierls (\

  9. Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation

    NASA Astrophysics Data System (ADS)

    Wang, Shaofeng; Hu, Xiangsheng

    2018-05-01

    The exact solution of the generalized Peierls equation is presented and proved for arbitrary n-fold screw dislocation. The displacement field, stress field and the energy of the n-fold dislocation are also evaluated explicitly. It is found that the solution defined on each individual fold is given by the tail cut from the original Peierls solution. In viewpoint of energetics, a screw dislocation has a tendency to spread the distribution on all possible slip planes which are contained in the dislocation line zone. Based on the exact solution, the approximated solution of the improved Peierls equation is proposed for the modified γ-surface.

  10. Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberger, Christopher R.; Tucker, Garritt J.; Foiles, Stephen M.

    2013-02-01

    It is well known that screw dislocation motion dominates the plastic deformation in body-centered-cubic metals at low temperatures. The nature of the nonplanar structure of screw dislocations gives rise to high lattice friction, which results in strong temperature and strain rate dependence of plastic flow. Thus the nature of the Peierls potential, which is responsible for the high lattice resistance, is an important physical property of the material. However, current empirical potentials give a complicated picture of the Peierls potential. Here, we investigate the nature of the Peierls potential using density functional theory in the bcc transition metals. The resultsmore » show that the shape of the Peierls potential is sinusoidal for every material investigated. Furthermore, we show that the magnitude of the potential scales strongly with the energy per unit length of the screw dislocation in the material.« less

  11. Singlet-to-Triplet Excitations in the Unconventional Spin-Peierls System TiOBr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clancy, James P; Gaulin, Bruce D.; Adams, Carl P

    2011-01-01

    We have performed time-of-flight neutron scattering measurements on powder samples of the unconventional spin-Peierls compound TiOBr using the fine-resolution Fermi chopper spectrometer (SEQUOIA) at the SNS. These measurements reveal two branches of magnetic excitations within the commensurate and incommensurate spin-Peierls phases, which we associate with n = 1 and n = 2 triplet excitations out of the singlet ground state. These measurements represent the first direct measure of the singlet-triplet energy gap in TiOBr, which is found to have a value of Eg 21 meV.

  12. Test of the Peierls-Nabarro model for dislocations in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Q.; Joos, B.; Duesbery, M.S.

    1995-11-01

    We show, using an atomistic model with a Stillinger-Weber potential (SWP), that in the absence of reconstruction, the basic assumption of the Peierls-Nabarro (PN) model that the dislocation core is spread within the glide plane is verified for silicon. The Peierls stress (PS) obtained from the two models are in quantitative agreement ({approx}0.3{mu}), when restoring forces obtained from first principles generalized stacking-fault energy surfaces are used in the PN model [B. Joos, Q. Ren, and M. S. Duesbery, Phys. Rev. B {bold 50}, 5890 (1994)]. The PS was found to be isotropic in the glide plane. Within the SWP modelmore » no evidence of dissociation in the shuffle dislocations is found but glide sets do separate into two partials.« less

  13. Pressure dependence of the Peierls transition in the quasi two-dimensional purple bronze KMo 6O 17

    NASA Astrophysics Data System (ADS)

    Rötger, A.; Beille, J.; Laurant, J. M.; Schlenker, C.

    1993-09-01

    The electrical resistivity and the lattice parameters have been studied as a function of pressure on the quasi-twodimensional purple bronze KMo 6O 17 which shows a Peierls transition towards a commensurate charge density wave state. The Peierls temperature is found to be first slightly decreased for pressures smaller than 6 kbar, then strongly increased above. This increase is associated to an anomalous contraction of the lattice parameters in the plane of the layers. The corresponding large increase of the compressibility above 16 kbar at 300 K is associated to the pretransitional regime of the Peierls transition as a function of pressure. These results are attributed mainly to an improved nesting of the Fermi surface under pressure.

  14. Multiple crossovers and coherent states in a Mott-Peierls insulator

    NASA Astrophysics Data System (ADS)

    Nájera, O.; Civelli, M.; Dobrosavljević, V.; Rozenberg, M. J.

    2018-01-01

    We consider the dimer Hubbard model within dynamical mean-field theory to study the interplay and competition between Mott and Peierls physics. We describe the various metal-insulator transition lines of the phase diagram and the breakdown of the different solutions that occur along them. We focus on the specific issue of the debated Mott-Peierls insulator crossover and describe the systematic evolution of the electronic structure across the phase diagram. We found that at low intradimer hopping, the emerging local magnetic moments can unbind above a characteristic singlet temperature T*. Upon increasing the interdimer hopping, subtle changes occur in the electronic structure. Notably, we find Hubbard bands of a mix character with coherent and incoherent excitations. We argue that this state might be relevant for materials such as VO2 and its signatures may be observed in spectroscopic studies, and possibly through pump-probe experiments.

  15. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. Here, we performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ~ 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  16. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    NASA Astrophysics Data System (ADS)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; Choi, Yongseong; Haskel, Daniel; Lee, Young S.

    2018-02-01

    The application of pressure reveals a rich phase diagram for the quantum S =1 /2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T =4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ˜6 GPa up to 215 K but possibly extends in temperature to above T =300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.

  17. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE PAGES

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; ...

    2018-02-15

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. Here, we performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ~ 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  18. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotundu, Costel R.; Wen, Jiajia; He, Wei

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  19. Enhancement and destruction of spin-Peierls physics in a one-dimensional quantum magnet under pressure

    DOE PAGES

    Rotundu, Costel R.; Wen, Jiajia; He, Wei; ...

    2018-02-15

    The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less

  20. Symmetry-Breaking Phase Transition without a Peierls Instability in Conducting Monoatomic Chains

    NASA Astrophysics Data System (ADS)

    Blumenstein, C.; Schäfer, J.; Morresi, M.; Mietke, S.; Matzdorf, R.; Claessen, R.

    2011-10-01

    The one-dimensional (1D) model system Au/Ge(001), consisting of linear chains of single atoms on a surface, is scrutinized for lattice instabilities predicted in the Peierls paradigm. By scanning tunneling microscopy and electron diffraction we reveal a second-order phase transition at 585 K. It leads to charge ordering with transversal and vertical displacements and complex interchain correlations. However, the structural phase transition is not accompanied by the electronic signatures of a charge density wave, thus precluding a Peierls instability as origin. Instead, this symmetry-breaking transition exhibits three-dimensional critical behavior. This reflects a dichotomy between the decoupled 1D electron system and the structural elements that interact via the substrate. Such substrate-mediated coupling between the wires thus appears to have been underestimated also in related chain systems.

  1. X-ray scattering study of the spin-Peierls phase transition

    NASA Astrophysics Data System (ADS)

    Lumsden, Mark Douglas

    1999-11-01

    Scattering techniques are an essential tool in the experimental study of properties in the vicinity of a critical phase transition. Such techniques have been applied to the study of the spin-Peierls transition in pure and doped samples of CuGeO3 and in the organic compound MEM(TCNQ) 2. The spin-Peierls phase transition occurs in one-dimensional S = 1/2 Heisenberg spin chains with short-range, antiferromagnetic interactions. Such a system is unstable against a dimerization of the chains with the subsequent appearance of a gap in the magnetic excitation spectrum. Such a gap acts to lower the magnetic energy in the system and, in the presence of coupling with the lattice, causes a phase transition to a dimerized, spin-Peierls, state. High temperature stability measurements of the order parameter associated with this transition in the inorganic compound CuGeO3 indicate a continuous phase transition at a temperature of 14.05 K with a corresponding critical exponent beta of 0.345 +/- 0.03. This value is in agreement with conventional 3D universality and in closest agreement with 3D XY behaviour. We also observe a narrow asymptotic critical region which is largely responsible for the inconsistency in previously reported results. High resolution measurements of relative lattice constant changes, performed using a novel approach, indicate spontaneous strains which scale with the square of the order parameter expect near the transition temperature where differences are observed. Similar order parameter measurements were performed on samples of CuGeO 3 doped with Zn, Si, and Cd. For the case of Zn and Si doping, we obtain and exponent beta consistent with that for the pure material. Measurements on two Cd doped samples indicate results which clearly deviate from that observed in pure CuGeO3 with an exponent beta of about 0.5 consistent with mean field behaviour. We explain this change in behaviour as resulting from local strains induced by the presence of the much larger Cd2

  2. Acceleration of the Particle Swarm Optimization for Peierls-Nabarro modeling of dislocations in conventional and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Pei, Zongrui; Eisenbach, Markus

    2017-06-01

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.

  3. Properties of resonance wave functions.

    NASA Technical Reports Server (NTRS)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  4. First principles Peierls-Boltzmann phonon thermal transport: A topical review

    DOE PAGES

    Lindsay, Lucas

    2016-08-05

    The advent of coupled thermal transport calculations with interatomic forces derived from density functional theory has ushered in a new era of fundamental microscopic insight into lattice thermal conductivity. Subsequently, significant new understanding of phonon transport behavior has been developed with these methods, and because they are parameter free and successfully benchmarked against a variety of systems, they also provide reliable predictions of thermal transport in systems for which little is known. This topical review will describe the foundation from which first principles Peierls-Boltzmann transport equation methods have been developed, and briefly describe important necessary ingredients for accurate calculations. Samplemore » highlights of reported work will be presented to illustrate the capabilities and challenges of these techniques, and to demonstrate the suite of tools available, with an emphasis on thermal transport in micro- and nano-scale systems. In conclusion, future challenges and opportunities will be discussed, drawing attention to prospects for methods development and applications.« less

  5. Using nonequilibrium dynamics to probe competing orders in a Mott-Peierls system

    DOE PAGES

    Wang, Y.; Moritz, B.; Chen, C. -C.; ...

    2016-02-24

    Competition between ordered phases, and their associated phase transitions, are significant in the study of strongly correlated systems. Here, we examine one aspect, the nonequilibrium dynamics of a photoexcited Mott-Peierls system, using an effective Peierls-Hubbard model and exact diagonalization. Near a transition where spin and charge become strongly intertwined, we observe antiphase dynamics and a coupling-strength-dependent suppression or enhancement in the static structure factors. The renormalized bosonic excitations coupled to a particular photoexcited electron can be extracted, which provides an approach for characterizing the underlying bosonic modes. The results from this analysis for different electronic momenta show an uneven softeningmore » due to a stronger coupling near k F. As a result, this behavior reflects the strong link between the fermionic momenta, the coupling vertices, and ultimately, the bosonic susceptibilities when multiple phases compete for the ground state of the system.« less

  6. Polymorphic transformation of dense ZnO nanoparticles: Implications for chair/boat-type Peierls distortions of AB semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.-Y.; Shen Pouyan; Jiang Jianzhong

    2004-12-08

    Peierls distortion path was proved experimentally for dense ZnO nanoparticles prepared by static compression. Electron irradiation caused rock salt (R) to wurtzite (W) transition, following preferential (11-bar1){sub R}//(01-bar11){sub W}; [011]{sub R}//[1-bar21-bar3]{sub W} and then transformation strain induced (111-bar){sub R}//(1-bar011){sub W}; [011]{sub R}//[011-bar1]{sub W}. The two relationships can be rationalized by specified extent of chair- and boat-type Peierls distortions accompanied with band gap opening and intermediate {l_brace}111{r_brace}{sub R} slip for energetically favorable {l_brace}111{r_brace}{sub R}/(01-bar11){sub W} match.

  7. Peculiarities of dislocation motion in aluminum with allowance for the Peierls relief in the presence of ultrasound

    NASA Astrophysics Data System (ADS)

    Arakelyan, M. M.

    2017-11-01

    The effect of ultrasound on motion of the Frenkel-Kontorova dislocations in aluminum has been studied with inclusion of the Peierls relief. A dislocation moves at a variable rate when overcoming the Peierls barrier. The dislocation mean free path is changed under action of ultrasound at various frequencies comparable to the dislocation transition time to a neighboring valley. The stress-strain dependences have been obtained for high and low strain rates. In both the cases, a disordering takes place; however, the disordering rates and characters are different. At the resonance frequency, the strain resistance decreases, the hardening stage is shortened and the disordering stage is elongated. The dependence of the coefficient of hardening on coordinate has three segments different in characters. The coefficient of hardening decreases at the resonance frequency.

  8. Comment on ``Dynamic Peierls-Nabarro equations for elastically isotropic crystals''

    NASA Astrophysics Data System (ADS)

    Markenscoff, Xanthippi

    2011-02-01

    The paper by Pellegrini [Phys. Rev. BPRBMDO0031-899X10.1103/PhysRevB.81.024101 81, 024101 (2010)] introduces additional “distributional terms” to the displacement of the static field of a dislocation and claims that they are needed so that Weertman's equation for the steady-state motion of the Peierls-Nabarro dislocation be recovered. He also claims that the [Eshelby, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.90.248 90, 248 (1953)] solution for a moving screw is wrong, a statement with which I disagree. The same [Eshelby, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.90.248 90, 248 (1953)] solution is also obtained and used by the eminent dislocation scientists Al’shitz and Indenbom in Al’shitz [Sov. Phys. JETP 33, 1240 (1971)] that the author ignores. A key reference in the formulation of the problem as a 3D inclusion with eigenstrain is Willis [J. Mech. Phys. SolidsJMPSA80022-509610.1016/0022-5096(65)90038-4 13, 377 (1965)] who showed that, in the transient fields, the static Eshelby equivalence of dislocations to inclusions (with eigenstrain) does not hold, but only at long times when they tend to the static ones. In this Comment the author provides the fundamental physics of the behavior of a moving Volterra dislocation in nonuniform motion by showing how the singular fields near the moving core are obtained from “first principles” (without solving for the full fields). The limit to the steady-state motion of a Peierls-Nabarro dislocation is also shown how to be obtained from first principles from the Volterra one by taking the appropriate limit, without the need of the additional distributional terms that Pellegrini introduces.

  9. Magnetic Ordering under Strain and Spin-Peierls Dimerization in GeCuO3

    NASA Astrophysics Data System (ADS)

    Filippetti, Alessio; Fiorentini, Vincenzo

    2007-05-01

    Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.

  10. Quantum phase transitions of the one-dimensional Peierls-Hubbard model with next-nearest-neighbor hopping integrals

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi

    1998-06-01

    We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.

  11. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    NASA Astrophysics Data System (ADS)

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    2017-09-01

    The recombination process of dislocations is central to cross-slip, and transmission through ?3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. We apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed ?-surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress, the two partial dislocations coalesce to a separation of ??. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (?) and the intrinsic stacking fault energy (?-?). We report recombination energies of ?W = 0.168 eV/Å and ?W = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. We develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.

  12. Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    PubMed Central

    Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio

    2012-01-01

    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898

  13. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    DOE PAGES

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    2017-05-19

    The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less

  14. The core structure and recombination energy of a copper screw dislocation: a Peierls study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.

    The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less

  15. Efficient numerical technique for calculating the properties of interacting dimers in the Peierls-Hubbard model

    NASA Astrophysics Data System (ADS)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We develop a method to compute the Green's function for two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. The method is based on a variational approximation to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and is shown to agree with exact digaonalization calculations. We show that the properties of bipolarons arising in such models is qualitatively different from those of the well-studied Holstein bipolarons. In particular, we show that depending on the particle statistics, strongly bound bipolarons may or may not form. In the case of hard-core bosons, we demonstrate novel effects for dimers such as sharp transitions and self-trapping. In the case of soft-core particles/ spinfull fermions, we show that the mediated interactions lead to overscreeing of the bare Hubbard U repulsion resulting in the formation of strongly bound bipolarons. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  16. From Atomistic Model to the Peierls-Nabarro Model with {γ} -surface for Dislocations

    NASA Astrophysics Data System (ADS)

    Luo, Tao; Ming, Pingbing; Xiang, Yang

    2018-05-01

    The Peierls-Nabarro (PN) model for dislocations is a hybrid model that incorporates the atomistic information of the dislocation core structure into the continuum theory. In this paper, we study the convergence from a full atomistic model to the PN model with {γ} -surface for the dislocation in a bilayer system. We prove that the displacement field and the total energy of the dislocation solution of the PN model are asymptotically close to those of the full atomistic model. Our work can be considered as a generalization of the analysis of the convergence from atomistic model to Cauchy-Born rule for crystals without defects.

  17. Exact static solutions for discrete phi4 models free of the Peierls-Nabarro barrier: discretized first-integral approach.

    PubMed

    Dmitriev, S V; Kevrekidis, P G; Yoshikawa, N; Frantzeskakis, D J

    2006-10-01

    We propose a generalization of the discrete Klein-Gordon models free of the Peierls-Nabarro barrier derived in Spreight [Nonlinearity 12, 1373 (1999)] and Barashenkov [Phys. Rev. E 72, 035602(R) (2005)], such that they support not only kinks but a one-parameter set of exact static solutions. These solutions can be obtained iteratively from a two-point nonlinear map whose role is played by the discretized first integral of the static Klein-Gordon field, as suggested by Dmitriev [J. Phys. A 38, 7617 (2005)]. We then discuss some discrete phi4 models free of the Peierls-Nabarro barrier and identify for them the full space of available static solutions, including those derived recently by Cooper [Phys. Rev. E 72, 036605 (2005)] but not limited to them. These findings are also relevant to standing wave solutions of discrete nonlinear Schrödinger models. We also study stability of the obtained solutions. As an interesting aside, we derive the list of solutions to the continuum phi4 equation that fill the entire two-dimensional space of parameters obtained as the continuum limit of the corresponding space of the discrete models.

  18. CDW fluctuations and the pseudogap in the single-particle conductivity of quasi-1D Peierls CDW systems: II.

    PubMed

    Kupčić, I; Rukelj, Z; Barišić, S

    2014-05-14

    The current-dipole Kubo formula for the dynamical conductivity of interacting multiband electronic systems derived in Kupčić et al (2013 J. Phys.: Condens. Matter 25 145602) is illustrated on the Peierls model for quasi-one-dimensional systems with the charge-density-wave (CDW) instability. Using the microscopic representation of the Peierls model, it is shown in which way the scattering of conduction electrons by CDW fluctuations affects the dynamical conductivity at temperatures above and well below the CDW transition temperature. The generalized Drude formula for the intraband conductivity is derived in the ordered CDW state well below the transition temperature. The natural extension of this formula to the case where the intraband memory function is dependent on frequency and wave vectors is also presented. It is shown that the main adventage of such a memory-function conductivity model is that it can be easily extended to study the dynamical conductivity and the electronic Raman scattering in more complicated multiband electronic systems in a way consistent with the law of conservation of energy. The incoherent interband conductivity in the CDW pseudogap state is briefly discussed as well.

  19. Bipolarons in one-dimensional extended Peierls-Hubbard models

    NASA Astrophysics Data System (ADS)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    2017-04-01

    We study two particles in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. In the case of hard-core bare particles, we show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. On the other hand, in the case of soft-core particles/ spinfull fermions, we show that phonon-mediated interactions are attractive and result in strongly bound and mobile bipolarons in a wide region of parameter space. This illustrates that, depending on the strength of the phonon-mediated interactions and statistics of bare particles, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  20. Cubic Dirac fermions in quasi-one-dimensional transition-metal chalcogenide semimetals immune to Peierls distortion

    NASA Astrophysics Data System (ADS)

    Liu, Qihang; Zunger, Alex

    A Cubic Dirac Fermion in condensed-matter physics refers to a band crossing in periodic solids that has 4-fold degeneracy with cubic dispersions in certain directions. Such a crystalline symmetry induced fermion is composed of 6 Weyl fermions where 3 have left-handed and 3 have right-handed chirality, and constitutes one of the ``new fermions'' that have no counterpart in high-energy physics. However, no prediction has yet pointed to a plausible example of a material candidate hosting such a cubically-dispersed Dirac semimetal (CDSM). Here we establish the design principles for CDSM finding that only 2 out of 230 space groups possess the required symmetry elements. Adding the required band occupancy criteria, we conduct a material search using density functional band theory identifying a group of quasi-one-dimensional molybdenum chalcogenide compounds A(MoX)3 (A = Na, K, Rb, In, Tl; X = S, Se, Te) with space group P63/m as ideal CDSM candidates. Studying the stability of the A(MoX)3 family towards a Peierls distortion reveals a few candidates such as Rb(MoTe)3 and Tl(MoTe)3 that are resilliant to Peierls distortion, thus retaining the metallic character. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-FG02-13ER46959 to University of Colorado, Boulder.

  1. Peierls instability as the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers

    NASA Astrophysics Data System (ADS)

    Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul

    2018-03-01

    Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.

  2. Ferromagnetic Peierls insulator state in A Mg4Mn6O15(A =K ,Rb ,Cs )

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Sugimoto, K.; Ohta, Y.; Tanaka, Y.; Sato, H.

    2018-04-01

    Using the density-functional-theory-based electronic structure calculations, we study the electronic state of recently discovered mixed-valent manganese oxides A Mg4Mn6O15(A =K ,Rb ,Cs ) , which are fully spin-polarized ferromagnetic insulators with a cubic crystal structure. We show that the system may be described as a three-dimensional arrangement of the one-dimensional chains of a 2 p orbital of O and a 3 d orbital of Mn running along the three axes of the cubic lattice. We thereby argue that in the ground state the chains are fully spin polarized due to the double-exchange mechanism and are distorted by the Peierls mechanism to make the system insulating.

  3. Directional Forces by Momentumless Excitation and Order-to-Order Transition in Peierls-Distorted Solids: The Case of GeTe

    NASA Astrophysics Data System (ADS)

    Chen, Nian-Ke; Li, Xian-Bin; Bang, Junhyeok; Wang, Xue-Peng; Han, Dong; West, Damien; Zhang, Shangbai; Sun, Hong-Bo

    2018-05-01

    Time-dependent density-functional theory molecular dynamics reveals an unexpected effect of optical excitation in the experimentally observed rhombohedral-to-cubic transition of GeTe. The excitation induces coherent forces along [001], which may be attributed to the unique energy landscape of Peierls-distorted solids. The forces drive the A1 g optical phonon mode in which Ge and Te move out of phase. Upon damping of the A1 g mode, phase transition takes place, which involves no atomic diffusion, defect formation, or the nucleation and growth of the cubic phase.

  4. Subatomic movements of a domain wall in the Peierls potential.

    PubMed

    Novoselov, K S; Geim, A K; Dubonos, S V; Hill, E W; Grigorieva, I V

    2003-12-18

    The discrete nature of crystal lattices plays a role in virtually every material property. But it is only when the size of entities hosted by a crystal becomes comparable to the lattice period--as occurs for dislocations, vortices in superconductors and domain walls--that this discreteness is manifest explicitly. The associated phenomena are usually described in terms of a background Peierls 'atomic washboard' energy potential, which was first introduced for the case of dislocation motion in the 1940s. This concept has subsequently been invoked in many situations to describe certain features in the bulk behaviour of materials, but has to date eluded direct detection and experimental scrutiny at a microscopic level. Here we report observations of the motion of a single magnetic domain wall at the scale of the individual peaks and troughs of the atomic energy landscape. Our experiments reveal that domain walls can become trapped between crystalline planes, and that they propagate by distinct jumps that match the lattice periodicity. The jumps between valleys are found to involve unusual dynamics that shed light on the microscopic processes underlying domain-wall propagation. Such observations offer a means for probing experimentally the physics of topological defects in discrete lattices--a field rich in phenomena that have been subject to extensive theoretical study.

  5. Phonon-mediated repulsion, sharp transitions and (quasi)self-trapping in the extended Peierls-Hubbard model

    NASA Astrophysics Data System (ADS)

    Sous, John; Chakraborty, Monodeep; Krems, Roman; Berciu, Mona

    We study two identical fermions, or two hard-core bosons, in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer- Heeger (SSH) model. We show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. This illustrates that, depending on the strength of the phonon-mediated interactions, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles. NSERC, Stewart Blusson Quantum Matter Institute.

  6. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE PAGES

    Pham, Joyce; Miller, Gordon J.

    2018-04-02

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  7. AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Miller, Gordon J.

    Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less

  8. The influence of transition metal solutes on the dislocation core structure and values of the Peierls stress and barrier in tungsten

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.

    2013-01-01

    Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/2<111> screw dislocations in binary tungsten-transition metal alloys (W1-xTMx) were investigated using density functional theory calculations. The periodic quadrupole approach was applied to model the structure of the 1/2<111> dislocation. Alloying with transition metals was modeled using the virtual crystal approximation and the applicability of this approach was assessed by calculating the equilibrium lattice parameter and elastic constants of the tungsten alloys. Reasonable agreement was obtained with experimental data and with results obtained from the conventional supercell approach. Increasing the concentration of a transition metal from the VIIIA group, i.e. the elements in columns headed by Fe, Co and Ni, leads to reduction of the C‧ elastic constant and increase of the elastic anisotropy A = C44/C‧. Alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similarly to results obtained for W1-xRex alloys in the earlier work of Romaner et al (2010 Phys. Rev. Lett. 104 195503). In addition to a change in the core symmetry, the values of the Peierls stress and barrier are reduced. The latter effect could lead to increased ductility in a tungsten-based alloy. Our results demonstrate that alloying with any of the transition metals from the VIIIA group should have a similar effect to alloying with Re.

  9. Extended phase diagram of R NiC2 family: Linear scaling of the Peierls temperature

    NASA Astrophysics Data System (ADS)

    Roman, Marta; Strychalska-Nowak, Judyta; Klimczuk, Tomasz; Kolincio, Kamil K.

    2018-01-01

    Physical properties for the late-lanthanide-based R NiC2 (R =Dy , Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW=284 , 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the R NiC2 family.

  10. Community structure, diversity and total biomass of tree species at Kapur dominated forests in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Norafida, N. A. Nik; Nizam, M. S.; Juliana, W. A. Wan

    2013-11-01

    A study was conducted to determine the species composition, diversity and biomass of Kapur (Dryobalanops aromatica Gaertn.f.) dominated forests in Peninsular Malaysia. Three forests were selected in different geographical zones, namely Bukit Bauk Virgin Jungle Reserve (BBVJR), Terengganu, Lesong Forest Reserve (LFR), Pahang and Gunung Belumut Recreational Forest (GBRF), Johor. Thirty plots of 0.1 ha (50 m × 20 m) were established with a total sampling area of 1.0 ha at each forest site. All trees with ≥5 cm diameter at breast height (dbh) were tagged, measured and voucher specimens were collected. Floristic composition in the study plot at BBVJR recorded 55 families, 147 genera and 336 species. In LFR, there were 52 families, 138 genera and 288 species, whereas in GBRF there were 52 families, 132 genera and 271 species. D. aromatica was the most important species in all study plots with the Importance Value Index (IVi) of 17.81%, 23.01% and 16.25% in BBVJR, LFR and GBRF, respectively. Similar trend at family level showed the Dipterocarpaceae was the most important family in each of the areas with the family Importance Value Index (FIVi) of 27.95% (BBVJR), 26.09% (LFR) and 27.16% (GBRF). Shannon diversity index (H'f) and Shannon evenness index (J'f) of trees at BBVJR was 5.02 and 0.86; LFR was 4.63 and 0.82; and GBRF was 4.82 and 0.86, respectively. Sorensen's community similarity coefficient (CCs) showed that tree communities between BBVJR, LFR and GBRF had low similarities with values of 0.3 to 0.4. The highest total biomass estimated was in LFR with a value of 739.44 t/ha, followed by BBVJR at 701.34 t/ha and GBRF at 606.29 t/ha.

  11. Charge Transfer Exciton in Halogen-Bridged Mixed-Valent Pt and Pd Complexes: Analysis Based on the Peierls-Hubbard Model

    NASA Astrophysics Data System (ADS)

    Wada, Yoshiki; Mitani, Tadaoki; Yamashita, Masahiro; Koda, Takao

    1985-08-01

    Polarized reflection and luminescence have been measured for the single crystals of [MA2][MX2A2](ClO4)4 (M=Pt, Pd, X=Cl, Br, I and A=ethylenediamine, cyclohexanediamine). The strong absorption bands due to the charge-transfer (CT) exciton transitions between the mixed-valent metal ions have been investigated in detail in the visible or infrared energy regions. The dependence of the CT excitation energies on the species M and X is shown to be consistent with the prediction by the Peierls-Hubbard model which incorporates the effect of the electron-electron correlation on inter-metal sites. The oscillator strength of the CT excitons are observed to be enhanced by substituting heavier halogen ions. This enhancement is interpreted by a halogen-linked super-transfer mechanism. The unusually large values of the oscillator strength can be qualitatively explained in terms of the trimer CT model.

  12. Nonplanar core structure of the screw dislocations in tantalum from the improved Peierls-Nabarro theory

    NASA Astrophysics Data System (ADS)

    Hu, Xiangsheng; Wang, Shaofeng

    2018-02-01

    The extended structure of ? screw dislocation in Ta has been studied theoretically using the improved Peierls-Nabarro model combined with the first principles calculation. An instructive way to derive the fundamental equation for dislocations with the nonplanar structure is presented. The full ?-surface of ? plane in tantalum is evaluated from the first principles. In order to compare the energy of the screw dislocation with different structures, the structure parameter is introduced to describe the core configuration. Each kind of screw dislocation is described by an overall-shape component and a core component. Far from the dislocation centre, the asymptotic behaviour of dislocation is uniquely controlled by the overall-shape component. Near the dislocation centre, the structure detail is described by the core component. The dislocation energy is explicitly plotted as a function of the core parameter for the nonplanar dislocation as well as for the planar dislocation. It is found that in the physical regime of the core parameter, the sixfold nonplanar structure always has the lowest energy. Our result clearly confirms that the sixfold nonplanar structure is the most stable. Furthermore, the pressure effect on the dislocation structure is explored up to 100 GPa. The stability of the sixfold nonplanar structure is not changed by the applied pressure. The equilibrium structure and the related stress field are calculated, and a possible mechanism of the dislocation movement is discussed briefly based on the structure deformation caused by the external stress.

  13. Using the level set method in slab detachment modeling

    NASA Astrophysics Data System (ADS)

    Hillebrand, B.; Geenen, T.; Spakman, W.; van den Berg, A. P.

    2012-04-01

    Slab detachment plays an important role in the dynamics of several regions in the world such as the Mediterranean-Carpathian region and the Anatolia-Aegean Region. It is therefore important to gain better insights in the various aspects of this process by further modeling of this phenomenon. In this study we model slab detachment using a visco-plastic composite rheology consisting of diffusion, dislocation and Peierls creep. In order to gain more control over this visco-plastic composite rheology, as well as some deterministic advantages, the models presented in this study make use of the level set method (Osher and Sethian J. Comp. Phys., 1988). The level set method is a computational method to track interfaces. It works by creating a signed distance function which is zero at the interface of interest which is then advected by the flow field. This does not only allow one to track the interface but also to determine on which side of the interface a certain point is located since the level set function is determined in the entire domain and not just on the interface. The level set method is used in a wide variety of scientific fields including geophysics. In this study we use the level set method to keep track of the interface between the slab and the mantle. This allows us to determine more precisely the moment and depth of slab detachment. It also allows us to clearly distinguish the mantle from the slab and have therefore more control over their different rheologies. We focus on the role of Peierls creep in the slab detachment process and on the use of the level set method in modeling this process.

  14. Minimum relative entropy, Bayes and Kapur

    NASA Astrophysics Data System (ADS)

    Woodbury, Allan D.

    2011-04-01

    The focus of this paper is to illustrate important philosophies on inversion and the similarly and differences between Bayesian and minimum relative entropy (MRE) methods. The development of each approach is illustrated through the general-discrete linear inverse. MRE differs from both Bayes and classical statistical methods in that knowledge of moments are used as ‘data’ rather than sample values. MRE like Bayes, presumes knowledge of a prior probability distribution and produces the posterior pdf itself. MRE attempts to produce this pdf based on the information provided by new moments. It will use moments of the prior distribution only if new data on these moments is not available. It is important to note that MRE makes a strong statement that the imposed constraints are exact and complete. In this way, MRE is maximally uncommitted with respect to unknown information. In general, since input data are known only to within a certain accuracy, it is important that any inversion method should allow for errors in the measured data. The MRE approach can accommodate such uncertainty and in new work described here, previous results are modified to include a Gaussian prior. A variety of MRE solutions are reproduced under a number of assumed moments and these include second-order central moments. Various solutions of Jacobs & van der Geest were repeated and clarified. Menke's weighted minimum length solution was shown to have a basis in information theory, and the classic least-squares estimate is shown as a solution to MRE under the conditions of more data than unknowns and where we utilize the observed data and their associated noise. An example inverse problem involving a gravity survey over a layered and faulted zone is shown. In all cases the inverse results match quite closely the actual density profile, at least in the upper portions of the profile. The similar results to Bayes presented in are a reflection of the fact that the MRE posterior pdf, and its mean

  15. Presence of Peierls pairing and absence of insulator-to-metal transition in VO2 (A): a structure-property relationship study.

    PubMed

    Popuri, S R; Artemenko, A; Decourt, R; Villesuzanne, A; Pollet, M

    2017-03-01

    Layered vanadium oxides have been extensively explored due to their interesting metal-insulator transitions and energy conversion/storage applications. In the present study, we have successfully synthesized VO 2 (A) polymorph powder samples by a single-step hydrothermal synthesis process and consolidated them using spark plasma sintering. The structural and electronic properties of VO 2 (A) are measured over a large temperature range from liquid helium, across the structural transition (400-440 K) and up to 500 K. The structural analysis around this transition reveals an antiferrodistorsive to partially ferrodistorsive ordering upon cooling. It is followed by a progressive antiferromagnetic spin pairing which fully settles at about 150 K. The transport measurements show that, in contrast to the rutile archetype VO 2 (R/M1), the structural transition comes with a transition from semiconductor to band-type insulator. Under these circumstances, we propose a scenario with a high temperature antiferrodistorsive paramagnetic semiconducting phase, followed by an intermediate regime with a partially ferrodistorsive paramagnetic semiconducting phase, and finally a low temperature partially ferrodistorsive antiferromagnetic band insulator phase with a possible V-V Peierls-type pairing.

  16. Multiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfide

    DOE PAGES

    Britto, Sylvia; Leskes, Michal; Hua, Xiao; ...

    2015-06-08

    Vanadium sulfide VS 4 in the patronite mineral structure, is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S 2] 2–. 51V NMR shows that the material, despite having V formally in the d 1 configuration, is diamagnetic, suggesting potential dimerization through metal-metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V-V distances of 2.8 Å and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S 2–, including via an internalmore » redox process whereby an electron from V 4+ is transferred to [S 2] 2– resulting in oxidation of V 4+ to V 5+ and reduction of the [S 2] 2– to S 2- to form Li 3VS 4 containing tetrahedral [VS 4] 3– anions. On further lithiation this is followed by reduction of the V 5+ in Li 3VS 4 to form Li 3+xVS 4 (x=0.5-1), a mixed valent V 4+/V 5+ compound. Eventually reduction to Li 2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. In conclusion, the unusual redox processes in this system are elucidated using a suite of short range characterization tools including 51V Nuclear Magnetic Resonance spectroscopy (NMR), S Kedge X-ray Absorption Near Edge Spectroscopy (XANES) and Pair Distribution Function (PDF) Analysis of X-ray data.« less

  17. Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou; Carter, Emily A.

    2013-08-01

    Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of (1)/(2)<110>111 dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state) to be 1.9×10-4G and 4.9×10-5G, respectively (G is the shear modulus). These values fall within the range of measurements from mechanical deformation tests (10-4-10-5G). OFDFT also finds a new metastable structure for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1×10-2G, which agrees with typical Bordoni peak measurements (10-2-10-3G). The calculated σps for dissociated and undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of magnitude discrepancy in σp measurements.

  18. Singular orientations and faceted motion of dislocations in body-centered cubic crystals.

    PubMed

    Kang, Keonwook; Bulatov, Vasily V; Cai, Wei

    2012-09-18

    Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.

  19. Two spin-peierls-like compounds exhibiting divergent structural features, lattice compression, and expansion in the low- temperature phase.

    PubMed

    Tian, Zhengfang; Duan, Haibao; Ren, Xiaoming; Lu, Changsheng; Li, Yizhi; Song, You; Zhu, Huizhen; Meng, Qingjin

    2009-06-18

    Two quasi-one-dimensional (quasi-1D) compounds, [4'-CH(3)Bz-4-RPy][Ni(mnt)(2)] (mnt(2-) = maleonitriledithiolate), where 4'-CH(3)Bz-4-RPy(+) = 1-(4'-methylbenzyl)pyridinium (denoted as compound 1) and 1-(4'-methylbenzyl)-4-aminopyridinium (denoted as compound 2), show a spin-Peierls-like transition with T(C) approximately 182 K for 1 and T(C) approximately 155 K for 2. The enthalpy changes for the transition are estimated to be DeltaH = 316.6 J.mol(-1) for 1 and 1082.1 J.mol(-1) for 2. From fits to the magnetic susceptibility, the magnetic exchange constants in the gapless state are calculated to be J = 166(2) K with g = 2.020(23) for 1 versus J = 42(0) K with g = 2.056(5) for 2. In the high-temperature (HT) phase, 1 and 2 are isostructural and crystallize in the monoclinic space group P2(1)/c. The nonmagnetic cations and paramagnetic anions form segregated columns with regular anionic and cationic stacks. In the low-temperature (LT) phase, the crystals of the two compounds undergo a transformation to the triclinic space group P-1, and both anionic and cationic stacks dimerize. In the transformation from the HT to LT phases, the two compounds exhibit divergent structural features, with lattice compression for 1 but lattice expansion for 2, due to intermolecular slippage. Combined with our previous studies, it is also noted that the transition temperature, T(C), is qualitatively related to the cell volume in the HT phase for the series of compounds [1-(4'-R-benzylpyridinium][Ni(mnt)(2)] (where R represents the substituent). When there is a single substituent in the para position of benzene, giving a larger cell volume, the transition temperature increases.

  20. Study of RE-garnets using BPW method

    NASA Astrophysics Data System (ADS)

    Goveas, Neena; Mukhopadhyay, P.; Mukhopadhyay, G.

    1995-02-01

    The magnetic susceptibility of rare-earth (Y and Lu) iron garnets is studied using a modified Bethe-Peierls-Weiss (BPW) approximation. The modifications enable us to incorporate the three exchange parameters Jad, Jaa and Jdd necessary to describe the systems. We get excellent fits to the experimental susceptibilities from which we determined the J-values. These also give excellent agreement with the spin wave dispersion relation constant D.

  1. Clinical evaluation of three denture cushion adhesives by complete denture wearers.

    PubMed

    Koronis, Spyros; Pizatos, Evangelos; Polyzois, Gregory; Lagouvardos, Panagiotis

    2012-06-01

    The aim of this study was the clinical evaluation of three denture cushion adhesives and whether the results were correlated to Kapur Index for denture-supporting tissues. Various types of denture adhesives are used among denture patients. However, information on the clinical behaviour of denture cushions is limited. Thirty edentulous patients had their denture-supporting tissues scored by Kapur Index and their old dentures replaced. They received three brands of denture cushion adhesives (Fittydent(®) , Protefix(®) and Seabond(®)) and were instructed to use them in a sequence according to the group they were randomly assigned to. Each brand of adhesive was used for 48 h on the lower denture according to the manufacturer's suggestions. After each brand was used, participants spent 24 h without applying any sort of adhesive. Finally, a questionnaire evaluating and comparing the performance of each brand was filled out. Denture adhesives generally improved patient satisfaction and masticatory ability, especially in participants with poor Kapur Index and those who reported a poor retention of their old dentures. Fittydent(®) was the most preferred adhesive, showing the best retention and the longest duration of its effect, but also reported as difficult to remove from the denture-bearing area. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  2. Structure of screw dislocation core in Ta at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shaofeng, E-mail: sfwang@cqu.edu.cn; Jiang, Na; Wang, Rui

    2014-03-07

    The core structure and Peierls stress of the 1/2 〈111〉(110) screw dislocation in Ta have been investigated theoretically using the modified Peierls–Nabarro theory that takes into account the discreteness effect of crystal. The lattice constants, the elastic properties, and the generalized-stacking-fault energy(γ-surface) under the different pressures have been calculated from the electron density functional theory. The core structure of dislocation is determined by the modified Peierls equation, and the Peierls stress is evaluated from the dislocation energy that varies periodically as dislocation moves. The results show the core width and Peierls stress in Ta are weakly dependent of the pressuremore » up to 100 GPa when the length and stress are measured separately by the Burgers vector b and shear modulus μ. This indicates that core structure is approximately scaling invariant for the screw dislocation in Ta. The scaled plasticity of Ta changes little in high pressure environment.« less

  3. Change Detection Algorithms for Surveillance in Visual IoT: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Akram, Beenish Ayesha; Zafar, Amna; Akbar, Ali Hammad; Wajid, Bilal; Chaudhry, Shafique Ahmad

    2018-01-01

    The VIoT (Visual Internet of Things) connects virtual information world with real world objects using sensors and pervasive computing. For video surveillance in VIoT, ChD (Change Detection) is a critical component. ChD algorithms identify regions of change in multiple images of the same scene recorded at different time intervals for video surveillance. This paper presents performance comparison of histogram thresholding and classification ChD algorithms using quantitative measures for video surveillance in VIoT based on salient features of datasets. The thresholding algorithms Otsu, Kapur, Rosin and classification methods k-means, EM (Expectation Maximization) were simulated in MATLAB using diverse datasets. For performance evaluation, the quantitative measures used include OSR (Overall Success Rate), YC (Yule's Coefficient) and JC (Jaccard's Coefficient), execution time and memory consumption. Experimental results showed that Kapur's algorithm performed better for both indoor and outdoor environments with illumination changes, shadowing and medium to fast moving objects. However, it reflected degraded performance for small object size with minor changes. Otsu algorithm showed better results for indoor environments with slow to medium changes and nomadic object mobility. k-means showed good results in indoor environment with small object size producing slow change, no shadowing and scarce illumination changes.

  4. Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems

    NASA Astrophysics Data System (ADS)

    Suwa, Hidemaro

    2013-03-01

    We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad

  5. Interaction of charge carriers with lattice and molecular phonons in crystalline pentacene

    NASA Astrophysics Data System (ADS)

    Girlando, Alberto; Grisanti, Luca; Masino, Matteo; Brillante, Aldo; Della Valle, Raffaele G.; Venuti, Elisabetta

    2011-08-01

    The computational protocol we have developed for the calculation of local (Holstein) and non-local (Peierls) carrier-phonon coupling in molecular organic semiconductors is applied to both the low temperature and high temperature bulk crystalline phases of pentacene. The electronic structure is calculated by the semimpirical INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization) method. In the phonon description, the rigid molecule approximation is removed, allowing mixing of low-frequency intra-molecular modes with inter-molecular (lattice) phonons. A clear distinction remains between the low-frequency phonons, which essentially modulate the transfer integral from a molecule to another (Peierls coupling), and the high-frequency intra-molecular phonons, which modulate the on-site energy (Holstein coupling). The results of calculation agree well with the values extracted from experiment. The comparison with similar calculations made for rubrene allows us to discuss the implications for the current models of mobility.

  6. How to Flip the Classroom--"Productive Failure or Traditional Flipped Classroom" Pedagogical Design?

    ERIC Educational Resources Information Center

    Song, Yanjie; Kapur, Manu

    2017-01-01

    The paper reports a quasi-experimental study comparing the "traditional flipped classroom" pedagogical design with the "productive failure" (Kapur, 2016) pedagogical design in the flipped classroom for a 2-week curricular unit on polynomials in a Hong Kong Secondary school. Different from the flipped classroom where students…

  7. Is Having More Prerequisite Knowledge Better for Learning from Productive Failure?

    ERIC Educational Resources Information Center

    Toh, Pee Li Leslie; Kapur, Manu

    2017-01-01

    A critical assumption made in Kapur's ("Instr Sci" 40:651-672, 2012) productive failure design is that students have the necessary prerequisite knowledge resources to generate and explore solutions to problems before learning the targeted concept. Through two quasi-experimental studies, we interrogated this assumption in the context of…

  8. Designing for Productive Failure

    ERIC Educational Resources Information Center

    Kapur, Manu; Bielaczyc, Katerine

    2012-01-01

    In this article, we describe the design principles undergirding "productive failure" (PF; M. Kapur, 2008). We then report findings from an ongoing program of research on PF in mathematical problem solving in 3 Singapore public schools with significantly different mathematical ability profiles, ranging from average to lower ability. In…

  9. Acceleration of the Particle Swarm Optimization for Peierls–Nabarro modeling of dislocations in conventional and high-entropy alloys

    DOE PAGES

    Pei, Zongrui; Max-Planck-Inst. fur Eisenforschung, Duseldorf; Eisenbach, Markus

    2017-02-06

    Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), themore » local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.« less

  10. On the Yield Strength of Oceanic Lithosphere

    NASA Astrophysics Data System (ADS)

    Jain, C.; Korenaga, J.; Karato, S. I.

    2017-12-01

    The origin of plate tectonic convection on Earth is intrinsically linked to the reduction in the strength of oceanic lithosphere at plate boundaries. A few mechanisms, such as deep thermal cracking [Korenaga, 2007] and strain localization due to grain-size reduction [e.g., Ricard and Bercovici, 2009], have been proposed to explain this reduction in lithospheric strength, but the significance of these mechanisms can be assessed only if we have accurate estimates on the strength of the undamaged oceanic lithosphere. The Peierls mechanism is likely to govern the rheology of old oceanic lithosphere [Kohlstedt et al., 1995], but the flow-law parameters for the Peierls mechanism suggested by previous studies do not agree with each other. We thus reanalyze the relevant experimental deformation data of olivine aggregates using Markov chain Monte Carlo inversion, which can handle the highly nonlinear constitutive equation of the Peierls mechanism [Korenaga and Karato, 2008; Mullet et al., 2015]. Our inversion results indicate nontrivial nonuniqueness in every flow-law parameter for the Peierls mechanism. Moreover, the resultant flow laws, all of which are consistent with the same experimental data, predict substantially different yield stresses under lithospheric conditions and could therefore have different implications for the origin of plate tectonics. We discuss some future directions to improve our constraints on lithospheric yield strength.

  11. Genetics Home Reference: 17q12 duplication

    MedlinePlus

    ... books/NBK344340/ Citation on PubMed Mefford HC, Clauin S, Sharp AJ, Moller RS, Ullmann R, Kapur R, Pinkel D, Cooper GM, ... 10.1002/ajmg.a.37848. Citation on PubMed Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, Stewart H, Price SM, Blair E, ...

  12. Geometric Invariants and Object Recognition.

    DTIC Science & Technology

    1992-08-01

    University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of

  13. Gauge Theories on Noncommutative Spacetime Treated by the Seiberg-Witten Method*

    NASA Astrophysics Data System (ADS)

    Wess, J.

    The idea of noncommutative coordinates (NCC) is almost as old as quantum field theory (QFT) itself. It was W.Heisenberg who proposed NCC in 1930 in a letter to Peierls [1]. He expressed the hope that uncertainty relations of the coordinates, derived from NCC, might provide a natural cut-off for divergent integrals in QFT. This idea propagated via W.Pauli, R.Oppenheimer and Oppenheimer's student H.S.Snyder [2]. He then published the first analysis of a quantum thoery on NCC. Paul [3] called this work mathematically ingenious but rejected it for reasons of physics, arguing that an effective cut-off would act like a universal length and thus lead to strange consequences for large momenta of order h/l0.

  14. A mean field approach to the Ising chain in a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Osácar, C.; Pacheco, A. F.

    2017-07-01

    We evaluate a mean field method to describe the properties of the ground state of the Ising chain in a transverse magnetic field. Specifically, a method of the Bethe-Peierls type is used by solving spin blocks with a self-consistency condition at the borders. The computations include the critical point for the phase transition, exponent of magnetisation and energy density. All results are obtained using basic quantum mechanics at an undergraduate level. The advantages and the limitations of the approach are emphasised.

  15. Semantic Systems, Discourse Structure, and the Ecology of Language. Working Papers in Sociolinguistics, No. 17.

    ERIC Educational Resources Information Center

    Sherzer, Joel

    This analysis seeks to link discourse structure and semantic or lexical systems. The example is given of a Cuna curing chant named "the way of the pepper," in which 53 names for pepper ("kapur") are used in a projection of a paradigmatic axis (the lexical taxonomy) onto a syntagmatic axis. A corollary of the principle of…

  16. A Further Study of Productive Failure in Mathematical Problem Solving: Unpacking the Design Components

    ERIC Educational Resources Information Center

    Kapur, Manu

    2011-01-01

    This paper replicates and extends my earlier work on productive failure in mathematical problem solving (Kapur, doi:10.1007/s11251-009-9093-x, 2009). One hundred and nine, seventh-grade mathematics students taught by the same teacher from a Singapore school experienced one of three learning designs: (a) traditional lecture and practice (LP), (b)…

  17. Does Group Composition Affect Learning by Invention?

    ERIC Educational Resources Information Center

    Wiedmann, Michael; Leach, Ryan C.; Rummel, Nikol; Wiley, Jennifer

    2012-01-01

    Schwartz and Martin ("Cogn Instr" 22:129-184, 2004) as well as Kapur ("Instr Sci", this issue, 2012) have found that students can be better prepared to learn about mathematical formulas when they try to invent them in small groups before receiving the canonical formula from a lesson. The purpose of the present research was to investigate how the…

  18. Structural instability in polyacene: A projector quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhargavi; Ramasesha, S.

    1998-04-01

    We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.

  19. Emergency and Higher Education: A Study of Impact and Prospects

    ERIC Educational Resources Information Center

    Job, P. S.; And Others

    1976-01-01

    The impact of the National Emergency in India on higher education is discussed by a group of educators: P. S. Job, Malcolm Adiseshiah, M. V. Rajagopal, N. A. Karim, I. C. Menon, P. T. Chandy, J. N. Kapur, John Vallamattom, and R. C. Mehrotra. Questions were posed to them concerning improving the quality of education, and the role of the…

  20. Molecular Genetic Studies of Bone Mechanical Strain and of Pedigrees with Very High Bone Density

    DTIC Science & Technology

    2005-06-01

    remodelling. J Biomech, 20:1083-1093. 2. Hillsley MV, and Frangos , JA 1994 Bone tissue engineering: the role of interstitial fluid flow. Biotech Bioeng, 43...However, the nature of interaction between other pathways remains to be determined. References: 1. Hillsley MV, and Frangos , JA (1994) Bone tissue...termination 2. Hillsley, M. V., and Frangos , J. A. (1994) Biotechnol. Bioeng. 43, 573-581 of the IGF-I signaling pathway (16-22). Accordingly, we pos- 3. Kapur

  1. Lubrication of dislocation glide in MgO by hydrous defects

    NASA Astrophysics Data System (ADS)

    Skelton, Richard; Walker, Andrew M.

    2018-02-01

    Water-related defects, principally in the form of protonated cation vacancies, are potentially able to weaken minerals under high-stress or low-temperature conditions by reducing the Peierls stress required to initiate dislocation glide. In this study, we use the Peierls-Nabarro (PN) model to determine the effect of protonated Mg vacancies on the 1/2<110>{110} and 1/2<110>{100} slip systems in MgO. This PN model is parameterized using generalized stacking fault energies calculated using plane-wave density functional theory, with and without protonated Mg vacancies present at the glide plane. It found that these defects increase dislocation core widths and reduce the Peierls stress over the entire pressure range 0-125 GPa. Furthermore, 1/2<110>{110} slip is found to be more sensitive to the presence of protonated vacancies which increases in the pressure at which {100} becomes the easy glide plane for 1/2<110> screw dislocations. These results demonstrate, for a simple mineral system, that water-related defects can alter the deformation behavior of minerals in the glide-creep regime by reducing the stress required to move dislocations by glide. (Mg, Fe)O is the most anisotropic mineral in the Earth's lower mantle, so the differential sensitivity of the major slip systems in MgO to hydrous defects has potential implications for the interpretation of the seismic anisotropy in this region.

  2. The rigidity and mobility of screw dislocations in a thin film

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2018-07-01

    An equation of screw dislocations in a thin film is derived for arbitrary boundary conditions. The boundary conditions can be the free surface, the fixed surface or the gradient loading imposed on the surface. The new equation makes it possible to study changes in the dislocation structure under various gradient stress applied to the surface. The rigidity and mobility of screw dislocations in a thin film are explored by using the equation. It is found that the screw dislocation core in a thin film is like a Hookean body with a specific shear stress applied to the surface. Free-surface effects on the Peierls stress are investigated and compared with previous studies. An abnormal behavior of the Peierls stress of screw dislocations in a soft-inclusion film between two rigid films is predicted theoretically.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Zongrui; Stocks, George Malcolm

    The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less

  4. Origin of the sensitivity in modeling the glide behaviour of dislocations

    DOE PAGES

    Pei, Zongrui; Stocks, George Malcolm

    2018-03-26

    The sensitivity in predicting glide behaviour of dislocations has been a long-standing problem in the framework of the Peierls-Nabarro model. The predictions of both the model itself and the analytic formulas based on it are too sensitive to the input parameters. In order to reveal the origin of this important problem in materials science, a new empirical-parameter-free formulation is proposed in the same framework. Unlike previous formulations, it includes only a limited small set of parameters all of which can be determined by convergence tests. Under special conditions the new formulation is reduced to its classic counterpart. In the lightmore » of this formulation, new relationships between Peierls stresses and the input parameters are identified, where the sensitivity is greatly reduced or even removed.« less

  5. The Ghost in the Atom

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.; Brown, Julian R.

    1993-09-01

    Foreword; 1. The strange world of the quantum; 2. Alain Aspect; 3. John Bell; 4. John Wheeler; 5. Rudolf Peierls; 6. David Deutsch; 7. John Taylor; 8. David Bohm; 9. Basil Hiley; Glossary; Further reading; Index.

  6. Peierls-Nabarro barrier and protein loop propagation

    NASA Astrophysics Data System (ADS)

    Sieradzan, Adam K.; Niemi, Antti; Peng, Xubiao

    2014-12-01

    When a self-localized quasiparticle excitation propagates along a discrete one-dimensional lattice, it becomes subject to a dissipation that converts the kinetic energy into lattice vibrations. Eventually the kinetic energy no longer enables the excitation to cross over the minimum energy barrier between neighboring sites, and the excitation becomes localized within a lattice cell. In the case of a protein, the lattice structure consists of the Cα backbone. The self-localized quasiparticle excitation is the elemental building block of loops. It can be modeled by a kink that solves a variant of the discrete nonlinear Schrödinger equation. We study the propagation of such a kink in the case of the protein G related albumin-binding domain, using the united residue coarse-grained molecular-dynamics force field. We estimate the height of the energy barriers that the kink needs to cross over in order to propagate along the backbone lattice. We analyze how these barriers give rise to both stresses and reliefs, which control the kink movement. For this, we deform a natively folded protein structure by parallel translating the kink along the backbone away from its native position. We release the transposed kink, and we follow how it propagates along the backbone toward the native location. We observe that the dissipative forces that are exerted on the kink by the various energy barriers have a pivotal role in determining how a protein folds toward its native state.

  7. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE PAGES

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    2016-12-02

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  8. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  9. Separation Potential for Multicomponent Mixtures: State-of-the Art of the Problem

    NASA Astrophysics Data System (ADS)

    Sulaberidze, G. A.; Borisevich, V. D.; Smirnov, A. Yu.

    2017-03-01

    Various approaches used in introducing a separation potential (value function) for multicomponent mixtures have been analyzed. It has been shown that all known potentials do not satisfy the Dirac-Peierls axioms for a binary mixture of uranium isotopes, which makes their practical application difficult. This is mainly due to the impossibility of constructing a "standard" cascade, whose role in the case of separation of binary mixtures is played by the ideal cascade. As a result, the only universal search method for optimal parameters of the separation cascade is their numerical optimization by the criterion of the minimum number of separation elements in it.

  10. Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip.

    PubMed

    Tsuru, T; Udagawa, Y; Yamaguchi, M; Itakura, M; Kaburaki, H; Kaji, Y

    2013-01-16

    There is a pressing need to improve the ductility of magnesium alloys so that they can be applied as lightweight structural materials. In this study, a mechanism for enhancing the ductility of magnesium alloys has been pursued using the atomistic method. The generalized stacking fault (GSF) energies for basal and prismatic planes in magnesium were calculated by using density functional theory, and the effect of the GSF energy on the dislocation core structures was examined using a semidiscrete variational Peierls-Nabarro model. Yttrium was found to have an anomalous influence on the solution softening owing to a reduction in the GSF energy gradient.

  11. Solute effect on basal and prismatic slip systems of Mg.

    PubMed

    Moitra, Amitava; Kim, Seong-Gon; Horstemeyer, M F

    2014-11-05

    In an effort to design novel magnesium (Mg) alloys with high ductility, we present a first principles data based on the Density Functional Theory (DFT). The DFT was employed to calculate the generalized stacking fault energy curves, which can be used in the generalized Peierls-Nabarro (PN) model to study the energetics of basal slip and prismatic slip in Mg with and without solutes to calculate continuum scale dislocation core widths, stacking fault widths and Peierls stresses. The generalized stacking fault energy curves for pure Mg agreed well with other DFT calculations. Solute effects on these curves were calculated for nine alloying elements, namely Al, Ca, Ce, Gd, Li, Si, Sn, Zn and Zr, which allowed the strength and ductility to be qualitatively estimated based on the basal dislocation properties. Based on our multiscale methodology, a suggestion has been made to improve Mg formability.

  12. Replace with abstract title

    NASA Astrophysics Data System (ADS)

    Coho, Aleksander; Kioussis, Nicholas

    2003-03-01

    We use the semidiscrete variational generelized Peierls-Nabarro model to study the effect of Cu alloying on the dislocation properties of Al. First-principles density functional theory (DFT) is used to calculate the generalized-stacking-fault (GSF) energy surface when a <111> plane, on which one in four Al atoms has been replaced with a Cu atom, slips over a pure Al <111> plane. Various dislocation core properties (core width, energy, Peierls stress, dissociation tendency) are investigated and compared with the pure Al case. Cu alloying lowers the intrinsic stacking fault (ISF) energy, which makes dislocations more likely to dissociate into partials. We also try to understand the lowering of ISF energy in terms of Al-Cu and Al-Al bond formation and braking during shearing along the <112> direction. From the above we draw conclusions about the effects of Cu alloying on the mechanical properties of Al.

  13. STM/STS Study of the Sb (111) Surface

    NASA Astrophysics Data System (ADS)

    Chekmazov, S. V.; Bozhko, S. I.; Smirnov, A. A.; Ionov, A. M.; Kapustin, A. A.

    An Sb crystal is a Peierls insulator. Formation of double layers in the Sb structure is due to the shift of atomic planes (111) next but one along the C3 axis. Atomic layers inside the double layer are connected by covalent bonds. The interaction between double layers is determined mainly by Van der Waals forces. The cleave of an Sb single crystal used to be via break of Van der Waals bonds. However, using scanning tunneling microscopy (STM) and spectroscopy (STS) we demonstrated that apart from islands equal in thickness to the double layer, steps of one atomic layer in height also exist on the cleaved Sb (111) surface. Formation of "unpaired" (111) planes on the surface leads to a local break of conditions of Peierls transition. STS experiment reveals higher local density of states (LDOS) measured for "unpaired" (111) planes in comparison with those for the double layer.

  14. Fly with Eagles

    NASA Astrophysics Data System (ADS)

    Brown, G. E.

    My training in many areas of research in theoretical physics derived from what I learned from the "eagles" I flew with. Let me enumerate them. First of all, when the Navy sent me to the University of Wisconsin in January 1944 to become an electrical engineering officer, I met Gregory Breit, who practically adopted me as a son. I learned from him to drag a problem bleeding through the street until it cried for help and gave up. My political indiscretions during my young life forced me to flee to England from Joe McCarthy, where I ended up in the inspiring theory group of Rudi Peierls. Peierls taught us to drive immediately to fundamentals. When I began collaborating with Hans Bethe, the first thing I learned was why he had never had long-term collaborators. I had to wait until he was more than 70 years old in order to have any chance of keeping up with him. He worked like a bulldozer, heading directly for the light at the end of the tunnel. Most important is confidence. He starts each day with a pile of white paper in the upper left-hand corner of his desk and fills it with calculations at a more or less even rate, although he's happy to stop for lunch. I found this to be an amazingly effective procedure to imitate. From my training with Rudi Peierls, his closest friend, I was well prepared to work with Hans. The twenty-odd years I've collaborated with him have been exciting and productive.

  15. A Continuum Description of Nonlinear Elasticity, Slip and Twinning, With Application to Sapphire

    DTIC Science & Technology

    2009-03-01

    Twinning is modelled via the isochoric term FI, and residual volume changes associated with defects are captured by the Jacobian determinant J . The...BF00126994) Farber, Y. A., Yoon, S. Y., Lagerlof, K. P. D. & Heuer, A. H. 1993 Microplasticity during high temperature indentation and the Peierls

  16. Wave-packet approach to transport properties of carrier coupled with intermolecular and intramolecular vibrations of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Honma, Keisuke; Kobayashi, Nobuhiko; Hirose, Kenji

    2012-06-01

    We present a methodology to study the charge-transport properties of organic semiconductors by the time-dependent wave-packet diffusion method, taking the polaron effects into account. As an example, we investigate the transport properties of single-crystal pentacene organic semiconductors coupled with inter- and intramolecular vibrations within the mixed Holstein and Peierls model, which describes both hopping and bandlike transport behaviors due to small and large polaron formations. Taking into account static disorders, which inevitably exist in the molecular crystals, we present the temperature dependence of charge-transport properties in competition among the thermal fluctuation of molecular motions, the polaron formation, and the static disorders.

  17. Pressure-enhanced superconductivity in quasi-1D cobalt carbide Sc3CoC4

    NASA Astrophysics Data System (ADS)

    Wang, Enyu; Zhu, Xiyu; Wen, Hai-Hu

    2016-07-01

    We have successfully synthesized the quasi-1D cobalt carbide Sc3CoC4 by using the arc-melting technique which is similar to that of the previous reports. An incomplete superconducting transition is detected at ambient pressure. In addition, two anomalies have been observed at 72 K and 143 K both from resistivity and magnetic susceptibility measurements. According to previous studies, it was argued that they correspond to the 1D Peierls-type distortion and charge-density-wave transitions, respectively. By applying a pressure, the transition at about 72 K is quickly suppressed, which is accompanied by the occurrence of a complete superconducting transition at about 4.5 K. Moreover, the DC magnetic susceptibility under high pressures also reveals the enhancement of superconductivity. We attribute this enhancement of superconductivity to the suppression of the Peierls-type distortion at about 72 K and probably together with the promoted Josephson coupling between the [CoC4] ∞ one-dimensional ribbons.

  18. Effective Hamiltonian for travelling discrete breathers

    NASA Astrophysics Data System (ADS)

    MacKay, Robert S.; Sepulchre, Jacques-Alexandre

    2002-05-01

    Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.

  19. A New Paradigm for Designing High-Fracture-Energy Steels

    NASA Astrophysics Data System (ADS)

    Fine, M. E.; Vaynman, S.; Isheim, D.; Chung, Y.-W.; Bhat, S. P.; Hahin, C. H.

    2010-12-01

    The steels used for structural and other applications ideally should have both high strength and high toughness. Most high-strength steels contain substantial carbon content that gives poor weldability and toughness. A theoretical study is presented that was inspired by the early work of Weertman on the effect that single or clusters of solute atoms with slightly different atom sizes have on dislocation configurations in metals. This is of particular interest for metals with high Peierls stress. Misfit centers that are coherent and coplanar in body-centered cubic (bcc) metals can provide sufficient twisting of nearby screw dislocations to reduce the Peierls stress locally and to give improved dislocation mobility and hence better toughness at low temperatures. Therefore, the theory predicts that such nanoscale misfit centers in low-carbon steels can give both precipitation hardening and improved ductility and fracture toughness. To explore the validity of this theory, we measured the Charpy impact fracture energy as a function of temperature for a series of low-carbon Cu-precipitation-strengthened steels. Results show that an addition of 0.94 to 1.49 wt pct Cu and other accompanying elements results in steels with high Charpy impact energies down to cryogenic temperatures (198 K [-75 °C]) with no distinct ductile-to-brittle transition. The addition of 0.1 wt pct Ti results in an additional increase in impact toughness, with Charpy impact fracture energies ranging from 358 J (machine limit) at 248 K (-25 °C) to almost 200 J at 198 K (-75 °C). Extending this concept of using coherent and coplanar misfit centers to decrease the Peierls stress locally to other than bcc iron-based systems suggests an intriguing possibility of developing ductile hexagonal close-packed alloys and intermetallics.

  20. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Cocker, T. L.; Titova, L. V.; Fourmaux, S.; Holloway, G.; Bandulet, H.-C.; Brassard, D.; Kieffer, J.-C.; El Khakani, M. A.; Hegmann, F. A.

    2012-04-01

    We use time-resolved terahertz spectroscopy to probe the ultrafast dynamics of the insulator-metal phase transition induced by femtosecond laser pulses in a nanogranular vanadium dioxide (VO2) film. Based on the observed thresholds for characteristic transient terahertz dynamics, a phase diagram of critical pump fluence versus temperature for the insulator-metal phase transition in VO2 is established for the first time over a broad range of temperatures down to 17 K. We find that both Mott and Peierls mechanisms are present in the insulating state and that the photoinduced transition is nonthermal. We propose a critical-threshold model for the ultrafast photoinduced transition based on a critical density of electrons and a critical density of coherently excited phonons necessary for the structural transition to the metallic state. As a result, evidence is found at low temperatures for an intermediate metallic state wherein the Mott state is melted but the Peierls distortion remains intact, consistent with recent theoretical predictions. Finally, the observed terahertz conductivity dynamics above the photoinduced transition threshold reveal nucleation and growth of metallic nanodomains over picosecond time scales.

  1. Effect of pressure on the strength of olivine at room temperature

    NASA Astrophysics Data System (ADS)

    Proietti, Arnaud; Bystricky, Misha; Guignard, Jérémy; Béjina, Frédéric; Crichton, Wilson

    2016-10-01

    A fine grained fully-dense olivine aggregate was deformed in a D-DIA press at room temperature and pressures ranging from 3.5 to 6.8 GPa, at constant strain rates between 6 ×10-6 and 2.2 ×10-5 s-1. A weighted non-linear least square fit of a dataset including our results and data from other high-pressure studies to a low-temperature plasticity flow law yields a Peierls stress σP0 = 7.4 (0.5) GPa and an activation energy E∗ = 232 (60) kJ.mol-1. The dependence of the Peierls stress to pressure, σP = σP0 (1 + 0.09 P) , appears to be larger than the value predicted by the formulation proposed by Frost and Ashby (1982). With such a dependence, the activation volume is very small (V* = 1.6 (1.7) cm3.mol-1). Extrapolation to natural conditions yields a viscosity of 1023 -1024 Pa.s for a cold subducting slab at depths of 50-100 km.

  2. Magic Clusters of MoS2 by Edge S2 Interdimer Spacing Modulation.

    PubMed

    Ryou, Junga; Kim, Yong-Sung

    2018-05-17

    Edge atomic and electronic structures of S-saturated Mo-edge triangular MoS 2 nanoclusters are investigated using density functional theory calculations. The edge electrons described by the S 2 -p x p x π* (S 2 -Π x ) and Mo-d xy orbitals are found to interplay to pin the S 2 -Π x Fermi wavenumber at k F = 2/5 as the nanocluster size increases, and correspondingly, the ×5 Peierls edge S 2 interdimer spacing modulation is induced. For the particular sizes of N = 5 n - 2 and 5 n, where N is the number of Mo atoms at one edge representing the nanocluster size and n is a positive integer, the effective ×5 interdimer spacing modulation stabilizes the nanoclusters, which are identified here to be the magic S-saturated Mo-edge triangular MoS 2 nanoclusters. With the S 2 -Π x Peierls gap, the MoS 2 nanoclusters become far-edge S 2 -Π x semiconducting and subedge Mo-d xy metallic as N → ∞.

  3. Ultrasonic Study of Dislocation Dynamics in Lithium -

    NASA Astrophysics Data System (ADS)

    Han, Myeong-Deok

    1987-09-01

    Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.

  4. Anelastic properties of (TaSe 4) 2I at low frequencies

    NASA Astrophysics Data System (ADS)

    Salva, H.; Ghilarducci, A.; Monceau, P.; Levy, F.; D'Anna, G.; Benoit, W.

    1995-05-01

    We have performed torsion measurements in (TaSe 4) 2I in the temperature range 110-290 K and 5.10 -3-10 Hz measuring frequency. We have always found a dip in modulus at the Peierls transition and that deformation of measurement gives additional response in modulus and internal friction spectra. These results are compared with existing models.

  5. The genus Aspidimerus Mulsant, 1850 (Coleoptera, Coccinellidae) from China, with descriptions of two new species

    PubMed Central

    Huo, Lizhi; Wang, Xingmin; Chen, Xiaosheng; Ren, Shunxiang

    2013-01-01

    Abstract Chinese members of the genus Aspidimerus Mulsant, 1850 are reviewed. Ten species are recognized, including two new species: A. zhenkangicus Huo & Ren, sp. n. and A. menglensis Huo & Ren, sp. n. A. kabakovi Hoàng is recorded from China for the first time. A. blandus (Mader, 1954) is recognized as synonymous with A. ruficrus Gorham, 1895 (syn. n.). Aspidimerus rectangulatus Kuznetsov & Pang, 1991 and A. serratus Kuznetsov & Pang, 1991 are transferred to the genus Pseudaspidimerus Kapur, 1948 (comb. n.). All species from China are described and illustrated. Distribution maps of the Chinese species, a key and a catalogue of all known Aspidimerus are provided. PMID:24294073

  6. Peierls Stress of Dislocations in Molecular Crystal Cyclotrimethylene Trinitramine

    DTIC Science & Technology

    2013-06-04

    S0567740872007046. (20) Plimpton , S . J. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1−19, DOI: 10.1006/jcph...and/or findings contained in this report are those of the author( s ) and should not contrued as an official Department of the Army position, policy or...UU 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES U.S. Army Research Office

  7. Mixed-mode singularity and temperature effects on dislocation nucleation in strained interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhaeng; Gao, Yanfei

    2011-01-01

    Dislocations can be nucleated from sharp geometric features in strained interconnects due to thermal expansion coefficient mismatch, lattice mismatch, or stresses that arise during material processing. The asymptotic stress fields near the edge root can be described by mixed-mode singularities, which depend on the dihedral angle and material properties, and a transverse T-stress, which depends on how residual stress is realized in the interconnects. The critical condition for stress nucleation can be determined when an appropriate measure of the stress intensity factors (SIFs) reaches a critical value. Such a method, however, does not offer an explicit picture of the dislocationmore » nucleation process so that it has difficulties in studying complicated structures, mode mixity effects, and more importantly the temperature effects. Based on the Peierls concept, a dislocation can be described by a continuous slip field, and the dislocation nucleation condition corresponds when the total potential energy reaches a stationary state. Through implementing this ad hoc interface model into a finite element framework, it is found that dislocation nucleation becomes more difficult with the increase of mode mixity and T-stress, or the decrease of the width-to-height ratio of the surface pad, while the shape of the surface pad, being a square or a long line, plays a less important role. The Peierls dislocation model also allows us to determine the activation energy, which is the energy needed for the thermal activation of a dislocation when the applied load is lower than the athermal critical value. The calculated saddle point configuration compares favorably the molecular simulations in literature. Suggestions on making immortal strained interconnects are provided.« less

  8. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  9. Influence of denture adhesives on occlusion and disocclusion times.

    PubMed

    Abdelnabi, Mohamed Hussein; Swelem, Amal Ali; Al-Dharrab, Ayman A

    2016-03-01

    The effectiveness of adhesives in enhancing several functional aspects of complete denture performance has been well established. The direct influence of adhesives on occlusal contact simultaneity has not yet been investigated. The purpose of this crossover clinical trial was to evaluate quantitatively the influence of adhesives on occlusal balance by recording timed occlusal contacts; namely occlusion time (OT) and disocclusion time during right (DT-right) and left (DT-left) excursions by using computerized occlusal analysis. A crossover clinical trial was adopted. Assessments were carried out while participants (n=49) wore their dentures first without then with adhesives. Computerized occlusal analysis using the T-Scan III system was conducted to perform baseline computer-guided occlusal adjustment for conventionally fabricated dentures. Retention and stability assessment using the modified Kapur index and recording of OT and DT-right and DT-left values using the T-Scan III were subsequently carried out for all dentures, first without adhesives and then after application of adhesive. All T-Scan procedures were carried out by the same clinician. Wilcoxon signed-rank test was used to analyze the Kapur index scores and occlusal parameters (α=.05). Stability and retention of conventional dentures ranged initially from good to very good. However, adhesive application resulted in significant improvement (P<.001) in stability and retention and a significant decrease in duration of all occlusal parameters (OT [P=.003], DT-right [P=.003], and DT-left [P=.008]). Adhesives significantly decreased OT and DT durations in initially well-fitting complete dentures with fairly well balanced occlusion, and further enhanced denture stability and occlusal contact simultaneity. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapur, T.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  11. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  12. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhar, R.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  13. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewerdsen, J.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  14. Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2-screw and edge [100] dislocations.

    PubMed

    Goryaeva, Alexandra M; Carrez, Philippe; Cordier, Patrick

    In this study, we propose a full atomistic study of [100] dislocations in MgSiO 3 post-perovskite based on the pairwise potential parameterized by Oganov et al. (Phys Earth Planet Inter 122:277-288, 2000) for MgSiO 3 perovskite. We model screw dislocations to identify planes where they glide easier. We show that despite a small tendency to core spreading in {011}, [100] screw dislocations glide very easily (Peierls stress of 1 GPa) in (010) where only Mg-O bonds are to be sheared. Crossing the Si-layers results in a higher lattice friction as shown by the Peierls stress of [100](001): 17.5 GPa. Glide of [100] screw dislocations in {011} appears also to be highly unfavorable. Whatever the planes, (010), (001) or {011}, edge dislocations are characterized by a wider core (of the order of 2 b ). Contrary to screw character, they bear negligible lattice friction (0.1 GPa) for each slip system. The layered structure of post-perovskite results in a drastic reduction in lattice friction opposed to the easiest slip systems compared to perovskite.

  15. Band structure of the quasi two-dimensional purple molybdenum bronze

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Balaska, H.; Perrier, P.; Marcus, J.

    2006-09-01

    The molybdenum purple bronze KMo 6O 17 is quasi two-dimensional (2D) metallic oxide that shows a Peierls transition towards a metallic charge density wave state. Since this specific transition is directly related to the electron properties of the normal state, we have investigated the electronic structure of this bronze at room temperature. The shape of the Mo K1s absorption edge reveals the presence of distorted MoO 6 octahedra in the crystallographic structure. Photoemission experiments evidence a large conduction band, with a bandwidth of 800 meV and confirm the metallic character of this bronze. A wide depleted zone separates the conduction band from the valence band that exhibits a fourfold structure, directly connected to the octahedral symmetry of the Mo sites. The band structure is determined by ARUPS in two main directions of the (0 0 1) Brillouin zone. It exhibits some unpredicted features but corroborates the earlier theoretical band structure and Fermi surface. It confirms the hidden one-dimensionality of KMo 6O 17 that has been proposed to explain the origin of the Peierls transition in this 2D compound.

  16. Direct measurement of the spin gap in a quasi-one-dimensional clinopyroxene: NaTiSi 2 O 6

    DOE PAGES

    Silverstein, Harlyn J.; Smith, Alison E.; Mauws, Cole; ...

    2014-10-13

    True inorganic Spin-Peierls materials are extremely rare, but NaTiSi 2O 6 was at one time considered an ideal candidate due to it having well separated chains of edge-sharing TiO 6 octahedra. At low temperatures, this material undergoes a phase transition from C2/c to Pmore » $$\\bar{1}$$ symmetry, where Ti 3+-Ti 3+ dimers begin to form within the chains. However, it was quickly realized with magnetic susceptibility that simple spin fluctuations do not progress to the point of enabling such a transition. Since then, considerable experimental and theoretical endeavours have been taken to find the true ground state of this system and explain how it manifests. Here, we employ the use of x-ray diffraction, neutron spectroscopy, and magnetic susceptibility to directly and simultaneously measure the symmetry loss, spin singlet-triplet gap, and phonon modes. Lastly, we observed a gap of 53(3) meV, fit to the magnetic susceptibility, and compared to previous theoretical models to unambiguously assign NaTiSi 2O 6 as having an orbital-assisted Peierls ground state.« less

  17. Direct prediction of the solute softening-to-hardening transition in W–Re alloys using stochastic simulations of screw dislocation motion

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Marian, Jaime

    2018-06-01

    Interactions among dislocations and solute atoms are the basis of several important processes in metal plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive Peierls valleys. In alloys, dislocations and solutes affect each other’s kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W–Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which dominates over the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments.

  18. Bereits nach Ablauf der Halbwertszeit droht der vollständige Zerfall Die britische Atomic Scientists’ Association, die Ideologie der „objektiven” Wissenschaft und die H-Bombe

    NASA Astrophysics Data System (ADS)

    Laucht, Christoph

    Präsident Harry Trumans Verlautbarung vom 31.1.1950, seine Regierung wolle die Entwicklung der Wasserstoffbombe vorantreiben, fand große Beachtung in den britischen Medien. Die illustrierte Zeitschrift Picture Post widmete der HBombe einen Artikel, der unter anderem kurze Stellungnahmen der britischen Atomwissenschaftler Eric Burhop, Kathleen Lonsdale, Harrie Massey, Rudolf Peierls und Maurice Pryce enthielt, die alle Mitglieder der Atomic Scientists' Association (ASA) waren.

  19. Evaluation of charge mobility in organic materials: from localized to delocalized descriptions at a first-principles level.

    PubMed

    Shuai, Zhigang; Wang, Linjun; Li, Qikai

    2011-03-04

    The carrier mobility for carbon electronic materials is an important parameter for optoelectronics. We report here some recently developed theoretical tools to predict the mobility without any free parameters. Carrier scatterings with phonons and traps are the key factors in evaluating the mobility. We consider three major scattering regimes: i) where the molecular internal vibration severely induces charge self-trapping and, thus, the hopping mechanism dominates; ii) where both intermolecular and intramolecular scatterings come to play roles, so the Holstein-Peierls polaron model is applied; and, iii) where charge is well delocalized with coherence length comparable with acoustic phonon wavelength, so that a deformation potential approach is more appropriate. We develop computational methods at the first-principles level for the three different cases that have extensive potential application in rationalizing material design.

  20. Capturing nonlocal interaction effects in the Hubbard model: Optimal mappings and limits of applicability

    NASA Astrophysics Data System (ADS)

    van Loon, E. G. C. P.; Schüler, M.; Katsnelson, M. I.; Wehling, T. O.

    2016-10-01

    We investigate the Peierls-Feynman-Bogoliubov variational principle to map Hubbard models with nonlocal interactions to effective models with only local interactions. We study the renormalization of the local interaction induced by nearest-neighbor interaction and assess the quality of the effective Hubbard models in reproducing observables of the corresponding extended Hubbard models. We compare the renormalization of the local interactions as obtained from numerically exact determinant quantum Monte Carlo to approximate but more generally applicable calculations using dual boson, dynamical mean field theory, and the random phase approximation. These more approximate approaches are crucial for any application with real materials in mind. Furthermore, we use the dual boson method to calculate observables of the extended Hubbard models directly and benchmark these against determinant quantum Monte Carlo simulations of the effective Hubbard model.

  1. Low viscosity and high attenuation in MgSiO3 post-perovskite inferred from atomic-scale calculations

    PubMed Central

    Goryaeva, Alexandra M.; Carrez, Philippe; Cordier, Patrick

    2016-01-01

    This work represents a numerical study of the thermal activation for dislocation glide of the [100](010) slip system in MgSiO3 post-perovskite (Mg-ppv) at 120 GPa. We propose an approach based on a one-dimensional line tension model in conjunction with atomic-scale calculations. In this model, the key parameters, namely, the line tension and the Peierls barrier, are obtained from density functional theory calculations. We find a Peierls stress σp = 2.1 GPa and a line tension Γ = 9.2 eV/Å, which lead to a kink-pair enthalpy (under zero stress) of 2.69 eV. These values confirm that this slip system bears a very low lattice friction because it vanishes for temperatures above approximately 500 K under mantle conditions. In the Earth’s mantle, high-pressure Mg-ppv silicate is thus expected to become as ductile as ferropericlase. These results confirm the hypothesis of a weak layer in the D″ layer where Mg-ppv is present. Easy glide along [100](010) suggests strong preferred orientations with (010) planes aligned. Highly mobile [100] dislocations are also likely to respond to stresses related to seismic waves, leading to energy dissipation and strong attenuation. PMID:27708386

  2. Non-extensitivity vs. informative moments for financial models —A unifying framework and empirical results

    NASA Astrophysics Data System (ADS)

    Herrmann, K.

    2009-11-01

    Information-theoretic approaches still play a minor role in financial market analysis. Nonetheless, there have been two very similar approaches evolving during the last years, one in the so-called econophysics and the other in econometrics. Both generalize the notion of GARCH processes in an information-theoretic sense and are able to capture kurtosis better than traditional models. In this article we present both approaches in a more general framework. The latter allows the derivation of a wide range of new models. We choose a third model using an entropy measure suggested by Kapur. In an application to financial market data, we find that all considered models - with similar flexibility in terms of skewness and kurtosis - lead to very similar results.

  3. Spontaneous symmetry breaking by double lithium adsorption in polyacenes

    NASA Astrophysics Data System (ADS)

    Ortiz, Yenni. P.; Seligman, Thomas H.

    2010-12-01

    We show that adsorption of one lithium atom to polyacenes, i.e. chains of linearly fused benzene rings, will cause such chains to be slightly deformed. If we adsorb a second identical atom on the opposite side of the same ring, this deformation is dramatically enhanced despite the fact that a symmetric configuration seems possible. We argue, that this may be due to an instability of the Jahn-Teller type possibly indeed to a Peierls instability.

  4. Spontaneous symmetry breaking by double lithium adsorption in polyacenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Yenni. P.; Seligman, Thomas H.; Centro Internacional de Ciencias, Cuernavaca, Morelos

    2010-12-23

    We show that adsorption of one lithium atom to polyacenes, i.e. chains of linearly fused benzene rings, will cause such chains to be slightly deformed. If we adsorb a second identical atom on the opposite side of the same ring, this deformation is dramatically enhanced despite the fact that a symmetric configuration seems possible. We argue, that this may be due to an instability of the Jahn-Teller type possibly indeed to a Peierls instability.

  5. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition

    PubMed Central

    Yang, Mengmeng; Yang, Yuanjun; Bin Hong; Wang, Liangxin; Hu, Kai; Dong, Yongqi; Xu, Han; Huang, Haoliang; Zhao, Jiangtao; Chen, Haiping; Song, Li; Ju, Huanxin; Zhu, Junfa; Bao, Jun; Li, Xiaoguang; Gu, Yueliang; Yang, Tieying; Gao, Xingyu; Luo, Zhenlin; Gao, Chen

    2016-01-01

    Mechanism of metal-insulator transition (MIT) in strained VO2 thin films is very complicated and incompletely understood despite three scenarios with potential explanations including electronic correlation (Mott mechanism), structural transformation (Peierls theory) and collaborative Mott-Peierls transition. Herein, we have decoupled coactions of structural and electronic phase transitions across the MIT by implementing epitaxial strain on 13-nm-thick (001)-VO2 films in comparison to thicker films. The structural evolution during MIT characterized by temperature-dependent synchrotron radiation high-resolution X-ray diffraction reciprocal space mapping and Raman spectroscopy suggested that the structural phase transition in the temperature range of vicinity of the MIT is suppressed by epitaxial strain. Furthermore, temperature-dependent Ultraviolet Photoelectron Spectroscopy (UPS) revealed the changes in electron occupancy near the Fermi energy EF of V 3d orbital, implying that the electronic transition triggers the MIT in the strained films. Thus the MIT in the bi-axially strained VO2 thin films should be only driven by electronic transition without assistance of structural phase transition. Density functional theoretical calculations further confirmed that the tetragonal phase across the MIT can be both in insulating and metallic states in the strained (001)-VO2/TiO2 thin films. This work offers a better understanding of the mechanism of MIT in the strained VO2 films. PMID:26975328

  6. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    PubMed

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  7. Elastic constants of hcp 4He: Path-integral Monte Carlo results versus experiment

    NASA Astrophysics Data System (ADS)

    Ardila, Luis Aldemar Peña; Vitiello, Silvio A.; de Koning, Maurice

    2011-09-01

    The elastic constants of hcp 4He are computed using the path-integral Monte Carlo (PIMC) method. The stiffness coefficients are obtained by imposing different distortions to a periodic cell containing 180 atoms, followed by measurement of the elements of the corresponding stress tensor. For this purpose an appropriate path-integral expression for the stress tensor observable is derived and implemented into the pimc++ package. In addition to allowing the determination of the elastic stiffness constants, this development also opens the way to an explicit atomistic determination of the Peierls stress for dislocation motion using the PIMC technique. A comparison of the results to available experimental data shows an overall good agreement of the density dependence of the elastic constants, with the single exception of C13. Additional calculations for the bcc phase, on the other hand, show good agreement for all elastic constants.

  8. Orientation influence on grain size-effects in ultrafine-grained magnesium

    DOE PAGES

    Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...

    2014-11-08

    The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.

  9. Topological electronic liquids: Electronic physics of one dimension beyond the one spatial dimension

    NASA Astrophysics Data System (ADS)

    Wiegmann, P. B.

    1999-06-01

    There is a class of electronic liquids in dimensions greater than 1 that shows all essential properties of one-dimensional electronic physics. These are topological liquids-correlated electronic systems with a spectral flow. Compressible topological electronic liquids are superfluids. In this paper we present a study of a conventional model of a topological superfluid in two spatial dimensions. This model is thought to be relevant to a doped Mott insulator. We show how the spectral flow leads to the superfluid hydrodynamics and how the orthogonality catastrophe affects off-diagonal matrix elements. We also compute the major electronic correlation functions. Among them are the spectral function, the pair wave function, and various tunneling amplitudes. To compute correlation functions we develop a method of current algebra-an extension of the bosonization technique of one spatial dimension. In order to emphasize a similarity between electronic liquids in one dimension and topological liquids in dimensions greater than 1, we first review the Fröhlich-Peierls mechanism of ideal conductivity in one dimension and then extend the physics and the methods into two spatial dimensions.

  10. Analysis of nonlocal phonon thermal conductivity simulations showing the ballistic to diffusive crossover

    NASA Astrophysics Data System (ADS)

    Allen, Philip B.

    2018-04-01

    Simulations [e.g., X. W. Zhou et al., Phys. Rev. B 79, 115201 (2009), 10.1103/PhysRevB.79.115201] show nonlocal effects of the ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained in the local Fourier law j ⃗(r ⃗) =-κ ∇ ⃗T (r ⃗) . The heat current j ⃗(r ⃗) depends not just on the local temperature gradient ∇ ⃗T (r ⃗) but also on temperatures at points r⃗' within phonon mean free paths, which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in nonlocal form to analyze the spatial variation Δ T (r ⃗) . The relaxation-time approximation (RTA) is used because the full solution is very challenging. Improved methods of extrapolation to obtain the bulk thermal conductivity κ are proposed. Callaway invented an approximate method of correcting RTA for the q ⃗ (phonon wave vector or crystal momentum) conservation of N (Normal as opposed to Umklapp) anharmonic collisions. This method is generalized to the nonlocal case where κ (k ⃗) depends on the wave vector of the current j ⃗(k ⃗) and temperature gradient i k ⃗Δ T (k ⃗) .

  11. More Phases in the Affleck-Marston Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Voo, Khee-Kyun; Mou, Chung-Yu

    2003-03-01

    The Affleck-Marston (AM) mean field theory is re-examined with emphasis on the possibility of inhomogeneous solutions. It is found that phases with superstructures upon the fundamental order Peierls and flux (such as topological stripes) may be developed at finite hole-dopings, and glassy phases dominate over the small hopping regime. These phases have an universal feature of always gapped Fermi level and may be related to the pseudogap observed in experiments, hence revealing a more intimate relationship between the theory and the high-Tc cuprates.

  12. The legacy of uncertainty

    NASA Technical Reports Server (NTRS)

    Brown, Laurie M.

    1993-01-01

    An historical account is given of the circumstances whereby the uncertainty relations were introduced into physics by Heisenberg. The criticisms of QED on measurement-theoretical grounds by Landau and Peierls are then discussed, as well as the response to them by Bohr and Rosenfeld. Finally, some examples are given of how the new freedom to advance radical proposals, in part the result of the revolution brought about by 'uncertainty,' was implemented in dealing with the new phenomena encountered in elementary particle physics in the 1930's.

  13. Role of hydrodynamic viscosity on phonon transport in suspended graphene

    NASA Astrophysics Data System (ADS)

    Li, Xun; Lee, Sangyeop

    2018-03-01

    When phonon transport is in the hydrodynamic regime, the thermal conductivity exhibits peculiar dependences on temperatures (T ) and sample widths (W ). These features were used in the past to experimentally confirm the hydrodynamic phonon transport in three-dimensional bulk materials. Suspended graphene was recently predicted to exhibit strong hydrodynamic features in thermal transport at much higher temperature than the three-dimensional bulk materials, but its experimental confirmation requires quantitative guidance by theory and simulation. Here we quantitatively predict those peculiar dependences using the Monte Carlo solution of the Peierls-Boltzmann equation with an ab initio full three-phonon scattering matrix. Thermal conductivity is found to increase as Tα where α ranges from 1.89 to 2.49 depending on a sample width at low temperatures, much larger than 1.68 of the ballistic case. The thermal conductivity has a width dependence of W1.17 at 100 K, clearly distinguished from the sublinear dependence of the ballistic-diffusive regime. These peculiar features are explained with a phonon viscous damping effect of the hydrodynamic regime. We derive an expression for the phonon hydrodynamic viscosity from the Peierls-Boltzmann equation, and discuss the fact that the phonon viscous damping explains well those peculiar dependences of thermal conductivity at 100 K. The phonon viscous damping still causes significant thermal resistance when a temperature is 300 K and a sample width is around 1 µm, even though the hydrodynamic regime is not dominant over other regimes at this condition.

  14. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    PubMed Central

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-01-01

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential. PMID:28788002

  15. Dielectric response of molecules in empirical tight-binding theory

    NASA Astrophysics Data System (ADS)

    Boykin, Timothy B.; Vogl, P.

    2002-01-01

    In this paper we generalize our previous approach to electromagnetic interactions within empirical tight-binding theory to encompass molecular solids and isolated molecules. In order to guarantee physically meaningful results, we rederive the expressions for relevant observables using commutation relations appropriate to the finite tight-binding Hilbert space. In carrying out this generalization, we examine in detail the consequences of various prescriptions for the position and momentum operators in tight binding. We show that attempting to fit parameters of the momentum matrix directly generally results in a momentum operator which is incompatible with the underlying tight-binding model, while adding extra position parameters results in numerous difficulties, including the loss of gauge invariance. We have applied our scheme, which we term the Peierls-coupling tight-binding method, to the optical dielectric function of the molecular solid PPP, showing that this approach successfully predicts its known optical properties even in the limit of isolated molecules.

  16. Describing a Strongly Correlated Model System with Density Functional Theory.

    PubMed

    Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth

    2017-07-06

    The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.

  17. Short range smectic order driving long range nematic order: Example of cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  18. Short range smectic order driving long range nematic order: Example of cuprates

    DOE PAGES

    Markiewicz, R. S.; Lorenzana, J.; Seibold, G.; ...

    2016-01-27

    We present a model for describing the combined presence of nematic and ‘smectic’ or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a ‘Pomeranchuk wave’. This primary order is restricted to nanoscale domains by disorder effects, while the secondary coupling to strain generates the nematic order with a considerably longer range. Lastly, a variety of experimental results are shown to be consistent with our theoretical predictions.

  19. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    2017-11-01

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe, and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving {κ }{InSe}< {κ }{GaSe}< {κ }{GaS}. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, in InSe, GaSe and GaS thermal transport is governed by in-plane vibrations. Alloying of InSe, GaSe, and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ˜2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.

  20. Deformation of phase D and Earth's deep water cycle

    NASA Astrophysics Data System (ADS)

    Walker, A.; Skelton, R.; Nowacki, A.

    2016-12-01

    The stability of dense hydrous magnesium silicates such as phase D in subducting slabs provide a potential path for hydrogen transport from the Earth's surface environment into the lower mantle. Recent analysis of source-side shear wave splitting for rays from deep earthquakes around slabs detected a signal of anisotropy that could be attributed to the deformation of phase D [Nowacki et al. 2015; Geochem. Geophys. Geosyst., 16, 764-784]. If this is the case these observations could provide an estimate of the hydrogen flux into the lower mantle at depths beyond shallow recycling through the volcanic arc. However, the processes leading to the deformation of phase D and the generation of seismic anisotropy are not well known and this is a barrier to progress. Here we present initial results of simulations designed to reveal how easily different dislocations move in phase D during deformation and lead to the generation of seismic anisotropy measured by shear wave splitting. In particular, we use atomic scale simulations to calculate the energies of generalised stacking faults in phase D, which are used to parameterise Peierls-Nabarro models of dislocation structures and Peierls stresses at pressures up to 60 GPa. We then use results from these calculations as parameters for models of texture development in polycrystalline aggregates during deformation using the visco-plastic self-consistent approach. In combination with measurement of the distribution of seismic anisotropy around subducting slabs, and an analysis of the strain pattern expected as slabs pass through the transition zone, these results could constrain an important part of Earth's deep water cycle.

  1. The phase transition in VO 2 probed using x-ray, visible and infrared radiations

    DOE PAGES

    Kumar, Suhas; Strachan, John Paul; Kilcoyne, A. L. David; ...

    2016-02-15

    Vanadium dioxide (VO 2) is a model system that has been used to understand closely occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the many techniques used to study VO 2, the most frequently used involve electromagnetic radiation as a probe. Understanding of the distinct physical information provided by different probing radiations is incomplete, mostly owing to the complicated nature of the phase transitions. Here, we use transmission of spatially averaged infrared (λ = 1.5 μm) and visible (λ = 500 nm) radiations followed by spectroscopy andmore » nanoscale imaging using x-rays (λ = 2.25–2.38 nm) to probe the same VO 2 sample while controlling the ambient temperature across its hysteretic phase transitions and monitoring its electrical resistance. We directly observed nanoscale puddles of distinct electronic and structural compositions during the transition. The two main results are that, during both heating and cooling, the transition of infrared and visible transmission occurs at significantly lower temperatures than the Mott transition, and the electronic (Mott) transition occurs before the structural (Peierls) transition in temperature. We use our data to provide insights into possible microphysical origins of the different transition characteristics. We highlight that it is important to understand these effects because small changes in the nature of the probe can yield quantitatively, and even qualitatively, different results when applied to a non-trivial multiband phase transition. Our results guide more judicious use of probe type and interpretation of the resulting data.« less

  2. Insulating Ferromagnetic LaCoO3-δ Films: A Phase Induced by Ordering of Oxygen Vacancies

    NASA Astrophysics Data System (ADS)

    Biškup, Neven; Salafranca, Juan; Mehta, Virat; Oxley, Mark P.; Suzuki, Yuri; Pennycook, Stephen J.; Pantelides, Sokrates T.; Varela, Maria

    2014-02-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film's electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  3. A review of the deformation behavior of tungsten at temperatures less than 0.2 of the melting point /K/

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1974-01-01

    The deformation behavior of tungsten at temperatures below 0.2 times the absolute melting temperature is reviewed with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition. It is concluded that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. Future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of alloys of tungsten and other transition metal alloys.

  4. The increase in conductance of a gold single atom chain during elastic elongation

    NASA Astrophysics Data System (ADS)

    Tavazza, F.; Barzilai, S.; Smith, D. T.; Levine, L. E.

    2013-02-01

    The conductance of monoatomic gold wires has been studied using ab initio calculations and the transmission was found to vary with the elastic strain. Counter-intuitively, the conductance was found to increase for the initial stages of the elongation, where the structure has a zigzag shape and the bond angles increase from ≈140° toward ≈160°. After a certain elongation limit, where the angles are relatively high, the bond length elongation associated with a Peierls distortion reverses this trend and the conductance decreases. These simulations are in good agreement with previously unexplained experimental results.

  5. Alloy softening in binary iron solid solutions

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1976-01-01

    An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.

  6. Electromagnetic effects on explosive reaction and plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasker, Douglas G; Whitley, Von H; Mace, Jonathan L

    2010-01-01

    A number of studies have reported that electric fields can have quantifiable effects on the initiation and growth of detonation, yet the mechanisms of these effects are not clear. Candidates include Joule heating of the reaction zone, perturbations to the activation energy for chemical reaction, reduction of the Peierls energy barrier that facilitates dislocation motion, and acceleration of plasma projected from the reaction zone. In this study the possible role of plasma in the initiation and growth of explosive reaction is investigated. The effects of magnetic and electric field effects on reaction growth will be reviewed and recent experiments reported.

  7. My Career as a Theoretical Physicist - So Far

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-03-01

    Theoretical physics and the institutions that support it have changed greatly during my career. In this article, I recount some of my most memorable experiences as a physicist, first as a graduate student with Rudolf Peierls at the University of Birmingham in England and later as a colleague of Walter Kohn at the Institute for Theoretical Physics in Santa Barbara, California. I use this account to illustrate some of the changes that have occurred in my field and also as a rationale for asserting that theoretical physics has an increasingly vital role to play in modern science.

  8. Carrier-doped aromatic hydrocarbons: a new platform in condensed matter chemistry and physics.

    PubMed

    Heguri, Satoshi; Tanigaki, Katsumi

    2018-02-27

    High-quality bulk samples of the first four polyacenes, which are naphthalene, anthracene, tetracene, and pentacene, doped with alkali metal in 1 : 1 and 1 : 2 stoichiometries were prepared and their fundamental properties were systematically studied. A new systematic understanding on the electronic states of electron-doped polyacenes sensitive to the energetic balance among on-site Coulomb repulsion, bandwidth and the Peierls instability was provided. The carrier-doped typical aromatic hydrocarbons showed a large variety of properties as well as charge transfer complexes and metal-doped fullerides. We open a new avenue for organometallic and inorganic chemistry.

  9. Heavy metals in emergent trees and pioneers from tropical forest with special reference to forest fires and local pollution sources in Sarawak, Malaysia.

    PubMed

    Breulman, G; Markert, B; Weckert, V; Herpin, U; Yoneda, R; Ogino, K

    2002-02-21

    Leaf samples of tropical trees, i.e. Dryobalanops lanceolata (Kapur paji), Dipterocarpaceae and Macaranga spp. (Mahang), Euphorbiaceae were analyzed for 21 chemical elements. The pioneer Macaranga spp. exhibited higher concentrations for the majority of elements compared to the emergent species of Dryobalanops lanceolata, which was attributed to the higher physiological activity of the fast growing pioneer species compared to emergent trees. Lead showed rather high concentrations in several samples from the Bakam re-forestation site. This is suggested to be caused by emissions through brick manufacturing and related activities in the vicinity. A comparison of Dryobalanops lanceolata samples collected in 1993, 1995 and 1997 in the Lambir Hills National Park revealed that certain heavy metals, i.e. Co, Cu, Mn, Ni, Pb and Ti showed higher values in 1997 compared to the previous years, which could indicate an atmospheric input from the haze caused by the extensive forest fires raging in Borneo and other parts of Southeast Asia.

  10. Analytic and numeric Green's functions for a two-dimensional electron gas in an orthogonal magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori

    2006-05-15

    We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of themore » Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems.« less

  11. Critical scaling analysis for displacive-type organic ferroelectrics around ferroelectric transition

    NASA Astrophysics Data System (ADS)

    Ding, L. J.

    2017-04-01

    The critical scaling properties of displacive-type organic ferroelectrics, in which the ferroelectric-paraelectric transition is induced by spin-Peierls instability, are investigated by Green's function theory through the modified Arrott plot, critical isothermal and electrocaloric effect (ECE) analysis around the transition temperature TC. It is shown that the electric entropy change - ΔS follows a power-law dependence of electric field E : - ΔS ∼En with n satisfying the Franco equation n(TC) = 1 +(β - 1) /(β + γ) = 0.618, wherein the obtained critical exponents β = 0.440 and γ = 1.030 are not only corroborated by Kouvel-Fisher method, but also confirm the Widom critical relation δ = 1 + γ / β. The self-consistency and reliability of the obtained critical exponents are further verified by the scaling equations. Additionally, a universal curve of - ΔS is constructed with rescaling temperature and electric field, so that one can extrapolate the ECE in a certain temperature and electric field range, which would be helpful in designing controlled electric refrigeration devices.

  12. Ab initio phonon thermal transport in monolayer InSe, GaSe, GaS, and alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Tribhuwan; Parker, David S.; Lindsay, Lucas

    We compare vibrational properties and phonon thermal conductivities (κ) of monolayer InSe, GaSe and GaS systems using density functional theory and Peierls-Boltzmann transport methods. In going from InSe to GaSe to GaS, system mass decreases giving both increasing acoustic phonon velocities and decreasing scattering of these heat-carrying modes with optic phonons, ultimately giving κInSe< κGaSe< κGaS. This behavior is demonstrated by correlating the scattering phase space limited by fundamental conservation conditions with mode scattering rates and phonon dispersions for each material. We also show that, unlike flat monolayer systems such as graphene, thermal transport is governed by in-plane vibrations inmore » InSe, GaSe and GaS, similar to buckled monolayer materials such as silicene. Alloying of InSe, GaSe and GaS systems provides an effective method for modulating their κ through intrinsic vibrational modifications and phonon scattering from mass disorder giving reductions ~2-3.5 times. This disorder also suppresses phonon mean free paths in the alloy systems compared to those in their crystalline counterparts. This work provides fundamental insights of lattice thermal transport from basic vibrational properties for an interesting set of two-dimensional materials.« less

  13. Modified Chapman-Enskog moment approach to diffusive phonon heat transport.

    PubMed

    Banach, Zbigniew; Larecki, Wieslaw

    2008-12-01

    A detailed treatment of the Chapman-Enskog method for a phonon gas is given within the framework of an infinite system of moment equations obtained from Callaway's model of the Boltzmann-Peierls equation. Introducing no limitations on the magnitudes of the individual components of the drift velocity or the heat flux, this method is used to derive various systems of hydrodynamic equations for the energy density and the drift velocity. For one-dimensional flow problems, assuming that normal processes dominate over resistive ones, it is found that the first three levels of the expansion (i.e., the zeroth-, first-, and second-order approximations) yield the equations of hydrodynamics which are linearly stable at all wavelengths. This result can be achieved either by examining the dispersion relations for linear plane waves or by constructing the explicit quadratic Lyapunov entropy functionals for the linear perturbation equations. The next order in the Chapman-Enskog expansion leads to equations which are unstable to some perturbations. Precisely speaking, the linearized equations of motion that describe the propagation of small disturbances in the flow have unstable plane-wave solutions in the short-wavelength limit of the dispersion relations. This poses no problem if the equations are used in their proper range of validity.

  14. Insulating ferromagnetic oxide films: the controlling role of oxygen vacancy ordering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salafranca Laforga, Juan I; Salafranca, Juan; Biskup, Nevenko

    2014-01-01

    The origin of ferromagnetism in strained epitaxial LaCoO3 films has been a long-standing mystery. Here, we combine atomically resolved Z-contrast imaging, electron-energy-loss spectroscopy, and density-functional calculations to demonstrate that, in epitaxial LaCoO3 films, oxygen-vacancy superstructures release strain, control the film s electronic properties, and produce the observed ferromagnetism via the excess electrons in the Co d states. Although oxygen vacancies typically dope a material n-type, we find that ordered vacancies induce Peierls-like minigaps which, combined with strain relaxation, trigger a nonlinear rupture of the energy bands, resulting in insulating behavior.

  15. Review of deformation behavior of tungsten at temperature less than 0.2 absolute melting temperature

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1972-01-01

    The deformation behavior of tungsten at temperatures 0.2 T sub m is reviewed, with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition temperature. It appears that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research is discussed which suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. It is concluded that future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of tungsten alloys and other transition metal alloys.

  16. Exact diffusion constant in a lattice-gas wind-tree model on a Bethe lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Guihua; Percus, J. K.

    1992-02-01

    Kong and Cohen [Phys. Rev. B 40, 4838 (1989)] obtained the diffusion constant of a lattice-gas wind-tree model in the Boltzmann approximation. The result is consistent with computer simulations for low tree concentration. In this Brief Report we find the exact diffusion constant of the model on a Bethe lattice, which turns out to be identical with the Kong-Cohen and Gunn-Ortuño results. Our interpretation is that the Boltzmann approximation is exact for this type of diffusion on a Bethe lattice in the same sense that the Bethe-Peierls approximation is exact for the Ising model on a Bethe lattice.

  17. Transfer-Matrix Method for Solving the Spin 1/2 Antiferromagnetic Heisenberg Chain

    NASA Astrophysics Data System (ADS)

    Garcia-Bach, M. A.; Klein, D. J.; Valenti, R.

    Following the discovery of high Tc superconductivity in the copper oxides, there has been a great deal of interest in the RVB wave function proposed by Anderson [1]. As a warm-up exercise we have considered a valence-bond wave function for the one dimensional spin-1/2 Heisenberg chain. The main virtue of our work is to propose a new variational singlet wavefunction which is almost analytically tractable by a transfer-matrix technique. We have obtained the ground state energy for finite as well as infinite chains, in good agreement with exact results. Correlation functions, excited states, and the effects of other interactions (e.g., spin-Peierls) are also accessible within this scheme [2]. Since the ground state of the chain is known to be a singlet (Lieb & Mattis [3]), we write the appropriate wave function as a superposition of valence-bond singlets, |ψ > =∑ limits k C k | k>, where |k> is a spin configuration obtained by pairing all spins into singlet pairs, in a way which is common in valence-bond calculations of large molecules. As in that case, each configuration, |k>, can be represented by a Rümer diagram, with directed bonds connecting each pair of spins on the chain. The ck's are variational co-efficients, the form of which is determined as follows: Each singlet configuration (Rümer diagram) is divided into "zones", a "zone" corresponding to the region between two consecutive sites. Each zone is indexed by its distance from the end of the chain and by the number of bonds crossing it. Our procedure assigns a variational parameter, xij, to the jth zone, when crossed by i bonds. The resulting wavefunction for an N-site chain is written as |ψ > =∑ limits k ∏ M limits { i =1} ∏ { N -1}limits { j =1} X ij{ m ij (k)} | k> where mij(k) equals 1 when zone j is crossed by i bonds and zero otherwise. To make the calculation tractable we reduce the number of variational parameters by disallowing configurations with bonds connecting any two sites separated

  18. Etude theorique des fluctuations structurales dans les composes organiques a dimensionnalite reduite

    NASA Astrophysics Data System (ADS)

    Dumoulin, Benoit

    Les systemes a dimensionnalite reduite constituent maintenant une branche entiere de la physique de la matiere condensee. Cette derniere s'est developpee rapidement au cours des dernieres annees, avec la decouverte des materiaux organiques qui presentent, justement, des proprietes physiques fortement anisotropes. Cette these presente une etude en trois parties de plusieurs composes organiques qui, bien que tres differents du point de vue de leurs compositions chimiques et de leurs proprietes physiques a haute temperature, subissent tous une instabilite structurale a tres basse temperature. De plus, dans chacun des cas, l'instabilite structurale est precedee d'un important regime fluctuatif a partir duquel les proprietes physiques changent de maniere significative. Notre etude suit un ordre chronologique inverse puisque nous nous attardons en premier lieu au cas de composes recemment decouverts: les composes de la famille des (BCPTTF)2X (X = PF6 , AsF6). Ces derniers sont des isolants magnetiques a la temperature ambiante et subissent une instabilite structurale de type spin-Peierls a une temperature appelee TSP. En particulier, nous nous interessons a l'etude des proprietes physiques de ces systemes dans le regime fluctuatif, qui precede cette instabilite. Notre etude theorique nous permet de comprendre en detail comment ces systemes s'approchent de l'instabilite struturale. Dans la seconde partie de cette these, nous etudions le regime fluctuatif (pre-transitionnel) observe experimentalement dans le compose de (TMTTF)2PF6. Ce compose organique, dont la structure s'apparente aux sels de Bechgaard, subit une instabilite de type spin-Peierls a une temperature T SP = 19K. Bien que ce compose possede la particularite d'etre un bon conducteur a la temperature ambiante, il subit une transition de type Mott-Hubbard a une temperature Trho ≈ 220K et devient alors un isolant magnetique, analogue aux composes de la famille des (BCPTTF)2X. Le regime fluctuatif precedant l

  19. The high temperature impact response of tungsten and chromium

    NASA Astrophysics Data System (ADS)

    Zaretsky, E. B.; Kanel, G. I.

    2017-09-01

    The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.

  20. Oscillations of kinks on dislocation lines in crystals and low-temperature transport anomalies as a ``passport'' of newly-induced defects

    NASA Astrophysics Data System (ADS)

    Mezhov-Deglin, L. P.; Mukhin, S. I.

    2011-10-01

    The possible interpretation of experimental data on low-temperature anomalies in weakly deformed metallic crystals prepared form ultra-pure lead, copper, and silver, as well as in crystals of 4He is discussed within the previously proposed theoretical picture of dislocations with dynamical kinks. In the case of pure metals the theoretical predictions give a general picture of interaction of conduction electrons in a sample with newly-introduced dislocations, containing dynamic kinks in the Peierls potential relief. In the field of random stresses appearing due to plastic deformation of a sample, kinks on the dislocation line form a set of one-dimensional oscillators in potential wells of different shapes. In the low temperature region at low enough density of defects pinning kinks the inelastic scattering of electrons on kinks should lead to deviations from the Wiedemann-Franz law. In particular, the inelastic scattering on kinks should result in a quadratic temperature dependence of the thermal conductivity in a metallic sample along preferential directions of dislocation axes. In the plane normal to the dislocation axis the elastic large-angle scattering of electrons is prevalent. The kink pinning by a point defect or by additional dislocations as well as the sample annealing leading to the disappearance of kinks should induce suppression of transport anomalies. Thus, the energy interval for the spectrum of kink oscillations restricted by characteristic amplitude of the Peierls relief is a "passport of deformation history" for each specific sample. For instance, in copper the temperature/energy region of the order of 1 K corresponds to it. It is also planned to discuss in the other publication applicability of mechanism of phonon scattering on mobile dislocation kinks and pinning of kinks by impurities in order to explain anomalies of phonon thermal conductivity of 4He crystals and deformed crystals of pure lead in a superconducting state.

  1. Constrained Hartree-Fock Theory and Study of Deformed Structures of Closed Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Praharaj, Choudhury

    2016-03-01

    We have studied some N or Z = 50 nuclei in a microscopic model with effective interaction in a reasonably large shell model space. Excitation of particles across 50 shell closure leads to well-deformed excited prolate configurations. The potential energy surfaces of nuclei are studied using Hartree-Fock theory with quadrupole constraint to explore the various deformed configurations of N = 50 nuclei 82Ge , 84Se and 86Kr . Energy spectra are calculated from various intrinsic states using Peierls-Yoccoz angular momentum projection technique. Results of spectra and electromagnetic moments and transitions will be presented for N = 50 nuclei and for Z = 50 114Sn nucleus. Supported by Grant No SB/S2/HEP-06/2013 of DST.

  2. Angular studies of the magnetoresistance in the density wave state of the quasi-two-dimensional purple bronze KMo6O17

    NASA Astrophysics Data System (ADS)

    Guyot, H.; Dumas, J.; Kartsovnik, M. V.; Marcus, J.; Schlenker, C.; Sheikin, I.; Vignolles, D.

    2007-07-01

    The purple molybdenum bronze KMo6O17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic charge density wave (CDW) state. High magnetic field measurements have revealed several transitions at low temperature and have provided an unusual phase diagram “temperature-magnetic field”. Angular studies of the interlayer magnetoresistance are now reported. The results suggest that the orbital coupling of the magnetic field to the CDW is the most likely mechanism for the field induced transitions. The angular dependence of the magnetoresistance is discussed on the basis of a warped quasi-cylindrical Fermi surface and provides information on the geometry of the Fermi surface in the low temperature density wave state.

  3. Investigating phonon-mediated interactions with polar molecules

    NASA Astrophysics Data System (ADS)

    Sous, John; Madison, Kirk; Berciu, Mona; Krems, Roman

    2017-04-01

    We show that an ensemble of polar molecules in an optical lattice realizes the Peierls polaron model for hard-core particles/ pseudospins. We analyze the quasiparticle spectrum in the one-particle subspace, the two-particle subspace and at finite concentrations. We derive an effective model that describes the low-energy behavior of the system. We show that the Hamiltonian includes phonon-mediated repulsions and phonon-mediated ``pair-hopping'' terms which move the particle pair as a whole. We show that microwave excitations of the system exhibit signatures of these interactions. These results pave the way for the experimental observation of phonon-mediated repulsion. This work was supported by NSERC of Canada and the Stewart Blusson Quantum Matter Institute.

  4. Hubbard physics in the PAW GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, J. M., E-mail: jamie.booth@rmit.edu.au; Smith, J. S.; Russo, S. P.

    It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M{sub 1} and M{sub 2} forms of vanadium dioxidemore » are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M{sub 1} VO{sub 2}, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M{sub 2} structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.« less

  5. Ising tricriticality in the extended Hubbard model with bond dimerization

    NASA Astrophysics Data System (ADS)

    Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.

    We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).

  6. Ab initio study of properties of BaBiO3 at high pressure

    NASA Astrophysics Data System (ADS)

    Martoňák, Roman; Ceresoli, Davide; Kagayama, Tomoko; Tosatti, Erio

    BaBiO3 is a mixed-valence perovskite which escapes metallic state by creating a Bi-O bond disproportionation or CDW pattern, resulting in a Peierls semiconductor with gap of nearly 1 eV at zero pressure. Evolution of structural and electronic properties at high pressure is, however, largely unknown. Pressure, it might be natural to expect, could reduce the bond-disproportionation and bring the system closer to metalicity or even superconductivity. We address this question by ab initio DFT methods based on GGA and hybrid functionals in combination with crystal structure prediction techniques based on genetic algorithms. We analyze the pressure evolution of bond disproportionation as well as other order parameters related to octahedra rotation for various phases in connection with corresponding evolution of the electronic structure. Results indicate that BaBiO3 continues to resist metalization also under pressure, through structural phase transitions which sustain and in fact increase the diversity of length of Bi-O bonds for neighboring Bi ions, in agreement with preliminary high pressure resistivity data. R.M. Slovak Research and Development Agency Contract APVV-15-0496, VEGA project No. 1-0904-15; E.T. ERC MODPHYSFRICT Advanced Grant No. 320796.

  7. Detection of plasticity mechanisms in an energetic molecular crystal through shock-like 3D unidirectional compressions: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard

    2017-06-01

    TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.

  8. SNAP: Automated Generation of High-Accuracy Interatomic Potentials using Quantum Data

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan; Wood, Mitchell; Phillpot, Simon

    Molecular dynamics simulation is a powerful computational method for bridging between macroscopic continuum models and quantum models treating a few hundred atoms, but it is limited by the accuracy of the interatomic potential. Sound physical and chemical understanding have led to good potentials for certain systems, but it is difficult to extend them to new materials and properties. The solution is obvious but challenging: develop more complex potentials that reproduce large quantum datasets. The growing availability of large data sets has made it possible to use automated machine-learning approaches for interatomic potential development. In the SNAP approach, the interatomic potential depends on a very general set of atomic neighborhood descriptors, based on the bispectrum components of the density projected onto the surface of the unit 3-sphere. Previously, this approach was demonstrated for tantalum, reproducing the screw dislocation Peierls barrier. In this talk, it will be shown that the SNAP method is capable of reproducing a wide range of energy landscapes relevant to diverse material science applications: i) point defects in indium phosphide, ii) stability of tungsten surfaces at high temperatures, and iii) formation of intrinsic defects in uranium. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energys National Nuclear Security Admin. under contract DE-AC04-94AL85000.

  9. Light-Enhanced Spin Fluctuations and d -Wave Superconductivity at a Phase Boundary

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chen, Cheng-Chien; Moritz, B.; Devereaux, T. P.

    2018-06-01

    Time-domain techniques have shown the potential of photomanipulating existing orders and inducing new states of matter in strongly correlated materials. Using time-resolved exact diagonalization, we perform numerical studies of pump dynamics in a Mott-Peierls system with competing charge and spin density waves. A light-enhanced d -wave superconductivity is observed when the system resides near a quantum phase boundary. By examining the evolution of spin, charge, and superconducting susceptibilities, we show that a subdominant state in equilibrium can be stabilized by photomanipulating the charge order to allow superconductivity to appear and dominate. This work provides an interpretation of light-induced superconductivity from the perspective of order competition and offers a promising approach for designing novel emergent states out of equilibrium.

  10. Large Diamagnetic Susceptibility from Petit Fermi Surfaces in LaV2Al20

    NASA Astrophysics Data System (ADS)

    Hirose, Takahiro; Okamoto, Yoshihiko; Yamaura, Jun-ichi; Hiroi, Zenji

    2015-11-01

    The large diamagnetic susceptibility of LaV2Al20 is studied by magnetization and de Haas-van Alphen (dHvA) oscillation measurements on single crystals as well as by Ti-for-V substitution (hole doping) experiments. Its origin is ascribed to a tiny holelike Fermi surface (FS) with a low Fermi temperature of 140 K and a small dHvA frequency of 19 T. The FS has a characteristic anisotropy that is approximated by six spheroidal hole pockets elongated along the cubic <001> directions with a minimum effective mass of 0.067 times the free electron mass. This characteristic FS can generate an unusually large Landau-Peierls diamagnetic susceptibility as observed experimentally in LaV2Al20.

  11. Aging mechanisms in amorphous phase-change materials.

    PubMed

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-06-24

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

  12. Charge modulation in two-dimensional compounds

    NASA Astrophysics Data System (ADS)

    Monceau, Pierre

    2015-03-01

    Although the first measurements demonstrating charge modulation were performed forty years ago, many open questions are now the matter of intense research. In the first part of this short review, some recent results obtained on transition metal dichalcogenides (MX2) compounds will be presented such as: mechanism of the Peierls transition, effect of strong electron-phonon coupling, soft mode in the phonon dispersion, chirality effects,....Charge order, ferroelectricity, frustration, glassiness in organic 2D systems will be the subject of the second part. The third part will be devoted to describe the properties of a new family of 2D compounds, namely rare earth tritellurides, in which the size of the rare earth determine the charge density wave transition temperature.

  13. Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics

    NASA Astrophysics Data System (ADS)

    Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen

    2017-05-01

    In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.

  14. Probing the Fluctuations of Optical Properties in Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Esposito, Martina; Giusti, Francesca; Misochko, Oleg; Parmigiani, Fulvio; Fausti, Daniele; Eckstein, Martin

    2017-11-01

    We show that, in optical pump-probe experiments on bulk samples, the statistical distribution of the intensity of ultrashort light pulses after interaction with a nonequilibrium complex material can be used to measure the time-dependent noise of the current in the system. We illustrate the general arguments for a photoexcited Peierls material. The transient noise spectroscopy allows us to measure to what extent electronic degrees of freedom dynamically obey the fluctuation-dissipation theorem, and how well they thermalize during the coherent lattice vibrations. The proposed statistical measurement developed here provides a new general framework to retrieve dynamical information on the excited distributions in nonequilibrium experiments, which could be extended to other degrees of freedom of magnetic or vibrational origin.

  15. Quasiparticle and excitonic gaps of one-dimensional carbon chains.

    PubMed

    Mostaani, E; Monserrat, B; Drummond, N D; Lambert, C J

    2016-06-01

    We report diffusion quantum Monte Carlo (DMC) calculations of the quasiparticle and excitonic gaps of hydrogen-terminated oligoynes and extended polyyne. The electronic gaps are found to be very sensitive to the atomic structure in these systems. We have therefore optimised the geometry of polyyne by directly minimising the DMC energy with respect to the lattice constant and the Peierls-induced carbon-carbon bond-length alternation. We find the bond-length alternation of polyyne to be 0.136(2) Å and the excitonic and quasiparticle gaps to be 3.30(7) and 3.4(1) eV, respectively. The DMC zone-centre longitudinal optical phonon frequency of polyyne is 2084(5) cm(-1), which is consistent with Raman spectroscopic measurements for large oligoynes.

  16. S23. INTRODUCING COMPASS: COMPARING BRAIN ACTIVITY ACROSS PATIENTS WITH DIFFERENTIAL TREATMENT RESPONSE IN SCHIZOPHRENIA – AN OBSERVATIONAL STUDY

    PubMed Central

    Iglesias, Sandra; Siemerkus, Jakob; Bischof, Martin; Tomiello, Sara; Schöbi, Dario; Weber, Lilian; Heinzle, Jakob; Möller, Julian; Egger, Stephan; Gerke, Wolfgang; Baumgartner, Markus; Kawohl, Wolfram; Borgwardt, Stefan; Kaiser, Stefan; Haker, Helene; Stephan, Klaas Enno

    2018-01-01

    Abstract Background Present pharmacological treatment approaches in schizophrenia rest on “neuroleptic” drugs, all of which act as antagonists at dopamine D2/D3 receptors but additionally display major variability in their binding capacity to neurotransmitter receptors (Van Os & Kapur 2009). At present, the choice of any particular drug does not rest on any principled criteria: Once individual treatment has been started, therapeutic efficacy is monitored clinically, and a switch to a different drug is initiated when clear improvements remain absent after a few weeks. It is presently not possible to predict in advance which patients will respond well to a particular drug and who will experience little or no benefit (Case et al. 2011; Kapur et al. 2012). For instance, clozapine and olanzapine are often prescribed after other antipsychotics have shown to be ineffective in patients with schizophrenia or related disorders due to their pronounced side-effects. Both drugs, clozapine and olanzapine, share certain pharmacodynamic properties with comparatively low affinity towards dopamine D2-receptors, but very high affinity towards muscarinic receptors – a unique constellation that distinguishes them from other common antipsychotics. Importantly, previous studies have shown that a subgroup of schizophrenia patients might particularly benefit from these properties (Raedler et al. 2003, Scarr et al. 2009). Here, we present an ongoing observational study (COMPASS) which builds on these observations and addresses the question whether functional readouts of dopaminergic and muscarinic systems in individual patients could enable personalised treatment predictions. Guided by the dysconnection hypothesis of schizophrenia (Stephan et al., 2009), which postulates aberrant interactions between NMDA receptors and neuromodulators like dopamine/acetylcholine, the COMPASS study adopts a neuromodeling approach. The focus is on EEG/fMRI paradigms and computational models with

  17. Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding

    PubMed Central

    Sun, Lijuan; Guo, Jian; Xu, Bin; Li, Shujing

    2017-01-01

    The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability. PMID:28127305

  18. A Clinical Evaluation Denture Adhesives Used by Patients With Xerostomia

    PubMed Central

    Bogucki, Zdzislaw A.; Napadlek, Piotr; Dabrowa, Tomasz

    2015-01-01

    Abstract The purpose of study was to analyze the participants’ opinions concerning the effectiveness of 6 denture adhesives (DA). The study group included 60 participants. Criteria for selecting the patients were as follows: reduced retention and stabilization of maxillary complete dentures and xerostomia. These features were evaluated on basis of clinical examination and standard sialometry tests (u-SFR). Retention of maxillary dentures was scored by modified Kapur index before application of DA. All participants were divided randomly into 6 groups regarding the use of the 6 DA during a 6-month period. After this time, participants completed an HRQL questionnaire. DA noticeably improved retention and stabilization of maxillary complete dentures. DA in the glue form had the best retention effectiveness in participants with xerostomia. These materials are difficult to clean from the denture base. The data are presented in tables and figures. The results of the study collected positive influence of adhesives on retention of dentures in xerostomia patients. The cleaning dentures and denture bearing tissues was difficult. DA help in the use of prostheses, but it is also necessary for the treatment of the causes and symptoms of xerostomia. PMID:25700320

  19. A clinical evaluation denture adhesives used by patients with xerostomia.

    PubMed

    Bogucki, Zdzislaw A; Napadlek, Piotr; Dabrowa, Tomasz

    2015-02-01

    The purpose of study was to analyze the participants' opinions concerning the effectiveness of 6 denture adhesives (DA). The study group included 60 participants. Criteria for selecting the patients were as follows: reduced retention and stabilization of maxillary complete dentures and xerostomia. These features were evaluated on basis of clinical examination and standard sialometry tests (u-SFR). Retention of maxillary dentures was scored by modified Kapur index before application of DA. All participants were divided randomly into 6 groups regarding the use of the 6 DA during a 6-month period. After this time, participants completed an HRQL questionnaire. DA noticeably improved retention and stabilization of maxillary complete dentures. DA in the glue form had the best retention effectiveness in participants with xerostomia. These materials are difficult to clean from the denture base. The data are presented in tables and figures. The results of the study collected positive influence of adhesives on retention of dentures in xerostomia patients. The cleaning dentures and denture bearing tissues was difficult. DA help in the use of prostheses, but it is also necessary for the treatment of the causes and symptoms of xerostomia.

  20. A Dislocation Model of Seismic Wave Attenuation and Micro-creep in the Earth: Harold Jeffreys and the Rheology of the Solid Earth

    NASA Astrophysics Data System (ADS)

    Karato, S.

    A microphysical model of seismic wave attenuation is developed to provide a physical basis to interpret temperature and frequency dependence of seismic wave attenuation. The model is based on the dynamics of dislocation motion in minerals with a high Peierls stress. It is proposed that most of seismic wave attenuation occurs through the migration of geometrical kinks (micro-glide) and/or nucleation/migration of an isolated pair of kinks (Bordoni peak), whereas the long-term plastic deformation involves the continuing nucleation and migration of kinks (macro-glide). Kink migration is much easier than kink nucleation, and this provides a natural explanation for the vast difference in dislocation mobility between seismic and geological time scales. The frequency and temperature dependences of attenuation depend on the geometry and dynamics of dislocation motion both of which affect the distribution of relaxation times. The distribution of relaxation times is largely controlled by the distribution in distance between pinning points of dislocations, L, and the observed frequency dependence of Q, Q, Q ωα is shown to require a distribution function of P(L) L-m with m=4-2α The activation energy of Q-1 in minerals with a high Peierls stress corresponds to that for kink nucleation and is similar to that of long-term creep. The observed large lateral variation in Q-1 strongly suggests that the Q-1 in the mantle is frequency dependent. Micro-deformation with high dislocation mobility will (temporarily) cease when all the geometrical kinks are exhausted. For a typical dislocation density of 108 m-2, transient creep with small viscosity related to seismic wave attenuation will persist up to the strain of 10-6, thus even a small strain ( 10-6-10-4) process such as post-glacial rebound is only marginally affected by this type of anelastic relaxation. At longer time scales continuing nucleation of kinks becomes important and enables indefinitely large strain, steady-state creep

  1. Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective

    PubMed Central

    Tsuru, T.; Chrzan, D. C.

    2015-01-01

    Solution strengthening is a well-known approach to tailoring the mechanical properties of structural alloys. Ultimately, the properties of the dislocation/solute interaction are rooted in the electronic structure of the alloy. Accordingly, we compute the electronic structure associated with, and the energy barriers to dislocation cross-slip. The energy barriers so obtained can be used in the development of multiscale models for dislocation mediated plasticity. The computed electronic structure can be used to identify substitutional solutes likely to interact strongly with the dislocation. Using the example of a-type screw dislocations in Mg, we compute accurately the Peierls barrier to prismatic plane slip and argue that Y, Ca, Ti, and Zr should interact strongly with the studied dislocation, and thereby decrease the dislocation slip anisotropy in the alloy. PMID:25740411

  2. Topological order and memory time in marginally-self-correcting quantum memory

    NASA Astrophysics Data System (ADS)

    Siva, Karthik; Yoshida, Beni

    2017-03-01

    We examine two proposals for marginally-self-correcting quantum memory: the cubic code by Haah and the welded code by Michnicki. In particular, we prove explicitly that they are absent of topological order above zero temperature, as their Gibbs ensembles can be prepared via a short-depth quantum circuit from classical ensembles. Our proof technique naturally gives rise to the notion of free energy associated with excitations. Further, we develop a framework for an ergodic decomposition of Davies generators in CSS codes which enables formal reduction to simpler classical memory problems. We then show that memory time in the welded code is doubly exponential in inverse temperature via the Peierls argument. These results introduce further connections between thermal topological order and self-correction from the viewpoint of free energy and quantum circuit depth.

  3. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  4. Nature of the ``yield tooth'' under torsion in plastic-deformed whiskers

    NASA Astrophysics Data System (ADS)

    Bataronov, I. L.; Belikov, A. M.; Drozhzhin, A. I.; Roshchupkin, A. M.

    1987-07-01

    The plastic torsion of whiskers with high Peierls barriers has been studied. As the samples for the studies we chose p-type germanium whiskers with <111> growth axis. The diameter of the whisker was (5 60)·10-6 m and the gauge length was (1 4)·10-3 m. The whiskers were dislocation-free in the initial state. Within the framework of the continuum model developed by us for the plastic deformation of whiskers under torsion, we analyze the anomalies of the torsional stress-strain diagram under different testing conditions and with preliminary deformation. The “flow tooth” during the torsion of a whisker is attributable to the nonuniform distribution of dislocations over the cross section of the whisker and high barriers to the dislocation motion.

  5. Insulating phases of vanadium dioxide are Mott-Hubbard insulators

    DOE PAGES

    Huffman, T. J.; Hendriks, C.; Walter, E. J.; ...

    2017-02-15

    Here, we present comprehensive broadband optical spectroscopy data on two insulating phases of vanadium dioxide (VO 2): monoclinic M 2 and triclinic. The main result of our work is that the energy gap and the electronic structure are essentially unaltered by the first-order structural phase transition between the M 2 and triclinic phases. Moreover, the optical interband features in the M 2 and triclinic phases are remarkably similar to those observed in the well-studied monoclinic M 1 insulating phase of VO 2. As the energy gap is insensitive to the different lattice structures of the three insulating phases, we rulemore » out vanadium-vanadium pairing (the Peierls component) as the dominant contributor to the opening of the gap. Rather, the energy gap arises primarily from intra-atomic Coulomb correlations.« less

  6. Discrete breathers dynamic in a model for DNA chain with a finite stacking enthalpy

    NASA Astrophysics Data System (ADS)

    Gninzanlong, Carlos Lawrence; Ndjomatchoua, Frank Thomas; Tchawoua, Clément

    2018-04-01

    The nonlinear dynamics of a homogeneous DNA chain based on site-dependent finite stacking and pairing enthalpies is studied. A new variant of extended discrete nonlinear Schrödinger equation describing the dynamics of modulated wave is derived. The regions of discrete modulational instability of plane carrier waves are studied, and it appears that these zones depend strongly on the phonon frequency of Fourier's mode. The staggered/unstaggered discrete breather (SDB/USDB) is obtained straightforwardly without the staggering transformation, and it is demonstrated that SDBs are less unstable than USDB. The instability of discrete multi-humped SDB/USDB solution does not depend on the number of peaks of the discrete breather (DB). By using the concept of Peierls-Nabarro energy barrier, it appears that the low-frequency DBs are more mobile.

  7. Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Xiao, Chong

    2018-06-01

    Thermoelectric materials provide a renewable and eco-friendly solution to mitigate energy shortages and to reduce environmental pollution via direct heat-to-electricity conversion. Discovery of the novel thermoelectric materials and optimization of the state-of-the-art material systems lie at the core of the thermoelectric society, the basic concept behind these being comprehension and manipulation of the physical principles and transport properties regarding thermoelectric materials. In this mini-review, certain examples for designing high-performance bulk thermoelectric materials are presented from the perspectives of both real objects and local fields. The highlights of this topic involve the Rashba effect, Peierls distortion, local magnetic field, and local stress field, which cover several aspects in the field of thermoelectric research. We conclude with an overview of future developments in thermoelectricity.

  8. Ground state of a Heisenberg chain with next-nearest-neighbor bond alternation

    NASA Astrophysics Data System (ADS)

    Capriotti, Luca; Becca, Federico; Sorella, Sandro; Parola, Alberto

    2003-05-01

    We investigate the ground-state properties of the spin-half J1-J2 Heisenberg chain with a next-nearest-neighbor spin-Peierls dimerization using conformal field theory and Lanczos exact diagonalizations. In agreement with the results of a recent bosonization analysis by Sarkar and Sen [Phys. Rev. B 65, 172408 (2002)], we find that for small frustration (J2/J1) the system is in a Luttinger spin-fluid phase, with gapless excitations, and a finite spin-wave velocity. In the regime of strong frustration the ground state is spontaneously dimerized and the bond alternation reduces the triplet gap, leading to a slight enhancement of the critical point separating the Luttinger phase from the gapped one. An accurate determination of the phase boundary is obtained numerically from the study of the excitation spectrum.

  9. Pressure-induced cation-cation bonding in V 2 O 3

    DOE PAGES

    Bai, Ligang; Li, Quan; Corr, Serena A.; ...

    2015-10-09

    A pressure-induced phase transition, associated with the formation of cation-cation bonding, occurs in V 2O 3 by combining synchroton x-ray diffraction in a diamond anvil cell and ab initio evolutionary calculations. The high-pressure phase has a monoclinic structure with a C2/c space group, and it is both energetically and dynamically stable at pressures above 47 GPa to at least 105 GPa. this phase transition can be viewed as a two-dimensional Peierls-like distortion, where the cation-cation dimer chains are connected along the c axis of the monoclinic cell. In conclusion, this finding provides insights into the interplay of electron correlation andmore » lattice distortion in V 2O 3, and it may also help to understand novel properties of other early transition-metal oxides.« less

  10. Magneto-electronic properties of graphene nanoribbons in the spatially modulated electric field

    NASA Astrophysics Data System (ADS)

    Chen, S. C.; Wang, T. S.; Lee, C. H.; Lin, M. F.

    2008-09-01

    The Peierls tight-binding model with the nearest-neighbor interactions is used to calculate the magneto-electronic structure of graphene nanoribbons under a spatially modulated electric field along the y-axis. A uniform perpendicular magnetic field could make energy dispersions change into the quasi-Landau levels. Such levels are composed of the dispersionless and parabolic energy bands. A spatially modulated electric field would further induce a lot of oscillating parabolic bands with several band-edge states. It drastically modifies energy dispersions, alters subband spacings, destroys symmetry of energy spectrum about k=0, and changes features of band-edge states (number and energy). The above-mentioned magneto-electronic structures are directly reflected in density of states (DOS). The modulation effect changes shape, number, positions, and intensities of peaks in DOS. The predicted result could be tested by the optical measurements.

  11. Direct observation of the M2 phase with its Mott transition in a VO2 film

    NASA Astrophysics Data System (ADS)

    Kim, Hoon; Slusar, Tetiana V.; Wulferding, Dirk; Yang, Ilkyu; Cho, Jin-Cheol; Lee, Minkyung; Choi, Hee Cheul; Jeong, Yoon Hee; Kim, Hyun-Tak; Kim, Jeehoon

    2016-12-01

    In VO2, the explicit origin of the insulator-to-metal transition is still disputable between Peierls and Mott insulators. Along with the controversy, its second monoclinic (M2) phase has received considerable attention due to the presence of electron correlation in undimerized vanadium ions. However, the origin of the M2 phase is still obscure. Here, we study a granular VO2 film using conductive atomic force microscopy and Raman scattering. Upon the structural transition from monoclinic to rutile, we observe directly an intermediate state showing the coexistence of monoclinic M1 and M2 phases. The conductivity near the grain boundary in this regime is six times larger than that of the grain core, producing a donut-like landscape. Our results reveal an intra-grain percolation process, indicating that VO2 with the M2 phase is a Mott insulator.

  12. Investigation of the asymmetric misfit dislocation morphology in epitaxial layers with the zinc-blende structure

    NASA Technical Reports Server (NTRS)

    Fox, Bradley A.; Jesser, William A.

    1990-01-01

    The source of the asymmetry in the dislocation morphology exhibited in the epitaxial growth of compound semiconductors on (100) was investigated. A thickness wedge of p- and n-type GaAs(0.95)P(0.05) was grown on GaAs by metalorganic chemical vapor deposition, and the effect of misorientation on the resolved shear stress for each slip system was calculated and eliminated as the source of the asymmetry. Another potential source of asymmetry, the thickness gradient, was also eliminated. Results show that the substrate misorientation and the thickness gradient do not significantly contribute to the asymmetry and that the dominant contributor to the asymmetry of misfit dislocations in the (001) epitaxial interface can be attributed to the differences in the Peierls barriers between the two types of dilocations in GaAsP/GaAs.

  13. Preparation of atomically flat TiO2(001) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Weitering, Hanno H.; Snijders, Paul C.

    2015-03-01

    Transition metal oxides with the rutile structure (MO2, M = e.g. Ti, V, or Nb) have highly directional partially occupied t2g orbitals. Some of these orbitals form quasi-1D electronic bands along the rutile c-axis, and Peierls-like ordering phenomena have been observed in VO2 and NbO2. Tailoring the electronic properties of these materials via quantum confinement requires epitaxial growth on suitable substrates such as low index TiO2 surfaces. Because of the high surface energy of rutile TiO2(001), the standard approach of sputtering and annealing usually introduces faceting. Here we demonstrate a facile method to create atomically flat, non-faceted TiO2(001) surfaces. Using scanning tunneling microscopy we observe terraces with a width of approximately 150 nm. Step heights of approximately 0.3 nm are observed, consistent with the c lattice parameter of rutile TiO2. Low energy electron diffraction patterns reveal sharp diffraction spots with an in-plane lattice constant of 0.358 nm which is consistent with a (1x1) ordering of the (001) plane. These TiO2(001) single crystal surfaces can serve as an ideal substrate for further growth of rutile heterostructures. Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  14. Anisotropic plasticity of MgSiO3 post-perovskite from atomic scale modeling

    NASA Astrophysics Data System (ADS)

    Goryaeva, Alexandra; Carrez, Philippe; Cordier, Patrick

    2016-04-01

    In contrast to the lower mantle, the D″ layer exhibits significant seismic anisotropy both at the global and local scale [1]. Located right above the CMB, the D'' represents a very complex region and the causes of its pronounced anisotropy are still debated (CPO, oriented inclusions, layering, thermo-chemical heterogeneities etc). Among them, contribution of the post-perovskite rheology is commonly considered to be substantial. However, for this high-pressure phase, information about mechanical properties, probable slip systems, dislocations and their behavior under stress are still extremely challenging to obtain directly from experiments [3, 4]. Thus, we propose employing full atomistic modeling (based on the pairwise potential previously derived by [2]) to access the ability of MgSiO3 post-perovskite to deform by dislocation glide at 120 GPa. Lattice friction opposed to the dislocation glide in MgSiO3 post-perovskite is shown to be highly anisotropic. Thus, remarkably low values of Peierls stress (1 GPa) are found for the glide of [100] screw dislocations in (010), while glide in (001) requires almost 18 times larger stress values. In general, (010) plane is characterized by the lowest lattice friction which suggests (010) deformation textures. Comparison of our results with previous study of MgSiO3 perovskite (bridgmanite) [5], based on similar simulation approach, clearly shows that monotonous increase in Peierls stress of bridgmanite will be followed by a dramatic drop after the phase transition to the post-perovskite phase, which consequently suggests the D'' located at the CMB to be weaker than the overlying mantle. In addition to that, the observed evolution of CRSS with temperature clearly demonstrates that post-perovskite deforms in the athermal regime which backs up it to be a very weak phase and indicates its deformation by dislocation glide in contrast to high-lattice friction perovskite (bridgmanite) phase deformed by climb only. References [1

  15. Quasi-additive estimates on the Hamiltonian for the one-dimensional long range Ising model

    NASA Astrophysics Data System (ADS)

    Littin, Jorge; Picco, Pierre

    2017-07-01

    In this work, we study the problem of getting quasi-additive bounds for the Hamiltonian of the long range Ising model, when the two-body interaction term decays proportionally to 1/d2 -α , α ∈(0,1 ) . We revisit the paper by Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] where they extend to the case α ∈[0 ,ln3/ln2 -1 ) the result of the existence of a phase transition by using a Peierls argument given by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)] for α =0 . The main arguments of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)] are based in a quasi-additive decomposition of the Hamiltonian in terms of hierarchical structures called triangles and contours, which are related to the original definition of contours introduced by Fröhlich and Spencer [Commun. Math. Phys. 84, 87-101 (1982)]. In this work, we study the existence of a quasi-additive decomposition of the Hamiltonian in terms of the contours defined in the work of Cassandro et al. [J. Math. Phys. 46, 053305 (2005)]. The most relevant result obtained is Theorem 4.3 where we show that there is a quasi-additive decomposition for the Hamiltonian in terms of contours when α ∈[0,1 ) but not in terms of triangles. The fact that it cannot be a quasi-additive bound in terms of triangles lead to a very interesting maximization problem whose maximizer is related to a discrete Cantor set. As a consequence of the quasi-additive bounds, we prove that we can generalise the [Cassandro et al., J. Math. Phys. 46, 053305 (2005)] result, that is, a Peierls argument, to the whole interval α ∈[0,1 ) . We also state here the result of Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] about cluster expansions which implies that Theorem 2.4 that concerns interfaces and Theorem 2.5 that concerns n point truncated correlation functions in Cassandro et al. [Commun. Math. Phys. 327, 951-991 (2014)] are valid for all α ∈[0,1 ) instead of only α ∈[0 ,ln3/ln2 -1 ) .

  16. Pharmacological Treatment of Obstructive Sleep Apnea with a Combination of Pseudoephedrine and Domperidone

    PubMed Central

    Larrain, Augusto; Kapur, Vishesh K.; Gooley, Ted A.; Pope, Charles E.

    2010-01-01

    Study Objectives: To determine the effect of the drug combination domperidone and pseudoephedrine on nocturnal oximetry measurements and daytime sleepiness in patients with obstructive sleep apnea. Methods: We recruited patients with severe snoring and apneic episodes willing to undergo repeated nocturnal oximetry testing. Following baseline clinical history, Epworth Sleepiness Scale administration, and home overnight nocturnal oximetry, patients were started on weight-adjusted doses of domperidone and pseudoephedrine. Follow-up oximetry studies were performed at the patient's convenience. On the final visit, a repeat clinical history, Epworth score, and oximetry were obtained. Results: Sixteen of 23 patients noted disappearance of snoring and apneic episodes. Another 3 patients reported improvement in snoring and no apneic episodes. All but one patient had a decrease in Epworth scores (mean decrease 9.9 (95% CI, 7.2-12.6, p < 0.0001). Mean oxygen saturation (2.5; 95% CI, 0.66-4.41, p = 0.008), percent time with oxygen saturation < 90% (14.8; 95% CI, 24.4 to 5.2, p = 0.003), and the 4% oxygen desaturation index (18.2; 95% CI, 27.3 to 9.1, p < 0.0001) improved significantly. No adverse effects of treatment were noted. Conclusions: The combination of domperidone and pseudoephedrine improved self reported snoring and sleepiness, and may have improved apneic episodes and sleep-related nocturnal oxygen desaturation in patients with obstructive sleep apnea provided the proportion of time spent asleep did not diminish. This drug combination warrants further study as a treatment for obstructive sleep apnea. Citation: Larrain A; Kapur VK; Gooley TA; Pope CE. Pharmacological treatment of obstructive sleep apnea with a combination of pseudoephedrine and domperidone. J Clin Sleep Med 2010;6(2):117-123. PMID:20411686

  17. A Generalist Looks Back

    NASA Astrophysics Data System (ADS)

    Salpeter, Edwin E.

    I fled with my parents from Hitler's Austria to Australia and studied physics at Sydney University. I obtained my Ph.D. in quantum electrodynamics with Rudolf Peierls at Birmingham University and came to Cornell to work with Hans Bethe. I have stayed at Cornell ever since, and I have essentially had only a single job in my whole life, but have switched fields quite often. I worked in nuclear astrophysics and in late-stellar evolution, estimated the Initial Mass Function for star formation and the metal enrichment of the interstellar medium. I suggested black hole accretion as the energy source for quasars, worked on molecule formation on dust grain surfaces, and was involved in 21-cm studies of gas clouds and disk galaxies. I collaborated with my wife on the neurobiology of the neuromuscular junction and with one of my daughters on the epidemiology of tuberculosis.

  18. Jahn-Teller versus quantum effects in the spin-orbital material LuVO 3

    DOE PAGES

    Skoulatos, M.; Toth, S.; Roessli, B.; ...

    2015-04-13

    In this article, we report on combined neutron and resonant x-ray scattering results, identifying the nature of the spin-orbital ground state and magnetic excitations in LuVO 3 as driven by the orbital parameter. In particular, we distinguish between models based on orbital-Peierls dimerization, taken as a signature of quantum effects in orbitals, and Jahn-Teller distortions, in favor of the latter. In order to solve this long-standing puzzle, polarized neutron beams were employed as a prerequisite in order to solve details of the magnetic structure, which allowed quantitative intensity analysis of extended magnetic-excitation data sets. The results of this detailed studymore » enabled us to draw definite conclusions about the classical versus quantum behavior of orbitals in this system and to discard the previous claims about quantum effects dominating the orbital physics of LuVO 3 and similar systems.« less

  19. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers.

    PubMed

    Li, Wenbin; Li, Ju

    2016-02-24

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV per chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.

  20. Single-cone finite-difference schemes for the (2+1)-dimensional Dirac equation in general electromagnetic textures

    NASA Astrophysics Data System (ADS)

    Pötz, Walter

    2017-11-01

    A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.

  1. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE PAGES

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.; ...

    2017-11-15

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  2. Charge density wave properties of the quasi two-dimensional purple molybdenum bronze KMo 6O 17

    NASA Astrophysics Data System (ADS)

    Balaska, H.; Dumas, J.; Guyot, H.; Mallet, P.; Marcus, J.; Schlenker, C.; Veuillen, J. Y.; Vignolles, D.

    2005-06-01

    The purple molybdenum bronze KMo 6O 17 is a quasi-two-dimensional compound which shows a Peierls transition towards a commensurate metallic CDW state. Electron spectroscopy (ARUPS), Scanning Tunnelling Microscopy (STM) and spectroscopy (STS) as well as high magnetic field studies are reported. ARUPS studies corroborate the model of the hidden nesting and provide a value of the CDW vector in good agreement with other measurements. STM studies visualize the triple- q CDW in real space. This is consistent with other measurements of the CDW vector. STS studies provide a value of several 10 meV for the average CDW gap. High magnetic field measurements performed in pulsed fields up to 55 T establish that first order transitions to smaller gap states take place at low temperature. These transitions are ascribed to Pauli type coupling. A phase diagram summarizing all observed anomalies and transitions is presented.

  3. Bright breathers in nonlinear left-handed metamaterial lattices

    NASA Astrophysics Data System (ADS)

    Koukouloyannis, V.; Kevrekidis, P. G.; Veldes, G. P.; Frantzeskakis, D. J.; DiMarzio, D.; Lan, X.; Radisic, V.

    2018-02-01

    In the present work, we examine a prototypical model for the formation of bright breathers in nonlinear left-handed metamaterial lattices. Utilizing the paradigm of nonlinear transmission lines, we build a relevant lattice and develop a quasi-continuum multiscale approximation that enables us to appreciate both the underlying linear dispersion relation and the potential for bifurcation of nonlinear states. We focus here, more specifically, on bright discrete breathers which bifurcate from the lower edge of the linear dispersion relation at wavenumber k=π . Guided by the multiscale analysis, we calculate numerically both the stable inter-site centered and the unstable site-centered members of the relevant family. We quantify the associated stability via Floquet analysis and the Peierls-Nabarro barrier of the energy difference between these branches. Finally, we explore the dynamical implications of these findings towards the potential mobility or lack thereof (pinning) of such breather solutions.

  4. Doping dependence of ordered phases and emergent quasiparticles in the doped Hubbard-Holstein model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, C. B.; Nowadnick, E. A.; Huang, E. W.

    Here, we present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists outmore » to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.« less

  5. One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.

    2017-11-01

    Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.

  6. Band structure dynamics in indium wires

    NASA Astrophysics Data System (ADS)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  7. The origin of incipient ferroelectricity in lead telluride

    DOE PAGES

    Jiang, M. P.; Trigo, M.; Savić, I.; ...

    2016-07-22

    The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV–VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instabilitymore » and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Lastly, our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.« less

  8. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Lee, Sangyeop; Lindsay, Lucas

    2017-05-01

    Two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single-wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carries more than 70 % and 90 % of heat at 300 and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. The dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway's scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 µm in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.

  9. Microscopic origin of magnetism and magnetic interactions in ferropnictides

    NASA Astrophysics Data System (ADS)

    Johannes, M. D.; Mazin, I. I.

    2009-06-01

    One year after their initial discovery, two schools of thought have crystallized regarding the electronic structure and magnetic properties of ferropnictide systems. One postulates that these are itinerant weakly correlated metallic systems that become magnetic by virtue of spin-Peierls-type transition due to near nesting between the hole and the electron Fermi-surface pockets. The other argues that these materials are strongly or at least moderately correlated and the electrons are considerably localized and close to a Mott-Hubbard transition, with the local magnetic moments interacting via short-range superexchange. In this Rapid Communication we argue that neither picture is fully correct. The systems are moderately correlated but with correlations driven by Hund’s rule coupling rather than by the on-site Hubbard repulsion. The iron moments are largely local, driven by Hund’s intra-atomic exchange. Superexchange is not operative, and the interactions between the Fe moments are considerably long range and driven mostly by one-electron energies of all occupied states.

  10. Finite-size effects in Luther-Emery phases of Holstein and Hubbard models

    NASA Astrophysics Data System (ADS)

    Greitemann, J.; Hesselmann, S.; Wessel, S.; Assaad, F. F.; Hohenadler, M.

    2015-12-01

    The one-dimensional Holstein model and its generalizations have been studied extensively to understand the effects of electron-phonon interaction. The half-filled case is of particular interest, as it describes a transition from a metallic phase with a spin gap due to attractive backscattering to a Peierls insulator with charge-density-wave order. Our quantum Monte Carlo results support the existence of a metallic phase with dominant power-law charge correlations, as described by the Luther-Emery fixed point. We demonstrate that for Holstein and also for purely fermionic models the spin gap significantly complicates finite-size numerical studies, and explains inconsistent previous results for Luttinger parameters and phase boundaries. On the other hand, no such complications arise in spinless models. The correct low-energy theory of the spinful Holstein model is argued to be that of singlet bipolarons with a repulsive, mutual interaction. This picture naturally explains the existence of a metallic phase, but also implies that gapless Luttinger liquid theory is not applicable.

  11. Atomic and electronic properties of quasi-one-dimensional MOS2 nanowires

    PubMed Central

    Seivane, Lucas Fernandez; Barron, Hector; Botti, Silvana; Marques, Miguel Alexandre Lopes; Rubio, Ángel; López-Lozano, Xóchitl

    2013-01-01

    The structural, electronic and magnetic properties of quasi-one-dimensional MoS2 nanowires, passivated by extra sulfur, have been determined using ab initio density-functional theory. The nanostructures were simulated using several different models based on experimental electron microscopy images. It is found that independently of the geometrical details and the coverage of extra sulfur at the Mo-edge, quasi-one-dimensional metallic states are predominant in all the low-energy model structures despite their reduced dimensionality. These metallic states are localized mainly at the edges. However, the electronic and magnetic character of the NWs does not depend only on the S saturation but also on the symmetry configuration of the S edge atoms. Our results show that for the same S saturation the magnetization can be decreased by increasing the pairing of the S and Mo edge atoms. In spite of the observed pairing of S dimers at the Mo-edge, the nanowires do not experience a Peierls-like metal-insulator transition PMID:25429189

  12. Competing phases and orbital-selective behaviors in the two-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Khatami, Ehsan; Johnston, Steven

    2017-03-01

    We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half-filling using the dynamical mean-field theory. We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph couplings, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hund's coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.

  13. Structural study of gold clusters.

    PubMed

    Xiao, Li; Tollberg, Bethany; Hu, Xiankui; Wang, Lichang

    2006-03-21

    Density functional theory (DFT) calculations were carried out to study gold clusters of up to 55 atoms. Between the linear and zigzag monoatomic Au nanowires, the zigzag nanowires were found to be more stable. Furthermore, the linear Au nanowires of up to 2 nm are formed by slightly stretched Au dimers. These suggest that a substantial Peierls distortion exists in those structures. Planar geometries of Au clusters were found to be the global minima till the cluster size of 13. A quantitative correlation is provided between various properties of Au clusters and the structure and size. The relative stability of selected clusters was also estimated by the Sutton-Chen potential, and the result disagrees with that obtained from the DFT calculations. This suggests that a modification of the Sutton-Chen potential has to be made, such as obtaining new parameters, in order to use it to search the global minima for bigger Au clusters.

  14. The effect of driven electron-phonon coupling on the electronic conductance of a polar nanowire

    NASA Astrophysics Data System (ADS)

    Mardaani, Mohammad; Rabani, Hassan; Esmaili, Esmat; Shariati, Ashrafalsadat

    2015-08-01

    A semi-classical model is proposed to explore the effect of electron-phonon coupling on the coherent electronic transport of a polar chain which is confined between two rigid leads in the presence of an external electric field. To this end, we construct the model by means of Green's function technique within the nearest neighbor tight-binding and harmonic approximations. For a time-periodic electric field, the atomic displacements from the equilibrium positions are obtained precisely. The result is then used to compute the electronic transport properties of the chain within the Peierls-type model. The numerical results indicate that the conductance of the system shows interesting behavior in some special frequencies. For each special frequency, there is an electronic quasi-state in which the scattering of electrons by vibrating atoms reaches maximum. The system electronic conductance decreases dramatically at the strong electron-phonon couplings and low electron energies. In the presence of damping forces, the electron-phonon interaction has a less significant effect on the conductance.

  15. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers

    DOE PAGES

    Li, Wenbin; Li, Ju

    2016-02-24

    Monolayers of transition metal dichalcogenides can exist in several structural polymorphs, including 2H, 1T and 1T'. The low-symmetry 1T' phase has three orientation variants, resulting from the three equivalent directions of Peierls distortion in the parental 1T phase. Using first-principles calculations, we predict that mechanical strain can switch the relative thermodynamic stability between the orientation variants of the 1T' phase. We find that such strain-induced variant switching only requires a few percent elastic strain, which is eminently achievable experimentally with transition metal dichalcogenide monolayers. Calculations indicate that the transformation barrier associated with such variant switching is small (<0.2 eV permore » chemical formula unit), suggesting that strain-induced variant switching can happen under laboratory conditions. Furthermore, monolayers of transition metal dichalcogenides with 1T' structure therefore have the potential to be ferroelastic and shape memory materials with interesting domain physics.« less

  16. Aspects of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Wigner, E. P.

    2010-03-01

    Preface; List of contributors; Bibliography of P. A. M. Dirac; 1. Dirac in Cambridge R. J. Eden and J. C. Polkinghorne; 2. Travels with Dirac in the Rockies J. H. Van Vleck; 3. 'The golden age of theoretical physics': P. A. M. Dirac's scientific work from 1924 to 1933 Jagdish Mehra; 4. Foundation of quantum field theory Res Jost; 5. The early history of the theory of electron: 1897-1947 A. Pais; 6. The Dirac equation A. S. Wightman; 7. Fermi-Dirac statistics Rudolph Peierls; 8. Indefinite metric in state space W. Heisenberg; 9. On bras and kets J. M. Jauch; 10. The Poisson bracket C. Lanczos; 11. La 'fonction' et les noyaux L. Schwartz; 12. On the Dirac magnetic poles Edoardo Amadli and Nicola Cabibbo; 13. The fundamental constants and their time variation Freeman J. Dyson; 14. On the time-energy uncertainty relation Eugene P. Wigner; 15. The path-integral quantisation of gravity Abdus Salam and J. Strathdee; Index; Plates.

  17. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene.

    PubMed

    Morrison, Adrian F; Herbert, John M

    2017-06-14

    Recently, we introduced an ab initio version of the Frenkel-Davydov exciton model for computing excited-state properties of molecular crystals and aggregates. Within this model, supersystem excited states are approximated as linear combinations of excitations localized on molecular sites, and the electronic Hamiltonian is constructed and diagonalized in a direct-product basis of non-orthogonal configuration state functions computed for isolated fragments. Here, we derive and implement analytic derivative couplings for this model, including nuclear derivatives of the natural transition orbital and symmetric orthogonalization transformations that are part of the approximation. Nuclear derivatives of the exciton Hamiltonian's matrix elements, required in order to compute the nonadiabatic couplings, are equivalent to the "Holstein" and "Peierls" exciton/phonon couplings that are widely discussed in the context of model Hamiltonians for energy and charge transport in organic photovoltaics. As an example, we compute the couplings that modulate triplet exciton transport in crystalline tetracene, which is relevant in the context of carrier diffusion following singlet exciton fission.

  18. Staggered Orbital Currents in the Half-Filled Two-Leg Ladder

    NASA Astrophysics Data System (ADS)

    Fjaerestad, J. O.; Marston, Brad; Sudbo, A.

    2002-03-01

    We present strong analytical and numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg ladder, with true long-range order in the counter-circulating currents. Using abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.(J. O. Fjærestad and J. B. Marston, cond- mat/0107094.) This result, combined with a weak-coupling renormalization-group analysis, implies that the SF phase exists in a region of the phase diagram of the half-filled t-U-V-J ladder. Using the density-matrix renormalization-group (DMRG) approach generalized to complex-valued wavefunctions, we demonstrate that the SF phase exhibits robust currents at intermediate values of the interaction strengths.

  19. Statistical description of the motion of dislocation kinks in a random field of impurities adsorbed by a dislocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petukhov, B. V., E-mail: petukhov@ns.crys.ras.r

    2010-01-15

    A model has been proposed for describing the influence of impurities adsorbed by dislocation cores on the mobility of dislocation kinks in materials with a high crystalline relief (Peierls barriers). The delay time spectrum of kinks at statistical fluctuations of the impurity density has been calculated for a sufficiently high energy of interaction between impurities and dislocations when the migration potential is not reduced to a random Gaussian potential. It has been shown that fluctuations in the impurity distribution substantially change the character of the migration of dislocation kinks due to the slow decrease in the probability of long delaymore » times. The dependences of the position of the boundary of the dynamic phase transition to a sublinear drift of kinks x {proportional_to} t{sup {delta}} ({delta} {sigma} 1) and the characteristics of the anomalous mobility on the physical parameters (stress, impurity concentration, experimental temperature, etc.) have been calculated.« less

  20. Interatomic potential to study plastic deformation in tungsten-rhenium alloys

    NASA Astrophysics Data System (ADS)

    Bonny, G.; Bakaev, A.; Terentyev, D.; Mastrikov, Yu. A.

    2017-04-01

    In this work, an interatomic potential for the W-Re system is fitted and benchmarked against experimental and density functional theory (DFT) data, of which part are generated in this work. Having in mind studies related to the plasticity of W-Re alloys under irradiation, emphasis is put on fitting point-defect properties, elastic constants, and dislocation properties. The developed potential can reproduce the mechanisms responsible for the experimentally observed softening, i.e., decreasing shear moduli, decreasing Peierls barrier, and asymmetric screw dislocation core structure with increasing Re content in W-Re solid solutions. In addition, the potential predicts elastic constants in reasonable agreement with DFT data for the phases forming non-coherent precipitates (σ- and χ-phases) in W-Re alloys. In addition, the mechanical stability of the different experimentally observed phases is verified in the temperature range of interest (700-1500 K). As a conclusion, the presented potential provides an excellent tool to study plasticity in W-Re alloys at the atomic level.

  1. The Cyclic Mechanical and Fatigue Properties of Ferroanelastic Beta Prime Gold Cadmium. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Karz, R. S.

    1973-01-01

    The fatigue behavior of beta prime Au1.05Cd0.95 alloy was investigated and found to be exceptional for certain orientations with lives of 10,000 to 1,000,000 cycles at total strain amplitudes above 0.05 not uncommon. Fatigue lives were influenced principally by the stress level which controlled the amount of plastic deformation, and stress fatigue resistance was low compared with most metals. Failure always exhibited brittle characteristics. An algorithm was devised to predict mechanical behavior from the twin system orientations and was found in good agreement with experiment for longitudinal strains above 0.04. The cyclic mechanical properties were examined, and a model for the behavior was proposed utilizing previous theories of the restoring force and the Peierls-Nabarro stress for twinning and new concepts. Gold-cadmium was found to have certain strain fatigue resistant applications, particularly in electronics where the alloy's high electrical conductivity is utilized.

  2. Dissipative discrete breathers: periodic, quasiperiodic, chaotic, and mobile.

    PubMed

    Martínez, P J; Meister, M; Floría, L M; Falo, F

    2003-06-01

    The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel-Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially localized solutions are easily obtained numerically using adiabatic continuation from the anticontinuous limit. Linear stability (Floquet) analysis allows the characterization of different types of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are generally impossible as exact solutions in Hamiltonian systems. Within a certain range of parameters, propagating breathers occur as attractors of the dissipative dynamics. General features of these excitations are discussed and the Peierls-Nabarro barrier is addressed. Numerical scattering experiments with mobile breathers reveal the existence of two-breather bound states and allow a first glimpse at the intricate phenomenology of these special multibreather configurations. (c) 2003 American Institute of Physics.

  3. A Green's function formulation of the k→ ·p→ theory in the presence of spin-orbit interaction and magnetic field: Application to the electronic structure and related properties of w-GaN

    NASA Astrophysics Data System (ADS)

    Shadangi, Subrat K.; Mishra, Sambit R.; Tripathi, Gouri S.

    2018-01-01

    We use a Green's function perturbation formalism in the presence of an applied magnetic field and spin-orbit effects in the effective mass representation (EMR). The lack of lattice translational symmetry of the vector potential in the presence of the magnetic field is considered by redefining the Green's function in terms of the Peierls' phase factor. The equation of motion of the Green's function as a function of a magnetic wave vector was solved using perturbation theory, leading to expressions for the effective mass and the g-factor. We study the electronic structure of wurtzite GaN theoretically using the resulting k→ ·π→ method, where k→ is the electronic wave vector and π→ is the relativistic momentum operator by considering the conduction band edge and three valence bands. The k→ ·π→ Hamiltonians for the conduction band edge and the valence bands are diagonalized, considering the conduction band and one valence band at a time. We obtain electron and hole dispersions. Effects of other bands are considered by using perturbation theory. Resulting dispersions agree with the results of other calculations. In order to study the effective mass and the g-factor, we use the eigenvalues and eigenfunctions obtained after the diagonalization. Our results for the effective masses and the g-factors agree fairly well with available theoretical and experimental results, Temperature dependence of both the electronic effective mass and g-factor is studied and trends obtained agree with the existing experimental data.

  4. Dynamic instabilities in strongly correlated VSe2 monolayers and bilayers

    NASA Astrophysics Data System (ADS)

    Esters, Marco; Hennig, Richard G.; Johnson, David C.

    2017-12-01

    With the emergence of graphene and other two-dimensional (2D) materials, transition-metal dichalcogenides have been investigated intensely as potential 2D materials using experimental and theoretical methods. VSe2 is an especially interesting material since its bulk modification exhibits a charge-density wave (CDW), the CDW is retained even for few-layer nanosheets, and monolayers of VSe2 are predicted to be ferromagnetic. In this work, we show that electron correlation has a profound effect on the magnetic properties and dynamic stability of VSe2 monolayers and bilayers. Including a Hubbard-U term in the density-functional-theory calculations strongly affects the magnetocrystalline anisotropy in the 1 T -VSe2 structure while leaving the 2 H -polytype virtually unchanged. This demonstrates the importance of electronic correlations for the electrical and magnetic properties of 1 T -VSe2 . The Hubbard-U term changes the dynamic stability and the presence of imaginary modes of ferromagnetic 1 T -VSe2 while affecting only the amplitudes in the nonmagnetic phase. The Fermi surface of nonmagnetic 1 T -VSe2 allows for nesting along the CDW vector, but it plays no role in ferromagnetic 1 T -VSe2 . Following the eigenvectors of the soft modes in nonmagnetic 1 T -VSe2 monolayers yields a CDW structure with a 4 ×4 supercell and Peierls-type distortion in the atomic positions and electronic structure. The magnetic order indicates the potential for spin-density-wave structures.

  5. Excited states in polydiacetylene chains: A density matrix renormalization group study

    NASA Astrophysics Data System (ADS)

    Barcza, Gergely; Barford, William; Gebhard, Florian; Legeza, Örs

    2013-06-01

    We study theoretically polydiacetylene chains diluted in their monomer matrix. We employ the density matrix renormalization group method on finite chains to calculate the ground state and low-lying excitations of the corresponding Peierls-Hubbard-Ohno Hamiltonian which is characterized by the electron transfer amplitude t0 between nearest neighbors, by the electron-phonon coupling constant α, by the Hubbard interaction U, and by the long-range interaction V. We treat the lattice relaxation in the adiabatic limit, i.e., we calculate the polaronic lattice distortions for each excited state. Using chains with up to 102 lattice sites, we can safely perform the extrapolation to the thermodynamic limit for the ground-state energy and conformation, the single-particle gap, and the energies of the singlet exciton, the triplet ground state, and the optical excitation of the triplet ground state. The corresponding gaps are known with high precision from experiments. We determine a coherent parameter set (t0*=2.4eV,α*=3.4eV/Å,U*=6eV,V*=3eV) from a fit of the experimental gap energies to the theoretical values which we obtain for 81 parameter points in the four-dimensional search space (t0,α,U,V). We identify dark in-gap states in the singlet and triplet sectors as seen in experiments. Using a fairly stiff spring constant, the length of our unit cell is about 1% larger than its experimental value.

  6. Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.

    2014-08-14

    In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in

  7. Strong influence of off-site symmetry positions of hydrogen atoms in ScH3 hcp phases

    NASA Astrophysics Data System (ADS)

    Pakornchote, T.; Bovornratanaraks, T.; Vannarat, S.; Pinsook, U.

    2016-01-01

    We investigate the wave-like arrangements of H atoms around metal plane (Hm) in the ScH3 hcp phase by using the ab-initio method. We found that only P63 / mmc, P 3 bar c 1, P63cm and P63 phases are energetically favorable. The wave-like arrangement allows the off-site symmetry positions of the H atoms, and leads to substantial changes in the pair distribution between Sc and H atoms which are associating with the changes in the electronic structure in such a way that the total energy is lowering. The symmetry breaking from P63mmc is also responsible for the band gap opening. In the P63 structure, the calculated band gap is 0.823 eV and 1.223 eV using GGA and sX-LDA functionals, respectively. This band gap can be compared with 1.7 eV derived from the optical measurement and 1.55 eV from the HSE06 calculation. Thus, the broken symmetry structures can be viewed as Peierls distortion of the P63 / mmc structure. Furthermore, we found that only the P63 structure is dynamically stable, unlike YH3 where the P63cm structure is also stable. The stability of P63 comes from sufficiently strong interactions between two neighboring H atoms at their off-site symmetry positions, i.e. near the metal plane and near the tetragonal site. The P63 phonon density of states is in good agreement with the data from the neutron experiment.

  8. Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.

    PubMed

    Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo

    2017-01-11

    Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.

  9. Oxygen vacancy ordering in transition-metal-oxide LaCoO3 films

    NASA Astrophysics Data System (ADS)

    Biskup, Neven; Salafranca, Juan; Mehta, Virat; Suzuki, Yuri; Pennycook, Stephen; Pantelides, Sokrates; Varela, Maria

    2013-03-01

    Oxygen vacancies in complex oxides affect the structure and the electronic and magnetic properties. Here we use atomically-resolved Z-contrast imaging, electron-energy-loss spectroscopy and densityfunctional calculations to demonstrate that ordered oxygen vacancies may act as the controlling degree of freedom for the structural, electronic, and magnetic properties of LaCoO3 thin films. We find that epitaxial strain is released through the formation of O vacancy superlattices. The O vacancies donate excess electrons to the Co d-states, resulting in ferromagnetic ordering. The appearance of Peierls-like minigaps followed by strain relaxation triggers a nonlinear rupture of the energy bands, which explains the observed insulating behavior. We conclude that oxygen vacancy ordering constitutes a degree of freedom that can be used to engineer novel behavior in complex-oxide films. Research at ORNL supported by U.S. DOE-BES, Materials Sciences and Engineering Div. and by ORNL's ShaRE User Program (DOE-BES), at UCM by the ERC Starting Inv. Award, at UC Berkeley and LBNL by BES-DMSE, at Vanderbilt by U.S DOE and the McMinn Endowment.

  10. On the Correct Analysis of the Foundations of Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Kalanov, Temur Z.

    2007-04-01

    The problem of truth in science -- the most urgent problem of our time -- is discussed. The correct theoretical analysis of the foundations of theoretical physics is proposed. The principle of the unity of formal logic and rational dialectics is a methodological basis of the analysis. The main result is as follows: the generally accepted foundations of theoretical physics (i.e. Newtonian mechanics, Maxwell electrodynamics, thermodynamics, statistical physics and physical kinetics, the theory of relativity, quantum mechanics) contain the set of logical errors. These errors are explained by existence of the global cause: the errors are a collateral and inevitable result of the inductive way of cognition of the Nature, i.e. result of movement from formation of separate concepts to formation of the system of concepts. Consequently, theoretical physics enters the greatest crisis. It means that physics as a science of phenomenon leaves the progress stage for a science of essence (information). Acknowledgment: The books ``Surprises in Theoretical Physics'' (1979) and ``More Surprises in Theoretical Physics'' (1991) by Sir Rudolf Peierls stimulated my 25-year work.

  11. Lattice density functional theory for confined Ising fluids: comparison between different functional approximations in slit pore

    NASA Astrophysics Data System (ADS)

    Chen, Xueqian; Feng, Wei; Liu, Honglai; Hu, Ying

    2016-09-01

    In this paper, Lafuente and Cuesta's cluster density functional theory (CDFT) and lattice mean field approximation (LMFA) are formulated and compared within the framework of lattice density functional theory (LDFT). As a comparison, an LDFT based on our previous work on nonrandom correction to LMFA is also developed, where local density approximation is adopted on the correction. The numerical results of density distributions of an Ising fluid confined in a slit pore obtained from Monte Carlo simulation are used to check these functional approximations. Due to rational treatment on the coupling between site-excluding entropic effect and contact-attracting enthalpic effect by CDFT with Bethe-Peierls approximation (named as BPA-CDFT for short), the improvement of BPA-CDFT beyond LMFA is checked as expected. And it is interesting that our LDFT has a comparative accuracy with BPA-CDFT. Apparent differences between the profiles such as solvation force, excess adsorption quantity and interfacial tension from LMFA and non-LMFAs are found in our calculations. We also discuss some possible theoretical extensions of BPA-CDFT.

  12. Achieving DFT accuracy with a machine-learning interatomic potential: Thermomechanics and defects in bcc ferromagnetic iron

    NASA Astrophysics Data System (ADS)

    Dragoni, Daniele; Daff, Thomas D.; Csányi, Gábor; Marzari, Nicola

    2018-01-01

    We show that the Gaussian Approximation Potential (GAP) machine-learning framework can describe complex magnetic potential energy surfaces, taking ferromagnetic iron as a paradigmatic challenging case. The training database includes total energies, forces, and stresses obtained from density-functional theory in the generalized-gradient approximation, and comprises approximately 150,000 local atomic environments, ranging from pristine and defected bulk configurations to surfaces and generalized stacking faults with different crystallographic orientations. We find the structural, vibrational, and thermodynamic properties of the GAP model to be in excellent agreement with those obtained directly from first-principles electronic-structure calculations. There is good transferability to quantities, such as Peierls energy barriers, which are determined to a large extent by atomic configurations that were not part of the training set. We observe the benefit and the need of using highly converged electronic-structure calculations to sample a target potential energy surface. The end result is a systematically improvable potential that can achieve the same accuracy of density-functional theory calculations, but at a fraction of the computational cost.

  13. A unified picture of the crystal structures of metals

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  14. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    DOE PAGES

    Lee, Sangyeop; Lindsay, Lucas

    2017-05-18

    Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. Themore » dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.« less

  15. Hydrodynamic phonon drift and second sound in a (20,20) single-wall carbon nanotube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangyeop; Lindsay, Lucas

    Here, two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations employing an optimized Tersoff potential for atomic interactions. We formally derive a formula for the contribution of drift motion of phonons to total heat flux at steady state. It is found that the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if the SWCNT is long enough to avoid ballistic phonon transport. Themore » dispersion relation of second sound is derived from the Peierls-Boltzmann transport equation with Callaway s scattering model and quantifies the speed of second sound and its relaxation. The speed of second sound is around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 m in an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.« less

  16. Strain field mapping of dislocations in a Ge/Si heterostructure.

    PubMed

    Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen

    2013-01-01

    Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.

  17. π-kink propagation in the damped Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Alfaro-Bittner, K.; Clerc, M. G.; García-Ñustes, M. A.; Rojas, R. G.

    2017-08-01

    Coupled dissipative nonlinear oscillators exhibit complex spatiotemporal dynamics. Frenkel-Kontorova is a prototype model of coupled nonlinear oscillators, which exhibits coexistence between stable and unstable state. This model accounts for several physical systems such as the movement of atoms in condensed matter and magnetic chains, dynamics of coupled pendulums, and phase dynamics between superconductors. Here, we investigate kinks propagation into an unstable state in the Frenkel-Kontorova model with dissipation. We show that unlike point-like particles π-kinks spread in a pulsating manner. Using numerical simulations, we have characterized the shape of the π-kink oscillation. Different parts of the front propagate with the same mean speed, oscillating with the same frequency but different amplitude. The asymptotic behavior of this propagation allows us to determine the minimum mean speed of fronts analytically as a function of the coupling constant. A generalization of the Peierls-Nabarro potential is introduced to obtain an effective continuous description of the system. Numerical simulations show quite fair agreement between the Frenkel-Kontorova model and the proposed continuous description.

  18. Competing exchanges and spin-phonon coupling in Eu(1-x)R(x)MnO3 (R=Y, Lu).

    PubMed

    Mota, D A; Barcelay, Y Romaguera; Tavares, P B; Chaves, M R; Almeida, A; Oliveira, J; Ferreira, W S; Moreira, J Agostinho

    2013-06-12

    This work is focused on the phase diagrams and physical properties of Y-doped and Lu-doped EuMnO3. The differences in the corresponding phase boundaries in the (x,T) phase diagram could be overcome by considering a scaling of the Y(3+) and Lu(3+) concentrations to the tolerance factor. This outcome evidences that the tolerance factor is in fact a more reliable representative of the lattice deformation induced by doping. The normalization of the phase boundaries using the tolerance factor corroborates previous theoretical outcomes regarding the key role of competitive FM and AFM exchanges in determining the phase diagrams of manganite perovskites. However, significant differences in the nature and number of phases at low temperatures and concentrations could not be explained by just considering the normalization to the tolerance factor. The vertical phase boundary observed just for Lu-doped EuMnO3, close to 10% Lu, is understood by considering a low temperature Peierls-type spin-phonon coupling, which stabilizes the AFM-4 phase in Lu-doped EuMnO3.

  19. Active hydrogen evolution through lattice distortion in metallic MoTe2

    NASA Astrophysics Data System (ADS)

    Seok, Jinbong; Lee, Jun-Ho; Cho, Suyeon; Ji, Byungdo; Kim, Hyo Won; Kwon, Min; Kim, Dohyun; Kim, Young-Min; Oh, Sang Ho; Wng Kim, Sung; Lee, Young Hee; Son, Young-Woo; Yang, Heejun

    2017-06-01

    Engineering surface atoms of transition metal dichalcogenides (TMDs) is a promising way to design catalysts for efficient electrochemical reactions including the hydrogen evolution reaction (HER). However, materials processing based on TMDs, such as vacancy creation or edge exposure, for active HER, has resulted in insufficient atomic-precision lattice homogeneity and a lack of clear understanding of HER over 2D materials. Here, we report a durable and effective HER at atomically defined reaction sites in 2D layered semimetallic MoTe2 with intrinsic turnover frequency (TOF) of 0.14 s-1 at 0 mV overpotential, which cannot be explained by the traditional volcano plot analysis. Unlike former electrochemical catalysts, the rate-determining step of the HER on the semimetallic MoTe2, hydrogen adsorption, drives Peierls-type lattice distortion that, together with a surface charge density wave, unexpectedly enhances the HER. The active HER using unique 2D features of layered TMDs enables an optimal design of electrochemical catalysts and paves the way for a hydrogen economy.

  20. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  1. Generalization of the Engineering Method to the UNIVERSAL METHOD.

    ERIC Educational Resources Information Center

    Koen, Billy Vaughn

    1987-01-01

    Proposes that there is a universal method for all realms of knowledge. Reviews Descartes's definition of the universal method, the engineering definition, and the philosophical basis for the universal method. Contends that the engineering method best represents the universal method. (ML)

  2. Methods Beyond Methods: A Model for Africana Graduate Methods Training.

    PubMed

    Best, Latrica E; Byrd, W Carson

    2014-06-01

    A holistic graduate education can impart not just tools and knowledge, but critical positioning to fulfill many of the original missions of Africana Studies programs set forth in the 1960s and 1970s. As an interdisciplinary field with many approaches to examining the African Diaspora, the methodological training of graduate students can vary across graduate programs. Although taking qualitative methods courses are often required of graduate students in Africana Studies programs, and these programs offer such courses, rarely if ever are graduate students in these programs required to take quantitative methods courses, let alone have these courses offered in-house. These courses can offer Africana Studies graduate students new tools for their own research, but more importantly, improve their knowledge of quantitative research of diasporic communities. These tools and knowledge can assist with identifying flawed arguments about African-descended communities and their members. This article explores the importance of requiring and offering critical quantitative methods courses in graduate programs in Africana Studies, and discusses the methods requirements of one graduate program in the field as an example of more rigorous training that other programs could offer graduate students.

  3. Methods Beyond Methods: A Model for Africana Graduate Methods Training

    PubMed Central

    Best, Latrica E.; Byrd, W. Carson

    2018-01-01

    A holistic graduate education can impart not just tools and knowledge, but critical positioning to fulfill many of the original missions of Africana Studies programs set forth in the 1960s and 1970s. As an interdisciplinary field with many approaches to examining the African Diaspora, the methodological training of graduate students can vary across graduate programs. Although taking qualitative methods courses are often required of graduate students in Africana Studies programs, and these programs offer such courses, rarely if ever are graduate students in these programs required to take quantitative methods courses, let alone have these courses offered in-house. These courses can offer Africana Studies graduate students new tools for their own research, but more importantly, improve their knowledge of quantitative research of diasporic communities. These tools and knowledge can assist with identifying flawed arguments about African-descended communities and their members. This article explores the importance of requiring and offering critical quantitative methods courses in graduate programs in Africana Studies, and discusses the methods requirements of one graduate program in the field as an example of more rigorous training that other programs could offer graduate students. PMID:29710883

  4. Newton's method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, J. J.; Sorensen, D. C.

    1982-02-01

    Newton's method plays a central role in the development of numerical techniques for optimization. In fact, most of the current practical methods for optimization can be viewed as variations on Newton's method. It is therefore important to understand Newton's method as an algorithm in its own right and as a key introduction to the most recent ideas in this area. One of the aims of this expository paper is to present and analyze two main approaches to Newton's method for unconstrained minimization: the line search approach and the trust region approach. The other aim is to present some of themore » recent developments in the optimization field which are related to Newton's method. In particular, we explore several variations on Newton's method which are appropriate for large scale problems, and we also show how quasi-Newton methods can be derived quite naturally from Newton's method.« less

  5. Study of New Method Combined Ultra-High Frequency (UHF) Method and Ultrasonic Method on PD Detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Zhang, Jiwei; Chen, Ning; Li, Xiaoqi; Gong, Xiaojing

    2017-09-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. It is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. However, very few studies have been conducted on the method combined this two methods. From the view point of safety, a new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of fault localization. This paper presents study aimed at clarifying the effect of the new method combined UHF method and ultrasonic method. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for this new method combined UHF method and ultrasonic method.

  6. Strength of fayalite up to 8.5 GPa

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Bystricky, M.; Béjina, F.; Crichton, W. A.; Proietti, A.; Tercé, N.

    2017-06-01

    A dense polycrystalline aggregate of synthetic fayalite (Fe2SiO4) was deformed up to 8.5 GPa at room temperature in the D-DIA press installed at the European Synchrotron Radiation Facility beamline ID06. Five successive shortening-lengthening cycles were performed at different pressures and up to a final strain of approximately 25% at a typical strain rate of about 10-5 s-1. Lattice stresses were quantified from ( hkl) reflections accessible with a 55-keV monochromatic beam. Combined stress and strain data show that during each cycle, fayalite deforms elastically before yielding at an axial strain close to 2%. This yielding occurs at a macroscopic stress (taken as the average of the estimated lattice stresses) of 1.5-2 GPa, irrespective of pressure. Very moderate stress hardening takes place beyond the yield point, and the average stress becomes almost constant after a strain of 5-6%, suggesting a low-temperature plastic regime. Lattice stresses estimated with (131), (130), and (022) reflections are always higher than stresses estimated with (111) and (112) by a factor of about 1.5. In addition, the (131) lattice stress becomes progressively lower than the (130) and (022) lattice stresses with increasing pressure, which suggests a possible change in dominant slip systems around 5-6 GPa. Combining our results with data from Chen et al. (Phys Earth Planet Inter 143-144:347-356, (2004), we determined a low-temperature plasticity flow law with an activation energy of 217 ± 25 kJ mol-1 and a Peierls stress at 0 GPa, σ p0 = 3.92 ± 0.02 GPa, that is consistent with dislocation motion being limited by discrete obstacles. The pressure dependence is almost entirely accounted for by the Peierls stress, with d σ p/d P = G'/ G 0, where G' is the derivative of G 0, the shear modulus. Our results suggest that fayalite has a smaller pressure dependence of low-temperature plasticity than (Mg0.9Fe0.1)2SiO4 and that the transition between low-temperature plasticity and high

  7. A Novel Polygonal Finite Element Method: Virtual Node Method

    NASA Astrophysics Data System (ADS)

    Tang, X. H.; Zheng, C.; Zhang, J. H.

    2010-05-01

    Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.

  8. Evaluation of Two New Smoothing Methods in Equating: The Cubic B-Spline Presmoothing Method and the Direct Presmoothing Method

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2009-01-01

    This article considers two new smoothing methods in equipercentile equating, the cubic B-spline presmoothing method and the direct presmoothing method. Using a simulation study, these two methods are compared with established methods, the beta-4 method, the polynomial loglinear method, and the cubic spline postsmoothing method, under three sample…

  9. Mining method selection by integrated AHP and PROMETHEE method.

    PubMed

    Bogdanovic, Dejan; Nikolic, Djordje; Ilic, Ivana

    2012-03-01

    Selecting the best mining method among many alternatives is a multicriteria decision making problem. The aim of this paper is to demonstrate the implementation of an integrated approach that employs AHP and PROMETHEE together for selecting the most suitable mining method for the "Coka Marin" underground mine in Serbia. The related problem includes five possible mining methods and eleven criteria to evaluate them. Criteria are accurately chosen in order to cover the most important parameters that impact on the mining method selection, such as geological and geotechnical properties, economic parameters and geographical factors. The AHP is used to analyze the structure of the mining method selection problem and to determine weights of the criteria, and PROMETHEE method is used to obtain the final ranking and to make a sensitivity analysis by changing the weights. The results have shown that the proposed integrated method can be successfully used in solving mining engineering problems.

  10. Birth Control Methods

    MedlinePlus

    ... Z Health Topics Birth control methods Birth control methods > A-Z Health Topics Birth control methods fact ... To receive Publications email updates Submit Birth control methods Birth control (contraception) is any method, medicine, or ...

  11. Regeneration methods

    Treesearch

    James P. Barnett; James B. Baker

    1991-01-01

    Southern pines can be regenerated naturally, by clearcutting, seedtree, shelterwood, or selection reproduction culling methods, or artificially, by direct seeding or by planting either container or bareroot seedlings. All regeneration methods have inherent advantages: and disadvantages; thus, land managers must consider many factors before deciding on a specific method...

  12. Thermal and Electrical Transport Study on Thermoelectric Materials Through Nanostructuring and Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yao, Mengliang

    Thermoelectric (TE) materials are of great interest to contemporary scientists because of their ability to directly convert temperature differences into electricity, and are regarded as a promising mode of alternative energy. The TE conversion efficiency is determined by the Carnot efficiency, eta C and is relevant to a commonly used figure of merit ZT of a material. Improving the value of ZT is presently a core mission within the TE field. In order to advance our understanding of thermoelectric materials and improve their efficiency, this dissertation investigates the low-temperature behavior of the p-type thermoelectric Cu 2Se through chemical doping and nanostructuring. It demonstrates a method to separate the electronic and lattice thermal conductivities in single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth textured thin films. Cu2Se is a good high temperature TE material due to its phonon-liquid electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and ZT around a structural transition. The present work on Cu2Se at low temperatures shows that it is a promising p-type TE material in the low temperature regime and investigates the Peierls transition and charge-density wave (CDW) response to doping [1]. After entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an applied electric field due to the current. An investigation into the doping effect of Zn, Ni, and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an increased semiconducting energy gap and electron-phonon coupling constant, while the Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve was observed in Cu1.98Zn 0.02Se near 40 K. This oscillatory behavior in the dc I-V curve was found to be insensitive to magnetic field but temperature dependent [2

  13. Safety training for working youth: Methods used versus methods wanted.

    PubMed

    Zierold, Kristina M

    2016-04-07

    Safety training is promoted as a tool to prevent workplace injury; however, little is known about the safety training experiences young workers get on-the-job. Furthermore, nothing is known about what methods they think would be the most helpful for learning about safe work practices. To compare safety training methods teens get on the job to those safety training methods teens think would be the best for learning workplace safety, focusing on age differences. A cross-sectional survey was administered to students in two large high schools in spring 2011. Seventy percent of working youth received safety training. The top training methods that youth reported getting at work were safety videos (42%), safety lectures (25%), and safety posters/signs (22%). In comparison to the safety training methods used, the top methods youth wanted included videos (54%), hands-on (47%), and on-the-job demonstrations (34%). This study demonstrated that there were differences in training methods that youth wanted by age; with older youth seemingly wanting more independent methods of training and younger teens wanting more involvement. Results indicate that youth want methods of safety training that are different from what they are getting on the job. The differences in methods wanted by age may aid in developing training programs appropriate for the developmental level of working youth.

  14. A comparison of Ki-67 counting methods in luminal Breast Cancer: The Average Method vs. the Hot Spot Method.

    PubMed

    Jang, Min Hye; Kim, Hyun Jung; Chung, Yul Ri; Lee, Yangkyu; Park, So Yeon

    2017-01-01

    In spite of the usefulness of the Ki-67 labeling index (LI) as a prognostic and predictive marker in breast cancer, its clinical application remains limited due to variability in its measurement and the absence of a standard method of interpretation. This study was designed to compare the two methods of assessing Ki-67 LI: the average method vs. the hot spot method and thus to determine which method is more appropriate in predicting prognosis of luminal/HER2-negative breast cancers. Ki-67 LIs were calculated by direct counting of three representative areas of 493 luminal/HER2-negative breast cancers using the two methods. We calculated the differences in the Ki-67 LIs (ΔKi-67) between the two methods and the ratio of the Ki-67 LIs (H/A ratio) of the two methods. In addition, we compared the performance of the Ki-67 LIs obtained by the two methods as prognostic markers. ΔKi-67 ranged from 0.01% to 33.3% and the H/A ratio ranged from 1.0 to 2.6. Based on the receiver operating characteristic curve method, the predictive powers of the KI-67 LI measured by the two methods were similar (Area under curve: hot spot method, 0.711; average method, 0.700). In multivariate analysis, high Ki-67 LI based on either method was an independent poor prognostic factor, along with high T stage and node metastasis. However, in repeated counts, the hot spot method did not consistently classify tumors into high vs. low Ki-67 LI groups. In conclusion, both the average and hot spot method of evaluating Ki-67 LI have good predictive performances for tumor recurrence in luminal/HER2-negative breast cancers. However, we recommend using the average method for the present because of its greater reproducibility.

  15. A comparison of Ki-67 counting methods in luminal Breast Cancer: The Average Method vs. the Hot Spot Method

    PubMed Central

    Jang, Min Hye; Kim, Hyun Jung; Chung, Yul Ri; Lee, Yangkyu

    2017-01-01

    In spite of the usefulness of the Ki-67 labeling index (LI) as a prognostic and predictive marker in breast cancer, its clinical application remains limited due to variability in its measurement and the absence of a standard method of interpretation. This study was designed to compare the two methods of assessing Ki-67 LI: the average method vs. the hot spot method and thus to determine which method is more appropriate in predicting prognosis of luminal/HER2-negative breast cancers. Ki-67 LIs were calculated by direct counting of three representative areas of 493 luminal/HER2-negative breast cancers using the two methods. We calculated the differences in the Ki-67 LIs (ΔKi-67) between the two methods and the ratio of the Ki-67 LIs (H/A ratio) of the two methods. In addition, we compared the performance of the Ki-67 LIs obtained by the two methods as prognostic markers. ΔKi-67 ranged from 0.01% to 33.3% and the H/A ratio ranged from 1.0 to 2.6. Based on the receiver operating characteristic curve method, the predictive powers of the KI-67 LI measured by the two methods were similar (Area under curve: hot spot method, 0.711; average method, 0.700). In multivariate analysis, high Ki-67 LI based on either method was an independent poor prognostic factor, along with high T stage and node metastasis. However, in repeated counts, the hot spot method did not consistently classify tumors into high vs. low Ki-67 LI groups. In conclusion, both the average and hot spot method of evaluating Ki-67 LI have good predictive performances for tumor recurrence in luminal/HER2-negative breast cancers. However, we recommend using the average method for the present because of its greater reproducibility. PMID:28187177

  16. A clinical study to evaluate denture adhesive use in well-fitting dentures.

    PubMed

    Munoz, Carlos A; Gendreau, Linda; Shanga, Gilbert; Magnuszewski, Tabetha; Fernandez, Patricia; Durocher, John

    2012-02-01

    The objective of this study was the assessment of retention and stability and functional benefits of denture adhesive applied to well-fitting and well-made dentures. This was a randomized, crossover study to compare two marketed denture adhesives (test cream, Super Poligrip® Free, and test strip, Super Poligrip® Comfort Seal Strips) and an unmarketed cream adhesive (GlaxoSmith Kline Consumer Healthcare) with no adhesive as the negative control. Thirty-six subjects completed the study. One hour after the application of denture adhesive, retention and stability were measured using the Kapur Index and maxillary incisal bite force. Two hours after application, functional tests were used to assess denture movement and peanut particle migration under the denture. Subjects also rated confidence, comfort, satisfaction with dentures, and denture wobble in conjunction with the functional tests. Denture adhesives significantly (p < 0.05) improved retention and stability of well-fitting dentures. Subjects experienced significantly (p < 0.05) fewer dislodgements while eating an apple after adhesive was applied to dentures. Significant (p < 0.05) increases in subjective ratings of confidence and comfort as well as decreases in denture wobble were associated with the use of adhesive. There was significant (p < 0.05) improvement in satisfaction ratings for cream adhesives. A single application of each denture adhesive was well tolerated. The results of this study provide evidence that use of Super Poligrip® denture adhesives can enhance aspects of performance of complete well-fitting dentures as well as provide increased comfort, confidence, and satisfaction with dentures. © 2011 by the American College of Prosthodontists.

  17. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, S. N.; Berke, L.; Gallagher, R. H.

    1991-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  18. Integrated force method versus displacement method for finite element analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.

    1990-01-01

    A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.

  19. Problems d'elaboration d'une methode locale: la methode "Paris-Khartoum" (Problems in Implementing a Local Method: the Paris-Khartoum Method)

    ERIC Educational Resources Information Center

    Penhoat, Loick; Sakow, Kostia

    1978-01-01

    A description of the development and implementation of a method introduced in the Sudan that attempts to relate to Sudanese culture and to motivate students. The relationship between language teaching methods and the total educational system is discussed. (AMH)

  20. Structure, dynamics and bifurcations of discrete solitons in trapped ion crystals

    NASA Astrophysics Data System (ADS)

    Landa, H.; Reznik, B.; Brox, J.; Mielenz, M.; Schaetz, T.

    2013-09-01

    We study discrete solitons (kinks) accessible in the state-of-the-art trapped ion experiments, considering zigzag crystals and quasi-three-dimensional configurations, both theoretically and experimentally. We first extend the theoretical understanding of different phenomena predicted and recently experimentally observed in the structure and dynamics of these topological excitations. Employing tools from topological degree theory, we analyze bifurcations of crystal configurations in dependence on the trapping parameters, and investigate the formation of kink configurations and the transformations of kinks between different structures. This allows us to accurately define and calculate the effective potential experienced by solitons within the Wigner crystal, and study how this (so-called Peierls-Nabarro) potential gets modified to a non-periodic globally trapping potential in certain parameter regimes. The kinks' rest mass (energy) and spectrum of modes are computed and the dynamics of linear and nonlinear kink oscillations are analyzed. We also present novel, experimentally observed, configurations of kinks incorporating a large-mass defect realized by an embedded molecular ion, and of pairs of interacting kinks stable for long times, offering the perspective for exploring and exploiting complex collective nonlinear excitations, controllable on the quantum level.

  1. Optic phonon bandwidth and lattice thermal conductivity: The case of L i2X (X =O , S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-01

    We examine the lattice thermal conductivities (κl) of L i2X (X =O ,S ,Se ,Te ) using a first-principles Peierls-Boltzmann transport methodology. We find low κl values ranging between 12 and 30 W m-1K-1 despite light Li atoms, a large mass difference between constituent atoms, and tightly bunched acoustic branches, all features that give high κl in other materials including BeSe (630 W m-1K-1 ), BeTe (370 W m-1K-1 ), and cubic BAs (3170 W m-1K-1 ). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict κl. Unlike typical simple systems (e.g., Si, GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in L i2Se and L i2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in L i2X materials. These considerations are important for the discovery and design of new materials for thermal management applications and give a more comprehensive understanding of thermal transport in crystalline solids.

  2. Peculiar atomic dynamics in liquid GeTe with asymmetrical bonding: Observation by inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Inui, M.; Koura, A.; Kajihara, Y.; Hosokawa, S.; Chiba, A.; Kimura, K.; Shimojo, F.; Tsutsui, S.; Baron, A. Q. R.

    2018-05-01

    Collective dynamics in liquid GeTe was investigated by inelastic x-ray scattering at 2 ≤Q ≤31 nm-1 . The dynamic structure factor shows clear inelastic excitations. The excitation energies at low Q disperse with increasing Q , consistent with the behavior of a longitudinal-acoustic excitation. The dispersion curve has a flat-topped region around the pseudo-Brillouin-zone boundary, similar to what is observed in liquid Bi [Inui et al., Phys. Rev. B 92, 054206 (2015), 10.1103/PhysRevB.92.054206]. The dynamic structure factor shows a low-frequency excitation, and its coupling with the longitudinal-acoustic mode plays an important role for a flat-topped dispersion. From these results, it is inferred that atomic dynamics in liquid GeTe is strongly affected by a Peierls distortion similar to liquid Bi. By comparing the momentum transfer dependence of the excitation energy and quasielastic linewidth to partial structure factors obtained by our own ab initio molecular dynamics simulation for liquid GeTe, the quasielastic and inelastic components were found to be correlated with Te-Te and Ge-(Ge,Te) partial structure factors, respectively.

  3. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    NASA Astrophysics Data System (ADS)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  4. Magnetically driven metal-insulator transition in NaOsO3

    NASA Astrophysics Data System (ADS)

    Calder, Stuart

    2013-03-01

    The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials, enjoying interest both for its fundamental nature and technological application. Various mechanisms producing MITs have been extensively considered over the years, including the Mott (electron localization via Coulomb repulsion), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic one-dimensional lattice). One additional route to a MIT proposed by Slater in 1951, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention, particularly from an experimental viewpoint. Using neutron and x-ray scattering we have shown that the MIT in NaOsO3 is coincident with the onset of long-range commensurate magnetic order at 410 K. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in light of recent work on other 5d systems that contrastingly have been predicted to host a Mott spin-orbit insulating state. Work was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  5. Local free energies for the coarse-graining of adsorption phenomena: The interacting pair approximation

    NASA Astrophysics Data System (ADS)

    Pazzona, Federico G.; Pireddu, Giovanni; Gabrieli, Andrea; Pintus, Alberto M.; Demontis, Pierfranco

    2018-05-01

    We investigate the coarse-graining of host-guest systems under the perspective of the local distribution of pore occupancies, along with the physical meaning and actual computability of the coarse-interaction terms. We show that the widely accepted approach, in which the contributions to the free energy given by the molecules located in two neighboring pores are estimated through Monte Carlo simulations where the two pores are kept separated from the rest of the system, leads to inaccurate results at high sorbate densities. In the coarse-graining strategy that we propose, which is based on the Bethe-Peierls approximation, density-independent interaction terms are instead computed according to local effective potentials that take into account the correlations between the pore pair and its surroundings by means of mean-field correction terms without the need for simulating the pore pair separately. Use of the interaction parameters obtained this way allows the coarse-grained system to reproduce more closely the equilibrium properties of the original one. Results are shown for lattice-gases where the local free energy can be computed exactly and for a system of Lennard-Jones particles under the effect of a static confining field.

  6. Dreams of a quantum pioneer

    NASA Astrophysics Data System (ADS)

    Segré, Gino

    2009-09-01

    Born in 1900, Wolfgang Pauli's debut as a physicist came in 1921 with the publication of a review paper on relativity so thorough and incisive that Einstein wrote of it "No-one studying this mature, grandly conceived work would believe the author is a man of twenty-one". Three years later, Pauli formulated the exclusion principle that bears his name, and that forms the basis of atomic and molecular structure; this work earned him the 1945 Nobel Prize for Physics. In 1930 he introduced the concept of the neutrino, which is central to modern elementary particle physics. By then, he had already become the key arbiter in the year-long discussions held in Copenhagen between Werner Heisenberg and Niels Bohr that had led to the modern formulation of quantum mechanics. He was also the holder of a prestigious professorship in Zurich, Switzerland, where young physicists from around the world - including Felix Bloch, Max Delbruck, Lev Landau, J Robert Oppenheimer, Rudolf Peierls and Victor Weisskopf - were flocking to work with him. Hence, by the age of just 30, Pauli had already established himself as one of the 20th century's great physicists.

  7. Analysis of fcc metals fracture behaviour: Fracture behaviour of fcc metals: brittle/ductile behaviour criteria : with ab-initio, embedded atom and pseudopotential parameterization for Au, Ir and Al. analysis for Au, Ir and Al.

    NASA Astrophysics Data System (ADS)

    Gornostyrev, Yu. N.; Katsnelson, M. I.; Mryasov, Oleg N.; Freeman, A. J.; Trefilov, M. V.

    1998-03-01

    Theoretical analysis of the fracture behaviour of fcc Au, Ir and Al have been performed within various brittle/ductile criteria (BDC) with ab-initio, embedded atom (EAM), and pseudopotential parameterizations. We systematically examined several important aspects of the fracture behaviour: (i) dislocation structure, (ii) energetics of the cleavage decohesion and (iii) character of the interatomic interactions. Unit dislocation structures were analyzed within a two dimensional generalization of the Peierls-Nabarro model with restoring forces determined from ab-initio total energy calculations and found to be split with well defined highly mobile partials for all considered metals. We find from ab-initio and pseudopotential that in contrast with most of fcc metals, cleavage decohesion curve for Al appreciably differs from UBER relation. Finally, using ab-initio, EAM and pseudopotential parameterizations, we demonstrate that (i) Au (as a typical example of a ductile metal) is well described within existing BDC's, (ii) anomalous cleavage-like crack propagation of Ir is driven predominantly by it's high elastic modulus and (iii) Al is not described within BDC due to it's long-range interatomic interactions (and hence requires adjustments of the brittle/ductile criteria).

  8. Electronic structure of charge-density-wave state in quasi-2D KMo6O17 purple bronze characterized by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-01-01

    We report on an angle-resolved-photoemission spectroscopy (ARPES) investigation of layered quasi-two dimensional (2D) Molybdenum purple bronze KMo6O17 in order to study and characterizes the transition to a charge-density-wave (CDW) state. We have performed photoemission temperature dependent measurements cooling down from room temperature (RT) to 32 K, well below the Peierls transition for this material, with CDW transition temperature Tc =110 K. The spectra have been taken at a selected kF point of the Fermi surface (FS) that satisfies the nesting condition of the FS, looking for the characteristic pseudo-gap opening in this kind of materials. The pseudogap has been estimated and it result to be in agreement with our previous works. The shift to lower binding energy of crossing Fermi level ARPES feature have been also confirmed and studied as a function of temperature, showing a rough like BCS behaviour. Finally we have also focused on ARPES measurements along ΓM¯ high symmetry direction for both room and low temperature states finding some insight for ‘shadow’ or back folded bands indicating the new periodicity of real lattice after the CDW lattice distortion.

  9. Optic phonon bandwidth and lattice thermal conductivity: The case of L i 2 X ( X = O , S, Se, Te)

    DOE PAGES

    Mukhopadhyay, S.; Lindsay, L.; Parker, D. S.

    2016-06-07

    Here, we examine the lattice thermal conductivities ( l) of Li 2X (X=O, S, Se, Te) using a first-principles Peierls-Boltzmann transport methodology. We find low l values ranging between 12 and 30 W/m-K despite light Li atoms, a large mass difference between constituent atoms and tightly bunched acoustic branches, all features that give high l in other materials including BeSe (630 W/m -1K -1), BeTe (370 W/m -1K -1) and cubic BAs (3150 W/m -1K -1). Together these results suggest a missing ingredient in the basic guidelines commonly used to understand and predict l. Unlike typical simple systems (e.g., Si,more » GaAs, SiC), the dominant resistance to heat-carrying acoustic phonons in Li 2Se and Li 2Te comes from interactions of these modes with two optic phonons. These interactions require significant bandwidth and dispersion of the optic branches, both present in Li 2X materials. Finally, these considerations are important for the discovery and design of new materials for thermal management applications, and give a more comprehensive understanding of thermal transport in crystalline solids.« less

  10. Coarse gaining of molecular crystals: limitations imposed by molecular flexibility

    NASA Astrophysics Data System (ADS)

    Picu, Catalin; Pal, Anirban

    Molecular crystals include molecular electronics, energetic materials, pharmaceuticals and some food components. In many of these applications the small scale mechanical behavior of the crystal is important such as for example in energetic materials where detonation is induced by the formation of hot spots which are induced thermomechanically, and in pharmaceuticals where phase stability is critical for the biochemical activity of the drug. Accurate modeling of these processes requires resolving the atomistic scale details of the material. However, the cost of these models is very large due to the complexity of the molecules forming the crystal, and some form of coarse graning is necessary. In this study we identify the limitations imposed by the need to accurately capture molecular flexibility on the development of coarse grained models for the energetic molecular crystal RDX. We define guidelines for the definition of coarse grained models that target elastic and plastic crystal scale properties such as elastic constants, thermal expansion, compressibility, the critical stress for the motion of dislocations (Peierls stress) and the stacking fault energy This work was supported by the ARO through Grant W911NF-09-1-0330 and AFRL through Grant FA8651-16-1-0004.

  11. An existence criterion for low-dimensional materials

    NASA Astrophysics Data System (ADS)

    Chen, Jiapeng; Wang, Biao; Hu, Yangfan

    2017-10-01

    The discovery of graphene and other two-dimensional (2-D) materials has stimulated a general interest in low-dimensional (low-D) materials. Whereas long time ago, Peierls (1935) and Landau's (1937) theoretical work demonstrated that any one- and two-dimensional materials could not exist in any finite temperature environment. Then, two basic issues became a central concern for many researchers: How can stable low-D materials exist? What kind of low-D materials are stable? Here, we establish an energy stability criterion for low-D materials, which seeks to provide a clear answer to these questions. For a certain kind of element, the stability of its specific low-D structure is determined by several derivatives of its interatomic potential. This atomistic-based approach is then applied to study any straight/planar, low-D, equal-bond-length elemental materials. We found that 1-D monatomic chains, 2-D honeycomb lattices, square lattices, and triangular lattices are the only four permissible structures, and the stability of these structures can only be understood by assuming multi-body interatomic potentials. Using this approach, the stable existence of graphene, silicene and germanene can be explained.

  12. Kink dynamics in a topological φ4 lattice

    NASA Astrophysics Data System (ADS)

    Adib, A. B.; Almeida, C. A. S.

    2001-09-01

    Recently proposed was a discretization for nonlinear Klein-Gordon field theories in which the resulting lattice preserves the topological (Bogomol'nyi) lower bound on the kink energy and, as a consequence, has no Peierls-Nabarro barrier even for large spatial discretizations (h~1.0). It was then suggested that these ``topological discrete systems'' are a natural choice for the numerical study of continuum kink dynamics. Giving particular emphasis to the φ4 theory, we numerically investigate kink-antikink scattering and breather formation in these topological lattices. Our results indicate that, even though these systems are quite accurate for studying free kinks in coarse lattices, for legitimate dynamical kink problems the accuracy is rather restricted to fine lattices (h~0.1). We suggest that this fact is related to the breaking of the Bogomol'nyi bound during the kink-antikink interaction, where the field profile loses its static property as required by the Bogomol'nyi argument. We conclude, therefore, that these lattices are not suitable for the study of more general kink dynamics, since a standard discretization is simpler and has effectively the same accuracy for such resolutions.

  13. A simple method for processing data with least square method

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning

    2017-08-01

    The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.

  14. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aidan Patrick; Schultz, Peter Andrew; Crozier, Paul

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled "Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations." During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projectedmore » on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel

  15. Designing ROW Methods

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1996-01-01

    There are many aspects to consider when designing a Rosenbrock-Wanner-Wolfbrandt (ROW) method for the numerical integration of ordinary differential equations (ODE's) solving initial value problems (IVP's). The process can be simplified by constructing ROW methods around good Runge-Kutta (RK) methods. The formulation of a new, simple, embedded, third-order, ROW method demonstrates this design approach.

  16. Compositions, antibodies, asthma diagnosis methods, and methods for preparing antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Hongjun; Zangar, Richard C.

    Methods for preparing an antibody are provided with the method including incorporating 3-bromo-4-hydroxy-benzoic acid into a protein to form an antigen, immunizing a mammalian host with the antigen, and recovering an antibody having an affinity for the antigen from the host. Antibodies having a binding affinity for a monohalotyrosine are provided as well as composition comprising an antibody bound with monohalotyrosine. Compositions comprising a protein having a 3-bromo-4-hydroxy-benzoic acid moiety are also provided. Methods for evaluating the severity of asthma are provide with the methods including analyzing sputum of a patient using an antibody having a binding affinity for monohalotyrosine,more » and measuring the amount of antibody bound to protein. Methods for determining eosinophil activity in bodily fluid are also provided with the methods including exposing bodily fluid to an antibody having a binding affinity for monohalotyrosine, and measuring the amount of bound antibody to determine the eosinophil activity.« less

  17. On Everhart Method

    NASA Astrophysics Data System (ADS)

    Pârv, Bazil

    This paper deals with the Everhart numerical integration method, a well-known method in astronomical research. This method, a single-step one, is widely used for numerical integration of motion equation of celestial bodies. For an integration step, this method uses unequally-spaced substeps, defined by the roots of the so-called generating polynomial of Everhart's method. For this polynomial, this paper proposes and proves new recurrence formulae. The Maple computer algebra system was used to find and prove these formulae. Again, Maple seems to be well suited and easy to use in mathematical research.

  18. The Value of Mixed Methods Research: A Mixed Methods Study

    ERIC Educational Resources Information Center

    McKim, Courtney A.

    2017-01-01

    The purpose of this explanatory mixed methods study was to examine the perceived value of mixed methods research for graduate students. The quantitative phase was an experiment examining the effect of a passage's methodology on students' perceived value. Results indicated students scored the mixed methods passage as more valuable than those who…

  19. Mapping Mixed Methods Research: Methods, Measures, and Meaning

    ERIC Educational Resources Information Center

    Wheeldon, J.

    2010-01-01

    This article explores how concept maps and mind maps can be used as data collection tools in mixed methods research to combine the clarity of quantitative counts with the nuance of qualitative reflections. Based on more traditional mixed methods approaches, this article details how the use of pre/post concept maps can be used to design qualitative…

  20. The preconditioned Gauss-Seidel method faster than the SOR method

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori

    2008-09-01

    In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10

  1. A new method for calculating ecological flow: Distribution flow method

    NASA Astrophysics Data System (ADS)

    Tan, Guangming; Yi, Ran; Chang, Jianbo; Shu, Caiwen; Yin, Zhi; Han, Shasha; Feng, Zhiyong; Lyu, Yiwei

    2018-04-01

    A distribution flow method (DFM) and its ecological flow index and evaluation grade standard are proposed to study the ecological flow of rivers based on broadening kernel density estimation. The proposed DFM and its ecological flow index and evaluation grade standard are applied into the calculation of ecological flow in the middle reaches of the Yangtze River and compared with traditional calculation method of hydrological ecological flow, method of flow evaluation, and calculation result of fish ecological flow. Results show that the DFM considers the intra- and inter-annual variations in natural runoff, thereby reducing the influence of extreme flow and uneven flow distributions during the year. This method also satisfies the actual runoff demand of river ecosystems, demonstrates superiority over the traditional hydrological methods, and shows a high space-time applicability and application value.

  2. A Tale of Two Methods: Chart and Interview Methods for Identifying Delirium

    PubMed Central

    Saczynski, Jane S.; Kosar, Cyrus M.; Xu, Guoquan; Puelle, Margaret R.; Schmitt, Eva; Jones, Richard N.; Marcantonio, Edward R.; Wong, Bonnie; Isaza, Ilean; Inouye, Sharon K.

    2014-01-01

    Background Interview and chart-based methods for identifying delirium have been validated. However, relative strengths and limitations of each method have not been described, nor has a combined approach (using both interviews and chart), been systematically examined. Objectives To compare chart and interview-based methods for identification of delirium. Design, Setting and Participants Participants were 300 patients aged 70+ undergoing major elective surgery (majority were orthopedic surgery) interviewed daily during hospitalization for delirium using the Confusion Assessment Method (CAM; interview-based method) and whose medical charts were reviewed for delirium using a validated chart-review method (chart-based method). We examined rate of agreement on the two methods and patient characteristics of those identified using each approach. Predictive validity for clinical outcomes (length of stay, postoperative complications, discharge disposition) was compared. In the absence of a gold-standard, predictive value could not be calculated. Results The cumulative incidence of delirium was 23% (n= 68) by the interview-based method, 12% (n=35) by the chart-based method and 27% (n=82) by the combined approach. Overall agreement was 80%; kappa was 0.30. The methods differed in detection of psychomotor features and time of onset. The chart-based method missed delirium in CAM-identified patients laacking features of psychomotor agitation or inappropriate behavior. The CAM-based method missed chart-identified cases occurring during the night shift. The combined method had high predictive validity for all clinical outcomes. Conclusions Interview and chart-based methods have specific strengths for identification of delirium. A combined approach captures the largest number and the broadest range of delirium cases. PMID:24512042

  3. The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points

    NASA Technical Reports Server (NTRS)

    Don, Wai Sun; Gottlieb, David

    1993-01-01

    We present a new collocation method for the numerical solution of partial differential equations. This method uses the Chebyshev collocation points, but because of the way the boundary conditions are implemented, it has all the advantages of the Legendre methods. In particular, L2 estimates can be obtained easily for hyperbolic and parabolic problems.

  4. Ensemble Methods

    NASA Astrophysics Data System (ADS)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been

  5. Unification of the complex Langevin method and the Lefschetzthimble method

    NASA Astrophysics Data System (ADS)

    Nishimura, Jun; Shimasaki, Shinji

    2018-03-01

    Recently there has been remarkable progress in solving the sign problem, which occurs in investigating statistical systems with a complex weight. The two promising methods, the complex Langevin method and the Lefschetz thimble method, share the idea of complexifying the dynamical variables, but their relationship has not been clear. Here we propose a unified formulation, in which the sign problem is taken care of by both the Langevin dynamics and the holomorphic gradient flow. We apply our formulation to a simple model in three different ways and show that one of them interpolates the two methods by changing the flow time.

  6. Instructional Methods Tool

    DTIC Science & Technology

    2017-09-01

    Research Product 2018-01 Instructional Methods Tool Jennifer S. Tucker U.S. Army Research Institute David R. James...Unclassified ii Research Product 2018-01 Instructional Methods Tool Jennifer S. Tucker U.S. Army Research Institute David R. James...1 RESEARCH OBJECTIVE ..............................................................................................................1 METHOD

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W.G.

    The new ternary transition metal-rich borides Ta{sub 2}OsB{sub 2} and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta{sub 2}OsB{sub 2} and TaRuB crystallize in the tetragonal Nb{sub 2}OsB{sub 2} (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bondingmore » characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B{sub 2}-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta{sub 2}OsB{sub 2} through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B{sub 4}- or B{sub 2}-units are predicted, the former being the most thermodynamically stable modification. - Graphical abstract: The two new ternary tantalum borides, Ta{sub 2}OsB{sub 2} and TaRuB, have been discovered. Their crystal structures contain boron dumbbells, which are the strongest bonds. Peirls distortion is found responsible for Os{sub 2}-dumbbells formation in Ta{sub 2}OsB{sub 2}. Ta{sub 2}Os

  8. Color image definition evaluation method based on deep learning method

    NASA Astrophysics Data System (ADS)

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  9. Which method should be the reference method to evaluate the severity of rheumatic mitral stenosis? Gorlin's method versus 3D-echo.

    PubMed

    Pérez de Isla, Leopoldo; Casanova, Carlos; Almería, Carlos; Rodrigo, José Luis; Cordeiro, Pedro; Mataix, Luis; Aubele, Ada Lia; Lang, Roberto; Zamorano, José Luis

    2007-12-01

    Several studies have shown a wide variability among different methods to determine the valve area in patients with rheumatic mitral stenosis. Our aim was to evaluate if 3D-echo planimetry is more accurate than the Gorlin method to measure the valve area. Twenty-six patients with mitral stenosis underwent 2D and 3D-echo echocardiographic examinations and catheterization. Valve area was estimated by different methods. A median value of the mitral valve area, obtained from the measurements of three classical non-invasive methods (2D planimetry, pressure half-time and PISA method), was used as the reference method and it was compared with 3D-echo planimetry and Gorlin's method. Our results showed that the accuracy of 3D-echo planimetry is superior to the accuracy of the Gorlin method for the assessment of mitral valve area. We should keep in mind the fact that 3D-echo planimetry may be a better reference method than the Gorlin method to assess the severity of rheumatic mitral stenosis.

  10. 76 FR 21673 - Alternative Efficiency Determination Methods and Alternate Rating Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... EERE-2011-BP-TP-00024] RIN 1904-AC46 Alternative Efficiency Determination Methods and Alternate Rating Methods AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of... and data related to the use of computer simulations, mathematical methods, and other alternative...

  11. Development of modelling method selection tool for health services management: from problem structuring methods to modelling and simulation methods.

    PubMed

    Jun, Gyuchan T; Morris, Zoe; Eldabi, Tillal; Harper, Paul; Naseer, Aisha; Patel, Brijesh; Clarkson, John P

    2011-05-19

    There is an increasing recognition that modelling and simulation can assist in the process of designing health care policies, strategies and operations. However, the current use is limited and answers to questions such as what methods to use and when remain somewhat underdeveloped. The aim of this study is to provide a mechanism for decision makers in health services planning and management to compare a broad range of modelling and simulation methods so that they can better select and use them or better commission relevant modelling and simulation work. This paper proposes a modelling and simulation method comparison and selection tool developed from a comprehensive literature review, the research team's extensive expertise and inputs from potential users. Twenty-eight different methods were identified, characterised by their relevance to different application areas, project life cycle stages, types of output and levels of insight, and four input resources required (time, money, knowledge and data). The characterisation is presented in matrix forms to allow quick comparison and selection. This paper also highlights significant knowledge gaps in the existing literature when assessing the applicability of particular approaches to health services management, where modelling and simulation skills are scarce let alone money and time. A modelling and simulation method comparison and selection tool is developed to assist with the selection of methods appropriate to supporting specific decision making processes. In particular it addresses the issue of which method is most appropriate to which specific health services management problem, what the user might expect to be obtained from the method, and what is required to use the method. In summary, we believe the tool adds value to the scarce existing literature on methods comparison and selection.

  12. A velocity-correction projection method based immersed boundary method for incompressible flows

    NASA Astrophysics Data System (ADS)

    Cai, Shanggui

    2014-11-01

    In the present work we propose a novel direct forcing immersed boundary method based on the velocity-correction projection method of [J.L. Guermond, J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41 (1)(2003) 112]. The principal idea of immersed boundary method is to correct the velocity in the vicinity of the immersed object by using an artificial force to mimic the presence of the physical boundaries. Therefore, velocity-correction projection method is preferred to its pressure-correction counterpart in the present work. Since the velocity-correct projection method is considered as a dual class of pressure-correction method, the proposed method here can also be interpreted in the way that first the pressure is predicted by treating the viscous term explicitly without the consideration of the immersed boundary, and the solenoidal velocity is used to determine the volume force on the Lagrangian points, then the non-slip boundary condition is enforced by correcting the velocity with the implicit viscous term. To demonstrate the efficiency and accuracy of the proposed method, several numerical simulations are performed and compared with the results in the literature. China Scholarship Council.

  13. Approaches to Mixed Methods Dissemination and Implementation Research: Methods, Strengths, Caveats, and Opportunities.

    PubMed

    Green, Carla A; Duan, Naihua; Gibbons, Robert D; Hoagwood, Kimberly E; Palinkas, Lawrence A; Wisdom, Jennifer P

    2015-09-01

    Limited translation of research into practice has prompted study of diffusion and implementation, and development of effective methods of encouraging adoption, dissemination and implementation. Mixed methods techniques offer approaches for assessing and addressing processes affecting implementation of evidence-based interventions. We describe common mixed methods approaches used in dissemination and implementation research, discuss strengths and limitations of mixed methods approaches to data collection, and suggest promising methods not yet widely used in implementation research. We review qualitative, quantitative, and hybrid approaches to mixed methods dissemination and implementation studies, and describe methods for integrating multiple methods to increase depth of understanding while improving reliability and validity of findings.

  14. Approaches to Mixed Methods Dissemination and Implementation Research: Methods, Strengths, Caveats, and Opportunities

    PubMed Central

    Green, Carla A.; Duan, Naihua; Gibbons, Robert D.; Hoagwood, Kimberly E.; Palinkas, Lawrence A.; Wisdom, Jennifer P.

    2015-01-01

    Limited translation of research into practice has prompted study of diffusion and implementation, and development of effective methods of encouraging adoption, dissemination and implementation. Mixed methods techniques offer approaches for assessing and addressing processes affecting implementation of evidence-based interventions. We describe common mixed methods approaches used in dissemination and implementation research, discuss strengths and limitations of mixed methods approaches to data collection, and suggest promising methods not yet widely used in implementation research. We review qualitative, quantitative, and hybrid approaches to mixed methods dissemination and implementation studies, and describe methods for integrating multiple methods to increase depth of understanding while improving reliability and validity of findings. PMID:24722814

  15. Methods of Farm Guidance

    ERIC Educational Resources Information Center

    Vir, Dharm

    1971-01-01

    A survey of teaching methods for farm guidance workers in India, outlining some approaches developed by and used in other nations. Discusses mass educational methods, group educational methods, and the local leadership method. (JB)

  16. Project Method, as One of the Basic Methods of Environmental Education

    ERIC Educational Resources Information Center

    Szállassy, Noémi

    2008-01-01

    Our aim was to present in this paper the one of the most important methods of environmental education, the project method. We present here the steps and phases of project method and we give an example of how to use these elements in planning an activity for celebrating the World Day for Water.

  17. Research Methods

    DTIC Science & Technology

    1992-01-01

    cognitive function. For example. physiological methods allow for visual sensitivity measurements in infants and children with about the same level of...potential (ERP), the event-related magnetic field (ERF), and pupillometry . Where possible, we cite specific experiments that deal with display or stimulus...technical barrier preventing the application of these methods to the analysis of human performance with color displays. Pupillometry . The pupillary

  18. Parallelization of the FLAPW method and comparison with the PPW method

    NASA Astrophysics Data System (ADS)

    Canning, Andrew; Mannstadt, Wolfgang; Freeman, Arthur

    2000-03-01

    The FLAPW (full-potential linearized-augmented plane-wave) method is one of the most accurate first-principles methods for determining electronic and magnetic properties of crystals and surfaces. In the past the FLAPW method has been limited to systems of about a hundred atoms due to the lack of an efficient parallel implementation to exploit the power and memory of parallel computers. In this work we present an efficient parallelization of the method by division among the processors of the plane-wave components for each state. The code is also optimized for RISC (reduced instruction set computer) architectures, such as those found on most parallel computers, making full use of BLAS (basic linear algebra subprograms) wherever possible. Scaling results are presented for systems of up to 686 silicon atoms and 343 palladium atoms per unit cell running on up to 512 processors on a Cray T3E parallel supercomputer. Some results will also be presented on a comparison of the plane-wave pseudopotential method and the FLAPW method on large systems.

  19. An Improved Newton's Method.

    ERIC Educational Resources Information Center

    Mathews, John H.

    1989-01-01

    Describes Newton's method to locate roots of an equation using the Newton-Raphson iteration formula. Develops an adaptive method overcoming limitations of the iteration method. Provides the algorithm and computer program of the adaptive Newton-Raphson method. (YP)

  20. FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.

    PubMed

    Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan

    2017-07-01

    In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).

  1. Methods for assessing geodiversity

    NASA Astrophysics Data System (ADS)

    Zwoliński, Zbigniew; Najwer, Alicja; Giardino, Marco

    2017-04-01

    The accepted systematics of geodiversity assessment methods will be presented in three categories: qualitative, quantitative and qualitative-quantitative. Qualitative methods are usually descriptive methods that are suited to nominal and ordinal data. Quantitative methods use a different set of parameters and indicators to determine the characteristics of geodiversity in the area being researched. Qualitative-quantitative methods are a good combination of the collection of quantitative data (i.e. digital) and cause-effect data (i.e. relational and explanatory). It seems that at the current stage of the development of geodiversity research methods, qualitative-quantitative methods are the most advanced and best assess the geodiversity of the study area. Their particular advantage is the integration of data from different sources and with different substantive content. Among the distinguishing features of the quantitative and qualitative-quantitative methods for assessing geodiversity are their wide use within geographic information systems, both at the stage of data collection and data integration, as well as numerical processing and their presentation. The unresolved problem for these methods, however, is the possibility of their validation. It seems that currently the best method of validation is direct filed confrontation. Looking to the next few years, the development of qualitative-quantitative methods connected with cognitive issues should be expected, oriented towards ontology and the Semantic Web.

  2. The Misgav Ladach method for cesarean section compared to the Pfannenstiel method.

    PubMed

    Darj, E; Nordström, M L

    1999-01-01

    The aim of the study was to evaluate the outcome of two different methods of cesarean section (CS). The study was designed as a prospective, randomized, controlled trial. All CS were performed at the University Hospital in Uppsala, Sweden. Fifty women admitted to hospital for a first elective CS were consecutively included in the study. They were randomly allocated to two groups. One group was operated on by the Misgav Ladach method for CS and the other group by the Pfannenstiel method. All operations were performed by the same surgeon. Duration of operation, amount of bleeding, analgesics required, scar appearance and length of hospitalization. Operating time was significantly different between the two methods, with an average of 12.5 minutes with the Misgav Ladach method and 26 minutes with the Pfannenstiel method (p<0.001). The amount of blood loss differed significantly, with 448 ml and 608 ml respectively (p=0.017). Significantly less analgesic injections and tablets (p=0.004) were needed after the Misgav Ladach method. The Misgav Ladach method of CS has advantages over the Pfannenstiel method by being significantly quicker to perform, with a reduced amount of bleeding and diminished postoperative pain. The women were satisfied with the appearance of their scars. In this study no negative effects of the new operation technique were discovered.

  3. [ANTHROPOMETRIC PROPORTIONALITY METHOD ELECTION IN A SPORT POPULATION; COMPARISON OF THREE METHODS].

    PubMed

    Almagià, Atilio; Araneda, Alberto; Sánchez, Javier; Sánchez, Patricio; Zúñiga, Maximiliano; Plaza, Paula

    2015-09-01

    the proportionality model application, based on ideal proportions, would have a great impact on high performance sports, due to best athletes to resemble anthropometrically. the objective of this study was to compare the following anthropometric methods of proportionality: Phantom, Combined and Scalable, in male champion university Chilean soccer players in 2012 and 2013, using South American professional soccer players as criterion, in order to find the most appropriate proportionality method to sports populations. the measerement of 22 kinanthropometric variables was performed, according to the ISAK protocol, to a sample constituted of 13 members of the men's soccer team of the Pontificia Universidad Católica de Valparaíso. The Z-values of the anthropometrics variables of each method were obtained using their respective equations. It was used as criterion population South American soccer players. a similar trend was observed between the three methods. Significant differences (p < 0.05) were found in some Z-values of Scalable and Combined methods compared to Phantom method. No significant differences were observed between the results obtained by the Combined and Scalable methods, except in wrist, thigh and hip perimeters. it is more appropriate to use the Scalable method over the Combined and Phantom methods for the comparison of Z values in kinanthropometric variables in athletes of the same discipline. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  4. Mixed methods research.

    PubMed

    Halcomb, Elizabeth; Hickman, Louise

    2015-04-08

    Mixed methods research involves the use of qualitative and quantitative data in a single research project. It represents an alternative methodological approach, combining qualitative and quantitative research approaches, which enables nurse researchers to explore complex phenomena in detail. This article provides a practical overview of mixed methods research and its application in nursing, to guide the novice researcher considering a mixed methods research project.

  5. [Theory, method and application of method R on estimation of (co)variance components].

    PubMed

    Liu, Wen-Zhong

    2004-07-01

    Theory, method and application of Method R on estimation of (co)variance components were reviewed in order to make the method be reasonably used. Estimation requires R values,which are regressions of predicted random effects that are calculated using complete dataset on predicted random effects that are calculated using random subsets of the same data. By using multivariate iteration algorithm based on a transformation matrix,and combining with the preconditioned conjugate gradient to solve the mixed model equations, the computation efficiency of Method R is much improved. Method R is computationally inexpensive,and the sampling errors and approximate credible intervals of estimates can be obtained. Disadvantages of Method R include a larger sampling variance than other methods for the same data,and biased estimates in small datasets. As an alternative method, Method R can be used in larger datasets. It is necessary to study its theoretical properties and broaden its application range further.

  6. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  7. A New Method for Extubation: Comparison between Conventional and New Methods.

    PubMed

    Yousefshahi, Fardin; Barkhordari, Khosro; Movafegh, Ali; Tavakoli, Vida; Paknejad, Omalbanin; Bina, Payvand; Yousefshahi, Hadi; Sheikh Fathollahi, Mahmood

    2012-08-01

    Extubation is associated with the risk of complications such as accumulated secretion above the endotracheal tube cuff, eventual atelectasia following a reduction in pulmonary volumes because of a lack of physiological positive end expiratory pressure, and intra-tracheal suction. In order to reduce these complications, and, based on basic physiological principles, a new practical extubation method is presented in this article. The study was designed as a six-month prospective cross-sectional clinical trial. Two hundred fifty-seven patients undergoing coronary artery bypass grafting (CABG) were divided into two groups based on their scheduled surgery time. The first group underwent the conventional extubation method, while the other group was extubated according to a new described method. Arterial blood gas (ABG) analysis results before and after extubation were compared between the two groups to find the effect of the extubation method on the ABG parameters and the oxygenation profile. In all time intervals, the partial pressure of oxygen in arterial blood / fraction of inspired oxygen (PaO(2)/FiO(2)) ratio in the new method group patients was improved compared to that in the conventional method; some differences, like PaO(2)/FiO(2) four hours after extubation, were statistically significant, however (p value=0.0063). The new extubation method improved some respiratory parameters and thus attenuated oxygenation complications and amplified oxygenation after extubation.

  8. Prevalence and associated Risk Factors of Severe Early Childhood Caries in 12- to 36-month-old Children of Sirmaur District, Himachal Pradesh, India.

    PubMed

    G Mangla, Ritu; Kapur, Raman; Dhindsa, Abhishek; Madan, Manish

    2017-01-01

    To assess the prevalence, distribution, and associated risk factors of severe early childhood caries (S-ECC) among 12- to 36-month-old children of district Sirmaur, Himachal Pradesh, India. The present study was conducted on a random sample of 510 children, both boys and girls, between 12 and 36 months of age randomly selected from various government-sponsored day-care centers, private day-care centers, and vaccination centers. Caries was recorded using World Health Organization criteria. Statistical analysis was done by using chi-square test and Mann-Whitney test. A two-sided p value was calculated for each statistical test. Multiple logistic regressions were done to calculate the risk of S-ECC from independent variables. In the present study, S-ECC was found in 21% of 510, 12 to 36 months old children of Sirmaur district, Himachal Pradesh. The S-ECC was found to be significantly higher in 25 to 36 months old children's age group and was 27.8% in them as compared with 8% in 12 to 24 months old children. Providing anticipatory guidance and education to parents is essential for the promotion of optimal oral health of their children. There is a need for moving upstream to propose and implement policies and programs to improve the oral health of the very young, especially in a developing country like India, which lacks much data on S-ECC. Mangla RG, Kapur R, Dhindsa A, Madan M. Prevalence and associated Risk Factors of Severe Early Childhood Caries in 12- to 36-month-old Children of Sirmaur District, Himachal Pradesh, India. Int J Clin Pediatr Dent 2017;10(2):183-187.

  9. Pharmacological treatment of obstructive sleep apnea with a combination of pseudoephedrine and domperidone.

    PubMed

    Larrain, Augusto; Kapur, Vishesh K; Gooley, Ted A; Pope, Charles E

    2010-04-15

    To determine the effect of the drug combination domperidone and pseudoephedrine on nocturnal oximetry measurements and daytime sleepiness in patients with obstructive sleep apnea. We recruited patients with severe snoring and apneic episodes willing to undergo repeated nocturnal oximetry testing. Following baseline clinical history, Epworth Sleepiness Scale administration, and home overnight nocturnal oximetry, patients were started on weight-adjusted doses of domperidone and pseudoephedrine. Follow-up oximetry studies were performed at the patient's convenience. On the final visit, a repeat clinical history, Epworth score, and oximetry were obtained. Seventeen of 23 patients noted disappearance of snoring and apneic episodes. Another 2 patients reported improvement in snoring and no apneic episodes. All but one patient had a decrease in Epworth scores (mean decrease 9.4 (95% CI, 6.8-12.1, p < 0.0001). Mean oxygen saturation (2.5; 95% Cl, 0.66-4.41, p = 0.008), percent time with oxygen saturation < 90% (14.8; 95% CI, 24.4 to 5.2, p = 0.003), and the 4% oxygen desaturation index (18.2; 95% CI, 27.3 to 9.1, p < 0.0001) improved significantly. No adverse effects of treatment were noted. The combination of domperidone and pseudoephedrine improved self reported snoring and sleepiness, and may have improved apneic episodes and sleep-related nocturnal oxygen desaturation in patients with obstructive sleep apnea provided the proportion of time spent asleep did not diminish. This drug combination warrants further study as a treatment for obstructive sleep apnea. Obstructive sleep apnea; oximetry; sleepiness; domperidone; pseudoephedrine; pharmacotherapy; desaturation; treatment Larrain A; Kapur VK; Gooley TA; Pope CE. Pharmacological treatment of obstructive sleep apnea with a combination of pseudoephedrine and domperidone.

  10. Mindful Application of Aviation Practices in Healthcare.

    PubMed

    Powell-Dunford, Nicole; Brennan, Peter A; Peerally, Mohammad Farhad; Kapur, Narinder; Hynes, Jonny M; Hodkinson, Peter D

    2017-12-01

    Evidence supports the efficacy of incorporating select recognized aviation practices and procedures into healthcare. Incident analysis, debrief, safety brief, and crew resource management (CRM) have all been assessed for implementation within the UK healthcare system, a world leader in aviation-based patient safety initiatives. Mindful application, in which aviation practices are specifically tailored to the unique healthcare setting, show promise in terms of acceptance and long-term sustainment. In order to establish British healthcare applications of aviation practices, a PubMed search of UK authored manuscripts published between 2005-2016 was undertaken using search terms 'aviation,' 'healthcare,' 'checklist,' and 'CRM.' A convenience sample of UK-authored aviation medical conference presentations and UK-authored patient safety manuscripts were also reviewed. A total of 11 of 94 papers with UK academic affiliations published between 2005-2016 and relevant to aviation modeled healthcare delivery were found. The debrief process, incident analysis, and CRM are the primary practices incorporated into UK healthcare, with success dependent on cultural acceptance and mindful application. CRM training has gained significant acceptance in UK healthcare environments. Aviation modeled incident analysis, debrief, safety brief, and CRM training are increasingly undertaken within the UK healthcare system. Nuanced application, in which the unique aspects of the healthcare setting are addressed as part of a comprehensive safety approach, shows promise for long-term success. The patient safety brief and aviation modeled incident analysis are in earlier phases of implementation, and warrant further analysis.Powell-Dunford N, Brennan PA, Peerally MF, Kapur N, Hynes JM, Hodkinson PD. Mindful application of aviation practices in healthcare. Aerosp Med Hum Perform. 2017; 88(12):1107-1116.

  11. Formal Methods Tool Qualification

    NASA Technical Reports Server (NTRS)

    Wagner, Lucas G.; Cofer, Darren; Slind, Konrad; Tinelli, Cesare; Mebsout, Alain

    2017-01-01

    Formal methods tools have been shown to be effective at finding defects in safety-critical digital systems including avionics systems. The publication of DO-178C and the accompanying formal methods supplement DO-333 allows applicants to obtain certification credit for the use of formal methods without providing justification for them as an alternative method. This project conducted an extensive study of existing formal methods tools, identifying obstacles to their qualification and proposing mitigations for those obstacles. Further, it interprets the qualification guidance for existing formal methods tools and provides case study examples for open source tools. This project also investigates the feasibility of verifying formal methods tools by generating proof certificates which capture proof of the formal methods tool's claim, which can be checked by an independent, proof certificate checking tool. Finally, the project investigates the feasibility of qualifying this proof certificate checker, in the DO-330 framework, in lieu of qualifying the model checker itself.

  12. Electrodeionization method

    DOEpatents

    Lin, YuPo J.; Hestekin, Jamie; Arora, Michelle; St. Martin, Edward J.

    2004-09-28

    An electrodeionization method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit.

  13. A new method named as Segment-Compound method of baffle design

    NASA Astrophysics Data System (ADS)

    Qin, Xing; Yang, Xiaoxu; Gao, Xin; Liu, Xishuang

    2017-02-01

    As the observation demand increased, the demand of the lens imaging quality rising. Segment- Compound baffle design method was proposed in this paper. Three traditional methods of baffle design they are characterized as Inside to Outside, Outside to Inside, and Mirror Symmetry. Through a transmission type of optical system, the four methods were used to design stray light suppression structure for it, respectively. Then, structures modeling simulation with Solidworks, CAXA, Tracepro, At last, point source transmittance (PST) curve lines were got to describe their performance. The result shows that the Segment- Compound method can inhibit stay light more effectively. Moreover, it is easy to active and without use special material.

  14. Semi top-down method combined with earth-bank, an effective method for basement construction.

    NASA Astrophysics Data System (ADS)

    Tuan, B. Q.; Tam, Ng M.

    2018-04-01

    Choosing an appropriate method of deep excavation not only plays a decisive role in technical success, but also in economics of the construction project. Presently, we mainly base on to key methods: “Bottom-up” and “Top-down” construction method. Right now, this paper presents an another method of construction that is “Semi Top-down method combining with earth-bank” in order to take the advantages and limit the weakness of the above methods. The Bottom-up method was improved by using the earth-bank to stabilize retaining walls instead of the bracing steel struts. The Top-down method was improved by using the open cut method for the half of the earthwork quantities.

  15. Metrics in method engineering

    NASA Astrophysics Data System (ADS)

    Brinkkemper, S.; Rossi, M.

    1994-12-01

    As customizable computer aided software engineering (CASE) tools, or CASE shells, have been introduced in academia and industry, there has been a growing interest into the systematic construction of methods and their support environments, i.e. method engineering. To aid the method developers and method selectors in their tasks, we propose two sets of metrics, which measure the complexity of diagrammatic specification techniques on the one hand, and of complete systems development methods on the other hand. Proposed metrics provide a relatively fast and simple way to analyze the technique (or method) properties, and when accompanied with other selection criteria, can be used for estimating the cost of learning the technique and the relative complexity of a technique compared to others. To demonstrate the applicability of the proposed metrics, we have applied them to 34 techniques and 15 methods.

  16. Micro/nano moire methods

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Shang, Haixia; Xie, Huimin; Li, Biao

    2003-10-01

    Two novel micro/nano moire method, SEM scanning moiré and AFM scanning moire techniques are discussed in this paper. The principle and applications of two scanning moire methods are described in detail. The residual deformation in a polysilicon MEMS cantilever structure with a 5000 lines/mm grating after removing the SiO2 sacrificial layer is accurately measured by SEM scanning moire method. While AFM scanning moire method is used to detect thermal deformation of electronic package components, and formation of nano-moire on a freshly cleaved mica crystal. Experimental results demonstrate the feasibility of these two moire methods, and also show they are effective methods to measure the deformation from micron to nano-scales.

  17. [Medical Equipment Maintenance Methods].

    PubMed

    Liu, Hongbin

    2015-09-01

    Due to the high technology and the complexity of medical equipment, as well as to the safety and effectiveness, it determines the high requirements of the medical equipment maintenance work. This paper introduces some basic methods of medical instrument maintenance, including fault tree analysis, node method and exclusive method which are the three important methods in the medical equipment maintenance, through using these three methods for the instruments that have circuit drawings, hardware breakdown maintenance can be done easily. And this paper introduces the processing methods of some special fault conditions, in order to reduce little detours in meeting the same problems. Learning is very important for stuff just engaged in this area.

  18. SAM Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation

  19. A Hybrid Method for Pancreas Extraction from CT Image Based on Level Set Methods

    PubMed Central

    Tan, Hanqing; Fujita, Hiroshi

    2013-01-01

    This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction. PMID:24066016

  20. Krylov subspace iterative methods for boundary element method based near-field acoustic holography.

    PubMed

    Valdivia, Nicolas; Williams, Earl G

    2005-02-01

    The reconstruction of the acoustic field for general surfaces is obtained from the solution of a matrix system that results from a boundary integral equation discretized using boundary element methods. The solution to the resultant matrix system is obtained using iterative regularization methods that counteract the effect of noise on the measurements. These methods will not require the calculation of the singular value decomposition, which can be expensive when the matrix system is considerably large. Krylov subspace methods are iterative methods that have the phenomena known as "semi-convergence," i.e., the optimal regularization solution is obtained after a few iterations. If the iteration is not stopped, the method converges to a solution that generally is totally corrupted by errors on the measurements. For these methods the number of iterations play the role of the regularization parameter. We will focus our attention to the study of the regularizing properties from the Krylov subspace methods like conjugate gradients, least squares QR and the recently proposed Hybrid method. A discussion and comparison of the available stopping rules will be included. A vibrating plate is considered as an example to validate our results.

  1. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1992-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. Unlike the Lagrangian method previously imposed which is valid only for supersonic flows, the present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  2. Decentralized Quasi-Newton Methods

    NASA Astrophysics Data System (ADS)

    Eisen, Mark; Mokhtari, Aryan; Ribeiro, Alejandro

    2017-05-01

    We introduce the decentralized Broyden-Fletcher-Goldfarb-Shanno (D-BFGS) method as a variation of the BFGS quasi-Newton method for solving decentralized optimization problems. The D-BFGS method is of interest in problems that are not well conditioned, making first order decentralized methods ineffective, and in which second order information is not readily available, making second order decentralized methods impossible. D-BFGS is a fully distributed algorithm in which nodes approximate curvature information of themselves and their neighbors through the satisfaction of a secant condition. We additionally provide a formulation of the algorithm in asynchronous settings. Convergence of D-BFGS is established formally in both the synchronous and asynchronous settings and strong performance advantages relative to first order methods are shown numerically.

  3. The ICARE Method

    NASA Technical Reports Server (NTRS)

    Henke, Luke

    2010-01-01

    The ICARE method is a flexible, widely applicable method for systems engineers to solve problems and resolve issues in a complete and comprehensive manner. The method can be tailored by diverse users for direct application to their function (e.g. system integrators, design engineers, technical discipline leads, analysts, etc.). The clever acronym, ICARE, instills the attitude of accountability, safety, technical rigor and engagement in the problem resolution: Identify, Communicate, Assess, Report, Execute (ICARE). This method was developed through observation of Space Shuttle Propulsion Systems Engineering and Integration (PSE&I) office personnel approach in an attempt to succinctly describe the actions of an effective systems engineer. Additionally it evolved from an effort to make a broadly-defined checklist for a PSE&I worker to perform their responsibilities in an iterative and recursive manner. The National Aeronautics and Space Administration (NASA) Systems Engineering Handbook states, engineering of NASA systems requires a systematic and disciplined set of processes that are applied recursively and iteratively for the design, development, operation, maintenance, and closeout of systems throughout the life cycle of the programs and projects. ICARE is a method that can be applied within the boundaries and requirements of NASA s systems engineering set of processes to provide an elevated sense of duty and responsibility to crew and vehicle safety. The importance of a disciplined set of processes and a safety-conscious mindset increases with the complexity of the system. Moreover, the larger the system and the larger the workforce, the more important it is to encourage the usage of the ICARE method as widely as possible. According to the NASA Systems Engineering Handbook, elements of a system can include people, hardware, software, facilities, policies and documents; all things required to produce system-level results, qualities, properties, characteristics

  4. Estimating parameter of Rayleigh distribution by using Maximum Likelihood method and Bayes method

    NASA Astrophysics Data System (ADS)

    Ardianti, Fitri; Sutarman

    2018-01-01

    In this paper, we use Maximum Likelihood estimation and Bayes method under some risk function to estimate parameter of Rayleigh distribution to know the best method. The prior knowledge which used in Bayes method is Jeffrey’s non-informative prior. Maximum likelihood estimation and Bayes method under precautionary loss function, entropy loss function, loss function-L 1 will be compared. We compare these methods by bias and MSE value using R program. After that, the result will be displayed in tables to facilitate the comparisons.

  5. Multigrid contact detection method

    NASA Astrophysics Data System (ADS)

    He, Kejing; Dong, Shoubin; Zhou, Zhaoyao

    2007-03-01

    Contact detection is a general problem of many physical simulations. This work presents a O(N) multigrid method for general contact detection problems (MGCD). The multigrid idea is integrated with contact detection problems. Both the time complexity and memory consumption of the MGCD are O(N) . Unlike other methods, whose efficiencies are influenced strongly by the object size distribution, the performance of MGCD is insensitive to the object size distribution. We compare the MGCD with the no binary search (NBS) method and the multilevel boxing method in three dimensions for both time complexity and memory consumption. For objects with similar size, the MGCD is as good as the NBS method, both of which outperform the multilevel boxing method regarding memory consumption. For objects with diverse size, the MGCD outperform both the NBS method and the multilevel boxing method. We use the MGCD to solve the contact detection problem for a granular simulation system based on the discrete element method. From this granular simulation, we get the density property of monosize packing and binary packing with size ratio equal to 10. The packing density for monosize particles is 0.636. For binary packing with size ratio equal to 10, when the number of small particles is 300 times as the number of big particles, the maximal packing density 0.824 is achieved.

  6. Adaptive Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Fasnacht, Marc

    We develop adaptive Monte Carlo methods for the calculation of the free energy as a function of a parameter of interest. The methods presented are particularly well-suited for systems with complex energy landscapes, where standard sampling techniques have difficulties. The Adaptive Histogram Method uses a biasing potential derived from histograms recorded during the simulation to achieve uniform sampling in the parameter of interest. The Adaptive Integration method directly calculates an estimate of the free energy from the average derivative of the Hamiltonian with respect to the parameter of interest and uses it as a biasing potential. We compare both methods to a state of the art method, and demonstrate that they compare favorably for the calculation of potentials of mean force of dense Lennard-Jones fluids. We use the Adaptive Integration Method to calculate accurate potentials of mean force for different types of simple particles in a Lennard-Jones fluid. Our approach allows us to separate the contributions of the solvent to the potential of mean force from the effect of the direct interaction between the particles. With contributions of the solvent determined, we can find the potential of mean force directly for any other direct interaction without additional simulations. We also test the accuracy of the Adaptive Integration Method on a thermodynamic cycle, which allows us to perform a consistency check between potentials of mean force and chemical potentials calculated using the Adaptive Integration Method. The results demonstrate a high degree of consistency of the method.

  7. Numerical methods in acoustics

    NASA Astrophysics Data System (ADS)

    Candel, S. M.

    This paper presents a survey of some computational techniques applicable to acoustic wave problems. Recent advances in wave extrapolation methods, spectral methods and boundary integral methods are discussed and illustrated by specific calculations.

  8. Pesticide Analytical Methods

    EPA Pesticide Factsheets

    Pesticide manufacturers must develop and submit analytical methods for their pesticide products to support registration of their products under FIFRA. Learn about these methods as well as SOPs for testing of antimicrobial products against three organisms.

  9. Inexact adaptive Newton methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertiger, W.I.; Kelsey, F.J.

    1985-02-01

    The Inexact Adaptive Newton method (IAN) is a modification of the Adaptive Implicit Method/sup 1/ (AIM) with improved Newton convergence. Both methods simplify the Jacobian at each time step by zeroing coefficients in regions where saturations are changing slowly. The methods differ in how the diagonal block terms are treated. On test problems with up to 3,000 cells, IAN consistently saves approximately 30% of the CPU time when compared to the fully implicit method. AIM shows similar savings on some problems, but takes as much CPU time as fully implicit on other test problems due to poor Newton convergence.

  10. Methods That Matter: Integrating Mixed Methods for More Effective Social Science Research

    ERIC Educational Resources Information Center

    Hay, M. Cameron, Ed.

    2016-01-01

    To do research that really makes a difference--the authors of this book argue--social scientists need questions and methods that reflect the complexity of the world. Bringing together a consortium of voices across a variety of fields, "Methods that Matter" offers compelling and successful examples of mixed methods research that do just…

  11. Kohn Anomaly and Phase Stability in Group VB Transition Metals

    DOE PAGES

    Landa, Alexander; Soderlind, Per; Naumov, Ivan; ...

    2018-03-26

    In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less

  12. Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional Transition-Metal Monochalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qihang; Zunger, Alex

    We show that the previously predicted “cubic Dirac fermion,” composed of six conventional Weyl fermions including three with left-handed and three with right-handed chirality, is realized in a specific, stable solid state system that has been made years ago, but was not appreciated as a “cubically dispersed Dirac semimetal” (CDSM). We identify the crystal symmetry constraints and find the space group P6 3/m as one of the two that can support a CDSM, of which the characteristic band crossing has linear dispersion along the principle axis but cubic dispersion in the plane perpendicular to it. We then conduct a materialmore » search using density functional theory, identifying a group of quasi-one-dimensional molybdenum monochalcogenide compounds A I(MoX VI) 3 (AI = Na, K, Rb, In, Tl; X VI = S , Se, Te) as ideal CDSM candidates. Studying the stability of the A ( MoX ) 3 family reveals a few candidates such as Rb(MoTe) 3 and Tl(MoTe) 3 that are predicted to be resilient to Peierls distortion, thus retaining the metallic character. Furthermore, the combination of one dimensionality and metallic nature in this family provides a platform for unusual optical signature—polarization-dependent metallic vs insulating response.« less

  13. Kohn Anomaly and Phase Stability in Group VB Transition Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landa, Alexander; Soderlind, Per; Naumov, Ivan

    In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less

  14. Micromechanical properties of single crystals and polycrystals of pure α-titanium: anisotropy of microhardness, size effect, effect of the temperature (77-300 K)

    NASA Astrophysics Data System (ADS)

    Lubenets, S. V.; Rusakova, A. V.; Fomenko, L. S.; Moskalenko, V. A.

    2018-01-01

    The anisotropy of microhardness of pure α-Ti single crystals, indentation size effect in single-crystal, course grained (CG) pure and nanocrystalline (NC) VT1-0 titanium, as well as the temperature dependences of the microhardness of single-crystal and CG Ti in the temperature range 77-300 K were studied. The minimum value of hardness was obtained when indenting into the basal plane (0001). The indentation size effect (ISE) was clearly observed in the indentation of soft high-purity single-crystal iodide titanium while it was the least pronounced in a sample of nanocrystalline VT1-0 titanium. It has been demonstrated that the ISE can be described within the model of geometrically necessary dislocations (GND), which follows from the theory of strain gradient plasticity. The true hardness and others parameters of the GND model were determined for all materials. The temperature dependence of the microhardness is in agreement with the idea of the governing role of Peierls relief in the dislocation thermally-activated plastic deformation of pure titanium as has been earlier established and justified in macroscopic tensile investigations at low temperatures. The activation energy and activation volume of dislocation motion in the strained region under the indenter were estimated.

  15. Charge-density-wave partial gap opening in quasi-2D KMo 6O 17 purple bronze studied by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Pantin, V.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-05-01

    Low dimensional (LD) metallic oxides have been a subject of continuous interest in the last two decades, mainly due to the electronic instabilities that they present at low temperatures. In particular, charge density waves (CDW) instabilities associated with a strong electron-phonon interaction have been found in Molybdenum metallic oxides such as KMo 6O 17 purple bronze. We report an angle resolved photoemission (ARPES) study from room temperature (RT) to T ˜40 K well below the Peierls transition temperature for this material, with CDW transition temperature TCDW ˜120 K. We have focused on photoemission spectra along ΓM high symmetry direction as well as photoemission measurements were taken as a function of temperature at one representative kF point in the Brillouin zone in order to look for the characteristic gap opening after the phase transition. We found out a pseudogap opening and a decrease in the density of states near the Fermi energy, EF, consistent with the partial removal of the nested portions of the Fermi surface (FS) at temperature below the CDW transition. In order to elucidate possible Fermi liquid (FL) or non-Fermi liquid (NFL) behaviour we have compared the ARPES data with that one reported on quasi-1D K 0.3MoO 3 blue bronze.

  16. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  17. Nonlocal electron-phonon coupling in the pentacene crystal: Beyond the Γ-point approximation

    NASA Astrophysics Data System (ADS)

    Yi, Yuanping; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2012-10-01

    There is currently increasing interest in understanding the impact of the nonlocal (Peierls-type) electron-phonon mechanism on charge transport in organic molecular semiconductors. Most estimates of the non-local coupling constants reported in the literature are based on the Γ-point phonon modes. Here, the influence of phonon modes spanning the entire Brillouin zone (phonon dispersion) on the nonlocal electron-phonon couplings is investigated for the pentacene crystal. The phonon modes are obtained by using a supercell approach. The results underline that the overall nonlocal couplings are substantially underestimated by calculations taking sole account of the phonons at the Γ point of the unit cell. The variance of the transfer integrals based on Γ-point normal-mode calculations at room temperature is underestimated in some cases by 40% for herringbone-type dimers and by over 80% for cofacial dimers. Our calculations show that the overall coupling is somewhat larger for holes than for electrons. The results also suggest that the interactions of charge carriers (both electrons and holes) with acoustic and optical phonons are comparable. Therefore, an adequate description of the charge-transport properties in pentacene and similar systems requires that these two electron-phonon coupling mechanisms be treated on the same footing.

  18. Metallization of vanadium dioxide driven by large phonon entropy

    DOE PAGES

    Budai, John D.; Hong, Jiawang; Manley, Michael E.; ...

    2014-11-10

    Phase competition underlies many remarkable and technologically important phenomena in transition-metal oxides. Vanadium dioxide exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled structural and electronic transition begin with two classic starting points: a Peierls MIT driven by instabilities in electron-lattice dynamics versus a Mott MIT where strong electron-electron correlations drive charge localization1-10. A key-missing piece of the VO2 puzzle is the role of lattice vibrations. Moreover, a comprehensive thermodynamic treatment must integrate both entropic and energetic aspects of themore » transition. Our measurements establish that the entropy driving the MIT is dominated by strongly anharmonic phonons rather than electronic contributions, and provide a direct determination of phonon dispersions. Our calculations identify softer bonding as the origin of the large vibrational entropy stabilizing the metallic rutile phase. They further reveal how a balance between higher entropy in the metal and orbital-driven lower energy in the insulator fully describes the thermodynamic forces controlling the MIT. This study illustrates the critical role of anharmonic lattice dynamics in metal-oxide phase competition, and provides guidance for the predictive design of new materials.« less

  19. Dynamical control of electron-phonon interactions with high-frequency light

    NASA Astrophysics Data System (ADS)

    Dutreix, C.; Katsnelson, M. I.

    2017-01-01

    This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green's functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can be visited within the same material when varying the driving strength. This work provides some insight into controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in shaken optical lattices of ultracold atoms.

  20. Li intercalation in graphite: A van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  1. Formal Valence, 3 d Occupation, and Charge Ordering Transitions

    NASA Astrophysics Data System (ADS)

    Pickett, Warren

    2014-03-01

    The metal-insulator transition (MIT), discovered by Verwey in the late 1930s, has been thought to be one of the best understood of MITs, the other ones being named after Wigner, Peierls, Mott, and Anderson. Continuing work on these transitions finds in some cases less and less charge to order, raising the fundamental question of just where the entropy is coming from, and just what is ordering. To provide insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation, I will (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new theoretical results for the rare earth nickelates (viz. YNiO3), the putative charge ordering compound AgNiO2, and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. Several of the clearest cases of charge ordering transitions involve no disproportion; moreover, the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer The challenge of modeling charge ordering transitions with model Hamiltonians will be discussed. Acknowledgment: Y. Quan, V. Pardo. Supported by NSF award DMR-1207622-0.

  2. Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional Transition-Metal Monochalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Qihang; Zunger, Alex

    2017-04-01

    We show that the previously predicted "cubic Dirac fermion," composed of six conventional Weyl fermions including three with left-handed and three with right-handed chirality, is realized in a specific, stable solid state system that has been made years ago, but was not appreciated as a "cubically dispersed Dirac semimetal" (CDSM). We identify the crystal symmetry constraints and find the space group P 63/m as one of the two that can support a CDSM, of which the characteristic band crossing has linear dispersion along the principle axis but cubic dispersion in the plane perpendicular to it. We then conduct a material search using density functional theory, identifying a group of quasi-one-dimensional molybdenum monochalcogenide compounds AI(MoXVI)3 (AI=Na , K, Rb, In, Tl; XVI=S , Se, Te) as ideal CDSM candidates. Studying the stability of the A (MoX) 3 family reveals a few candidates such as Rb (MoTe) 3 and Tl (MoTe) 3 that are predicted to be resilient to Peierls distortion, thus retaining the metallic character. Furthermore, the combination of one dimensionality and metallic nature in this family provides a platform for unusual optical signature—polarization-dependent metallic vs insulating response.

  3. Predicted Realization of Cubic Dirac Fermion in Quasi-One-Dimensional Transition-Metal Monochalcogenides

    DOE PAGES

    Liu, Qihang; Zunger, Alex

    2017-05-09

    We show that the previously predicted “cubic Dirac fermion,” composed of six conventional Weyl fermions including three with left-handed and three with right-handed chirality, is realized in a specific, stable solid state system that has been made years ago, but was not appreciated as a “cubically dispersed Dirac semimetal” (CDSM). We identify the crystal symmetry constraints and find the space group P6 3/m as one of the two that can support a CDSM, of which the characteristic band crossing has linear dispersion along the principle axis but cubic dispersion in the plane perpendicular to it. We then conduct a materialmore » search using density functional theory, identifying a group of quasi-one-dimensional molybdenum monochalcogenide compounds A I(MoX VI) 3 (AI = Na, K, Rb, In, Tl; X VI = S , Se, Te) as ideal CDSM candidates. Studying the stability of the A ( MoX ) 3 family reveals a few candidates such as Rb(MoTe) 3 and Tl(MoTe) 3 that are predicted to be resilient to Peierls distortion, thus retaining the metallic character. Furthermore, the combination of one dimensionality and metallic nature in this family provides a platform for unusual optical signature—polarization-dependent metallic vs insulating response.« less

  4. The optical gap in VO2 insulating phases is dominated by Coulomb repulsion

    NASA Astrophysics Data System (ADS)

    Hendriks, Christopher; Walter, Eric; Krakauer, Henry; Huffman, Tyler; Qazilbash, Mumtaz

    Under doping, tensile strain or heating, vanadium dioxide (VO2) transforms from an insulating monoclinic (M1) to a metallic rutile (R) phase, progressing through intermediate insulating triclinic (T) and magnetic (M2) phases. Broadband optical spectroscopy data have been obtained on the T and M2 phases in the same sample. While only half the V atoms are dimerized in M2 compared to M1 and T, the measured optical gap is essentially unaltered by the first-order structural phase transition between them. Moreover, the optical interband features in the T and M2 phases are remarkably similar to those previously observed in the well-studied M1 phase. This shows that the electronic structure is insensitive to the lattice structure. Our ab-initio HSE optical conductivity calculations on the insulating phases of VO2 are in excellent agreement with the experimental measurements. We will discuss the choice of α, the fraction of exact exchange. As the energy gap is insensitive to the different lattice structures of the three insulating phases, we rule out Peierls effects as the dominant contributor to the opening of the gap. Rather, the energy gap arises from intra-atomic Coulomb correlations. Supported by ONR.

  5. Nanotube structures, methods of making nanotube structures, and methods of accessing intracellular space

    DOEpatents

    VanDersarl, Jules J.; Xu, Alexander M.; Melosh, Nicholas A.; Tayebi, Noureddine

    2016-02-23

    In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to methods of making a structure including nanotubes, a structure including nanotubes, methods of delivering a fluid to a cell, methods of removing a fluid to a cell, methods of accessing intracellular space, and the like.

  6. Ignitability test method

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1989-01-01

    To overcome serious weaknesses in determining the performance of initiating devices, a novel 'ignitability test method', representing actual design interfaces and ignition materials, has been developed. Ignition device output consists of heat, light, gas an burning particles. Past research methods have evaluated these parameters individually. This paper describes the development and demonstration of an ignitability test method combining all these parameters, and the quantitative assessment of the ignition performance of two widely used percussion primers, the M42C1-PA101 and the M42C2-793. The ignition materials used for this evaluation were several powder, granule and pellet sizes of black powder and boron-potassium nitrate. This test method should be useful for performance evaluation of all initiator types, quality assurance, evaluation of ignition interfaces, and service life studies of initiators and ignition materials.

  7. Catalytic reforming methods

    DOEpatents

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  8. An Extended Lagrangian Method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1995-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method,' is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. The present method and the Arbitrary Lagrangian-Eulerian (ALE) method have a similarity in spirit-eliminating the cross-streamline numerical diffusion. For this purpose, we suggest a simple grid constraint condition and utilize an accurate discretization procedure. This grid constraint is only applied to the transverse cell face parallel to the local stream velocity, and hence our method for the steady state problems naturally reduces to the streamline-curvature method, without explicitly solving the steady stream-coordinate equations formulated a priori. Unlike the Lagrangian method proposed by Loh and Hui which is valid only for steady supersonic flows, the present method is general and capable of treating subsonic flows and supersonic flows as well as unsteady flows, simply by invoking in the same code an appropriate grid constraint suggested in this paper. The approach is found to be robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multi-dimensional discontinuities with a high level of accuracy, similar to that found in one-dimensional problems.

  9. Capital investment analysis: three methods.

    PubMed

    Gapenski, L C

    1993-08-01

    Three cash flow/discount rate methods can be used when conducting capital budgeting financial analyses: the net operating cash flow method, the net cash flow to investors method, and the net cash flow to equity holders method. The three methods differ in how the financing mix and the benefits of debt financing are incorporated. This article explains the three methods, demonstrates that they are essentially equivalent, and recommends which method to use under specific circumstances.

  10. Single-Case Designs and Qualitative Methods: Applying a Mixed Methods Research Perspective

    ERIC Educational Resources Information Center

    Hitchcock, John H.; Nastasi, Bonnie K.; Summerville, Meredith

    2010-01-01

    The purpose of this conceptual paper is to describe a design that mixes single-case (sometimes referred to as single-subject) and qualitative methods, hereafter referred to as a single-case mixed methods design (SCD-MM). Minimal attention has been given to the topic of applying qualitative methods to SCD work in the literature. These two…

  11. An extended Lagrangian method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing

    1993-01-01

    A unique formulation of describing fluid motion is presented. The method, referred to as 'extended Lagrangian method', is interesting from both theoretical and numerical points of view. The formulation offers accuracy in numerical solution by avoiding numerical diffusion resulting from mixing of fluxes in the Eulerian description. Meanwhile, it also avoids the inaccuracy incurred due to geometry and variable interpolations used by the previous Lagrangian methods. The present method is general and capable of treating subsonic flows as well as supersonic flows. The method proposed in this paper is robust and stable. It automatically adapts to flow features without resorting to clustering, thereby maintaining rather uniform grid spacing throughout and large time step. Moreover, the method is shown to resolve multidimensional discontinuities with a high level of accuracy, similar to that found in 1D problems.

  12. Evaluating marginal likelihood with thermodynamic integration method and comparison with several other numerical methods

    DOE PAGES

    Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; ...

    2016-02-05

    Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamicmore » integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. As a result, the thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.« less

  13. Topics in spectral methods

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Turkel, E.

    1985-01-01

    After detailing the construction of spectral approximations to time-dependent mixed initial boundary value problems, a study is conducted of differential equations of the form 'partial derivative of u/partial derivative of t = Lu + f', where for each t, u(t) belongs to a Hilbert space such that u satisfies homogeneous boundary conditions. For the sake of simplicity, it is assumed that L is an unbounded, time-independent linear operator. Attention is given to Fourier methods of both Galerkin and pseudospectral method types, the Galerkin method, the pseudospectral Chebyshev and Legendre methods, the error equation, hyperbolic partial differentiation equations, and time discretization and iterative methods.

  14. A rapid method for soil cement design : Louisiana slope value method.

    DOT National Transportation Integrated Search

    1964-03-01

    The current procedure used by the Louisiana Department of Highways for laboratory design of cement stabilized soil base and subbase courses is taken from standard AASHO test methods, patterned after Portland Cement Association criteria. These methods...

  15. The Misgav Ladach method for cesarean section: method description.

    PubMed

    Holmgren, G; Sjöholm, L; Stark, M

    1999-08-01

    A method description is given for the Misgav Ladach method for cesarean section. This is based on the Joel-Cohen incision originally introduced for hysterectomy. The incision is a straight transverse incision somewhat higher than the Pfannenstiel incision. The subcutaneous tissue is left undisturbed apart from the midline. The rectus sheath is separated along its fibres. The rectus muscles are separated by pulling. The peritoneum is opened by stretching with index fingers. The uterus is opened with an index finger and the hole enlarged between the index finger of one hand and the thumb on the other. The uterus is closed with a one-layer continuous locking stitch. The visceral and parietal peritoneal layers are left open. The rectus muscle is not stitched. The rectus sheath is stitched with a continuous non-locking stitch. The skin is closed with two or three mattress sutures. The space in between is apposed with non-traumatic forceps for 5 minutes. The basic philosophy is to work in harmony with the body's anatomy and physiology and not against them. The method is restrictive in the use of sharp instruments, preferring manual manipulation. The method gives quicker recovery, less use of post-operative antibiotics, antifebrile medicines and analgesics. There is a shorter anesthetic and shorter working time for the operative team. It is suitable for both emergency and planned operations.

  16. Sand consolidation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, B.M.

    1965-10-05

    This is a new and improved sand consolidation method wherein an in-situ curing of a resinous fluid is undertaken. This method does not require that the resinous fluids be catalyzed at the surface of the well or well bore as is the case in previous methods. This method consists of, first, pumping an acid-curable consolidating fluid into the unconsolidated sand or earth formation and, secondly, pumping an oil overflush solution containing a halogenated organic or other organic acid or delayed acid-producing chemical. A small quantity of diesel oilspacer may be used between the plastic catalyst solution. The overflush functions tomore » remove permeability, and its acid or acid producing component promotes subsequent hardening of the remaining film of consolidating fluid. Trichloroacetic acid and benzotrichloride are satisfactory to add to the overflush solution for curing the resins. (17 claims)« less

  17. [Principle of LAMP method--a simple and rapid gene amplification method].

    PubMed

    Ushikubo, Hiroshi

    2004-06-01

    So far nucleic acid test (NAT) has been employed in various fields, including infectious disease diagnoses. However, due to its complicated procedures and relatively high cost, it has not been widely utilized in many actual diagnostic applications. We have therefore developed a simple and rapid gene amplification technology, Loop-mediated Isothermal Amplification (LAMP) method, which has shown prominent results of surpassing the performance of the conventional gene amplification methods. LAMP method acquires three main features: (1) all reaction can be carried out under isothermal conditions; (2) the amplification efficiency is extremely high and tremendous amount of amplification products can be obtained; and (3) the reaction is highly specific. Furthermore, developed from the standard LAMP method, a rapid LAMP method, by adding in the loop primers, can reduce the amplification time from the previous 1 hour to less than 30 minutes. Enormous amount of white precipitate of magnesium pyrophosphate is produced as a by-product of the amplification, therefore, direct visual detection is possible without using any reaction indicators and detection equipments. We believe LAMP technology, with the integration of these features, can rightly apply to clinical genetic testing, food and environmental analysis, as well as NAT in different fields.

  18. Improved nonlinear prediction method

    NASA Astrophysics Data System (ADS)

    Adenan, Nur Hamiza; Md Noorani, Mohd Salmi

    2014-06-01

    The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.

  19. Language Practitioners' Reflections on Method-Based and Post-Method Pedagogies

    ERIC Educational Resources Information Center

    Soomro, Abdul Fattah; Almalki, Mansoor S.

    2017-01-01

    Method-based pedagogies are commonly applied in teaching English as a foreign language all over the world. However, in the last quarter of the 20th century, the concept of such pedagogies based on the application of a single best method in EFL started to be viewed with concerns by some scholars. In response to the growing concern against the…

  20. Overview On Alternative Asbestos Control Method Research: Alternative Methods To Demolition

    EPA Science Inventory

    The Alternative Asbestos Control Method (AACM) is an experimental approach to building demolition. Unlike the NESHAP method, the AACM allows some regulated asbestos-containing material to remain in the building and a surfactant-water solution is used to suppress asbestos fibers ...

  1. Computational Methods in Drug Discovery

    PubMed Central

    Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens

    2014-01-01

    Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236

  2. Overview of paint removal methods

    NASA Astrophysics Data System (ADS)

    Foster, Terry

    1995-04-01

    With the introduction of strict environmental regulations governing the use and disposal of methylene chloride and phenols, major components of chemical paint strippers, there have been many new environmentally safe and effective methods of paint removal developed. The new methods developed for removing coatings from aircraft and aircraft components include: mechanical methods using abrasive media such as plastic, wheat starch, walnut shells, ice and dry ice, environmentally safe chemical strippers and paint softeners, and optical methods such as lasers and flash lamps. Each method has its advantages and disadvantages, and some have unique applications. For example, mechanical and abrasive methods can damage sensitive surfaces such as composite materials and strict control of blast parameters and conditions are required. Optical methods can be slow, leaving paint residues, and chemical methods may not remove all of the coating or require special coating formulations to be effective. As an introduction to environmentally safe and effective methods of paint removal, this paper is an overview of the various methods available. The purpose of this overview is to introduce the various paint removal methods available.

  3. John Butcher and hybrid methods

    NASA Astrophysics Data System (ADS)

    Mehdiyeva, Galina; Imanova, Mehriban; Ibrahimov, Vagif

    2017-07-01

    As is known there are the mainly two classes of the numerical methods for solving ODE, which is commonly called a one and multistep methods. Each of these methods has certain advantages and disadvantages. It is obvious that the method which has better properties of these methods should be constructed at the junction of them. In the middle of the XX century, Butcher and Gear has constructed at the junction of the methods of Runge-Kutta and Adams, which is called hybrid method. Here considers the construction of certain generalizations of hybrid methods, with the high order of accuracy and to explore their application to solving the Ordinary Differential, Volterra Integral and Integro-Differential equations. Also have constructed some specific hybrid methods with the degree p ≤ 10.

  4. The Base 32 Method: An Improved Method for Coding Sibling Constellations.

    ERIC Educational Resources Information Center

    Perfetti, Lawrence J. Carpenter

    1990-01-01

    Offers new sibling constellation coding method (Base 32) for genograms using binary and base 32 numbers that saves considerable microcomputer memory. Points out that new method will result in greater ability to store and analyze larger amounts of family data. (Author/CM)

  5. Consensus methods: review of original methods and their main alternatives used in public health

    PubMed Central

    Bourrée, Fanny; Michel, Philippe; Salmi, Louis Rachid

    2008-01-01

    Summary Background Consensus-based studies are increasingly used as decision-making methods, for they have lower production cost than other methods (observation, experimentation, modelling) and provide results more rapidly. The objective of this paper is to describe the principles and methods of the four main methods, Delphi, nominal group, consensus development conference and RAND/UCLA, their use as it appears in peer-reviewed publications and validation studies published in the healthcare literature. Methods A bibliographic search was performed in Pubmed/MEDLINE, Banque de Données Santé Publique (BDSP), The Cochrane Library, Pascal and Francis. Keywords, headings and qualifiers corresponding to a list of terms and expressions related to the consensus methods were searched in the thesauri, and used in the literature search. A search with the same terms and expressions was performed on Internet using the website Google Scholar. Results All methods, precisely described in the literature, are based on common basic principles such as definition of subject, selection of experts, and direct or remote interaction processes. They sometimes use quantitative assessment for ranking items. Numerous variants of these methods have been described. Few validation studies have been implemented. Not implementing these basic principles and failing to describe the methods used to reach the consensus were both frequent reasons contributing to raise suspicion regarding the validity of consensus methods. Conclusion When it is applied to a new domain with important consequences in terms of decision making, a consensus method should be first validated. PMID:19013039

  6. Space methods in oceanology

    NASA Technical Reports Server (NTRS)

    Bolshakov, A. A.

    1985-01-01

    The study of Earth from space with specialized satellites, and from manned orbiting stations, has become important in the space programs. The broad complex of methods used for probing Earth from space are different methods of the study of ocean, dynamics. The different methods of ocean observation are described.

  7. Structural reliability calculation method based on the dual neural network and direct integration method.

    PubMed

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  8. A Person-Oriented Approach: Methods for Today and Methods for Tomorrow

    ERIC Educational Resources Information Center

    Bergman, Lars R.; El-Khouri, Bassam M.

    2003-01-01

    Methodological implications of a person-oriented, holistic-interactionistic perspective in research on individual development are outlined, desirable properties of a mathematical model of a phenomenon are discussed, and selected methods for carrying out person-oriented research are briefly overviewed. These methods are: (1) the classificatory…

  9. Method Development in Forensic Toxicology.

    PubMed

    Peters, Frank T; Wissenbach, Dirk K; Busardo, Francesco Paolo; Marchei, Emilia; Pichini, Simona

    2017-01-01

    In the field of forensic toxicology, the quality of analytical methods is of great importance to ensure the reliability of results and to avoid unjustified legal consequences. A key to high quality analytical methods is a thorough method development. The presented article will provide an overview on the process of developing methods for forensic applications. This includes the definition of the method's purpose (e.g. qualitative vs quantitative) and the analytes to be included, choosing an appropriate sample matrix, setting up separation and detection systems as well as establishing a versatile sample preparation. Method development is concluded by an optimization process after which the new method is subject to method validation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. DISCOURSE ON METHODS.

    ERIC Educational Resources Information Center

    BOUCHER, JOHN G.

    THE AUTHOR STATES THAT BEFORE PRESENT FOREIGN LANGUAGE TEACHING METHODS CAN BE DISCUSSED INTELLIGENTLY, THE RESEARCH IN PSYCHOLOGY AND LINGUISTICS WHICH HAS INFLUENCED THE DEVELOPMENT OF THESE METHODS MUST BE CONSIDERED. MANY FOREIGN LANGUAGE TEACHERS WERE BEGINNING TO FEEL COMFORTABLE WITH THE AUDIOLINGUAL APPROACH WHEN NOAM CHOMSKY, IN HIS 1966…

  11. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  12. Validating Analytical Methods

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1977-01-01

    The procedures utilized by the Association of Official Analytical Chemists (AOAC) to develop, evaluate, and validate analytical methods for the analysis of chemical pollutants are detailed. Methods validated by AOAC are used by the EPA and FDA in their enforcement programs and are granted preferential treatment by the courts. (BT)

  13. Coherent Anomaly Method Calculation on the Cluster Variation Method. II.

    NASA Astrophysics Data System (ADS)

    Wada, Koh; Watanabe, Naotosi; Uchida, Tetsuya

    The critical exponents of the bond percolation model are calculated in the D(= 2,3,…)-dimensional simple cubic lattice on the basis of Suzuki's coherent anomaly method (CAM) by making use of a series of the pair, the square-cactus and the square approximations of the cluster variation method (CVM) in the s-state Potts model. These simple approximations give reasonable values of critical exponents α, β, γ and ν in comparison with ones estimated by other methods. It is also shown that the results of the pair and the square-cactus approximations can be derived as exact results of the bond percolation model on the Bethe and the square-cactus lattice, respectively, in the presence of ghost field without recourse to the s→1 limit of the s-state Potts model.

  14. John Herschel's Graphical Method

    NASA Astrophysics Data System (ADS)

    Hankins, Thomas L.

    2011-01-01

    In 1833 John Herschel published an account of his graphical method for determining the orbits of double stars. He had hoped to be the first to determine such orbits, but Felix Savary in France and Johann Franz Encke in Germany beat him to the punch using analytical methods. Herschel was convinced, however, that his graphical method was much superior to analytical methods, because it used the judgment of the hand and eye to correct the inevitable errors of observation. Line graphs of the kind used by Herschel became common only in the 1830s, so Herschel was introducing a new method. He also found computation fatiguing and devised a "wheeled machine" to help him out. Encke was skeptical of Herschel's methods. He said that he lived for calculation and that the English would be better astronomers if they calculated more. It is difficult to believe that the entire Scientific Revolution of the 17th century took place without graphs and that only a few examples appeared in the 18th century. Herschel promoted the use of graphs, not only in astronomy, but also in the study of meteorology and terrestrial magnetism. Because he was the most prominent scientist in England, Herschel's advocacy greatly advanced graphical methods.

  15. Methods comparison for microsatellite marker development: Different isolation methods, different yield efficiency

    NASA Astrophysics Data System (ADS)

    Zhan, Aibin; Bao, Zhenmin; Hu, Xiaoli; Lu, Wei; Hu, Jingjie

    2009-06-01

    Microsatellite markers have become one kind of the most important molecular tools used in various researches. A large number of microsatellite markers are required for the whole genome survey in the fields of molecular ecology, quantitative genetics and genomics. Therefore, it is extremely necessary to select several versatile, low-cost, efficient and time- and labor-saving methods to develop a large panel of microsatellite markers. In this study, we used Zhikong scallop ( Chlamys farreri) as the target species to compare the efficiency of the five methods derived from three strategies for microsatellite marker development. The results showed that the strategy of constructing small insert genomic DNA library resulted in poor efficiency, while the microsatellite-enriched strategy highly improved the isolation efficiency. Although the mining public database strategy is time- and cost-saving, it is difficult to obtain a large number of microsatellite markers, mainly due to the limited sequence data of non-model species deposited in public databases. Based on the results in this study, we recommend two methods, microsatellite-enriched library construction method and FIASCO-colony hybridization method, for large-scale microsatellite marker development. Both methods were derived from the microsatellite-enriched strategy. The experimental results obtained from Zhikong scallop also provide the reference for microsatellite marker development in other species with large genomes.

  16. Mixed methods in psychotherapy research: A review of method(ology) integration in psychotherapy science.

    PubMed

    Bartholomew, Theodore T; Lockard, Allison J

    2018-06-13

    Mixed methods can foster depth and breadth in psychological research. However, its use remains in development in psychotherapy research. Our purpose was to review the use of mixed methods in psychotherapy research. Thirty-one studies were identified via the PRISMA systematic review method. Using Creswell & Plano Clark's typologies to identify design characteristics, we assessed each study for rigor and how each used mixed methods. Key features of mixed methods designs and these common patterns were identified: (a) integration of clients' perceptions via mixing; (b) understanding group psychotherapy; (c) integrating methods with cases and small samples; (d) analyzing clinical data as qualitative data; and (e) exploring cultural identities in psychotherapy through mixed methods. The review is discussed with respect to the value of integrating multiple data in single studies to enhance psychotherapy research. © 2018 Wiley Periodicals, Inc.

  17. Multi-resolution MPS method

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki; Cardoso, Rui; Bahai, Hamid

    2018-04-01

    In this work, the Moving Particle Semi-implicit (MPS) method is enhanced for multi-resolution problems with different resolutions at different parts of the domain utilising a particle splitting algorithm for the finer resolution and a particle merging algorithm for the coarser resolution. The Least Square MPS (LSMPS) method is used for higher stability and accuracy. Novel boundary conditions are developed for the treatment of wall and pressure boundaries for the Multi-Resolution LSMPS method. A wall is represented by polygons for effective simulations of fluid flows with complex wall geometries and the pressure boundary condition allows arbitrary inflow and outflow, making the method easier to be used in flow simulations of channel flows. By conducting simulations of channel flows and free surface flows, the accuracy of the proposed method was verified.

  18. Attribute-Based Methods

    Treesearch

    Thomas P. Holmes; Wiktor L. Adamowicz

    2003-01-01

    Stated preference methods of environmental valuation have been used by economists for decades where behavioral data have limitations. The contingent valuation method (Chapter 5) is the oldest stated preference approach, and hundreds of contingent valuation studies have been conducted. More recently, and especially over the last decade, a class of stated preference...

  19. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  20. New Adsorption Methods.

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    1984-01-01

    Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)

  1. Spectral collocation methods

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.

    1987-01-01

    This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.

  2. Toward cost-efficient sampling methods

    NASA Astrophysics Data System (ADS)

    Luo, Peng; Li, Yongli; Wu, Chong; Zhang, Guijie

    2015-09-01

    The sampling method has been paid much attention in the field of complex network in general and statistical physics in particular. This paper proposes two new sampling methods based on the idea that a small part of vertices with high node degree could possess the most structure information of a complex network. The two proposed sampling methods are efficient in sampling high degree nodes so that they would be useful even if the sampling rate is low, which means cost-efficient. The first new sampling method is developed on the basis of the widely used stratified random sampling (SRS) method and the second one improves the famous snowball sampling (SBS) method. In order to demonstrate the validity and accuracy of two new sampling methods, we compare them with the existing sampling methods in three commonly used simulation networks that are scale-free network, random network, small-world network, and also in two real networks. The experimental results illustrate that the two proposed sampling methods perform much better than the existing sampling methods in terms of achieving the true network structure characteristics reflected by clustering coefficient, Bonacich centrality and average path length, especially when the sampling rate is low.

  3. Methods of forming semiconductor devices and devices formed using such methods

    DOEpatents

    Fox, Robert V; Rodriguez, Rene G; Pak, Joshua

    2013-05-21

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  4. Substituted 6-nitroquipazines, methods of preparation, and methods of use

    DOEpatents

    Mathis, Jr., Chester A.; Biegon, Anat; Taylor, Scott E.; Enas, Joel D.

    1994-01-01

    Disclosed is a substituted 6-nitroquipazine of the formula ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, and R.sub.4 are each selected from the group consisting of H, Fl, CL, Br, I, CF.sub.3, CH.sub.2 CH.sub.2 F, CH.sub.3, CH.sub.2 CH.sub.3, and --CH(CH.sub.3).sub.2, and wherein one of R.sub.1, R.sub.2, R.sub.3, and R.sub.4 is other than H. Also disclosed is a method for measurement of serotonin uptake sites in a sample, in which a radioligand is incubated with a sample and then the radioactivity of the radioligand bound to the sample is determined, utilizing a radio labeled substituted 6-nitroquipazine as the radioligand. Also disclosed is a method of manufacture and method of use.

  5. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

    ERIC Educational Resources Information Center

    Akgün, Levent

    2015-01-01

    The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

  6. [Comparative clinical analysis of cesarean section technique by Misgav Ladach method and Pfennenstiel method].

    PubMed

    Popiela, A; Pańszczyk, M; Korzeniewski, J; Baranowski, W

    2000-04-01

    Clinical and biochemical parameters were analysed in 55 patients who underwent a caesarean section performed using Misgav Ladach method compared to reference group of 41 patients who underwent caesarean section using Pfannenstiel method. Shortened operation time, shortened hospitalisation time and less postoperative morbidity were observed in the Misgav Ladach group. This kind of method seems to have advantages in comparison to Pfannenstiel method.

  7. Vector potential methods

    NASA Technical Reports Server (NTRS)

    Hafez, M.

    1989-01-01

    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed.

  8. Water-budget methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    A water budget is an accounting of water movement into and out of, and storage change within, some control volume. Universal and adaptable are adjectives that reflect key features of water-budget methods for estimating recharge. The universal concept of mass conservation of water implies that water-budget methods are applicable over any space and time scales (Healy et al., 2007). The water budget of a soil column in a laboratory can be studied at scales of millimeters and seconds. A water-budget equation is also an integral component of atmospheric general circulation models used to predict global climates over periods of decades or more. Water-budget equations can be easily customized by adding or removing terms to accurately portray the peculiarities of any hydrologic system. The equations are generally not bound by assumptions on mechanisms by which water moves into, through, and out of the control volume of interest. So water-budget methods can be used to estimate both diffuse and focused recharge, and recharge estimates are unaffected by phenomena such as preferential flow paths within the unsaturated zone.Water-budget methods represent the largest class of techniques for estimating recharge. Most hydrologic models are derived from a water-budget equation and can therefore be classified as water-budget models. It is not feasible to address all water-budget methods in a single chapter. This chapter is limited to discussion of the “residual” water-budget approach, whereby all variables in a water-budget equation, except for recharge, are independently measured or estimated and recharge is set equal to the residual. This chapter is closely linked with Chapter 3, on modeling methods, because the equations presented here form the basis of many models and because models are often used to estimate individual components in water-budget studies. Water budgets for streams and other surface-water bodies are addressed in Chapter 4. The use of soil-water budgets and

  9. Geobacteraceae strains and methods

    DOEpatents

    Lovley, Derek R.; Nevin, Kelly P.; Yi, Hana

    2015-07-07

    Embodiments of the present invention provide a method of producing genetically modified strains of electricigenic microbes that are specifically adapted for the production of electrical current in microbial fuel cells, as well as strains produced by such methods and fuel cells using such strains. In preferred embodiments, the present invention provides genetically modified strains of Geobacter sulfurreducens and methods of using such strains.

  10. Winograd Method Versus Winograd Method With Electrocoagulation in the Treatment of Ingrown Toenails.

    PubMed

    Acar, Erdinc

    An important component of the Winograd surgical method for an ingrown toenail is total excision of the associated germinal matrix. However, this might not always be accomplished with the procedure. We hypothesized that the surgical results might be improved by adding electrocoagulation of the germinal matrix to the Winograd method. The objective of the present study was to compare the recurrence, satisfaction, and complication rates of the Winograd method with those of the Winograd method with electrocoagulation. We retrospectively evaluated the records of 102 patients with single Heifetz stage 2 or 3 ingrown toenails who had undergone surgery from January 2013 to October 2014 using 1 of these 2 methods. Of the 102 patients, 50 (49%) underwent the Winograd method and 52 (51%) underwent the Winograd method with electrocoagulation. The mean follow-up period of our patients was 12 (range 6 to 22) months. An ingrown toenail recurred in 3 patients (6%) in the Winograd group and in no patient in the Winograd with electrocoagulation group (p = .04). Among the patients in the Winograd group, 46 (92.0%) were satisfied or very satisfied. Among the patients in the Winograd plus electrocoagulation group, 49 (94.2%) were satisfied or very satisfied (p = .04). No complications developed in either group. In conclusion, the Winograd method for ingrown toenails results in high satisfaction rates, low recurrence rates, and low complication rates. The addition of electrocoagulation of the germinal matrix to the Winograd method could result in even lower recurrence rates, while maintaining high patient satisfaction and without increasing the risk of complications. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Discontinuous Finite Element Quasidiffusion Methods

    DOE PAGES

    Anistratov, Dmitriy Yurievich; Warsa, James S.

    2018-05-21

    Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less

  12. Discontinuous Finite Element Quasidiffusion Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anistratov, Dmitriy Yurievich; Warsa, James S.

    Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less

  13. Impact of Uniform Methods on Interlaboratory Antibody Titration Variability: Antibody Titration and Uniform Methods.

    PubMed

    Bachegowda, Lohith S; Cheng, Yan H; Long, Thomas; Shaz, Beth H

    2017-01-01

    -Substantial variability between different antibody titration methods prompted development and introduction of uniform methods in 2008. -To determine whether uniform methods consistently decrease interlaboratory variation in proficiency testing. -Proficiency testing data for antibody titration between 2009 and 2013 were obtained from the College of American Pathologists. Each laboratory was supplied plasma and red cells to determine anti-A and anti-D antibody titers by their standard method: gel or tube by uniform or other methods at different testing phases (immediate spin and/or room temperature [anti-A], and/or anti-human globulin [AHG: anti-A and anti-D]) with different additives. Interlaboratory variations were compared by analyzing the distribution of titer results by method and phase. -A median of 574 and 1100 responses were reported for anti-A and anti-D antibody titers, respectively, during a 5-year period. The 3 most frequent (median) methods performed for anti-A antibody were uniform tube room temperature (147.5; range, 119-159), uniform tube AHG (143.5; range, 134-150), and other tube AHG (97; range, 82-116); for anti-D antibody, the methods were other tube (451; range, 431-465), uniform tube (404; range, 382-462), and uniform gel (137; range, 121-153). Of the larger reported methods, uniform gel AHG phase for anti-A and anti-D antibodies had the most participants with the same result (mode). For anti-A antibody, 0 of 8 (uniform versus other tube room temperature) and 1 of 8 (uniform versus other tube AHG), and for anti-D antibody, 0 of 8 (uniform versus other tube) and 0 of 8 (uniform versus other gel) proficiency tests showed significant titer variability reduction. -Uniform methods harmonize laboratory techniques but rarely reduce interlaboratory titer variance in comparison with other methods.

  14. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  15. The Schwinger Variational Method

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    1995-01-01

    Variational methods have proven invaluable in theoretical physics and chemistry, both for bound state problems and for the study of collision phenomena. The application of the Schwinger variational (SV) method to e-molecule collisions and molecular photoionization has been reviewed previously. The present chapter discusses the implementation of the SV method as applied to e-molecule collisions. Since this is not a review of cross section data, cross sections are presented only to server as illustrative examples. In the SV method, the correct boundary condition is automatically incorporated through the use of Green's function. Thus SV calculations can employ basis functions with arbitrary boundary conditions. The iterative Schwinger method has been used extensively to study molecular photoionization. For e-molecule collisions, it is used at the static exchange level to study elastic scattering and coupled with the distorted wave approximation to study electronically inelastic scattering.

  16. [Methods of quantitative proteomics].

    PubMed

    Kopylov, A T; Zgoda, V G

    2007-01-01

    In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and functional homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.

  17. The multigrid preconditioned conjugate gradient method

    NASA Technical Reports Server (NTRS)

    Tatebe, Osamu

    1993-01-01

    A multigrid preconditioned conjugate gradient method (MGCG method), which uses the multigrid method as a preconditioner of the PCG method, is proposed. The multigrid method has inherent high parallelism and improves convergence of long wavelength components, which is important in iterative methods. By using this method as a preconditioner of the PCG method, an efficient method with high parallelism and fast convergence is obtained. First, it is considered a necessary condition of the multigrid preconditioner in order to satisfy requirements of a preconditioner of the PCG method. Next numerical experiments show a behavior of the MGCG method and that the MGCG method is superior to both the ICCG method and the multigrid method in point of fast convergence and high parallelism. This fast convergence is understood in terms of the eigenvalue analysis of the preconditioned matrix. From this observation of the multigrid preconditioner, it is realized that the MGCG method converges in very few iterations and the multigrid preconditioner is a desirable preconditioner of the conjugate gradient method.

  18. [Physical methods and molecular biology].

    PubMed

    Serdiuk, I N

    2009-01-01

    The review is devoted to the description of the current state of physical and chemical methods used for studying the structural and functional bases of living processes. Special attention is focused on the physical methods that have opened a new page in the research of the structure of biological macromolecules. They include primarily the methods of detecting and manipulating single molecules using optical and magnetic traps. New physical methods, such as two-dimensional infrared spectroscopy, fluorescence correlation spectroscopy and magnetic resonance microscopy are also analyzed briefly in the review. The path that physics and biology have passed for the latest 55 years shows that there is no single method providing all necessary information on macromolecules and their interactions. Each method provides its space-time view of the system. All physical methods are complementary. It is just complementarity that is the fundamental idea justifying the existence in practice of all physical methods, whose description is the aim of the review.

  19. Methods of refining natural oils, and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  20. Efficient searching in meshfree methods

    NASA Astrophysics Data System (ADS)

    Olliff, James; Alford, Brad; Simkins, Daniel C.

    2018-04-01

    Meshfree methods such as the Reproducing Kernel Particle Method and the Element Free Galerkin method have proven to be excellent choices for problems involving complex geometry, evolving topology, and large deformation, owing to their ability to model the problem domain without the constraints imposed on the Finite Element Method (FEM) meshes. However, meshfree methods have an added computational cost over FEM that come from at least two sources: increased cost of shape function evaluation and the determination of adjacency or connectivity. The focus of this paper is to formally address the types of adjacency information that arises in various uses of meshfree methods; a discussion of available techniques for computing the various adjacency graphs; propose a new search algorithm and data structure; and finally compare the memory and run time performance of the methods.

  1. Basics of Bayesian methods.

    PubMed

    Ghosh, Sujit K

    2010-01-01

    Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.

  2. Structural, vibrational, and quasiparticle properties of the Peierls semiconductor BaBiO3 : A hybrid functional and self-consistent GW+vertex-corrections study

    NASA Astrophysics Data System (ADS)

    Franchini, C.; Sanna, A.; Marsman, M.; Kresse, G.

    2010-02-01

    BaBiO3 is characterized by a charge disproportionation with half of the Bi atoms possessing a valence 3+ and half a valence 5+ . Because of self-interaction errors, local- and semilocal-density functionals fail to describe the charge disproportionation quantitatively, yielding a too small structural distortion and no band gap. Using hybrid functionals, we obtain a satisfactory description of the structural, electronic, optical, and vibrational properties of BaBiO3 . The results obtained using GW (Green’s function G and screened Coulomb potential W) based schemes on top of hybrid functionals, including fully self-consistent GW calculations with vertex corrections in the dielectric screening, qualitatively confirm the Heyd-Scuseria-Ernzerhof picture but a systematic overestimation of the band gap by about 0.4 eV is observed.

  3. Leaf Histology--Two Modern Methods.

    ERIC Educational Resources Information Center

    Freeman, H. E.

    1984-01-01

    Two methods for examining leaf structure are presented; both methods involve use of "superglue." The first method uses the glue to form a thin, permanent, direct replica of a leaf surface on a microscope slide. The second method uses the glue to examine the three-dimensional structure of spongy mesophyll. (JN)

  4. The lod score method.

    PubMed

    Rice, J P; Saccone, N L; Corbett, J

    2001-01-01

    The lod score method originated in a seminal article by Newton Morton in 1955. The method is broadly concerned with issues of power and the posterior probability of linkage, ensuring that a reported linkage has a high probability of being a true linkage. In addition, the method is sequential, so that pedigrees or lod curves may be combined from published reports to pool data for analysis. This approach has been remarkably successful for 50 years in identifying disease genes for Mendelian disorders. After discussing these issues, we consider the situation for complex disorders, where the maximum lod score (MLS) statistic shares some of the advantages of the traditional lod score approach but is limited by unknown power and the lack of sharing of the primary data needed to optimally combine analytic results. We may still learn from the lod score method as we explore new methods in molecular biology and genetic analysis to utilize the complete human DNA sequence and the cataloging of all human genes.

  5. Semi-supervised clustering methods.

    PubMed

    Bair, Eric

    2013-01-01

    Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as "semi-supervised clustering" methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided.

  6. Spectral methods for CFD

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Streett, Craig L.; Hussaini, M. Yousuff

    1989-01-01

    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched.

  7. 77 FR 48733 - Transitional Program for Covered Business Method Patents-Definitions of Covered Business Method...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Office 37 CFR Part 42 Transitional Program for Covered Business Method Patents--Definitions of Covered Business Method Patent and Technological Invention; Final Rule #0;#0;Federal Register / Vol. 77 , No. 157... Business Method Patents-- Definitions of Covered Business Method Patent and Technological Invention AGENCY...

  8. Interlaboratory Validation of the Leaching Environmental Assessment Framework (LEAF) Method 1313 and Method 1316

    EPA Science Inventory

    This document summarizes the results of an interlaboratory study conducted to generate precision estimates for two parallel batch leaching methods which are part of the Leaching Environmental Assessment Framework (LEAF). These methods are: (1) Method 1313: Liquid-Solid Partition...

  9. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method

    PubMed Central

    2014-01-01

    Background The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. Methods We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Conclusions Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method. PMID:25052018

  10. PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD

    NASA Astrophysics Data System (ADS)

    Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao

    Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.

  11. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method.

    PubMed

    Polidori, David; Rowley, Clarence

    2014-07-22

    The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method.

  12. [Comparative analysis between diatom nitric acid digestion method and plankton 16S rDNA PCR method].

    PubMed

    Han, Jun-ge; Wang, Cheng-bao; Li, Xing-biao; Fan, Yan-yan; Feng, Xiang-ping

    2013-10-01

    To compare and explore the application value of diatom nitric acid digestion method and plankton 16S rDNA PCR method for drowning identification. Forty drowning cases from 2010 to 2011 were collected from Department of Forensic Medicine of Wenzhou Medical University. Samples including lung, kidney, liver and field water from each case were tested with diatom nitric acid digestion method and plankton 16S rDNA PCR method, respectively. The Diatom nitric acid digestion method and plankton 16S rDNA PCR method required 20 g and 2 g of each organ, and 15 mL and 1.5 mL of field water, respectively. The inspection time and detection rate were compared between the two methods. Diatom nitric acid digestion method mainly detected two species of diatoms, Centriae and Pennatae, while plankton 16S rDNA PCR method amplified a length of 162 bp band. The average inspection time of each case of the Diatom nitric acid digestion method was (95.30 +/- 2.78) min less than (325.33 +/- 14.18) min of plankton 16S rDNA PCR method (P < 0.05). The detection rates of two methods for field water and lung were both 100%. For liver and kidney, the detection rate of plankton 16S rDNA PCR method was both 80%, higher than 40% and 30% of diatom nitric acid digestion method (P < 0.05), respectively. The laboratory testing method needs to be appropriately selected according to the specific circumstances in the forensic appraisal of drowning. Compared with diatom nitric acid digestion method, plankton 16S rDNA PCR method has practice values with such advantages as less quantity of samples, huge information and high specificity.

  13. Exponentially fitted symplectic Runge-Kutta-Nyström methods derived by partitioned Runge-Kutta methods

    NASA Astrophysics Data System (ADS)

    Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.

    2013-10-01

    In this work we derive symplectic EF/TF RKN methods by symplectic EF/TF PRK methods. Also EF/TF symplectic RKN methods are constructed directly from classical symplectic RKN methods. Several numerical examples will be given in order to decide which is the most favourable implementation.

  14. [Comparison of the quick Gram stain method to the B&M modified and favor methods].

    PubMed

    Osawa, Kayo; Kataoka, Nobumasa; Maruo, Toshio

    2011-01-01

    The Gram stain is an established method for bacterial identification, but the time needed to carry out this stain is 2-3 min. We attempted to shorten this time and stained a total of 70 clinical specimens isolated from using the Bartholomew & Mittwer (B&M) modified or Favor methods with a 3 s duration for washing and staining steps. Results were plotted and analyzed using a Hue Saturation Intensity (HSI) model. The range based on a plot of the two methods with the HSI model was presented as a reference interval. Our results indicated that 100% (35/35) of strains were Gram positive and 97.1% (34/35) were Gram negative for the quick B&M modified method. In the quick Favor method, 80.0% (28/35) were Gram positive and 68.6% (24/35) of strains were Gram negative. We propose that the quick B&M modified method is equivalent to the standard Gram staining method and is superior to the quick Favor method.

  15. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.

    PubMed

    Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd

    2013-01-17

    Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset

  16. Methods of refining natural oils and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  17. "Phenomenology" and qualitative research methods.

    PubMed

    Nakayama, Y

    1994-01-01

    Phenomenology is generally based on phenomenological tradition from Husserl to Heidegger and Merleau-Ponty. As philosophical stances provide the assumptions in research methods, different philosophical stances produce different methods. However, the term "phenomenology" is used in various ways without the definition being given, such as phenomenological approach, phenomenological method, phenomenological research, etc. The term "phenomenology" is sometimes used as a paradigm and it is sometimes even viewed as synonymous with qualitative methods. As a result, the term "phenomenology" leads to conceptual confusions in qualitative research methods. The purpose of this paper is to examine the term "phenomenology" and explore philosophical assumptions, and discuss the relationship between philosophical stance and phenomenology as a qualitative research method in nursing.

  18. Method Engineering: A Service-Oriented Approach

    NASA Astrophysics Data System (ADS)

    Cauvet, Corine

    In the past, a large variety of methods have been published ranging from very generic frameworks to methods for specific information systems. Method Engineering has emerged as a research discipline for designing, constructing and adapting methods for Information Systems development. Several approaches have been proposed as paradigms in method engineering. The meta modeling approach provides means for building methods by instantiation, the component-based approach aims at supporting the development of methods by using modularization constructs such as method fragments, method chunks and method components. This chapter presents an approach (SO2M) for method engineering based on the service paradigm. We consider services as autonomous computational entities that are self-describing, self-configuring and self-adapting. They can be described, published, discovered and dynamically composed for processing a consumer's demand (a developer's requirement). The method service concept is proposed to capture a development process fragment for achieving a goal. Goal orientation in service specification and the principle of service dynamic composition support method construction and method adaptation to different development contexts.

  19. Factorization method of quadratic template

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2017-07-01

    Multiplication of two numbers is a one-way function in mathematics. Any attempt to distribute the outcome to its roots is called factorization. There are many methods such as Fermat's factorization, Dixońs method or quadratic sieve and GNFS, which use sophisticated techniques fast factorization. All the above methods use the same basic formula differing only in its use. This article discusses a newly designed factorization method. Effective implementation of this method in programs is not important, it only represents and clearly defines its properties.

  20. Patient Partnerships Transforming Sleep Medicine Research and Clinical Care: Perspectives from the Sleep Apnea Patient-Centered Outcomes Network

    PubMed Central

    Redline, Susan; Baker-Goodwin, Si; Bakker, Jessie P.; Epstein, Matthew; Hanes, Sherry; Hanson, Mark; Harrington, Zinta; Johnston, James C.; Kapur, Vishesh K.; Keepnews, David; Kontos, Emily; Lowe, Andy; Owens, Judith; Page, Kathy; Rothstein, Nancy

    2016-01-01

    Due to an ongoing recent evolution in practice, sleep medicine as a discipline has been compelled to respond to the converging pressures to reduce costs, improve outcomes, and demonstrate value. Patient “researchers” are uniquely placed to participate in initiatives that address the specific needs and priorities of patients and facilitate the identification of interventions with high likelihood of acceptance by the “customer.” To date, however, the “patient voice” largely has been lacking in processes affecting relevant policies and practice guidelines. In this Special Report, patient and research leaders of the Sleep Apnea Patient-Centered Outcomes Network (SAPCON), a national collaborative group of patients, researchers and clinicians working together to promote patient-centered comparative effectiveness research, discuss these interrelated challenges in the context of sleep apnea, and the role patients and patient-centered networks may play in informing evidence-based research designed to meet patient's needs. We first briefly discuss the challenges facing sleep medicine associated with costs, outcomes, and value. We then discuss the key role patients and patient-centered networks can play in efforts to design research to guide better sleep health care, and national support for such initiatives. Finally, we summarize some of the challenges in moving to a new paradigm of patient-researcher-clinician partnerships. By forging strong partnerships among patients, clinicians and researchers, networks such as SAPCON can serve as a living demonstration of how to achieve value in health care. Citation: Redline S, Baker-Goodwin S, Bakker JP, Epstein M, Hanes S, Hanson M, Harrington Z, Johnston JC, Kapur VK, Keepnews D, Kontos E, Lowe A, Owens J, Page K, Rothstein N, Sleep Apnea Patient-Centered Outcomes Network. Patient partnerships transforming sleep medicine research and clinical care: perspectives from the Sleep Apnea Patient-Centered Outcomes Network. J

  1. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners.

    PubMed

    Arora, Rajesh; Kapur, Ravi; Sibal, Nikhil; Juneja, Sumit

    2012-09-01

    The advent of the esthetic era and advances in adhesive technology saw the emergence of resin composite materials. But the problem of polymerization shrinkage remained. This was due to the contraction of the resin during curing inducing internal and interfacial stresses at the tooth restoration interface, leading to gap formation and subsequent micro-leakage. A number of techniques and modifications in the material have been proposed to minimize polymerization shrinkage and microleakage. In this study, the hypothesis that the placement of resin-modified glass ionomer cement (RMGIC) or flowable composite, as liner, beneath the packable composite, on the gingival surface of the tooth [coronal or apical to cementoenamel junction (CEJ)], could reduce the microleakage in class II composite restorations, was tested. Sixty recently extracted noncarious human mandibular molars were used. The teeth were randomly divided into three groups (20 specimens each): Group I (Filtek P60 with RMGIC liner), group II (Filtek P60 with Filtek Z350 liner) and Group III (Filtek P60 without liner). The teeth of each group were further subdivided into two subgroups (equal number of cavities). Subgroup A gingival seat 1 mm occlusal to CEJ on mesial side. Subgroup B gingival seat 1 mm apical to CEJ on distal side. It was concluded that in class II composite restorations gingival microleakage is more at the dentinal surface than on enamel. The use of a flowable composite and RMGIC, as liners, beneath the packable composite, in class II composite restorations, significantly reduces the microleakage when margins are in dentin, but the reverse is true, when the margins are in enamel. How to cite this article: Arora R, Kapur R, Sibal N, Juneja S. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners. Int J Clin Pediatr Dent 2012;5(3):178-184.

  2. Medicare Long-Term CPAP Coverage Policy: A Cost-Utility Analysis

    PubMed Central

    Billings, Martha E.; Kapur, Vishesh K.

    2013-01-01

    Study Objectives: CPAP is an effective treatment for OSA that may reduce health care utilization and costs. Medicare currently reimburses the costs of long-term CPAP therapy only if the patient is adherent during a 90-day trial. If not, Medicare requires a repeat polysomnogram (PSG) and another trial which seems empirically not cost-effective. We modeled the cost-effectiveness of current Medicare policy compared to an alternative policy (clinic-only) without the adherence criterion and repeat PSG. Design: Cost-utility and cost-effectiveness analysis. Setting: U.S. Medicare Population. Patients or Participants: N/A. Interventions: N/A. Measurements and Results: We created a decision tree modeling (1) clinic only follow-up vs. (2) current Medicare policy. Costs were assigned based on Medicare reimbursement rates in 2012. Sensitivity analyses were conducted to test our assumptions. We estimated cumulative costs, overall adherence, and QALY gained for a 5-year time horizon from the perspective of Medicare as the payer. Current Medicare policy is more costly than the clinic-only policy but has higher net adherence and improved utility. Current Medicare policy compared to clinic-only policy costs $30,544 more per QALY. Conclusions: Current CMS policy promotes early identification of those more likely to adhere to CPAP therapy by requiring strict adherence standards. The policy effect is to deny coverage to those unlikely to use CPAP long-term and prevent wasted resources. Future studies are needed to measure long-term adherence in an elderly population with and without current adherence requirements to verify the cost-effectiveness of a policy change. Citation: Billings ME; Kapur VK. Medicare long-term CPAP coverage policy: a cost-utility analysis. J Clin Sleep Med 2013;9(10):1023-1029. PMID:24127146

  3. Selective preservation of memory for people in the context of semantic memory disorder: patterns of association and dissociation.

    PubMed

    Lyons, Frances; Kay, Janice; Hanley, J Richard; Haslam, Catherine

    2006-01-01

    A number of single cases in the literature demonstrate that person-specific semantic knowledge can be selectively impaired after acquired brain damage compared with that of object categories. However, there has been little unequivocal evidence for the reverse dissociation, selective preservation of person-specific semantic knowledge. Recently, three case studies have been published which provide support for the claim that such knowledge can be selectively preserved [Kay, J., & Hanley, J. R. (2002). Preservation of memory for people in semantic memory disorder: Further category-specific semantic dissociation. Cognitive Neuropsychology, 19, 113-134; Lyons, F., Hanley, J. R., & Kay, J. (2002). Anomia for common names and geographical names with preserved retrieval of names of people: A semantic memory disorder. Cortex, 38, 23-35; Thompson, S. A, Graham, K. S., Williams, G., Patterson, K., Kapur, N., & Hodges, J. R. (2004). Dissociating person-specific from general semantic knowledge: Roles of the left and right temporal lobes. Neuropsychologia, 42, 359-370]. In this paper, we supply further evidence from a series of 18 patients with acquired language disorder. Of this set, a number were observed to be impaired on tests of semantic association and word-picture matching using names of object categories (e.g. objects, animals and foods), but preserved on similar tests using names of famous people. Careful methodology was applied to match object and person-specific categories for item difficulty. The study also examined whether preservation of person-specific semantic knowledge was associated with preservation of knowledge of 'biological categories' such as fruit and vegetables and animals, or with preservation of 'token' knowledge of singular categories such as countries. The findings are discussed in the context of a variety of accounts that examine whether semantic memory has a categorical structure.

  4. Sleep Dependent Memory Consolidation in Children with Autism Spectrum Disorder

    PubMed Central

    Maski, Kiran; Holbrook, Hannah; Manoach, Dara; Hanson, Ellen; Kapur, Kush; Stickgold, Robert

    2015-01-01

    Study Objectives: Examine the role of sleep in the consolidation of declarative memory in children with autism spectrum disorder (ASD). Design: Case-control study. Setting: Home-based study with sleep and wake conditions. Participants: Twenty-two participants with ASD and 20 control participants between 9 and 16 y of age. Measurements and Results: Participants were trained to criterion on a spatial declarative memory task and then given a cued recall test. Retest occurred after a period of daytime wake (Wake) or a night of sleep (Sleep) with home-based polysomnography; Wake and Sleep conditions were counterbalanced. Children with ASD had poorer sleep efficiency than controls, but other sleep macroarchitectural and microarchitectural measures were comparable after controlling for age and medication use. Both groups demonstrated better memory consolidation across Sleep than Wake, although participants with ASD had poorer overall memory consolidation than controls. There was no interaction between group and condition. The change in performance across sleep, independent of medication and age, showed no significant relationships with any specific sleep parameters other than total sleep time and showed a trend toward less forgetting in the control group. Conclusion: This study shows that despite their more disturbed sleep quality, children with autism spectrum disorder (ASD) still demonstrate more stable memory consolidation across sleep than in wake conditions. The findings support the importance of sleep for stabilizing memory in children with and without neurodevelopmental disabilities. Our results suggest that improving sleep quality in children with ASD could have direct benefits to improving their overall cognitive functioning. Citation: Maski K, Holbrook H, Manoach D, Hanson E, Kapur K, Stickgold R. Sleep dependent memory consolidation in children with autism spectrum disorder. SLEEP 2015;38(12):1955–1963. PMID:26194566

  5. Practice Parameters for the Treatment of Narcolepsy and other Hypersomnias of Central Origin An American Academy of Sleep Medicine Report

    PubMed Central

    Morgenthaler, Timothy I.; Kapur, Vishesh K.; Brown, Terry; Swick, Todd J.; Alessi, Cathy; Aurora, R. Nisha; Boehlecke, Brian; Chesson, Andrew L.; Friedman, Leah; Maganti, Rama; Owens, Judith; Pancer, Jeffrey; Zak, Rochelle

    2007-01-01

    These practice parameters pertain to the treatment of hypersomnias of central origin. They serve as both an update of previous practice parameters for the therapy of narcolepsy and as the first practice parameters to address treatment of other hypersomnias of central origin. They are based on evidence analyzed in the accompanying review paper. The specific disorders addressed by these parameters are narcolepsy (with cataplexy, without cataplexy, due to medical condition and unspecified), idiopathic hypersomnia (with long sleep time and without long sleep time), recurrent hypersomnia and hypersomnia due to medical condition. Successful treatment of hypersomnia of central origin requires an accurate diagnosis, individual tailoring of therapy to produce the fullest possible return of normal function, and regular follow-up to monitor response to treatment. Modafinil, sodium oxybate, amphetamine, methamphetamine, dextroamphetamine, methylphenidate, and selegiline are effective treatments for excessive sleepiness associated with narcolepsy, while tricyclic antidepressants and fluoxetine are effective treatments for cataplexy, sleep paralysis, and hypnagogic hallucinations; but the quality of published clinical evidence supporting them varies. Scheduled naps can be beneficial to combat sleepiness in narcolepsy patients. Based on available evidence, modafinil is an effective therapy for sleepiness due to idiopathic hypersomnia, Parkinson's disease, myotonic dystrophy, and multiple sclerosis. Based on evidence and/or long history of use in the therapy of narcolepsy committee consensus was that modafinil, amphetamine, methamphetamine, dextroamphetamine, and methylphenidate are reasonable options for the therapy of hypersomnias of central origin. Citation: Morgenthaler TI; Kapur VK; Brown T; Swick TJ; Alessi C; Aurora RN; Boehlecke B; Chesson AL; Friedman L; Maganti R; Owens J; Pancer J; Zak R; Standards of Practice Committee of the AASM. Practice parameters for the treatment

  6. Fitting methods to paradigms: are ergonomics methods fit for systems thinking?

    PubMed

    Salmon, Paul M; Walker, Guy H; M Read, Gemma J; Goode, Natassia; Stanton, Neville A

    2017-02-01

    The issues being tackled within ergonomics problem spaces are shifting. Although existing paradigms appear relevant for modern day systems, it is worth questioning whether our methods are. This paper asks whether the complexities of systems thinking, a currently ubiquitous ergonomics paradigm, are outpacing the capabilities of our methodological toolkit. This is achieved through examining the contemporary ergonomics problem space and the extent to which ergonomics methods can meet the challenges posed. Specifically, five key areas within the ergonomics paradigm of systems thinking are focused on: normal performance as a cause of accidents, accident prediction, system migration, systems concepts and ergonomics in design. The methods available for pursuing each line of inquiry are discussed, along with their ability to respond to key requirements. In doing so, a series of new methodological requirements and capabilities are identified. It is argued that further methodological development is required to provide researchers and practitioners with appropriate tools to explore both contemporary and future problems. Practitioner Summary: Ergonomics methods are the cornerstone of our discipline. This paper examines whether our current methodological toolkit is fit for purpose given the changing nature of ergonomics problems. The findings provide key research and practice requirements for methodological development.

  7. Integration of gas chromatography mass spectrometry methods for differentiating ricin preparation methods.

    PubMed

    Wunschel, David S; Melville, Angela M; Ehrhardt, Christopher J; Colburn, Heather A; Victry, Kristin D; Antolick, Kathryn C; Wahl, Jon H; Wahl, Karen L

    2012-05-07

    The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of Ricinus communis, commonly known as the castor plant. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatography-mass spectrometry (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid, as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods, starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid, or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method, independent of the seed source. In particular, the abundance of mannose, arabinose, fucose, ricinoleic acid, and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation than would be possible using a single analytical method.

  8. Role Of Impurities On Deformation Of HCP Crystal: A Multi-Scale Approach

    NASA Astrophysics Data System (ADS)

    Bhatia, Mehul Anoopkumar

    Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10- 10}) or activates another slip system ((0001), {10-11}). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility

  9. MULTIPOLLUTANT METHODS - METHODS FOR OZONE AND OZONE PRECURSORS

    EPA Science Inventory

    This task involves the development and testing of methods for monitoring ozone and compounds associated with the atmospheric chemistry of ozone production both as precursors and reaction products. Although atmospheric gases are the primary interest, separation of gas and particl...

  10. Methods for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  11. Withdrawal Method (Coitus Interruptus)

    MedlinePlus

    Withdrawal method (coitus interruptus) Overview The withdrawal method of contraception, also known as coitus interruptus, is the practice of withdrawing the penis from the vagina and away from a woman's external ...

  12. SAM Pathogen Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target pathogen analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select pathogens.

  13. Aircraft digital control design methods

    NASA Technical Reports Server (NTRS)

    Powell, J. D.; Parsons, E.; Tashker, M. G.

    1976-01-01

    Variations in design methods for aircraft digital flight control are evaluated and compared. The methods fall into two categories; those where the design is done in the continuous domain (or s plane) and those where the design is done in the discrete domain (or z plane). Design method fidelity is evaluated by examining closed loop root movement and the frequency response of the discretely controlled continuous aircraft. It was found that all methods provided acceptable performance for sample rates greater than 10 cps except the uncompensated s plane design method which was acceptable above 20 cps. A design procedure based on optimal control methods was proposed that provided the best fidelity at very slow sample rates and required no design iterations for changing sample rates.

  14. Semi-supervised clustering methods

    PubMed Central

    Bair, Eric

    2013-01-01

    Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as “semi-supervised clustering” methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided. PMID:24729830

  15. Manual of Scaling Methods

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H. (Technical Monitor); Anderson, David N.

    2004-01-01

    This manual reviews the derivation of the similitude relationships believed to be important to ice accretion and examines ice-accretion data to evaluate their importance. Both size scaling and test-condition scaling methods employing the resulting similarity parameters are described, and experimental icing tests performed to evaluate scaling methods are reviewed with results. The material included applies primarily to unprotected, unswept geometries, but some discussion of how to approach other situations is included as well. The studies given here and scaling methods considered are applicable only to Appendix-C icing conditions. Nearly all of the experimental results presented have been obtained in sea-level tunnels. Recommendations are given regarding which scaling methods to use for both size scaling and test-condition scaling, and icing test results are described to support those recommendations. Facility limitations and size-scaling restrictions are discussed. Finally, appendices summarize the air, water and ice properties used in NASA scaling studies, give expressions for each of the similarity parameters used and provide sample calculations for the size-scaling and test-condition scaling methods advocated.

  16. The q-G method : A q-version of the Steepest Descent method for global optimization.

    PubMed

    Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M

    2015-01-01

    In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.

  17. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  18. SAM Biotoxin Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target biotoxin analytes in environmental samples can use this online query tool to identify analytical methods included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select biotoxins.

  19. SAM Radiochemical Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target radiochemical analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery for select radiochemical analytes.

  20. SAM Chemical Methods Query

    EPA Pesticide Factsheets

    Laboratories measuring target chemical, radiochemical, pathogens, and biotoxin analytes in environmental samples can use this online query tool to identify analytical methods in EPA's Selected Analytical Methods for Environmental Remediation and Recovery

  1. Implementing EPA Method 537

    EPA Science Inventory

    This presentation describes EPA Method 537 for the analysis of 14 perfluorinated alkyl acids in drinking water as well as the challenges associated with preparing a laboratory for analysis using Method 537.

  2. Using the Fusion Proximal Area Method and Gravity Method to Identify Areas with Physician Shortages

    PubMed Central

    Xiong, Xuechen; Jin, Chao; Chen, Haile; Luo, Li

    2016-01-01

    Objectives This paper presents a geographic information system (GIS)-based proximal area method and gravity method for identifying areas with physician shortages. The innovation of this paper is that it uses the appropriate methods to discover each type of health resource and then integrates all these methods to assess spatial access to health resources using population distribution data. In this way, spatial access to health resources for an entire city can be visualized in one neat package, which can help health policy makers quickly comprehend realistic distributions of health resources at a macro level. Methods First, classify health resources according to the trade areas of the patients they serve. Second, apply an appropriate method to each different type of health resource to measure spatial access to those resources. Third, integrate all types of access using population distribution data. Results In case study of Shanghai with the fusion method, areas with physician shortages are located primarily in suburban districts, especially in district junction areas. The result suggests that the government of Shanghai should pay more attention to these areas by investing in new or relocating existing health resources. Conclusion The fusion method is demonstrated to be more accurate and practicable than using a single method to assess spatial access to health resources. PMID:27695105

  3. Division of methods for counting helminths' eggs and the problem of efficiency of these methods.

    PubMed

    Jaromin-Gleń, Katarzyna; Kłapeć, Teresa; Łagód, Grzegorz; Karamon, Jacek; Malicki, Jacek; Skowrońska, Agata; Bieganowski, Andrzej

    2017-03-21

    From the sanitary and epidemiological aspects, information concerning the developmental forms of intestinal parasites, especially the eggs of helminths present in our environment in: water, soil, sandpits, sewage sludge, crops watered with wastewater are very important. The methods described in the relevant literature may be classified in various ways, primarily according to the methodology of the preparation of samples from environmental matrices prepared for analysis, and the sole methods of counting and chambers/instruments used for this purpose. In addition, there is a possibility to perform the classification of the research methods analyzed from the aspect of the method and time of identification of the individuals counted, or the necessity for staining them. Standard methods for identification of helminths' eggs from environmental matrices are usually characterized by low efficiency, i.e. from 30% to approximately 80%. The efficiency of the method applied may be measured in a dual way, either by using the method of internal standard or the 'Split/Spike' method. While measuring simultaneously in an examined object the efficiency of the method and the number of eggs, the 'actual' number of eggs may be calculated by multiplying the obtained value of the discovered eggs of helminths by inverse efficiency.

  4. More than Method?: A Discussion of Paradigm Differences within Mixed Methods Research

    ERIC Educational Resources Information Center

    Harrits, Gitte Sommer

    2011-01-01

    This article challenges the idea that mixed methods research (MMR) constitutes a coherent research paradigm and explores how different research paradigms exist within MMR. Tracing paradigmatic differences at the level of methods, ontology, and epistemology, two MMR strategies are discussed: nested analysis, recently presented by the American…

  5. Highly efficient preparation of sphingoid bases from glucosylceramides by chemoenzymatic method[S

    PubMed Central

    Gowda, Siddabasave Gowda B.; Usuki, Seigo; Hammam, Mostafa A. S.; Murai, Yuta; Igarashi, Yasuyuki; Monde, Kenji

    2016-01-01

    Sphingoid base derivatives have attracted increasing attention as promising chemotherapeutic candidates against lifestyle diseases such as diabetes and cancer. Natural sphingoid bases can be a potential resource instead of those derived by time-consuming total organic synthesis. In particular, glucosylceramides (GlcCers) in food plants are enriched sources of sphingoid bases, differing from those of animals. Several chemical methodologies to transform GlcCers to sphingoid bases have already investigated; however, these conventional methods using acid or alkaline hydrolysis are not efficient due to poor reaction yield, producing complex by-products and resulting in separation problems. In this study, an extremely efficient and practical chemoenzymatic transformation method has been developed using microwave-enhanced butanolysis of GlcCers and a large amount of readily available almond β-glucosidase for its deglycosylation reaction of lysoGlcCers. The method is superior to conventional acid/base hydrolysis methods in its rapidity and its reaction cleanness (no isomerization, no rearrangement) with excellent overall yield. PMID:26667669

  6. Seismic Methods

    EPA Pesticide Factsheets

    Seismic methods are the most commonly conducted geophysical surveys for engineering investigations. Seismic refraction provides engineers and geologists with the most basic of geologic data via simple procedures with common equipment.

  7. Pivot methods for global optimization

    NASA Astrophysics Data System (ADS)

    Stanton, Aaron Fletcher

    A new algorithm is presented for the location of the global minimum of a multiple minima problem. It begins with a series of randomly placed probes in phase space, and then uses an iterative redistribution of the worst probes into better regions of phase space until a chosen convergence criterion is fulfilled. The method quickly converges, does not require derivatives, and is resistant to becoming trapped in local minima. Comparison of this algorithm with others using a standard test suite demonstrates that the number of function calls has been decreased conservatively by a factor of about three with the same degrees of accuracy. Two major variations of the method are presented, differing primarily in the method of choosing the probes that act as the basis for the new probes. The first variation, termed the lowest energy pivot method, ranks all probes by their energy and keeps the best probes. The probes being discarded select from those being kept as the basis for the new cycle. In the second variation, the nearest neighbor pivot method, all probes are paired with their nearest neighbor. The member of each pair with the higher energy is relocated in the vicinity of its neighbor. Both methods are tested against a standard test suite of functions to determine their relative efficiency, and the nearest neighbor pivot method is found to be the more efficient. A series of Lennard-Jones clusters is optimized with the nearest neighbor method, and a scaling law is found for cpu time versus the number of particles in the system. The two methods are then compared more explicitly, and finally a study in the use of the pivot method for solving the Schroedinger equation is presented. The nearest neighbor method is found to be able to solve the ground state of the quantum harmonic oscillator from a pure random initialization of the wavefunction.

  8. LEAKAGE TESTING METHOD

    DOEpatents

    McAdams, Wm.A.; Foss, M.H.

    1958-08-12

    A method of testing containers for leaks is described, particularly the testing of containers or cans in which the uranium slugs for nuelear reactors are jacketed. This method involves the immersion of the can in water under l50 pounds of pressure, then removing, drying, and coating the can with anhydrous copper sulfate. Amy water absorbed by the can under pressure will exude and discolor the copper sulfate in the area about the leak.

  9. The Schwinger Variational Method

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.

    1995-01-01

    Variational methods have proven invaluable in theoretical physics and chemistry, both for bound state problems and for the study of collision phenomena. For collisional problems they can be grouped into two types: those based on the Schroedinger equation and those based on the Lippmann-Schwinger equation. The application of the Schwinger variational (SV) method to e-molecule collisions and photoionization has been reviewed previously. The present chapter discusses the implementation of the SV method as applied to e-molecule collisions.

  10. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2003-04-15

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  11. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B [Chicago, IL; Hoek, Terry Vanden [Chicago, IL; Kasza, Kenneth E [Palos Park, IL

    2008-09-09

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  12. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  13. The spaced antenna drift method

    NASA Technical Reports Server (NTRS)

    Hocking, W. K.

    1983-01-01

    The spaced antenna drift method is a simple and relatively inexpensive method for determination of atmospheric wind velocities using radars. The technique has been extensively tested in the mesosphere at high and medium frequencies, and found to give reliable results. Recently, the method has also been applied to VHF observations of the troposphere and stratosphere, and results appear to be reliable. This paper discusses briefly the principle of the method, and investigates both its strengths and weaknesses. Some discussions concerning criticisms of the technique are also given, and it is concluded that while these criticisms may be of some concern at times, appropriate care can ensure that the method is at least as viable as any other method of remote wind measurement. At times, the technique has definite advantages.

  14. Construction of exponentially fitted symplectic Runge-Kutta-Nyström methods from partitioned Runge-Kutta methods

    NASA Astrophysics Data System (ADS)

    Monovasilis, Theodore; Kalogiratou, Zacharoula; Simos, T. E.

    2014-10-01

    In this work we derive exponentially fitted symplectic Runge-Kutta-Nyström (RKN) methods from symplectic exponentially fitted partitioned Runge-Kutta (PRK) methods methods (for the approximate solution of general problems of this category see [18] - [40] and references therein). We construct RKN methods from PRK methods with up to five stages and fourth algebraic order.

  15. Understanding common statistical methods, Part I: descriptive methods, probability, and continuous data.

    PubMed

    Skinner, Carl G; Patel, Manish M; Thomas, Jerry D; Miller, Michael A

    2011-01-01

    Statistical methods are pervasive in medical research and general medical literature. Understanding general statistical concepts will enhance our ability to critically appraise the current literature and ultimately improve the delivery of patient care. This article intends to provide an overview of the common statistical methods relevant to medicine.

  16. High-speed 3D imaging using digital binary defocusing method vs sinusoidal method

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Hyun, Jae-Sang; Li, Beiwen

    2017-02-01

    This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  17. The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations

    NASA Astrophysics Data System (ADS)

    Rudmin, Joseph W.

    2001-04-01

    The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations Joseph W. Rudmin (Physics Dept, James Madison University) A new system of solving systems of differential equations will be presented, which has been developed by J. Edgar Parker and James Sochacki, of the James Madison University Mathematics Department. The method produces MacClaurin Series solutions to systems of differential equations, with the coefficients in either algebraic or numerical form. The method yields high-degree solutions: 20th degree is easily obtainable. It is conceptually simple, fast, and extremely general. It has been applied to over a hundred systems of differential equations, some of which were previously unsolved, and has yet to fail to solve any system for which the MacClaurin series converges. The method is non-recursive: each coefficient in the series is calculated just once, in closed form, and its accuracy is limited only by the digital accuracy of the computer. Although the original differential equations may include any mathematical functions, the computational method includes ONLY the operations of addition, subtraction, and multiplication. Furthermore, it is perfectly suited to parallel -processing computer languages. Those who learn this system will never use Runge-Kutta or predictor-corrector methods again. Examples will be presented, including the classical many-body problem.

  18. Study of comparison between Ultra-high Frequency (UHF) method and ultrasonic method on PD detection for GIS

    NASA Astrophysics Data System (ADS)

    Li, Yanran; Chen, Duo; Li, Li; Zhang, Jiwei; Li, Guang; Liu, Hongxia

    2017-11-01

    GIS (gas insulated switchgear), is an important equipment in power system. Partial discharge plays an important role in detecting the insulation performance of GIS. UHF method and ultrasonic method frequently used in partial discharge (PD) detection for GIS. However, few studies have been conducted on comparison of this two methods. From the view point of safety, it is necessary to investigate UHF method and ultrasonic method for partial discharge in GIS. This paper presents study aimed at clarifying the effect of UHF method and ultrasonic method for partial discharge caused by free metal particles in GIS. Partial discharge tests were performed in laboratory simulated environment. Obtained results show the ability of anti-interference of signal detection and the accuracy of fault localization for UHF method and ultrasonic method. A new method based on UHF method and ultrasonic method of PD detection for GIS is proposed in order to greatly enhance the ability of anti-interference of signal detection and the accuracy of detection localization.

  19. Designing Class Methods from Dataflow Diagrams

    NASA Astrophysics Data System (ADS)

    Shoval, Peretz; Kabeli-Shani, Judith

    A method for designing the class methods of an information system is described. The method is part of FOOM - Functional and Object-Oriented Methodology. In the analysis phase of FOOM, two models defining the users' requirements are created: a conceptual data model - an initial class diagram; and a functional model - hierarchical OO-DFDs (object-oriented dataflow diagrams). Based on these models, a well-defined process of methods design is applied. First, the OO-DFDs are converted into transactions, i.e., system processes that supports user task. The components and the process logic of each transaction are described in detail, using pseudocode. Then, each transaction is decomposed, according to well-defined rules, into class methods of various types: basic methods, application-specific methods and main transaction (control) methods. Each method is attached to a proper class; messages between methods express the process logic of each transaction. The methods are defined using pseudocode or message charts.

  20. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOEpatents

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  1. Method of forming aluminum oxynitride material and bodies formed by such methods

    DOEpatents

    Bakas, Michael P [Ammon, ID; Lillo, Thomas M [Idaho Falls, ID; Chu, Henry S [Idaho Falls, ID

    2010-11-16

    Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

  2. Method for producing smooth inner surfaces

    DOEpatents

    Cooper, Charles A.

    2016-05-17

    The invention provides a method for preparing superconducting cavities, the method comprising causing polishing media to tumble by centrifugal barrel polishing within the cavities for a time sufficient to attain a surface smoothness of less than 15 nm root mean square roughness over approximately a 1 mm.sup.2 scan area. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media bound to a carrier to tumble within the cavities. The method also provides for a method for preparing superconducting cavities, the method comprising causing polishing media in a slurry to tumble within the cavities.

  3. Interior-Point Methods for Linear Programming: A Challenge to the Simplex Method

    DTIC Science & Technology

    1988-07-01

    subsequently found that the method was first proposed by Dikin in 1967 [6]. Search directions are generated by the same system (5). Any hint of quadratic...1982). Inexact Newton methods, SIAM Journal on Numerical Analysis 19, 400-408. [6] I. I. Dikin (1967). Iterative solution of problems of linear and

  4. Unidirectional Fabric Drape Testing Method

    PubMed Central

    Mei, Zaihuan; Yang, Jingzhi; Zhou, Ting; Zhou, Hua

    2015-01-01

    In most cases, fabrics such as curtains, skirts, suit pants and so on are draped under their own gravity parallel to fabric plane while the gravity is perpendicular to fabric plane in traditional drape testing method. As a result, it does not conform to actual situation and the test data is not convincing enough. To overcome this problem, this paper presents a novel method which simulates the real mechanical conditions and ensures the gravity is parallel to the fabric plane. This method applied a low-cost Kinect Sensor device to capture the 3-dimensional (3D) drape profile, thus we obtained the drape degree parameters and aesthetic parameters by 3D reconstruction and image processing and analysis techniques. The experiment was conducted on our self-devised drape-testing instrument by choosing different kinds of weave structure fabrics as our testing samples and the results were compared with those of traditional method and subjective evaluation. Through regression and correlation analysis we found that this novel testing method was significantly correlated with the traditional and subjective evaluation method. We achieved a new, non-contact 3D measurement method for drape testing, namely unidirectional fabric drape testing method. This method is more suitable for evaluating drape behavior because it is more in line with actual mechanical conditions of draped fabrics and has a well consistency with the requirements of visual and aesthetic style of fabrics. PMID:26600387

  5. Microencapsulation and Electrostatic Processing Method

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2000-01-01

    Methods are provided for forming spherical multilamellar microcapsules having alternating hydrophilic and hydrophobic liquid layers, surrounded by flexible, semi-permeable hydrophobic or hydrophilic outer membranes which can be tailored specifically to control the diffusion rate. The methods of the invention rely on low shear mixing and liquid-liquid diffusion process and are particularly well suited for forming microcapsules containing both hydrophilic and hydrophobic drugs. These methods can be carried out in the absence of gravity and do not rely on density-driven phase separation, mechanical mixing or solvent evaporation phases. The methods include the process of forming, washing and filtering microcapsules. In addition, the methods contemplate coating microcapsules with ancillary coatings using an electrostatic field and free fluid electrophoresis of the microcapsules. The microcapsules produced by such methods are particularly useful in the delivery of pharmaceutical compositions.

  6. Negotiating a Systems Development Method

    NASA Astrophysics Data System (ADS)

    Karlsson, Fredrik; Hedström, Karin

    Systems development methods (or methods) are often applied in tailored version to fit the actual situation. Method tailoring is in most the existing literature viewed as either (a) a highly rational process with the method engineer as the driver where the project members are passive information providers or (b) an unstructured process where the systems developer makes individual choices, a selection process without any driver. The purpose of this chapter is to illustrate that important design decisions during method tailoring are made by project members through negotiation. The study has been carried out using the perspective of actor-network theory. Our narratives depict method tailoring as more complex than (a) and (b) show the driver role rotates between the project members, and design decisions are based on influences from several project members. However, these design decisions are not consensus decisions.

  7. Methods for purifying carbon materials

    DOEpatents

    Dailly, Anne [Pasadena, CA; Ahn, Channing [Pasadena, CA; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-05-26

    Methods of purifying samples are provided that are capable of removing carbonaceous and noncarbonaceous impurities from a sample containing a carbon material having a selected structure. Purification methods are provided for removing residual metal catalyst particles enclosed in multilayer carbonaceous impurities in samples generate by catalytic synthesis methods. Purification methods are provided wherein carbonaceous impurities in a sample are at least partially exfoliated, thereby facilitating subsequent removal of carbonaceous and noncarbonaceous impurities from the sample. Methods of purifying carbon nanotube-containing samples are provided wherein an intercalant is added to the sample and subsequently reacted with an exfoliation initiator to achieve exfoliation of carbonaceous impurities.

  8. Optical measurement methods in thermogasdynamics

    NASA Technical Reports Server (NTRS)

    Stursberg, K.; Erhardt, K.; Krahr, W.; Becker, M.

    1978-01-01

    A review is presented of a number of optical methods of flow measurements. Consideration is given to such spectroscopic methods as emission and absorption techniques, electron beam-stimulated fluorescence, and light scattering - Rayleigh, Raman and Mie - methods. The following visualization methods are also discussed: shadow photography, schlieren photography, interferometry, holographic interferometry, laser anemometry, particle holography, and electron-excitation imaging. A large bibliography is presented and the work is copiously illustrated with figures and photographs.

  9. Methods for Equating Mental Tests.

    DTIC Science & Technology

    1984-11-01

    1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

  10. Panel methods: An introduction

    NASA Technical Reports Server (NTRS)

    Erickson, Larry L.

    1990-01-01

    Panel methods are numerical schemes for solving (the Prandtl-Glauert equation) for linear, inviscid, irrotational flow about aircraft flying at subsonic or supersonic speeds. The tools at the panel-method user's disposal are (1) surface panels of source-doublet-vorticity distributions that can represent nearly arbitrary geometry, and (2) extremely versatile boundary condition capabilities that can frequently be used for creative modeling. Panel-method capabilities and limitations, basic concepts common to all panel-method codes, different choices that were made in the implementation of these concepts into working computer programs, and various modeling techniques involving boundary conditions, jump properties, and trailing wakes are discussed. An approach for extending the method to nonlinear transonic flow is also presented. Three appendices supplement the main test. In appendix 1, additional detail is provided on how the basic concepts are implemented into a specific computer program (PANAIR). In appendix 2, it is shown how to evaluate analytically the fundamental surface integral that arises in the expressions for influence-coefficients, and evaluate its jump property. In appendix 3, a simple example is used to illustrate the so-called finite part of the improper integrals.

  11. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2012-05-29

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  12. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    DOEpatents

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  13. SW-846 Method Style Guide

    EPA Pesticide Factsheets

    This style guide is for use by developers of new methods for SW-846 and editors of existing SW-846 methods. Its use will help assure consistent method format and minimize editorial errors during the development and maintenance of SW-846.

  14. Proposed Revisions to Method 202

    EPA Pesticide Factsheets

    EPA is proposing the following revisions to Method 202: Revisions to the procedures for determining the systematic error of the method, which is used to correct the results of the measurements made using this method; Removes some procedural options to

  15. Ensemble Data Mining Methods

    NASA Technical Reports Server (NTRS)

    Oza, Nikunj C.

    2004-01-01

    Ensemble Data Mining Methods, also known as Committee Methods or Model Combiners, are machine learning methods that leverage the power of multiple models to achieve better prediction accuracy than any of the individual models could on their own. The basic goal when designing an ensemble is the same as when establishing a committee of people: each member of the committee should be as competent as possible, but the members should be complementary to one another. If the members are not complementary, Le., if they always agree, then the committee is unnecessary---any one member is sufficient. If the members are complementary, then when one or a few members make an error, the probability is high that the remaining members can correct this error. Research in ensemble methods has largely revolved around designing ensembles consisting of competent yet complementary models.

  16. Polynomial Supertree Methods Revisited

    PubMed Central

    Brinkmeyer, Malte; Griebel, Thasso; Böcker, Sebastian

    2011-01-01

    Supertree methods allow to reconstruct large phylogenetic trees by combining smaller trees with overlapping leaf sets into one, more comprehensive supertree. The most commonly used supertree method, matrix representation with parsimony (MRP), produces accurate supertrees but is rather slow due to the underlying hard optimization problem. In this paper, we present an extensive simulation study comparing the performance of MRP and the polynomial supertree methods MinCut Supertree, Modified MinCut Supertree, Build-with-distances, PhySIC, PhySIC_IST, and super distance matrix. We consider both quality and resolution of the reconstructed supertrees. Our findings illustrate the tradeoff between accuracy and running time in supertree construction, as well as the pros and cons of voting- and veto-based supertree approaches. Based on our results, we make some general suggestions for supertree methods yet to come. PMID:22229028

  17. Cleaning method and apparatus

    DOEpatents

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  18. Methods of flash sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, Rishi; Cologna, Marco; Francis, John S.

    2016-05-10

    This disclosure provides methods of flash sintering and compositions created by these methods. Methods for sintering multilayered bodies are provided in which a sintered body is produced in less than one minute. In one aspect, each layer is of a different composition, and may be constituted wholly from a ceramic or from a combination of ceramic and metallic particles. When the body includes a layer of an anode composition, a layer of an electrolyte composition and a layer of a cathode composition, the sintered body can be used to produce a solid oxide fuel cell.

  19. Method of sound synthesis

    DOEpatents

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  20. Proven Weight Loss Methods

    MedlinePlus

    Fact Sheet Proven Weight Loss Methods What can weight loss do for you? Losing weight can improve your health in a number of ways. It can lower ... at www.hormone.org/Spanish . Proven Weight Loss Methods Fact Sheet www.hormone.org

  1. Method of forming nanodielectrics

    DOEpatents

    Tuncer, Enis [Knoxville, TN; Polyzos, Georgios [Oak Ridge, TN

    2014-01-07

    A method of making a nanoparticle filled dielectric material. The method includes mixing nanoparticle precursors with a polymer material and reacting the nanoparticle mixed with the polymer material to form nanoparticles dispersed within the polymer material to form a dielectric composite.

  2. Mixed methods for telehealth research.

    PubMed

    Caffery, Liam J; Martin-Khan, Melinda; Wade, Victoria

    2017-10-01

    Mixed methods research is important to health services research because the integrated qualitative and quantitative investigation can give a more comprehensive understanding of complex interventions such as telehealth than can a single-method study. Further, mixed methods research is applicable to translational research and program evaluation. Study designs relevant to telehealth research are described and supported by examples. Quality assessment tools, frameworks to assist in the reporting and review of mixed methods research, and related methodologies are also discussed.

  3. Vortex methods and vortex statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chorin, A.J.

    Vortex methods originated from the observation that in incompressible, inviscid, isentropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus if the vorticity is known at time t = 0, one can deduce the flow at a later time by simply following it around. In this narrow context, a vortex method is a numerical method that makes use of this observation. Even more generally, the analysis of vortex methods leads, to problems that are closely related to problems in quantum physics and field theory, as well asmore » in harmonic analysis. A broad enough definition of vortex methods ends up by encompassing much of science. Even the purely computational aspects of vortex methods encompass a range of ideas for which vorticity may not be the best unifying theme. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (``blobs``) and those whose understanding contributes to the understanding of blob methods. Vortex methods for inviscid flow lead to systems of ordinary differential equations that can be readily clothed in Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a number of invariants of the Euler equations, including topological invariants. Their viscous versions resemble Langevin equations. As a result, they provide a very useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed analytically and more importantly, explored numerically, with important implications also for superfluids, superconductors, and even polymers. In the authors view, vortex ``blob`` methods provide the most promising path to the understanding of these phenomena.« less

  4. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOEpatents

    Jia, Weiyi; Wang, Xiaojun; Yen, William; Yen, Laurel C.; Jia, George D.

    2012-12-04

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  5. Phosphorescent compositions, methods of making the compositions, and methods of using the compositions

    DOEpatents

    Jia, Weiyi; Wang, Xiaojun; Jia, George D.; Lewis, Linda; Yen, Laurel C.

    2014-06-24

    Compositions, methods of making compositions, materials including compositions, crayons including compositions, paint including compositions, ink including compositions, waxes including compositions, polymers including compositions, vesicles including the compositions, methods of making each, and the like are disclosed.

  6. Text-in-context: a method for extracting findings in mixed-methods mixed research synthesis studies.

    PubMed

    Sandelowski, Margarete; Leeman, Jennifer; Knafl, Kathleen; Crandell, Jamie L

    2013-06-01

    Our purpose in this paper is to propose a new method for extracting findings from research reports included in mixed-methods mixed research synthesis studies. International initiatives in the domains of systematic review and evidence synthesis have been focused on broadening the conceptualization of evidence, increased methodological inclusiveness and the production of evidence syntheses that will be accessible to and usable by a wider range of consumers. Initiatives in the general mixed-methods research field have been focused on developing truly integrative approaches to data analysis and interpretation. The data extraction challenges described here were encountered, and the method proposed for addressing these challenges was developed, in the first year of the ongoing (2011-2016) study: Mixed-Methods Synthesis of Research on Childhood Chronic Conditions and Family. To preserve the text-in-context of findings in research reports, we describe a method whereby findings are transformed into portable statements that anchor results to relevant information about sample, source of information, time, comparative reference point, magnitude and significance and study-specific conceptions of phenomena. The data extraction method featured here was developed specifically to accommodate mixed-methods mixed research synthesis studies conducted in nursing and other health sciences, but reviewers might find it useful in other kinds of research synthesis studies. This data extraction method itself constitutes a type of integration to preserve the methodological context of findings when statements are read individually and in comparison to each other. © 2012 Blackwell Publishing Ltd.

  7. Method for isolating nucleic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids formore » a wide variety of applications including, sequencing or species population analysis.« less

  8. Methods for computing color anaglyphs

    NASA Astrophysics Data System (ADS)

    McAllister, David F.; Zhou, Ya; Sullivan, Sophia

    2010-02-01

    A new computation technique is presented for calculating pixel colors in anaglyph images. The method depends upon knowing the RGB spectral distributions of the display device and the transmission functions of the filters in the viewing glasses. It requires the solution of a nonlinear least-squares program for each pixel in a stereo pair and is based on minimizing color distances in the CIEL*a*b* uniform color space. The method is compared with several techniques for computing anaglyphs including approximation in CIE space using the Euclidean and Uniform metrics, the Photoshop method and its variants, and a method proposed by Peter Wimmer. We also discuss the methods of desaturation and gamma correction for reducing retinal rivalry.

  9. 77 FR 60985 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Three New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Methods: Designation of Three New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of three new equivalent methods for monitoring ambient air quality. SUMMARY... equivalent methods, one for measuring concentrations of PM 2.5 , one for measuring concentrations of PM 10...

  10. 78 FR 67360 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Methods: Designation of Five New Equivalent Methods AGENCY: Office of Research and Development; Environmental Protection Agency (EPA). ACTION: Notice of the designation of five new equivalent methods for...) has designated, in accordance with 40 CFR Part 53, five new equivalent methods, one for measuring...

  11. Actinide extraction methods

    DOEpatents

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  12. Standard setting: comparison of two methods.

    PubMed

    George, Sanju; Haque, M Sayeed; Oyebode, Femi

    2006-09-14

    The outcome of assessments is determined by the standard-setting method used. There is a wide range of standard-setting methods and the two used most extensively in undergraduate medical education in the UK are the norm-reference and the criterion-reference methods. The aims of the study were to compare these two standard-setting methods for a multiple-choice question examination and to estimate the test-retest and inter-rater reliability of the modified Angoff method. The norm-reference method of standard-setting (mean minus 1 SD) was applied to the 'raw' scores of 78 4th-year medical students on a multiple-choice examination (MCQ). Two panels of raters also set the standard using the modified Angoff method for the same multiple-choice question paper on two occasions (6 months apart). We compared the pass/fail rates derived from the norm reference and the Angoff methods and also assessed the test-retest and inter-rater reliability of the modified Angoff method. The pass rate with the norm-reference method was 85% (66/78) and that by the Angoff method was 100% (78 out of 78). The percentage agreement between Angoff method and norm-reference was 78% (95% CI 69% - 87%). The modified Angoff method had an inter-rater reliability of 0.81-0.82 and a test-retest reliability of 0.59-0.74. There were significant differences in the outcomes of these two standard-setting methods, as shown by the difference in the proportion of candidates that passed and failed the assessment. The modified Angoff method was found to have good inter-rater reliability and moderate test-retest reliability.

  13. An improved EMD method for modal identification and a combined static-dynamic method for damage detection

    NASA Astrophysics Data System (ADS)

    Yang, Jinping; Li, Peizhen; Yang, Youfa; Xu, Dian

    2018-04-01

    Empirical mode decomposition (EMD) is a highly adaptable signal processing method. However, the EMD approach has certain drawbacks, including distortions from end effects and mode mixing. In the present study, these two problems are addressed using an end extension method based on the support vector regression machine (SVRM) and a modal decomposition method based on the characteristics of the Hilbert transform. The algorithm includes two steps: using the SVRM, the time series data are extended at both endpoints to reduce the end effects, and then, a modified EMD method using the characteristics of the Hilbert transform is performed on the resulting signal to reduce mode mixing. A new combined static-dynamic method for identifying structural damage is presented. This method combines the static and dynamic information in an equilibrium equation that can be solved using the Moore-Penrose generalized matrix inverse. The combination method uses the differences in displacements of the structure with and without damage and variations in the modal force vector. Tests on a four-story, steel-frame structure were conducted to obtain static and dynamic responses of the structure. The modal parameters are identified using data from the dynamic tests and improved EMD method. The new method is shown to be more accurate and effective than the traditional EMD method. Through tests with a shear-type test frame, the higher performance of the proposed static-dynamic damage detection approach, which can detect both single and multiple damage locations and the degree of the damage, is demonstrated. For structures with multiple damage, the combined approach is more effective than either the static or dynamic method. The proposed EMD method and static-dynamic damage detection method offer improved modal identification and damage detection, respectively, in structures.

  14. Methods for data classification

    DOEpatents

    Garrity, George [Okemos, MI; Lilburn, Timothy G [Front Royal, VA

    2011-10-11

    The present invention provides methods for classifying data and uncovering and correcting annotation errors. In particular, the present invention provides a self-organizing, self-correcting algorithm for use in classifying data. Additionally, the present invention provides a method for classifying biological taxa.

  15. Comparison of microstickies measurement methods. Part I, sample preparation and measurement methods

    Treesearch

    Mahendra R. Doshi; Angeles Blanco; Carlos Negro; Gilles M. Dorris; Carlos C. Castro; Axel Hamann; R. Daniel Haynes; Carl Houtman; Karen Scallon; Hans-Joachim Putz; Hans Johansson; R.A. Venditti; K. Copeland; H.-M. Chang

    2003-01-01

    Recently, we completed a project on the comparison of macrostickies measurement methods. Based on the success of the project, we decided to embark on this new project on comparison of microstickies measurement methods. When we started this project, there were some concerns and doubts principally due to the lack of an accepted definition of microstickies. However, we...

  16. Probabilistic methods for rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.

    1991-01-01

    This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.

  17. Methods of analyzing crude oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooks, Robert Graham; Jjunju, Fred Paul Mark; Li, Anyin

    The invention generally relates to methods of analyzing crude oil. In certain embodiments, methods of the invention involve obtaining a crude oil sample, and subjecting the crude oil sample to mass spectrometry analysis. In certain embodiments, the method is performed without any sample pre-purification steps.

  18. Structural Embeddings: Mechanization with Method

    NASA Technical Reports Server (NTRS)

    Munoz, Cesar; Rushby, John

    1999-01-01

    The most powerful tools for analysis of formal specifications are general-purpose theorem provers and model checkers, but these tools provide scant methodological support. Conversely, those approaches that do provide a well-developed method generally have less powerful automation. It is natural, therefore, to try to combine the better-developed methods with the more powerful general-purpose tools. An obstacle is that the methods and the tools often employ very different logics. We argue that methods are separable from their logics and are largely concerned with the structure and organization of specifications. We, propose a technique called structural embedding that allows the structural elements of a method to be supported by a general-purpose tool, while substituting the logic of the tool for that of the method. We have found this technique quite effective and we provide some examples of its application. We also suggest how general-purpose systems could be restructured to support this activity better.

  19. Strengthening method of concrete structure

    NASA Astrophysics Data System (ADS)

    Inge, Wewin; Audrey; Nugroho, Sofie; Njo, Helen

    2018-03-01

    Building extension in Indonesia is not favored, and not many people know the advantages of the method because architects and engineers tend to lack the knowledge and experience. The aim of this paper is to explain a method on how to strengthen a concrete building structure that people can use/learn as a better way to cut potential cost and save time. The strengthening method explained in this paper is steel jacketing, providing a case study of this method in the extension of a restaurant located in Medan, Indonesia. In this study, engineers calculated that the tensile stress of the existing RC column and beam is not strong enough to reinforce the building extension applied load. Therefore, the steel jacketing method can be applied to improve the column and beam strength and ductility. The result of the case study proves that this is one of the best methods for building extension applied in Indonesia.

  20. Integration of Gas Chromatography Mass Spectrometry Methods for Differentiating Ricin Preparation Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunschel, David S.; Melville, Angela M.; Ehrhardt, Christopher J.

    2012-05-17

    The investigation of crimes involving chemical or biological agents is infrequent, but presents unique analytical challenges. The protein toxin ricin is encountered more frequently than other agents and is found in the seeds of the castor plant Ricinus communis. Typically, the toxin is extracted from castor seeds utilizing a variety of different recipes that result in varying purity of the toxin. Moreover, these various purification steps can also leave or differentially remove a variety of exogenous and endogenous residual components with the toxin that may indicate the type and number of purification steps involved. We have applied three gas chromatographicmore » - mass spectrometric (GC-MS) based analytical methods to measure the variation in seed carbohydrates and castor oil ricinoleic acid as well as the presence of solvents used for purification. These methods were applied to the same samples prepared using four previously identified toxin preparation methods starting from four varieties of castor seeds. The individual data sets for seed carbohydrate profiles, ricinoleic acid or acetone amount each provided information capable of differentiating different types of toxin preparations across seed types. However, the integration of the data sets using multivariate factor analysis provided a clear distinction of all samples based on the preparation method and independent of the seed source. In particular the abundance of mannose, arabinose, fucose, ricinoleic acid and acetone were shown to be important differentiating factors. These complementary tools provide a more confident determination of the method of toxin preparation.« less