Sample records for karakoram himalaya region

  1. Analysis of Atmospheric Moisture Transport over the Himalaya-Karakoram-Hindukush Region

    NASA Astrophysics Data System (ADS)

    Minallah, S.; Ivanov, V. Y.

    2017-12-01

    The high-altitude region of the Himalaya-Karakoram-Hindukush (HKH) ranges is susceptible to natural disasters due to their extreme topographic features and climatic conditions. The region, where large population resides in deep valleys and mountain foothills, is prone to riverine flooding, flash floods, and extreme precipitation events whose frequency is perceived to be increasing, often with attribution to climate change. It is thus imperative to study the causation using modern hydrometeorological products. In this study, we identify regions with documented trends in extreme flooding and precipitation and carry out a statistical analysis of the atmospheric moisture transport at the synoptic scale for these regions using ERA-Interim and NASA MERRA-2 reanalysis products. We focus on the two main sources for the atmospheric moisture in the region: the summer South-East Asian Monsoon and the winter Westerlies, and explore how variations in these systems affect the moisture convergence and divergence over the region. Our findings indicate that the Monsoon precipitation has been intensifying in the western Himalayas over the past decade and a half and that these changes are likely related to moisture advection into the region.

  2. Deciphering the contrasting climatic trends between the central Himalaya and Karakoram with 36 years of WRF simulations

    NASA Astrophysics Data System (ADS)

    Norris, Jesse; Carvalho, Leila M. V.; Jones, Charles; Cannon, Forest

    2018-02-01

    Glaciers over the central Himalaya have retreated at particularly rapid rates in recent decades, while glacier mass in the Karakoram appears stable. To address the meteorological factors associated with this contrast, 36 years of Climate Forecast System Reanalyses (CFSR) are dynamically downscaled from 1979 to 2015 with the Weather Research and Forecasting (WRF) model over High Mountain Asia at convection permitting grid spacing (6.7 km). In all seasons, CFSR shows an anti-cyclonic warming trend over the majority of High Mountain Asia, but distinctive differences are observed between the central Himalaya and Karakoram in winter and summer. In winter and summer, the central Himalaya has been under the influence of an anti-cyclonic trend, which in summer the downscaling shows has reduced cloud cover, leading to significant warming and reduced snowfall in recent years. Contrastingly, the Karakoram has been near the boundary between large-scale cyclonic and anti-cyclonic trends and has not experienced significant snowfall or temperature changes in winter or summer, despite significant trends in summer of increasing cloud cover and decreasing shortwave radiation. This downscaling does not identify any trends over glaciers in closer neighboring regions to the Karakoram (e.g., Hindu Kush and the western Himalaya) where glaciers have retreated as over the central Himalaya, indicating that there are other factors driving glacier mass balance that this downscaling is unable to capture. While this study does not fully explain the Karakoram anomaly, the identified trends detail important meteorological contributions to the observed differences between central Himalaya and Karakoram glacier evolution in recent decades.

  3. Micro-seismicity and seismotectonic study in Western Himalaya-Ladakh-Karakoram using local broadband seismic data

    NASA Astrophysics Data System (ADS)

    Kanna, Nagaraju; Gupta, Sandeep; Prakasam, K. S.

    2018-02-01

    We document the seismic activity and fault plane solutions (FPSs) in the Western Himalaya, Ladakh and Karakoram using data from 16 broadband seismographs operated during June 2002 to December 2003. We locate 206 earthquakes with a local magnitude in the range of 1.5 to 4.9 and calculate FPSs of 19 selected earthquakes based on moment tensor solutions. The earthquakes are distributed throughout the study region and indicate active tectonics in this region. The observed seismicity pattern is quite different than a well-defined pattern of seismicity, along the Main Central Thrust zone, in the eastern side of the study region (i.e., Kumaon-Garhwal Himalaya). In the Himalaya region, the earthquakes are distributed in the crust and upper mantle, whereas in the Ladakh-Karakoram area the earthquakes are mostly confined up to crustal depths. The fault plane solutions show a mixture of thrust, normal and strike-slip type mechanisms, which are well corroborated with the known faults/tectonics of the region. The normal fault earthquakes are observed along the Southern Tibet Detachment, Zanskar Shear Zone, Tso-Morari dome, and Kaurik-Chango fault; and suggest E-W extension tectonics in the Higher and Tethys Himalaya. The earthquakes of thrust mechanism with the left-lateral strike-slip component are seen along the Kistwar fault. The right-lateral strike-slip faulting with thrust component along the bending of the Main Boundary Thrust and Main Central Thrust shows the transpressional tectonics in this part of the Himalaya. The observed earthquakes with right-lateral strike-slip faulting indicate seismically active nature of the Karakoram fault.

  4. Precipitation in the Karakoram-Himalaya: a CMIP5 view

    NASA Astrophysics Data System (ADS)

    Palazzi, Elisa; von Hardenberg, Jost; Terzago, Silvia; Provenzale, Antonello

    2015-07-01

    This work analyzes the properties of precipitation in the Hindu-Kush Karakoram Himalaya region as simulated by thirty-two state-of-the-art global climate models participating in the Coupled Model Intercomparison Project phase 5 (CMIP5). We separately consider the Hindu-Kush Karakoram (HKK) in the west and the Himalaya in the east. These two regions are characterized by different precipitation climatologies, which are associated with different circulation patterns. Historical model simulations are compared with the Climate Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC) precipitation data in the period 1901-2005. Future precipitation is analyzed for the two representative concentration pathways (RCP) RCP 4.5 and RCP 8.5 scenarios. We find that the multi-model ensemble mean and most individual models exhibit a wet bias with respect to CRU and GPCC observations in both regions and for all seasons. The models differ greatly in the seasonal climatology of precipitation which they reproduce in the HKK. The CMIP5 models predict wetter future conditions in the Himalaya in summer, with a gradual precipitation increase throughout the 21st century. Wetter summer future conditions are also predicted by most models in the RCP 8.5 scenario for the HKK, while on average no significant change can be detected in winter precipitation for both regions. In general, no single model (or group of models) emerges as that providing the best results for all the statistics considered, and the large spread in the behavior of individual models suggests to consider multi-model ensemble means with extreme care.

  5. Glacier dynamics of the Pamir-Karakoram-Himalaya region over the last 40 years

    NASA Astrophysics Data System (ADS)

    Gourmelen, N.; Dehecq, A.; Trouvé, E.

    2014-12-01

    Climate warming over the 20th century has caused drastic changes in mountain glaciers globally, and of the Himalayan glaciers in particular. The stakes are high; glaciers and ice caps are the largest contributor to the increase in the mass of the world's oceans, and the Himalayas play a key role in the hydrology of the region, impacting on the economy, food safety and flood risk. Partial monitoring of the Himalayan glaciers has revealed a mixed picture; while many of the Himalayan glaciers are retreating, in some cases locally stable or advancing glaciers in this region have also been observed. But recent controversies have highlighted the need to understand the glaciers dynamic and its relationship with climate change in the region. Earth Observation provides a mean for global and long-term monitoring of mountain glaciers' dynamics. In the frame of the Dragon program, a partnership between the European Space Agency (ESA) and the Chinese Center for Earth Observation (NRSCC), we begun a monitoring program aimed at quantifying multidecadal changes in glaciers' flow at the scale of the entire Himalayas and Karakoram from a 40 years' archive of Earth Observation. Ultimately, the provision of a global and time-sensitive glaciers velocity product will help to understand the evolution of the Himalayan glaciers in lights of glaciological (e.g. presence of debris-cover, surges, proglacial lakes) and climatic conditions. Here we present a region-wide analysis of annual and seasonnal glacier flow velocity covering the Pamir-Karakoram-Himalaya region obtained from the analysis of the entire archive of Landsat data. Over 90% of the ice-covered regions, as defined by the Randolph Glacier Inventory, are measured, with precision on the retrieved velocity of the order of 2 m/yr. We show that the first order temporal evolution of glacier flow mirrors the pattern of glacier mass balance. We observe a general decrease of ice velocity in regions of known ice mass loss, and a more

  6. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle

    USGS Publications Warehouse

    Kapnick, Sarah B.; Delworth, Thomas L.; Ashfaq, Moetasim; Malyshev, Sergey; Milly, Paul C.D.

    2014-01-01

    The high mountains of Asia, including the Karakoram, Himalayas and Tibetan Plateau, combine to form a region of perplexing hydroclimate changes. Glaciers have exhibited mass stability or even expansion in the Karakoram region1, 2, 3, contrasting with glacial mass loss across the nearby Himalayas and Tibetan Plateau1, 4, a pattern that has been termed the Karakoram anomaly. However, the remote location, complex terrain and multi-country fabric of high-mountain Asia have made it difficult to maintain longer-term monitoring systems of the meteorological components that may have influenced glacial change. Here we compare a set of high-resolution climate model simulations from 1861 to 2100 with the latest available observations to focus on the distinct seasonal cycles and resulting climate change signatures of Asia’s high-mountain ranges. We find that the Karakoram seasonal cycle is dominated by non-monsoonal winter precipitation, which uniquely protects it from reductions in annual snowfall under climate warming over the twenty-first century. The simulations show that climate change signals are detectable only with long and continuous records, and at specific elevations. Our findings suggest a meteorological mechanism for regional differences in the glacier response to climate warming.

  7. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus basin

    NASA Astrophysics Data System (ADS)

    Hasson, S.; Böhner, J.; Lucarini, V.

    2015-03-01

    Largely depending on meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus basin (UIB) contribute to half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, we present a comprehensive hydro-climatic trend analysis over the UIB, including for the first time observations from high-altitude automated weather stations. We analyze trends in maximum, minimum and mean temperatures (Tx, Tn, and Tavg, respectively), diurnal temperature range (DTR) and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012), and separately, from six stations of their long term record (1961-2012). We apply Mann-Kendall test on serially independent time series to assess existence of a trend while true slope is estimated using Sen's slope method. Further, we statistically assess the spatial scale (field) significance of local climatic trends within ten identified sub-regions of UIB and analyze whether the spatially significant (field significant) climatic trends qualitatively agree with a trend in discharge out of corresponding sub-region. Over the recent period (1995-2012), we find a well agreed and mostly field significant cooling (warming) during monsoon season i.e. July-October (March-May and November), which is higher in magnitude relative to long term trends (1961-2012). We also find general cooling in Tx and a mixed response in Tavg during the winter season and a year round decrease in DTR, which are in direct contrast to their long term trends. The observed decrease in DTR is stronger and more significant at high altitude stations (above 2200 m a.s.l.), and mostly due to higher cooling in Tx than in Tn. Moreover, we find a field

  8. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).

    PubMed

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

    2015-02-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Glacier changes in the Chinese Karakoram-Himalaya Mountains since the late 1950s as revealed by inventories from topographical maps and satellite images

    NASA Astrophysics Data System (ADS)

    Liu, S.; Guo, W.; Wei, J.; Bao, W.

    2012-12-01

    The Karakoram-Himalaya Mountains (KHM) are the largest mountain system surrounding the Tibetan Plateau. The early and the recent estimate indicate that the total glacier area in KHM region is about one third of that in the whole Asia High Mountains. Glaciers in KHM are one of the key components in the water resource formation and variation of rivers like Tarim, Brahmaputra, Indus, and Ganges, and so on, where about 1 billion people are living in. Climate change have led to retreating of glaciers in the ranges which may have potential impact on the water availability and so the food and water resources security in the lower reaches of river basins that originated from the huge mountains. Lot of efforts have been taken for understanding changes of glaciers in the region, but few covers the changes based on glacier inventories. Here we introduce our results for glaciers in Chinese part based on glacier inventories from the topographical maps in the late 1950s to early 1980s (area average year of 1972 in the Karakoram and 1975 in the Himalaya) and from satellite images (Landsat TM/ETM+, ASTER, SPOT4/5) acquired in 2009/2010. By excluding those glaciers not well identified from optical images, the total area of glaciers mapped for the second time are 89% and 69% of the total ones mapped at first time in the Karakoram and Himalaya mountains. Results show that glacier retreat was dominant and very few glaciers were in advance or stable. Glaciers in the Himalaya have lost 26.3% of their area in the late 1950s to early 1980s, while that in the Karakoram is 11.9% for the similar time span. As far annual retreat rates, glaciers in Himalaya have experienced a speedy area decrease by 0.80%/yr, higher than that of 0.33%/yr in Karakorum. In General, glacier shrinkage in KHM shows obvious spatial heterogeneity.

  10. Early 21st century spatially detailed elevation changes of Jammu and Kashmir glaciers (Karakoram-Himalaya)

    NASA Astrophysics Data System (ADS)

    Vijay, Saurabh; Braun, Matthias

    2018-06-01

    Although a number of studies indicate the regional heterogeneity of the glacier elevation and mass changes in high-mountain Asia in the early 21st century, little is known about these changes with high spatial detail for some of the regions. In this study we present respective glacier elevation and mass change estimates in the Indian state of Jammu and Kashmir (JK) for the period 2000-2012. Our estimates are based on the interferometric analysis of SRTM DEM and the bistatic TanDEM-X data. On an average the JK East (Karakoram) glaciers showed less negative elevation changes (- 0.19 ± 0.22 m yr-1) compared to the JK West (Himalaya) glaciers (- 0.50 ± 0.28 m yr-1). This agrees very well with previous studies that show a transition from larger changes in the western Himalaya to a steady-state situation in the Karakoram. We observe distinct elevation change patterns on a glacier scale that is most likely linked to debris insulation and the enhanced ice melting due to supraglacial lakes, ponds and ice cliffs. We also found 16 surge-type glaciers in the JK East which were not documented before. In total, 25 glaciers surged and 4 others appeared to be in a quiescent phase in the observation period. Our results also reveal that the glacier-averaged elevation change rates of surge-type and non surge-type glaciers in the JK East region are not significantly different.

  11. Historical telecommunication in the Hindukush-Karakoram-Himalayas: An ancient early warning system for glacier lake outbursts

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam

    2016-04-01

    Mountain societies are in a crucial transition phase in terms of the management of natural hazards. Advances in geographic technologies, such as a variety of remote-sensing tools and mobile communication systems, have drastically changed the way of early warning methods in difficult accessible high mountain environments compared to those of ancient times. In order to implement new natural hazard policies, it is essential to unravel the traditional ways of disaster management which is presented here by a case study from the Hindukush-Karakoram-Himalayas. In the rugged relief of the Himalaya Region, the exchange of information was a labor-intensive and time-consuming task for remote high mountain villages before the infrastructural development and the introduction of modern communication systems. Therefore, early warning of natural hazards with long run-out distances seems to have been rather impossible. However, in the present study a historical optical long-distance and fast operating communication system over horizontal distances of several hundred kilometers was discovered during field investigations in the Hindukush-Karakoram and the transmission paths reconstructed in the following years. The so called Puberanch-system relied on a chain of fire signals as used by ancient societies in other mountain and coastal environments in the world. It was originally in use for the alert against war attacks from hostile neighboring communities. Later on, it served as an early warning system for glacier lake outbursts, which have been in the end of the 19th century and beginning of the 20th century one of the most devastating natural hazards in the region. Remarkable is the fact that fire posts were located in extremely harsh environments at altitudes above 4000 m requiring a highly sophisticated supply system of fire wood and food. Interviews with local inhabitants, the evaluation of historical travel records and international newspapers proved, that the system has been

  12. Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.

    2015-12-01

    Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.

  13. Hydrological modelling improvements required in basins in the Hindukush-Karakoram-Himalayas region

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Richards, Keith S.; McRobie, Allan; Booij, Martijn

    2016-04-01

    Millions of people rely on river water originating from basins in the Hindukush-Karakoram-Himalayas (HKH), where snow- and ice-melt are significant flow components. One such basin is the Upper Indus Basin (UIB), where snow- and ice-melt can contribute more than 80% of total flow. Containing some of the world's largest alpine glaciers, this basin may be highly susceptible to global warming and climate change, and reliable predictions of future water availability are vital for resource planning for downstream food and energy needs in a changing climate, but depend on significantly improved hydrological modelling. However, a critical assessment of available hydro-climatic data and hydrological modelling in the HKH region has identified five major failings in many published hydro-climatic studies, even those appearing in reputable international journals. The main weaknesses of these studies are: i) incorrect basin areas; ii) under-estimated precipitation; iii) incorrectly-defined glacier boundaries; iv) under-estimated snow-cover data; and v) use of biased melt factors for snow and ice during the summer months. This paper illustrates these limitations, which have either resulted in modelled flows being under-estimates of measured flows, leading to an implied severe water scarcity; or have led to the use of unrealistically high degree-day factors and over-estimates of glacier melt contributions, implying unrealistic melt rates. These effects vary amongst sub-basins. Forecasts obtained from these models cannot be used reliably in policy making or water resource development, and need revision. Detailed critical analysis and improvement of existing hydrological modelling may be equally necessary in other mountain regions across the world.

  14. New insights into the multi-scale climatic drivers of the "Karakoram anomaly"

    NASA Astrophysics Data System (ADS)

    Collier, S.; Moelg, T.; Nicholson, L. I.; Maussion, F.; Scherer, D.; Bush, A. B.

    2012-12-01

    Glacier behaviour in the Karakoram region of the northwestern Himalaya shows strong spatial and temporal heterogeneity and, in some basins, anomalous trends compared with glaciers elsewhere in High Asia. Our knowledge of the mass balance fluctuations of Karakoram glaciers as well as of the important driving factors and interactions between them is limited by a scarcity of in-situ measurements and other studies. Here we employ a novel approach to simulating atmosphere-cryosphere interactions - coupled high-resolution atmospheric and physically-based surface mass balance modelling - to examine the surface energy and mass fluxes of glaciers in this region. We discuss the mesoscale climatic drivers behind surface mass balance fluctuations as well as the influence of local forcing factors, such as debris cover and feedbacks from the glacier surface to the atmosphere. The coupled modelling approach therefore provides an innovative, multi-scale solution to the paucity of information we have to date on the much-debated "Karakoram anomaly."

  15. A Review of Geophysical Constraints on the Deep Structure of the Tibetan Plateau, the Himalaya and the Karakoram, and their Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Molnar, P.

    1988-09-01

    The Tibetan Plateau, the Himalaya and the Karakoram are the most spectacular consequences of the collision of the Indian subcontinent with the rest of Eurasia in Cainozoic time. Accordingly, the deep structures beneath them provide constraints on both the tectonic history of the region and on the dynamic processes that have created these structures. The dispersion of seismic surface waves requires that the crust beneath Tibet be thick: nowhere less than 50 km, at least 65 km, in most areas, but less than 80 km in all areas that have been studied. Wide-angle reflections of P-waves from explosive sources in southern Tibet corroborate the existence of a thick crust but also imply the existence of marked lateral variations in that thickness, or in the velocity structure of the crust. Thus isostatic compensation occurs largely by an Airy-type mechanism, unlike that, for instance, of the Basin and Range Province of western North America where a hot upper mantle buoys up a thin crust. The P-wave and S-wave velocities in the uppermost mantle of most of Tibet are relatively high and typical of those of Precambrian shields and stable platforms: Vp = 8.1 km s-1 or higher, and Vs≈ 4.7 km s-1. Travel times and waveforms of S-waves passing through the uppermost mantle of much of Tibet, however, require a much lower average velocity in the uppermost mantle than that of the Indian, or other, shields. They indicate a thick low-velocity zone in the upper mantle beneath Tibet, reminiscent of tectonically active regions. These data rule out a shield structure beneath northern Tibet and suggest that if such a structure does underlie part of the plateau, it does so only beneath the southern part. Lateral variations in the upper-mantle structure of Tibet are apparent from differences in travel times of S-waves from earthquakes in different parts of Tibet, in the attenuation of short-period phases, Pn and Sn, that propagate through the uppermost mantle of Tibet, and in surface

  16. Proceedings of the 25th Himalaya-Karakoram-Tibet Workshop

    USGS Publications Warehouse

    Leech, Mary L.; Klemperer, Simon L.; Mooney, Walter D.

    2010-01-01

    For a quarter of a century the Himalayan-Karakoram-Tibet (HKT) Workshop has provided scientists studying the India-Asia collision system a wonderful opportunity for workshop-style discussion with colleagues working in this region. In 2010, HKT returns to North America for the first time since 1996. The 25th international workshop is held from June 7 to10 at San Francisco State University, California. The international community was invited to contribute scientific papers to the workshop, on all aspects of geoscience research in the geographic area of the Tibetan Plateau and its bounding ranges and basins, from basic mapping to geochemical and isotopic analyses to large-scale geophysical imaging experiments. In recognition of the involvement of U.S. Geological Survey (USGS) scientists in a wide range of these activities, the USGS agreed to publish the extended abstracts of the numerous components of HKT-25 as an online Open-File Report, thereby ensuring the wide availability and distribution of these abstracts, particularly in the HKT countries from which many active workers are precluded by cost from attending international meetings. In addition to the workshop characterized by contributed presentations, participants were invited to attend a pre-meeting field trip from the Coast Ranges to the Sierra Nevada, to allow the international group to consider how the tectonic elements of the Pacific margin compare to those of the Himalayan belt. Following the workshop, the National Science Foundation (NSF) sponsored a workshop on the 'Future directions for NSF-sponsored geoscience research in the Himalaya/Tibet' intended to provide NSF Program Directors with a clear statement and vision of community goals for the future, including the scientific progress we can expect if NSF continues its support of projects in this geographic region, and to identify which key geoscience problems and processes are best addressed in the Himalaya and Tibet, what key datasets are needed, and

  17. A new glacier inventory for the Karakoram-Pamir region

    NASA Astrophysics Data System (ADS)

    Rastner, P.; Paul, F.; Bolch, T.; Moelg, N.

    2015-12-01

    High-quality glacier inventories are required as a reference dataset to determine glacier changes and model their reaction to climate change, among others. In particular in High Mountain Asia such an inventory was missing for several heavily glacierized regions with reportedly strongly changing glaciers. As a contribution to GLIMS and the Randolph Glacier Inventory (RGI) we have mapped all glaciers in the Karakoram and Pamir region within the framework of ESAs Glaciers_cci project. Glacier mapping was performed using the band ratio method (TM3/TM5) and manual editing of Landsat TM/ETM+ imagery acquired around the year 2000. The mapping was challenged by frequent seasonal snow at high elevations, debris-covered glacier tongues, and several surging glaciers. We addressed the snow issue by utilizing multi-temporal imagery and improved manual mapping of debris-covered glacier tongues with ALOS PALSAR coherence images. Slow disintegration of glacier tongues after a surge (leaving still-connected dead ice) results in a difficult identification of the terminus and assignment of entities. Drainage divides were derived from the ASTER GDEM II and manually corrected to calculate topographic parameters. All glaciers larger 0.02 km2 cover an area of about 21,700 km2 in the Karakoram and about 11,800 km² in the Pamir region. Most glaciers are in the 0.1-0.5 km2 size class for Pamir, whereas for the Karakoram they are in the class <0.1 km2. Glaciers between 1 and 5 km2 contribute more than 30% to the total area in Pamir, whereas for the Karakoram region it is only 17%. The mean glacier elevation in the Karakoram (Pamir) region is 5426 (4874) m. A comparison with other recently published inventories reveals differences in the interpretation of glacier extents (mainly in the accumulation region) that would lead to large area changes if unconsidered for change assessment across different inventories.

  18. Winter westerly disturbance dynamics and precipitation in the western Himalaya and Karakoram: a wave-tracking approach

    NASA Astrophysics Data System (ADS)

    Cannon, Forest; Carvalho, Leila M. V.; Jones, Charles; Norris, Jesse

    2016-07-01

    Extratropical cyclones, including winter westerly disturbances (WWD) over central Asia, are fundamental features of the atmosphere that maintain energy, momentum, and moisture at global scales while intimately linking large-scale circulation to regional-scale meteorology. Within high mountain Asia, WWD are the primary contributor to regional precipitation during winter. In this work, we present a novel WWD tracking methodology, which provides an inventory of location, timing, intensity, and duration of events, allowing for a comprehensive study of the factors that relate WWD to orographic precipitation, on an individual event basis and in the aggregate. We identify the relationship between the strength of disturbances, the state of the background environment during their propagation, and precipitation totals in the Karakoram/western Himalaya. We observe significant differences in convective and mechanical instability contributions to orographic precipitation as a function of the relationship between the intensity of WWD and the background temperature and moisture fields, which exhibit strong intraseasonal variability. Precipitation is primarily orographically forced during intense WWD with strong cross-barrier winds, while weaker WWD with similar precipitation totals are observed to benefit from enhanced instability due to high moisture content and temperature at low levels, occurring primarily in the late winter/premonsoon. The contribution of these factors is observed to fluctuate on a per-case basis, indicating important influences of intraseasonal oscillations and tropical-extratropical interactions on regional precipitation.

  19. Himalayan/Karakoram Disaster After Disaster: The Pain Will Not Be Ending Anytime Soon

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Leonard, G. J.

    2013-12-01

    Are recent natural disasters in the Himalaya/Karakoram partly human-caused? Will disasters diminish or increase in frequency? Natural disasters in this region are nothing new. Earthquakes, floods, landslides, avalanches, and debris flows have occurred in the Himalaya/Karakoram since the mountains first grew from the sea. Simply put, the Himalaya/Karakoram, being South Asia's 'water tower' and an active plate tectonic collision zone, must shed water and debris to the lowlands and the sea. When this activity occurs swiftly and with high intensity at or near human settlements, the results are often deadly. Remote sensing analysis of recent disasters coupled with demography, news accounts, and field studies indicate that there is a component of human responsibility. Two overarching human elements include (1) settlement and infrastructure encroachment into hazardous mountain areas and (2) aggravation of climate change. Both are substantially responsible--separately or together--for most of the recent tragedies. These conclusions provide the answer to when the disasters will end: not soon. Unfortunately, disasters will almost surely increase. Whether natural disasters have increased in frequency over the region's long historical record may be debated and must be researched. This expected link is a challenge to assess due to the stochastic nature of disasters and their triggering events (e.g., earthquakes and extreme weather events). While Himalayan tectonism, rock mechanics, glaciation, and climate are fundamental causes of the disasters, so are human land uses. Encroaching development into ever-hazardous zones is a paramount cause of much human tragedy. Climate change is harder to pin down specifically as a cause of some of these disasters, because some disasters are linked to rare extreme weather events and mass movements, which may be statistically but not individually attributable in part to climate change. Nevertheless, evidence supports a major role of climate

  20. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2017-05-01

    Largely depending on the meltwater from the Hindukush-Karakoram-Himalaya, withdrawals from the upper Indus Basin (UIB) contribute half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use, and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, this study assesses the trends in maximum, minimum and mean temperatures, diurnal temperature range and precipitation from 18 stations (1250-4500 m a.s.l.) for their overlapping period of record (1995-2012) and, separately, from six stations of their long-term record (1961-2012). For this, a Mann-Kendall test on serially independent time series is applied to detect the existence of a trend, while its true slope is estimated using the Sen's slope method. Further, locally identified climatic trends are statistically assessed for their spatial-scale significance within 10 identified subregions of the UIB, and the spatially (field-) significant climatic trends are then qualitatively compared with the trends in discharge out of corresponding subregions. Over the recent period (1995-2012), we find warming and drying of spring (field-significant in March) and increasing early melt season discharge from most of the subregions, likely due to a rapid snowmelt. In stark contrast, most of the subregions feature a field-significant cooling within the monsoon period (particularly in July and September), which coincides well with the main glacier melt season. Hence, a decreasing or weakly increasing discharge is observed from the corresponding subregions during mid- to late melt season (particularly in July). Such tendencies, being largely consistent with the long-term trends (1961-2012), most likely indicate dominance of the nival but suppression of the glacial melt regime, altering overall hydrology of the UIB in

  1. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.

    PubMed

    Ashraf, Arshad; Iqbal, Ayesha

    2018-04-27

    The meltwater components play an important role in the hydrological regime of the Hindu Kush, Karakorum and Himalaya (HKH) region, in terms of high demand of water for food and fiber from snow and glacial resource. The communities of Himalayan mountains are facing challenges of food security owing to lack of the resource information for meeting their water requirements. In this study, suitability index approach was adopted to assess glacier resource potential for establishing kuhl irrigation system in HKH ranges of Pakistan. The basis of indexing is glacier accessibility and water yield potential of the glacial resource for irrigation estimated in terms of number and ice reserve of the glaciers. The suitability index was found good for about 1.4% glaciers constituting about 80% of the total ice reserves of the HKH region. Medium suitability constitutes about 36.1% glaciers with 12.6% of the total ice reserves, while low suitability was assessed for about 60% glaciers containing 1.5% ice reserves only. Maximum unit glacial reserve was estimated for Shigar basin, i.e., 1.44 km 3 , and among HKH ranges, 0.46 km 3 for the Karakoram range. A regular monitoring of the glacial resource would prove helpful in assessing vulnerability of this resource to climate change in the high Himalayan region in future. Copyright © 2018. Published by Elsevier B.V.

  2. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    NASA Astrophysics Data System (ADS)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  3. Monitoring of time and space evolution of glaciers' flow at the scale of the Karakoram and Himalayas

    NASA Astrophysics Data System (ADS)

    Dehecq, Amaury; Gourmelen, Noel; Trouvé, Emmanuel; Wegmuller, Urs; Cheng, Xiao

    2014-05-01

    Climate warming over the 20th century has caused drastic changes in mountain glaciers globally, and of the Himalayan glaciers in particular. The stakes are high; glaciers and ice caps are the largest contributor to the increase in the mass of the world's oceans, and the Himalayas play a key role in the hydrology of the region, impacting on the economy, food safety and flood risk to a large population. Partial monitoring of the Himalayan glaciers has revealed a mixed picture; while many of the Himalayan glaciers are retreating, in some cases locally stable or advancing glaciers in this region have also been observed. But recent controversies have highlighted the need to understand the glaciers dynamic and its relationship with climate change in this region. Earth Observation provides a mean for global and long-term monitoring of mountain glaciers' dynamics. In the frame of the Dragon program, a partnership between the European Space Agency (ESA) and the Chinese Center for Earth Observation (NRSCC), we begun a monitoring program aimed at quantifying multidecadal changes in glaciers' flow at the scale of the entire Himalayas and Karakoram from a 40 years' archive of Earth Observation. Ultimately, the provision of a global and time-sensitive glaciers velocity product will help to understand the evolution of the Himalayan glaciers in lights of glaciological (e.g. presence of debris-cover, surges, proglacial lakes) and climatic conditions. In this presentation, we focus on the analysis of the Landsat archive spanning the 1972 to 2012 period, which is global and provide multidecadal and continuous observation. We present the processing strategy including preprocessing of the images, image-matching and merging of the various results obtained from the repetitivity of the acquisitions in order to obtain a more robust, precise and complete glaciers velocity fields. We show that the recent archive (Landsat 4, 5 and 7, from 1982 to 2013) allows an estimate of the velocity for

  4. Altitudinal dynamics of glacial lakes under changing climate in the Hindu Kush, Karakoram, and Himalaya ranges

    NASA Astrophysics Data System (ADS)

    Ashraf, Arshad; Naz, Rozina; Iqbal, Muhammad Bilal

    2017-04-01

    The environmental challenges posed by global warming in the Himalayan region include early and rapid melting of snow and glaciers, creation of new lakes, and expansion of old ones posing a high risk of glacial lakes outburst flood (GLOF) hazard for downstream communities. According to various elevation ranges, 3044 lakes were analyzed basinwide in the Hindu Kush-Karakoram-Himalaya (HKH) ranges of Pakistan using multisensor remote sensing data of the 2001-2013 period. An overall increase in glacial lakes was observed at various altitudinal ranges between 2500 and 5500, m out of which noticeable change by number was within the 4000-4500 m range. The analysis carried out by glacial-fed lakes and nonglacial-fed lakes in different river basins indicated variable patterns depending on the geographic location in the HKH region. The correlation analysis of parameters like lake area, expansion rate, and elevation was performed with 617 glacial lakes distributed in various river basins of the three HKH ranges. Lake area (2013) and elevation showed a negative relationship for all basins except Hunza, Shigar, and Shyok. The correlation between the expansion rate of lakes and elevation was on the positive side for Swat, Gilgit, Shigar, and Shingo basins-a situation that may be attributed to the variable altitudinal pattern of temperature and precipitation. In order to explore such diverse patterns of lake behavior and relationship with influential factors in the HKH, detailed studies based on using high resolution image data coupled with in situ information are a prerequisite. Although an increase in lake area observed below 3500 m would be favorable for water resource management, but could be alarming in context of glacial flood hazards that need to be monitored critically on a long-term basis.

  5. Gravity field and nature of continent-continent collision along the Himalaya

    NASA Astrophysics Data System (ADS)

    Verma, R. K.

    Gravity field (Bouguer) in the Himalaya is characterised by large negative-values ranging from nearly -180 mGal to over -450 mGal in Naga-Parbat/Haramosh massif which go up to -550 mGal in the Karakoram region. The observed Bouguer anomaly in NW Himalaya has been interpreted along a profile passing from Gujranwala (located at the edge of the Indian shield) to the Haramosh massif in terms of Moho depth and density contrast between the crust and the mantle. The Moho depth is interpreted to increase from nearly 35 km near the edge of Indian shield to 75 km (below sea level) underneath the Haramosh massif. A similar model is applicable to a profile passing to the west of Nanga Parbat massif, from Gujranwala to Ghizar, through the Kohistan region. However, along this profile high density lower crustal rocks appear to have been emplaced in the upper part along the Main Mantle thrust. The gravityanomalies in the Nepal-Tibet region hasbeen interpreted in terms of a northward sloping Moho which down faulted by about 15 km to attain a depth of 65 km around Tingri which corresponds to explosion seismology data. The nature of isostatic compensation prevailing underneath the Himalaya has been discussed.

  6. Are Karakoram temperatures out of phase compared to hemispheric trends?

    NASA Astrophysics Data System (ADS)

    Asad, Fayaz; Zhu, Haifeng; Zhang, Hui; Liang, Eryuan; Muhammad, Sher; Farhan, Suhaib Bin; Hussain, Iqtidar; Wazir, Muhammad Atif; Ahmed, Moinuddin; Esper, Jan

    2017-05-01

    In contrast to a global retreating trend, glaciers in the Karakoram showed stability and/or mass gaining during the past decades. This "Karakoram Anomaly" has been assumed to result from an out-of-phase temperature trend compared to hemispheric scales. However, the short instrumental observations from the Karakoram valley bottoms do not support a quantitative assessment of long-term temperature trends in this high mountain area. Here, we presented a new April-July temperature reconstruction from the Karakoram region in northern Pakistan based on a high elevation ( 3600 m a.s.l.) tree-ring chronology covering the past 438 years (AD 1575-2012). The reconstruction passes all statistical calibration and validation tests and represents 49 % of the temperature variance recorded over the 1955-2012 instrumental period. It shows a substantial warming accounting to about 1.12 °C since the mid-twentieth century, and 1.94 °C since the mid-nineteenth century, and agrees well with the Northern Hemisphere temperature reconstructions. These findings provide evidence that the Karakoram temperatures are in-phase, rather than out-of-phase, compared to hemispheric scales since the AD 1575. The synchronous temperature trends imply that the anomalous glacier behavior reported from the Karakoram may need further explanations beyond basic regional thermal anomaly.

  7. Estimation of Sector-Resolved Effects of Dust and Black Carbon Emissions on Water Resources in the Himalaya, Karakoram, and Hindu Kush Mountains

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Alvarado, M. J.; Kleiman, G.; Winijkul, E.; Shindell, D. T.; Adams-Selin, R.; Hunt, E. D.; Brodowski, C. M.; Lonsdale, C. R.; Faluvegi, G.

    2017-12-01

    Global climate change from greenhouse gases (GHGs) and regional changes caused by aerosols, including dust and black carbon, are impacting seasonal snowpacks, long-term mass balance of glaciers, and water availability in mountain regions. In particular, the basins originating in the Himalayas, Karakoram, and Hindu Kush (HKHK) are home to over 1 billion people who depend on water resources from these mountain headwaters for a wide variety of purposes. Disentangling the effects of GHGs and aerosols on water resources is therefore important to facilitate the design of regional aerosol emissions policies that positively impact water resources - as well as air quality - over multiple time horizons. To assess the atmospheric transport of aerosols, we run WRF-Chem v3.6.1 for South Asia, with aerosol emissions corresponding to a modified version of the ECLIPSE 5a emissions inventory and global climate simulated by GISS-E2-R with prognostic aerosol characterization including aerosol-cloud interactions with cloud microphysics. The future scenarios include a no further controls (NFC) scenario, as well as a mitigation (MIT) scenario, in which aerosol emissions within South Asia are reduced substantially but emissions outside the region are maintained at NFC levels. Using tagged tracers, we estimate the emissions contributions from diesel fuel, industry, solid fuel, open burning, and biomass burning; we also track emissions by country within the region and emissions from outside the region. These simulations are used as boundary conditions to the modular, process-based Conceptual Cryosphere Hydrology Framework (CCHF) v2. To account for effects of black carbon and dust on snow and ice albedo, we add a light absorbing impurities (LAI) module to CCHF. By combining WRF-Chem boundary conditions and CCHF land process representations we are able to efficiently run multiple 1 km multi-year simulations with a daily time step for the entire HKHK region and assess the relative

  8. 2001-2010 glacier changes in the Central Karakoram National Park: a contribution to evaluate the magnitude and rate of the "Karakoram anomaly"

    NASA Astrophysics Data System (ADS)

    Minora, U.; Bocchiola, D.; D'Agata, C.; Maragno, D.; Mayer, C.; Lambrecht, A.; Mosconi, B.; Vuillermoz, E.; Senese, A.; Compostella, C.; Smiraglia, C.; Diolaiuti, G.

    2013-06-01

    Karakoram is one of the most glacierized region worldwide, and glaciers therein are the main water resource of Pakistan. The attention paid to this area is increasing, because the evolution of its glaciers recently depicted a situation of general stability, known as "Karakoram Anomaly", in contrast to glacier retreat worldwide. Here we focused our attention upon the glacier evolution within the Central Karakoram National Park (CKNP, a newborn park of this region, ca. 12 162 km2 in area) to assess the magnitude and rate of such anomaly. By means of Remote Sensing data (i.e.: Landsat images), we analyzed a sample of more than 700 glaciers, and we found out their area change between 2001 and 2010 is not significant (+27 km2 ± 42 km2), thus confirming their stationarity. We analyzed climate data, snow coverage from MODIS, and supraglacial debris presence, as well as potential (con-) causes. We found a slight decrease of summer temperatures (down to -1.5 °C during 1980-2009) and an increase of wet days during winter (up +3.3 days yr-1 during 1980-2009), possibly increasing snow cover duration, consistently with MODIS data. We further detected considerable supra-glacial debris coverage (ca. 20% of the glacier area which rose up to 31% considering only the ablation area), which could have reduced buried ice melting during the last decade. These results provide further ground to uphold the existence of the Karakoram Anomaly, and present an useful template for assessment of water availability within the glaciers of the CKNP.

  9. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas.

    PubMed

    Li, Zhiguo; Fan, Kuangsheng; Tian, Lide; Shi, Benlin; Zhang, Shuhong; Zhang, Jingjing

    2015-01-01

    Inland glacier and lake dynamics on the Tibetan Plateau (TP) and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH) have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53 ± 0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion.

  10. Response of Glacier and Lake Dynamics in Four Inland Basins to Climate Change at the Transition Zone between the Karakorum And Himalayas

    PubMed Central

    Li, Zhiguo; Fan, Kuangsheng; Tian, Lide; Shi, Benlin; Zhang, Shuhong; Zhang, Jingjing

    2015-01-01

    Inland glacier and lake dynamics on the Tibetan Plateau (TP) and its surroundings over recent decades are good indicators of climate change and have a significant impact on the local water supply and ecosystem. The glacier and lake changes in Karakoram are quite different from those of the Himalayas. The mechanisms of the complex and regionally heterogeneous behavior of the glacier and lake changes between the Karakorum and Himalayas are poorly understood. Based on satellite images and meteorological data of Shiquanhe, Hetian, and Yutian stations, we demonstrate that the overall retreat of glaciers and increase of lake area at the transition zone between the Karakoram and Himalayas (TKH) have occurred since 1968 in response to a significant global climate change. Glacial areas in the Songmuxi Co basin, Zepu Co basin, Mang Co basin and Unnamed Co decreased by -1.98 ± 0.02 km2, -5.39 ± 0.02 km2, -0.01 ± 0.02 km2, and -0.12 ± 0.02 km2 during the study period, corresponding to losses of -1.42%, -2.86%, -1.54%, and -1.57%, respectively. The lake area of the Songmuxi Co, Zepu Co, Mang Co and Unnamed Co increased by 7.57 ± 0.02 km2, 8.53 ± 0.02 km2, 1.35 ± 0.02 km2, and 0.53±0.02 km2, corresponding to growths of 30.22%, 7.55%, 11.39%, and 8.05%, respectively. Increases in temperature was the main reason for glacier retreat, whereas decreases in potential evapotranspiration of lakes, increases in precipitation, and increases in melt water from glaciers and frozen soil all contributed to lake area expansion. PMID:26699717

  11. Importance of dynamic topography in Himalaya-Tibetan plateau region

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Singh, S.

    2017-12-01

    Himalaya-Tibetan plateau region has the highest topography in the world. Various studies have been done to understand the mechanisms responsible for sustaining this high topography. However, the existence of dynamic topography in this region is still uncertain, though there have been some studies exploring the role of channel flow in lower crust leading to some topography. We investigated the role of radial mantle flow in this region by studying the relationship between geoid and topography. High geoid-to-topography ratios (GTR) were observed along the Himalayas suggesting deeper compensation mechanisms. However, further north, the geoid and topography relationship became a lot more complex as high as well as low GTR values were observed. The high GTR regions also coincided with area of high filtered free air gravity anomalies, indicating dynamic support. We also looked at the spectral components of gravity, geoid and topography, and calculated response functions to distinguish between different compensation mechanisms. We estimated the average elastic thickness of the whole region to be around 40 km from coherence and admittance studies. The GTR and admittance-coherence studies suggest deeper mass anomalies playing a role in supporting the topography along Himalayas and the area between Altyn Tagh and Kunlun faults.

  12. Response to comment on "No late Quaternary strike-slip motion along the northern Karakoram fault"

    NASA Astrophysics Data System (ADS)

    Robinson, Alexander C.; Owen, Lewis A.; Chen, Jie; Schoenbohm, Lindsay M.; Hedrick, Kathryn A.; Blisniuk, Kimberly; Sharp, Warren D.; Imrecke, Daniel B.; Li, Wenqiao; Yuan, Zhaode; Caffee, Marc W.; Mertz-Kraus, Regina

    2016-06-01

    In their comment on ;No late Quaternary strike-slip motion along the northern Karakoram fault;, while Chevalier et al. (2016) do not dispute any of the results or interpretations regarding our observations along the main strand of the northern Karakoram fault, they make several arguments as to why they interpret the Kongur Shan Extensional System (KES) to be kinematically linked to the Karakoram fault. These arguments center around how an ;active; fault is defined, how slip on segments of the KES may be compatible with dextral shear related to continuation of the Karakoram fault, and suggestions as to how the two fault systems might still be connected. While we appreciate that there are still uncertainties in the regional geology, we address these comments and show that their arguments are inconsistent with all available data, known geologic relationships, and basic kinematics.

  13. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    NASA Astrophysics Data System (ADS)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  14. Spatiotemporal variations of radar glacier zones in the Karakoram Mountains

    NASA Astrophysics Data System (ADS)

    Lund, Jewell

    2017-04-01

    Glaciers of the Karakoram Mountains are important climate indicators for densely populated South Central Asia. Glacial meltwater is a significant source of runoff in the Indus River Basin, upon which 60 million people rely for food security, economy and hydropower in Pakistan and India. Contrary to worldwide and also Himalayan trends, Karakoram glaciers have recently been verified in near balance, with some glaciers even gaining mass or surging. This 'Karakoram anomaly' is of interest, and many hypotheses exist for its causes. Complex climatology, coupled with the challenges of field study in this region, illicit notable uncertainties both in observation and prediction of glacial status. Constraining spatiotemporal variations in glacial mass balance will elucidate the extent and possible longevity of this anomaly, and its implications for water resources, as climate continues to change. Depending on snowpack conditions during image acquisition, different snow and ice zones on a glacier are identifiable in synthetic aperture radar (SAR) images. The identification and monitoring of radar glacier zones over time can provide indicators of relative glacial mass balance to compliment field studies in a region with sparse field measurement. We will present spatiotemporal evolution of basic radar glacier zones such as wet snow, bare ice, percolation, and firn for glaciers feeding into the Upper Indus Basin. We will incorporate both ascending and descending passes of Sentinel-1 series C -band sensors, and possibly ALOS-2 PALSAR-2 L-band images. We may also explore the impacts of these variations on timing and intensity of runoff.

  15. Halophilic-Psychrophilic Bacteria from Tirich Mir Glacier, Pakistan, as Potential Candidate for Astrobiological Studies

    NASA Astrophysics Data System (ADS)

    Rafiq, M. R.; Anesio, A. M. A.; Hayat, M. H.; Zada, S. Z.; Sajjad, W. S.; Shah, A. A. S.; Hasan, F. H.

    2016-09-01

    Hindu Kush, Karakoram, and Himalaya region is referred to as 'third pole' and could be suitable as a terrestrial analog of Mars and increased possibility of finding polyextremophiles. Study is focused on halophilic psychrophiles.

  16. Dating the Indo-Asia collision in NW Himalaya: constraints from Sr-Nd isotopes and detrital zircon (U-Pb) and Hf isotopes of Paleogene-Neogene rocks in the Katawaz basin, NW Pakistan

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangsheng; Najman, Yani; Millar, Ian; Chauvel, Catherine; Guillot, Stephane; Carter, Andrew

    2015-04-01

    The time of collision between the Indian and Asian plates is key for understanding the convergence history and the impact on climatic systems and marine geochemistry. Despite much active research, the fundamental questions still remain elusive regarding when and where the Indian plate collided with the Asian plate. Especially in the west Himalaya, the questions become more complex due to disputes on the amalgamation history of interoceanic Kohistan-Ladakh arcs (KLA) with Karakoram of the Asian plate and the Indian plate. Here, we present a result of multiple-isotopic geochemistry and geochronology study in the Katawaz Basin in NW Pakistan, a remnant oceanic basin on the western Indian plate which was the repository for the sediments eroded from the west Himalaya ( Qayyum et al., 1996, 1997a, 1997b, 2001; Carter et al., 2010), to evaluate the time and character of collision in this region. In this study, we analyzed 22 bulk mudstone samples for Sr-Nd isotopes and 11 medium-grained sandstones for detrital zircon (U-Pb) geochronology and Hf isotopes. We constructed the Cenozoic chronology in the Katawaz Basin based on our newly collected detrital zircon U-Pb ages and fission track ages. We present the first record of Katawaz chronology that constrained the Khojak Formation to be < 40 Ma to < 22 Ma. The result is consistent with the previous nanofossil study that constrained the upper part of underlying Nisai Formation to be the Middle to Late Eocene. Our current study revealed that the Katawaz sedimentary sequence ranges in age from Eocene to the earliest Miocene. The samples from the Nisai Formation show the 87Sr/86Sr - ɛNd values overlapping those of the end member of the Karakoram of Asian origin, revealing the arrival of Asian detritus on the Indian plate prior to 50 Ma. There are two parallel lines of evidence supporting this conclusion: (1) young zircon grains (< 120 Ma), characterizing the KLA and Karakoram, persistently exist throughout the whole sedimentary

  17. The Carboniferous of the Western Karakoram (Pakistan)

    NASA Astrophysics Data System (ADS)

    Gaetani, M.; Zanchi, A.; Angiolini, L.; Olivini, G.; Sciunnach, D.; Brunton, H.; Nicora, A.; Mawson, R.

    2004-05-01

    The results of the study of the Carboniferous successions in the western part of the Northern Karakoram during three geological expeditions are summarized here. Rocks of that period are not uniformly preserved in the several thrust sheets forming the Northern Karakoram. In most of them only the basal part of the Carboniferous, up to the Visean, is preserved, whilst in the Karambar thrust sheet a more complete section—previously almost unknown—is preserved. Four new lithostratigraphic units, time-constrained by brachiopod and conodont biostratigraphy, are described, from bottom to top: (1) the Margach Formation: prevailing dark shales with subordinate fine subarkoses and quartzarenites, up to 300 m thick (mid-Famennian to middle Tournaisian); (2) the Ribat Formation: grey crinoidal limestones passing upwards to dark marly limestones and marls, at least 300 m thick (middle Tournaisian to Serpukhovian); (3) the Lupsuk Formation: subarkoses to feldspathic quartzarenites in thick beds, alternating with dark shales and siltstones, up to 400 m thick (Serpukhovian to uppermost Carboniferous); (4) within the Lupsuk Formation a local member, the Twin Valleys Member, up to 100 m thick, a bioclastic limestone intercalation of post-Moscovian age, is distinguished. The Carboniferous successions are invariably sealed by the arkoses to quartzarenites of the Gircha Formation, 133 m above the base of which, in the Karambar area, an Asselian brachiopod fauna was recovered. The Carboniferous succession is interpreted as recording the evolution of the passive margin of the Northern Karakoram Terrane, from early rifting stage in the Late Devonian to syn-rift events during the Late Carboniferous. The basal part of the Gircha Formation, of latest Carboniferous-earliest Permian age, is considered to have been deposited above a break-up unconformity, linked to the early drifting in the seaway bordering the Karakoram. In the palaeontological appendix the most significant brachiopod taxa

  18. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-11-01

    Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider public. For this study, animated image sequences were created for four regions in the central Karakoram mountain range over a 25-year time period (1990-2015) from freely available image quick-looks of orthorectified Landsat scenes. The animations play automatically in a web browser and reveal highly complex patterns of glacier flow and surge dynamics that are difficult to obtain by other methods. In contrast to other regions, surging glaciers in the Karakoram are often small (10 km2 or less), steep, debris-free, and advance for several years to decades at relatively low annual rates (about 100 m a-1). These characteristics overlap with those of non-surge-type glaciers, making a clear identification difficult. However, as in other regions, the surging glaciers in the central Karakoram also show sudden increases of flow velocity and mass waves travelling down glacier. The surges of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few decades.

  19. Regional Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Implications for Water Resources

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Tsering, K.; Rinzin, T.; Dorji, C.; Johnson, E. S.; Cook, E. R.

    2014-12-01

    The rapid retreat of many glaciers in the monsoonal Himalaya is of potential societal concern. However, the retreat pattern in the region has been very heterogeneous, likely due in part to the inherent heterogeneity of climate and glaciers within the region. Assessing the impacts of glacier change on water resources, hydroelectric power, and hazard potential requires a detailed understanding of this potentially complex spatial pattern of glacier sensitivity to climate change. Here we quantify glacier surface-mass balance and meltwater flux across the entire glacierized region of the Bhutanese watershed using a full surface-energy and -mass balance model validated with field data. We then test the sensitivity of the glaciers to climatic change and compare the results to a thirty-year record of glacier volume changes. Bhutan is chosen because it (1) sits in the bulls-eye of the monsoon, (2) has >600 glaciers that exhibit the extreme glacier heterogeneity typical of the Himalayas, and (3) faces many of the economic and hazard challenges associated with glacier changes in the Himalaya. Therefore, the methods and results from this study should be broadly applicable to other regions of the monsoonal Himalaya. Our modeling results show a complex spatial pattern of glacier sensitivity to changes in climate across the Bhutanese Himalaya. However, our results also show that <15% of the glaciers in Bhutan account for >90% of the total meltwater flux, and that these glaciers are uniformly the glaciers most sensitive to changes in temperature (and less sensitive to other climate variables). We compare these results to a thirty-year record of glacier volume changes over the same region. In particular, we extract DEMs and orthorectified imagery from 1976 historical spy satellite images and 2006 ASTER images. DEM differencing shows that the glaciers that have changed most over the past thirty years also have the highest modeled temperature sensitivity. These results suggest that

  20. Earthquakes of Garhwal Himalaya region of NW Himalaya, India: A study of relocated earthquakes and their seismogenic source and stress

    NASA Astrophysics Data System (ADS)

    R, A. P.; Paul, A.; Singh, S.

    2017-12-01

    Since the continent-continent collision 55 Ma, the Himalaya has accommodated 2000 km of convergence along its arc. The strain energy is being accumulated at a rate of 37-44 mm/yr and releases at time as earthquakes. The Garhwal Himalaya is located at the western side of a Seismic Gap, where a great earthquake is overdue atleast since 200 years. This seismic gap (Central Seismic Gap: CSG) with 52% probability for a future great earthquake is located between the rupture zones of two significant/great earthquakes, viz. the 1905 Kangra earthquake of M 7.8 and the 1934 Bihar-Nepal earthquake of M 8.0; and the most recent one, the 2015 Gorkha earthquake of M 7.8 is in the eastern side of this seismic gap (CSG). The Garhwal Himalaya is one of the ideal locations of the Himalaya where all the major Himalayan structures and the Himalayan Seimsicity Belt (HSB) can ably be described and studied. In the present study, we are presenting the spatio-temporal analysis of the relocated local micro-moderate earthquakes, recorded by a seismicity monitoring network, which is operational since, 2007. The earthquake locations are relocated using the HypoDD (double difference hypocenter method for earthquake relocations) program. The dataset from July, 2007- September, 2015 have been used in this study to estimate their spatio-temporal relationships, moment tensor (MT) solutions for the earthquakes of M>3.0, stress tensors and their interactions. We have also used the composite focal mechanism solutions for small earthquakes. The majority of the MT solutions show thrust type mechanism and located near the mid-crustal-ramp (MCR) structure of the detachment surface at 8-15 km depth beneath the outer lesser Himalaya and higher Himalaya regions. The prevailing stress has been identified to be compressional towards NNE-SSW, which is the direction of relative plate motion between the India and Eurasia continental plates. The low friction coefficient estimated along with the stress inversions

  1. Estimating the volume of glaciers in the Himalayan-Karakoram region using different methods

    NASA Astrophysics Data System (ADS)

    Frey, H.; Machguth, H.; Huss, M.; Huggel, C.; Bajracharya, S.; Bolch, T.; Kulkarni, A.; Linsbauer, A.; Salzmann, N.; Stoffel, M.

    2014-12-01

    Ice volume estimates are crucial for assessing water reserves stored in glaciers. Due to its large glacier coverage, such estimates are of particular interest for the Himalayan-Karakoram (HK) region. In this study, different existing methodologies are used to estimate the ice reserves: three area-volume relations, one slope-dependent volume estimation method, and two ice-thickness distribution models are applied to a recent, detailed, and complete glacier inventory of the HK region, spanning over the period 2000-2010 and revealing an ice coverage of 40 775 km2. An uncertainty and sensitivity assessment is performed to investigate the influence of the observed glacier area and important model parameters on the resulting total ice volume. Results of the two ice-thickness distribution models are validated with local ice-thickness measurements at six glaciers. The resulting ice volumes for the entire HK region range from 2955 to 4737 km3, depending on the approach. This range is lower than most previous estimates. Results from the ice thickness distribution models and the slope-dependent thickness estimations agree well with measured local ice thicknesses. However, total volume estimates from area-related relations are larger than those from other approaches. The study provides evidence on the significant effect of the selected method on results and underlines the importance of a careful and critical evaluation.

  2. Identifying surging glaciers in the Central Karakoram for improved climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Paul, Frank; Bolch, Tobias; Mölg, Nico; Rastner, Philipp

    2015-04-01

    Several recent studies have investigated glacier changes in the Karakoram mountain range, a region where glaciers behave differently (mass gain and advancing tongues) compared to most other regions in the world. Attribution of this behaviour to climate change is challenging, as many glaciers in the Karakoram are of surge type and have actively surged in the recent past. The measured changes in length, area, volume or velocity in this region are thus depending on the time-period analysed and include non-climatic components. Hence, a proper analysis of climate change impacts on glaciers in this region requires a separation of the surging from the non-surging glaciers. This is challenging as the former often lack the typical surface characteristics such as looped moraines (e.g. when they are steep and small) and/or they merge (during a surge) with a larger non-surging glacier and create looped moraines on its surface. By analysing time series of satellite images that are available since 1961, the heterogeneous behaviour of glaciers in the Karakoram can be revealed. In this study, we have analysed changes in glacier terminus positions in the Karakoram over different time periods from 1961 to 2014 for several hundred glaciers using Corona KH-4 and KH-4B, Hexagon KH-9, Terra ASTER, and Landsat MSS, TM, ETM+ and OLI satellite data. For the last 15 years, high-speed animations of image time-series reveal details of glacier flow and surge dynamics that are otherwise difficult to detect. For example, several of the larger glaciers with surging tributaries (e.g. Panmah, Sarpo Laggo, Skamri, K2 glacier) are stationary and downwasting despite the mass contributions from the surging glaciers. The analysis of the entire time series reveals a complex pattern of changes through time with retreating, advancing, surging and stationary glaciers that are partly regionally clustered. While most of the non-surging glaciers show only small changes in terminus position (±100 m or less

  3. A reality check on the timing of initiation, geological offsets, slip rates and geodetic rates on the Karakoram strike-slip fault.

    NASA Astrophysics Data System (ADS)

    Searle, M. P.; Phillips, R. J.

    2003-12-01

    Karakoram fault today. GPS data suggest that right-lateral slip parallel to the Karakoram fault occurred at 3.4 +/- 5 mm/yr (Gaur 2002). If this figure is meaningful, then the slip today must be taken up mainly by aseismic creep, which suggests high temperatures occur at shallow depths along the fault, consistent with continuous but sporadic, and very young high-temperature metamorphism and anatexis in the southern Karakoram (Fraser et al. 2001). References cited: Dunlap, W.J., Weinberg, R.F. & Searle, M.P. 1998. J. Geol. Soc. London, 155, 903-12. Fraser, J.E., Searle, M.P., Parrish, R.R. & Noble, S.R. 2001. Bull. Geol. Soc. America, 113, 1443-55. Gaur, V. 2002. Abstract, 17th Himalaya-Karakoram-Tibet Workshop, Sikkim. Peltzer, G., Tapponnier, P. 1988. J. Geophysical Research, 93, 15058-117. Searle, M.P., Weinberg, R.F. & Dunlap, W.J. 1998. In: Continental Transpressional and Transtensional Tectonics. Geol. Soc. London Spec. Pub. 135, 307-26.

  4. Structure of crust and upper mantle beneath NW Himalayas, Pamir and Hindukush by multi-scale double-difference seismic tomography

    NASA Astrophysics Data System (ADS)

    Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain

    2018-08-01

    The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.

  5. Microseismicity, Tectonics and Seismic Potential in the Western Himalayan Segment, NW Himalaya (india) Region

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Parija, M. P.; Biswal, S.

    2016-12-01

    The NW Himalaya (India) region covering Garhwal and Himachal province of India is characterised by sustained seismicity during the past decades. We have relocated 423 earthquakes in the NW Himalaya between 2004 and 2013 using more than 4495 P and 4453 S accurate P and S differential travel-times. We also have determined moment tensors for 8 (Mw >= 4.0) of these earthquakes using their broadband regional waveforms. The geometry of the MHT plane has also been deduced in this study which varies along the strike of the Himalaya in flat and ramp segments with a dip range from 4° to 19° below the HFT in south to STD in the north. There are also two crustal ramps reported from this study having a depth variance below the MCT and STD between 12 to 22 km and 28 to 40 km depth respectively. The earthquake potential prevailing in the western Himalaya seismic gap that lies between the epicentral zone of the 1905 Kangra earthquake and the 1975 Kinnaur earthquake has also been estimated and it is inferred that the total amount of energy released since the last great event is only a fraction (3-5%) of the accommodated energy (95-98%) i.e. if an earthquake hits this NW Himalayan segment in future it's magnitude can be equivalent to a Mw³ 8.0. So the energy dissipated through previous earthquakes is not sufficient to prevent an upcoming giant event.

  6. Crustal scale detachment in the Himalayas: a reappraisal

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Sharma, J.

    2010-11-01

    According to the most popular tectonic model of the Himalayas proposed by a number of scientists the Indian crustal material underthrusts the Himalayas at a low angle and is relatively free of deformation compared to the overlying accreted material that makes up the Himalayan mountain chain. In this work we have carried out local earthquake tomography for the Garwhal-Kumaun Himalayas to estimate P- and S-wave velocity variations (Vp and Vs, respectively) and variation in their ratio (Vp/Vs) that would indicate the structure of the Himalayas and the underlying Indian crust in this part of the Himalayas. The results indicate that there is crustal level folding and faulting in this region indicating that the underlying Indian crustal material has also undergone deformation unlike what was postulated for the entire Himalayas by some workers before. By comparing our tomographic result with that for the eastern Nepal-southern Tibet region, it is concluded that there is variation in mode of deformation along the trend of the Himalayas. This observation matches well with the observed velocity variation in the upper mantle of these two regions reported by others. The area under investigation falls within a region where there is more oblique convergence between India and Eurasia compared to the Nepal Himalayas region. This may explain why such variation in mode of deformation is observed. The ratio Vp/Vs gets affected by strength of material. Presence or absence of fluid filled fractures or molten material affects it most strongly in the crustal region. The variation in Vp/Vs in the study area shows that almost the entire crust here have enough rheological strength such that it can store strain energy that can be released through earthquakes. A zone of low Vp/Vs beginning at the higher Himalayas and dipping towards SW is observed. This zone also has high Vp and Vs and is observed even when inversion is carried out with very high damping value. These observations do not

  7. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    PubMed

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effects of Absorbing Aerosols on Accelerated Melting of Snowpack in the Tibetan-Himalayas Region

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2011-01-01

    The impacts of absorbing aerosol on melting of snowpack in the Hindu-Kush-Tibetan-Himalayas (HKTH) region are studied using NASA satellite and GEOS-5 GCM. Results from GCM experiments shows that a 8-10% in the rate of melting of snowpack over the western Himalayas and Tibetan Plateau can be attributed to the aerosol elevated-heat-pump (EHP) feedback effect (Lau et al. 2008), initiated by the absorption of solar radiation by absorbing aerosols accumulated over the Indo-Gangetic Plain and Himalayas foothills. On the other hand, deposition of black carbon on snow surface was estimated to give rise to a reduction in snow surface albedo of 2 - 5%, and an increased annual runoff of 9-24%. From case studies using satellite observations and re-analysis data, we find consistent signals of possible impacts of dust and black carbon aerosol in blackening snow surface, in accelerating spring melting of snowpack in the HKHT, and consequentially in influencing shifts in long-term Asian summer monsoon rainfall pattern.

  9. Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.

    2012-12-01

    A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based

  10. Fractal Dimension and b-VALUE Mapping in the NW Himalaya and Adjoining Regions, India

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Sushil, Rama; Joshi, Deepika

    2011-07-01

    The northwest Himalayan region and the adjoining regions fall in the intense seismic zone. Earthquakes of varying intensities have hit the region in the past and similar threats remain imminent. In the last 105 years, the main earthquakes occurred in the North-Western (NW) Himalaya are as follows: the Kangra earthquake of 1905 (Ms = 8.0), the Kinnaur earthquake of 1975 (M = 6.8), Dharchula earthquake of 1980 (Mw = 6.5), Uttarkashi earthquake of 1991 (Mb = 6.6), Chamoli earthquake of 1999 (Mb = 6.8), and the Kashmir earthquake of 2005 (Mw = 7.6), which resulted in tremendous loss of life and property. The earthquake occurrence possesses non-linear relationship with respect to space and size. Fractal dimension and b-value are determined from 1221 well-located earthquakes, recorded at 10-19 WIHG seismic stations in NW Himalaya during 2004-2010 and at USGS stations during 1995-2003. A detailed study of the frequency-magnitude distribution and fractal dimension has been carried out and discussed in this paper.

  11. Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram

    NASA Astrophysics Data System (ADS)

    Paul, F.

    2015-04-01

    Although animated images are very popular on the Internet, they have so far found only limited use for glaciological applications. With long time-series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable for a wide public. For this study animated image sequences were created from freely available image quick-looks of orthorectified Landsat scenes for four regions in the central Karakoram mountain range. The animations play automatically in a web-browser and might help to demonstrate glacier flow dynamics for educational purposes. The animations revealed highly complex patterns of glacier flow and surge dynamics over a 15-year time period (1998-2013). In contrast to other regions, surging glaciers in the Karakoram are often small (around 10 km2), steep, debris free, and advance for several years at comparably low annual rates (a few hundred m a-1). The advance periods of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few years to decades.

  12. Seismicity of the Earth 1900–2010 Himalaya and vicinity

    USGS Publications Warehouse

    Turner, Bethan; Jenkins, Jennifer; Turner, Rebecca; Parker, Amy; Sinclair, Alison; Davies, Sian; Hayes, Gavin P.; Villaseñor, Antonio; Dart, Rirchard L.; Tarr, Arthur C.; Furlong, Kevin P.; Benz, Harley M.

    2013-01-01

    Seismicity in the Himalaya region predominantly results from the collision of the India and Eurasia continental plates, which are converging at a relative rate of 40–50 mm/yr. Northward underthrusting of India beneath Eurasia generates numerous earthquakes and consequently makes this area one of the most seismically hazardous regions on Earth. The surface expression of the plate boundary is marked by the foothills of the north-south trending Sulaiman Range in the west, the Indo-Burmese Arc in the east, and the east-west trending Himalaya Front in the north of India. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Further north again, the Tian Shan is a seismically active intra-continental mountain belt defined by a series of east-west trending thrust faults thought to be related to the broad footprint of the India-Eurasia collision. Tectonics in northern India are dominated by motion along the Main Frontal Thrust and associated thrust faults of the India-Eurasia plate boundary, which have resulted in a series of large and devastating earthquakes in (and prior to) the 20th century. The Tibetan Plateau to the north of the main plate boundary is a broad region of uplift associated with the India-Eurasia collision, and is cut by a series of generally east-west trending strike-slip faults. These include the Kunlun, Haiyuan, and the Altyn Tagh faults, all of which are left-lateral structures, and the Kara-Koram right-lateral fault. Throughout the plateau, thrust faults accommodate the north-south compressional component of crustal shortening associated with the ongoing collision of India

  13. Effects of Absorbing Aerosols on Accelerated Melting of Snowpack in the Hindu-Kush-Himalayas-Tibetan Plateau Region

    NASA Technical Reports Server (NTRS)

    Lau, William K.; Kyu-Myong, Kim; Yasunari, Teppei; Gautam, Ritesh; Hsu, Christina

    2011-01-01

    The impacts of absorbing aerosol on melting of snowpack in the Hindu-Kush-Himalayas-Tibetan Plateau (HKHT) region are studied using in-situ, satellite observations, and GEOS-5 GCM. Based on atmospheric black carbon measurements from the Pyramid observation ( 5 km elevation) in Mt. Everest, we estimate that deposition of black carbon on snow surface will give rise to a reduction in snow surface albedo of 2- 5 %, and an increased annual runoff of 12-34% for a typical Tibetan glacier. Examination of satellite reflectivity and re-analysis data reveals signals of possible impacts of dust and black carbon in darkening the snow surface, and accelerating spring melting of snowpack in the HKHT, following a build-up of absorbing aerosols in the Indo-Gangetic Plain. Results from GCM experiments show that 8-10% increase in the rate of melting of snowpack over the western Himalayas and Tibetan Plateau can be attributed to the elevated-heat-pump (EHP) feedback effect, initiated from the absorption of solar radiation by dust and black carbon accumulated to great height ( 5 km) over the Indo-Gangetic Plain and Himalayas foothills in the pre-monsoon season (April-May). The accelerated melting of the snowpack is enabled by an EHP-induced atmosphere-land-snowpack positive feedback involving a) orographic forcing of the monsoon flow by the complex terrain, and thermal forcing of the HKHT region, leading to increased moisture, cloudiness and rainfall over the Himalayas foothills and northern India, b) warming of the upper troposphere over the Tibetan Plateau, and c) an snow albedo-temperature feedback initiated by a transfer of latent and sensible heat from a warmer atmosphere over the HKHT to the underlying snow surface. Results from ongoing modeling work to assess the relative roles of EHP vs. snow-darkening effects on accelerated melting of snowpack in HKHT region will also be discussed.

  14. Modeling Wildfire Hazard in the Western Hindu Kush-Himalayas

    NASA Astrophysics Data System (ADS)

    Bylow, D.

    2012-12-01

    Wildfire regimes are a leading driver of global environmental change affecting a diverse array of global ecosystems. Particulates and aerosols produced by wildfires are a primary source of air pollution making the early detection and monitoring of wildfires crucial. The objectives of this study were to model regional wildfire potential and identify environmental, topological, and sociological factors that contribute to the ignition of wildfire events in the Western Hindu Kush-Himalayas of South Asia. The environmental, topological, and sociological factors were used to model regional wildfire potential through multi-criteria evaluation using a method of weighted linear combination. Moderate Resolution Imaging Spectroradiometer (MODIS) and geographic information systems (GIS) data were integrated to analyze regional wildfires and construct the model. Model validation was performed using a holdout cross validation method. The study produced a significant model of wildfire potential in the Western Hindu Kush-Himalayas.; Western Hindu Kush-Himalayas ; Western Hindu Kush-Himalayas Wildfire Potential

  15. Recent Increases in Wildfires in the Himalayas and Surrounding Regions Detected in Central Tibetan Ice Core Records

    NASA Astrophysics Data System (ADS)

    You, Chao; Yao, Tandong; Xu, Chao

    2018-03-01

    Changes in fire activity across regions around the Tibetan Plateau are poorly understood, especially under the recent warming and drying trends. In this work, we report records of the specific fire tracer levoglucosan in a central Tibetan ice core, indicating a rapid increase in wildfires across the Himalayas and surroundings at the beginning of the 21st century. The climate system, especially precipitation changes, modulates the annual variability of wildfires in regions around the Tibetan Plateau. Decreasing premonsoon precipitation has prolonged the dry seasons across Himalayan regions affected by the Indian summer monsoon; meanwhile, increasing precipitation over the arid and semiarid Indus River Plain promotes plant growth and thereby increases biofuel availability. These trends have therefore induced increased frequencies of strong wildfires in the Himalayas and surroundings. Increasing strong wildfire events can potentially enhance black carbon deposits on Himalayan glaciers, which would impact glacial melting during the premonsoon wildfire seasons in the near future.

  16. Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal

    NASA Astrophysics Data System (ADS)

    Aryal, Achyut; Brunton, Dianne; Raubenheimer, David

    2014-02-01

    The Trans-Himalaya region boasts an immense biodiversity which includes several threatened species and supports the livelihood of local human populations. Our aim in this study was to evaluate the impact of recent climate change on the biodiversity and human inhabitants of the upper Mustang region of the Trans-Himalaya, Nepal. We found that the average annual temperature in the upper Mustang region has increased by 0.13 °C per year over the last 23 years; a higher annual temperature increase than experienced in other parts of Himalaya. A predictive model suggested that the mean annual temperature will double by 2161 to reach 20 °C in the upper Mustang region. The combined effects of increased temperature and diminished snowfall have resulted in a reduction in the area of land suitable for agriculture. Most seriously affected are Samjung village (at 4,100 m altitude) and Dhey village (at 3,800 m) in upper Mustang, where villagers have been forced to relocate to an area with better water availability. Concurrent with the recent change in climate, there have been substantial changes in vegetation communities. Between 1979 and 2009, grasslands and forests in the Mustang district have diminished by 11 and 42 %, respectively, with the tree line having shifted towards higher elevation. Further, grasses and many shrub species are no longer found in abundance at higher elevations and consequently blue sheep ( Pseduois nayaur) move to forage at lower elevations where they encounter and raid human crops. The movement of blue sheep attracts snow leopard ( Panthera uncia) from their higher-elevation habitats to lower sites, where they encounter and depredate livestock. Increased crop raiding by blue sheep and depredations of livestock by snow leopard have impacted adversely on the livelihoods of local people.

  17. Quaternary of Himalaya

    NASA Astrophysics Data System (ADS)

    Srivastava, Pradeep; Singh, Vimal

    2017-05-01

    Tectonically active Himalayan mountains evolves via feedbacks from deep earth and surface processes; the complex interaction of various processes results into the landscape which is dynamic both at longer and shorter time scales. The extreme hydrological events that possibly ride over a long term climate cycle bring the changes in the landscape that impact human societies more closely. These events in the Himalaya frequently cause huge damage to economy and human lives. The geologist community under the umbrella of Himalaya-Karakorum-Tibet (HKT) workshop in its 30th edition convened a special session and deliberated on the subject. This special issue "Quaternary of Himalaya" is an outcome of papers presented and discussion held during this session; it consists of 18 papers in three sub-themes (i) Extreme Events in Himalaya (ii) Paleoglaciation in Himalaya and (iii) Expressions of climate and neotectonics in Himalaya.

  18. Impacts of Himalayas on black carbon over the Tibetan Plateau during summer monsoon.

    PubMed

    Zhao, Shuyu; Tie, Xuexi; Long, Xin; Cao, Junji

    2017-11-15

    The Tibetan Plateau (TP) plays important roles in global climate and environment. This study combines in-situ BC measurements in the Himalayas and the Indo-Gangetic Plain (IGP) with a regional dynamical and chemical model (WRF-Chem model) to investigate the effect of the trans-Himalayas on black carbon (BC) from the IGP to the TP during Indian summer monsoon. To determine topographic effects of the trans-Himalayas on BC concentrations over the TP, sensitive experiments were conducted by applying the WRF-Chem model. The results showed that the reduction of the altitude of the Himalayas had an important effect on the trans-Himalayas transport of BC. There was an obvious increase in BC concentration over the trans-Himalayas region, but no significant increase over the TP because the TP (a.m.s.l ~4km) always acted as a wall to prevent BC transport from the IGP to the TP. The trans-Himalayas transport of BC was strongly dependent upon meteorological conditions over the IGP. During summer monsoon, there were three types of cyclones at different locations and one kind of convergent circulation in the IGP. Under the condition of convergent airflows, a strong northeastward wind produced the trans-Himalayas transport of BC. As a result, BC concentrations in the southeastern TP significantly increased to 0.6-0.8μgm -3 . When the cyclone located in the eastern IGP, high BC concentrations over the IGP were transported along the foothill of the Himalayas, resulting in a significant reduction of the trans-Himalayas transport. When the cyclone moved to the west, the dynamical perturbations for the trans-Himalayas transport were weaker than the eastern cyclone, and the trans-Himalayas transport were enhanced in the middle and eastern Himalayas. This study will be helpful to assess the impacts of BC particles emitted from South Asia on regional climate change and ecological environment over the TP in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Gravity and the geoid in the Nepal Himalaya

    NASA Technical Reports Server (NTRS)

    Bilham, Roger

    1992-01-01

    Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift, the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. Although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse or the Himalaya depends on the erosion rate which is invisible to geodetic measurements. A way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. Essentially gravity should change precisely in accord with a change in elevation of the point in a free air gradient if erosion equals uplift rate. A measurement of absolute gravity was made simultaneously with measurements of GPS height within the Himalaya. Absolute gravity is estimated from the change in velocity per unit distance of a falling corner cube in a vacuum. Time is measured with an atomic clock and the unit distance corresponds to the wavelength of an iodine stabilized laser. An experiment undertaken in the Himalaya in 1991 provide a site description also with a instrument description.

  20. Himalayas

    NASA Image and Video Library

    2017-12-08

    April 12th, 2001: Description: Soaring, snow-capped peaks and ridges of the eastern Himalaya Mountains create an irregular white-on-red patchwork between major rivers in southwestern China. The Himalayas are made up of three parallel mountain ranges that together extend more than 2,900 kilometers. Source: ASTER To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/

  1. The Karakoram/Western Tibetan vortex: seasonal and year-to-year variability

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Feng; Fowler, Hayley J.; Forsythe, Nathan; Blenkinsop, Stephen; Pritchard, David

    2018-02-01

    The "Karakoram Vortex" (KV), hereafter also referred to as the "Western Tibetan Vortex" (WTV), has recently been recognized as a large-scale atmospheric circulation system related to warmer (cooler) near-surface and mid-lower troposphere temperatures above the Karakoram in the western Tibetan Plateau (TP). It is characterized by a deep, anti-cyclonic (cyclonic) wind anomaly associated with higher (lower) geopotential height in the troposphere, during winter and summer seasons. In this study, we further investigate the seasonality and basic features of the WTV in all four seasons, and explore its year-to-year variability and influence on regional climate. We find the WTV accounts for the majority of year-to-year circulation variability over the WTP as it can explain over 50% ({R^2} ≥slant 0.5 ) variance of the WTP circulation on multiple levels throughout the troposphere, which declines towards the eastern side of the TP in most seasons. The WTV is not only more (less) active but also has a bigger (smaller) domain area, with a deeper (shallower) structure, in winter and spring (summer and autumn). We find that the WTV is sensitive to both the location and intensity of the Subtropical Westerly Jet (SWJ), but the relationship is highly dependent on the climatological mean location of SWJ axes relative to the TP in different seasons. We also show that the WTV significantly modulates surface and stratospheric air temperatures, north-south precipitation patterns and total column ozone surrounding the western TP. As such, the WTV has important implications for the understanding of atmospheric, hydrological and glaciological variability over the TP.

  2. First Report on the Ethnopharmacological Uses of Medicinal Plants by Monpa Tribe from the Zemithang Region of Arunachal Pradesh, Eastern Himalayas, India

    PubMed Central

    Chakraborty, Tamalika; Saha, Somidh; Bisht, Narendra S.

    2017-01-01

    The Himalayas are well known for high diversity and ethnobotanical uses of the region’s medicinal plants. However, not all areas of the Himalayan regions are well studied. Studies on ethnobotanical uses of plants from the Eastern Himalayas are still lacking for many tribes. Past studies have primarily focused on listing plants’ vernacular names and their traditional medicinal uses. However, studies on traditional ethnopharmacological practices on medicine preparation by mixing multiple plant products of different species has not yet been reported in published literature from the state of Arunachal Pradesh, India, Eastern Himalayas. In this study, we are reporting for the first time the ethnopharmacological uses of 24 medicines and their procedures of preparation, as well as listing 53 plant species used for these medicines by the Monpa tribe. Such documentations are done first time in Arunachal Pradesh region of India as per our knowledge. Our research emphasizes the urgent need to document traditional medicine preparation procedures from local healers before traditional knowledge of tribal people living in remote locations are forgotten in a rapidly transforming country like India. PMID:28257092

  3. Land use changes in Himalaya and their impacts on environment, society and economy: A study of the Lake Region in Kumaon Himalaya, India

    NASA Astrophysics Data System (ADS)

    Tiwari, Prakash

    2008-11-01

    The traditional resource use structure in Himalaya has transformed considerably during the recent past, mainly owing to the growth of population and the resultant increased demand of natural resources in the region. This transformation in resource use practices is particularly significant in the densely populated tracts of Himalaya. As a result, cultivated land, forests, pastures and rangelands have been deteriorated and depleted steadily and significantly leading to their conversion into degraded and non-productive lands. These rapid land use changes have not only disrupted the fragile ecological equilibrium in the mountains through indiscriminate deforestation, degradation of land resources and disruption of the hydrological cycle, but also have significant and irreversible adverse impacts on the rural economy, society, livelihood and life quality of mountain communities. It has been observed that the agricultural production has declined, water sources are drying up fast due to decreased ground water recharge and a large number of villages are facing enormous deficit of critical resources, such as food, fodder, firewood and water, mainly due to unabated deforestation. As a result, the rural people, particularly the women, have to travel considerably long distances to collect fodder and firewood and to fetching water. It is therefore highly imperative to evolve a comprehensive and integrated land use framework for the conservation of the biophysical environment and sustainable development of natural resources in Himalaya. The land use policy would help local communities in making use of their natural resources scientifically and judiciously, and thus help in the conservation of the biophysical environment and in the increasing of the productivity of natural resources. The study indicates that conservation of forests and other critical natural resources through community participation, generation of alternative means of livelihood, and employment in rural areas can

  4. Boreal spring precipitation variability in the cold arid western Himalaya during the last millennium, regional linkages, and socio-economic implications

    NASA Astrophysics Data System (ADS)

    Yadava, Akhilesh K.; Bräuning, Achim; Singh, Jayendra; Yadav, Ram R.

    2016-07-01

    Precipitation in the monsoon shadow zone of the western Himalayan region, largely under the influence of mid-latitude westerlies, is the dominant regional socioeconomic driver. Current knowledge of long-term regional precipitation variability is scarce due to spatially and temporally limited weather and high-resolution proxy climate records. We developed the first boreal spring precipitation reconstruction for the western Himalaya covering the last millennium (1030-2011 C.E.). The annually resolved reconstruction is based on a large tree-ring data set of Himalayan cedar (Cedrus deodara) and neoza pine (Pinus gerardiana) from 16 ecologically homogeneous moisture stressed settings in Kinnaur, western Indian Himalaya. The precipitation reconstruction revealed persistent long-term spring droughts from the 12th to early 16th century C.E. and pluvial from the late 16th century C.E. to recent decades. The late 15th and early 16th centuries (1490-1514 C.E.) displayed the driest episode, with precipitation being ∼15% lower than the long-term mean. The early 19th century (1820-1844 C.E.) was the wettest period of the past millennium, with mean precipitation ∼13% above the long-term mean. The reconstructed boreal spring precipitation from the western Himalaya revealed large-scale consistency with hydrological records from westerly dominated regions in Central Asia, indicating synoptic-scale changes in atmospheric circulation during the major part of the Medieval and Little Ice Age periods. Protracted droughts in Central Asia could have caused severe contraction of the regional economy, as indicated by striking coherence of reconstructed drought periods and historic social upheavals and invasions of India from Central and Western Asian invaders. Vulnerability to climatic extremes underpins the need to develop a better understanding of the temporal and spatial variability in regional hydroclimate in order to devise viable water resource management plans.

  5. Asia's glaciers are a regionally important buffer against drought.

    PubMed

    Pritchard, Hamish D

    2017-05-10

    The high mountains of Asia-encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains-have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.

  6. Asia’s glaciers are a regionally important buffer against drought

    NASA Astrophysics Data System (ADS)

    Pritchard, Hamish D.

    2017-05-01

    The high mountains of Asia—encompassing the Himalayas, the Hindu Kush, Karakoram, Pamir Alai, Kunlun Shan, and Tian Shan mountains—have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Here I show that these glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people, or most of the annual municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan. During drought summers, meltwater dominates water inputs to the upper Indus and Aral river basins. Uncertainties in mountain precipitation are poorly known, but, given the magnitude of this water supply, predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.

  7. Regional variation of stress level in the Himalayas after the 25 April 2015 Gorkha earthquake (Nepal) estimated using b-values

    NASA Astrophysics Data System (ADS)

    Ramesh, Pudi; Martha, Tapas R.; Vinod Kumar, K.

    2018-06-01

    The Gutenberg-Richter (G-R) relation and its parameters reflect the distribution of magnitude and frequency of earthquakes in a seismically active region. Different segments of the Himalayas from west to east behave differently in their G-R relation. In this study, b-values from the G-R relation were computed for the four different seismic zones of the Himalayas, in order to understand the regional variation of stress levels. It was found that the b-value of the Eastern zone is relatively lower than that of the other zones. The b-values before and after the Gorkha (25 April 2015) and Dolakha (12 May 2015) earthquakes were compared for the Central-II seismic zone, where the epicentres of both earthquakes were located. It was observed that the b-value has increased gradually in this region since stress was released episodically. It was also observed that b-values in adjacent zones are lower than that in the source region of the 25 April 2015 earthquake, implying high-stress accumulation. This indicates that the recurrence period of a large earthquake will be high in adjacent zones, particularly in the Eastern zone.

  8. Spatiotemporal Change Detection in Forest Cover Dynamics Along Landslide Susceptible Region of Karakoram Highway, Pakistan

    NASA Astrophysics Data System (ADS)

    Rashid, Barira; Iqbal, Javed

    2018-04-01

    Forest Cover dynamics and its understanding is essential for a country's social, environmental, and political engagements. This research provides a methodical approach for the assessment of forest cover along Karakoram Highway. It has great ecological and economic significance because it's a part of China-Pakistan Economic Corridor. Landsat 4, 5 TM, Landsat 7 ETM and Landsat 8 OLI imagery for the years 1990, 2000, 2010 and 2016 respectively were subjected to supervised classification in ArcMap 10.5 to identify forest change. The study area was categorized into five major land use land cover classes i.e., Forest, vegetation, urban, open land and snow cover. Results from post classification forest cover change maps illustrated notable decrease of almost 26 % forest cover over the time period of 26 years. The accuracy assessment revealed the kappa coefficients 083, 0.78, 0.77 and 0.85, respectively. Major reason for this change is an observed replacement of native forest cover with urban areas (12.5 %) and vegetation (18.6 %) However, there is no significant change in the reserved forests along the study area that contributes only 2.97 % of the total forest cover. The extensive forest degradation and risk prone topography of the region has increased the environmental risk of landslides. Hence, effective policies and forest management is needed to protect not only the environmental and aesthetic benefits of the forest cover but also to manage the disaster risks. Apart from the forest assessment, this research gives an insight of land cover dynamics, along with causes and consequences, thereby showing the forest degradation hotspots.

  9. Evolutionary history of enigmatic bears in the Tibetan Plateau–Himalaya region and the identity of the yeti

    PubMed Central

    Lan, Tianying; Gill, Stephanie; Bellemain, Eva; Bischof, Richard; Nawaz, Muhammad Ali

    2017-01-01

    Although anecdotally associated with local bears (Ursus arctos and U. thibetanus), the exact identity of ‘hominid’-like creatures important to folklore and mythology in the Tibetan Plateau–Himalaya region is still surrounded by mystery. Recently, two purported yeti samples from the Himalayas showed genetic affinity with an ancient polar bear, suggesting they may be from previously unrecognized, possibly hybrid, bear species, but this preliminary finding has been under question. We conducted a comprehensive genetic survey of field-collected and museum specimens to explore their identity and ultimately infer the evolutionary history of bears in the region. Phylogenetic analyses of mitochondrial DNA sequences determined clade affinities of the purported yeti samples in this study, strongly supporting the biological basis of the yeti legend to be local, extant bears. Complete mitochondrial genomes were assembled for Himalayan brown bear (U. a. isabellinus) and black bear (U. t. laniger) for the first time. Our results demonstrate that the Himalayan brown bear is one of the first-branching clades within the brown bear lineage, while Tibetan brown bears diverged much later. The estimated times of divergence of the Tibetan Plateau and Himalayan bear lineages overlap with Middle to Late Pleistocene glaciation events, suggesting that extant bears in the region are likely descendants of populations that survived in local refugia during the Pleistocene glaciations. PMID:29187630

  10. Seismic hazard and seismic risk assessment based on the unified scaling law for earthquakes: Himalayas and adjacent regions

    NASA Astrophysics Data System (ADS)

    Nekrasova, A. K.; Kossobokov, V. G.; Parvez, I. A.

    2015-03-01

    For the Himalayas and neighboring regions, the maps of seismic hazard and seismic risk are constructed with the use of the estimates for the parameters of the unified scaling law for earthquakes (USLE), in which the Gutenberg-Richter law for magnitude distribution of seismic events within a given area is applied in the modified version with allowance for linear dimensions of the area, namely, log N( M, L) = A + B (5 - M) + C log L, where N( M, L) is the expected annual number of the earthquakes with magnitude M in the area with linear dimension L. The spatial variations in the parameters A, B, and C for the Himalayas and adjacent regions are studied on two time intervals from 1965 to 2011 and from 1980 to 2011. The difference in A, B, and C between these two time intervals indicates that seismic activity experiences significant variations on a scale of a few decades. With a global consideration of the seismic belts of the Earth overall, the estimates of coefficient A, which determines the logarithm of the annual average frequency of the earthquakes with a magnitude of 5.0 and higher in the zone with a linear dimension of 1 degree of the Earth's meridian, differ by a factor of 30 and more and mainly fall in the interval from -1.1 to 0.5. The values of coefficient B, which describes the balance between the number of earthquakes with different magnitudes, gravitate to 0.9 and range from less than 0.6 to 1.1 and higher. The values of coefficient C, which estimates the fractal dimension of the local distribution of epicenters, vary from 0.5 to 1.4 and higher. In the Himalayas and neighboring regions, the USLE coefficients mainly fall in the intervals of -1.1 to 0.3 for A, 0.8 to 1.3 for B, and 1.0 to 1.4 for C. The calculations of the local value of the expected peak ground acceleration (PGA) from the maximal expected magnitude provided the necessary basis for mapping the seismic hazards in the studied region. When doing this, we used the local estimates of the

  11. Dynamic downscaling over western Himalayas: Impact of cloud microphysics schemes

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2018-03-01

    Due to lack of observation data in the region of inhomogeneous terrain of the Himalayas, detailed climate of Himalayas is still unknown. Global reanalysis data are too coarse to represent the hydroclimate over the region with sharp orography gradient in the western Himalayas. In the present study, dynamic downscaling of the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis-Interim (ERA-I) dataset over the western Himalayas using high-resolution Weather Research and Forecast (WRF) model has been carried out. Sensitivity studies have also been carried out using convection and microphysics parameterization schemes. The WRF model simulations have been compared against ERA-I and available station observations. Analysis of the results suggests that the WRF model has simulated the hydroclimate of the region well. It is found that in the simulations that the impact of convection scheme is more during summer months than in winter. Examination of simulated results using various microphysics schemes reveal that the WRF single-moment class-6 (WSM6) scheme simulates more precipitation on the upwind region of the high mountain than that in the Morrison and Thompson schemes during the winter period. Vertical distribution of various hydrometeors shows that there are large differences in mixing ratios of ice, snow and graupel in the simulations with different microphysics schemes. The ice mixing ratio in Morrison scheme is more than WSM6 above 400 hPa. The Thompson scheme favors formation of more snow than WSM6 or Morrison schemes while the Morrison scheme has more graupel formation than other schemes.

  12. Gravity and the geoid in the Nepal Himalaya

    NASA Technical Reports Server (NTRS)

    Bilham, Roger

    1992-01-01

    Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. The process of uplift of materials within the Himalaya coupled with surface erosion is similar to the advance of a glacier into a region of melting. If the melting rate exceeds the rate of downhill motion of the glacier then the terminus of the glacier will receed up-valley despite the downhill motion of the bulk of the glacier. Thus although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse of the Himalaya depends on the erosion rate which is invisible to geodetic measurements. Erosion rates are currently estimated from suspended sediment loads in rivers in the Himalaya. These typically underestimate the real erosion rate since bed-load is not measured during times of heavy flood, and it is difficult to integrate widely varying suspended load measurements over many years. An alternative way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. If a control point moves vertically it should be accompanied by a reduction in gravity as the point moves away from the Earth's center of mass. There is a difference in the change of gravity between uplift with and without erosion corresponding to the difference between the free-air gradient and the gradient in the acceleration due to gravity caused by a corresponding thickness of rock. Essentially gravity should change precisely in accord with a change in elevation of the point in a free-air gradient if erosion equals uplift rate. We were funded by NASA to undertake a measurement of absolute gravity simultaneously with measurements of GPS height within the Himalaya. Since both absolute gravity and time are known in an absolute sense to 1 part in

  13. Who is Polluting the Himalaya?

    NASA Astrophysics Data System (ADS)

    Panday, A. K.; Praveen, P. S.; Adhikary, B.; Bhave, P.; Banmali Pradhan, B.; Dhungel, S.; Mehra, M.; Mahapatra, P. S.

    2016-12-01

    Observations in recent years have shown that the Himalayan atmosphere is severely polluted even at high altitude, with implications of accelerated melting of the Himalayan cryosphere. However, there are still big uncertainties in our understanding of what fraction of the black carbon and other pollutants reaching the high mountains originates from anthropogenic activities in nearby rural valleys, what fraction originates from seasonal forest fires, and from the densely populated and rapidly changing Indo-Gangetic Plains (IGP) of northern South Asia, which is fragmented across five countries between which movement of people, data, instruments and scientific understanding have been very limited. ICIMOD's Atmosphere Initiative has for the past four years been working to fill data gaps in the region, while facilitating collaborations across borders. It has established a regional modeling center and a regional data center, and it has set up half a dozen new atmospheric observatories at low and mid elevations in Bhutan and Nepal that provide data on the inflow of pollutants from the IGP towards the mountains, as well as quantify the effects of local emissions on air quality in mountain cities. Meanwhile, the University of Virginia has been running an observatory at Jomsom, Nepal, in a trans-Himalayan valley, since 2010, while ICIMOD is working on establishing high altitude black carbon observations in Bhutan and Nepal. The data so far indicates that air quality in the Himalaya is affected by local pollution sources and thermal circulation patterns, but that there are time periods, especially during the dry season, when it is inundated by regional polluted air masses that overwhelm the effects of local sources. Our modeling studies trace the origins of air pollutants reaching different places of interest in the Himalaya, and indicate the important role played by emissions in the plains to the south. The key to clean air over the Himalaya, is not just in reducing emissions

  14. Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India

    NASA Astrophysics Data System (ADS)

    Gupta, I. D.

    2018-03-01

    This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.

  15. Chigger mites (Acari: Trombiculidae) from Makalu region in Nepal Himalaya, with a description of three new species.

    PubMed

    Daniel, M; Stekol'nikov, A A

    2009-07-01

    Three new species of chigger mites, Neotrombicula kounickyi sp. n., Leptotrombidium angkamii sp. n., and Doloisia vlastae sp. n., are described from two species of small mammals collected in the Barun Glacier Valley, Makalu region, Nepal Himalaya. Two species, Trombiculindus mehtai Fernandes et Kulkarni, 2003 and Cheladonta ikaoensis (Sasa et al., 1951) are recorded for the first time in Nepal. Data on altitude distribution of chiggers and their host preferences are given.

  16. Secondary ozone peaks in the troposphere over the Himalayas

    NASA Astrophysics Data System (ADS)

    Ojha, Narendra; Pozzer, Andrea; Akritidis, Dimitris; Lelieveld, Jos

    2017-06-01

    Layers with strongly enhanced ozone concentrations in the middle-upper troposphere, referred to as secondary ozone peaks (SOPs), have been observed in different regions of the world. Here we use the global ECHAM5/MESSy atmospheric chemistry model (EMAC) to (i) investigate the processes causing SOPs, (ii) explore both their frequency of occurrence and seasonality, and (iii) assess their effects on the tropospheric ozone budget over the Himalayas. The vertical profiles of potential vorticity (PV) and a stratospheric ozone tracer (O3s) in EMAC simulations, in conjunction with the structure of SOPs, suggest that SOPs over the Himalayas are formed by stratosphere-to-troposphere transport (STT) of ozone. The spatial distribution of O3s further shows that such effects are in general most pronounced in the northern part of India. Model simulated ozone distributions and backward air trajectories show that ozone rich air masses, associated with STT, originate as far as northern Africa and the North Atlantic Ocean, the Middle East, as well as in nearby regions in Afghanistan and Pakistan, and are rapidly (within 2-3 days) transported to the Himalayas. Analysis of a 15-year (2000-2014) EMAC simulation shows that the frequency of SOPs is highest during the pre-monsoon season (e.g. 11 % of the time in May), while no intense SOP events are found during the July-October period. The SOPs are estimated to enhance the tropospheric column ozone (TCO) over the central Himalayas by up to 21 %.

  17. Tree ring imprints of long-term changes in climate in western Himalaya, India.

    PubMed

    Yadav, R R

    2009-11-01

    Tree-ring analyses from semi-arid to arid regions in western Himalaya show immense potential for developing millennia long climate records. Millennium and longer ring-width chronologies of Himalayan pencil juniper (Juniperus polycarpos), Himalayan pencil cedar (Cedrus deodara) and Chilgoza pine (Pinus gerardiana) have been developed from different sites in western Himalaya. Studies conducted so far on various conifer species indicate strong precipitation signatures in ring-width measurement series. The paucity of weather records from stations close to tree-ring sampling sites poses diffi culty in calibrating tree-ring data against climate data especially precipitation for its strong spatial variability in mountain regions. However, for the existence of strong coherence in temperature, even in data from distant stations, more robust temperature reconstructions representing regional and hemispheric signatures have been developed. Tree-ring records from the region indicate multi-century warm and cool anomalies consistent with the Medieval Warm Period and Little Ice Age anomalies. Signifi cant relationships noted between mean premonsoon temperature over the western Himalaya and ENSO features endorse utility of climate records from western Himalayan region in understanding long-term climate variability and attribution of anthropogenic impact.

  18. Lateral variation of seismic attenuation in Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Ajaay; Kumar, Ajay; Mitra, Supriyo

    2017-01-01

    We use data from local earthquakes (mb ≥ 3.0) recorded by the Sikkim broad-band seismograph network to study the frequency-dependent attenuation of the crust and uppermost mantle. These events have been relocated using body wave phase data from local and regional seismograms. The decay of coda amplitudes at a range of central frequencies (1 to 12 Hz) has been measured for 74 earthquake-receiver pairs. These measurements are combined to estimate the frequency-dependent coda Q of the form Q( f) = Q0 f η. The estimated Q0 values range from 80 to 200, with an average of 123 ± 29; and η ranges from 0.92 to 1.04, with an average of 0.98 ± 0.04. To study the lateral variation of Q0 and η, we regionalized the measured Q values by combining all the earthquake-receiver path measurements through a back projection algorithm. We consider a single back-scatter model for the coda waves with elliptical sampling and parametrize the sampled area using 0.2° square grids. A nine-point spatial smoothening (similar to spatial Gaussian filter) is applied to stabilize the inversion. This is done at every frequency to observe the spatial variation of Q( f) and subsequently combined to obtain η variations. Results of our study reveal that the Sikkim Himalaya is characterized by low Q0 (80-100) compared to the foreland basin to its south (150-200) and the Nepal Himalaya to its west (140-160). The low Q and high η in Sikkim Himalaya is attributed to extrinsic scattering attenuation from structural heterogeneity and active faults within the crust, and intrinsic attenuation due to anelasticity in the hotter lithosphere beneath the actively deforming mountain belt. Similar low Q and high η values had also been observed in northwest and Garhwal-Kumaun Himalaya.

  19. Simulation of Relationship between ENSO and winter precipitation over Western Himalayas: Application of Regional climate model (RegT-Band)

    NASA Astrophysics Data System (ADS)

    Tiwari, P. R.; Mohanty, U. C.; Dey, S.; Acharaya, N.; Sinha, P.

    2012-12-01

    Precipitation over the Western Himalayas region during winter is mainly associated with the passage of midlatitude synoptic systems known as western disturbances (WDs). Recently, many observational and modeling studies reported that the relationship of the Indian southwest monsoon rainfall with El Niño- Southern Oscillation (ENSO) has weakened since around 1980. But, in contrast, only very few observational studies are reported so far to examine the relationship between ENSO and the winter precipitation over the Western Himalayas region from December to February (DJF). But there is a huge gap of modeling this phenomenon. So keeping in view of the absence of modeling studies, an attempt is made to simulate the relationship between wintertime precipitations associated with large scale global forcing of ENSO over the Western Himalayas. In the present study, RegT-Band, a tropical band version of the regional climate model RegCM4 is integrated for a set of 5 El Niño (1986-87, 1991-92, 1997-98, 2002-03, 2009-10) and 4 La Niña (1984-85, 1988-89, 1999-2000, 2007-08) years with the observed sea-surface temperature and lateral boundary condition. The domain extends from 50° S to 50° N and covers the entire tropics at a grid spacing of about 45 km, i.e. it includes lateral boundary forcing only at the southern and northern boundaries. The performance evaluation of the model in capturing the large scale fields followed by ENSO response with wintertime precipitation over the Western Himalayas region has been carried out by using National Center for Environmental Prediction (NCEP)-Department of Energy (DOE) reanalysis 2 (NNRP2) data (2.5° x 2.5°) and Aphrodite precipitation data (0.25° x 0.25°). The model is able to delineate the mean circulation associated with ENSO over the region during DJF reasonably well and shows strong southwesterly to northwesterly wind flow, which is there in verification analysis also. The vertical structure of the low as well as upper level

  20. Intraseasonal variability of winter precipitation over central asia and the western tibetan plateau from 1979 to 2013 and its relationship with the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Liu, Heng; Liu, Xiaodong; Dong, Buwen

    2017-09-01

    Winter precipitation over Central Asia and the western Tibetan Plateau (CAWTP) is mainly a result of the interaction between the westerly circulation and the high mountains around the plateau. Empirical Orthogonal Functions (EOFs), Singular Value Decomposition (SVD), linear regression and composite analysis were used to analyze winter daily precipitation and other meteorological elements in this region from 1979 to 2013, in order to understand how interactions between the regional circulation and topography affect the intraseasonal variability in precipitation. The SVD analysis shows that the winter daily precipitation variability distribution is characterized by a dipole pattern with opposite signs over the northern Pamir Plateau and over the Karakoram Himalaya, similar to the second mode of EOF analysis. This dipole pattern of precipitation anomaly is associated with local anomalies in both the 700 hPa moisture transport and the 500 hPa geopotential height and is probably caused by oscillations in the regional and large-scale circulations, which can influence the westerly disturbance tracks and water vapor transport. The linear regression shows that the anomalous mid-tropospheric circulation over CAWTP corresponds to an anti-phase variation of the 500 hPa geopotential height anomalies over the southern and northern North Atlantic 10 days earlier (at 95% significance level), that bears a similarity to the North Atlantic Oscillation (NAO). The composite analysis reveals that the NAO impacts the downstream regions including CAWTP by controlling south-north two branches of the middle latitude westerly circulation around the Eurasian border. During the positive phases of the NAO, the northern branch of the westerly circulation goes around the northwest Tibetan Plateau, whereas the southern branch encounters the southwest Tibetan Plateau, which leads to reduced precipitation over the northern Pamir Plateau and increased precipitation over the Karakoram Himalaya, and

  1. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP < 100 μm) are collected for 24h at an interval of 3-6 days at all sites. Black carbon, typical persistent organic pollutants (PAHs) and heavy metals (particulate-bounded mercury) are measured to reveal their spatial and temporal distributions. Results revealed a consistent gradient decrease in almost all analyzed parameters along south-north gradient across the Himalayas, with a clear seasonal variation of higher values in pre-monsoon seasons. Analysis of geochemical signatures of carbonaceous aerosols indicated dominant sources from biomass burning and vehicle exhaust. PAHs concentrations and signatures from soils and aerosols indicated that low-ring PAHs can readily transport across the Himalayas. Integrated analysis of satellite images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia

  2. Influences of elevated heating effect by the Himalaya on the changes in Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    He, Bian

    2017-04-01

    Based on a series of topographical and thermal sensitivity experiments, the physical processes on the changes of Asian summer monsoon caused by the Himalaya elevated heating were investigated. Six different Himalaya-Iranian Plateau mountain heights were used: 0%, 20%, 40%, 60%, 80%, and 100% in the first group (called HIM). The no sensible heating experiments (called HIM_NS) were also performed with the same six mountain heights but the surface sensible heating was not allowed to heat the atmosphere. The results indicate that the elevated heating effect of Himalaya gradually intensified when Himalaya uplift. The establishment of SASM over South Asian land which is characterized by the strong precipitation over South slope of Tibetan Plateau and the huge warm anticyclone in the upper troposphere are in proportion to the elevated heating effect of Himalaya. Further analysis suggests that the surface heat fluxes over Himalaya keep almost unchanged during the uplifting, but the lifted condensation level reduces gradually over the regions where the mountain uplift. The condensation moisturing increases correspondingly and leads to the increase of latent heating in the upper troposphere. Therefore, the positive feedback between the moist convection over south slope of Himalaya and monsoon circulation over Indian sub-continent forms and the successive precipitation over South Asian land is maintained.

  3. Climate and meltwater changes in the Himalayas: impacts, risk assessment and mitigation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Wang, S.; Zhang, D.; Guo, W.; Gao, X.; Guo, X.; Ming, J.

    2017-12-01

    Regional warming was identified in the whole Himalayas in the past 50 years, with larger warming rate in the last decade. During the same period, precipitation decreased in the most areas of Himalayas. Warming-dry regime of climate resulted in widespread retreating of glaciers. Based on in-situ investigations and mapping of satellite images, we studied glacial changes between 1970's to 2008. It shows that in the north slope of Himalayas, retreating glaciers amount to 25.3% of overall glaciers in Ganges basin, 23.3% in Yarlung Zangbo basin, 29.2% in Indus and 25% in other areas. Glacier areal changes in the southern slope roughly doubled than that of the northern slope. Darkening of glacier surface due to back carbon and other light-absorbing aerosols might have contributed to the strong melting, especially in the southern slope. Using degree-day model (DDM), we estimate that, during 1961-2006, the total mass loses of glaciers in the north slope of Himalayas amounts to 198 km3, equals to approximately 10 m thinning of glaciers. The mass balance is averaged -220mm•a-1 during 2000-2006. Glacier melt water increases in the last 5 decades, contributing to an increasing amount to total river runoff in the Indus, Ganges and Yarlung Zangbo Rivers. Projections of future climate change by Regional Climate Model (ICTP RegCM3) shows continuously warming and drying trends in the most part of Himalayas before 2050, implying continuously retreating of glacier thus depletion of water storage over the Himalayas. Assessment of glacial lake outburst flood (GLOF) disaster risk is completed in the north slope, combined with potential dangerous glacial lakes (PDGL) outburst hazard. The zones at highest risk of GLOF disaster are mainly located in Nyalam, Tingri, Dinggyê, Lhozhag, Kangmar and Zhongba, in the mid-eastern Himalayas. Post-melting season (winter and spring) coincides with strong wind season over valley of Yarlung Zangbo River, blowing sands from exposed river bed to bank

  4. Source Parameters and High Frequency Characteristics of Local Events (0.5 ≤ M L ≤ 2.9) Around Bilaspur Region of the Himachal Himalaya

    NASA Astrophysics Data System (ADS)

    Vandana; Kumar, Ashwani; Gupta, S. C.; Mishra, O. P.; Kumar, Arjun; Sandeep

    2017-04-01

    Source parameters of 41 local events (0.5 ≤ M L ≤ 2.9) occurred around Bilaspur region of the Himachal Lesser Himalaya from May 2013 to March 2014 have been estimated adopting Brune model. The estimated source parameters include seismic moments ( M o), source radii ( r), and stress drops (Δ σ), and found to vary from 4.9 × 1019 to 7 × 1021 dyne-cm, about 187-518 m and less than 1 bar to 51 bars, respectively. The decay of high frequency acceleration spectra at frequencies above f max has been modelled using two functions: a high-cut filter and κ factor. Stress drops of 11 events, with M 0 between 1 × 1021 and 7 × 1021 dyne-cm, vary from 11 bars to 51 bars with an average of 22 bars. From the variation of the maximum stress drop with focal depth it appears that the strength of the upper crust decreases below 20 km. A scaling law M 0 = 2 × 1022 f c -3.03 between M 0, and corner frequency (f c), has been developed for the region. This law almost agrees with that for the Kameng region of the Arunachal Lesser Himalaya. f c is found to be source dependent whereas f max is source independent and seems to indicate that the size of the cohesive zone is not sensitive to the earthquake size. At four sites f max is found to vary from 14 to 23, 11 to 19, 9 to 23 and 4 to 11 Hz, respectively. The κ is found to vary from 0.01 to 0.035 s with an average of 0.02 s. This range of variation is a large compared to the κ variation between 0.023 and 0.07 s for the Garhwal and Kumaon Himalaya. For various regions of the world, the κ varies over a broad range from 0.003 to 0.08 s, and for the Bilaspur region the κ estimates are found to be consistent with other regions of the world.

  5. Climate warming enhances snow avalanche risk in the Western Himalayas

    PubMed Central

    Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.

    2018-01-01

    Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224

  6. Influences of elevated heating effect by the Himalaya on the changes in Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    He, Bian

    2017-05-01

    Based on a series of topographical and thermal sensitivity experiments, the physical processes on the changes of Asian summer monsoon caused by the Himalaya elevated heating were investigated. Six different Himalaya-Iranian Plateau mountain heights were used: 0, 20, 40, 60, 80, and 100 % in the first group (called HIM). The no sensible heating experiments (called HIM_NS) were also performed with the same six mountain heights, but the surface sensible heating was not allowed to heat the atmosphere. The results indicate that the elevated heating effect of the Himalaya gradually intensified when the Himalaya uplifts. The establishment of SASM over the South Asian land which is characterized by the strong precipitation over south slope of the Tibetan Plateau and the huge warm anticyclone in the upper troposphere are in proportion to the elevated heating effect of the Himalaya. Further analysis suggests that the surface heat fluxes over the Himalaya keep almost unchanged during the uplifting, but the lifted condensation level reduces gradually over the regions where the mountain uplifts. The condensation moisturing increases correspondingly and leads to the increase of latent heating in the upper troposphere. Therefore, the positive feedback between the moist convection over the south slope of the Himalaya and monsoon circulation over Indian subcontinent forms and the successive precipitation over the South Asian land is maintained.

  7. Erosion distribution in Central Nepal Himalaya from late Pleistocene to present : evidence for recent anthropic forcing of erosion of the Lesser Himalaya

    NASA Astrophysics Data System (ADS)

    France-Lanord, C.; Lave, J.; Morin, G. P.; Gajurel, A.; Galy, A.; Bosia, C.; Sinha, R.

    2016-12-01

    Evolution of the erosion of continental surfaces through geologic times provides key evidences to assess the interplay of controls exerted by tectonic, topography, climate, and lately, human activities. Mountains belts, and particularly the Himalaya, present intense tectonic activity, contrasted seasonality marked by the monsoon, steep topography and recent socio-economic development, which makes it a laboratory to assess main issues on these complex interactions.Taking advantage of the large Sr and Nd isotopic contrasts of the main geological and physiographic Himalayan units, this study explores the time variations of the spatial distribution of erosion in Central Nepal Himalaya. Compiling Sr and Nd isotopic compositions of rivers sediments from many tributaries within the Narayani Basin in central Nepal, we first define the mean Sr and Nd isotopic compositions of the three main Himalayan geological units in this region. Then, we present isotopic chronicles of river sediments sampled at the outlet of the Narayani Basin during 21 years, and 50-kyr-long sedimentary archives drilled in the foreland basin.Using Sr and Nd isotopic compositions to trace relative geological provenances and contributions, we show that erosion distribution in the Narayani Basin remained stable for 50 kyr until the end of the 20th century. Sediment fluxes were primarily derived from erosion of the High Himalayan regions (Tethys H. and HHC) ( 80 %), i.e. from the areas presenting high reliefs and steep slopes. Erosion distribution stability during the Pleistocene-Holocene climatic transition provides new evidence for a primary control of erosion by tectonic forcing rather than climatic forcing in the Himalayas. Since 2000s, a shift of the sediment isotopic compositions reveals an intensification of erosion in the Lesser Himalaya (from 15-25% to 30-45% of the sediment budget) despite unchanged tectonic or climatic conditions. We propose that this strong increase by 2-3 fold of erosion of the

  8. Glaciers in the Himalayan Mountains taken from Atlantis during STS-106

    NASA Image and Video Library

    2000-09-16

    STS106-705-009 (8-20 September 2000) --- One of the STS-106 crew members on board the Space Shuttle Atlantis used a handheld 70mm camera to photograph this image of Qogir Feng (8,611 meters), which appears at the far upper left in this view of the northwestern Karakoram Range. Also called K2 or Mt. Godwin Austen, the mountain is the second highest peak in the world. The Tarim sedimentary basin borders the range on the north and the Lesser Himalayas on the south. Melt waters from vast glaciers, such as those south and east of K2, feed agriculture in the valleys (dark green) and contribute significantly to the regional fresh-water supply. The Karakoram Range lies along the southern edge of the Eurasian tectonic plate and is made up of ancient sedimentary rocks (more than 390 million years old, according to geologists studying the shuttle imagery). Those strata were folded and thrust-faulted, and granite masses were intruded, say the geologists, when the Indo-Pakistan plate collided with Eurasia, beginning more than 100 million years ago.

  9. Study of radon flux and natural radionuclides (226Ra, 232Th and 40K) in the Main Boundary Thrust region of Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Kandari, Tushar; Prasad, Mukesh; Pant, Preeti; Semwal, Poonam; Bourai, Abhay Anand; Ramola, Rakesh Chand

    2018-05-01

    The Himalayan region is subdivided lithologically into four regions in which the junction between the lower Himalaya and Shivalik is known as the Main Boundary Thrust (MBT). It is well known that the environmental radon concentration depends upon various geological factors including faults, thrust, cracks and the composition of the soil. Radon gas eventually comes out from the fault/thrust zones having radium as its prominent source. Hence, it is important to study the behaviour of emission of radon present inside the earth crust as well as the levels of natural radionuclides in soil. In this study, the levels of natural radionuclides and exhalation rates of radon in the soil of MBT region of Garhwal Himalaya, India, were determined by using gamma ray spectrometer and scintillation detector-based Smart Radon Monitor, respectively. The average activities of 226Ra, 232Th and 40K were found 71.9, 88.2 and 893.6 Bq Kg-1, respectively. The measured radon surface flux was found to vary from 13.08 to 1626.4 Bq m-2 h-1 with a mean value of 256.5 Bq m-2 h-1. The measured activity levels were used to assess the doses associated with the contaminated soil.

  10. Electrical resistivity structures and tectonic implications of Main Karakorum Thrust (MKT) in the western Himalayas: NNE Pakistan

    NASA Astrophysics Data System (ADS)

    Shah, Syed Tallataf Hussain; Zhao, Junmeng; Xiao, Qibin; Bhatti, Zahid Imran; Khan, Nangyal Ghani; Zhang, Heng; Deng, Gong; Liu, Hongbing

    2018-06-01

    We discovered a conductive zone along Main Karakoram Thrust which could be an indication of flat subduction of Kohistan island arc beneath the Eurasian plate. Kohistan island arc collided with the Karakoram Block of the Eurasian Plate in the Early Cretaceous. However, according to findings of many researchers, the subduction ceased about 75 Ma ago. The presence of the conductive zone is an indication of current magmatism or hydrothermal fluids. Maximum low-frequency band data from Fourteen sites with recording periods of 10-2-103 s was acquired along a profile crossing MKT. Our results reveal the existence of multiple low resistivity zones beneath the region extending from shallow to the depths of more than 100 km. These low-resistivity zones might be a signature of the ongoing magmatic activities or hydrothermal fluids along the Shyok Suture Zone. In addition, we discovered another large conductive body towards the south of the study area which could be a result of uprising magmatic plumes generated by the subducting Indian plate along the Indian suture zone and their entrapment in the overlying Kohistan block.

  11. Climate Past and Present: A Study on Glaciology of Himalayas in India

    NASA Astrophysics Data System (ADS)

    Shanmuganandan, S.

    2003-04-01

    Glaciers are moving bodies of ice and snow, which are normally present above the snow line. Glaciers and ice sheets are hundreds to more than one thousand meters thick and change significantly only over decades. On these longer time scales they can influence atmospheric circulation and global sea levels. Glaciers play an important role in maintaining ecosystem stability as they act as buffers and regulate the runoff water supply from high mountains to the plains during both dry and wet spells. The present study is an attempt to analyze the Climate of the Past and Present of the Himalayas with reference to study the glaciology. The study also attempted to use the remote sensed data to explore the past and present situation of glaciology of the Himalayas. Since mountain glaciology of Himalayas played a vital role and stand as an example to explore the possibility of the climate change that occurred from the past to the present and also to determine the status in the future. The Study was based on the secondary and primary data collected from available sources and also collected from various published records to document the evidences for the same. It was observed that the Himalayan glaciers account for about 70% of the world’s non-polar glaciers and affect the lives of millions of people in several countries: China, India, Pakistan, Afghanistan, Nepal and Bangladesh. Their runoff feeds two of the oldest rivers in the world, the Indus and the Ganges, whose tributaries carry precious water for 500 million people on the northern Indian plains. Most of the glaciers in the Himalayas are of a summer-accumulation type, that is major accumulation and ablation take place simultaneously during summer (Fujita et. al, 1997). The glaciers of the Himalayas include some of the longest outside the Polar Regions and reached their largest extent during the end of the last ice age (more than 20,000 years ago). The evidence of these large ice masses can be seen in 'U' shaped valleys

  12. Tree ring-based seven-century drought records for the Western Himalaya, India

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.

    2013-05-01

    The paucity of available instrumental climate records in cold and arid regions of the western Himalaya, India, hampers our understanding of the long-term variability of regional droughts, which seriously affect the agrarian economy of the region. Using ring width chronologies of Cedrus deodara and Pinus gerardiana together from a network of moisture-stressed sites, Palmer Drought Severity Index values for October-May back to 1310 A.D. were developed. The twentieth century features dominant decadal-scale pluvial phases (1981-1995, 1952-1968, and 1918-1934) as compared to the severe droughts in the early seventeenth century (1617-1640) as well as late fifteenth to early sixteenth (1491-1526) centuries. The drought anomalies are positively (negatively) associated with central Pacific (Indo-Pacific Warm Pool) sea surface temperature anomalies. However, non-stationarity in such relationships appears to be the major riddle in the predictability of long-term droughts much needed for the sustainable development of the ecologically sensitive region of the Himalayas.

  13. Spatio Temporal Change of Selected Glaciers Along Karakoram Highway from 1994-2017 Using Remote Sensing and GIS Techniques

    NASA Astrophysics Data System (ADS)

    Anwar, Yasmeen; Iqbal, Javed

    2018-04-01

    With the acceleration of global warming glaciers are receding rapidly. Monitoring of glaciers are important because they caused outburst of floods the past. This research delivers a systematic approach for the assessment of glaciers i.e. Batura, Passu, Ghulkin and Gulmit cover along the Karakoram Highway. Main reason to select these glaciers was their closeness to Karakoram Highway which plays an important role in China-Pakistan economic corridor (CPEC). This study incorporates the techniques of Geographical Information System and Remote Sensing (GIS & RS). For this study, Landsat 4,5,7,8 images were taken for the years of 1994, 2002, 2009, 2013 and 2017. Using the said images supervised classification was done in ArcMap 10.3 version to identify the changes in glaciers. The area was categorized into six major classes' i.e. Fresh snow, Glaciers, Debris, Vegetation, Water bodies and Open land. Classified results showed a decrease in the area of Glaciers, almost 3.5% from 1994 to 2017. GLIMS data about boundary of glaciers of 1999 and 2007 was compared with the classified results which show decrease in terminus of glaciers. Batura glacier has been receded almost 0.6 km from 1999 to 2017, whereas Passu glaciers receded 0.3 km, whereas Gulmit and Ghulkin glaciers are more stable than Passu and Batura with the difference of -0.05 and +0.57 km respectively. At the end results from classified maps were compared with the climatic data. Wherein temperature is rapidly increasing resulting in melting of glaciers and can cause shrinkage of fresh water as well as destruction to Karakoram highway in case of outburst floods.

  14. Extreme rainfalls in Eastern Himalaya and southern slope of Meghalaya Plateau and their geomorphologic impacts

    NASA Astrophysics Data System (ADS)

    Soja, Roman; Starkel, Leszek

    2007-02-01

    This paper presents the detailed rainfall characteristics of 3 key areas located in the eastern monsoon India: the margin of Darjeeling Himalaya, the margin of Bhutanese Himalaya and the Cherrapunji region at the southern slope of Meghalaya Upland. All these areas are sensitive to changes but differ in annual rainfall totals (2000-4000 mm, 4000-6000 m and 6000-23,000 mm respectively) and in the frequency of extreme rainfalls. Therefore the response of geomorphic processes is different, also due to various human impact. In the Darjeeling Himalaya the thresholds may be passed 2-3 times in one century and the system may return to the former equilibrium. At the margin of western Bhutanese Himalaya in 1990s, the clustering of three events caused an acceleration in the transformation and formation of a new trend of evolution, especially in the piedmont zone. In the Cherrapunji of Meghalaya region in the natural conditions the effects of dozens of extreme rainfalls every year were checked by the dense vegetation cover. After deforestation and extensive land use the fertile soil was removed and either the exposed bedrock or armoured debris top layer protect the surface against degradation and facilitate only rapid overland flow. A new "sterile" system has been formed.

  15. Paleofloods records in Himalaya

    NASA Astrophysics Data System (ADS)

    Srivastava, P.; Kumar, A.; Chaudhary, S.; Meena, N.; Sundriyal, Y. P.; Rawat, S.; Rana, N.; Perumal, R. J.; Bisht, P.; Sharma, D.; Agnihotri, R.; Bagri, D. S.; Juyal, N.; Wasson, R. J.; Ziegler, A. D.

    2017-05-01

    We use paleoflood deposits to reconstruct a record of past floods for the Alaknanda-Mandakini Rivers (Garhwal Himalaya), the Indus River (Ladakh, NW Himalaya) and the Brahmaputra River (NE Himalaya). The deposits are characterized by sand-silt couplets, massive sand beds, and from debris flow sediment. The chronology of paleoflood deposits, established by Optically Stimulated Luminescence (OSL) and 14C AMS dating techniques, indicates the following: (i) The Alaknanda-Mandakini Rivers experienced large floods during the wet and warm Medieval Climate Anomaly (MCA); (ii) the Indus River experienced at least 14 large floods during the Holocene climatic optimum, when flood discharges were likely an order of magnitude higher than those of modern floods; and (iii) the Brahmaputra River experienced a megaflood between 8 and 6 ka. Magnetic susceptibility of flood sediments indicates that 10 out of 14 floods on the Indus River originated in the catchments draining the Ladakh Batholith, indicating the potential role of glacial lake outbursts (GLOFs) and/or landslide lake outbursts (LLOFs) in compounding flood magnitudes. Pollen recovered from debris flow deposits located in the headwaters of the Mandakini River showed the presence of warmth-loving trees and marshy taxa, thereby corroborating the finding that floods occurred during relatively warm periods. Collectively, our new data indicate that floods in the Himalaya largely occur during warm and wet climatic phases. Further, the evidence supports the notion that the Indian Summer Monsoon front may have penetrated into the Ladakh area during the Holocene climatic optimum.

  16. Widespread climate change in the Himalayas and associated changes in local ecosystems.

    PubMed

    Shrestha, Uttam Babu; Gautam, Shiva; Bawa, Kamaljit S

    2012-01-01

    Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ~20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index) values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5 °C with an average increase of 0.06 °C yr(-1). The average annual precipitation has increased by 163 mm or 6.52 mmyr(-1). Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS) seems to have advanced by 4.7 days or 0.19 days yr(-1) and the length of growing season (LOS) appears to have advanced by 4.7 days or 0.19 days yr(-1), but there has been no change in the end of the growing season (EOS). There is considerable spatial and seasonal variation in changes in climate and phenological parameters. This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change.

  17. Role of vegetation in modulating denudation and topography across the Himalaya

    NASA Astrophysics Data System (ADS)

    Olen, Stephanie; Bookhagen, Bodo; Strecker, Manfred

    2015-04-01

    Studies of Himalayan denudation, to date, have primarily focused on the effects of lithology, tectonic activity, and climate in shaping landscape and controlling denudation rates. Climate can impact denudation not only through increased precipitation, runoff, or glaciation, but also via its role in controlling vegetation cover. Since the classical study of Langbein and Schumm [1958] emphasizing the role of vegetation cover in determining erosional efficiency, theoretical and plot-scale studies have highlighted the role of vegetation on surface processes [Collins et al., 2004; Istanbulluoglu and Bras, 2005; Collins and Bras, 2010; Carretier et al., 2013; Jeffery et al., 2014]. Vegetation cover and density vary considerably in the Himalaya, both across and along strike. Across strike, vegetation transitions from dense forest and agriculturally-used plots in the Lesser Himalaya to sparse alpine and arid, virtually non-vegetated regions at high elevation and in the rain shadow north of the Higher Himalaya peaks. Along-strike vegetation densities also differ significantly and show a pronounced E-W gradient. To quantify the along-strike vegetation gradient, we use 14 years of MODIS 13C1 enhanced vegetation index (EVI) data to calculate mean annual, summer (MJJASO), and winter (NDJFMA) for the entire Himalaya. Additionally, we calculate a differential EVI that compares summer versus winter vegetation density (MJJASO/NDJFMA). A decrease in vegetation density is observed from east to west, with the greatest difference in winter vegetation cover (225% higher in the eastern than western Himalaya). In contrast, differential EVI is higher in the western Himalaya, increasing 170% from east to west. To evaluate the effect of vegetation on denudation and landscape evolution, we combine the 14-year EVI data, topographic analysis, and a compilation of >100 published and unpublished 10-Be terrestrial cosmogenic nuclide (TCN) catchment-mean denudation rates from across the Himalaya

  18. Permian biogeography of the Indian subcontinent with special reference to the marine fauna

    NASA Astrophysics Data System (ADS)

    Singh, Trilochan

    Permian biogeography of the Indian subcontinent is discussed in the light of brachiopods and associated fossils from different localities. The discussion is based primarily on the Permian "biome" concept of Waterhouse and Bonham-Carter (1975), wherein three biomes are proposed: group A of subpolar, group B of temperate, and group C of tropical character. Data on the occurrence of Permian brachiopods and associated fossils are given for the Salt Range, Karakoram, and Himalayan regions of India, Nepal, Bhutan, Tibet, and Peninsular India with respect to the age of the fauna. Marine Permian localities of the Himalayan region include those of Ladakh, Zanskar, Lahaul and Spiti, Kashmir, Bhadarwah-Bhallesh-Chamba, Kinnaur, Garhwal, Kumaun, Darjeeling, Sikkim, and Arunachal Pradesh. Permian marine localities of Peninsular India, which forms a part of central Gondwanaland, include those of Bap, Badhaura, Umaria, Manendragarh, and Daltonganj, where marine transgression occurred in Early Permian time. The faunas of these localities are discussed with respect to their age, which falls into two groups, Early and Late Permian. It is suggested that widespread colder climatic conditions prevailed in the Indian subcontinent during the early Early Permian. Similar conditions continued in most of the localities until the late Early Permian, except at west Karakoram (Shaksgam valley), Zanskar, north Tibet (central and western part), and the Salt Range. However, during the Late Permian, climatic conditions were varied. Cold climatic conditions prevailed in north Tibet (central part), Kumaun Tethyan Himalaya, and south Tibet; temperate conditions occurred in west Karakoram (Shaksgam valley), Zanskar, Lahaul and Spiti, Bhadarwah-Bhallesh-Chamba, north Nepal, and north Sikkim; and tropical conditions occurred in the Salt Range, east Karakoram, Ladakh, Kashmir, and north Tibet (western and eastern parts). At a few localities there appear to be some anomalies that might be due to lack of

  19. The Limits of Extrusion in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Webb, A. G.; Donaldson, D.; Johnson, S.; Elorriaga, T.

    2014-12-01

    Himalayan orogenesis is commonly explained by 1) extrusion models, involving expulsion of high-grade rocks southwards from beneath Tibet and up towards the High Himalayan orographic front, and/or 2) duplexing models, involving accretion of thrust horses from the downgoing Indian plate to the over-riding orogenic wedge. Most extrusion models predict exhumation and erosion of upper-amphibolite facies metamorphic rocks between the Main Central thrust (MCT) and a structurally higher normal fault, and therefore can be tested by determining if such high grade rocks occur between the MCT and the Indus-Yalu suture to the north. Prior qualitative studies suggest that such rocks are missing across the east Ladakh / Chamba and Kashmir regions of the western Himalaya. Here we present new quantitative and semi-quantitative results that document low peak metamorphic temperatures along a northeast-trending transect across the east Ladakh / Chamba Himalaya. We performed illite crystallinity (IC) and quartz grain boundary analyses to determine metamorphic and deformation temperatures, respectively. Calibrated IC values of structurally high samples range from 0.25 to 0.54, indicating temperatures of ~100 ˚C to ~300 ˚C. In structurally lower, muscovite +/- biotite-bearing meta-pelitic and meta-psammitic rocks, quartz grain boundaries show bulging recrystallization fabrics, corresponding to deformation temperatures of <~450 ˚C. Local exceptions occur along the southeast margin of the study region near a dome, where quartz sub-grain rotation fabrics indicate deformation temperatures between ~450 ˚C and ~550 ˚C. Our results, combined with similar IC values to the north from Girard et al. [2001, Clay Minerals v. 36, p. 237-247], demonstrate that a continuous strip of <~450 ˚C rocks extends from the MCT to the Indus-Yalu suture here. Therefore the predictions of extrusion models are not met in this portion of the Himalaya; we present alternative duplexing models.

  20. Geometry and kinematics of the fold-thrust belt and structural evolution of the major Himalayan fault zones in the Darjeeling -- Sikkim Himalaya, India

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kathakali

    The Darjeeling-Sikkim Himalaya lies in the eastern part of the Himalayan fold-thrust belt (FTB) in a zone of high arc-perpendicular convergence between the Indian and Eurasian plates. In this region two distinct faults form the Main Central thrust (MCT), the structurally higher MCT1 and the lower MCT2; both these faults have translated the Greater Himalayan hanging wall rocks farther towards the foreland than in the western Himalaya. The width of the sub-MCT Lesser Himalayan rocks progressively decreases from the western Himalaya to this part of the eastern Himalaya, and as a result, the width of the FTB is narrower in this region compared to the western Himalaya. Our structural analysis shows that in the Darjeeling-Sikkim Himalaya the sub-MCT Lesser Himalayan duplex is composed of two duplex systems and has a more complex geometry than in the rest of the Himalayan fold-thrust belt. The structurally higher Dating duplex is a hinterland-dipping duplex; the structurally lower Rangit duplex varies in geometry from a hinterland-dipping duplex in the north to an antiformal stack in the middle and a foreland-dipping duplex in the south. The MCT2 is the roof thrust of the Daling duplex and the Ramgarh thrust is the roof thrust of the Rangit duplex. In this region, the Ramgarh thrust has a complex structural history with continued reactivation during footwall imbrication. The foreland-dipping component of the Rangit duplex, along with the large displacement associated with the reactivation of the Ramgarh thrust accounts for the large translation of the MCT sheets in the Darjeeling-Sikkim Himalaya. The growth of the Lesser Himalayan duplex modified the final geometry of the overlying MCT sheets, resulting in a plunge culmination that manifests itself as a broad N-S trending "anticline" in the Darjeeling-Sikkim Himalaya. This is not a "river anticline" as its trace lies west of the Teesta river. A transport parallel balanced cross section across this region has accommodated

  1. Quantifying the Mass Flux, Erosion Rates and Geomorphological Impact of Surging Karakoram Glaciers

    NASA Astrophysics Data System (ADS)

    Quincey, D. J.; Glasser, N. F.; King, O.

    2017-12-01

    Surge-type glaciers switch between phases of rapid and slow flow on timescales of a few years to decades. Here, we describe glacier-surface debris changes, surface-elevation changes and velocity changes through surges lasting five to ten years on ten different Karakoram glaciers (Khurdopin, Gasherbrum, Kunyang, Braldu, Chong Khumdan, Qiogeli, Saxintulu, Shakesiga, Skamri and Unnamed). We use these data to characterise their geomorphological imprint on the landscape, calculate a minimum mass flux for each of the surges and provide first-order estimates of bed erosion rates. Surface debris transport through the surges includes widespread rearrangement of surface debris features, folding and the concentration of debris near glacier termini, confluences and margins. Ice and debris-flux is partly dependent on the style of the surge, and in particular whether a surge-front propagates down-glacier during the active phase. Erosion rates also depend on the style and longevity of the surge, but are largely comparable between each of the studied datasets. We conclude by estimating the geomorphic work undertaken during surge events in comparison to work carried out by non-surging glaciers in the same region.

  2. The character and mechanism of glacial variation in the peripheral Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yi, S.; Wang, Q.; Sun, W.

    2016-12-01

    Global warming has accelerated glacier retreat in the peripheral Tibetan Plateau. Our study demonstrates consistent glacier variation in time series constructed by laser altimetry and space gravimetry in these regions. It largely enhances reliability of glacier changes and narrows down significant inconsistent in previous studies. The glacial melt is roughly weakening from southeast to northwest: from Nyenchen Tanglha to Himalaya then to Pamir even a positive gain in the Western Kunlun. A sharp melt of glacier on Nyenchen Tanglha is primarily caused by high temperature and rapid rise rather than decreasing in annual precipitation as previously thought. Glaciers on Hindu Kush, Karakoram and Western Kun even Pamir are less affect by slow rise of local temperature.

  3. High-resolution DEMs for High-mountain Asia: A systematic, region-wide assessment of geodetic glacier mass balance and dynamics

    NASA Astrophysics Data System (ADS)

    Shean, D. E.; Arendt, A. A.; Osmanoglu, B.; Montesano, P.

    2017-12-01

    High Mountain Asia (HMA) constitutes the largest glacierized region outside of the Earth's polar regions. Although available observations are limited, long-term records indicate sustained regional glacier mass loss since 1850, with increased loss in recent decades. Recent satellite data (e.g., GRACE, ICESat-1) show spatially variable glacier mass balance, with significant mass loss in the Himalaya and Hindu Kush and slight mass gain in the Karakoram. We generated 4000 high-resolution digital elevation models (DEMs) from sub-meter commercial stereo imagery (DigitalGlobe WorldView/GeoEye) acquired over glaciers in High-mountain Asia from 2002-present (mostly 2013-present). We produced a regional 8-m DEM mosaic for 2015 and estimated 15-year geodetic mass balance for 40000 glaciers larger than 0.1 km2. We are combining with other regional DEM sources to systematically document the spatiotemporal evolution of glacier mass balance for the entire HMA region. We also generated monthly to interannual DEM and velocity time series for high-priority sites distributed across the region, with >15-20 DEMs available for some locations from 2010-present. These records document glacier dynamics, seasonal snow accumulation/redistribution, and processes that affect glacier mass balance (e.g., ice-cliff retreat, debris cover evolution). These efforts will provide basin-scale assessments of snow/ice melt runoff contributions for model cal/val and downstream water resources applications. We will continue processing all archived and newly available commercial stereo imagery for HMA, and will release all DEMs through the HiMAT DAAC.

  4. Glacial lake expansion in the central Himalayas by Landsat images, 1990-2010.

    PubMed

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  5. Glacial Lake Expansion in the Central Himalayas By Landsat Images, 1990-2010

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Liu, Q.; Liu, S.

    2014-12-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed.

  6. Spatial variability in patterns of glacier change across the Manaslu region, Central Himalaya

    NASA Astrophysics Data System (ADS)

    Robson, Benjamin A.; Nuth, Christopher; Nielsen, Pål R.; Girod, Luc; Hendrickx, Marijn; Dahl, Svein Olaf

    2018-02-01

    This study assesses changes in glacier area, velocity and geodetic mass balance for the glaciers in the Manaslu region of Nepal, a previously undocumented region of the Himalayas. We studied changes between 1970 (for select glaciers), 2000, 2005 and 2013 using freely available Landsat satellite imagery, the SRTM Digital Elevation Model (DEM) and a DEM based on Worldview imagery. Our results show a complex pattern of mass changes across the region, with glaciers lowering on average by -0.25 ± 0.08 m a-1 between 2000 and 2013 which equates to a negative geodetic mass balance of -0.21 ± 0.16 m w.e.a-1. Over approximately the same time period (1999 to 2013) the glaciers underwent a -16.0% decrease in mean surface velocity over their debris-covered tongues as well as a reduction in glacier area of -8.2%. The rates of glacier change appear to vary between the different time periods, with glacier losses increasing in most cases. The glaciers on Manaslu itself underwent a change in surface elevation of -0.46 ± 0.03 m a-1 between 1970 and 2000 and -0.99 ± 0.08 m a-1 between 2000 and 2013. Rates of glacier area shrinkage for the same glaciers increased from -0.36 km2 a-1 between 1970 and 2001 to -2.28 km2 a-1 between 2005 and 2013. Glacier change varies across the region and seems to relate to a combination of glacier hypsometry, glacier elevation range and the presence and distribution of supraglacial debris. Lower-elevation, debris-free glaciers with bottom-heavy hypsometries are losing most mass. As the glaciers in the Manaslu region continue to stagnate, an accumulation and thickening of the debris-cover is likely, thereby insulating the glacier and further complicating future glacier responses to climate.

  7. Widespread Climate Change in the Himalayas and Associated Changes in Local Ecosystems

    PubMed Central

    Shrestha, Uttam Babu; Gautam, Shiva; Bawa, Kamaljit S.

    2012-01-01

    Background Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ∼20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. Methodology/Principal Findings By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index) values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5°C with an average increase of 0.06°C yr−1. The average annual precipitation has increased by 163 mm or 6.52 mmyr−1. Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS) seems to have advanced by 4.7 days or 0.19 days yr−1 and the length of growing season (LOS) appears to have advanced by 4.7 days or 0.19 days yr−1, but there has been no change in the end of the growing season (EOS). There is considerable spatial and seasonal variation in changes in climate and phenological parameters. Conclusions/Significance This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change. PMID:22615804

  8. The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods.

    PubMed

    Xu, Jianchu; Grumbine, R Edward; Shrestha, Arun; Eriksson, Mats; Yang, Xuefei; Wang, Yun; Wilkes, Andreas

    2009-06-01

    The Greater Himalayas hold the largest mass of ice outside polar regions and are the source of the 10 largest rivers in Asia. Rapid reduction in the volume of Himalayan glaciers due to climate change is occurring. The cascading effects of rising temperatures and loss of ice and snow in the region are affecting, for example, water availability (amounts, seasonality), biodiversity (endemic species, predator-prey relations), ecosystem boundary shifts (tree-line movements, high-elevation ecosystem changes), and global feedbacks (monsoonal shifts, loss of soil carbon). Climate change will also have environmental and social impacts that will likely increase uncertainty in water supplies and agricultural production for human populations across Asia. A common understanding of climate change needs to be developed through regional and local-scale research so that mitigation and adaptation strategies can be identified and implemented. The challenges brought about by climate change in the Greater Himalayas can only be addressed through increased regional collaboration in scientific research and policy making. ©2009 Society for Conservation Biology.

  9. Examination of snowmelt over Western Himalayas using remote sensing data

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2016-07-01

    Snowmelt variability in the Western Himalayas has been examined using remotely sensed snow water equivalent (SWE) and snow-covered area (SCA) datasets. It is seen that climatological snowfall and snowmelt amount varies in the Himalayan region from west to east and from month to month. Maximum snowmelt occurs at the elevation zone between 4500 and 5000 m. As the spring and summer approach and snowmelt begins, a large amount of snow melts in May. Strength and weaknesses of temperature-based snowmelt models have been analyzed for this region by computing the snowmelt factor or the degree-day factor (DDF). It is seen that average DDF in the Himalayas is more in April and less in July. During spring and summer months, melting rate is higher in the areas that have height above 2500 m. The region that lies between 4500 and 5000 m elevation zones contributes toward more snowmelt with higher melting rate. Snowmelt models have been developed to estimate interannual variations of monthly snowmelt amount using the DDF, observed SWE, and surface air temperature from reanalysis datasets. In order to further improve the estimate snowmelt, regression between observed and modeled snowmelt has been carried out and revised DDF values have been computed. It is found that both the models do not capture the interannual variability of snowmelt in April. The skill of the model is moderate in May and June, but the skill is relatively better in July. In order to explain this skill, interannual variability (IAV) of surface air temperature has been examined. Compared to July, in April, the IAV of temperature is large indicating that a climatological value of DDF is not sufficient to explain the snowmelt rate in April. Snow area and snow amount depletion curves over Himalayas indicate that in a small area at high altitude, snow is still observed with large SWE whereas over most of the region, all the snow has melted.

  10. Exploration of relative skill of individual CORDEX South Asia domain experiments (GCM/RCM combinations) for spatiotemporal simulation of temperature and precipitation over the Karakoram sub-region

    NASA Astrophysics Data System (ADS)

    Forsythe, N. D.; Fowler, H.; Pritchard, D.

    2016-12-01

    High mountain Asia (HMA) constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area will experience rapid demographic growth and socio-economic development for the next few decades compounding pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. HMA falls within the South Asia domain of the Coordinated Regional Downscaling Experiment (CORDEX) initiative. Multiple international modelling centres have contributed RCM experiments for the CORDEX South Asia domain. This substantial multi-model ensemble provides a valuable opportunity to explore the spread in model skill at simulation of key characteristics of the present HMA climate. This study focuses geographically on the northwest Upper Indus basin (NW UIB) which covers the bulk of the Karakoram range. Within this subdomain we use climatologies derived from local observations and meteorological reanalyses (ERA-Interim, NASA MERRA-2, HAR)as benchmarks for inter-comparison of individual CORDEX South Asia ensemble members skill in reproducing seasonality and spatial gradients (orographic precipitation profile, temperature lapse rates). Validation of individual CORDEX South Asia ensemble members to this level of detail is indispensable because discontinuities - e.g. differences in latent heat regimes (fusion versus vaporisation) - abound in

  11. Fine Aerosol Associated Non-Polar Organics in Jammu, AN Urban Location in the Foothill Region of North Western Himalayas

    NASA Astrophysics Data System (ADS)

    Yadav, S.; Bamotra, S.

    2017-12-01

    A comprehensive study was done on the mass, composition and sources of fine aerosol associated non-polar organics in Jammu, an urban location in the foothill region of North - Western Himalayas. Systematic multi-scale sampling was done from October, 2015 to February, 2017 to collect fine aerosol (PM2.5) samples every week using a Fine Particulate Sampler (Envirotech, APM 550 MFC) which operates at a constant flow rate of 16.7 L/minute. The Non- polar organic compounds comprising of n-alkanes, PAHs, isoprenoid hydrocarbons and nicotine were analyzed using Thermal desorption Gas Chromatography Mass Spectrometry (TD-GC-MS) method. The n-alkane associated diagnostic parameters include—mass weighted Averaged Chain Length (ACL); Carbon number with maximum concentration (Cmax); Petroleum derived n-alkanes (PNA%), Carbon Preference Index (CPI) and the percentage contribution of Wax n-alkanes from plants (WNA%). These diagnostic parameters along with PAH based molecular ratios were used to understand the diurnal and seasonal variations in different biogenic and petrogenic source contributions in this part of Himalayas. The presence of source specific tracers like Levoglucosan, Retene, Isoquinoline and nicotine also corroborated our findings. Further Fine aerosols associated Black Carbon, an important marker for burning was determined using Optical Transmissometer. Significant multiscale variations were found in the Fine aerosol load, associated Non-polar organics, source tracers/contributions and Black Carbon.

  12. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  13. Observations of glacier mass changes and their system inherent drivers over Western Himalaya (Himachal Pradesh, India) during 2000-2013 using TanDEM-X and SRTM-C DEMs

    NASA Astrophysics Data System (ADS)

    Vijay, Saurabh; Braun, Matthias

    2016-04-01

    The glaciers in Himachal Pradesh (HP), India (Western Himalaya) are a part of widely spread Hindu Kush-Karakoram-Himalaya mountain ranges. The glacier mass changes depend on system inherent (size, topography, aspect etc.) and climatic factors (precipitation, temperature etc.). The glaciers in this region are mostly debris-covered with supraglacial ponds. They are mostly land-terminating but few of them terminate at the lakes. The two different precipitation regimes namely, Indian summer monsoon and mid-latitude winter westerlies, influence the glaciers in the region. The continuous observations of such glacier changes using field experiments are often limited and repeat pass satellite data potentially fills this gap. Previous studies notified that the bench mark glacier, called Chhota Shigri Glacier, experienced a transition from mass gain (or equilibrium) to loss around 1999. This study aims to estimate the mass change of glaciers in HP at two different time scales. During 2000-2012, we subtract TanDEM-X DEMs of Feb, 2012 from the SRTM C/X band DEM of Feb, 2000. The published ice thickness change of Chhota Shigri Glacier from field observations is compared with ice thickness change derived from DEM differencing. This potentially estimates the bias in thickness change due to different radar frequencies (C band for SRTM, X band for TanDEM-X). For 2012-2013, we use repeat pass TanDEM-X DEMs which don't require any further bias correction. We perform hypsometry analysis (25 m elevation bin) of thickness change of ~800 km2 of ice covered area during these times scales. The analysis shows a transition of thickness change -2.0 myr-1 (4000-4200 m elevation) to -2.7 myr-1 at higher elevations (4200-4800) and further transits upstream. This clearly shows that the presence of thick debris at the glacier tongue act as insulator and reduce the downwasting. The downwasting increases as the surface consists of thin debris and exposed more to radiation. The downwasting linearly

  14. Satellite Remote Sensing of Snow/Ice Albedo over the Himalayas

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Gautam, Ritesh

    2012-01-01

    The Himalayan glaciers and snowpacks play an important role in the hydrological cycle over Asia. The seasonal snow melt from the Himalayan glaciers and snowpacks is one of the key elements to the livelihood of the downstream densely populated regions of South Asia. During the pre-monsoon season (April-May-June), South Asia not only experiences the reversal of the regional meridional tropospheric temperature gradient (i.e., the onset of the summer monsoon), but also is being bombarded by dry westerly airmass that transports mineral dust from various Southwest Asian desert and arid regions into the Indo-Gangetic Plains in northern India. Mixed with heavy anthropogenic pollution, mineral dust constitutes the bulk of regional aerosol loading and forms an extensive and vertically extended brown haze lapping against the southern slopes of the Himalayas. Episodic dust plumes are advected over the Himalayas, and are discernible in satellite imagery, resulting in dust-capped snow surface. Motivated by the potential implications of accelerated snowmelt, we examine the changes in radiative energetics induced by aerosol transport over the Himalayan snow cover by utilizing space borne observations. Our objective lies in the investigation of potential impacts of aerosol solar absorption on the Top-of-Atmosphere (TOA) spectral reflectivity and the broadband albedo, and hence the accelerated snowmelt, particularly in the western Himalayas. Lambertian Equivalent Reflectivity (LER) in the visible and near-infrared wavelengths, derived from Moderate Resolution Imaging Spectroradiometer radiances, is used to generate statistics for determining perturbation caused due to dust layer over snow surface in over ten years of continuous observations. Case studies indicate significant reduction of LER ranging from 5 to 8% in the 412-860nm spectra. Broadband flux observations, from the Clouds and the Earth's Radiant Energy System, are also used to investigate changes in shortwave TOA flux over

  15. Crustal velocity structure and earthquake processes of Garhwal-Kumaun Himalaya: Constraints from regional waveform inversion and array beam modeling

    NASA Astrophysics Data System (ADS)

    Negi, Sanjay S.; Paul, Ajay; Cesca, Simone; Kamal; Kriegerowski, Marius; Mahesh, P.; Gupta, Sandeep

    2017-08-01

    In order to understand present day earthquake kinematics at the Indian plate boundary, we analyse seismic broadband data recorded between 2007 and 2015 by the regional network in the Garhwal-Kumaun region, northwest Himalaya. We first estimate a local 1-D velocity model for the computation of reliable Green's functions, based on 2837 P-wave and 2680 S-wave arrivals from 251 well located earthquakes. The resulting 1-D crustal structure yields a 4-layer velocity model down to the depths of 20 km. A fifth homogeneous layer extends down to 46 km, constraining the Moho using travel-time distance curve method. We then employ a multistep moment tensor (MT) inversion algorithm to infer seismic moment tensors of 11 moderate earthquakes with Mw magnitude in the range 4.0-5.0. The method provides a fast MT inversion for future monitoring of local seismicity, since Green's functions database has been prepared. To further support the moment tensor solutions, we additionally model P phase beams at seismic arrays at teleseismic distances. The MT inversion result reveals the presence of dominant thrust fault kinematics persisting along the Himalayan belt. Shallow low and high angle thrust faulting is the dominating mechanism in the Garhwal-Kumaun Himalaya. The centroid depths for these moderate earthquakes are shallow between 1 and 12 km. The beam modeling result confirm hypocentral depth estimates between 1 and 7 km. The updated seismicity, constrained source mechanism and depth results indicate typical setting of duplexes above the mid crustal ramp where slip is confirmed along out-of-sequence thrusting. The involvement of Tons thrust sheet in out-of-sequence thrusting indicate Tons thrust to be the principal active thrust at shallow depth in the Himalayan region. Our results thus support the critical taper wedge theory, where we infer the microseismicity cluster as a result of intense activity within the Lesser Himalayan Duplex (LHD) system.

  16. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010

    PubMed Central

    Nie, Yong; Liu, Qiao; Liu, Shiyin

    2013-01-01

    Glacial lake outburst flood (GLOF) is a serious hazard in high, mountainous regions. In the Himalayas, catastrophic risks of GLOFs have increased in recent years because most Himalayan glaciers have experienced remarkable downwasting under a warming climate. However, current knowledge about the distribution and recent changes in glacial lakes within the central Himalaya mountain range is still limited. Here, we conducted a systematic investigation of the glacial lakes within the entire central Himalaya range by using an object-oriented image processing method based on the Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper (ETM) images from 1990 to 2010. We extracted the lake boundaries for four time points (1990, 2000, 2005 and 2010) and used a time series inspection method combined with a consistent spatial resolution of Landsat images that consistently revealed lake expansion. Our results show that the glacial lakes expanded rapidly by 17.11% from 1990 to 2010. The pre-existing, larger glacial lakes, rather than the newly formed lakes, contributed most to the areal expansion. The greatest expansions occurred at the altitudinal zones between 4800 m and 5600 m at the north side of the main Himalayan range and between 4500 m and 5600 m at the south side, respectively. Based on the expansion rate, area and type of glacial lakes, we identified 67 rapidly expanding glacial lakes in the central Himalayan region that need to be closely monitored in the future. The warming and increasing amounts of light-absorbing constituents of snow and ice could have accelerated the melting that directly affected the glacial lake expansion. Across the main central Himalayas, glacial lakes at the north side show more remarkable expansion than those at the south side. An effective monitoring and warning system for critical glacial lakes is urgently needed. PMID:24376778

  17. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.

    PubMed

    Mishra, Niti B; Mainali, Kumar P

    2017-06-01

    The reliable detection and attribution of changes in vegetation greenness is a prerequisite for the development of strategies for the sustainable management of ecosystems. We conducted a robust trend analysis on remote sensing derived vegetation index time-series matrices to detect significant changes in inter-annual vegetation productivity (greening versus browning) for the entire Himalaya, a biodiverse and ecologically sensitive yet understudied region. The spatial variability in trend was assessed considering elevation, 12 dominant land cover/use types and 10 ecoregions. To assess trend causation, at local scale, we compared multi-temporal imagery, and at regional scale, referenced ecological theories of mountain vegetation dynamics and ancillary literature. Overall, 17.56% of Himalayan vegetation (71,162km 2 ) exhibited significant trend (p<0.01) and majority (94%) showed positive trend (greening). Trend distribution showed strong elevational and ecoregion dependence as greening was most dominant at lower and middle elevations whereas majority of the browning occurred at higher elevation (>3800m), with eastern high Himalaya browning more dominantly than western high Himalaya. Land cover/use based categorization confirmed dominant greening of rainfed and irrigated agricultural areas, though cropped areas in western Himalaya contained higher proportion of greening areas. While rising atmospheric CO 2 concentration and nitrogen deposition are the most likely climatic causes of detected greening, success of sustainable forestry practices (community forestry in Nepal) along with increasing agricultural fertilization and irrigation facilities could be possible human drivers. Comparison of multi-temporal imagery enabled direct attribution of some browning areas to anthropogenic land change (dam, airport and tunnel construction). Our satellite detected browning of high altitude vegetation in eastern Himalaya confirm the findings of recent dendrochronology based studies

  18. Aspects of Hydrological Modelling In The Punjab Himalayan and Karakoram Ranges, Pakistan

    NASA Astrophysics Data System (ADS)

    Loukas, A.; Khan, M. I.; Quick, M. C.

    Various aspects of hydrologic modelling of high mountainous basins in the Punjab Hi- malayan and Karakoram ranges of Northern Pakistan were studied. The runoff from three basins in this region was simulated using the U.B.C. watershed model, which re- quires limited meteorological data of minimum and maximum daily temperature and precipitation. The structure of the model is based on the concept that the hydrolog- ical behavior is a function of elevation and thus, a watershed is conceptualized as a number of elevational zones. A simplified energy budget approach, which is based on daily maximum and minimum temperature and can account for forested and open areas, and aspect and latitude, is used in the U.B.C. model for the estimation of the snowmelt and glacier melt. The studied basins have different hydrological responses and limited data. The runoff from the first basin, the Astore basin, is mainly gener- ated by snowmelt. In the second basin, the Kunhar basin, the runoff is generated by snowmelt but significant redistribution of snow, caused by snow avalanches, affect the runoff generation. The third basin, the Hunza basin, is a highly glacierized basin and its runoff is mainly generated by glacier melt. The application of the U.B.C. watershed model to these three basins showed that the model could estimate reasonably well the runoff generated by the different components.

  19. SERVIR Support to NSDI Efforts in Mesoamerica, Africa and the Himalayas

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco

    2014-01-01

    SERVIR is a joint effort between NASA, USAID to build or improve capacities in developing regions to help adaptation to climate change by taking advantage of Earth Observation data for decision making. The project began in 2004, in Mesoamerica, partnering with the Central American Commission for Environment and Development(CCAD), the World Bank and CATHALAC. CATHALAC, located in Panama, serves as the regional hub for Mesoamerica since 2005. Two additional regional hubs have been established (in Easters & Western Africa - at RCMRD, Kenya, and The Himalayas- at ICIMOD, Nepal), and two more regional hubs are soon to be launched.

  20. Probabilistic Models For Earthquakes With Large Return Periods In Himalaya Region

    NASA Astrophysics Data System (ADS)

    Chaudhary, Chhavi; Sharma, Mukat Lal

    2017-12-01

    Determination of the frequency of large earthquakes is of paramount importance for seismic risk assessment as large events contribute to significant fraction of the total deformation and these long return period events with low probability of occurrence are not easily captured by classical distributions. Generally, with a small catalogue these larger events follow different distribution function from the smaller and intermediate events. It is thus of special importance to use statistical methods that analyse as closely as possible the range of its extreme values or the tail of the distributions in addition to the main distributions. The generalised Pareto distribution family is widely used for modelling the events which are crossing a specified threshold value. The Pareto, Truncated Pareto, and Tapered Pareto are the special cases of the generalised Pareto family. In this work, the probability of earthquake occurrence has been estimated using the Pareto, Truncated Pareto, and Tapered Pareto distributions. As a case study, the Himalayas whose orogeny lies in generation of large earthquakes and which is one of the most active zones of the world, has been considered. The whole Himalayan region has been divided into five seismic source zones according to seismotectonic and clustering of events. Estimated probabilities of occurrence of earthquakes have also been compared with the modified Gutenberg-Richter distribution and the characteristics recurrence distribution. The statistical analysis reveals that the Tapered Pareto distribution better describes seismicity for the seismic source zones in comparison to other distributions considered in the present study.

  1. Hydrological processes in glacierized high-altitude basins of the western Himalayas

    NASA Astrophysics Data System (ADS)

    Jeelani, Ghulam; Shah, Rouf A.; Fryar, Alan E.; Deshpande, Rajendrakumar D.; Mukherjee, Abhijit; Perrin, Jerome

    2018-03-01

    Western Himalaya is a strategically important region, where the water resources are shared by China, India and Pakistan. The economy of the region is largely dependent on the water resources delivered by snow and glacier melt. The presented study used stable isotopes of water to further understand the basin-scale hydro-meteorological, hydrological and recharge processes in three high-altitude mountainous basins of the western Himalayas. The study provided new insights in understanding the dominant factors affecting the isotopic composition of the precipitation, snowpack, glacier melt, streams and springs. It was observed that elevation-dependent post-depositional processes and snowpack evolution resulted in the higher isotopic altitude gradient in snowpacks. The similar temporal trends of isotopic signals in rivers and karst springs reflect the rapid flow transfer due to karstification of the carbonate aquifers. The attenuation of the extreme isotopic input signal in karst springs appears to be due to the mixing of source waters with the underground karst reservoirs. Basin-wise, the input-output response demonstrates the vital role of winter precipitation in maintaining the perennial flow in streams and karst springs in the region. Isotopic data were also used to estimate the mean recharge altitude of the springs.

  2. Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica.

    PubMed

    Schmidt, S K; Lynch, R C; King, A J; Karki, D; Robeson, M S; Nagy, L; Williams, M W; Mitter, M S; Freeman, K R

    2011-03-07

    High-elevation valleys in dry areas of the Himalayas are among the most extreme, yet least explored environments on Earth. These barren, rocky valleys are subjected to year-round temperature fluctuations across the freezing point and very low availability of water and nutrients, causing previous workers to hypothesize that no photoautotrophic life (primary producers) exists in these locations. However, there has been no work using modern biogeochemical or culture-independent molecular methods to test the hypothesis that photoautotrophs are absent from high Himalayan soil systems. Here, we show that although microbial biomass levels are as low as those of the Dry Valleys of Antarctica, there are abundant microbial photoautotrophs, displaying unexpected phylogenetic diversity, in barren soils from just below the permanent ice line of the central Himalayas. Furthermore, we discovered that one of the dominant algal clades from the high Himalayas also contains the dominant algae in culture-independent surveys of both soil and ice samples from the Dry Valleys of Antarctica, revealing an unexpected link between these environmentally similar but geographically very distant systems. Phylogenetic and biogeographic analyses demonstrated that although this algal clade is globally distributed to other high-altitude and high-latitude soils, it shows significant genetic isolation by geographical distance patterns, indicating local adaptation and perhaps speciation in each region. Our results are the first to demonstrate the remarkable similarities of microbial life of arid soils of Antarctica and the high Himalayas. Our findings are a starting point for future comparative studies of the dry valleys of the Himalayas and Antarctica that will yield new insights into the cold and dry limits to life on Earth.

  3. Impact of the model resolution on the simulation of elevation-dependent warming in the Tibetan Plateau-Himalayas, Greater Alpine Region, and Rocky mountains

    NASA Astrophysics Data System (ADS)

    Palazzi, Elisa; Mortarini, Luca; Terzago, Silvia; von Hardenberg, Jost

    2017-04-01

    The enhancement of warming rates with elevation, the so-called elevation-dependent warming (EDW), is one of the clearest regional expressions of global warming. Real sentinels of climate and environmental changes, mountains have experienced more rapid and intense warming rates in the recent decades, leading to serious impacts on mountain ecosystems and downstream societies, some of which are already occurring. In this study we use the historical and scenario simulations of one state-of-the-art global climate model, the EC-Earth GCM, run at five different spatial resolutions, from ˜125 km to ˜16 km, to explore the existence, characteristics and driving mechanisms of EDW in three different mountain regions of the world - the Colorado Rocky Mountains, the Greater Alpine Region and the Tibetan Plateau-Himalayas. The aim of this study is twofold: to investigate the impact (if any) of increasing model resolution on the representation of EDW and to highlight possible differences in this phenomenon and its driving mechanisms in different mountain regions of the northern hemisphere. Preliminary results indicate that autumn (September to November) is the only season in which EDW is simulated by the model in both the maximum and the minimum temperature, in all three regions and across all model resolutions. Regional differences emerge in the other seasons: for example, the Tibetan Plateau-Himalayas is the only area in which EDW is detected in winter. As for the analysis of EDW drivers, we identify albedo and downward longwave radiation as being the most important variables for EDW, in all three areas considered and in all seasons. Further these results are robust to changes in model resolution, even though a clearer signal is associated with finer resolutions. We finally use the highest resolution EC-Earth simulations available (˜16 km) to identify what areas, within the three considered mountain ranges, are expected to undergo a significant reduction of snow or ice cover

  4. A Moho ramp imaged beneath the High Himalaya in Garhwal, India

    NASA Astrophysics Data System (ADS)

    Caldwell, W. B.; Klemperer, S. L.; Lawrence, J.; Rai, S. S.; Ashish, A.

    2011-12-01

    In this study we image the Moho beneath the Himalaya of Garhwal, India (at approximately 79°E) using common conversion point (CCP) stacking of receiver functions (RFs). We calculate RFs using iterative time-domain deconvolution on a catalog of 450 events recorded on a linear array of 21 broadband seismometers operated for 21 months in 2005-2006 by India's National Geophysical Research Institute (NGRI). Our images show a horizontal Moho beneath the Lesser Himalaya and an abrupt increase of ≥ 5 km in Moho depth beneath the High Himalaya, implying a local dip of 20±5°. A steeply-dipping Moho beneath the High Himalaya has been proposed by some workers on the basis of gravity modeling, and is observed in some seismic images elsewhere in the range, but is not a widely-recognized feature of the Himalaya. Geophysical profiles across the Himalaya are not numerous enough to say whether the steep Moho is a local feature only, or is widespread but has not yet been consistently observed. A steeply-dipping Moho implies a flexure in the downgoing India plate, which we propose may play a role in the formation of the topographic front of the Himalaya. Recent studies have proposed that a ramp in the Main Himalayan Thrust-the basal décollement into which the Himalayan thrust faults root-may focus rock uplift, leading to an abrupt steepening of topography and the observed physiographic transition between the Lesser and Higher Himalaya. The mechanism of rock uplift may be out-of-sequence thrusting on the MCT-I, or stacking of imbricate thrust sheets which form as a result of underplating at the ramp. A flexure of the India plate, implied by the steep Moho dip that we observe, is a likely mechanism for controlling the formation and location of this décollement ramp, and thereby the initiation of high topography. Geophysical profiles across the Himalaya are not yet numerous enough to constrain along-strike variations in this steeply-dipping Moho, so its relationship to the

  5. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    recrystallization to account for monazite growth during high-temperature metamorphism and related melting reactions that trigger monazite recrystallization. In a regional sense, our P-T-t data along with published data indicate that the pre-M1 eclogite-facies metamorphism occurred at 39-30 Ma in the Dinggye Himalaya. Our results are in favour of a steady exhumation of the GHC rocks since Oligocene that was contributed by partial melting. Key words: U-Th-Pb geochronology, Monazite, Recrystallization, Pelitic granulite, Himalaya

  6. Himalayas as seen from STS-66 shuttle Atlantis

    NASA Image and Video Library

    1994-11-14

    View is southeastward across China (Tibet), half of Nepal and India. The partly frozen lake near the center of the frame is Pei-Ku T'so ("Bos-tie Lake"). The central Himalaya stretches from Mount Everest on the left past Annapurna on the right. Large tributaries converge to form the Ganges River, flowing through the lowland basin south of the Himalaya. This photograph illustrates the rain shadow effect of the Himalaya Chain; wet, warm air from the Indian Ocean is driven against the mountains, lifted, and drained of water that forms ice caps, the abundant rivers, and forests of the foothills. In contrast the high plateau of Tibet is arid, composed largely of topographically-closed basins because stream flow is inadequate to form integrated drainage networks.

  7. Recent trends (2003-2013) of land surface heat fluxes on the southern side of the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Amatya, Pukar Man; Ma, Yaoming; Han, Cunbo; Wang, Binbin; Devkota, Lochan Prasad

    2015-12-01

    Novice efforts have been made in order to study the regional distribution of land surface heat fluxes on the southern side of the central Himalayas utilizing high-resolution remotely sensed products, but these have been on instantaneous scale. In this study the Surface Energy Balance System model is used to obtain annual averaged maps of the land surface heat fluxes for 11 years (2003-2013) and study their annual trends on the central Himalayan region. The maps were derived at 5 km resolution using monthly input products ranging from satellite derived to Global Land Data Assimilation System meteorological data. It was found that the net radiation flux is increasing as a result of decreasing precipitation (drier environment). The sensible heat flux did not change much except for the northwestern High Himalaya and High Mountains. In northwestern High Himalaya sensible heat flux is decreasing because of decrease in wind speed, ground-air temperature difference, and increase in winter precipitation, whereas in High Mountains it is increasing due to increase in ground-air temperature difference and high rate of deforestation. The latent heat flux has an overall increasing trend with increase more pronounced in the lower regions compared to high elevated regions. It has been reported that precipitation is decreasing with altitude in this region. Therefore, the increasing trend in latent heat flux can be attributed to increase in net radiation flux under persistent forest cover and irrigation land used for agriculture.

  8. Separating snow, clean and debris covered ice in the Upper Indus Basin, Hindukush-Karakoram-Himalayas, using Landsat images between 1998 and 2002

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Naz, Bibi S.; Bowling, Laura C.

    2015-02-01

    The Hindukush Karakoram Himalayan mountains contain some of the largest glaciers of the world, and supply melt water from perennial snow and glaciers to the Upper Indus Basin (UIB) upstream of Tarbela dam, which constitutes greater than 80% of the annual flows, and caters to the needs of millions of people in the Indus Basin. It is therefore important to study the response of perennial snow and glaciers in the UIB under changing climatic conditions, using improved hydrological modeling, glacier mass balance, and observations of glacier responses. However, the available glacier inventories and datasets only provide total perennial-snow and glacier cover areas, despite the fact that snow, clean ice and debris covered ice have different melt rates and densities. This distinction is vital for improved hydrological modeling and mass balance studies. This study, therefore, presents a separated perennial snow and glacier inventory (perennial snow-cover on steep slopes, perennial snow-covered ice, clean and debris covered ice) based on a semi-automated method that combines Landsat images and surface slope information in a supervised maximum likelihood classification to map distinct glacier zones, followed by manual post processing. The accuracy of the presented inventory falls well within the accuracy limits of available snow and glacier inventory products. For the entire UIB, estimates of perennial and/or seasonal snow on steep slopes, snow-covered ice, clean and debris covered ice zones are 7238 ± 724, 5226 ± 522, 4695 ± 469 and 2126 ± 212 km2 respectively. Thus total snow and glacier cover is 19,285 ± 1928 km2, out of which 12,075 ± 1207 km2 is glacier cover (excluding steep slope snow-cover). Equilibrium Line Altitude (ELA) estimates based on the Snow Line Elevation (SLE) in various watersheds range between 4800 and 5500 m, while the Accumulation Area Ratio (AAR) ranges between 7% and 80%. 0 °C isotherms during peak ablation months (July and August) range

  9. Three dimensional topography correction applied to magnetotelluric data from Sikkim Himalayas

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Patro, Prasanta K.; Chaudhary, B. S.

    2018-06-01

    Magnetotelluric (MT) method is one of the powerful tools to investigate the deep crustal image of mountainous regions such as Himalayas. Topographic variations due to irregular surface terrain distort the resistivity curves and hence may not give accurate interpretation of magnetotelluric data. The two-dimensional (2-D) topographic effects in Transverse Magnetic (TM) mode is only galvanic whereas inductive in Transverse Electric (TE) mode, thus TM mode responses is much more important than TE mode responses in 2-D. In three-dimensional (3-D), the topography effect is both galvanic and inductive in each element of impedance tensor and hence the interpretation is complicated. In the present work, we investigate the effects of three-dimensional (3-D) topography for a hill model. This paper presents the impedance tensor correction algorithm to reduce the topographic effects in MT data. The distortion caused by surface topography effectively decreases by using homogeneous background resistivity in impedance correction method. In this study, we analyze the response of ramp, distance from topographic edges, conductive and resistive dykes. The new correction method is applied to the real data from Sikkim Himalayas, which brought out the true nature of the basement in this region.

  10. Diversity and Assembling Processes of Bacterial Communities in Cryoconite Holes of a Karakoram Glacier.

    PubMed

    Ambrosini, Roberto; Musitelli, Federica; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Mayer, Christoph; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Franzetti, Andrea

    2017-05-01

    Cryoconite holes are small ponds that form on the surface of glaciers that contain a dark debris, the cryoconite, at the bottom and host active ecological communities. Differences in the structure of bacterial communities have been documented among Arctic and mountain glaciers, and among glaciers in different areas of the world. In this study, we investigated the structure of bacterial communities of cryoconite holes of Baltoro Glacier, a large (62 km in length and 524 km 2 of surface) glacier of the Karakoram, by high-throughput sequencing of the V5-V6 hypervariable regions of the 16S rRNA gene. We found that Betaproteobacteria dominated bacterial communities, with large abundance of genera Polaromonas, probably thanks to its highly versatile metabolism, and Limnohabitans, which may have been favoured by the presence of supraglacial lakes in the area where cryoconite holes were sampled. Variation in bacterial communities among different sampling areas of the glacier could be explained by divergent selective processes driven by variation in environmental conditions, particularly pH, which was the only environmental variable that significantly affected the structure of bacterial communities. This variability may be due to both temporal and spatial patterns of variation in environmental conditions.

  11. Refining the structural framework of the Khimti Khola region, east-central Nepal Himalaya, using quartz textures and c-axis fabrics

    NASA Astrophysics Data System (ADS)

    Larson, Kyle P.

    2018-02-01

    New quartz texture and c-axis fabric data from across the Paleoproterozoic Ulleri-Phaplu-Melung orthogneiss in the Khimti Khola region of east central Nepal provide new constraints on the internal structural framework of the Himalaya that help shed light on the convergence accommodation processes active in the upper portion of the crust during orogenesis. These data outline a strain history that varies across the unit. Deformation near the base of the unit occurred at ∼605 (±50) °C with evidence of significant static recrystallization and recovery preserved in quartz, whereas deformation near the top of the unit occurred at ∼540 (±50) ˚C with quartz characterized by dynamic recrystallization mechanisms. The strength of the quartz c-axis fabrics follows a similar spatial pattern, with those from near the top of the unit recording stronger fabrics than those measured from lower in the unit. Together, these data are interpreted to indicate strain localization, possibly at progressively lower temperature, near the top of the Ulleri-Phaplu-Melung orthogneiss. This interpretation is consistent with cooling ages that indicate the upper boundary of the unit coincides with an out-of-sequence shear zone. This study not only provides a structural characterization of the shear zone, helping to refine the kinematic framework of this portion of the Himalaya, but also confirms the utility of fabric strength analysis in deciphering strain localization within pervasively deformed rocks.

  12. Medicinal flora and ethnoecological knowledge in the Naran Valley, Western Himalaya, Pakistan

    PubMed Central

    2013-01-01

    Background Mountain ecosystems all over the world support a high biological diversity and provide home and services to some 12% of the global human population, who use their traditional ecological knowledge to utilise local natural resources. The Himalayas are the world's youngest, highest and largest mountain range and support a high plant biodiversity. In this remote mountainous region of the Himalaya, people depend upon local plant resources to supply a range of goods and services, including grazing for livestock and medicinal supplies for themselves. Due to their remote location, harsh climate, rough terrain and topography, many areas within this region still remain poorly known for its floristic diversity, plant species distribution and vegetation ecosystem service. Methods The Naran valley in the north-western Pakistan is among such valleys and occupies a distinctive geographical location on the edge of the Western Himalaya range, close to the Hindu Kush range to the west and the Karakorum Mountains to the north. It is also located on climatic and geological divides, which further add to its botanical interest. In the present project 120 informants were interviewed at 12 main localities along the 60 km long valley. This paper focuses on assessment of medicinal plant species valued by local communities using their traditional knowledge. Results Results revealed that 101 species belonging to 52 families (51.5% of the total plants) were used for 97 prominent therapeutic purposes. The largest number of ailments cured with medicinal plants were associated with the digestive system (32.76% responses) followed by those associated with the respiratory and urinary systems (13.72% and 9.13% respectively). The ailments associated with the blood circulatory and reproductive systems and the skin were 7.37%, 7.04% and 7.03%, respectively. The results also indicate that whole plants were used in 54% of recipes followed by rhizomes (21%), fruits (9.5%) and roots (5

  13. Aerosol Chemistry over a High Altitude Station at Northeastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K.; Srivastava, Manoj K.; Ghosh, Sanjay K.; Tiwari, Suresh; Devara, Panuganti C. S.; Raha, Sibaji

    2010-01-01

    Background There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. Methodology/Principal Findings An extensive aerosol sampling program was conducted in Darjeeling (altitude ∼2200 meter above sea level (masl), latitude 27°01′N and longitude 88°15′E), a high altitude station in northeastern Himalayas, during January–December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5±20.8 µg m−3 and 19.6±11.1 µg m−3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH4NO3 in fine mode aerosol during winter and as NaNO3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO4 2− in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. Conclusions/Significance The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to

  14. Aerosol chemistry over a high altitude station at northeastern Himalayas, India.

    PubMed

    Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K; Srivastava, Manoj K; Ghosh, Sanjay K; Tiwari, Suresh; Devara, Panuganti C S; Raha, Sibaji

    2010-06-16

    There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl), latitude 27 degrees 01'N and longitude 88 degrees 15'E), a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3) and 19.6+/-11.1 microg m(-3) respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4)NO(3) in fine mode aerosol during winter and as NaNO(3) in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2) during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4)(2-) in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control

  15. Earthquake swarm of Himachal Pradesh in northwest Himalaya and its seismotectonic implications

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Prasath, R. Arun; Paul, Ajay; Kumar, Naresh

    2018-02-01

    On the 27th of August 2016, a seismic swarm activity consisting of 58 earthquakes (1.5 ≤ ML ≤ 4.4), which occurred in Rampur area of the Kullu-Rampur Tectonic window of Himachal Pradesh in Northwest Himalaya. The epicenters of these events are located at the northern front of the Berinag Thrust in its hanging wall. To better understand the seismotectonics of this region, we analyzed the spectral source parameters and source mechanism of this swam activity. Spectral analysis shows the low stress drop values (from 0.05 to 28.9 bars), suggesting that the upper crust has low strength to withstand accumulated strain energy in this region. The Moment Tensor solutions of 12 earthquakes (≥2.7ML) obtained by waveform inversion yield the shallow centroid depths between 5 and 10 km. All these events are of dominantly thrust fault mechanism having an average dip angle of ∼30°. The P-axes and the maximum horizontal compressive stresses are NE-SW oriented; the relative motion of the Indian Plate. The present study reveals that the swarm activity in the Himachal region of NW Himalaya is related to the out-of-sequence thrusting or the Lesser Himalayan Duplex system.

  16. Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo-Burmese region from 11 years (2002-2013) of GPS measurements

    NASA Astrophysics Data System (ADS)

    Barman, Prakash; Jade, Sridevi; Shrungeshwara, T. S.; Kumar, Ashok; Bhattacharyya, Sanjeev; Ray, Jagat Dwipendra; Jagannathan, Saigeetha; Jamir, Wangshi Menla

    2017-09-01

    The present study reports the contemporary deformation of the tectonically complex northeast India using 11 years (2002-2013) of GPS observations. The central Shillong Plateau and few sites north of Plateau located in Assam Valley behave like a rigid block with 7 mm/year India-fixed southward velocity. The Euler pole of rotation of this central Shillong Plateau-Assam Valley (SH-AS) block is estimated to be at -25.1° ± 0.2°N, -97.8° ± 1.8°E with an angular velocity of 0.533° ± 0.10° Myr-1 relative to India-fixed reference frame. Kopili fault located between Shillong Plateau and Mikir massif records a dextral slip of 4.7 ± 1.3 mm/year with a locking depth of 10.2 ± 1.4 km indicating the fragmentation of Assam Valley across the fault. Presently, western edge of Mikir massif appears to be locked to Assam block indicating strain accumulation in this region. First-order elastic dislocation modelling of the GPS velocities estimates a slip rate of 16 mm/year along the Main Himalayan Thrust in Eastern Himalaya which is locked over a width of 130 km from the surface to a depth of 17 km with underthrusting Indian plate. Around 9 mm/year arc-normal convergence is accommodated in Lesser Himalaya just south of Main Central Thrust indicating high strain accumulation. Out of 36 mm/year (SSE) India-Sunda plate motion, about 16 mm/year motion is accommodated in Indo-Burmese Fold and Thrust Belt, both as normal convergence ( 6 mm/year) and active slip ( 7-11 mm/year) in this region.

  17. Probabilistic Appraisal of Earthquake Hazard Parameters Deduced from a Bayesian Approach in the Northwest Frontier of the Himalayas

    NASA Astrophysics Data System (ADS)

    Yadav, R. B. S.; Tsapanos, T. M.; Bayrak, Yusuf; Koravos, G. Ch.

    2013-03-01

    A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G-R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush-Pamir Himalaya zone has been further divided into two seismic zones of shallow ( h ≤ 70 km) and intermediate depth ( h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman-Kirthar ranges, Hindukush-Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.

  18. Microstructures and kinematic vorticity analysis from the mylonites along the Karakoram Shear Zone, Pangong Mountains, Karakoram

    NASA Astrophysics Data System (ADS)

    Roy, P.

    2012-04-01

    The Karakoram Shear Zone is a northwest-southeast trending dextral ductile shear zone, which has affected the granitic and granodioritic bodies of the southern Asian Plate margin in three distinct episodes. The ductile shearing of the granitic bodies at Tangste and Darbuk has resulted in the development of mylonites with mylonitic foliation and stretching lineation. More intense deformation is noted in the Tangste granite grading upto orthomylonite, as compared to the Darbuk granite. Kinematic indicators include S-C foliation, synthetic C' and C" antithetic shear bands, Type A σ-mantled porphyroclasts, oblique quartz foliation, micro-shears with bookshelf gliding, mineral fishes including Group 2 mica fishes, and Type 1 and 2a pull-apart microstructures, and exhibit strong dextral sense of ductile shearing towards southeast. The textural features of the minerals especially that of quartz and feldspar, indicate temperature of mylonitisation ranging between 300° C and 500° C in the upper greenschist facies. The mylonitic rocks of the KSZ provide an opportunity for the possible utilization of the deformational structures namely that of quartz and feldspar porphyroclast as well as, well developed shear bands for kinematic vorticity studies. Well developed quartz and feldspar porphyroclasts and synthetic and antithetic shear bands from six different mylonitic samples of the mylonitic Tangste granite has been used to estimate the bulk kinematic vorticity (Wk) involved in the overall deformation of the KSZ using the Porphyroclast Hyperbolic Distribution (PHD) method and Shear band (SB) analysis. The PHD method yields Wk values that range from Wk = 0.29 to Wk =0.43, where as the Shear bands yields values ranging from Wk = 0.45 to Wk =0.93, thus indicating distinct pure and simple shear regimes at different stages of the evolution of the KSZ.

  19. Glacial survival east and west of the 'Mekong-Salween Divide' in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae).

    PubMed

    Li, Yong; Zhai, Sheng-Nan; Qiu, Ying-Xiong; Guo, Yan-Ping; Ge, Xue-Jun; Comes, Hans Peter

    2011-05-01

    Molecular phylogeographic studies have recently begun to elucidate how plant species from the Qinghai-Tibetan Plateau (QTP) and adjacent regions responded to the Quaternary climatic oscillations. In this regard, however, far less attention has been paid to the southern and south-eastern declivities of the QTP, i.e. the Himalaya-Hengduan Mountains (HHM) region. Here, we report a survey of amplified fragment length polymorphisms (AFLPs) and chloroplast DNA (cpDNA) sequence variation in the HHM endemic Sinopodophyllum hexandrum, a highly selfing alpine perennial herb with mainly gravity-dispersed berries (105 individuals, 19 localities). We specifically aimed to test a vicariant evolutionary hypothesis across the 'Mekong-Salween Divide', a known biogeographic and phytogeographic boundary of north-to-south trending river valleys separating the East Himalayas and Hengduan Mts. Both cpDNA and AFLPs identified two divergent phylogroups largely congruent with these mountain ranges. There was no genetic depauperation in the more strongly glaciated East Himalayas (AFLPs: H(E)=0.031; cpDNA: h(S)=0.133) compared to the mainly ice-free Hengduan Mts. (AFLPs: H(E)=0.037; cpDNA: h(S)=0.082), while population differentiation was consistently higher in the former region (AFLPs: Φ(ST)=0.522 vs. 0.312; cpDNA: Φ(ST)=0.785 vs. 0.417). Our results suggest that East Himalayan and Hengduan populations of S. hexandrum were once fragmented, persisted in situ during glacials in both areas, and have not merged again, except for a major instance of inter-lineage chloroplast capture identified at the MSD boundary. Our coalescent time estimate for all cpDNA haplotypes (c. 0.37-0.48 mya), together with paleogeological evidence, strongly rejects paleo-drainage formation as a mechanism underlying allopatric fragmentation, whereas mountain glaciers following the ridges of the MSD during glacials (and possible interglacials) could have been responsible. This study thus indicates an important role

  20. Gene/QTL discovery for Anthracnose in common bean (Phaseolus vulgaris L.) from North-western Himalayas

    PubMed Central

    Choudhary, Neeraj; Bawa, Vanya; Paliwal, Rajneesh; Singh, Bikram; Bhat, Mohd. Ashraf; Mir, Javid Iqbal; Gupta, Moni; Sofi, Parvaze A.; Thudi, Mahendar; Varshney, Rajeev K.

    2018-01-01

    Common bean (Phaseolus vulgaris L.) is one of the most important grain legume crops in the world. The beans grown in north-western Himalayas possess huge diversity for seed color, shape and size but are mostly susceptible to Anthracnose disease caused by seed born fungus Colletotrichum lindemuthianum. Dozens of QTLs/genes have been already identified for this disease in common bean world-wide. However, this is the first report of gene/QTL discovery for Anthracnose using bean germplasm from north-western Himalayas of state Jammu & Kashmir, India. A core set of 96 bean lines comprising 54 indigenous local landraces from 11 hot-spots and 42 exotic lines from 10 different countries were phenotyped at two locations (SKUAST-Jammu and Bhaderwah, Jammu) for Anthracnose resistance. The core set was also genotyped with genome-wide (91) random and trait linked SSR markers. The study of marker-trait associations (MTAs) led to the identification of 10 QTLs/genes for Anthracnose resistance. Among the 10 QTLs/genes identified, two MTAs are stable (BM45 & BM211), two MTAs (PVctt1 & BM211) are major explaining more than 20% phenotypic variation for Anthracnose and one MTA (BM211) is both stable and major. Six (06) genomic regions are reported for the first time, while as four (04) genomic regions validated the already known QTL/gene regions/clusters for Anthracnose. The major, stable and validated markers reported during the present study associated with Anthracnose resistance will prove useful in common bean molecular breeding programs aimed at enhancing Anthracnose resistance of local bean landraces grown in north-western Himalayas of state Jammu and Kashmir. PMID:29389971

  1. Gene/QTL discovery for Anthracnose in common bean (Phaseolus vulgaris L.) from North-western Himalayas.

    PubMed

    Choudhary, Neeraj; Bawa, Vanya; Paliwal, Rajneesh; Singh, Bikram; Bhat, Mohd Ashraf; Mir, Javid Iqbal; Gupta, Moni; Sofi, Parvaze A; Thudi, Mahendar; Varshney, Rajeev K; Mir, Reyazul Rouf

    2018-01-01

    Common bean (Phaseolus vulgaris L.) is one of the most important grain legume crops in the world. The beans grown in north-western Himalayas possess huge diversity for seed color, shape and size but are mostly susceptible to Anthracnose disease caused by seed born fungus Colletotrichum lindemuthianum. Dozens of QTLs/genes have been already identified for this disease in common bean world-wide. However, this is the first report of gene/QTL discovery for Anthracnose using bean germplasm from north-western Himalayas of state Jammu & Kashmir, India. A core set of 96 bean lines comprising 54 indigenous local landraces from 11 hot-spots and 42 exotic lines from 10 different countries were phenotyped at two locations (SKUAST-Jammu and Bhaderwah, Jammu) for Anthracnose resistance. The core set was also genotyped with genome-wide (91) random and trait linked SSR markers. The study of marker-trait associations (MTAs) led to the identification of 10 QTLs/genes for Anthracnose resistance. Among the 10 QTLs/genes identified, two MTAs are stable (BM45 & BM211), two MTAs (PVctt1 & BM211) are major explaining more than 20% phenotypic variation for Anthracnose and one MTA (BM211) is both stable and major. Six (06) genomic regions are reported for the first time, while as four (04) genomic regions validated the already known QTL/gene regions/clusters for Anthracnose. The major, stable and validated markers reported during the present study associated with Anthracnose resistance will prove useful in common bean molecular breeding programs aimed at enhancing Anthracnose resistance of local bean landraces grown in north-western Himalayas of state Jammu and Kashmir.

  2. Use of Fault Displacement Vector to Identify Future Zones of Seismicity: An Example from the Earthquakes of Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Naim, F.; Mukherjee, M. K.

    2017-12-01

    Earthquakes occur due to fault slip in the subsurface. They can occur either as interplate or intraplate earthquakes. The region of study is the Nepal Himalayas that defines the boundary of Indian-Eurasian plate and houses the focus of the most devastating earthquakes. The aim of the study was to analyze all the earthquakes that occurred in the Nepal Himalayas upto May 12, 2015 earthquake in order to mark the regions still under stress and vulnerable for future earthquakes. Three different fault systems in the Nepal Himalayas define the tectonic set up of the area. They are: (1) Main Frontal Thrust(MFT), (2) Main Central Thrust(MCT) and (3) Main Boundary Thrust(MBT) that extend from NW to SE. Most of the earthquakes were observed to occur between the MBT and MCT. Since the thrust faults are dipping towards NE, the focus of most of the earthquakes lies on the MBT. The methodology includes estimating the dip of the fault by considering the depths of different earthquake events and their corresponding distance from the MBT. In order to carry out stress analysis on the fault, the beach ball diagrams associated with the different earthquakes were plotted on a map. Earthquakes in the NW and central region of the fault zone were associated with reverse fault slip while that on the South-Eastern part were associated with a strike slip component. The direction of net slip on the fault associated with the different earthquakes was known and from this a 3D slip diagram of the fault was constructed. The regions vulnerable for future earthquakes in the Nepal Himalaya were demarcated on the 3D slip diagram of the fault. Such zones were marked owing to the fact that the slips due to earthquakes cause the adjoining areas to come under immense stress and this stress is directly proportional to the amount of slip occuring on the fault. These vulnerable zones were in turn projected on the map to show their position and are predicted to contain the epicenter of the future earthquakes.

  3. Future changes over the Himalayas: Mean temperature

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of near surface air temperature over the Himalayan region from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out for different Representative Concentration Pathway (RCP) scenarios. The purpose of this study is to assess the probable future changes in the mean temperature climatology and its long term trend for different seasons under greenhouse gas forcing scenarios for different seasons till the end of 21st century. A number of statistical measures such as changes in mean climatology, long term trend and probability distribution function have been used in order to detect the signals of changes in climate. Moreover, the associated uncertainties among different model experiments and their ensemble in space, time and different seasons in particular have been quantified. Despite of strong cold bias in the model experiments over Himalayan region (Nengker et al., 2017), statistically significant strong rate of warming (0.03-0.09 °C/year) across all the seasons and RCPs have been projected by all the models and their ensemble. Season specific response towards the warming is indicated by ensemble under future climate while ON season shows comparable magnitude of warming than DJF. Such warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios from RCP2.6 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the trend magnitude between different models describes the uncertainty associated with the model projections and scenarios. A substantial seasonal response to warming with respect to elevation was also found, as DJF season followed by ON portrays highest rate of warming, specifically at higher elevation sites such as western Himalayas and northern part of central Himalayas. The different elevation classes respond differently to the projected future

  4. Chemical Remagnetization of Jurassic Carbonates and a Primary Paleolatitude of Lower Cretaceous Volcaniclastic Rocks of the Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Huang, W.; Van Hinsbergen, D. J. J.; Dekkers, M. J.; Garzanti, E.; Dupont Nivet, G.; Lippert, P. C.; Li, X.; Maffione, M.; Langereis, C. G.; Hu, X.; Guo, Z.; Kapp, P. A.

    2014-12-01

    Paleolatitudes for the Tibetan Himalaya Zone based on paleomagnetic inclinations provide kinematic constraints of the passive northern Indian margin and the extent of 'Greater India' before the India-Asia collision. Here, we present a paleomagnetic investigation of the Jurassic (carbonates) to Lower Cretaceous (volcaniclastic rocks) Wölong section of the Tibetan Himalaya in the Everest region. The carbonates yield positive fold tests, suggesting that the remanent magnetizations have a pre-folding origin. However, detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic studies reveal that the magnetic carrier of the Jurassic carbonates is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic rocks is detrital magnetite. We conclude that the Jurassic carbonates were remagnetized, whereas the Lower Cretaceous volcaniclastics retain a primary remanence. We hypothesize that remagnetization of the Jurassic carbonates was probably caused by the oxidation of early diagenetic pyrite to magnetite within the time interval at ~86-84 Ma during the latest Cretaceous Normal Superchron and earliest deposition of Cretaceous oceanic red beds in the Tibetan Himalaya. The remagnetization of the limestones prevents determining the size of 'Greater India' during Jurassic time. Instead, a paleolatitude of the Tibetan Himalaya of 23.8±2.1° S at ~86-84 Ma is suggested. This value is lower than the expected paleolatitude of India from apparent polar wander path (APWP). The volcaniclastic rocks with the primary remanence, however, yielded a Lower Cretaceous paleolatitude of Tibetan Himalaya of 55.5±3° S, fitting well with the APWP of India.

  5. Using Morphological, Molecular and Climatic Data to Delimitate Yews along the Hindu Kush-Himalaya and Adjacent Regions

    PubMed Central

    Poudel, Ram C.; Möller, Michael; Gao, Lian-Ming; Ahrends, Antje; Baral, Sushim R.; Liu, Jie; Thomas, Philip; Li, De-Zhu

    2012-01-01

    Background Despite the availability of several studies to clarify taxonomic problems on the highly threatened yews of the Hindu Kush-Himalaya (HKH) and adjacent regions, the total number of species and their exact distribution ranges remains controversial. We explored the use of comprehensive sets of morphological, molecular and climatic data to clarify taxonomy and distributions of yews in this region. Methodology/Principal Findings A total of 743 samples from 46 populations of wild yew and 47 representative herbarium specimens were analyzed. Principle component analyses on 27 morphological characters and 15 bioclimatic variables plus altitude and maximum parsimony analysis on molecular ITS and trnL-F sequences indicated the existence of three distinct species occurring in different ecological (climatic) and altitudinal gradients along the HKH and adjacent regions Taxus contorta from eastern Afghanistan to the eastern end of Central Nepal, T. wallichiana from the western end of Central Nepal to Northwest China, and the first report of the South China low to mid-elevation species T. mairei in Nepal, Bhutan, Northeast India, Myanmar and South Vietnam. Conclusion/Significance The detailed sampling and combination of different data sets allowed us to identify three clearly delineated species and their precise distribution ranges in the HKH and adjacent regions, which showed no overlap or no distinct hybrid zone. This might be due to differences in the ecological (climatic) requirements of the species. The analyses further provided the selection of diagnostic morphological characters for the identification of yews occurring in the HKH and adjacent regions. Our work demonstrates that extensive sampling combined with the analysis of diverse data sets can reliably address the taxonomy of morphologically challenging plant taxa. PMID:23056501

  6. Glacier changes in the Nanga Parbat Himalayas: a re-photographic survey between the 1930s and now

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Nüsser, M.

    2009-04-01

    In contrast to the relatively well investigated glacier and landscape changes in the mountains of Europe and North America, very little investigations and documentations using repeat photography have been undertaken in the Himalayas and other high mountain regions of Asia. The present study seeks to investigate glacier and landscape changes in the Nanga Parbat region (NW-Himalaya) using a multi-temporal and multi-spatial approach which is based on terrestrial repeat photography and remote sensing data. A comprehensive collection of historical landscape photographs, taken by members of the German Himalaya expeditions 1934 and 1937, forms a valuable baseline data set for the area. Recent fieldwork made it possible to repeat a large number of these photographs viewpoints identical to the earlier ones, and the direct comparisons illustrate glacier dynamics and landscape changes over a span of seventy years. Furthermore, in order to fill the temporal gap and to analyze temporal and spatial dynamics of glaciers over the last 40 years we use different satellite sensors (Corona, Aster, Landsat, Spot, QuickBird). First investigations were carried out at the Raikot Glacier, which is located at the northern declivity of the Nanga Parbat, the ninth highest peak on earth. The multi-temporal comparison detects only small down-wasting rates of the Raikot Glacier over the last 70 years and a retreat of the terminus of about 250 m which is characterized by great fluctuations. Based on this multi-temporal and multi-data approach, we will detect and analyze glacier and landscape changes in the whole Nanga Parbat region.

  7. An ethnobotanical analysis of parasitic plants (Parijibi) in the Nepal Himalaya.

    PubMed

    O'Neill, Alexander Robert; Rana, Santosh Kumar

    2016-02-24

    Indigenous biocultural knowledge is a vital part of Nepalese environmental management strategies; however, much of it may soon be lost given Nepal's rapidly changing socio-ecological climate. This is particularly true for knowledge surrounding parasitic and mycoheterotrophic plant species, which are well represented throughout the Central-Eastern Himalayas but lack a collated record. Our study addresses this disparity by analyzing parasitic and mycoheterotrophic plant species diversity in Nepal as well as the ethnobotanical knowledge that surrounds them. Botanical texts, online databases, and herbarium records were reviewed to create an authoritative compendium of parasitic and mycoheterotrophic plant species native or naturalized to the Nepal Central-Eastern Himalaya. Semi-structured interviews were then conducted with 141 informants to better understand the biocultural context of these species, emphasizing ethnobotanical uses, in 12 districts of Central-Eastern Nepal. Nepal is a hotspot of botanical diversity, housing 15 families and 29 genera of plants that exhibit parasitic or mycoheterotrophic habit. Over 150 of the known 4500 parasitic plant species (~3 %) and 28 of the 160 mycoheterotrophic species (~18 %) are native or naturalized to Nepal; 13 of our surveyed parasitic species are endemic. Of all species documented, approximately 17 % of parasitic and 7 % of mycoheterotrophic plants have ethnobotanical uses as medicine (41 %), fodder (23 %), food (17 %), ritual objects (11 %), or material (8 %). Parasitic and mycoheterotrophic plant species exhibit high diversity in the Nepal Central-Eastern Himalaya and are the fodder for biocultural relationships that may help inform future environmental management projects in the region.

  8. Three Dimensional Modeling of the Attenuation Structure in the Part of the Kumaon Himalaya, India Using Strong Motion Data

    NASA Astrophysics Data System (ADS)

    Joshi, A.; LAL, S.

    2017-12-01

    Attenuation property of the medium determines the amplitude of seismic waves at different locations during an earthquake. Attenuation can be defined by the inverse of the parameter known as quality factor `Q' (Knopoff, 1964). It has been observed that the peak ground acceleration in the strong motion accelerogram is associated with arrival of S-waves which is controlled mainly by the shear wave attenuation characteristics of the medium. In the present work attenuation structure is obtained using the modified inversion algorithm given by Joshi et al. (2010). The modified inversion algorithm is designed to provide three dimensional attenuation structure of the region at different frequencies. A strong motion network is installed in the Kumaon Himalaya by the Department of Earth Sciences, Indian Institute of Technology Roorkee under a major research project sponsored by the Ministry of Earth Sciences, Government of India. In this work the detailed three dimensional shear wave quality factor has been determined for the Kumaon Himalaya using strong motion data obtained from this network. In the present work 164 records from 26 events recorded at 15 stations located in an area of 129 km x 62 km has been used. The shear wave attenuation structure for the Kumaon Himalaya has been calculated by dividing the study region into 108 three dimensional rectangular blocks of size 22 km x 11 km x 5 km. The input to the inversion algorithm is the acceleration spectra of S wave identified from each record. A total of 164 spectra from equal number of accelerograms with sampling frequency of .024 Hz is used as an input to the algorithms. A total of 2048 three dimensional attenuation structure is obtained upto frequency of 50 Hz. The obtained structure at various frequencies is compared with the existing geological models in the region and it is seen that the obtained model correlated well with the geological model of the region. References: Joshi, A., Mohanty, M., Bansal, A. R., Dimri

  9. Two Species of Bryoria (Lichenized Ascomycota, Parmeliaceae) from the Sino-Himalayas

    PubMed Central

    Wang, Li-song; Harada, Hiroshi; Koh, Young Jin

    2005-01-01

    We performed a taxonomic study on two species of the genus Bryoria from the Sino-Himalayas, SW-China. B. nadvornikiana is new to China and B. furcellata is new to Yunnan and Sichuan provinces in the Sino-Himalayas. Morphology, habitat, distributions and chemistry of the two species are discussed. PMID:24049496

  10. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes.

    PubMed

    Worni, Raphael; Huggel, Christian; Stoffel, Markus

    2013-12-01

    Glacial lake hazards and glacial lake distributions are investigated in many glaciated regions of the world, but comparably little attention has been given to these topics in the Indian Himalayas. In this study we present a first area-wide glacial lake inventory, including a qualitative classification at 251 glacial lakes >0.01 km(2). Lakes were detected in the five states spanning the Indian Himalayas, and lake distribution pattern and lake characteristics were found to differ significantly between regions. Three glacial lakes, from different geographic and climatic regions within the Indian Himalayas were then selected for a detailed risk assessment. Lake outburst probability, potential outburst magnitudes and associated damage were evaluated on the basis of high-resolution satellite imagery, field assessments and through the use of a dynamic model. The glacial lakes analyzed in the states of Jammu and Kashmir and Himachal Pradesh were found to present moderate risks to downstream villages, whereas the lake in Sikkim severely threatens downstream locations. At the study site in Sikkim, a dam breach could trigger drainage of ca. 16×10(6)m(3) water and generate maximum lake discharge of nearly 7000 m(3) s(-). The identification of critical glacial lakes in the Indian Himalayas and the detailed risk assessments at three specific sites allow prioritizing further investigations and help in the definition of risk reduction actions. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?

    NASA Astrophysics Data System (ADS)

    Tipper, Edward T.; Galy, Albert; Bickle, Mike J.

    2008-02-01

    In rivers draining the Himalaya-Tibetan-Plateau region, the 26Mg/ 24Mg ratio has a range of 2‰ and the 44Ca/ 42Ca ratio has a range of 0.6‰. The average δ26Mg values of tributaries from each of the main lithotectonic units (Tethyan Sedimentary Series (TSS), High Himalayan Crystalline Series (HHCS) and Lesser Himalayan Series (LHS)) are within 2 standard deviation analytical uncertainty (0.14‰). The consistency of average riverine δ26Mg values is in contrast to the main rock types (limestone, dolostone and silicate) which range in their average δ26Mg values by more than 2‰. Tributaries draining the dolostones of the LHS differ in their δ44Ca values compared to tributaries from the TSS and HHCS. The chemistry of these river waters is strongly influenced by dolostone (solute Mg/Ca close to unity) and both δ26Mg (-1.31‰) and δ44Ca (0.64‰) values are within analytical uncertainty of the LHS dolostone. These are the most elevated δ44Ca values in rivers and rock reported so far demonstrating that both riverine and bedrock δ44Ca values may show greater variability than previously thought. Although rivers draining TSS limestone have the lowest δ26Mgandδ44Ca values at -1.41 and 0.42‰, respectively, both are offset to higher values compared to bedrock TSS limestone. The average δ26Mg value of rivers draining mainly silicate rock of the HHCS is -1.25‰, lower by 0.63‰ than the average silicate rock. These differences are consistent with a fractionation of δ26Mg values during silicate weathering. Given that the proportion of Mg exported from the Himalaya as solute Mg is small, the difference in 26Mg/ 24Mg ratios between silicate rock and solute Mg reflects the 26Mg/ 24Mg isotopic fractionation factor ( αsilicate-dissolvedMg) between silicate and dissolved Mg during incongruent silicate weathering. The value of αsilicate-dissolvedMg of 0.99937 implies that in the TSS, solute Mg is primarily derived from silicate weathering, whereas the source of Ca

  12. Does the "mantle" helium signature provide useful information about lithospheric architecture of Tibet/Himalaya?

    NASA Astrophysics Data System (ADS)

    Klemperer, S. L.; Liu, T.; Hilton, D. R.; Karlstrom, K. E.; Crossey, L. J.; Zhao, P.

    2015-12-01

    Measurements of 3He/4He > 0.1*Ra (where Ra = 3He/4He in Earth's atmosphere) in geothermal fluids are conventionally taken to represent derivation from a mantle source. 3He/4He values < 0.1*Ra are taken to represent only radiogenic helium with no modern mantle input (the canonical 3He/4He ratio for the crust is 0.02*Ra). Upward transport rates are hard to constrain, but transit times of 3He through the crust in a CO2-rich carrier fluid may be as short as a few years, so 3He/4He measurements offer a proxy for mantle temperature on geologically short time-scales. In Tibet, enhanced 3He/4He ratios could in principle represent (1) incipient partial melt of Indian lithospheric mantle; (2) of Asian lithospheric mantle; (3) upwelling asthenosphere north of underthrust India or along tears in the subducting Indian plate; and/or (4) high-T prograde metamorphism releasing previously trapped 3He from older, voluminous mafic/ultramafic rocks in the crust. We present data from our recent field campaigns and our compilations from the western and Chinese literature. Any individual observation of 3He/4He > 0.1*Ra may still be argued to result from mantle-derived 3He previously stored in the crust. However, our growing regional database of widely spaced observations of 3He/4He > 0.1*Ra, from the Karakoram Fault in the west to the Sangri-Cona rift and Yalaxiangbo Dome in the east, and from south of the Yarlung-Zangbo suture (YZS) to north of the Banggong-Nujiang suture, makes such special pleading increasingly implausible. The observation of 3He/4He > 0.1*Ra at the YZS and even within the Tethyan Himalaya south of the YZS cannot represent melting of Indian mantle close to the Moho unless existing thermal models are grossly in error. The source of 3He close to the YZS is likely either asthenosphere accessed by faults and shear zones that cut through subducting Indian lithospheric mantle; or incipient melt of Asian lithospheric mantle at the Moho north of the northern edge of

  13. Great paleoearthquakes of the central Himalaya and their implications for seismotectonic models and seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Yule, D.; Lave, J.; Kumar, S.; Wesnousky, S.

    2007-12-01

    A growing body of paleoseismic data collected from more than ten sites in Nepal and India has documented large coseismic displacements at the thrust front (Main Frontal thrust (MFT)). Three great earthquakes have been identified: in ~A.D. 1410 centered north of Delhi, in A.D. 1505 centered in far-western Nepal, and in ~A.D. 1100 centered in eastern Nepal. It is noteworthy that wherever exposures of the MFT have been studied estimates of surface slip are consistently large; with a range of 9-26 m. Historic accounts of the 1505 earthquake describe strong shaking across a 600-km-long stretch of the central Himalaya. A magnitude for this event is estimated to be >Mw 8.5 based on the maximum extent of felt strong shaking, the 100 km width of the locked portion of the basal detachment, and an average slip of 10-15 m. Though no historic accounts exist for the ~1410 and ~1100 earthquakes, the similarity between their surface expression and the 1505 rupture suggests that these events may have been equally large. These surface-rupturing earthquakes are distinctly different from a host of blind thrust events (Mw 7.5-8.4) that dominate the historic record since A.D. 1505. Both blind and emergent earthquakes are presumed to rupture the basal detachment and release interseismic strain that accumulates near the base of the High Himalaya and carry it to the thrust front where Holocene shortening occurs at rates of 15-22 mm/yr. Whereas the surface-rupturing earthquakes clearly deform the thrust front, survey data from the region affected by the 1906 Dehra Dun earthquake suggest that blind events contribute negligible, if any, deformation to the frontal structures. The factors controlling whether or not surface rupture occurs on the MFT remain unconstrained, but the current data seem to suggest that >Mw 8.5 surface-rutpuring earthquakes are the primary contributors to the shortening observed at the thrust front. It is sobering to consider that the 'Big One' has not struck the

  14. Assessment of landslide hazards induced by extreme rainfall event in Jammu and Kashmir Himalaya, northwest India

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Asthana, AKL; Priyanka, Rao Singh; Jayangondaperumal, R.; Gupta, Anil K.; Bhakuni, SS

    2017-05-01

    In the Indian Himalayan region (IHR), landslide-driven hazards have intensified over the past several decades primarily caused by the occurrence of heavy and extreme rainfall. However, little attention has been given to determining the cause of events triggered during pre- and post-Indian Summer Monsoon (ISM) seasons. In the present research, detailed geological, meteorological, and remote sensing investigations have been carried out on an extreme rainfall landslide event that occurred in Sadal village, Udhampur district, Jammu and Kashmir Himalaya, during September 2014. Toward the receding phase of the ISM (i.e., in the month of September 2014), an unusual rainfall event of 488.2 mm rainfall in 24 h took place in Jammu and Kashmir Himalaya in contrast to the normal rainfall occurrence. Geological investigations suggest that a planar weakness in the affected region is caused by bedding planes that consist of an alternate sequence of hard, compact sandstone and weak claystone. During this extreme rainfall event, the Sadal village was completely buried under the rock slides, as failure occurred along the planar weakness that dips toward the valley slope. Rainfall data analysis from the Tropical Rainfall Measuring Mission (TRMM) for the preceding years homogeneous time series (July-September) indicates that the years 2005, 2009, 2011, 2012, and 2014 (i.e., closely spaced and clustering heavy rainfall events) received heavy rainfalls during the withdrawal of the ISM; whereas the heaviest rainfall was received in the years 2003 and 2013 at the onset of the ISM in the study region. This suggests that no characteristic cyclicity exists for extreme rainfall events. However, we observe that either toward the onset of the ISM or its retreat, the extreme rainfall facilitates landslides, rockfall, and slope failures in northwestern Himalaya. The spatiotemporal distribution of landslides caused by extreme rainfall events suggests its confinement toward the windward side of the

  15. Synoptic-scale dust transport events in the southern Himalaya

    NASA Astrophysics Data System (ADS)

    Duchi, R.; Cristofanelli, P.; Marinoni, A.; Bourcier, L.; Laj, P.; Calzolari, F.; Adhikary, B.; Verza, G. P.; Vuillermoz, E.; Bonasoni, P.

    2014-06-01

    The variability of long-range dust transport events observed in the southern Himalaya and its relation with source areas have been studied thanks to five years’ continuous measurements which were carried out at the “Nepal Climate Observatory-Pyramid” (NCO-P, 27°57‧N, 86°48‧E), the highest Northern Hemisphere GAW-WMO global station sited at 5079 m a.s.l. in the high Khumbu valley (Nepal) on the southern Himalaya. During the period March 2006-February 2011, the analyses of the aerosol particle concentrations and LAGRANTO three-dimensional backward trajectories indicated the occurrence of 275 days affected by synoptic-scale dust transport, which account for 22.2% of the investigated period. The frequency of dust transport days (DTDs) showed a clear seasonal cycle, with the highest seasonal value observed during pre-monsoon season (33.5% of the pre-monsoon’s days are DTDs). Large enhancements in coarse aerosol number concentration N1-10 (average: +689%) and mass PM1-10 (average: +1086%) were observed during the dust transport events as compared to the days without dust (dust-free days, DFDs). In addition, the single scattering albedo (SSA) also showed higher values, ranging from 0.87 to 0.90, during DTDs with respect to DFDs (0.80-0.87). The predominant source of mineral dust reaching the measurement site was identified in the arid regions of the north-western Indian subcontinent (Thar desert), which accounted for 41.6% of the trajectories points associated with DTDs. Seasonal analysis also indicated that the winter season was significantly influenced by far western desert regions, such as North Africa and the Arabic Peninsula.

  16. Current strain accumulation in the hinterland of the northwest Himalaya constrained by landscape analyses, basin-wide denudation rates, and low temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Morell, Kristin D.; Sandiford, Mike; Kohn, Barry; Codilean, Alexandru; Fülöp, Réka-H.; Ahmad, Talat

    2017-11-01

    Rupture associated with the 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake highlighted our incomplete understanding of the structural architecture and seismic cycle processes that lead to Himalayan mountain building in Central Nepal. In this paper we investigate the style and kinematics of active mountain building in the Himalayan hinterland of Northwest India, approximately 400 km to the west of the hypocenter of the Nepal earthquake, via a combination of landscape metrics and long- (Ma) and short-term (ka) erosion rate estimates (from low temperature thermochronometry and basin-wide denudation rate estimates from 10Be concentrations). We focus our analysis on the area straddling the PT2, the physiographic transition between the Lesser and High Himalaya that has yielded important insights into the nature of hinterland deformation across much of the Himalaya. Our results from Northwest India reveal a distinctive PT2 that separates a Lesser Himalaya region with moderate relief (∼1000 m) and relatively slow erosion (<1 mm/yr) from a High Himalaya with extreme relief (∼2500 m), steep channels, and erosion rates that approach or exceed 1 mm/yr. The close spatial similarity in relative rates of long- and short-term erosion suggests that the gradient in rock uplift rates inferred from the landscape metrics across the PT2 has persisted in the same relative position since at least the past 1.5 Ma. We interpret these observations to suggest that strain accumulation in this hinterland region throughout at least the past 1.5 Ma has been accomplished both by crustal thickening via duplexing and overthrusting along transient emergent faults. Despite the >400 km distance between them, similar spatiotemporal patterns of erosion and deformation observed in Northwest India and Central Nepal suggest both regions experience similar styles of active strain accumulation and both are susceptible to large seismic events.

  17. Recent Surface Deformation in the Himalaya and Adjoining Piedmont Zone of the Ganga Plain, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Chang, C. P.

    2015-12-01

    The Himalaya Frontal Thrust (HFT) is the longest active contractional structure on Earth. Understanding the activity of HFT and its surrounding area is a key for both unraveling the mechanism of Himalayan growth and preparing the major earthquake disasters. The latter issue became much more important after the April 25th 2015 Nepal earthquake (also known as the Gorkha earthquake), which killed more than 8,800 people and injured more than 23,000. This earthquake is a dramatic manifestation of the ongoing convergence between the Indo-Australian and Asian tectonic plates that has progressively built the Himalayas over the last 50 million years. Despite its importance, only a few preliminary studies have focused on the frontal part of the western Himalaya. The Himalaya and adjoining Ganga (also called Gangetic) plain in Uttarakhand state of India are traversed by a number of neotectonically active longitudinal and transverse faults. However, the pattern and extent of present day surface deformations caused by these faults is not yet well known. We herein present the preliminary results of our investigation directed in this direction. Surface deformations induced by active faults during a period of seven years from 2003 to 2010 in the south western Himalaya and adjoining proximal part of the Ganga Plain in Uttarakhand state of India have been firstly monitored. Multidate ENVISAT radar images of the area have been analyzed by applying the latest radar remote sensing technique of Persistent Scatterers Interferometric Synthetic Aperture Radar (PSI). Since PSI can extracts surface information even on vegetated or mountainous regions as well. The study reveals some conspicuous surface deformation patterns, which may be related directly to the active movements along some of the major fault /thrust in the area. For example the HFT and the transverse Garampani-Kathgodam Fault (G-KF). A campaign GPS network of 20 stations has also been installed in 2013 in our study area. This

  18. Regeneration complexities of Pinus gerardiana in dry temperate forests of Indian Himalaya.

    PubMed

    Kumar, Raj; Shamet, G S; Mehta, Harsh; Alam, N M; Kaushal, Rajesh; Chaturvedi, O P; Sharma, Navneet; Khaki, B A; Gupta, Dinesh

    2016-04-01

    Pinus gerardiana is considered an important species in dry temperate forests of North-Western Indian Himalaya because of its influence on ecological processes and economic dependence of local people in the region. But, large numbers of biotic and abiotic factors have affected P. gerardiana in these forests; hence, there is a crucial need to understand the regeneration dynamics of this tree species. The present investigation was conducted in P. gerardiana forests to understand vegetation pattern and regeneration processes on different sites in the region. Statistical analysis was performed to know variability in growing stock and regeneration on sample plots, while correlation coefficients and regression models were developed to find the relationship between regeneration and site factors. The vegetation study showed dominance of P. gerardiana, which is followed by Cedrus deodara, Pinus wallichiana and Quercus ilex in the region. The growing stock of P. gerardiana showed steep increasing and then steadily declining trend from lower to higher diameter class. The distribution of seedling, sapling, pole and trees was not uniform at different sites and less number of plots in each site were observed to have effective conditions for continuous regeneration, but mostly showed extremely limited regeneration. Regeneration success ranging from 8.44 to 15.93 % was recorded in different sites of the region, which suggests that in different sites regeneration success is influenced by collection of cone for extracting seed, grazing/browsing and physico-chemical properties of soil. Regeneration success showed significant correlation and relationship with most of abiotic and biotic factors. The regeneration success is lower than the requirement of sustainable forest, but varies widely among sites in dry temperate forests of Himalaya. More forest surveys are required to understand the conditions necessary for greater success of P. gerardiana in the region.

  19. 10-year record of atmospheric composition in the high Himalayas: source, transport and impact

    NASA Astrophysics Data System (ADS)

    Bonasoni, Paolo; Laj, Paolo; Marinoni, Angela; Cristofanelli, Paolo; Maione, Michela; Putero, Davide; Calzolari, Francescopiero; Decesari, Stefano; Facchini, Maria Cristina; Fuzzi, Sandro; Gobbi, Gianpaolo; Sellegri, Karine; Verza, Gianpietro; Vuillermoz, Elisa; Arduini, Jgor

    2016-04-01

    South Asia represents a global "hot-spot" for air-quality and climate impacts. Since the end of the 20th Century, field experiments and satellite observations identified a thick layer of atmospheric pollutants extending from the Indian Ocean up to the atmosphere of the Himalayas. Since large amount of short-lived climate pollutants (SLCPs) - like atmospheric aerosol (in particular, the light-absorbing aerosol) and ozone - characterize this region, severe implications were recognized for population health, ecosystem integrity as well as regional climate impacts, especially for what concerns hydrological cycle, monsoon regimes and cryosphere. Since 2006, the Nepal Climate Observatory - Pyramid (NCO-P, 27.95N, 86.82 E, 5079 m a.s.l.), a global station of the WMO/GAW programme has been active in the eastern Nepal Himalaya, not far from the Mt. Everest. NCO-P is located away from large direct anthropogenic pollution sources. The closest major urban area is Kathmandu (200 km south-west from the measurement site). As being located along the Khumbu valley, the observations are representative of synoptic-scale and mountain thermal circulation, providing direct information about the vertical transport of pollutants/climate-altering compounds to the Himalayas and to the free troposphere. In the framework of international programmes (GAW/WMO, UNEP-ABC, AERONET) the following continuous measurement programmes have been carried out at NCO-P: surface ozone, aerosol size distribution (from 10 nm to 25 micron), total particle number, aerosol scattering and absorption coefficients, equivalent BC, PM1-PM10, AOD by sun-photometry, global solar radiation (SW and LW), meteorology. Long-term sampling programmes for the off-line determination of halogenated gases and aerosol chemistry have been also activated. The atmospheric observation records at NCO-P, now representing the longest time series available for the high Himalayas, provided the first direct evidences about the systematic

  20. Influence of southwest monsoons in the Kashmir Valley, western Himalayas.

    PubMed

    Jeelani, Ghulam; Deshpande, Rajendrakumar D; Shah, Rouf A; Hassan, Wasim

    2017-08-01

    The regional climate of the Himalayas is predominated by the southwest monsoons and the western disturbances. The uplift of the Pir Panjal to its present height is believed to restrict the southwest monsoons from entering into the Kashmir Valley in the western Himalayas. In the present study, monthly precipitation samples were collected across the Kashmir Valley from June 2013 to May 2014 for δ 18 O and δ 2 H analyses to constrain the influence of southwest monsoons in the valley. Except in August, the precipitation is enriched in 18 O and 2 H from June to September and depleted from October to May. The sharp depletion of 18 O in precipitation along with the decrease in d-excess in August confirm the maximum intrusion of southwest monsoons into the valley. A significant temperature - δ 18 O relationship was found during October and May (westerlies period) decreasing during June and September (southwest monsoon period). The local meteoric water line for the whole Kashmir Valley based on the precipitation-weighted monthly samples is [Formula: see text] [Formula: see text]. Higher intercept of the regression equation suggested dominant contribution of precipitation from western disturbances. The study suggested that the southwest monsoons enter the Kashmir Valley from southwest through the mountainous passes.

  1. Lateral variations in vegetation in the Himalaya since the Miocene and implications for climate evolution

    NASA Astrophysics Data System (ADS)

    Vögeli, Natalie; Najman, Yani; van der Beek, Peter; Huyghe, Pascale; Wynn, Peter M.; Govin, Gwladys; van der Veen, Iris; Sachse, Dirk

    2017-08-01

    The Himalaya has a major influence on global and regional climate, in particular on the Asian monsoon system. The foreland basin of the Himalaya contains a record of tectonics and paleoclimate since the Miocene. Previous work on the evolution of vegetation and climate has focused on the central and western Himalaya, where a shift from C3 to C4 vegetation has been observed at ∼7 Ma and linked to increased seasonality, but the climatic evolution of the eastern part of the orogen is less well understood. In order to track vegetation as a marker of monsoon intensity and seasonality, we analyzed δ13 C and δ18 O values of soil carbonate and associated δ13 C values of bulk organic carbon from previously dated sedimentary sections exposing the syn-orogenic detrital Dharamsala and Siwalik Groups in the west, and, for the first time, the Siwalik Group in the east of the Himalayan foreland basin. Sedimentary records span from 20 to 1 Myr in the west (Joginder Nagar, Jawalamukhi, and Haripur Kolar sections) and from 13 to 1 Myr in the east (Kameng section), respectively. The presence of soil carbonate in the west and its absence in the east is a first indication of long-term lateral climatic variation, as soil carbonate requires seasonally arid conditions to develop. δ13 C values in soil carbonate show a shift from around -10‰ to -2‰ at ∼7 Ma in the west, which is confirmed by δ13 C analyses on bulk organic carbon that show a shift from around -23‰ to -19‰ at the same time. Such a shift in isotopic values is likely to be associated with a change from C3 to C4 vegetation. In contrast, δ13 C values of bulk organic carbon remain at ∼ - 23 ‰ in the east. Thus, our data show that the current east-west variation in climate was established at 7 Ma. We propose that the regional change towards a more seasonal climate in the west is linked to a decrease of the influence of the Westerlies, delivering less winter precipitation to the western Himalaya, while the east

  2. Seismotectonics of the Trans-Himalaya, Eastern Ladakh, India

    NASA Astrophysics Data System (ADS)

    Paul, A.

    2016-12-01

    The eastern Ladakh-Karakoram zone is the northwest part of the trans-Himalayan belt which bears signature of the India-Asia collision process in the form of suture zones and exhumed blocks that underwent deep subduction and intra-continental crustal scale fault zones.The seismotectonic scenario of northwest part of India-Asia collision zone has been studied by analyzing the local earthquake data (M 1.4-4.3) recorded by a broadband seismological network consisting of 14 stations. Focal Mechanism Solution (FPS) of 13 selected earthquakes were computed through waveform inversion of three-component broadband records. Depth distribution of the earthquakes and FPS of local earthquakes obtained through waveform inversion reveal the kinematics of the major fault zones present in Eastern Ladakh. The most pronounced cluster of seismicity is observed in the Karakoram Fault (KF) zone up to a depth of 65 km. The FPS reveals transpressive environment with the strike of inferred fault plane roughly parallel to the KF. It is inferred that the KF at least penetrates up to the lower crust and is a manifestation of active under thrusting of Indian lower crust beneath Tibet. Two clusters of micro seismicity is observed at a depth range of 5-20 km at north western and southeastern fringe of the Tso Morari gneiss dome which can be correlated to the activities along the Zildat fault and Karzok fault respectively. The FPSs estimated for representative earthquakes show thrust fault solutions for the Karzok fault and normal fault solution for the Zildat fault. It is inferred that the Zildat fault is acting as detachment, facilitating the exhumation of the Tso Morari dome. On the other hand, the Tso Morari dome is thrusting over the Karzok ophiolite on its southern margin along the Karzokfault, due to gravity collapse.

  3. Out-of-Sequence Thrust in the Higher Himalaya- a Review & Possible Genesis

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Koyi, H. A.; Talbot, C. J.

    2009-04-01

    An out-of-sequence thrust (OOST) has been established inside the Higher Himalaya by previous workers more frequently from Nepal- and Bhutan Himalaya. The OOST lies between the South Tibetan Detachment System-Upper (STDSU) and the South Tibetan Detachment System-Lower (STDSL). The thrust has been recognized as the Kakhtang Thrust in Bhutan (Grujic et al., 2002 and references therein); Khumbu Thrust (Searle, 1999), Modi Khola Shear Zone (Hodges et al., 1996), Kalopani Shear Zone (Vannay and Hodges, 1999), Toijem Shear Zone in Nepal (Carosi et al., 2007), Chaura Thrust (Jain et al., 2000)- also designated as the Sarahan Thrust (Chambers et al., 2008) in the western Indian Himalaya in Sutlej section, Zimithang Thrust in the eastern Indian Himalaya (Yin et al., 2006), as ‘physiographic transition' in Marsyandi valley, Nepal (Burbank et al., 2003). We note that considering the upper strand of the Main Central Thrust (the MCTU) as the lower boundary of the Higher Himalaya, the physiographic transition has also been referred to lie in the Lesser Himalaya.The period of activity of the OOST was 22.5-18.5 Ma (Hodges et al., 1996), 14-10 Ma (Grujic et al., 2002), 4.9-1.5 Ma (Jain et al., 2000), and from Late Pliocene to even Holocene Period (Burbank, 2005). The out-of-sequence thrusting was followed after the initiation of channel flow at ~ 15 Ma in the Higher Himalaya with a maximum delay of ~ 13 Ma. However, in the Bhutan Himalaya, the thrusting continued along with the extensional ductile shearing in the STDSU at 11-10 Ma (Hollister and Grujic, 2006). The OOST in the Higher Himalaya lies inside the zone of the top-to-SW sense of ductile shearing. The OOST, at Kakhtang, Toijem, and Chaura are ductile shear zones with a top-to-SW sense of shearing. The OOST merges with the MCT and the Main Himalayan Thrust (MHT) at a depth of 30 km or more and either runs 200-300 km beneath the Tibetan plateau (Grujic et al., 2002; Hollister and Grujic, 2006). The hanging wall side of the

  4. Indian monsoon dominates runoff of southern Himalayas—taking Langtang region as an example

    NASA Astrophysics Data System (ADS)

    Yao, R.; Shi, J.; He, Y.; Hu, G.

    2016-12-01

    Abstract: Inland Glacier and Indian monsoon are the major source of water supply for human being in the Himalayas. It is vital to study the characteristics of runoff with glacier melting and Indian monsoon precipitation and the relationship between climate change and these processes overall. In this study, we have focused on the Langtang region in the southern slope of the Himalayas. We have used TRMM data to study the precipitation and MODIS data to study the temperature in the Himalayas and a distributed conceptual model has been applied to runoff modeling. The runoff from modeling based on precipitation and temperature can be validated with the in-situ observation in the Langtang region. The results show a decreasing trend of the runoff in the Langtang region which is similar to the decreasing trend of the TRMM precipitation data. It seems that precipitation is mainly controlling the runoff in the Langtang region and that the summer Indian monsoon rather than glacier melting is dominating the runoff in the Langtang region since the summer precipitation in the Southern slope of the Himalayas is mainly from the Indian summer monsoon.

  5. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations

    NASA Astrophysics Data System (ADS)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong

    2018-04-01

    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  6. Lateral variations in lithospheric and landscape evolution at both ends of the Himalaya-Tibet orogen

    NASA Astrophysics Data System (ADS)

    Zeitler, P. K.; Schmidt, J. L.; Meltzer, A.

    2015-12-01

    At the broadest scale, like many orogens the Himalaya encompass a range of orogenic features that are remarkably similar along much of the length of the mountain belt and its neighboring terranes. At one scale of consideration, these similarities appear to be a signal that fundamental processes associated with lithospheric collision have been active. However, the vast size of the Himalaya and Tibet, the different climate regimes experienced by the orogen across time and space, and the along-strike variations in the continental and arc margins that faced one another before collision, make it at once remarkable that any similarities exist, and important to more critically evaluate their nature. The eastern and western Himalayan syntaxes confound any attempt to generalize too much about the Himalaya-Tibet orogen. By area these features occupy at least 25% of the orogenic belt, and compared to the "main" portions of the arc they show clear differences in their lithospheric structures, landscapes, and evolution. The boundary and initial conditions that shaped the eastern and western indentor corners were and are different, as is the nature and timing of erosional exhumation. Some of the most active geologic processes on Earth have recently been in play within the syntaxes, and the evolution of landscapes and fluvial systems, important in developing the sedimentary record of the Himalaya-Tibet system, has been complex and variable in space and time. Southeasternmost Tibet and the Lhasa Block in particular exemplify this complexity both in its complex topographic evolution linked to surface processes and climate, and in lateral variability in lithospheric structure. Taking a system viewpoint, an important question to debate is the degree to which there are features in the Himalaya-Tibet system that are robustly emergent, given the broad boundary conditions of the continental collision plus the suite of local and regional geodynamical processes that have operated during

  7. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plant of Western Himalaya

    USDA-ARS?s Scientific Manuscript database

    Artemisia species possess pharmacological properties that are used for medical purposes worldwide. In this paper, the essential oils from the aerial parts of A. nilagirica and A. maritima from the western Indian Himalaya region are described. The main compounds analyzed by simultaneous GC/MS and GC/...

  8. Imaging of the Main Himalayan Thrust and Moho beneath Satluj Valley, Northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Wadhawan, M.; Hazarika, D.; Paul, A.; Kumar, N.

    2016-12-01

    The ongoing continental collision between India and Eurasia gave rise to the formation of the great Himalayan fold-thrust belt. Satluj valley is found to be well exposed from foreland to Higher Himalayan Crystalline series along the Satluj River. Receiver function method has been utilized to image crustal features using Common Conversion Point (CCP) stacking beneath Satluj valley recorded by a seismological array of 18 broadband seismometers. The seismological stations cover the geotectonic units starting from the Himalayan Frontal Thrust (HFT) in the south to the Tethyan Himalaya (TH) to the north. The study inferred gentle northward dipping nature of the Main Himalayan Thrust (MHT) between Sub Himalaya (SH) and Higher Himalaya (HH) in the study area rather than flat-ramp-flat geometry as reported in Nepal Himalaya and Garhwal Himalaya. The depth of the MHT obtained from CCP image and inversion of receiver functions shows that it varies from 16 km in the SH to 27 km near the STD which further increases up to 38 km beneath the TH. The absence of both large and moderate magnitude earthquakes in the Himalayan Seismic Belt (HSB) straddling northern Lesser Himalaya and southern Higher Himalaya in Satluj valley is correlated with absence of ramp structure in this part of HSB. The CCP image has mapped the Moho discontinuity at 44 km depth near the HFT which has increased to 62 km beneath the TH. An extremely low shear wave velocity ranging between 0.8 and 1.8 km s-1 is estimated at stations near the HFT, in the upper most 3-4 km of the crust which indicates the effect of sedimentary column of Indo-Gangetic plains. An intra crustal low velocity layer (IC-LVL) is observed beneath the study profile and inferred as partial melt and/or aqueous fluid at mid-crustal depth beneath the TH. The H-K stacking is applied and average Poisson's ratio is observed to be higher in the TH as compared to the stations to the south of STD.

  9. Paraveterinary service use in Nepal's Himalaya.

    PubMed

    Marshall, Edith S; Sischo, William M

    2010-06-01

    The involvement of paraveterinarians in animal-health delivery can reduce costs and allow expanded service delivery. Our objectives were to describe use of public paraveterinary services offered by junior technicians (JT) in two regions of Nepal, to identify factors associated with JT service use, and to characterize factors that limit JT service use. We used a survey of livestock owners in the Khumbu and Lower Mustang regions of Nepal's Himalaya to examine JT service use. Of 118 questionnaires completed between May 30, 1997 and July 8, 1997, 81 were analyzed for use of JT services to treat livestock: bovids, equids, and small ruminants. Five factors were associated with owners' use of JT services: living <30 min walk from a JT post (OR=12.2); having a positive opinion about JT services (OR=23.6); animals not having disease events that either impaired mobility or affected production or reproduction (OR=5.6), animals died related to a reported disease event (OR=3.2), and the owners' sex (with women being more likely to report use of JT services than men; OR=5.3). (c) 2010 Elsevier B.V. All rights reserved.

  10. Snow and glacier change in koshi Basin Himalaya and its response to global warming

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Yang, X.; Yao, T.; Yufeng, D.

    2010-12-01

    Recently, the argument that Himalayan glaciers will completely melt is rather controversial and the U.N.'s leading panel on climate change has apologized for misleading data published in a 2007 report that warned Himalayan glaciers could melt by 2035. Why the gradual melting of Himalayan glaciers makes most of the major media headlines? This is because Himalayan glacier is the headstream of major rivers in South Asia and Southeast Asia and more than 1/6 people live there. If mass of the glaciers melt or even disappear, people who rely on those rivers will be at risk. After this dispute, we need to realize that:”Although the melting rate still need to further study, the Himalayan glaciers are indeed melting. And in these areas, there are more uncertainties to affect water resource, such as snow fall, precipitation, regional temperature changes and so on”. Koshi Basin Himalaya, located in the boundary between China and Nepal, consist of three rivers i.e. Sun Koshi, Arun river (the headwaters of arun river in China called Pengqu) and Tamur. All of them converge to India Ganga River. The total area of Koshi Basin is about ~57,870 km2 and elevation ranges from 21 m (plain) to 8825m (Mountain glacier). This basin has the typical vertical zonation of Himalaya, so we choose it as the study area. Based on the snow cover data observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Terra spacecraft from 2000-2010, the spatial-temporal distribution and variation of snow cover over the koshi basin are statistical analyzed. Glacier changes are also detected from Landsat images in 2000, 2005 and 2010. It is found that snow cover areas are mainly concentrated in the Ridge of Himalaya Mountain. And there are more persistently snow covered areas and glaciers in the South Slope of Himalaya Mountain with aspect to the North Slope, although the mean elevation of the North Slope is higher than south slope. During the decade of 2000-2010, a slight decreasing

  11. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Harrison, S.; Anderson, K.; Selley, H. L.; Wood, J. L.; Betts, R. A.

    2018-01-01

    In the Nepalese Himalaya, there is little information on the number, spatial distribution and morphometric characteristics of rock glaciers, and this information is required if their hydrological contribution is to be understood. Based on freely available fine spatial resolution satellite data accessible through Google Earth, we produced the first comprehensive Nepalese rock glacier inventory, supported through statistical validation and field survey. The inventory includes the location of over 6000 rock glaciers, with a mean specific density of 3.4%. This corresponds to an areal coverage of 1371 km2. Our approach subsampled approximately 20% of the total identified rock glacier inventory (n = 1137) and digitised their outlines so that quantitative/qualitative landform attributes could be extracted. Intact landforms (containing ice) accounted for 68% of the subsample, and the remaining were classified as relict (not containing ice). The majority (56%) were found to have a northerly aspect (NE, N, and NW), and landforms situated within north- to west-aspects reside at lower elevations than those with south- to- east aspects. In Nepal, we show that rock glaciers are situated between 3225 and 5675 m a.s.l., with the mean minimum elevation at the front estimated to be 4977 ± 280 m a.s.l. for intact landforms and 4541 ± 346 m a.s.l. for relict landforms. The hydrological significance of rock glaciers in Nepal was then established by statistically upscaling the results from the subsample to estimate that these cryospheric reserves store between 16.72 and 25.08 billion m3 of water. This study, for the first time, estimates rock glacier water volume equivalents and evaluates their relative hydrological importance in comparison to ice glaciers. Across the Nepalese Himalaya, rock glacier to ice glacier water volume equivalent is 1:9, and generally increases westwards (e.g., ratio = 1:3, West region). This inventory represents a preliminary step for understanding the

  12. Describing earthquakes potential through mountain building processes: an example within Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Huai; Shi, Yaolin; Mary, Baptiste; Wang, Liangshu

    2016-04-01

    How to reconcile earthquake activities, for instance, the distributions of large-great event rupture areas and the partitioning of seismic-aseismic slips on the subduction interface, into geological mountain building period is critical in seismotectonics. In this paper, we try to scope this issue within a typical and special continental collisional mountain wedge within Himalayas across the 2015 Mw7.8 Nepal Himalaya earth- quake area. Based on the Critical Coulomb Wedge (CCW) theory, we show the possible predictions of large-great earthquake rupture locations by retrieving refined evolutionary sequences with clear boundary of coulomb wedge and creeping path inferred from interseismic deformation pattern along the megathrust-Main Himalaya Thrust (MHT). Due to the well-known thrusting architecture with constraints on the distribution of main exhumation zone and of the key evolutionary nodes, reasonable and refined (with 500 yr interval) thrusting sequences are retrieved by applying sequential limit analysis (SLA). We also use an illustration method-'G' gram to localize the relative positions of each fault within the tectonic wedge. Our model results show that at the early stage, during the initial wedge accumulation period, because of the small size of mountain wedge, there's no large earthquakes happens in this period. Whereas, in the following stage, the wedge is growing outward with occasionally out-of-sequence thrusting, four thrusting clusters (thrusting 'families') are clarified on the basis of the spatio-temporal distributions in the mountain wedge. Thrust family 4, located in the hinterland of the mountain wedge, absorbed the least amount of the total convergence, with no large earthquakes occurrence in this stage, contributing to the emplacement of the Greater Himalayan Complex. The slips absorbed by the remnant three thrust families result in large-great earthquakes rupturing in the Sub-Himalaya, Lesser Himalaya, and the front of Higher Himalaya. The

  13. Morphotectonic analysis and GNSS observations for assessment of relative tectonic activity in Alaknanda basin of Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, Gopal; Champati ray, P. K.; Mohanty, S.

    2018-01-01

    Alaknanda basin in the Garhwal Himalaya, India, is a tectonically active region owing to ongoing crustal deformation, erosion, and depositional processes active in the region. Active tectonics in this region have greatly affected the drainage system and geomorphic expression of topography and provide an ideal natural set up to investigate the influence of tectonic activity resulting from the India-Eurasia collision. We evaluated active tectonics by using high resolution digital elevation model (DEM) based on eight geomorphic indices (stream length gradient index, valley floor width-to-height ratio, hypsometric integral, drainage basin asymmetry, transverse topography symmetry factor, mountain front sinousity index, bifurcation ratio, and basin shape index) and seismicity in eight subbasins of Alaknanda basin. The integrated product, relative tectonic activity index (TAI) map, was classified into three classes such as: 'highly active' with values ranging up to 2.0; 'moderately active' with values ranging from 2.0 to 2.25; and 'less active' with values > 2.25. Further, the results were compared with relatively high crustal movement rate of 41.10 mm/y computed through high precession Global Navigation Satellite System (GNSS) based continuous operating reference station (CORS) data. Thus, we concluded that this new quantitative approach can be used for better characterization and assessment of active seismotectonic regions of the Himalaya and elsewhere.

  14. Water soluble ions in aerosols (TSP) : Characteristics, sources and seasonal variation over the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Tripathee, Lekhendra; Kang, Shichang; Zhang, Qianggong; Rupakheti, Dipesh

    2016-04-01

    Atmspheric pollutants transported from South Asia could have adverse impact on the Himalayan ecosystems. Investigation of aerosol chemistry in the Himalayan region in Nepal has been limited on a temporal and spatial scale to date. Therefore, the water-soluble ionic composition of aerosol using TSP sampler was investigated for a year period from April 2013 to March 2014 at four sites Bode, Dhunche, Lumbini and Jomsom characterized as an urban, rural, semi-urban and remote sites in Nepal. During the study period, the highest concentration of major cation was Ca2+ with an average concentration of 8.91, 2.17, 7.85 and 6.42 μg m-3 and the highest concentration of major anion was SO42- with an average of 10.96, 4.06, 6.85 and 3.30 μg m-3 at Bode, Dhunche, Lumbini and Jomsom respectively. The soluble ions showed the decrease in concentrations from urban to the rural site. Correlations and PCA analysis suggested that that SO42-, NO3- and NH4+ were derived from the anthropogenic sources where as the Ca2+ and Mg2+ were from crustal sources. Our results also suggest that the largest acid neutralizing agent at our sampling sites in the central Himalayas are Ca2+ followed by NH4+. Seasonal variations of soluble ions in aerosols showed higher concentrations during pre-monsoon and winter (dry-periods) due to limited precipitation amount and lower concentrations during the monsoon which can be explained by the dilution effect, higher the precipitation lower the concentration. K+ which is regarded as the tracer of biomss burning had a significant peaks during pre-monsoon season when the forest fires are active around the regions. In general, the results of this study suggests that the atmospheric chemistry is influenced by natural and anthropogenic sources. Thus, soluble ionic concentrations in aerosols from central Himalayas, Nepal can provide a useful database to assess atmospheric environment and its impacts on human health and ecosystem in the southern side of central

  15. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation.

    PubMed

    Cun, Yu-Zhi; Wang, Xiao-Quan

    2010-09-01

    The Himalaya-Hengduan Mountains region (HHM) in the southern and southeastern Qinghai-Tibetan Plateau (QTP) is considered an important reservoir and a differentiation center for temperate and alpine plants in the Cenozoic. To reveal how plants responded to the Quaternary climatic oscillations in the QTP, the phylogeographical histories of a few subalpine and alpine plants have been investigated, but nearly all studies used only uniparentally inherited cytoplasmic DNA markers, and only a couple of them included sampling from the Himalaya. In this study, range-wide genetic variation of the Himalayan hemlock (Tsuga dumosa), an important forest species in the HHM, was surveyed using DNA markers from three genomes. All markers revealed genetic depauperation in the Himalaya and richness in the Hengduan Mountains populations. Surprisingly, population differentiation of this wind-pollinated conifer is very high in all three genomes, with few common and many private nuclear gene alleles. These results, together with fossil evidence, clearly indicate that T. dumosa recolonized the Himalaya from the Hengduan Mountains before the Last Glacial Maximum (LGM), accompanied with strong founder effects, and the influence of the earlier glaciations on demographic histories of the QTP plants could be much stronger than that of the LGM. The strong population differentiation in T. dumosa could be attributed to restricted gene flow caused by the complicated topography in the HHM that formed during the uplift of the QTP, and thus sheds lights on the importance of geographical isolation in the development of high plant species diversity in this biodiversity hotspot. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Integrating ethnobiological knowledge into biodiversity conservation in the Eastern Himalayas.

    PubMed

    O'Neill, Alexander R; Badola, Hemant K; Dhyani, Pitamber P; Rana, Santosh K

    2017-03-29

    Biocultural knowledge provides valuable insight into ecological processes, and can guide conservation practitioners in local contexts. In many regions, however, such knowledge is underutilized due to its often-fragmented record in disparate sources. In this article, we review and apply ethnobiological knowledge to biodiversity conservation in the Eastern Himalayas. Using Sikkim, India as a case study, we: (i) traced the history and trends of ethnobiological documentation; (ii) identified priority species and habitat types; and, (iii) analyzed within and among community differences pertaining to species use and management. Our results revealed that Sikkim is a biocultural hotspot, where six ethnic communities and 1128 species engage in biocultural relationships. Since the mid-1800s, the number of ethnobiological publications from Sikkim has exponentially increased; however, our results also indicate that much of this knowledge is both unwritten and partitioned within an aging, gendered, and caste or ethnic group-specific stratum of society. Reviewed species were primarily wild or wild cultivated, native to subtropical and temperate forests, and pend IUCN Red List of Threatened Species assessment. Our results demonstrate the value of engaging local knowledge holders as active participants in conservation, and suggest the need for further ethnobiological research in the Eastern Himalayas. Our interdisciplinary approach, which included rank indices and geospatial modelling, can help integrate diverse datasets into evidence-based policy.

  17. Hazard Assessment of Glacial Lake Outburst Flood and Potential of ICTs for Coping: A Case of Eastern Himalaya of Nepal

    NASA Astrophysics Data System (ADS)

    Bhattarai, D. R.

    2015-12-01

    Retreat of glaciers and formation of glacial lakes in Nepal Himalaya have been reported to be related with the temperature rise in the region. Glacier Lake Outburst Floods (GLOF) are the growing climate induced hazards in the Himalaya. GLOF has increased the vulnerability of community and fragile ecosystem in the mountain valleys. This study has analyzed the potential impacts from GLOF in the highland of eastern Nepal and the potential role of Information Communication Technologies (ICT) to cope with such impacts. I analyzed the trend of climatic pattern (temperature and precipitation) of the Eastern Himalaya Region of Nepal available from the Department of Hydrology and Meteorology, Government of Nepal, and prepared the latest location map of the glacial lakes using google earth and ArcGIS applications in the highland of the Kanchanjungha Conservation Area of the region. Tiptala glacial lake, located at an elevation of 4950 m, within the conservation area, was selected for the GLOF hazard assessment. I used semi-structured questionnaire survey and key informants' interviews in the community in order to assess the potential hazard of GLOF. With the varying sizes, 46 glacial lakes were located in the region, which covers over 2.57 sq. km in total. Though the larger portion of the downstream area of the Tiptala glacial lake fall in the remote location away from major residential area, few villages, major pasture lands for Yaks, foot trails, and several bridges across the Tamor River below the lake are in risk of GLOF. Poor access due to extreme geographical remoteness and capacity to afford the modern technologies in the community are the major limiting factor to the knowledge and information about the climate change and related impacts. Modern ICTs has high potential to reduce the risk of climate related hazards in the remote area by information dissemination and awareness.

  18. Hazard Assessment of Glacial Lake Outburst Flood and Potential of ICTs for Coping: A Case of Eastern Himalaya of Nepal

    NASA Astrophysics Data System (ADS)

    Bhattarai, D. R.; Pradhananga, D.

    2014-12-01

    Alarming rate of retreat of glaciers and formation of glacial lakes in higher elevation of Nepal Himalaya has been reported to be related with the pronounced atmospheric temperature rise in the region. Glacier Lake Outburst Floods (GLOF) are the growing climate induced hazards in the Himalaya increasing the vulnerability of community living in the mountain valley, and the fragile ecosystem. This study tried to come up with the potential impacts from glacial lake outburst flood (GLOF) in highland of eastern region of Nepal and potential role of Information Communication Technologies (ICT) in coping. I analyzed the trend of climatic pattern (temperature and precipitation) of the Eastern Himalaya Region of Nepal available from Department of Hydrology and Meteorology (DHM), Government of Nepal, and also prepared the latest location map of the glacial lakes using google earth and ArcGIS application in the highland of the Kanchanjungha Conservation Area of the region. Tiptala glacial lake, located at an elevation of 4950 masl, within the conservation area, was selected for the GLOF hazard assessment. I used semi-structured questioner survey and key informants interviews in the community living below the lake in the highland of the study area in order to assess the potential hazard of GLOF. Analysis shows the increasing trend of atmospheric temperature in the region. With the varying sizes, 46 glacial lakes were located in the region, which covers over 2.57 sq. km in total. Though the larger portion of the downstream area of the Tiptala glacial lake fall in the remote location away from major residential area, few villages, major pasture lands for Yaks, foot trails, and several bridges across the Tamor River below the lake are in risk of GLOF. Poor access due to extreme geographical remoteness and capacity to afford the modern technologies in the community is seen as the major limiting factor to the knowledge and information about the climate change and related impacts

  19. Understanding continental megathrust earthquake potential through geological mountain building processes: an example in Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Zhang, Huai; Zhang, Zhen; Wang, Liangshu; Leroy, Yves; shi, Yaolin

    2017-04-01

    How to reconcile continent megathrust earthquake characteristics, for instances, mapping the large-great earthquake sequences into geological mountain building process, as well as partitioning the seismic-aseismic slips, is fundamental and unclear. Here, we scope these issues by focusing a typical continental collisional belt, the great Nepal Himalaya. We first prove that refined Nepal Himalaya thrusting sequences, with accurately defining of large earthquake cycle scale, provide new geodynamical hints on long-term earthquake potential in association with, either seismic-aseismic slip partition up to the interpretation of the binary interseismic coupling pattern on the Main Himalayan Thrust (MHT), or the large-great earthquake classification via seismic cycle patterns on MHT. Subsequently, sequential limit analysis is adopted to retrieve the detailed thrusting sequences of Nepal Himalaya mountain wedge. Our model results exhibit apparent thrusting concentration phenomenon with four thrusting clusters, entitled as thrusting 'families', to facilitate the development of sub-structural regions respectively. Within the hinterland thrusting family, the total aseismic shortening and the corresponding spatio-temporal release pattern are revealed by mapping projection. Whereas, in the other three families, mapping projection delivers long-term large (M<8)-great (M>8) earthquake recurrence information, including total lifespans, frequencies and large-great earthquake alternation information by identifying rupture distances along the MHT. In addition, this partition has universality in continental-continental collisional orogenic belt with identified interseismic coupling pattern, while not applicable in continental-oceanic megathrust context.

  20. Environmental impact assessment of mountain tourism in developing regions: A study in Ladakh, Indian Himalaya

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geneletti, Davide, E-mail: davide.geneletti@ing.unitn.i; Dawa, Dorje, E-mail: dorje.dawa@gmail.co

    Mountain tourism in developing countries is becoming a growing environmental concern due to extreme seasonality, lack of suitable infrastructures and planning, and interference with fragile ecosystems and protected areas. This paper presents a study devoted to assess the adverse environmental impacts of tourism, and in particular of trekking-related activities, in Ladakh, Indian Himalaya. The proposed approach is based on the use of Geographical Information System (GIS) modeling and remote sensing imageries to cope with the lack of data that affect the region. First, stressors associated with trekking, and environmental receptors potentially affected were identified. Subsequently, a baseline study on stressorsmore » (trail use, waste dumping, camping, pack animal grazing and off-road driving) and receptors (soil, water, wildlife, vegetation) was conducted through field work, data collection, and data processing supported by GIS. Finally, impacts were modeled by considering the intensity of the stressors, and the vulnerability and the value of the receptors. The results were spatially aggregated into watershed units, and combined to generate composite impact maps. The study concluded that the most affected watersheds are located in the central and southeastern part of Ladakh, along some of the most visited trails and within the Hemis and the Tsokar Tsomoriri National parks. The main objective of the study was to understand patterns of tourism-induced environmental degradation, so as to support mitigation interventions, as well as the development of suitable tourism policies.« less

  1. Dynamic interactions between glacier and glacial lake in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Tsutaki, S.; Fujita, K.; Yamaguchi, S.; Sakai, A.; Nuimura, T.; Komori, J.; Takenaka, S.; Tshering, P.

    2012-04-01

    A number of supraglacial lakes formed on the termini of debris-covered glaciers in the Bhutan Himalaya as a result of glacier retreat due to climate change. The terminal part of the lake-terminating glaciers flow faster than that of the land-terminating glaciers because the basal ice motion is enhanced by high subglacial water pressure generated by lake water. Increased ice flux caused by the accelerated glacier flow could be dissipated through the calving process which reduced the glacier thickness. It is important to understand the interaction between lake formation and glacier dynamics. Although glacier flow velocity has been measured by remote-sensing analysis in several regions of the Himalayas, glacier thinning rates have not been observed by neither in-situ nor remote-sensing approaches. The lack of field data raises limitation to interpretations for glacier dynamics. We investigate the influence of the presence/absence of glacial lakes on glacier dynamics and changes in surface elevation. We study two debris-covered glaciers in the Lunana region, the Bhutan Himalaya. Thorthormi Glacier is a land-terminating glacier with some supraglacial lakes while Lugge Glacier is a lake-terminating glaciers. We surveyed the surface elevation of debris-covered areas of the two glaciers in 2004 and 2011 by a differential GPS. Change in surface elevation of the lake-terminating Lugge Glacier (-5.4--2.4 m yr-1) was much more negative than that of the land-terminating Thorthormi Glacier (-3.3-0.6 m yr-1). Surface flow speed of the Thorthormi Glacier measured during 2002-2004 was faster in the upper reaches (~90 m yr-1) and reduced toward the downstream (40 m yr-1). In contrast, the surface flow speed at the Lugge Glacier measured in the same periods was 40-55 m yr-1 and the greatest at the lower most part. Observed spatial distribution of surface flow velocity at both glaciers were evaluated by a two-dimensional numerical flow model. Calculated emergence velocities are 1

  2. Characterization of the diversity of mycosporine-like amino acids in lichens from high altitude region of Himalaya.

    PubMed

    Shukla, Vertika; Kumari, Rupender; Patel, Davendra K; Upreti, Dalip K

    2016-01-01

    Lichens are tolerant to a number of environmental variables including high-intensity solar radiations, which is mainly due to the presence of chemical substances in the thallus. Especially, cyanobacterial lichens synthesize a unique class of chemical substances known as mycosporine-like amino acids (MAAs) the primary characteristic of which is strong ultraviolet (UV) absorption between 300 and 360 nm. In view of its UV-protecting potential, the applicability of mass spectral fragmentation using electrospray ionization tandem mass spectrometric analysis for the characterization of MAAs in lichen samples was explored. MAA compounds were characterized in four cyanobacteria-containing lichen species belonging to genus Peltigera, Stereocaulon and Lobaria. Among them, Peltigera and Lobaria are true cyanobacteria containing lichens (cyanolichens) while Stereocaulon is a tripartite lichen, as it contains both green algae (in the thallus) and cyanobacteria (in the cephalodia), collected from higher altitudes of Himalaya (Tungnath-Chopta in Garhwal Himalaya, 3432 m) from an exposed locality experiencing high light intensity. Mass spectral data of distinctive fragmentation pattern revealed that all the four species have good diversity of MAA compounds, especially Lobaria retigera was found to be enriched with highest diversity of oxo and imino MAAs. Overall, different numbers of oxo and imino MAA compounds were detected in the remaining lichen species. Good diversity of imino MAAs has ecological significance which is required to be investigated further. Moreover, the impressive diversity characterized in each lichen species suggests that lichens should be thoroughly studied for their MAAs contents.

  3. Influence of open vegetation fires on black carbon and ozone variability in the southern Himalayas (NCO-P, 5079 m a.s.l.).

    PubMed

    Putero, D; Landi, T C; Cristofanelli, P; Marinoni, A; Laj, P; Duchi, R; Calzolari, F; Verza, G P; Bonasoni, P

    2014-01-01

    We analysed the variability of equivalent black carbon (BC) and ozone (O3) at the global WMO/GAW station Nepal Climate Observatory-Pyramid (NCO-P, 5079 m a.s.l.) in the southern Himalayas, for evaluating the possible contribution of open vegetation fires to the variability of these short-lived climate forcers/pollutants (SLCF/SLCP) in the Himalayan region. We found that 162 days (9% of the data-set) were characterised by acute pollution events with enhanced BC and O3 in respect to the climatological values. By using satellite observations (MODIS fire products and the USGS Land Use Cover Characterization) and air mass back-trajectories, we deduced that 56% of these events were likely to be affected by emissions from open fires along the Himalayas foothills, the Indian Subcontinent and the Northern Indo-Gangetic Plain. These results suggest that open fire emissions are likely to play an important role in modulating seasonal and inter-annual BC and O3 variability over south Himalayas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. The Himalayas: barrier and conduit for gene flow.

    PubMed

    Gayden, Tenzin; Perez, Annabel; Persad, Patrice J; Bukhari, Areej; Chennakrishnaiah, Shilpa; Simms, Tanya; Maloney, Trisha; Rodriguez, Kristina; Herrera, Rene J

    2013-06-01

    The Himalayan mountain range is strategically located at the crossroads of the major cultural centers in Asia, the Middle East and Europe. Although previous Y-chromosome studies indicate that the Himalayas served as a natural barrier for gene flow from the south to the Tibetan plateau, this region is believed to have played an important role as a corridor for human migrations between East and West Eurasia along the ancient Silk Road. To evaluate the effects of the Himalayan mountain range in shaping the maternal lineages of populations residing on either side of the cordillera, we analyzed mitochondrial DNA variation in 344 samples from three Nepalese collections (Newar, Kathmandu and Tamang) and a general population of Tibet. Our results revealed a predominantly East Asian-specific component in Tibet and Tamang, whereas Newar and Kathmandu are both characterized by a combination of East and South Central Asian lineages. Interestingly, Newar and Kathmandu harbor several deep-rooted Indian lineages, including M2, R5, and U2, whose coalescent times from this study (U2, >40 kya) and previous reports (M2 and R5, >50 kya) suggest that Nepal was inhabited during the initial peopling of South Central Asia. Comparisons with our previous Y-chromosome data indicate sex-biased migrations in Tamang and a founder effect and/or genetic drift in Tamang and Newar. Altogether, our results confirm that while the Himalayas acted as a geographic barrier for human movement from the Indian subcontinent to the Tibetan highland, it also served as a conduit for gene flow between Central and East Asia. Copyright © 2013 Wiley Periodicals, Inc.

  5. Framing hydropower as green energy: assessing drivers, risks and tensions in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M.

    2015-04-01

    The culturally and ecologically diverse region of the Eastern Himalayas is the target of ambitious hydropower development plans. Policy discourses at national and international levels position this development as synergistically positive: it combines the production of clean energy to fuel economic growth at regional and national levels with initiatives to lift poor mountain communities out of poverty. Different from hydropower development in the 20th century in which development agencies and banks were important players, contemporary initiatives importantly rely on the involvement of private actors, with a prominent role of the private finance sector. This implies that hydropower development is not only financially viable but also understood as highly profitable. This paper examines the new development of hydropower in the Eastern Himalayas of Nepal and India. It questions its framing as green energy, interrogates its links with climate change, and examines its potential for investment and capital accumulation. To do this, we also review the evidence on the extent to which its construction and operation may modify existing hydrogeological processes and ecosystems, as well as its impacts on the livelihoods of diverse groups of people that depend on these. The paper concludes that hydropower development in the region is characterized by inherent contentions and uncertainties, refuting the idea that dams constitute development projects whose impacts can be simply predicted, controlled and mitigated. Indeed, in a highly complex geological, ecological, cultural and political context that is widely regarded to be especially vulnerable to the effects of climate change, hydropower as a development strategy makes for a toxic cocktail.

  6. Framing hydropower as green energy: assessing drivers, risks and tensions in the Eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ahlers, R.; Budds, J.; Joshi, D.; Merme, V.; Zwarteveen, M.

    2014-11-01

    The culturally and ecologically diverse region of the Eastern Himalayas is the target of ambitious hydropower development plans. Policy discourses at national and international levels position this development as synergistically positive: it combines the production of clean energy to fuel economic growth at regional and national levels with initiatives to lift poor mountain communities out of poverty. Different from hydropower development in the 20th century in which development agencies and banks were important players, contemporary initiatives importantly rely on the involvement of private actors, with a prominent role of the private finance sector. This implies that hydropower development is not only financially viable but also understood as highly profitable. This paper examines the new development of hydropower in the Eastern Himalaya of Nepal and India. It questions its framing as green energy, interrogates its links with climate change, and examines its potential for investment and capital accumulation. To do this, we also review the evidence on the extent to which its construction and operation may modify existing hydrogeological processes and ecosystems, as well as its impacts on the livelihoods of diverse groups of people that depend on these. The paper concludes that hydropower development in the region is characterised by inherent contentions and uncertainties, refuting the idea that dams constitute development projects whose impacts can be simply predicted, controlled and mitigated. Indeed, in a highly complex geological, ecological, cultural and political context that is widely regarded to be especially vulnerable to the effects of climate change, hydropower as a development strategy makes for a toxic cocktail.

  7. Shear fabrics reveal orogen-parallel deformations, NW Lesser Garhwal Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Biswas, T.; Bose, N.; Mukherjee, S.

    2017-12-01

    Shear deformation along the Himalayan belt is poorly understood unlike that across the orogen. Field observations and structural analysis along Bhagirathi river section along the National Highway 34 reveals NW Lesser Himalaya (Garhwal region, India) suffered both compression and extension parallel to the orogenic belt and thus forms a unique venue of great structural and tectonic interest. Meso-scale ductile- and brittle shear fabrics, such as S-C, C-P, Y-P, Y-S; are emphasized describing such deformations. Extensional shear fabric strikes N43oE and compressional shear fabrics N39.5oE, which are at a low-angle with the orogenic trend. Our study reviews orogen parallel deformation, both extension as well as compression, taking examples from other part of the world (e.g., Central Andes, N Apennines and SW Alps) and from other terrains in the Himalaya. Proposed models are evaluated and compared with the study area. The results shows that the pre-existing remnant structures (e.g., the Delhi-Haridwar ridge) on the under-thrusting Indian shield/plate plays a vital role in modifying thin-skinned tectonics along with migration of the eastward extrusion of the Tibetian plateau (hinterland deformation) into the Himalayan foreland.

  8. Ozone Observations using Ozonesonde over the Himalaya from Pokhara, Nepal.

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Cullis, P.; Johnson, B.; Thompson, A. M.; Witte, J. C.; Panday, A. K.

    2016-12-01

    In recent years, transport of emissions from the Indo-Gangetic Plains (IGP), which covers parts of Pakistan, Nepal, India, Bangladesh has increased. Ozone pre-cursors like methane, nitrogen oxides, volatile organic carbons, and carbon monoxide from diesel based vehicular emission, biofuel and biomass burning, agricultural activities dominate the total emissions from the IGP. Synoptic circulation patterns along with local weather systems transport pollutants from the IGP up the Himalayan valleys to the Tibetan plateau. After being emitted, these pollutants are photochemically converted into tropospheric ozone - a short-lived climate pollutant that can increase atmospheric warming, alter processes of cloud formation, and in turn, influence precipitation levels and reduce carbon absorptivity in plants leading to decline in crop yields. However, little is known about vertical profiles of ozone concentration on the southern slopes of the Himalaya. Vertical ozone profiles were sampled from December 18th, 2015 to January 8th, 2016 from Pokhara (28.23°N, 83.99°E, 827m asl), Nepal using ozonesondes. Pokhara is located about 30km south of the Annapurna Himalaya, thus providing an ideal location to profile vertical ozone concentration south of the Himalaya. We launched one, two or four ozonesondes per day to examine the vertical resolution of ozone south of the Himalaya for the first time, and to understand the contribution of tropospheric and stratospheric sources. Here we present results from the 37 ozonesonde launches from Pokhara to examine: (i) how emissions from the IGP contribute to the vertical resolution of ozone, and (ii) if Himalayan orography provides an efficient path for stratosphere-troposphere air mass exchange under dry conditions. Our results show no signals of stratospheric air mass exchange. The results indicate higher levels of ozone within the boundary layer and lower troposphere. These higher values in the lower troposphere during winter seasons may

  9. The Roles of Tectonics and Climate in Driving Erosion Rates in the Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Larsen, I. J.; Montgomery, D.; Stone, J. O.

    2016-12-01

    Landslide erosion governs the flux of sediment from non-glaciated mountains. Hence patterns in landslide erosion rates have the potential to reveal how such landscapes respond to spatially-varying climatic and tectonic forcing. Across strong spatial gradients in precipitation and exhumation rates in the eastern Himalaya, we mapped 27,611 landslides and measured 10Be in river sediment in a swath spanning from the Himalayan mountain front northward to the Yarlung Tsangpo Gorge. For the entire landscape, landslide erosion and 10Be-based denudation rates are not correlated with mean annual precipitation. However, erosion and denudation rates increase non-linearly as a function of mean hillslope angles, which is diagnostic of tectonic-driven landslide erosion on threshold hillslopes. Dividing the landscape into distinct geologic-tectonic terranes reveals that erosion rates scale positively with both mean hillslope angles and exhumation rates, but also that threshold topography has not developed throughout the region. Mean annual precipitation rates range from 0.5 to 3 m across the terranes, and erosion rates are highest in the relatively dry Yarlung Tsangpo Gorge, which receives 1.5 m of precipitation annually. However, for areas south of the Gorge, where moisture sources from the south first interact with the orographic barrier of the Himalaya, there is a modest linear increase in erosion rate with increasing mean annual rainfall. These results indicate that tectonics is the main control on spatial patterns of erosion in the eastern Himalaya, but that climate may play a modulating role. Hence the relative roles tectonics and climate play in driving erosion rates likely vary at the sub-orogen scale.

  10. A ˜50 ka record of monsoonal variability in the Darjeeling foothill region, eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby; Bera, Subir; Sarkar, Anindya; Paruya, Dipak Kumar; Yao, Yi-Feng; Li, Cheng-Sen

    2015-04-01

    Pollen, phytoliths and δ 13C signatures of soil organic matter from two fluvial sedimentary sequences of the Darjeeling foothill region, eastern Himalayas are used to portray palaeoclimatic oscillations and their impact on regional plant communities over the last ˜50 ka. Quantitative palaeoclimate estimation using coexistence approach on pollen data and other proxies indicate significant oscillations in precipitation during the late part of MIS 3 (46.4-25.9 ka), early and middle part of MIS 2 (25.9-15.6 ka), and 5.4 to 3.5 ka. Middle to late MIS 3 (ca 46.4-31 ka.) was characterized by a comparatively low monsoonal activity and slightly higher temperature than that during ca 31 ka onwards. Simultaneous expansion of deciduous trees and chloridoid grasses also imply a drier and warmer phase. Between 31 and 22.3 ka (late MIS 3 to mid-MIS 2), higher precipitation and a slightly cooler temperature led to an increase in evergreen elements over deciduous taxa and wet-loving panicoid grasses over dry-loving chloridoid grasses than earlier. After ca 22.3 ka, shrinking of forest cover, expansion of C4 chloridoid grasses, Asteraceae and Cheno-ams in the vegetation with lowering of temperature and precipitation characterized the onset of the LGM which continued till 18.3 ka. End of the LGM is manifested by a restoration in the forest cover and in the temperature and precipitation regime. Later, during 5.4 to 4.3 ka, a strong monsoonal activity supported a dense moist evergreen forest cover that subsequently declined during 4.3 to 3.5 ka. A further increase in deciduous elements and non-arboreals might be a consequence of reduced precipitation and higher temperature during this phase. A comparison between monsoonal rainfall, MAT and palaeoatmospheric CO2 with floral dynamics since last ˜50 ka indicates that these fluctuations in plant succession were mainly driven by monsoonal variations.

  11. Longest time series of glacier mass changes in the Himalaya based on stereo imagery

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Pieczonka, T.; Benn, D. I.

    2010-12-01

    Mass loss of Himalayan glaciers has wide-ranging consequences such as declining water resources, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated since the availability of stereo imagery. Here we present the longest time series of mass changes in the Himalaya and show the high value of early stereo spy imagery such as Corona (years 1962 and 1970) aerial images and recent high resolution satellite data (Cartosat-1) to calculate a time series of glacier changes south of Mt. Everest, Nepal. We reveal that the glaciers are significantly losing mass with an increasing rate since at least ~1970, despite thick debris cover. The specific mass loss is 0.32 ± 0.08 m w.e. a-1, however, not higher than the global average. The spatial patterns of surface lowering can be explained by variations in debris-cover thickness, glacier velocity, and ice melt due to exposed ice cliffs and ponds.

  12. Simulated projection of ISMR over Indian Himalayan region: assessment from CSIRO-CORDEX South Asia experiments

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sandipan; Hazra, Anupam; Kumar, Kireet; Nandi, Shyamal K.; Dhyani, Pitamber P.

    2017-09-01

    In view of a significant lacuna in the Himalaya-specific knowledge of forthcoming expected changes in the rainfall climatology, this study attempts to assess the expected changes in the Indian summer monsoon rainfall (ISMR) pattern exclusively over the Indian Himalayan Region (IHR) during 2020-2070 in comparison to a baseline period of 1970-2005 under two different warming scenarios, i.e., representative concentration pathways 4.5 and 8.5 (RCP 4.5 and RCP 8.5). Five climate model products from the Commonwealth Scientific and Industrial Research Organization initiated Coordinated Regional Climate Downscaling Experiment of World Climate Research Programme over south Asia region are used for this purpose. Among the several different features of ISMR, this study attempts to investigate expected changes in the average summer monsoon rainfall and percent monthly rainfall to the total monsoon seasonal rainfall using multimodel averages. Furthermore, this study attempts to identify the topographical ranges which are expected to be mostly affected by the changing average monsoon seasonal rainfall over IHR. Results from the multimodel average analysis indicate that the rainfall climatology is expected to increase by >0.75 mm/day over the foothills of northwest Himalaya during 2020-2070, whereas the rainfall climatology is expected to decrease for the flood plains of Brahmaputra under a warmer climate. The monthly percent rainfall of June is expected to rise by more than 1% over the northwestern Himalaya during 2020-2040 (although insignificant at p value <0.05), whereas the same for August and September is expected to decrease over the eastern Himalaya under a warmer climate. In terms of rainfall changes along the altitudinal gradient, this study indicates that the two significant rainfall regions, one at around 900 m and the other around 2000 m of the northwestern Himalaya are expected to see positive changes (>1%) in rainfall climatology during 2020-2070, whereas regions

  13. 40 Years of Glacier Change across the Himalayas

    NASA Astrophysics Data System (ADS)

    Maurer, J. M.; Schaefer, J. M.; Rupper, S.

    2017-12-01

    Himalayan glaciers are central to societies, ecologies, and landscapes in South Asia. Retreating glaciers have been observed in the Himalayas from in-situ and satellite remote sensing measurements, yet different approaches provide a wide range of mass budget estimates. As glaciers respond dynamically to climate over decades and centuries, more observations of past glacier states are needed to gain perspective on existing shorter-timespan ice loss estimates, minimize effects of interannual variability, and to robustly evaluate glacier dynamics. Here we use a new suite of DEMs (digital elevation models) to estimate geodetic mass balance for over 1000 Himalayan glaciers spanning a 2000 km transect, during the years 1975-2000 and 2001-2016. Recent advances in DEM extraction from declassified Hexagon filmstrips, along with new public access to the global ASTER database have allowed for this large-scale analysis of regional ice loss. An average trendline (using a 30-glacier moving-window) reveals a spatially coherent ice loss signal across the entire transect during both periods, consistent with atmospheric warming as the primary Himalaya-wide driver of change. Our estimate of mean annual ice losses during the more recent period is approximately twice as negative (-0.39 ± 0.1 m.w.e. a-1) compared to the 1975-2000 baseline (-0.18 ± 0.1 m.w.e. a-1). This two-fold acceleration of ice loss during the 21st century agrees with the global average, parallel with recent observations of increasing rates of sea level rise. These surface-integrated geodetic mass balances are negligibly influenced by ice flow dynamics, thus are indicative of climate-driven glacier responses. Further analyses utilizing satellite-derived ice surface velocities will afford deconvolution of the surface mass balance and ice fluxes, providing additional insights into the dynamic responses of the glaciers.

  14. Towards an improved inventory of Glacial Lake Outburst Floods in the Himalayas

    NASA Astrophysics Data System (ADS)

    Veh, Georg; Walz, Ariane; Korup, Oliver; Roessner, Sigrid

    2016-04-01

    The retreat of glaciers in the Himalayas and the associated release of meltwater have prompted the formation and growth of thousands of glacial lakes in the last decades. More than 2,200 of these lakes have developed in unconsolidated moraine material. These lakes can drain in a single event, producing potentially destructive glacial lake outburst floods (GLOFs). Only 44 GLOFs in the Himalayas have been documented in more detail since the 1930s, and evidence for a change, let alone an increase, in the frequency of these flood events remains elusive. The rare occurrence of GLOFs is counterintuitive to our hypothesis that an increasing amount of glacial lakes has to be consistent with a rising amount of outburst floods. Censoring bias affects the GLOF record, such that mostly larger floods with commensurate impact have been registered. Existing glacial lake inventories are also of limited help for the identification of GLOFs, as they were created in irregular time steps using different methodological approach and covering different regional extents. We discuss the key requirements for generating a more continuous, close to yearly time series of glacial lake evolution for the Himalayan mountain range using remote sensing data. To this end, we use sudden changes in glacial lake areas as the key diagnostic of dam breaks and outburst floods, employing the full archive of cloud-free Landsat data (L5, L7 and L8) from 1988 to 2015. SRTM and ALOS World 3D topographic data further improve the automatic detection of glacial lakes in an alpine landscape that is often difficult to access otherwise. Our workflow comprises expert-based classification of water bodies using thresholds and masks from different spectral indices and band ratios. A first evaluation of our mapping approach suggests that GLOFs reported during the study period could be tracked independently by a significant reduction of lake size between two subsequent Landsat scenes. This finding supports the feasibility

  15. Quantifying ice loss in the eastern Himalayas since 1974 using declassified spy satellite imagery

    NASA Astrophysics Data System (ADS)

    Maurer, Joshua M.; Rupper, Summer B.; Schaefer, Joerg M.

    2016-09-01

    Himalayan glaciers are important natural resources and climate indicators for densely populated regions in Asia. Remote sensing methods are vital for evaluating glacier response to changing climate over the vast and rugged Himalayan region, yet many platforms capable of glacier mass balance quantification are somewhat temporally limited due to typical glacier response times. We here rely on declassified spy satellite imagery and ASTER data to quantify surface lowering, ice volume change, and geodetic mass balance during 1974-2006 for glaciers in the eastern Himalayas, centered on the Bhutan-China border. The wide range of glacier types allows for the first mass balance comparison between clean, debris, and lake-terminating (calving) glaciers in the region. Measured glaciers show significant ice loss, with an estimated mean annual geodetic mass balance of -0.13 ± 0.06 m w.e. yr-1 (meters of water equivalent per year) for 10 clean-ice glaciers, -0.19 ± 0.11 m w.e. yr-1 for 5 debris-covered glaciers, -0.28 ± 0.10 m w.e. yr-1 for 6 calving glaciers, and -0.17 ± 0.05 m w.e. yr-1 for all glaciers combined. Contrasting hypsometries along with melt pond, ice cliff, and englacial conduit mechanisms result in statistically similar mass balance values for both clean-ice and debris-covered glacier groups. Calving glaciers comprise 18 % (66 km2) of the glacierized area yet have contributed 30 % (-0.7 km3) to the total ice volume loss, highlighting the growing relevance of proglacial lake formation and associated calving for the future ice mass budget of the Himalayas as the number and size of glacial lakes increase.

  16. Microseismicity, tectonics and seismic potential in the Western Himalayan segment, NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Parija, Mahesh Prasad; Kumar, Sushil; Tiwari, V. M.; Rao, N. Purnachandra; Kumar, Narendra; Biswal, Shubhasmita; Singh, Ishwar

    2018-06-01

    The tectonics and seismic potential of the western Himalayan segment (30-33°N; 76-80°E) of the NW Himalayan (India) region have been determined in this study. 423 earthquakes were located in the NW Himalaya between 2004 and 2013 using more than 4495 P and 4453 S differential travel times to determine the moment tensors for 8 (Mw ≥ 4.0) of these earthquakes using their broadband regional waveforms. The geometry of the Main Himalayan Thrust (MHT) plane which varies along the strike of the Himalaya in flat and ramp segments with a dip ranging between ∼2.5 to ∼4° to ∼19° below the Himalayan Frontal Thrust (HFT) in the south to the South Tibetan Detachment (STD) in the north has also been deduced in this study. Two crustal ramps were reported in this study with a depth variance below the Main Central Thrust (MCT) and to the South Tibetan Detachment (STD) between 12 to 22 km and 28 to 40 km depth respectively. The estimated earthquake potential prevailing in the western Himalayan seismic gap lying between the epicentral zone of the 1905 Kangra earthquake and the 1975 Kinnaur earthquake reveals that the total amount of energy released since the last great event is only a fraction (3-5%) of the accommodated energy i.e.1.1E+28 dyne-cm/yr. This suggests that if an earthquake hits this NW Himalayan segment in the future, its magnitude might be around Mw ≥ 8.0.

  17. Role of sub-regional variations on melting Response of Indian-Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Tayal, S.; Hasnain, S. I.

    2010-12-01

    Glaciers play a crucial role in maintaining ecosystem stability as they act as buffers and regulate the runoff water supply from high mountains to the plains during both dry and wet spells. Retreat of Hindu Kush-Himalaya-Tibetan glaciers is one of the major environmental problems facing the south Asian and south-east Asian region. The Himalayan mountain range spans 2500 km east to west and includes diverse cultures of five countries (Afghanistan, Pakistan, India, Tibet (China), Nepal, Bhutan) and a range of weather patterns, which has been strongly affected by regional climate change. The glaciers of Indian Himalayan ranges covers an area of 19000 km2 contains over 9500 glaciers and feed major perennial river systems like Indus, Ganges, Brahmaputra, and sustain the livelihood of over 0.5 billion south Asians. Glaciers are melting fast but their response time varies from westerly nourished Kashmir Himalaya glaciers to south-west monsoon nourished Sikkim Himalaya glaciers based on regional climatic variations. Changes in mass balance of a glacier are considered as the most direct representative of the impacts of meteorological parameters on the glacier dynamic responses. A comparative study of mass balance, based on field measurements techniques is being conducted on two benchmark glaciers in the Indian Himalaya. The glaciers currently being monitored are Kolahoi glacier (340 07 - 340 12 N: 750 16 - 750 23E), Kashmir Himalaya and E.Rathong glacier (270 33 - 480 36 N: 880 06 - 880 08 E), Sikkim Himalaya. One year mass balance results (2008-2009) for both the benchmark glaciers are now available and are being presented. Mass balance for Kolahoi glacier located in sub-tropical to temperate setting and nourished by westerly system show range from -2.0 m.w.e. to -3.5 m.w.e. per annum. Whereas, the E. Rathong glacier located in tropical climatic settings and nourished by SW monsoon system show range from -2.0 m.w.e. to -5.0 m.w.e. per annum. The (2009/2010) mass balance

  18. Himalayan Sackung and Associations to Regional Structure

    NASA Astrophysics Data System (ADS)

    Shroder, J. F.; Bishop, M. P.; Olsenholler, J.

    2003-12-01

    Recognition of sackung slope failure or deep-seated, rock-slope deformation in the Himalaya has been rather limited, in part because: (1) many geoscientists do not recognize its characteristics; (2) large-scale aerial photographs and topographic maps used to identify the characteristic surficial, topographic manifestations of the failure type are commonly low-level state secrets in that region; and (3) no systematic survey for sackung has ever been made in the Himalaya. In the Pakistani-controlled, western Himalaya, some unconventional access to aerial photographs in the Kaghan and Nanga Parbat areas allowed first recognition of several characteristic ridge-top grabens and anti-slope scarps. Later release of declassified, stereo imagery from the CORONA and KEYHOLE satellite series enabled discovery of other examples in the K2 region. Comparison of mapped sackung failures with geologic base maps has demonstrated some coincidence of sackung with various structural trends, including synformal structures in upper thrust plates or along the traces of high-angle faults. In all probability these structural trends have provided plentiful ancillary planes of weakness along which gravitationally driven sackung is facilitated. Sackung failure in the Himalaya appears to be a spatially scale-dependent manifestation of a gravitational-collapse continuum of the brittle, upper crust, mainly involving mountain ridges. In contrast, gravitational collapse of the whole range may involve some similar failures but also include listric faulting, as well as subsidence movement into zones of ductility at depth. Temporal scale dependence of sackung may also be threshold dominated, wherein initial long-continued, slow failure ultimately leads to the commonly catastrophic rock-slope collapses recently recognized throughout the western Himalaya and now differentiated from their original mismapping as glacial moraines. Such sackung in Himalayan terrain undergoing active deglaciation from global

  19. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula

    PubMed Central

    Mukul, Manas; Srivastava, Vinee; Jade, Sridevi; Mukul, Malay

    2017-01-01

    The Shuttle Radar Topography Mission (SRTM) Digital Terrain Elevation Data (DTED) are used with the consensus view that it has a minimum vertical accuracy of 16 m absolute error at 90% confidence (Root Mean Square Error (RMSE) of 9.73 m) world-wide. However, vertical accuracy of the data decreases with increase in slope and elevation due to presence of large outliers and voids. Therefore, studies using SRTM data “as is”, especially in regions like the Himalaya, are not statistically meaningful. New data from ~200 high-precision static Global Position System (GPS) Independent Check Points (ICPs) in the Himalaya and Peninsular India indicate that only 1-arc X-Band data are usable “as is” in the Himalaya as it has height accuracy of 9.18 m (RMSE). In contrast, recently released (2014–2015) “as-is” 1-arc and widely used 3-arc C-Band data have a height accuracy of RMSE 23.53 m and 47.24 m and need to be corrected before use. Outlier and void filtering improves the height accuracy to RMSE 8 m, 10.14 m, 14.38 m for 1-arc X and C-Band and 3-arc C-Band data respectively. Our study indicates that the C-Band 90 m and 30 m DEMs are well-aligned and without any significant horizontal offset implying that area and length computations using both the datasets have identical values. PMID:28176825

  20. Looking at the roots of the highest mountains: the lithospheric structure of the Himalaya-Tibet and the Zagros orogens. Results from a geophysical-petrological study

    NASA Astrophysics Data System (ADS)

    Tunini, L.; Jimenez-Munt, I.; Fernandez, M.; Villasenor, A.; Afonso, J. C.; Verges, J.

    2013-12-01

    Alborz ranges, more pronounced in the southern profile. At sub-crustal level, a lithospheric mantle thinning affects the whole area beneath the Zagros range extending to the north through the zone below the Alborz and the central Iran. In the Himalaya-Tibet region our results show stronger strain partitioning in the horizontal (east-west) direction than in the vertical (depth) direction. At crustal level, the Tibetan Plateau extends more than 1000 km in the eastern profile, whereas it is squeezed between the Himalayan Mountains and the Tarim Basin along the western profile (~600 km). At sub-crustal level, the lithospheric mantle is more homogeneous in thickness and mineral composition along the western profile than the eastern one. Finally, our results on mineral composition show that both collisional regions are characterised by a predominant lherzolitic lithospheric mantle, whereas we observe compositional variations around the suture zones, probably related to subduction and mantle delamination processes.

  1. Study of Aerosol Optical Properties Over Two Sites in the Foothills of the Central Himalayas

    NASA Astrophysics Data System (ADS)

    Rupakheti, D.; Kang, S.; Cong, Z.; Rupakheti, M.; Tripathee, L.; Panday, A. K.; Holben, B.

    2018-04-01

    Atmospheric aerosol possesses impacts on climate system and ecological environments, human health and agricultural productivity. The environment over Himalayas and Tibetan Plateau region are continuously degraded due to the transport of pollution from the foothills of the Himalayas; mostly the Indo-Gangetic Plain (IGP). Thus, analysis of aerosol optical properties over two sites; Lumbini and Kathmandu (the southern slope of central Himalayas) using AERONET's CIMEL sun photometer were conducted in this study. Aerosol optical depth (AOD at 500 nm), angstrom exponent (α or AE), volume size distribution (VSD), single scattering albedo (SSA) and asymmetry parameter (AP) were studied for 2013-2014 and the average AOD was found to be: 0.64 ± 0.41 (Lumbini) and 0.45 ± 0.30 (Kathmandu). The average AE was found to be: 1.25 ± 0.24 and 1.26 ± 0.18 respectively for two sites. The relation between AOD and AE was used to discriminate the aerosol types over these sites which indicated anthropogenic, mixed and biomass burning origin aerosol constituted the major aerosol types in Lumbini and Kathmandu. A clear bi-modal distribution of aerosol volume size was observed with highest volume concentration during the post-monsoon season in fine mode and pre-monsoon season in coarse mode (Lumbini) and highest value over both modes during pre-monsoon season in Kathmandu. The single scattering albedo (SSA) and asymmetry parameter (AP) analyses suggested aerosols over the Himalayan foothills sites are dominated by absorbing and anthropogenic aerosols from urban and industrial activities and biomass burning. Long-term studies are essential to understand and characterize the nature of aerosol over this research gap zone.

  2. Shallow Subsurface Velocity Structure using the Ambient Noise for the Garhwal and Kumaon Himalaya.

    NASA Astrophysics Data System (ADS)

    LAL, S.; Joshi, A.; S.; P.

    2017-12-01

    Abstract: In this paper effort has been made to obtain one dimensional subsurface velocity structure using H/V spectral ratio method Nakamura (1989). The complete study shows that ambient noises are reflective of structural properties of underlying strata. Data has been obtained at stations from foothills of Himalaya up to higher Himalaya along road using strong motion accelerograph in the Garhwal and Kumaon Himalaya along the two transects lines. Noise data has been processed using the seismosignal software. The ratio between the Fourier amplitude spectra of the horizontal components to the vertical component of the ambient noise had been used to consider the site effects of the concerned site. The relation given by Lermo and Chavez-Garcia (1993) between the thickness of layer and average S- wave velocity of the sedimentary layer has been utilized to obtain sub surface velocity model. To fit the synthetic H/V curve with the observed H/V curve, technique given by Castellaro and Mulargia (2009) is used in the present study. This model is improved via forward modelling to give final one dimensional velocity structure at a particular station. Velocity structures obtained at all stations are used to obtain continuous velocity models for concerned area using Kringing interpolation, which is correlated with the geology and tectonic of region. Keywords: Ambient noise, H/V spectral ratio, Site characterization, Accelerograph, Velocity ReferencesNakamura Y (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR RTRI 30(1):25-30. Castellaro S, Mulargia F (2009). The effect of velocity inversions on H/V. PAGEOPH 166:567-592. Lermo, J., & Chavez-Garcia, F. J. (1993). Site effect evaluation using spectral ratios with only one station Bulletin Seismological Society of America, 83, 1574-1594.

  3. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram

    NASA Astrophysics Data System (ADS)

    Round, Vanessa; Leinss, Silvan; Huss, Matthias; Haemmig, Christoph; Hajnsek, Irena

    2017-03-01

    The recent surge cycle of Kyagar Glacier, in the Chinese Karakoram, caused formation of an ice-dammed lake and subsequent glacial lake outburst floods (GLOFs) exceeding 40 million m3 in 2015 and 2016. GLOFs from Kyagar Glacier reached double this size in 2002 and earlier, but the role of glacier surging in GLOF formation was previously unrecognised. We present an integrative analysis of the glacier surge dynamics from 2011 to 2016, assessing surge mechanisms and evaluating the surge cycle impact on GLOFs. Over 80 glacier surface velocity fields were created from TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), Sentinel-1A, and Landsat satellite data. Changes in ice thickness distribution were revealed by a time series of TanDEM-X elevation models. The analysis shows that, during a quiescence phase lasting at least 14 years, ice mass built up in a reservoir area at the top of the glacier tongue, and the terminus thinned by up to 100 m, but in the 2 years preceding the surge onset this pattern reversed. The surge initiated with the onset of the 2014 melt season, and in the following 15 months velocity evolved in a manner consistent with a hydrologically controlled surge mechanism. Dramatic accelerations coincided with melt seasons, winter deceleration was accompanied by subglacial drainage, and rapid surge termination occurred following the 2015 GLOF. Rapid basal motion during the surge is seemingly controlled by high water pressure, caused by input of surface water into either an inefficient subglacial drainage system or unstable subglacial till. The potential lake volume increased to more than 70 million m3 by late 2016, as a result of over 60 m of thickening at the terminus. Lake formation and the evolution of the ice dam height should be carefully monitored through remote sensing to anticipate large GLOFs in the near future.

  4. Decadal record of monsoon dynamics across the Himalayas using tree ring data

    NASA Astrophysics Data System (ADS)

    Brunello, Camilla Francesca; Andermann, Christoff; Helle, Gerhard; Comiti, Francesco; Tonon, Giustino; Ventura, Maurizio; Hovius, Niels

    2017-04-01

    The temporal variability of the Indian monsoon penetrating through the Himalayan range and into the southern Tibetan Plateau is poorly understood. Intermittent ingress of wet monsoon air masses into the otherwise arid and deserted landscapes beyond the orographic barrier can have consequences for erosion and flooding, as well as for water availability. Furthermore, the latitudinal rainfall distribution across the mountain range is crucial to better understand the hydrological cycles of rivers originating there. Because instrumental measurements are rare in the High Himalayas and on the Plateau, hydro-climatic sensitive proxies, such as oxygen stable isotope ratios in cellulose of tree-rings, are a valuable source of data covering decades to centuries. Here we present new findings on how often and how far the Indian monsoon penetrated into trans-Himalayan region over the last century. To cope with the lack of direct measurements, we strive to reconstruct a record of intense monsoon years based on tree-ring width chronologies along a latitudinal gradient. Thus, we need to answer whether water availability is the main driver of tree growth in the trans-Himalayan region and how dendro-isotopic data relate to seasonal precipitation inputs and sources. In order to study the monsoon dynamics, we selected four sites along the Kali Gandaki River valley in the central Himalayas (Nepal). This valley connects the very wet, monsoon dominated south Himalayan front with the arid trans-Himalayan region and the southern Tibetan Plateau. Our study area covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Water availability, which drastically varies at each site, was explored by using the climate signal- and isotope-transfer within arboreal systems composed of Juniperus sp., Cupressus sp. and Pinus sp. Results from continuous dendrometer measurements for the entire growing season (Mar-Oct) allowed us to assess the link between

  5. Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling.

    PubMed

    Guri, Pardeep Kumar; Ray, P K Champati; Patel, Ramesh Chandra

    2015-06-01

    Garhwal Himalaya in northern India has emerged as one of the most prominent hot spots of landslide occurrences in the Himalaya mainly due to geological causes related to mountain building processes, steep topography and frequent occurrences of extreme precipitation events. As this region has many pilgrimage and tourist centres, it is visited by hundreds of thousands of people every year, and in the recent past, there has been rapid development to provide adequate roads and building infrastructure. Additionally, attempts are also made to harness hydropower by constructing tunnels, dams and reservoirs and thus altering vulnerable slopes at many places. As a result, the overall risk due to landslide hazards has increased many folds and, therefore, an attempt was made to assess landslide susceptibility using 'Weights of Evidence (WofE)', a well-known bivariate statistical modelling technique implemented in a much improved way using remote sensing and Geographic Information System. This methodology has dual advantage as it demonstrates how to derive critical parameters related to geology, geomorphology, slope, land use and most importantly temporal landslide distribution in one of the data scarce region of the world. Secondly, it allows to experiment with various combination of parameters to assess their cumulative effect on landslides. In total, 15 parameters related to geology, geomorphology, terrain, hydrology and anthropogenic factors and 2 different landslide inventories (prior to 2007 and 2008-2011) were prepared from high-resolution Indian remote sensing satellite data (Cartosat-1 and Resourcesat-1) and were validated by field investigation. Several combinations of parameters were carried out using WofE modelling, and finally using best combination of eight parameters, 76.5 % of overall landslides were predicted in 24 % of the total area susceptible to landslide occurrences. The study has highlighted that using such methodology landslide susceptibility assessment

  6. The hydrology of three high-altitude forests in Central Himalaya, India: a reconnaissance study

    NASA Astrophysics Data System (ADS)

    Negi, G. C. S.; Rikhari, H. C.; Garkoti, S. C.

    1998-02-01

    In this preliminary study the partitioning of rain-water into various components of the hydrological cycle in three high-altitude forests of contrasting tree physiognomies (namely, Aesculus indica, Quercus semecarpifolia and Abies pindrow) were studied in the Nandadevi Biosphere Reserve, Central Himalaya, India. The results are compared with the hydrological characteristics of low-altitude forests of this region. The study has indicated a significant role of tree physiognomy with regard to rainfall partitioning into the various components of the hydrological cycle. It is suggested that A. pindrow (an evergreen tree) should be considered superior to A. indica (a deciduous tree) with regard to soil and water conservation in this region. This work is of relevance to land management programmes pertaining to afforestation, logging and regeneration.

  7. Upper mantle beneath foothills of the western Himalaya: subducted lithospheric slab or a keel of the Indian shield?

    NASA Astrophysics Data System (ADS)

    Vinnik, L.; Singh, A.; Kiselev, S.; Kumar, M. Ravi

    2007-12-01

    The fate of the mantle lithosphere of the Indian Plate in the India-Eurasia collision zone is not well understood. Tomographic studies reveal high P velocity in the uppermost mantle to the south of the western Himalaya, and these high velocities are sometimes interpreted as an image of subducting Indian lithosphere. We suggest that these high velocities are unrelated to the ongoing subduction but correspond to a near-horizontal mantle keel of the Indian shield. In the south of the Indian shield upper-mantle velocities are anomalously low, and relatively high velocities may signify a recovery of the normal shield structure in the north. Our analysis is based on the recordings of seismograph station NIL in the foothills of the western Himalaya. The T component of the P receiver functions is weak relative to the Q component, which is indicative of a subhorizontally layered structure. Joint inversion of the P and S receiver functions favours high uppermost mantle velocities, typical of the lithosphere of Archean cratons. The arrival of the Ps converted phase from 410 km discontinuity at NIL is 2.2 s earlier than in IASP91 global model. This can be an effect of remnants of Tethys subduction in the mantle transition zone and of high velocities in the keel of the Indian shield. Joint inversion of SKS particle motions and P receiver functions reveals a change in the fast direction of seismic azimuthal anisotropy from 60° at 80-160 km depths to 150° at 160-220 km. The fast direction in the lower layer is parallel to the trend of the Himalaya. The change of deformation regimes at a depth of 160 km suggests that this is the base of the lithosphere of the Indian shield. A similar boundary was found with similar techniques in central Europe and the Tien Shan region, but the base of the lithosphere in these regions is relatively shallow, in agreement with the higher upper-mantle temperatures. The ongoing continental collision is expressed in crustal structure: the crust

  8. The NextData Project: a national Italian system for the retrieval, storage, access and diffusion of environmental and climate data from mountain and marine areas

    NASA Astrophysics Data System (ADS)

    Provenzale, Antonello

    2013-04-01

    Mountains are sentinels of climate and environmental change and many marine regions provide information on past climate variations. The Project of Interest NextData will favour the implementation of measurement networks in remote mountain and marine areas and will develop efficient web portals to access meteoclimatic and atmospheric composition data, past climate information from ice and sediment cores, biodiversity and ecosystem data, measurements of the hydrological cycle, marine reanalyses and climate projections at global and regional scale. New data on the present and past climatic variability and future climate projections in the Alps, the Himalaya-Karakoram, the Mediterranean region and other areas of interest will be obtained and made available. The pilot studies conducted during the project will allow for obtaining new estimates on the availability of water resources and on the effects of atmospheric aerosols on high-altitude environments, as well as new assessments of the impact of climate change on ecosystems, health and societies in mountain regions. The system of archives and the scientific results produced by the NextData project will provide a unique data base for research, for environmental management and for the estimate of climate change impacts, allowing for the development of knowledge-based environmental and climate adaptation policies.

  9. Further insights into glacier changes derived from declassified reconnaissance imagery (Corona and Hexagon)

    NASA Astrophysics Data System (ADS)

    Goerlich, Franz; Paul, Frank; Bolch, Tobias

    2017-04-01

    The variable and often complex dynamics of the glaciers in High Mountain Asia have recently been studied intensively from satellite imagery. Time-series of optical and SAR imagery revealed rapid changes and strong trends in glacier extent and surface flow velocities as well as elevation changes from differencing of DEMs and altimetry sensors over the 1990 to 2015 period. In contrast to nearly all other regions in the world, especially glaciers in the Karakoram had balanced budgets and often rapidly advanced during surge events and retreated thereafter. This complicates the interpretation of climate change impacts on the glaciers in the region and leaves high uncertainties for calculation of future glacier and run-off development. A key for an improved understanding of glacier dynamics in this region is an extension of the observation period. This can be achieved using Corona and Hexagon reconnaissance satellite imagery from the 1960s and 1970s providing a comparably high spatial resolution between 2.7 and 7.6 m. Thereby, the keyhole satellites allow both, determination of glacier extents and calculation of DTMs from stereo image pairs that can be used to determine geodetic volume/ mass changes. The latter has already been performed on a regional scale for glaciers in the Himalaya and Tien Shan using Hexagon and Corona imagery with high accuracies. However, due to a particular camera model and complex distortion effects, which is especially the case for Corona images, the analysis is a challenging task. Therefore, we have developed a workflow to generate DTMs and orthophotos from Corona that considers the complex camera model. This study will present the workflow with its limitations, challenges and the obtained accuracy over stable ground. With our generated DTMs and Orthophotos, we already calculated mass balances and length changes for the Ak-Shirak range in Tian Shan and currently adapting the workflow to the Karakoram and Pamir mountains. Furthermore, the DTMs

  10. The Holocene floods and their affinity to climatic variability in the western Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, Shubhra; Shukla, A. D.; Bartarya, S. K.; Marh, B. S.; Juyal, Navin

    2017-08-01

    The present study in the middle Satluj valley explores the sedimentary records of past floods with an objective to understand the climatic processes responsible for their genesis. Based on lithostratigraphy, sedimentology, and grain size variability, 25 flood events are identified. The geochemical data indicate that the flood sediments were mostly generated and transported from the higher Himalayan crystalline and the trans-Himalaya. Our study suggests that the floods were generated by Landslide Lake Outburst Floods (LLOFs) during extreme precipitation events. However, the existing database does not allow us to negate the contribution from Glacial Lake Outburst Floods (GLOFs). Field stratigraphy supported by optical chronology indicates four major flood phases that are dated to 13.4-10.4, 8.3-3.6, 2.2-1.4, and < 1.4 ka (kilo-annum). These phases correspond to the cooler and less wet conditions and broadly correlate with the phases of negative Arctic Oscillation (- AO) and negative North Atlantic Oscillation (- NAO). Thus, implying coupling between the moisture-laden monsoon circulation and southward penetrating mid-latitude westerly troughs for extreme precipitation events and consequent LLOFs. Additionally, a broad synchronicity in Holocene floods between the western Himalaya and across the mid-latitudinal region (30°N-40°N) suggests a synoptic scale Arctic and Atlantic climate variability.

  11. Paleolatitudes of the Tibetan Himalaya from primary and secondary magnetizations of Jurassic to Lower Cretaceous sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Huang, Wentao; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Garzanti, Eduardo; Dupont-Nivet, Guillaume; Lippert, Peter C.; Li, Xiaochun; Maffione, Marco; Langereis, Cor G.; Hu, Xiumian; Guo, Zhaojie; Kapp, Paul

    2015-01-01

    The Tibetan Himalaya represents the northernmost continental unit of the Indian plate that collided with Asia in the Cenozoic. Paleomagnetic studies on the Tibetan Himalaya can help constrain the dimension and paleogeography of "Greater India," the Indian plate lithosphere that subducted and underthrusted below Asia after initial collision. Here we present a paleomagnetic investigation of a Jurassic (limestones) and Lower Cretaceous (volcaniclastic sandstones) section of the Tibetan Himalaya. The limestones yielded positive fold test, showing a prefolding origin of the isolated remanent magnetizations. Detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic investigation reveal that the magnetic carrier of the Jurassic limestones is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic sandstones is detrital magnetite. Our observations lead us to conclude that the Jurassic limestones record a prefolding remagnetization, whereas the Lower Cretaceous volcaniclastic sandstones retain a primary remanence. The volcaniclastic sandstones yield an Early Cretaceous paleolatitude of 55.5°S [52.5°S, 58.6°S] for the Tibetan Himalaya, suggesting it was part of the Indian continent at that time. The size of "Greater India" during Jurassic time cannot be estimated from these limestones. Instead, a paleolatitude of the Tibetan Himalaya of 23.8°S [21.8°S, 26.1°S] during the remagnetization process is suggested. It is likely that the remagnetization, caused by the oxidation of early diagenetic pyrite to magnetite, was induced during 103-83 or 77-67 Ma. The inferred paleolatitudes at these two time intervals imply very different tectonic consequences for the Tibetan Himalaya.

  12. Science in the Wild: Adventure Citizen Science in the Arctic and Himalaya

    NASA Astrophysics Data System (ADS)

    Horodyskyj, U. N.; Rufat-Latre, J.; Reimuller, J. D.; Rowe, P.; Pothier, B.; Thapa, A.

    2016-12-01

    Science in the Wild provides educational hands-on adventure science expeditions for the everyday person, blending athletics and academics in remote regions of the planet. Participants receive training on field data collection techniques in order to be able to help scientists in the field while on expedition with them. At SITW, we also involve our participants in analyzing and interpreting the data, thus teaching them about data quality and sources of error and uncertainty. SITW teaches citizens the art of science storytelling, aims to make science more open and transparent, and utilizes open source software and hardware in projects. Open science serves both the research community and the greater public. For the former, it makes science reproducible, transparent and more impactful by mobilizing multidisciplinary and international collaborative research efforts. For the latter, it minimizes mistrust in the sciences by allowing the public a `behind-the-scenes' look into how scientific research is conducted, raw and unfiltered. We present results from a citizen-science expedition to Baffin Island (Canadian Arctic), which successfully skied and sampled snow for dust and black carbon concentration from the Penny Ice Cap, down the 25-mile length of Coronation Glacier, and back to the small Arctic town of Qikitarjuaq. From a May/June 2016 citizen-science expedition to Nepal (Himalaya), we present results comparing 2014/16 depth and lake floor compositional data from supraglacial lakes on Ngozumpa glacier while using open-source surface and underwater robotics. The Sherpa-Scientist Initiative, a program aimed at empowering locals in data collection and interpretation, successfully trained half a dozen Sherpas during this expedition and demonstrates the value of local engagement. In future expeditions to the region, efforts will be made to scale up the number of trainees and expand our spatial reach in the Himalaya.

  13. Neonatal size and infant mortality at high altitude in the western Himalaya.

    PubMed

    Wiley, A S

    1994-07-01

    A prospective study was undertaken in Ladakh, India, a high-altitude region of the Himalaya, to investigate the effects of small average birth size on neonatal mortality. While such studies exist from high-altitude regions of the New World and shed light on the adaptive status of high-altitude-dwelling populations there, this is the first to examine this relationship in the Himalaya. In a sample of 168 newborns, birthweight and other anthropometric measurements were reduced relative to Andean and Tibetan newborns. Logistic regression and hazard analysis showed that neonatal biological characteristics such as weight, fatness, and circumferences were important predictors of survival probabilities of infants, especially in the neonatal period. Low Rohrer's Ponderal Index (PI) was particularly strongly related to poor survival outcome. Males and females showed no significant differences in mortality risk. Data derived from reproductive histories revealed that neonatal mortality accounted for 70-80% of total infant mortality in Ladakh. Compared to other high-altitude studies, small newborn size in Ladakh was associated with much higher mortality risks; mortality risk rose dramatically with birthweights below the mean (2,764 grams), which characterized 50% of all newborns. It is argued that newborns in Ladakh are subject to strong directional selective forces that favor higher birthweights that incur lower risks of neonatal mortality, while Andean infants are subject to relatively mild selection pressure at both ends of the birthweight distribution. Given the overall small size at birth of Ladakhi newborns and the poor survival outcomes of newborns below the mean, it is suggested that this population is less well adapted in a biological sense to the stresses inherent in this high-altitude environment than are Andean populations, perhaps due to the relatively recent colonization of the area and the substantial genetic admixture that has occurred in the past.

  14. Automated seismic detection of landslides at regional scales: a Random Forest based detection algorithm for Alaska and the Himalaya.

    NASA Astrophysics Data System (ADS)

    Hibert, Clement; Malet, Jean-Philippe; Provost, Floriane; Michéa, David; Geertsema, Marten

    2017-04-01

    Detection of landslide occurrences and measurement of their dynamics properties during run-out is a high research priority but a logistical and technical challenge. Seismology has started to help in several important ways. Taking advantage of the densification of global, regional and local networks of broadband seismic stations, recent advances now permit the seismic detection and location of landslides in near-real-time. This seismic detection could potentially greatly increase the spatio-temporal resolution at which we study landslides triggering, which is critical to better understand the influence of external forcings such as rainfalls and earthquakes. However, detecting automatically seismic signals generated by landslides still represents a challenge, especially for events with volumes below one millions of cubic meters. The low signal-to-noise ratio classically observed for landslide-generated seismic signals and the difficulty to discriminate these signals from those generated by regional earthquakes or anthropogenic and natural noises are some of the obstacles that have to be circumvented. We present a new method for automatically constructing instrumental landslide catalogues from continuous seismic data. We developed a robust and versatile solution, which can be implemented in any context where a seismic detection of landslides or other mass movements is relevant. The method is based on a spectral detection of the seismic signals and the identification of the sources with a Random Forest algorithm. The spectral detection allows detecting signals with low signal-to-noise ratio, while the Random Forest algorithm achieve a high rate of positive identification of the seismic signals generated by landslides and other seismic sources. We present here the preliminary results of the application of this processing chain in two contexts: i) In Himalaya with the data acquired between 2002 and 2005 by the Hi-Climb network; ii) In Alaska using data recorded by the

  15. Sandstone dykes in siwalik sandstone-sedimentology and basin analysis-subansiri district (NEFA), Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Kumar, Surendar; Singh, Trilochan

    1982-11-01

    Sandstone dykes (including sills) of varied thickness and with tapering ends are present either transecting or (sills) parallel to bedding in the Siwalik sandstone of Arunachal Pradesh (NEFA), Eastern Himalaya. The different sedimentary and microstructural analyses show varied conditions of deposition with changing facies from fluvial channel, to alluvial fan, to coastal plain-fan delta. The non-marine and shallow marine environments are indicated by the presence of organised and disorganised gradation and the presence of sandstone dykes in the interface regions. The orientations of the longer axes of the conglomerate along with the sand bedding indicate palaeoflow.

  16. Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission

    NASA Astrophysics Data System (ADS)

    Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Sun, Zhongchang; Guo, Bin

    2016-04-01

    We use GRACE gravity data released by the Center for Space Research (CSR) and the Groupe de Recherches en Geodesie Spatiale (GRGS) to detect the water storage changes over the Tibetan Plateau (TP). A combined filter strategy is put forward to process CSR RL05 data to remove the effect of striping errors. After the correction for GRACE by GLDAS and ICE-5G, we find that TP has been overall experiencing the water storage increase during 2003-2012. During the same time, the glacier over the Himalayas was sharply retreating. Interms of linear trends, CSR's results derived by the combined filter are close to GRGS RL03 with the Gaussian filter of 300-km window. The water storage increasing rates determined from CSR's RL05 products in the interior TP, Karakoram Mountain, Qaidam Basin, Hengduan Mountain, and middle Himalayas are 9.7, 6.2, 9.1,-18.6, and-20.2 mm/yr, respectively. These rates from GRGS's RL03 products are 8.6, 5.8, 10.5,-19.3 and-21.4 mm/yr, respectively.

  17. Fungal root symbionts of high-altitude vascular plants in the Himalayas.

    PubMed

    Kotilínek, Milan; Hiiesalu, Inga; Košnar, Jiří; Šmilauerová, Marie; Šmilauer, Petr; Altman, Jan; Dvorský, Miroslav; Kopecký, Martin; Doležal, Jiří

    2017-07-26

    Arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) form symbiotic relationships with plants influencing their productivity, diversity and ecosystem functions. Only a few studies on these fungi, however, have been conducted in extreme elevations and none over 5500 m a.s.l., although vascular plants occur up to 6150 m a.s.l. in the Himalayas. We quantified AMF and DSE in roots of 62 plant species from contrasting habitats along an elevational gradient (3400-6150 m) in the Himalayas using a combination of optical microscopy and next generation sequencing. We linked AMF and DSE communities with host plant evolutionary history, ecological preferences (elevation and habitat type) and functional traits. We detected AMF in elevations up to 5800 m, indicating it is more constrained by extreme conditions than the host plants, which ascend up to 6150 m. In contrast, DSE were found across the entire gradient up to 6150 m. AMF diversity was unimodally related to elevation and positively related to the intensity of AMF colonization. Mid-elevation steppe and alpine plants hosted more diverse AMF communities than plants from deserts and the subnival zone. Our results bring novel insights to the abiotic and biotic filters structuring AMF and DSE communities in the Himalayas.

  18. Rapid Expansion of Glacial Lakes Caused by Climate and Glacier Retreat in the Central Himalayas

    NASA Astrophysics Data System (ADS)

    Wang, W.

    2016-12-01

    Glacial lake outburst floods are among the most serious natural hazards in the Himalayas. Such floods are of high scientific and political importance because they exert trans-boundary impacts on bordering countries. The preparation of an updated inventory of glacial lakes and the analysis of their evolution are an important first step in assessment of hazards from glacial lake outbursts. Here, we report the spatiotemporal developments of the glacial lakes in the Poiqu River basin, a trans-boundary basin in the Central Himalayas, from 1976 to 2010 based on multi-temporal Landsat images. Studied glacial lakes are classified as glacierfed lakes and non-glacier-fed lakes according to their hydrologic connection to glacial watersheds. A total of 119 glacial lakes larger than 0.01 km2 with an overall surface area of 20.22 km2 (±10.8%) were mapped in 2010, with glacier-fed lakes being predominant in both number (69, 58.0%) and area (16.22 km2, 80.2%). We found that lakes connected to glacial watersheds (glacier-fed lakes) significantly expanded (122.1%) from 1976 to 2010, whereas lakes not connected to glacial watersheds (non-glacier-fed lakes) remained stable (+2.8%) during the same period. This contrast can be attributed to the impact of glaciers. Retreating glaciers not only supply meltwater to lakes but also leave space for them to expand. Compared with other regions of the Hindu Kush Himalayas (HKH), the lake area per glacier area in the Poiqu River basin was the highest. This observation might be attributed to the different climate regimes and glacier status along the HKH. The results presented in this study confirm the significant role of glacier retreat on the evolution of glacial lakes.

  19. Photograph taken Eastern Himalayas during MA-9 22 orbit

    NASA Image and Video Library

    1963-05-16

    S63-06429 (15-16 May 1963) --- Photograph taken of the eastern Himalayas, Tibet, China, India and Burma from the Mercury-Atlas 9 capsule taken by astronaut L. Gordon Cooper Jr., during his 22-orbit Mercury-Atlas 9 (MA-9) spaceflight. Photo credit: NASA

  20. Landslide Hazard Zonation and Risk Assessment of Ramganga Basin in Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Wasini Pandey, Bindhy; Roy, Nikhil

    2016-04-01

    The Himalaya being unique in its physiographic, tectonic and climatic characteristics coupled with many natural and man-made factors is inherently prone to landslides. These landslides lead to mass loss of property and lives every year in Himalayas. Hence, Landslide Hazard Zonation is important to take quick and safe mitigation measures and make strategic planning for future development. The present study tries to explore the causes of landslides in Ramganga Basin in Garhwal Himalaya, which has an established history and inherent susceptibility to massive landslides has been chosen for landslide hazard zonation and risk assessment. The satellite imageries of LANDSAT, IRS P6, ASTER along with Survey of India (SOI) topographical sheets formed the basis for deriving baseline information on various parameters like slope, aspect, relative relief, drainage density, geology/lithology and land use/land cover. The weighted parametric method will be used to determine the degree of susceptibility to landslides. Finally, a risk map will be prepared from the landslide probability values, which will be classified into no risk, very low to moderate, high, and very high to severe landslide hazard risk zones. Keywords: Landslides, Hazard Zonation, Risk Assessment

  1. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  2. Altitudinal variation of soil organic carbon stocks in temperate forests of Kashmir Himalayas, India.

    PubMed

    Ahmad Dar, Javid; Somaiah, Sundarapandian

    2015-02-01

    Soil organic carbon stocks were measured at three depths (0-10, 10-20, and 20-30 cm) in seven altitudes dominated by different forest types viz. Populus deltoides, 1550-1800 m; Juglans regia, 1800-2000 m; Cedrus deodara, 2050-2300 m; Pinus wallichiana, 2000-2300 m; mixed type, 2200-2400 m; Abies pindrow, 2300-2800 m; and Betula utilis, 2800-3200 m in temperate mountains of Kashmir Himalayas. The mean range of soil organic carbon (SOC) stocks varied from 39.07 to 91.39 Mg C ha(-1) in J. regia and B. utilis forests at 0-30 cm depth, respectively. Among the forest types, the lowest mean range of SOC at three depths (0-10, 10-20, and 20-30 cm) was observed in J. regia (18.55, 11.31, and 8.91 Mg C ha(-1), respectively) forest type, and the highest was observed in B. utilis (54.10, 21.68, and 15.60 Mg C ha(-1), respectively) forest type. SOC stocks showed significantly (R (2) = 0.67, P = 0.001) an increasing trend with increase in altitude. On average, the percentages of SOC at 0-10-, 10-20-, and 20-30-cm depths were 53.2, 26.5, and 20.3 %, respectively. Bulk density increased significantly with increase in soil depth and decreased with increase in altitude. Our results suggest that SOC stocks in temperate forests of Kashmir Himalaya vary greatly with forest type and altitude. The present study reveals that SOC stocks increased with increase in altitude at high mountainous regions. Climate change in these high mountainous regions will alter the carbon sequestration potential, which would affect the global carbon cycle.

  3. Along strike variation of active fault arrays and their effect on landscape morphology of the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Nennewitz, Markus; Thiede, Rasmus; Bookhagen, Bodo

    2017-04-01

    The location and magnitude of the active deformation of the Himalaya has been debated for decades, but several aspects remain unknown. For instance, the spatial distribution of the deformation and the shortening that ultimately sustains Himalayan topography and the activity of major fault zones are not well constrained neither for the present day and nor for Holocene and Quarternary timescales. Because of these weakly constrained factors, many previous studies have assumed that the structural setting and the fault geometry of the Himalaya is continuous along strike and similar to fault geometries of central Nepal. Thus, the sub-surface structural information from central Nepal have been projected along strike, but have not been verified at other locations. In this study we use digital topographic analysis of the NW Himalaya. We obtained catchment-averaged, normalized steepness indexes of longitudinal river profiles with drainage basins ranging between 5 and 250km2 and analyzed the relative change in their spatial distribution both along and across strike. More specific, we analyzed the relative changes of basins located in the footwall and in the hanging wall of major fault zones. Under the assumption that along strike changes in the normalized steepness index are primarily controlled by the activity of thrust segments, we revealed new insights in the tectonic deformation and uplift pattern. Our results show three different segments along the northwest Himalaya, which are located, from east to west, in Garwhal, Chamba and Kashmir Himalaya. These have formed independent orogenic segments characterized by significant changes in their structural architecture and fault geometry. Moreover, their topographic changes indicate strong variations on fault displacement rates across first-order fault zones. With the help of along- and across-strike profiles, we were able to identify fault segments of pronounced fault activity across MFT, MBT, and the PT2 and identify the

  4. Identification of sources of polycyclic aromatic hydrocarbons based on concentrations in soils from two sides of the Himalayas between China and Nepal.

    PubMed

    Luo, Wei; Gao, Jiajia; Bi, Xiang; Xu, Lan; Guo, Junming; Zhang, Qianggong; Romesh, Kumar Y; Giesy, John P; Kang, Shichang

    2016-05-01

    To understand distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in the Himalayas, 77 soil samples were collected from the northern side of the Himalayas, China (NSHC), and the southern side of the Himalayas, Nepal (SSHN), based on altitude, land use and possible trans-boundary transport of PAHs driven by wind from Nepal to the Tibetan Plateau, China. Soils from the SSHN had mean PAH concentration greater than those from the NSHC. Greater concentrations of PAHs in soils were mainly distributed near main roads and agricultural and urban areas. PAHs with 2-3 rings were the most abundant PAHs in the soils from the Himalayas. Concentrations of volatile PAHs were significantly and positively correlated with altitude. Simulations of trajectories of air masses indicated that distributions of soil PAH concentrations were associated with the cyclic patterns of the monsoon. PAH emissions from traffic and combustion of biomass or coal greatly contributed to concentrations of PAHs in soils from the Himalayas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas.

    PubMed

    Rohrer, Mario; Salzmann, Nadine; Stoffel, Markus; Kulkarni, Anil V

    2013-12-01

    The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance - such as the pollution of the snow cover through black carbon - or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. © 2013 Elsevier B.V. All rights reserved.

  6. Socio-hydrological interactions and dynamics in the western Karakoram, Northern Pakistan - a case study from Upper Hunza

    NASA Astrophysics Data System (ADS)

    Parveen, Sitara; Schmidt, Susanne; Nüsser, Marcus

    2017-04-01

    In semi-arid mountain regions of Central and South Asia, agricultural production generally depends on snow and glacier melt runoff. Even small glacier changes impact water availability and local communities have developed diverse adaptation strategies to upkeep local irrigation systems. Based on an in-depth study of the village Hussaini in Upper Hunza, located in the western Karakoram, Pakistan we investigate the impact of glacier changes on the socio-hydrological system. The usage of a combined methodological approach based on remote sensing data as well as repeated field surveys and interviews with local farmers enables to integrate environmental and socio-economical changes in an integrated analyis. The irrigation system of Hussaini strongly depends on the melt water of the adjoining Ghulkin Glacier. This debris-covered glacier is characterized by fluctuations of its front position and relatively small glacier thinning rates since the end of the 19th century. At various points in time, three different glacial water sources were abstracted for irrigation: water flowing across the lateral moraine, from the glacier terminus or from the glacio-fluvial stream. Glacier dynamics including fluctuations and floods directly impact the status of irrigation and local water availability. Site-specific adaptation strategies to these glacio-hydrological changes, including constructions and readjustments of water channels and intakes, efforts to maintain existing channels despite glacier thinning and corresponding changes in meltwater runoff, introduction of innovative solutions and changes of water management systems, were mapped and analyzed. Whereas some channels desiccated as a result of glacier down-wasting, some others were reactivated by local water users. Due to decreasing water availability and increasing cash crop production, the local population faces massive problems.

  7. Holocene surface-rupturing earthquakes along the Yadong Cross Structure (Himalaya)

    NASA Astrophysics Data System (ADS)

    Ferry, M. A.; Roth, T.; Jean-Francois, R.; Cattin, R.

    2017-12-01

    The Himalayan Arc accommodates 2 cm/yr of shortening from the India-Eurasia collision, mostly along the Main Himalayan Thust. Perpendicularly to the main structures, regional cross structures formed by en échelon grabens and half-grabens mark Quaternary extension from central Tibet to the Himalayas. The Yadong-Gulu Rift system is the most striking one with a total length of 500 km. Its southernmost segment -the 100-km-long Yadong half-graben- entrenches through the Himalayas and forms a 500-to-1500-m-deep asymmetric basin. The average basin surface elevation of 4500 m contrasts with high reliefs of the Jomolhari range that reach 7326 m. They are separated by the N15 Yadong normal fault (also called Jomolhari Fault System, JFS) that forms spectacular triangular facets and affects glacial landforms. Though observed as early as the 1980s, offset moraines were never studied in detail in terms of measured displacement or age determination. Recent efforts from paleoclimate studies yielded a high-resolution framework to identify the various stages of Holocene glacial advances and associated moraine formation. These landforms display specific geomorphometric features recognized regionally (ELA, rugosity, crest freshness) that allow correlating across the various glacial valleys within the Yadong Rift and across similar settings in western Bhutan and eastern Nepal. This serves as a robust basis to place our moraine sequence within the Holocene paleoclimatic record and propose formation ages. By combining satellite images from Sentinel-2 (10 m, visible and NIR), Pléiades (0.5 m, visible) and a Pléiades-derived tri-stereo photogrammetric DEM (1 m), we map the fault trace and affected landforms in details and extract topographic profiles to measure vertical offsets. Paleoclimatic age constraints yield age-vs-displacement measurements along the whole 100-km-long JFS and define a chronology of Holocene deformation events. Within the limits of our observations, we conclude

  8. Snow Cover Distribution and Variation using MODIS in the Himalayas of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Lakshmi, V.; Jain, S. K.; Kansara, P. H.

    2017-12-01

    Snow cover variation plays a big role in river discharge, permafrost distribution and mass balance of glaciers in mountainous watersheds. Spatial distribution and temporal variation of snow cover varies with elevation and climate. We study the spatial distribution and temporal change of snow cover that has been observed using Terra Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A2 version 5) from 2001 to 2016. This MODIS product is based on normalized-difference snow index (NDSI) using band 4 (0.545-0.565 μm) and band 6 (1.628-1.652 μm). The spatial resolution of MOD10A2 is 500 m and composited over 8 days. The study area is the Indian Himalayas, major snow covered part of which is located in the states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Assam and Arunachal Pradesh. Distribution and variation in snow cover is examined on monthly and annual time scales in this study. The temporal changes in snow cover has been compared with terrain attributes (elevation, slope and aspect). The snow cover depletion and accumulation have been observed during April-August and September-March. The snow cover is highest in the March and lowest in the August in the Himachal region. This study will be helpful to identify the amount of water stored in the glaciers of the Indian Himalaya and also important for water resources management of river basins, which are located in this area. Key words: Snow cover, MODIS, NDSI, terrain attribute

  9. Shortening rate of the NW-Himalaya, across the Surin Mastgarh Anticline, Chenab Re-entrant, Jammu

    NASA Astrophysics Data System (ADS)

    Anilkumar, A.

    2016-12-01

    Within the foreland basin of NW Himalaya, a frontal fold, the Surin Mastgarh anticline, SMA extends continuously for about 180 km along strike, between River Beas in the east and River Munawartawi in the west. It extends for such a long distance without an emergent frontal thrust cutting the forelimb of SMA, depicting an unknown geometry with the underlying decollement. In the hinterland of the SMA the Medlicott-Wadia Thrust accommodates shortening at a rate of 11+3.8 mm/yr, Vassallo et al, 2015. Using the excess area method given by Hossack et al, Vassallo et al further estimated a 9+3.2mm/yr shortening rate for SMA in Reasi region. The sum of the total shortening rates between these active structures (Vassallo et al., 2015) however, exceeds the 16-mm/yr convergence rates reported by geodetic studies within Kashmir Himalaya (Schiffman et al, 2013; Kundu et al, 2014). Another parallel study by Gavillot et al, 2016) documents a 4-6 mm/year shortening interpreted from restored cross section taken across the SMA along River Chenab. Since, a discrepancy exits in the previously documented shortening rates for the SMA; we have utilized the morphology of the terraces of Chenab to estimate shortening within the SMA. We surveyed the terraces in the valley using Real Time Kinematic GPS for obtaining topographic profiles. The strath terraces were sampled for dating by Optically Stimulated Luminescence technique. The morphology of the terraces suggests that they are progressively folded and uplifted above the present course of River Chenab. We adapted the method given by Rockwell et al 2008. In this method the anticline is considered obeying a Sine function. The arc-length of the limb, L can be evaluated from two parameters; the horizontal distance of the limb-D and slope of curve at point of inflection point-θ. By using arc line method shortening amount of 124.85m is inferred. Consequently a geological shortening rate of 6.57+1.39 mm/yr is estimated for the SMA using

  10. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision.

    PubMed

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-02-17

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  11. Overestimation of the earthquake hazard along the Himalaya: constraints in bracketing of medieval earthquakes from paleoseismic studies

    NASA Astrophysics Data System (ADS)

    Arora, Shreya; Malik, Javed N.

    2017-12-01

    The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.

  12. Effect of simulated monsoon failure on the carbon balance of mountain forests, Bhutan, eastern Himalayas

    NASA Astrophysics Data System (ADS)

    Wangdi, Norbu; Ahmed, Iftekhar; Zangmo, Norbu; Gratzer, Georg; Jandl, Robert; Schindlbacher, Andreas

    2017-04-01

    Extreme climatic events leading to severe disturbances in ecosystems are expected to increase globally. Such events carry strong potentials for severe reductions or whole losses of ecosystem services. This is particularly true for the Himalayas: they are located in a region forming a tipping element in the Earth's climate system. At a millennial time scale, complete breakdowns of the summer monsoon circulation and a resulting failure of the Indian summer monsoon rains have occurred several times during the last 1000 years. Climate change potentially increases the frequency of such monsoon failures and related mega-droughts. Given the significance of the region, the knowledge on the effects of climate change on forest ecosystem C dynamics is strikingly limited. While the effects of droughts are studied experimentally in Europe and North America, no precipitation manipulation experiments have been carried out in the Himalayas yet. We make use of natural forests with coexisting conifer and broadleaf as well as deciduous and evergreen species at slopes of stark environmental gradients for conducting a replicated large-scale five year throughfall exclosure experiment. We study drought response at individual tree and ecosystem levels. We present the effects of the experimental drought on the ecosystem carbon balance, integrating above- and belowground pools and fluxes such as heterotrophic and autotrophic soil respiration, litter fall and root turnover as well as above- and belowground tree growth. A preliminary assessment indicates that soil microbes were primarily affected during the first three years of simulated drought, whereas trees altered allocation patterns but survived the experimental drought. A detailed analysis will be presented at the conference.

  13. Weathering and monsoonal evolution in the Eastern Himalayas since 13 Ma from detrital geochemistry, Kameng River Section, Arunachal Pradesh

    NASA Astrophysics Data System (ADS)

    Vögeli, Natalie; Van der Beek, Peter; Najman, Yani; Huyghe, Pascale

    2015-04-01

    The link between tectonics, erosion and climate has become an important subject to ongoing research in the last years (Clift et al. (2008), amongst others). The young Himalayan orogeny is the perfect laboratory for its study. The Neogene sedimentary foreland basin of the Himalaya contains a record of tectonics and paleoclimate since Miocene times, within the so called Siwalik Group. Therefore several sedimentary sections within the Himalayan foreland basin along strike in the Himalayan range have been dated and studied regarding exhumation rates, provenance and paleoclimatology (e.g. Quade and Cerling, 1995; Ghosh et al., 2004; Sanyal et al., 2004; van der Beek et al., 2006). Lateral variations have been observed and changes in exhumation rate as well as climate change in the past especially the strengthening of the Asian summer monsoon is still debated. Several paleoclimatological studies in the western Himalaya were conducted (Quade and Cerling, 1995; Najman et al., 2003; Huyghe et al., 2005), but the eastern part of the mountain range remains poorly studied. The Himalaya has a major influence on global and regional climate. The major force driving the evolution of this mountain belt is the India-Asia convergence, nevertheless it has been suggested that the monsoonal climate plays a major role for the erosion and relief pattern (Bookhagen and Burbank, 2006; Clift et al., 2008; Iaffaldano et al., 2011). Exhumation rates in the central Himalayas are more or less constant over last 13 Ma in the order of 1.8 km/myr, whereas exhumation rates in the eastern syntaxis increased post 3 Ma (Chirouze et al., 2013) to reach up to 10km/myr in the recent past. In this study we use a multidisciplinary approach in order to better understand the interplay of monsoon and weathering regime during the Mid Miocene to Pleistocene in the Himalaya. Therefore a sedimentary section in the eastern Himalaya was sampled. Pairs of fine and coarse grained sediment samples were taken in the

  14. Multi-Decadal Comparison between Clean-Ice and Debris-Covered Glaciers in the Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Maurer, J. M.; Rupper, S.

    2014-12-01

    Himalayan glaciers are important natural resources and climatic indicators. Many of these glaciers have debris-covered ablation zones, while others are mostly clean ice. Regarding glacier dynamics, it is expected that debris-covered glaciers will respond differently to atmospheric warming compared to clean ice glaciers. In the Bhutanese Himalaya, there are (1) north flowing clean-ice glaciers with high velocities, likely with large amounts of basal sliding, and (2) south flowing debris-covered glaciers with slow velocities, thermokarst features, and influenced more by the Indian Summer Monsoon. This region, therefore, is ideal for comparing the dynamical response of clean-ice versus debris-covered glaciers to climatic change. In particular, previous studies have suggested the north flowing glaciers are likely adjusting more dynamically (i.e. retreating) in response to climate variations, while the south flowing glaciers are likely experiencing downwasting, with stagnant termini locations. We test this hypothesis by assessing glacier changes over three decades in the Bhutan region using a newly-developed workflow to extract DEMs and orthorectified imagery from both 1976 historical spy satellite images and 2006 ASTER images. DEM differencing for both debris-covered and clean glaciers allows for quantification of glacier surface elevation changes, while orthorectified imagery allows for measuring changes in glacier termini. The same stereo-matching, denoising, and georeferencing methodology is used on both datasets to ensure consistency, while the three decade timespan allows for a better signal to noise ratio compared to studies performed on shorter timescales. The results of these analyses highlight the similarities and differences in the decadal response of clean-ice and debris-covered glaciers to climatic change, and provide insights into the complex dynamics of debris-covered glaciers in the monsoonal Himalayas.

  15. Restoration and evolution of the intermontane Indus molasse basin, Ladakh Himalaya, India

    NASA Astrophysics Data System (ADS)

    Searle, M. P.; Pickering, K. T.; Cooper, D. J. W.

    1990-03-01

    Collision of the Indian Plate with the Karakorum Plate-Lhasa Block during the Eocene (ca. 55-50 Ma) created predominantly a S- or SW-verging thrust culmination across the Himalaya. During the late Tertiary, two molasse basins existed — the Siwalik Bain, formed in the late Miocene to Present on the Indian foreland south of the Himalaya, and the mid-Eocene to late Miocene Indus Basin along the Indus Suture Zone north of the High Himalaya. The Indus Basin is approximately 2000 km long, extending eastwards from Ladakh across South Tibet. A balanced cross-section along the Zanskar River shows a minimum 36 km shortening in the Eocene-?late Miocene molasse, and suggests that the minimum basin width was approximately 60 km in Ladakh. More than 2000 m of post-Eocene alluvial fan, fluvial and fluvio-lacustrine sediments accumulated in the Ladakh sector with petrographies suggesting derivation mainly from the deeply dissected and uplifted northern granodioritic Ladakh batholith (Aptian-Eocene), with only minor amounts of debris derived from the deformed southern Tethyan passive margin. Palaeocurrents show predominant E-W, axis-parallel, sediment transport, with subordinate lateral input paths being preserved. The Indus molasse basin is deformed by numerous, post-Eocene, N-directed backthrusts, many of which cut the entire stratigraphy and, therefore, were active at least into late Tertiary times.

  16. ANTI – CANCER DRUGS FROM U.P. HIMALAYA

    PubMed Central

    Uniyal, M. R.; Tewari, L. C.

    1991-01-01

    Many ayurvedic texts mention arbuda which is considered as an equivalent of cancer. Vagbhata mentions arbuda of mouth, tongue, eyes, nose, breast and uterus. Caraka and Susruta also provide plenty of information on this dreaded group of diseases. Considering the importance of this disease in present day health care, the authors mention in this paper several plants of the Himalaya, used in the treatment of cancer. PMID:22556561

  17. High frequency new particle formation in the Himalayas

    PubMed Central

    Venzac, Hervé; Sellegri, Karine; Laj, Paolo; Villani, Paolo; Bonasoni, Paolo; Marinoni, Angela; Cristofanelli, Paolo; Calzolari, Francescopiero; Fuzzi, Sandro; Decesari, Stefano; Facchini, Maria-Cristina; Vuillermoz, Elisa; Verza, Gian Pietro

    2008-01-01

    Rising air pollution levels in South Asia will have worldwide environmental consequences. Transport of pollutants from the densely populated regions of India, Pakistan, China, and Nepal to the Himalayas may lead to substantial radiative forcing in South Asia with potential effects on the monsoon circulation and, hence, on regional climate and hydrological cycles, as well as to dramatic impacts on glacier retreat. An improved description of particulate sources is needed to constrain the simulation of future regional climate changes. Here, the first evidence of very frequent new particle formation events occurring up to high altitudes is presented. A 16-month record of aerosol size distribution from the Nepal Climate Observatory at Pyramid (Nepal, 5,079 m above sea level), the highest atmospheric research station, is shown. Aerosol concentrations are driven by intense ultrafine particle events occurring on >35% of the days at the interface between clean tropospheric air and the more polluted air rising from the valleys. During a pilot study, we observed a significant increase of ion cluster concentrations with the onset of new particle formation events. The ion clusters rapidly grew to a 10-nm size within a few hours, confirming, thus, that in situ nucleation takes place up to high altitudes. The initiation of the new particle events coincides with the shift from free tropospheric downslope winds to thermal upslope winds from the valley in the morning hours. The new particle formation events represent a very significant additional source of particles possibly injected into the free troposphere by thermal winds. PMID:18852453

  18. Modelling the Crust beneath the Kashmir valley in Northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Mir, R. R.; Parvez, I. A.; Gaur, V. K.; A.; Chandra, R.; Romshoo, S. A.

    2015-12-01

    We investigate the crustal structure beneath five broadband seismic stations in the NW-SE trendingoval shaped Kashmir valley sandwiched between the Zanskar and the Pir Panjal ranges of thenorthwestern Himalaya. Three of these sites were located along the southwestern edge of the valley andthe other two adjoined the southeastern. Receiver Functions (RFs) at these sites were calculated usingthe iterative time domain deconvolution method and jointly inverted with surface wave dispersiondata to estimate the shear wave velocity structure beneath each station. To further test the results ofinversion, we applied forward modelling by dividing the crust beneath each station into 4-6homogeneous, isotropic layers. Moho depths were separately calculated at different piercing pointsfrom the inversion of only a few stacked receiver functions of high quality around each piercing point.These uncertainties were further reduced to ±2 km by trial forward modelling as Moho depths werevaried over a range of ±6 km in steps of 2 km and the synthetic receiver functions matched with theinverted ones. The final values were also found to be close to those independently estimated using theH-K stacks. The Moho depths on the eastern edge of the valley and at piercing points in itssouthwestern half are close to 55 km, but increase to about 58 km on the eastern edge, suggesting thathere, as in the central and Nepal Himalaya, the Indian plate dips northeastwards beneath the Himalaya.We also calculated the Vp/Vs ratio beneath these 5 stations which were found to lie between 1.7 and1.76, yielding a Poisson's ratio of ~0.25 which is characteristic of a felsic composition.

  19. Characterization of Solang valley watershed in western Himalaya for bio-resource conservation using remote sensing techniques.

    PubMed

    Kumar, Amit; Chawla, Amit; Rajkumar, S

    2011-08-01

    The development activities in mountainous region though provide comfort to the human being and enhance the socioeconomic status of the people but create pressure on the bio-resources. In this paper, the current status of land use/landcover and the vegetation communities of the Solang valley watershed in Himachal Pradesh of Indian western Himalaya has been mapped and presented using remote sensing. This watershed area was dominated by alpine and sub-alpine pastures (30.34%) followed by scree slopes (22.34%) and forests (21.06%). Many tree, shrub, and herb species identified in the study area are among the prioritized species for conservation in the Indian Himalayan Region. Thus, scientific interventions and preparation of action plans based on ecological survey are required for conservation of the Solang valley watershed.

  20. Early Cretaceous paleomagnetic and geochronologic results from the Tethyan Himalaya: Insights into the Neotethyan paleogeography and the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Ma, Yiming; Yang, Tianshui; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan

    2016-02-01

    To better understand the Neotethyan paleogeography, a paleomagnetic and geochronological study has been performed on the Early Cretaceous Sangxiu Formation lava flows, which were dated from ~135.1 Ma to ~124.4 Ma, in the Tethyan Himalaya. The tilt-corrected site-mean characteristic remanent magnetization (ChRM) direction for 26 sites is Ds = 296.1°, Is = -65.7°, ks = 51.7, α95 = 4.0°, corresponding to a paleopole at 5.9°S, 308.0°E with A95 = 6.1°. Positive fold and reversal tests prove that the ChRM directions are prefolding primary magnetizations. These results, together with reliable Cretaceous-Paleocene paleomagnetic data observed from the Tethyan Himalaya and the Lhasa terrane, as well as the paleolatitude evolution indicated by the apparent polar wander paths (APWPs) of India, reveal that the Tethyan Himalaya was a part of Greater India during the Early Cretaceous (135.1-124.4 Ma) when the Neotethyan Ocean was up to ~6900 km, it rifted from India sometime after ~130 Ma, and that the India-Asia collision should be a dual-collision process including the first Tethyan Himalaya-Lhasa terrane collision at ~54.9 Ma and the final India-Tethyan Himalaya collision at ~36.7 Ma.

  1. Glaciers bring more precipitation over south slope of the Himalayas and less moisture to the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yang, K.; Lin, C.; Chen, D.

    2017-12-01

    Due to the warming climate, significant retreat of glaciers in the Himalayan region is observed. Thus, it is crucial to understand whether and how the glaciers impact (feedback to) regional climate. Due to lack of observational data, most processes with glaciers are however not well documented. For instance, convergence takes place when summertime upslope flows of warm and moist air masses meet cool and dry katabatic winds over a glacier slope, which may induce local convections and precipitations. This work intends to test this hypothesis according to an experiment conducted with the Weather Research and Forecasting (WRF) Model focusing on the Himalayan region. Three cases are designed for the experiment: a) a normal run as the control case; b) a sensitive run with land use ice/snow replaced by bare ground tundra and the maximum snow albedo set to 0.25; and c) a sensitive run with land use ice/snow replaced by bare ground tundra and no new snowing. According to differences between the control case and both the two sensitive cases, here we found that glaciers overall leads to less precipitation over glacier-covered areas and north of the Himalayas, which can be attributed to the suppressing of cooling glacier surfaces to upslope moist flows. By contrast, a zone of extra more precipitation (that can be up to 200 mm for JJA) is clearly found over the south slope of the Himalayas at elevation of 4-5 km where it meets the glacier terminus, accompanied with the convergence of upslope air masses and katabatic winds. Case b) reflects a smaller such effect when compared to case c), possibly because it takes a portion of energy for ice/snow melting. When it comes to impacts on water vapor transport, glaciers will result approximately 2% less moisture flowing into the Tibetan Plateau.

  2. Glaciers bring more precipitation over south slope of the Himalayas and less moisture to the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman-VanWertz, G. A.; Wernis, R. A.; Kreisberg, N. M.; Upshur, M. A.; Thomson, R. J.; Geiger, F.; Bering, M. S.; Glasius, M.; Offenberg, J. H.; Lewandowski, M.; Liu, Y.; McKinney, K. A.; de Sá, S. S.; Martin, S. T.; Alexander, M. L. L.; Palm, B. B.; Jimenez, J. L.; Brito, J.; Artaxo, P.; Hu, W.; Campuzano-Jost, P.; Day, D.; Viegas, J.; Manzi, A. O.; Oliveira, M. B.; de Souza, R.; Machado, L.; Longo, K.; Hering, S. V.; Goldstein, A. H.

    2016-12-01

    Due to the warming climate, significant retreat of glaciers in the Himalayan region is observed. Thus, it is crucial to understand whether and how the glaciers impact (feedback to) regional climate. Due to lack of observational data, most processes with glaciers are however not well documented. For instance, convergence takes place when summertime upslope flows of warm and moist air masses meet cool and dry katabatic winds over a glacier slope, which may induce local convections and precipitations. This work intends to test this hypothesis according to an experiment conducted with the Weather Research and Forecasting (WRF) Model focusing on the Himalayan region. Three cases are designed for the experiment: a) a normal run as the control case; b) a sensitive run with land use ice/snow replaced by bare ground tundra and the maximum snow albedo set to 0.25; and c) a sensitive run with land use ice/snow replaced by bare ground tundra and no new snowing. According to differences between the control case and both the two sensitive cases, here we found that glaciers overall leads to less precipitation over glacier-covered areas and north of the Himalayas, which can be attributed to the suppressing of cooling glacier surfaces to upslope moist flows. By contrast, a zone of extra more precipitation (that can be up to 200 mm for JJA) is clearly found over the south slope of the Himalayas at elevation of 4-5 km where it meets the glacier terminus, accompanied with the convergence of upslope air masses and katabatic winds. Case b) reflects a smaller such effect when compared to case c), possibly because it takes a portion of energy for ice/snow melting. When it comes to impacts on water vapor transport, glaciers will result approximately 2% less moisture flowing into the Tibetan Plateau.

  3. The climatic implications of the Holocene floods in the north-western Himalaya, India

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Shukla, A. D.; Bartarya, S.; Marh, B.; Juyal, N.

    2016-12-01

    Understanding the growing trend of extreme hydrological events in response to climate variabilities is a major area of interest in the climate change science. More important so as the predictions suggest increased frequency and/or magnitude of floods in the Himalayan region due to more intense/frequent coupling between the Indian Summer Monsoon (ISM) and the mid-latitude westerlies. In view of this, studies pertaining to the geological evidence of extreme hydrological events (paleofloods) become important as these not only extend beyond the instrumental records but ensures better understanding of the pattern of river response to the extreme climate variability.The Satluj River in the north-western Himalaya is infamous for its history of recurrent and devastating floods for which there is no data beyond the historical record. The present study in the middle Satluj valley is a contribution towards expanding the cognizance of the climate and geomorphic processes responsible for the Holocene extreme events. Based on sedimentology and grain size variability a total of 24 flood events of increasing magnitude are identified. The geochemical data indicate that the flood sediments were mostly generated and transported from the Higher Himalayan Crystalline with some contribution from the Trans-Himalaya. The optical chronology allow us to identify four major flood clusters which are dated between 13-11 ka; 8-4 ka; 4-2 ka and < 2 ka respectively. Climatically, these correspond to the cooler/relatively drier climatic condition (weak monsoon) and broadly correlate with the phases of negative Arctic Oscillation (‒AO) and negative North Atlantic Oscillation (-NAO).

  4. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas

    NASA Astrophysics Data System (ADS)

    Wang, Weicai; Gao, Yang; Iribarren Anacona, Pablo; Lei, Yanbin; Xiang, Yang; Zhang, Guoqing; Li, Shenghai; Lu, Anxin

    2018-04-01

    Glacial lake outburst floods (GLOFs) have recently become one of the primary natural hazards in the Himalayas. There is therefore an urgent need to assess GLOF hazards in the region. Cirenmaco, a moraine-dammed lake located in the upstream portion of Zhangzangbo valley, Central Himalayas, has received public attention after its damaging 1981 outburst flood. Here, by combining remote sensing methods, bathymetric survey and 2D hydraulic modeling, we assessed the hazard posed by Cirenmaco in its current status. Inter-annual variation of Cirenmaco lake area indicates a rapid lake expansion from 0.10 ± 0.08 km2 in 1988 to 0.39 ± 0.04 km2 in 2013. Bathymetric survey shows the maximum water depth of the lake in 2012 was 115 ± 2 m and the lake volume was calculated to be 1.8 × 107 m3. Field geomorphic analysis shows that Cirenmaco glacial lake is prone to GLOFs as mass movements and ice and snow avalanches can impact the lake and the melting of the dead ice in the moraine can lower the dam level. HEC-RAS 2D model was then used to simulate moraine dam failure of the Cirenmaco and assess GLOF impacts downstream. Reconstruction of Cirenmaco 1981 GLOF shows that HEC-RAS can produce reasonable flood extent and water depth, thus demonstrate its ability to effectively model complex GLOFs. GLOF modeling results presented can be used as a basis for the implementation of disaster prevention and mitigation measures. As a case study, this work shows how we can integrate different methods to GLOF hazard assessment.

  5. 118-115 Ma magmatism in the Tethyan Himalaya igneous province: Constraints on Early Cretaceous rifting of the northern margin of Greater India

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Sheng; Fan, Wei-Ming; Shi, Ren-Deng; Liu, Xiao-Han; Zhou, Xue-Jun

    2018-06-01

    Understanding the dynamics of Large Igneous Provinces (LIPs) is critical to deciphering processes associated with rupturing continental lithosphere. Microcontinental calving, the rifting of microcontinents from mature continental rifted margins, is particularly poorly understood. Here we present new insights into these processes from geochronological and geochemical analyses of igneous rocks from the Tethyan Himalaya. Early Cretaceous mafic dikes are widely exposed in the eastern and western Tethyan Himalaya, but no such rocks have been reported from the central Tethyan Himalaya. Here we present an analysis of petrological, geochronological, geochemical, and Sr-Nd-Hf-Os isotopic data for bimodal magmatic rocks from the center-east Tethyan Himalaya. Zircon U-Pb dating yields six weighted-mean concordant 206Pb/238U ages of 118 ± 1.2 to 115 ± 1.3 Ma. Mafic rocks display MORB-like compositions with flat to depleted LREE trends, and positive εNd(t) (+2.76 to +5.39) and εHf(t) (+8.0 to +11.9) values. The negative Nb anomalies and relatively high 187Os/188Os ratios (0.15-0.19) of these rocks are related to variable degrees (up to 10%) of crustal contamination. Geochemical characteristics indicate that mafic rocks were generated by variable degrees (2-20%) of partial melting of spinel lherzolites in shallow depleted mantle. Felsic rocks are enriched in Th and LREE, with negative Nb anomalies and decoupling of Nd (εNd(t) = -13.39 to -12.78) and Hf (εHf(t) = -4.8 to -2.0), suggesting that they were derived mainly from garnet-bearing lower continental crust. The geochemical characteristics of the bimodal magmatic associations are comparable to those of associations that form in a continental rift setting. Results indicate that Early Cretaceous magmatism occurred across the whole Tethyan Himalaya, named here as the "Tethyan Himalaya igneous province". Separation of the Tethyan Himalaya from the Indian craton may have occurred during ongoing Early Cretaceous extension

  6. Glaciological and hydrological sensitivities in the Hindu Kush - Himalaya

    NASA Astrophysics Data System (ADS)

    Shea, Joseph; Immerzeel, Walter

    2016-04-01

    Glacier responses to future climate change will affect hydrology at subbasin-scales. The main goal of this study is to assess glaciological and hydrological sensitivities of sub-basins throughout the Hindu Kush - Himalaya (HKH) region. We use a simple geometrical analysis based on a full glacier inventory and digital elevation model (DEM) to estimate sub-basin equilibrium line altitudes (ELA) from assumptions of steady-state accumulation area ratios (AARs). The ELA response to an increase in temperature is expressed as a function of mean annual precipitation, derived from a range of high-altitude studies. Changes in glacier contributions to streamflow in response to increased temperatures are examined for scenarios of both static and adjusted glacier geometries. On average, glacier contributions to streamflow increase by approximately 50% for a +1K warming based on a static geometry. Large decreases (-60% on average) occur in all basins when glacier geometries are instantaneously adjusted to reflect the new ELA. Finally, we provide estimates of sub-basin glacier response times that suggest a majority of basins will experience declining glacier contributions by the year 2100.

  7. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal.

    PubMed

    Pant, Ramesh Raj; Zhang, Fan; Rehman, Faizan Ur; Wang, Guanxing; Ye, Ming; Zeng, Chen; Tang, Handuo

    2018-05-01

    The characterization and assessment of water quality in the head water region of Himalaya is necessary, given the immense importance of this region in sustaining livelihoods of people and maintaining ecological balance. A total of 165 water samples were collected from 55 sites during pre-monsoon, monsoon and post-monsoon seasons in 2016 from the Gandaki River Basin of the Central Himalaya, Nepal. The pH, EC values and TDS concentrations were measured in-situ and the concentrations of major ions (Ca 2+ , Mg 2+ , K + , Na + , Cl - , SO 4 2- , NO 3 - ) and Si were analyzed in laboratory. Correlation matrices, paired t-test, cluster analysis, principal component analysis (PCA), the Piper, Gibbs, and Mixing plots, and saturation index were applied to the measurements for evaluating spatiotemporal variation of the major ions. The results reveal mildly alkaline pH values and the following pattern of average ionic dominance: Ca 2+ >Mg 2+ >Na + >K + for cations and HCO 3 - >SO 4 2 - >Cl - >NO 3 - for anions. The results of PCA, Gibbs plot and the ionic relationships displayed the predominance of geogenic weathering processes in areas with carbonate dominant lithology. This conclusion is supported by geochemically different water facies identified in the Piper plot as Ca-HCO 3 (83.03%), mixed Ca-Mg-Cl (12.73.0%) and Ca-Cl (4.24%). Pronounced spatiotemporal heterogeneity demonstrates the influence of climatic, geogenic and anthropogenic conditions. For instance, the Ca 2+ -SO 4 2- , Mg 2+ -SO 4 2- and Na + -Cl - pairs exhibit strong positive correlation with each other in the upstream region, whereas relatively weak correlation in the downstream region, likely indicating the influence of evapo-crystallization processes in the upstream region. Analyses of the suitability of the water supply for drinking and irrigation reveal that the river has mostly retained its natural water quality but poses safety concern at a few locations. Knowledge obtained through this study can

  8. Evaluation of ASTER GDEM with respect to SRTM for Chandra-Bhaga Basin, Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Pandey, P.

    2011-12-01

    Evaluation of ASTER GDEM with respect to SRTM for Chandra-Bhaga Basin, Indian Himalaya Pratima Pandey, G. Venkataraman Centre of Studies in Resources Engineering, IIT Bombay, Mumbai, India Abstract A digital elevation model (DEM) is a simple representation of a surface in 3 dimensional way with height as the third dimension along with x and y in rectangular axes. DEM has wide applications in various areas like disaster management, hydrology and water management, geomorphology and in urban development. Valuable information about a terrain can be inferred by exploiting a DEM in proper way. Study of DEM becomes very useful for studying mountainous terrain such as Himalaya which is otherwise hard to access due to harsh weather and inaccessibility. DEM can be generated by aerial photos, stereo images from satellites and toposheet. SRTM and ASTER GDEM are DEM which generated from satellite images and covers maximum parts of the earth. Shuttle Radar Topography Mission (SRTM) is a good quality DEM created in 2000 covering the globe between 600 N and 580 S with 3 arc second (90m) resolution. SRTM is available freely for research. ASTER GDEM is recently released global DEM created using ASTER scenes and made available to the world since June 2009 for carrying out research. ASTER GDEM covers land surfaces between 83°N and 83°S with estimated accuracies of 20 meters vertical data and 30 meters for horizontal data. So ASTER GDEM supposed to be more sophisticated. The present study aims at comparing the ASTER GDEM with the SRTM and ASTER DEM and evaluating its relative characteristics for undulating surface and glaciers of Chandra-Bhaga sub-basin situated in Lahual-Spiti district of Himachal Pradesh, Indian Himalaya. Once the characteristics of ASTER GDEM are evaluated for Himalayan terrain it can be used for various studies involving rugged terrain of Himalaya.

  9. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Pieczonka, T.; Benn, D. I.

    2011-04-01

    Mass loss of Himalayan glaciers has wide-ranging consequences such as changing runoff distribution, sea level rise and an increasing risk of glacial lake outburst floods (GLOFs). The assessment of the regional and global impact of glacier changes in the Himalaya is, however, hampered by a lack of mass balance data for most of the range. Multi-temporal digital terrain models (DTMs) allow glacier mass balance to be calculated. Here, we present a time series of mass changes for ten glaciers covering an area of about 50 km2 south and west of Mt. Everest, Nepal, using stereo Corona spy imagery (years 1962 and 1970), aerial images and recent high resolution satellite data (Cartosat-1). This is the longest time series of mass changes in the Himalaya. We reveal that the glaciers have been significantly losing mass since at least 1970, despite thick debris cover. The specific mass loss for 1970-2007 is 0.32 ± 0.08 m w.e. a-1, however, not higher than the global average. Comparisons of the recent DTMs with earlier time periods indicate an accelerated mass loss. This is, however, hardly statistically significant due to high uncertainty, especially of the lower resolution ASTER DTM. The characteristics of surface lowering can be explained by spatial variations of glacier velocity, the thickness of the debris-cover, and ice melt due to exposed ice cliffs and ponds.

  10. No Great Earthquake in the Central Himalaya Since 1505: a Possible Future M>=8.2 event?

    NASA Astrophysics Data System (ADS)

    Bilham, R.; Ambraseys, N.

    2002-12-01

    The re-evaluation of the past several centuries of damaging Himalayan earthquakes has largely decreased their magnitudes and/or rupture areas, with one exception. An earthquake in 1505 that simultaneously destroyed Indian cities near Agra, and Tibetan monasteries between longitudes 78° and 84° appears to be larger than any known hitherto. It occurred exactly one month after a catastrophic earthquake in Kabul, and accounts from the two earthquakes have sometimes been confused. Although the data in Tibetan accounts are sparse the event appears to have had equal violence along the 600 km northern Himalaya and in the northern plains of India. From this we infer a rupture zone possibly twice as long as that associated with recent Himalayan earthquakes, corresponding to the segment that has hitherto been termed the Central Himalayan Gap. An enigmatic observation is that surface ruptures have been exhumed in trench investigations but have not been reported from the past two centuries of 7.8Himalaya. These ruptures are unlikely to have developed aseismically since recent geodetic data indicate that creep processes beneath the Lesser Himalaya are negligible. A possible interpretation of the absence of recent surface ruptures is that they are associated only with the very largest Himalayan earthquakes, such as is inferred to have occurred in 1505. Geodetic data suggest that present convergence between India and southern Tibet of 16-18 mm/year is developing as elastic strain in the Greater Himalaya. Should this have prevailed since 1505 the so-called Central Himalayan Gap may have accumulated as much as 9 m of potential slip, sufficient to drive a Mw=8.2 earthquake. The infancy of systematic trench investigations, and the absence of a long continuous written history in the Himalaya, prevents conclusions about the timing of this inferred future M=8.2 event. No forecast is currently possible, but since convergence adds roughly 1

  11. Downscaling GLOF Hazards: An in-depth look at the Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Rounce, D.; McKinney, D. C.; Lala, J.

    2016-12-01

    The Nepal Himalaya house a large number of glacial lakes that pose a flood hazard to downstream communities and infrastructure. The modeling of the entire process chain of these glacial lake outburst floods (GLOFs) has been advancing rapidly in recent years. The most common cause of failure is mass movement entering the glacial lake, which triggers a tsunami-like wave that breaches the terminal moraine and causes the ensuing downstream flood. Unfortunately, modeling the avalanche, the breach of the moraine, and the downstream flood requires a large amount of site-specific information and can be very labor-intensive. Therefore, these detailed models need to be paired with large-scale hazard assessments that identify the glacial lakes that are the biggest threat and the triggering events that threaten these lakes. This study discusses the merger of a large-scale, remotely-based hazard assessment with more detailed GLOF models to show how GLOF hazard modeling can be downscaled in the Nepal Himalaya.

  12. Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation

    NASA Astrophysics Data System (ADS)

    Priya, P.; Krishnan, R.; Mujumdar, Milind; Houze, Robert A.

    2017-10-01

    Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June-September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basin have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.

  13. Rapid ice-rock avalanches versus gradual glacial processes? Implications for the natural hazard potential in the Karakoram Mountains (Pakistan)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam

    2016-04-01

    There is a growing concern about extreme mass movements from combined ice-rock avalanches in glaciated environments areas in the light of increasing settlement activities in mountains and their forelands. Recent devastating events, such as those from Huascaran (Peru) in 1970 or Kolka (Caucasus) in 2002, have been an eye-opener in terms of the large run-out-distances and their hazard potential. At the same time there is a variety of topographic settings and distinct triggers of ice and rock failures, which leads in turn to a broad spectrum of multi-phase processes, such as the possible propagation of rock-ice-masses onto glacial surfaces with subsequent debris flows. These events are often not directly observable, and a sound interpretation of the sedimentary record is needed. However, the origin and process dynamics of giant debris accumulations in different mountain regions of the world is discussed increasingly controversially. In the last decade a lot of debris accumulations, which were classified formerly as moraines, were reinterpreted as products of mass movements. In this context, the study presented here, focuses on a case example from the upper Chapursan Valley at the Afghan-Pakistan border (Karakoram Range, Pakistan). The Chapursan Valley floor and the adjacent sediment cones are covered with an outstanding hummocky debris landscape over a length of about 10 km and a width of up to 1 km with individual hummocks reaching about 10 m in height. These landforms overlap with the zone of permanent settlement. According to local legends and reports of early travelers in this region, one of the largest settlement concentrations formerly occurred in the upper Chapursan Valley and was destroyed by a natural disaster. Geomorphological field investigations, sedimentological studies, a comparison of satellite images, an analysis of historical data and interviews with the local inhabitants were carried out to unravel the origin of the hummocky terrain. The results show

  14. S-P wave travel time residuals and lateral inhomogeneity in the mantle beneath Tibet and the Himalaya

    NASA Technical Reports Server (NTRS)

    Molnar, P.; Chen, W.-P.

    1984-01-01

    S-P wave travel time residuals were measured in earthquakes in Tibet and the Himalaya in order to study lateral inhomogeneities in the earth's mantle. Average S-P residuals, measured with respect to Jeffrey-Bullen (J-B) tables for 11 earthquakes in the Himalaya are less than +1 second. Average J-B S-P from 10 of 11 earthquakes in Tibet, however, are greater than +1 second even when corrected for local crustal thickness. The largest values, ranging between 2.5 and 4.9 seconds are for five events in central and northern Tibet, and they imply that the average velocities in the crust and upper mantle in this part of Tibet are 4 to 10 percent lower than those beneath the Himalaya. On the basis of the data, it is concluded that it is unlikely that a shield structure lies beneath north central Tibet unless the S-P residuals are due to structural variations occurring deeper than 250 km.

  15. STUDY OF RADIATION EXPOSURE DUE TO RADON, THORON AND THEIR PROGENY IN THE INDOOR ENVIRONMENT OF RAJPUR REGION OF UTTARAKHAND HIMALAYA.

    PubMed

    Kandari, Tushar; Aswal, Sunita; Prasad, Mukesh; Pant, Preeti; Bourai, A A; Ramola, R C

    2016-10-01

    In the present study, the measurements of indoor radon, thoron and their progeny concentrations have been carried out in the Rajpur region of Uttarakhand, Himalaya, India by using LR-115 solid-state nuclear track detector-based time-integrated techniques. The gas concentrations have been measured by single-entry pin-hole dosemeter technique, while for the progeny concentrations, deposition-based Direct Thoron and Radon Progeny Sensor technique has been used. The radiation doses due to the inhalation of radon, thoron and progeny have also been determined by using obtained concentrations of radon, thoron and their progeny in the study area. The average radon concentration varies from 75 to 123 Bq m -3 with an overall average of 89 Bq m -3 The average thoron concentration varies from 29 to 55 Bq m -3 with an overall average of 38 Bq m -3 The total annual effective dose received due to radon, thoron and their progeny varies from 2.4 to 4.1 mSv y -1 with an average of 2.9 mSv y -1 While the average equilibrium factor for radon and its progeny was found to be 0.39, for thoron and its progeny, it was 0.06. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Fluctuating snow line altitudes in the Hunza basin (Karakoram) using Landsat OLI imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, Adina; Rittger, Karl; Brodzik, Mary J.; Painter, Thomas H.; Armstrong, Richard

    2016-04-01

    Snowline altitudes (SLAs) on glacier surfaces are needed for separating snow and ice as input for melt models. When measured at the end of the ablation season, SLAs are used for inferring stable-state glacier equilibrium line altitudes (ELAs). Direct measurements of snowlines are rarely possible particularly in remote, high altitude glacierized terrain, but remote sensing data can be used to separate these snow and ice surfaces. Snow lines are commonly visible on optical satellite images acquired at the end of the ablation season if the images are contrasted enough, and are manually digitized on screen using various satellite band combinations for visual interpretation, which is a time-consuming, subjective process. Here we use Landsat OLI imagery at 30 m resolution to estimate glacier SLAs for a subset of the Hunza basin in the Upper Indus in the Karakoram. Clean glacier ice surfaces are delineated using a standardized semi-automated band ratio algorithm with image segmentation. Within the glacier surface, snow and ice are separated using supervised classification schemes based on regions of interest, and glacier SLAs are extracted on the basis of these areas. SLAs are compared with estimates from a new automated method that relies on fractional snow covered area rather than on band ratio algorithms for delineating clean glacier ice surfaces, and on grain size (instead of supervised classification) for separating snow from glacier ice on the glacier surface. The two methods produce comparable snow/ice outputs. The fSCA-derived glacierized areas are slightly larger than the band ratio estimates. Some of the additional area is the result of better detection in shadows from spectral mixture analysis (true positive) while the rest is shallow water, which is spectrally similar to snow/ice (false positive). On the glacier surface, a thresholding the snow grain size image (grain size > 500μm) results in similar glacier ice areas derived from the supervised

  17. Attenuation characteristics in eastern Himalaya and southern Tibetan Plateau: An understanding of the physical state of the medium

    NASA Astrophysics Data System (ADS)

    Singh, Sagar; Singh, Chandrani; Biswas, Rahul; Mukhopadhyay, Sagarika; Sahu, Himanshu

    2016-08-01

    Attenuation characteristics of the crust in the eastern Himalaya and the southern Tibetan Plateau are investigated using high quality data recorded by Himalayan Nepal Tibet Seismic Experiment (HIMNT) during 2001-2003. The present study aims to provide an attenuation model that can address the physical mechanism governing the attenuation characteristics in the underlying medium. We have studied the Coda wave attenuation (Qc) in the single isotropic scattering model hypothesis, S wave attenuation (Qs) by using the coda normalization method and intrinsic (Qi-1) and scattering (Qsc-1) quality factors by the multiple Lapse Time Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering in a 3-D half space within the frequency range 2-12 Hz. All the values of Q exhibit frequency dependent nature for a seismically active area. At all the frequencies intrinsic absorption is predominant compared to scattering attenuation and seismic albedo (B0) are found to be lower than 0.5. The observed discrepancies between the observed and theoretical models can be corroborated by the depth-dependent velocity and attenuation structure as well as the assumption of a uniform distribution of scatterers. Our results correlate well with the existing geo-tectonic model of the area, which may suggest the possible existence of trapped fluids in the crust or its thermal nature. Surprisingly the underlying cause of high attenuation in the crust of eastern Himalaya and southern Tibet makes this region distinct from its adjacent western Himalayan segment. The results are comparable with the other regions reported globally.

  18. Major ion chemistry in the headwaters of the Yamuna river system:. Chemical weathering, its temperature dependence and CO 2 consumption in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dalai, T. K.; Krishnaswami, S.; Sarin, M. M.

    2002-10-01

    The Yamuna river and its tributaries in the Himalaya constitute the Yamuna River System (YRS). The YRS basin has a drainage area and discharge comparable in magnitude to those of the Bhagirathi and the Alaknanda rivers, which merge to form the Ganga at the foothills of the Himalaya. A detailed geochemical study of the YRS was carried out to determine: (i) the relative significance of silicate, carbonate and evaporite weathering in contributing to its major ion composition; (ii) CO 2 consumption via silicate weathering; and (iii) the factors regulating chemical weathering of silicates in the basin. The results show that the YRS waters are mildly alkaline, with a wide range of TDS, ˜32 to ˜620 mg l-1. In these waters, the abundances of Ca, Mg and alkalinity, which account for most of TDS, are derived mainly from carbonates. Many of the tributaries in the lower reaches of the Yamuna basin are supersaturated with calcite. In addition to carbonic acid, sulphuric acid generated by oxidation of pyrites also seems to be supplying protons for chemical weathering. Silicate weathering in YRS basin contributes, on average, ˜25% (molar basis) of total cations on a basin wide scale. Silicate weathering, however, does not seem to be intense in the basin as evident from low Si/(Na*+K) in the waters, ˜1.2 and low values of chemical index of alteration (CIA) in bed sediments, ˜60. CO 2 drawdown resulting from silicate weathering in the YRS basin in the Himalaya during monsoon ranges between (4 to 7) × 10 5 moles km -2 y -1. This is higher than that estimated for the Ganga at Rishikesh for the same season. The CO 2 consumption rates in the Yamuna and the Ganga basins in the Himalaya are higher than the global average value, suggesting enhanced CO 2 drawdown in the southern slopes of the Himalaya. The impact of this enhanced drawdown on the global CO 2 budget may not be pronounced, as the drainage area of the YRS and the Ganga in the Himalaya is small. The CO 2 drawdown by

  19. Glacial Lake Growth and Associated Glacier Dynamics: Case Study from the Himalayas, Andes, Alaska and New Zealand

    NASA Astrophysics Data System (ADS)

    Binger, D. J.; Haritashya, U. K.; Kargel, J. S.; Shugar, D. H.

    2016-12-01

    Glacial lake growth and associated glacier dynamics: Case study from the Himalayas, Andes, Alaska and New Zealand David J. Binger1, Umesh K. Haritashya1 and Jeffrey S. Kargel21University of Dayton, Dayton, OH 2University of Arizona, Tucson, AZ As a result of climate change most of the world's alpine glaciers are undergoing measurable retreat and dynamic changes. The result of accelerated melting has led to the formation and growth of potentially dangerous glacial lakes. In this study, alpine glaciers and associated lakes from the Himalayas, Andes, Alaska and New Zealand, showing similar geomorphological settings were analyzed to compare differences in regional proglacial lake growth and its relationship with glacier dynamics. Specifically, we analyzed the surface area growth of the lakes, retreat of glacier terminus, changes in glacier velocity, surface temperature and potential glacial lake outburst flood triggers. Using Landsat and ASTER satellite images, Cosi - Corr software, and in house thermal mapping, 10 glaciers were analyzed and compared. Results show a substantial increase in proglacial lake surface area, accelerated velocity and significant calving of the glaciers. Glacier surface temperatures varied by location, with some remaining constant and others 2°C - 4°C increases; although increased surface temperature did not always show a direct correlation with increasing retreat rate. Lakes with high rates of surface area growth paired with glaciers with increased velocity and calving could prove to be unsustainable and lead to an increased risk for glacial lake outburst floods. Overall, result show the changing dynamics of the alpine glaciers in different mountain regions and the growth of their proglacial lakes.

  20. Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin

    NASA Astrophysics Data System (ADS)

    Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.

    2018-02-01

    The Himalayan climate system is sensitive to global warming and climate change. Regional hydrology and the downstream water flow in the rivers of Himalayan origin may change due to variations in snow and glacier melt in the region. This study examines the mid-21st century climate projections over western Himalayas from the Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models under Representative Concentration Pathways (RCP) scenarios (RCP4.5 and RCP8.5). All the global climate models used in the present analysis indicate that the study region would be warmer by mid-century. The temperature trends from all the models studied here are statistically significant at 95% confidence interval. Multi-model ensemble spreads show that there are large differences among the models in their projections of future climate with spread in temperature ranging from about 1.5 °C to 5 °C over various areas of western Himalayas in all the seasons. Spread in precipitation projections lies between 0.3 and 1 mm/day in all the seasons. Major shift in the timing of evaporation maxima and minima is noticed. The GFDL_ESM2G model products have been downscaled to Satluj River basin using the weather research and forecast (WRF) model and impact of climate change on streamflow has been studied. The reduction of precipitation during JJAS is expected to be > 3-6 mm/day in RCP8.5 as compared to present climate. It is expected that precipitation amount shall increase over Satluj basin in future (mid-21st century) The soil and water assessment tool (SWAT) model has been used to simulate the Satluj streamflow for the present and future climate using GFDL_ESM2G precipitation and temperature data as well as the WRF model downscaled data. The computations using the global model data show that total annual discharge from Satluj will be less in future than that in present climate, especially in peak discharge season (JJAS). The SWAT model with downscaled output indicates that during

  1. Employing high resolution satellite imagery to document a rapid glacier surge in the Karakoram - risks and opportunities for hazard assessment

    NASA Astrophysics Data System (ADS)

    Steiner, J. F.; Kraaijenbrink, P. D. A.; Jiduc, S. G.; Immerzeel, W. W.

    2017-12-01

    Glacier surges occur regularly in the Karakoram but their driving mechanisms, recurrence and its relation to climatic change remain unclear. Since many glacier tongues in the region reach to very low elevations, local populations are often exposed to glacial hazards. While the scientific interpretation of hazard is one challenge, adequately communicating results to possibly affected stakeholders poses a different set of hurdles. Using DEMs as well as Landsat imagery in combination with high-resolution Planet imagery we quantify surface elevation changes and flow velocities to document a glacier surge of the Khurdopin glacier, located in a remote valley in Pakistan, in the first half of 2017. Results reveal that an accumulation of ice mass leads to a rapid surge in peaking with velocities above 5000 m a-1 or 0.5 m h-1 during a few days. Velocities increase steadily during a four-year build-up phase prior to the actual surge, while the remaining 15 years of the recurring cycle the glacier is quiescent. It is hypothesized that the surge is mainly initiated as a result of increased pressure melting caused by ice accumulation. However, surface observations show increased crevassing and disappearance of supra glacial ponds, which could have led to increased lubrication of the glacier bed. As a consequence of the surging tongue blocking the main valley a lake has formed and grown continuously in size over two months at a rate of up to 3000 m2 per day. Using satellite imagery with a frequent overpass rate we are able to (a) characterize the nature of glacier surges in the region with greater detail and (b) monitor the surge as well as the formation of the lake as it develops. Having developed a connection to local stakeholders we were able to provide rapid hazard assessments to affected communities, which can be employed to define possible actions. We show the potential of satellite imagery - freely available Landsat in combination with commercial Planet imagery -, which

  2. Modeling and Understanding the Mass Balance of Himalayan Glaciers

    NASA Astrophysics Data System (ADS)

    Rengaraju, S.; Achutarao, K. M.

    2017-12-01

    Changes in glaciers are among the most visible manifestations of a changing climate. Retreating glaciers have significant impacts on global sea-level rise and stream flow of rivers. Modeling the response of glaciers to climate change is important for many reasons including predicting changes in global sea level and water resources. The mass balance of a glacier provides a robust way of ascertaining whether there has been a net loss or gain of ice from the glacier. The mass balance reflects all of the meteorological forcing of the glacier - from the accumulation of snow and the combined losses from ablation and sublimation. The glaciers in the Himalayan region are considered sensitive to climate change and their fate under climate change is critical to the billions of humans that rely on rivers originating from these glaciers. Owing to complex terrain and harsh climate, Himalayan glaciers have historically been poorly monitored and this makes it harder to understand and predict their fate.In this study we model the observed mass balance of Himalayan glaciers using the methods of Radic and Hock (2011) and analyze the response to future changes in climate based on the model projections from the Coupled Model Intercomparison Project Phase-5 (CMIP5; Taylor et al., 2012). We make use of available observations of mass balance from various sources for 14 glaciers across the Himalayas. These glaciers are located across distinct climatic conditions - from the Karakoram and Hindu Kush in the West that are fed by winter precipitation caused by westerly disturbances to the Eastern Himalayas where the summer monsoon provides the bulk of the precipitation. For the historical observed period, we use the ECMWF Re-Analysis (ERA-40) for temperature and VASClimO (GPCC) data at 2.5°x2.5° resolution to calibrate the mass balance model. We evaluate the CMIP5 model simulations for their fidelity in capturing the distinct climatic conditions across the Himalayas in order to select

  3. Analysing Surface Exposure to Climate Dynamics in the Himalayas to Adopt a Planning Framework for Landslide Risk Reduction

    NASA Astrophysics Data System (ADS)

    Tiwari, A.

    2017-12-01

    Himalayas rank first in the inventory of most densely populated and congested high altitude mountain regions of the planet. The region is mostly characterized by inadequate infrastructure, lack of mitigation tools along with constraints of terrain undermining the carrying capacity and resilience of urban ecosystems. Moreover, climate change has increased vulnerability of poor and marginalized population living in rapidly urbanizing mountain towns to increased frequency and severity of risks from extreme weather events. Such events pose multifold threat by easily translating to hazards, without the ability to respond and mitigate. Additionally, the recent extreme climate dynamics such as rainfall patterns have influenced the natural rate of surface/slope processes in the Himalaya. The aim of the study was to analyze the extent of interaction between climate dynamics and upland surface to develop participatory planning framework for landslide risk reduction using Integral Geographic Information System (integral GIS). At this stage, the study is limited to only rainfall triggered landslides (RTL). The study region lies in the middle Himalayan range (Himachal). Research utilized terrain analysis tools in integral GIS and identified risk susceptible surface without: 1.adding to its (often) complex fragmentation, and 2. Interference in surface/slope processes. Analysis covered most of the relevant surface factors including geology, slope instability, infrastructure development, natural and urban drainage system, land-cover and land-use as well. The outcome included an exposure-reduced model of existing terrain and the surface-process accommodated by it, with the use of local technical tools available among the poor and fragile mountain community. The final participatory planning framework successfully harmonized people's perception and adaptation knowledge, and incorporated priorities of local authorities. This research is significant as it rises above the fundamental

  4. Assessment of freshwater ecosystem services in the Beas River Basin, Himalayas region, India

    NASA Astrophysics Data System (ADS)

    Ncube, Sikhululekile; Beevers, Lindsay; Adeloye, Adebayo J.; Visser, Annie

    2018-06-01

    River systems provide a diverse range of ecosystem services, examples include: flood regulation (regulating), fish (provisioning), nutrient cycling (supporting) and recreation (cultural). Developing water resources through the construction of dams (hydropower or irrigation) can enhance the delivery of provisioning ecosystem services. However, these hydrologic alterations result in reductions in less tangible regulating, cultural and supporting ecosystem services. This study seeks to understand how multiple impoundments, abstractions and transfers within the upper Beas River Basin, Western Himalayas, India, are affecting the delivery of supporting ecosystem services. Whilst approaches for assessing supporting ecosystem services are under development, the immediate aim of this paper is to set out a framework for their quantification, using the macroinvertebrate index Lotic-Invertebrate Index for Flow Evaluation (LIFE). LIFE is a weighted measure of the flow velocity preferences of the macroinvertebrate community. Flow records from multiple gauging stations within the basin were used to investigate flow variability at seasonal, inter-annual and decadal time scales. The findings show that both mean monthly and seasonal cumulative flows have decreased over time in the Beas River Basin. A positive hydroecological relationship between LIFE and flow was also identified, indicative of macroinvertebrate response to seasonal changes in the flow regime. For example, high LIFE scores (7.7-9.3) in the winter and summer seasons indicate an abundance of macroinvertebrates with a preference for high flows; this represents a high potential for instream supporting ecosystem services delivery. However, further analysis is required to understand these hydroecological interactions in the study basin and the impact on instream supporting ecosystem services delivery.

  5. Changing monsoon and midlatitude circulation interactions over the Western Himalayas and possible links to occurrences of extreme precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priya, P.; Krishnan, R.; Mujumdar, Milind

    Historical rainfall records reveal that the frequency and intensity of extreme precipitation events, during the summer monsoon (June to September) season, have significantly risen over the Western Himalayas (WH) and adjoining upper Indus basin since 1950s. Using multiple datasets, the present study investigates the possible coincidences between an increasing trend of precipitation extremes over WH and changes in background flow climatology. The present findings suggest that the combined effects of a weakened southwest monsoon circulation, increased activity of transient upper-air westerly troughs over the WH region, enhanced moisture supply by southerly winds from the Arabian Sea into the Indus basinmore » have likely provided favorable conditions for an increased frequency of certain types of extreme precipitation events over the WH region in recent decades.« less

  6. Glaciers of Asia

    USGS Publications Warehouse

    Williams, Richard S.; Ferrigno, Jane G.

    2010-01-01

    -glacier systems of the world including the Himalaya, Karakorum, Tien Shan and Altay mountain ranges. The glaciers are widely scattered and cover an area of about 59,425 km2. The mountain glaciers may be classified as maritime, subcontinental or extreme continental. In Afghanistan, more than 3,000 small glaciers occur in the Hindu Kush and Pamir mountains. Most glaciers occur on north-facing slopes shaded by mountain peaks and on east and southeast slopes that are shaded by monsoon clouds. The glaciers provide vital water resources to the region and cover an area of about 2,700 km2. Glaciers of northern Pakistan are some of the largest and longest mid-latitude glaciers on Earth. They are located in the Hindu Kush, Himalaya, and Karakoram mountains and cover an area of about 15,000 km2. Glaciers here are important for their role in providing water resources and their hazard potential. The glaciers in India are located in the Himalaya and cover about 8,500 km2. The Himalaya contains one of the largest reservoirs of snow and ice outside the polar regions. The glaciers are a major source of fresh water and supply meltwater to all the rivers in northern India, thereby affecting the quality of life of millions of people. In Nepal, the glaciers are located in the Himalaya as individual glaciers; the glacierized area covers about 5,324 km2. The region is the highest mountainous region on Earth and includes the Mt. Everest region. Glaciers in the Bhutan Himalaya have a total area of about 1,317 km2. Many recent glacier studies are focused on glacier lakes that have the potential of generating dangerous glacier lake outburst floods. Research on the glaciers of the middle-latitude, high-mountain glaciers of Asia has also focused on the information contained in the ice cores from the glaciers. This information helps in the reconstruction of paleoclimatic records, and the computer modeling of global climate change.

  7. Floristic Diversity and Distribution Pattern of Plant Communities along Altitudinal Gradient in Sangla Valley, Northwest Himalaya

    PubMed Central

    Rana, J. C.; Devi, Usha; Randhawa, S. S.; Kumar, Rajesh

    2014-01-01

    Himalayas are globally important biodiversity hotspots and are facing rapid loss in floristic diversity and changing pattern of vegetation due to various biotic and abiotic factors. This has necessitated the qualitative and quantitative assessment of vegetation here. The present study was conducted in Sangla Valley of northwest Himalaya aiming to assess the structure of vegetation and its trend in the valley along the altitudinal gradient. In the forest and alpine zones of the valley, 15 communities were recorded. Study revealed 320 species belonging to 199 genera and 75 families. Asteraceae, Rosaceae, Apiaceae, and Ranunculaceae were dominant. Among genera, Artemisia followed by Polygonum, Saussurea, Berberis, and Thalictrum were dominant. Tree and shrub's density ranged from 205 to 600 and from 105 to 1030 individual per hectare, respectively, whereas herbs ranged from 22.08 to 78.95 individual/m2. Nearly 182 species were native to the Himalaya. Maximum altitudinal distribution of few selected climate sensitive species was found to be highest in northeast and north aspects. This study gives an insight into the floristic diversity and community structure of the fragile Sangla Valley which was hitherto not available. PMID:25383363

  8. Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Yang, Tianshui; Ma, Yiming; Bian, Weiwei; Jin, Jingjie; Zhang, Shihong; Wu, Huaichun; Li, Haiyan; Yang, Zhenyu; Ding, Jikai

    2015-10-01

    To better constrain the Early Cretaceous paleogeographic position of the Tethyan Himalaya and the India-Asia collision process, a paleomagnetic study was performed on the Lakang Formation lava flows in the Cuona area in the southeastern Tethyan Himalaya. Stepwise thermal and alternating field demagnetizations successfully isolated reliable characteristic remanent magnetization (ChRM) directions that include antipodal dual polarities and pass positive fold tests at the 99% confidence level and reversal tests at 95% confidence level, indicating prefolding primary magnetizations. The distribution patterns of ChRM directions from the Lakang Formation lava flows are consistent with young lava flows at similar latitudes, suggesting that secular variation has likely been averaged out. The tilt-corrected site-mean direction for 31 sites is D = 261.6 °, I = - 68.5 ° with α95 = 3.6 °, which provides a paleopole at 26.8°S, 315.2°E (A95 = 5.7 °), corresponding to a paleolatitude of 52.2 ° ± 5.7 °S for the study area. Comparison of the paleolatitude observed from the Lakang Formation lava flows with that expected from the apparent polar wander paths of India at 130 Ma show a paleolatitude difference of ∼2.1° (∼230 km), indicating that neither a great north-south continental crustal shortening occurred between the Indian craton and the Tethyan Himalaya after 130 Ma, nor that a wide ocean separated them at that time. Comparison with reliable Cretaceous-Paleocene paleomagnetic results observed from the Tethyan Himalaya and the Lhasa terrane indicates that the latitudinal width of the Neo-Tethyan Ocean could have been up to ∼7000 km at 134-130 Ma and an extension should have existed between the Indian craton and the Tethyan Himalaya during the Late Cretaceous and Paleocene. Furthermore, reliable paleomagnetic results suggest that the India-Asia collision was a dual-collision process, consisting of a first collision of the Tethyan Himalaya with the Lhasa terrane

  9. Erosion in southern Tibet shut down at ∼10 Ma due to enhanced rock uplift within the Himalaya

    PubMed Central

    Tremblay, Marissa M.; Fox, Matthew; Schmidt, Jennifer L.; Tripathy-Lang, Alka; Wielicki, Matthew M.; Harrison, T. Mark; Zeitler, Peter K.; Shuster, David L.

    2015-01-01

    Exhumation of the southern Tibetan plateau margin reflects interplay between surface and lithospheric dynamics within the Himalaya–Tibet orogen. We report thermochronometric data from a 1.2-km elevation transect within granitoids of the eastern Lhasa terrane, southern Tibet, which indicate rapid exhumation exceeding 1 km/Ma from 17–16 to 12–11 Ma followed by very slow exhumation to the present. We hypothesize that these changes in exhumation occurred in response to changes in the loci and rate of rock uplift and the resulting southward shift of the main topographic and drainage divides from within the Lhasa terrane to their current positions within the Himalaya. At ∼17 Ma, steep erosive drainage networks would have flowed across the Himalaya and greater amounts of moisture would have advected into the Lhasa terrane to drive large-scale erosional exhumation. As convergence thickened and widened the Himalaya, the orographic barrier to precipitation in southern Tibet terrane would have strengthened. Previously documented midcrustal duplexing around 10 Ma generated a zone of high rock uplift within the Himalaya. We use numerical simulations as a conceptual tool to highlight how a zone of high rock uplift could have defeated transverse drainage networks, resulting in substantial drainage reorganization. When combined with a strengthening orographic barrier to precipitation, this drainage reorganization would have driven the sharp reduction in exhumation rate we observe in southern Tibet. PMID:26371325

  10. Species Specific Drought Stress and Temperature Induced Growth Decline in Semi-arid Region of Trans-Himalaya in Central Nepal

    NASA Astrophysics Data System (ADS)

    Tiwari, A.; Zhe-Kun, Z.

    2016-12-01

    Investigations of growth-climate relationships are important to understand the response of forest growth and the dendroclimatic reconstructions (Briffa et al., 1998a; Tessier et al., 1997). This also provides crucial information to assess future forest productivity, growth performance, vegetation dynamics and tree species distributions (Thuiller et al., 2005; Tardif et al., 2006). We explored growth climate response of Abies spectabilis, Betula utilis and Picea smithiana at different elevations of same mountain slope from the semi-arid trans-Himalayan zone of central Himalaya (Mustang, Nepal) in order to observe their drought tolerance. The ring width indices were correlated with the instrumental data (1970-2013 AD) from the nearest climate station to observe the growth climate response. Spring season (March-May) moisture was found to be highly critical for radial growth in all species. Further, we compared the basal area increment (BAI) trend among different species as BAI is the strong indicator of growth trend over the conventional detrended tree ring width indices. Our results demonstrated that BAI is rapidly declining for Betula utilis among three species irrespective of being distributed comparatively to the moist region in the mountain indicating that drought tolerance is highly species specific, as an early warning signal of climate change. Since the global climate models disagree on predicting precipitation intensity and seasonality in the coming decades, and more extreme precipitation events are likely worldwide (IPCC 2013), the least drought tolerant species like birch would be threatened to their survival and might decline due to warming induced drought stress which is already seen with rapid growth decline in the recent decades.

  11. Chemical characteristics of soluble aerosols over the central Himalayas: insights into spatiotemporal variations and sources.

    PubMed

    Tripathee, Lekhendra; Kang, Shichang; Rupakheti, Dipesh; Cong, Zhiyuan; Zhang, Qianggong; Huang, Jie

    2017-11-01

    In order to investigate the spatial and temporal variations of aerosols and its soluble chemical compositions of the data gap zone in the central Himalayan region, aerosol samples were collected at four sites. The sampling location were characterized by four different categories, such as urban (Bode), semi-urban site in the northern Indo-Gangetic Plain (Lumbini), rural (Dhunche), and semiarid rural (Jomsom). A total of 230 aerosol samples were collected from four representative sites for a yearlong period and analyzed for water-soluble inorganic ions (WSIIs). The annual average aerosol mass concentration followed the sequence as Bode (238.24 ± 162.24 μg/m 3 )> Lumbini (161.14 ± 105.95 μg/m 3 )> Dhunche (112.40 ± 40.30 μg/m 3 )> Jomsom (78.85 ± 34.28 μg/m 3 ), suggesting heavier particulate pollution in the urban and semi-urban sites. The total soluble ions contributed to 12.61-28.19% of TSP aerosol mass. The results revealed that SO 4 2- and NO 3 - were the major anion and Ca 2+ and NH 4 + were the major cation influencing the aerosol composition over the central Himalayas. Calcium played a major role in neutralizing aerosol acidity followed by NH 4 + at all the sites. The major compound of aerosol was (NH 4 ) 2 SO 4 and NH 4 HSO 4 in the central Himalayas. Clear seasonality was observed at three observation sites, with higher concentrations during non-monsoon (dry periods) and lower during monsoon (wet period), suggesting washing out of aerosol particles by heavy precipitation during monsoon. In contrast, semiarid sites did not show the clear seasonal trend due to limited precipitation. Stationary sources were predominant over the mobile sources mostly in the remote sites. Principal component analysis confirmed that the major sources of WSIIs in the region were industrial emissions, fossil fuel and biomass burning, and crustal fugitive dusts. Nevertheless, transboundary aerosol transport over the region from polluted cities from south Asia

  12. Do the western Himalayas defy global warming?

    NASA Astrophysics Data System (ADS)

    Yadav, Ram R.; Park, Won-Kyu; Singh, Jayendra; Dubey, Bhasha

    2004-09-01

    Observational records and reconstructions from tree rings reflect premonsoon (March to May) temperature cooling in the western Himalaya during the latter part of the 20th century. A rapid decrease of minimum temperatures at around three times higher rate, as compared to the rate of increase in maximum temperatures found in local climate records is responsible for the cooling trend in mean premonsoon temperature. The increase of the diurnal temperature range is attributed to large scale deforestation and land degradation in the area and shows the higher influence of local forcing factors on climate in contrast to the general trend found in higher latitudes of the northern Hemisphere.

  13. Transverse tectonic structural elements across Himalayan mountain front, eastern Arunachal Himalaya, India: Implication of superposed landform development on analysis of neotectonics

    NASA Astrophysics Data System (ADS)

    Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro

    2017-04-01

    Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the

  14. Role of snow and glacier melt in controlling river hydrology in Liddar watershed (western Himalaya) under current and future climate

    NASA Astrophysics Data System (ADS)

    Jeelani, G.; Feddema, Johannes J.; van der Veen, Cornelis J.; Stearns, Leigh

    2012-12-01

    Snowmelt and icemelt are believed to be important regulators of seasonal discharge of Himalayan rivers. To analyze the long term contribution of snowmelt and glacier/icemelt to river hydrology we apply a water budget model to simulate hydrology of the Liddar watershed in the western Himalaya, India for the 20th century (1901-2010) and future IPCC A1B climate change scenario. Long term (1901-2010) temperature and precipitation data in this region show a warming trend (0.08°C yr-1) and an increase in precipitation (0.28 mm yr-1), with a significant variability in seasonal trends. In particular, winter months have undergone the most warming, along with a decrease in precipitation rates; precipitation has increased throughout the spring. These trends have accelerated the melting and rapid disappearance of snow, causing a seasonal redistribution in the availability of water. Our model results show that about 60% of the annual runoff of the Liddar watershed is contributed from the snowmelt, while only 2% is contributed from glacier ice. The climate trend observed from the 1901 to 2010 time period and its impact on the availability of water will become significantly worse under the IPCC climate change scenarios. Our results suggest that there is a significant shift in the timing and quantity of water runoff in this region of the Himalayas due to snow distribution and melt. With greatly increased spring runoff and its reductions in summer potentially leading to reduced water availability for irrigation agriculture in summer.

  15. Exploring the patterns of alpine vegetation of Eastern Bhutan: a case study from the Merak Himalaya.

    PubMed

    Jamtsho, Karma; Sridith, Kitichate

    2015-01-01

    A survey was conducted from March to September 2012 along the altitudinal gradient of the Jomokungkhar trail in the Merak Himalaya of Sakteng Wildlife Sanctuary to study the floristic compositions and the patterns of alpine vegetation of Eastern Bhutan. The vegetation of the sampled plots is classified into five types of communities based on the hierarchical cluster analysis at similarity index 63% viz., (1) Riverine Community; (2) Abies-Rhododendron Woodland Community; (3) Juniperus Scrub Community; (4) Rhododendron Krummholz and (5) Alpine Meadow, based on the floristic compositions. In addition, it was noticed that the fragile alpine environment of the Merak Himalaya has high plant diversity and important plants that are susceptible to the anthropogenic pressures.

  16. The impact of snow and glaciers on meteorological variables in the Khumbu Valley, Nepalese Himalaya.

    NASA Astrophysics Data System (ADS)

    Potter, E.; Orr, A.; Willis, I.

    2017-12-01

    Previous observational studies have suggested that snow and glaciers have a big impact on local meteorological variables in the Himalayas, in particular affecting near surface temperature and the localised wind system. Understanding the impact of changing surface conditions on these systems and is crucial in improving future predictions of glacier melt and precipitation in the Himalayas. However, the mechanisms that control the local meteorology remain poorly understood due to the lack of in-situ data and detailed modelling studies. To investigate these mechanisms, we run the Weather Research and Forecasting (WRF) model at kilometre scale resolution for one month during the monsoon over the Khumbu Valley, Nepalese Himalaya. The model is run with and without snow and glacier coverage at the surface. The impact of adding debris cover into the model is also investigated. In the control run with snow and ice, thermally-driven near-surface winds are found to travel up valley during the day except over the glacier slopes. When the snow and ice is removed from the model, the up valley winds extend over the entire slope. Removal of the snow and ice also results in changes to cloud cover and hydrometeors. A momentum budget approach is used to fully understand the mechanisms that maintain the localised wind system, e.g. to determine the contributions from local forcing or synoptic forcing.

  17. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE PAGES

    Zhang, Rudong; Wang, Hailong; Qian, Yun; ...

    2015-06-08

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about

  18. Quantifying sources, transport, deposition, and radiative forcing of black carbon over the Himalayas and Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rudong; Wang, Hailong; Qian, Yun

    Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. In this study, we use the Community Atmosphere Model version 5 (CAM5) with a newly developed source-tagging technique, nudged towards the MERRA meteorological reanalysis, to characterize the fate ofmore » BC particles emitted from various geographical regions and sectors. Evaluated against observations over the HTP and surrounding regions, the model simulation shows a good agreement in the seasonal variation in the near-surface airborne BC concentrations, providing confidence to use this modeling framework for characterizing BC source–receptor relationships. Our analysis shows that the relative contributions from different geographical regions and source sectors depend on season and location in the HTP. The largest contribution to annual mean BC burden and surface deposition in the entire HTP region is from biofuel and biomass (BB) emissions in South Asia, followed by fossil fuel (FF) emissions from South Asia, then FF from East Asia. The same roles hold for all the seasonal means except for the summer, when East Asia FF becomes more important. For finer receptor regions of interest, South Asia BB and FF have the largest impact on BC in the Himalayas and central Tibetan Plateau, while East Asia FF and BB contribute the most to the northeast plateau in all seasons and southeast plateau in the summer. Central Asia and Middle East FF emissions have relatively more important contributions to BC reaching the northwest plateau, especially in the summer. Although local emissions only contribute about

  19. Evolution of earthquake-triggered landslides in the Kashmir Himalaya, northern Pakistan

    USGS Publications Warehouse

    Khattak, G.A.; Owen, L.A.; Kamp, U.; Harp, E.L.

    2010-01-01

    The influence of the 08 October 2005 Kashmir earthquake and subsequent snow melt and monsoon rainfall on slope stability was evaluated using repeat photography in the Kashmir Himalaya of northern Pakistan. Sixty-eight landslide-affected locations were selected and photographed in November 2005, May/June 2006, June 2007, and August 2007 to evaluate all potential geomorphic changes. Eighty percent of the locations showed no or very little change, 11% of the locations showed a partial vegetation recovery on the slopes, while 9% showed an increase in the landslide area. All those locations that showed an increase in landsliding were located along rivers and/or roads. The small change in landslide extent is remarkable given that the region experienced one of the heaviest monsoon seasons in the last decade and is counter to earlier predictions of accelerated slope erosion by landsliding in the immediate years following the earthquake. Extensive fissures and ground cracks at many localities, however, still present a potential of future landsliding under wetter conditions. ?? 2009 Elsevier B.V. All rights reserved.

  20. Seismotectonics of the trans-Himalaya, Eastern Ladakh, India: constraints from Moment Tensor Solutions of local earthquake data

    NASA Astrophysics Data System (ADS)

    Paul, A.

    2017-12-01

    The eastern Ladakh-Karakoram zone, the northwest part of the Trans-Himalayan belt, bears signature of this collisional process in the form of suture zones, exhumed blocks that underwent deeper subduction and also intra-continental fault zones. The seismotectonic scenario of northwest part of India-Asia collision zone is studied by analyzing the local earthquake data (M 1.4-4.3) recorded by a broadband seismological network consisting of 14 stations. Focal Mechanism Solution (FMS) of 13 selected earthquakes were computed through waveform inversion of three-component broadband records. Depth distribution of the earthquakes and FMS of local earthquakes obtained through waveform inversion reveal the kinematics of the major fault zones present in Eastern Ladakh. The most pronounced cluster of seismicity is observed in the Karakoram Fault (KF) zone up to a depth of 65 km (Fig.1). The FMS reveals transpressive environment with the strike of inferred fault plane roughly parallel to the KF. It is inferred that the KF at least penetrates up to the lower crust and is a manifestation of active under thrusting of Indian lower crust beneath Tibet. Two clusters of micro seismicity is observed at a depth range of 5-20 km at north western and southeastern fringe of the Tso Morari gneiss dome which can be correlated to the activities along the Zildat fault and Karzok fault respectively. The FMSs estimated for representative earthquakes show thrust fault solutions for the Karzok fault and normal fault solution for the Zildat fault. It is inferred that the Zildat fault is acting as detachment, facilitating the exhumation of the Tso Morari dome. On the other hand, the Tso Morari dome is underthrusting the Karzok ophiolite on its southern margin along the Karzok fault, due to gravity collapse.

  1. Seasonal Changes in Bird Species and Feeding Guilds along Elevational Gradients of the Central Himalayas, Nepal

    PubMed Central

    Katuwal, Hem Bahadur; Basnet, Khadga; Khanal, Bhaiya; Devkota, Shiva; Rai, Sanjeev Kumar; Gajurel, Jyoti Prasad; Scheidegger, Christoph; Nobis, Michael P.

    2016-01-01

    The Himalayas are a global hotspot for bird diversity with a large number of threatened species, but little is known about seasonal changes in bird communities along elevational gradients in this region. We studied the seasonality of bird diversity in six valleys of the Central Himalayas, Nepal. Using 318 plots with a 50 m radius, located from 2200 to 3800 m a.s.l., and repeated sampling during different seasons (mainly pre-monsoon, monsoon, and post-monsoon), we analyzed 3642 occurrences of 178 species. Birds classified in the literature as resident were more species-rich than migratory birds (140 vs. 38 species). In all six valleys and within the studied elevation range, species richness of all birds showed a peak at mid-elevation levels of 2600 or 3000 m a.s.l. Similar patterns were found for the most species-rich feeding guilds of insectivores (96 species) and omnivores (24 species), whereas the species richness of herbivores (37 species including frugivores) increased towards higher elevations. Among these feeding guilds, only species richness of insectivores showed pronounced seasonal changes with higher species numbers during post-monsoon season. Similarly, individual bird species showed distinct spatio-temporal distribution patterns, with transitions from species dominated by elevational differences to those characterized by strong seasonal changes. In an era of climate change, the results demonstrate that individual bird species as well as feeding guilds might greatly differ in their responses to climate warming and changes in the seasonality of the precipitation regime, two aspects of climate change which should not be analyzed independently. PMID:27367903

  2. A modern pollen-climate dataset from the Darjeeling area, eastern Himalaya: Assessing its potential for past climate reconstruction

    NASA Astrophysics Data System (ADS)

    Ghosh, Ruby; Bruch, Angela A.; Portmann, Felix; Bera, Subir; Paruya, Dipak Kumar; Morthekai, P.; Ali, Sheikh Nawaz

    2017-10-01

    Relying on the ability of pollen assemblages to differentiate among elevationally stratified vegetation zones, we assess the potential of a modern pollen-climate dataset from the Darjeeling area, eastern Himalaya, in past climate reconstructions. The dataset includes 73 surface samples from 25 sites collected from a c. 130-3600 m a.s.l. elevation gradient along a horizontal distance of c. 150 km and 124 terrestrial pollen taxa, which are analysed with respect to various climatic and environmental variables such as mean annual temperature (MAT), mean annual precipitation (MAP), mean temperature of coldest quarter (MTCQ), mean temperature of warmest quarter (MTWQ), mean precipitation of driest quarter (MPDQ), mean precipitation of wettest quarter (MPWQ), AET (actual evapotranspiration) and MI (moisture index). To check the reliability of the modern pollen-climate relationships different ordination methods are employed and subsequently tested with Huisman-Olff-Fresco (HOF) models. A series of pollen-climate parameter transfer functions using weighted-averaging regression and calibration partial least squares (WA-PLS) models are developed to reconstruct past climate changes from modern pollen data, and have been cross-validated. Results indicate that three of the environmental variables i.e., MTCQ, MPDQ and MI have strong potential for past climate reconstruction based on the available surface pollen dataset. The potential of the present modern pollen-climate relationship for regional quantitative paleoclimate reconstruction is further tested on a Late Quaternary fossil pollen profile from the Darjeeling foothill region with previously reconstructed and quantified climate. The good agreement with existing data allows for new insights in the hydroclimatic conditions during the Last glacial maxima (LGM) with (winter) temperature being the dominant controlling factor for glacial changes during the LGM in the eastern Himalaya.

  3. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    NASA Astrophysics Data System (ADS)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  4. Braving the attitude of altitude: Caragana jubata at work in cold desert of Himalaya

    PubMed Central

    Bhardwaj, Pardeep Kumar; Kapoor, Ritu; Mala, Deep; Bhagwat, Geetika; Acharya, Vishal; Singh, Anil Kumar; Vats, Surender Kumar; Ahuja, Paramvir Singh; Kumar, Sanjay

    2013-01-01

    The present work was conducted to understand the basis of adaptation in Caragana jubata in its niche environment at high altitude cold desert of Himalaya. Molecular data showed predominance of genes encoding chaperones and those involved in growth and development at low temperature (LT), a major cue operative at high altitude. Importantly, these genes expressed in C. jubata in its natural habitat. Their homologues in Arabidopsis thaliana, Oryza sativa, and Glycine max did not exhibit similar trend of gene expression at LT. Constitutive expression and a quick up-regulation of the above genes suggested the ability of C. jubata to adjust its cellular machinery to maintain growth and development in its niche. This was reflected in LT50 (the temperature at which 50% injury occurred) and LT mediated photosynthetic acclimatory response. Such molecular and physiological plasticity enables C. jubata to thrive in the high altitude cold desert of Himalayas. PMID:23289064

  5. Vegetation Response to Changing Climate - A Case Study from Gandaki River Basin in Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Panthi, J., Sr.; Kirat, N. H.; Dahal, P.

    2015-12-01

    The climate of the Himalayan region is changing rapidly - temperature is increasingly high and rainfall has become unpredictable. IPCC predicts that average annual mean temperature over the Asian land mass, including the Himalayas, will increase by about 3°C by the 2050s and about 5°C by the 2080s and the average annual precipitation in this region will increase by 10-30% by 2080s. Climate and the human activities can influence the land cover status and the eco-environmental quality. There are enough evidences that there is strong interaction between climate variability and ecosystems. A project was carried out in Gandaki river basin in central Nepal to analyze the relationship of NDVI vegetation index with the temperature, rainfall and snowcover information. The relationships were analyzed for different landuses classes-grassland, forest and agriculture. Results show that the snowcover area is decreasing at the rate of 0.15% per year in the basin. The NDVI shows seasonal fluctuations and lightly correlated with the rainfall and temperature.

  6. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    PubMed

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity.

  7. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    PubMed Central

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  8. Upper- and mid-crustal radial anisotropy beneath the central Himalaya and southern Tibet from seismic ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Guo, Zhi; Gao, Xing; Wang, Wei; Yao, Zhenxing

    2012-05-01

    Through analysis of the Rayleigh wave and Love wave empirical Green's functions recovered from cross-correlation of seismic ambient noise, we image the radial anisotropy and shear wave velocity structure beneath southern Tibet and the central Himalaya. Dense ray path coverage from 22 broadband seismic stations deployed by the Himalayan Nepal Tibet Seismic Experiment project provides the unprecedented opportunity to resolve the spatial distribution of the radial anisotropy within the crust of the central Himalaya and southern Tibet. In the shallow subsurface, the obtained results indicate significant radial anisotropy with negative magnitude (VSV > VSH) mainly associated with the Indus Yarlung Suture and central Himalaya, possibly related to the fossil microcracks or metamorphic foliations formed during the uplifting of the Tibetan Plateau. With increasing depth, the magnitude of radial anisotropy varies from predominantly negative to predominantly positive, and a mid-crustal layer with prominent positive radial anisotropy (VSV < VSH) has been detected. The top of the mid-crustal anisotropic layer correlates nicely with the starting depth of the mid-crustal lower velocity layers detected in our previous study. The spatial correlation of the positive radial anisotropy layers and mid-crustal lower velocity layers might suggest lateral crustal channel flow induced alignment of mineral grains, most likely micas or amphiboles, within the mid-crust of the central Himalaya and southern Tibet. This observation provides independent seismic evidence to support the thermo-mechanical model, which involves the southward extrusion of a low viscosity mid-crustal channel driven by the denudation effect focused at the southern flank of the Tibetan Plateau to explain the tectonic evolution of the Tibetan-Himalayan orogen.

  9. Future changes over the Himalayas: Maximum and minimum temperature

    NASA Astrophysics Data System (ADS)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with

  10. Physiological response of the lichen Phaeophyscia hispidula (Ach.) Essl., to the urban environment of Pauri and Srinagar (Garhwal), Himalayas, India.

    PubMed

    Shukla, Vertika; Upreti, Dalip K

    2007-12-01

    The present study was designed with an aim to observe the effect of increasing urbanization and traffic activity on the physiology of a foliose lichen, Phaeophyscia hispidula (Ach.) Essl., collected from 13 different localities, growing in their natural habitat, in Pauri and Srinagar, two cities in the Himalayas. Six parameters i.e., Chl. a, Chl. b, total pigment, chlorophyll degradation, carotenoid and total protein content, proved the most useful to assess air pollution, were measured. Chlorophyll content and protein content are an efficient parameter to measure the air quality of a region. The study indicates that P. hispidula is pollution tolerant (adaptation) and able to withstand local emissions from vehicle exhausts.

  11. An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Bird, Broxton W.; Tian, Lide; Zhang, Xiaowen; Wang, Weicai; Xiang, Yang; Dai, Yufeng; Lazhu; Zhou, Jing; Wang, Lei

    2018-07-01

    Since the late 1990s, lakes in the southern Tibetan Plateau (TP) have shrunk considerably, which contrasts with the rapid expansion of lakes in the interior TP. Although these spatial trends have been well documented, the underlying hydroclimatic mechanisms are not well understood. Since 2013, we have carried out comprehensive water budget observations at Paiku Co, an alpine lake in the central Himalayas. In this study, we investigate water storage and lake level changes on seasonal to decadal time scales based on extensive in-situ measurements and satellite observations. Bathymetric surveys show that Paiku Co has a mean and maximum water depth of 41.1 m and 72.8 m, respectively, and its water storage was estimated to be 109.3 × 108 m3 in June 2016. On seasonal scale between 2013 and 2017, Paiku Co's lake level decreased slowly between January and May, increased considerably between June and September, and then decreased rapidly between October and January. On decadal time scale, Paiku Co's lake level decreased by 3.7 ± 0.3 m and water storage reduced by (10.2 ± 0.8) × 108 m3 between 1972 and 2015, accounting for 8.5% of the total water storage in 1972. This change is consistent with a trend towards drier conditions in the Himalaya region during the recent decades. In contrast, glacial lakes within Paiku Co's basin expanded rapidly, indicating that, unlike Paiku Co, glacial meltwater was sufficient to compensate the effect of the reduced precipitation.

  12. Volatile constituents of Saussurea costus roots cultivated in Uttarakhand Himalayas, India.

    PubMed

    Gwari, Garima; Bhandari, Ujjwal; Andola, Harish Chandra; Lohani, Hema; Chauhan, Nirpendra

    2013-07-01

    Saussurea costus (Falc.) Lipschitz, syn Saussurea lappa C.B. Clarke, one of the best-known species within this genus, is commonly known as costus. Due to the remarkable biological activity of S. costus and its constituents it will have an appropriate place in various systems of medicines all over the globe. The main aim is to study the volatile constituents of S costus cultivated in Uttarakhand Himalayas. The volatile constituents were isolated from the root of S costus cultivated in Chamoli district of Uttrarakhand by hydro distillation and were analyzed by gas chromatography-mass spectroscopy (GC-MS). A total 35 aroma compounds representing about 92.81% of the total composition were identified. Aldehyde like (7Z, 10Z, 13Z)-7, 10, 13-hexadecaterinal (25.5%) was found as a major compound including other ketones like dehydrocostus lactone (16.7%), alcohols like elemol (5.84%), γ-costol (1.80%), vulgarol B (3.14%), valerenol (4.20%), and terpinen-4-ol (1.60%), etc. Esters and acids were found to be completely absent in our samples. S. costus volatile oil constituents are superior in terms of total identified constituents. Where relative area quantum is higher in Uttarakhand Himalayas samples, when compared with those originated to China and Korea.

  13. More major earthquakes at the Nepal Himalaya? - Study on Coulomb stress perspective

    NASA Astrophysics Data System (ADS)

    Som, S. K.; Sarkar, Subhrasuchi; Dasgupta, Soumitra

    2018-07-01

    On April 2015 a major earthquake of 7.9 Mw occurred in the Nepal Himalaya, followed by 553 earthquakes of local magnitude greater than 4.0 within the first 43 days including another major event of 7.3 Mw. We resolve the static coulomb failure stress (CFS) change onto the finite fault models of 7.9 Mw after Elliott et al. (2016) and Galezka et al. (2015) and its effect on associated receiver faults. Correlation of aftershocks with the enhanced CFS condition shows that the Elliott et al. (2016) model explains 60.4% and the Galezka et al. (2015) model explains about 47.7% of the aftershocks in high stress regions. Aftershocks were poorly spatially correlated with the enhanced CFS condition after the 7.9 Mw main shock and can be explained by correlation with release of seismic energy from the associated secondarily stressed prominent thrust planes and transverse faults. Stress resolved on the associated receiver faults show increased stress on both transverse and thrust fault systems with the potential of triggering significant aftershocks or subsequent main shocks.

  14. Patterns of daily exposure to TSP and CO in the Garhwal Himalaya

    NASA Astrophysics Data System (ADS)

    Saksena, S.; Prasad, R.; Pal, R. C.; Joshi, V.

    Daily integrated exposure to TSP and CO was assessed by personal and stationary sampling of air in six microenvironments. Time-budget surveys were conducted to determine how much time four population groups (adult women, children, adult men and youths) spend in these microenvironments. Burning of biofuels in traditional unvented cookstoves is the most important anthropogenic source of pollutants in the study area—a rural and hilly region in the Garhwal Himalaya. Concentrations of pollutants measured at the time of cooking were found to be very high but comparable to those measured in the Indian plains (5.6 mg m -3 and 21 ppm for TSP and CO, respectively). The daily exposure of adult women to TSP and CO was estimated to be 37 mg h m -3 and 110 ppm h, respectively. Daily exposure, within each of the four population groups, was found to be very uniform across individuals for both the pollutants. Patterns of concentrations and daily exposure, as influenced by the time of the day, season and altitude are discussed.

  15. Antioxidant Potential and DNA Damage Protection by the Slate Grey Saddle Mushroom, Helvella lacunosa (Ascomycetes), from Kashmir Himalaya (India).

    PubMed

    Shameem, Nowsheen; Kamili, Azra N; Ahmad, Mushtaq; Masoodi, F A; Parray, Javid A

    2016-01-01

    This study pertains to the radical scavenging potential of and DNA protection by Helvella lacunosa, an edible mushroom from Kashmir Himalaya (India). Different solvents, on the basis of their polarities, were used to extract all solvent-soluble bioactive compounds. Seven different antioxidant methods were also used to determine extensive radical scavenging activity. The mushroom ethanol extract and butanol extract showed effective scavenging activity of radicals at 95% and 89%, respectively. At 800 µg/mg, the ethanol extract was potent enough to protect DNA from degradation by hydroxyl radicals. It is evident from these findings that the presence of antioxidant substances signifies the use of H. lacunosa as food in the mountainous valleys of the Himalayan region.

  16. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya.

    PubMed

    Thakur, Vikas; Kumar, Vijay; Kumar, Sanjay; Singh, Dharam

    2018-05-28

    Pangi-Chamba Himalaya (PCH) region is very pristine, unique and virgin niche for bioresource exploration. In the current study, for the first time, the bacterial diversity of this region for potential cellulose degrader was investigated. A total of 454 pure bacterial isolates were obtained from diverse sites in PCH region and 111 isolates were further selected for 16S rDNA characterization based on ARDRA grouping. Identified bacteria belongs to twenty-eight genera representing four phyla namely Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes. Pseudomonas was most abundant genera followed by Bacillus, Geobacillus, Arthrobacter, Paenibacillus, and Flavobacterium. In addition, 6 putative novel bacteria (based on 16S rDNA sequence similarity) and thermophiles from non-thermogenic sites were also reported for the first time. Screening for cellulose degradation ability on carboxymethyl cellulose (CMC) plates had revealed 70.92% of cellulolytic bacteria. Current study reports diverse genera (Arthrobacter, Paenibacillus, Chryseobacterium, Pedobacter, Streptomyces, Agromyces, Flavobacterium, and Pseudomonas), high cellulose hydrolysis zone, and wide pH and temperature functional cellulolytic bacteria hitherto reported in the literature. Diverse bacterial genera with high cellulolytic activity in broad pH and temperature range provide opportunity to develop a bioprocess for efficient pretreatment of lignocellulosic biomass, which is currently being investigated.

  17. SERVIR Regional Visualization and Monitoring System: A Brief Overview

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh

    2011-01-01

    SERVIR is a joint USAID NASA effort, which uses remotely sensed data and products for societal benefit. SERVIR currently has three hubs, in Central America, East Africa and Himalaya. Science Applications, IT infrastructure and capacity building is central to SERVIR efforts. Collaborations are key. SERVIR is continuing to develop strong, working collaborations with government entities in the region, such as KMD.

  18. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    PubMed

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  19. Observed Changes in the Himalayan Glaciers: Multiple Driving Factors

    NASA Astrophysics Data System (ADS)

    Romshoo, Shakil; Rashid, Irfan; Abdullah, Tariq; Fayaz, Midhat

    2017-04-01

    There is lack of credible knowledge about Himalayan cryosphere as is evident from the contradictory reports about the status of the glaciers in the region. Glacier behavior in Himalaya has to be understood and interpreted in light of the multiple driving factors; topography, climate and anthropocene. The observed changes in Himalayan glaciers, determined by studying a few hundred glaciers in the Himalaya, indicated that the glacier response varies across different ranges. Satellite images (1990-2015), DEM, altimetry data supported by selective field campaigns, were used to map the changes in glacier boundaries, snout, ELA, AAR, volume, thickness, debris cover and several other glacier parameters. The glaciers across the six ranges of Pir Panjal (PR), Greater Himalaya (GH), Shamasbari (SR), Zanaskar (ZR), Leh (LR) and Karakorum (KR) showed quite varied changes. It was observed that the glaciers in the KR show the least glacial area recession (1.59%) primarily due to the extreme cold winters with -18oC average temperature. Other glacial parameters like snout, ELA, AAR and glacier volume also showed very little changes in the KR during the period. The glaciers in the LR, with an average winter temperature of -6o C, have shrunk, on an average, by 4.19 % during the period, followed by the glaciers in the ZR showing a loss of 5.46%. The highest glacier retreat of 7.72% and 6.94% was observed in the GH and SR with the average winter temperature of -1.3oc and -6.2oc respectively. In the PR, almost all the glaciers have vanished during the last 6-7 decades due to the increasing winter temperatures. The glaciers in the Kashmir showed an overall recession of 26.40% in area which is one of the highest reported for the Himalayan glaciers. The glaciers in the valley showed the maximum reduction in thickness (2.56m) using the IceSat data from 2000-08 while as the Karakoram glaciers showed the least reduction in thickness (0.53m). It was found that the maximum recession of glacial

  20. Interaction Between the Himalaya and the Flexed Indian Plate--Spatial Fluctuations in Seismic Hazard in India in the Past Millennium?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilham, Roger; Szeliga, Walter

    2008-07-08

    Between the tenth and early 16th centuries three megaquakes allowed most of the northern edge of the Indian plate to slip 20-24 m northward relative to the overlying Himalaya. Although the renewal time for earthquakes with this large amount of slip is less than 1300 years given a geodetic convergence rate of 16-20 mm/yr, recently developed scaling laws for the Himalaya suggest that the past 200 years of great earthquakes may be associated with slip of less than 10 m and renewal times of approximately 500 years. These same theoretical models show that the rupture lengths of the Himalaya's Medievalmore » earthquakes (300-600 km) are too short to permit 24 m of slip given the relationships demonstrated by recent events. There is thus reason to suppose that recent earthquakes may have responded to different elastic driving forces from those that drove the megaquakes of Medieval times.An alternative source of energy to drive Himalayan earthquakes exists in the form of the elastic and gravitational energy stored in flexure of the Indian plate. The flexure is manifest in the form of a 200-450 m high bulge in central India, which is sustained by the forces of collision and by the end-loading of the plate by the Himalaya and southern Tibet. These flexural stresses are responsible for earthquakes in the sub-continent. The abrupt release of stress associated with the northward translation of the northern edge of the Indian plate by 24 m, were the process entirely elastic, would result in a deflation of the crest of the bulge by roughly 0.8 m. Geometrical changes, however, would be moderated by viscous rheologies in the plate and by viscous flow in the mantle in the following centuries.The hypothesized relaxation of flexural geometry following the Himalayan megaquake sequence would have the effect of backing-off stresses throughout central India resulting in quiescence both in the Himalaya and the Indian plate. The historical record shows an absence of great Himalayan

  1. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies.

    PubMed

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-09-21

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen's segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal &India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes.

  2. Segmentation of the Himalayas as revealed by arc-parallel gravity anomalies

    PubMed Central

    Hetényi, György; Cattin, Rodolphe; Berthet, Théo; Le Moigne, Nicolas; Chophel, Jamyang; Lechmann, Sarah; Hammer, Paul; Drukpa, Dowchu; Sapkota, Soma Nath; Gautier, Stéphanie; Thinley, Kinzang

    2016-01-01

    Lateral variations along the Himalayan arc are suggested by an increasing number of studies and carry important information about the orogen’s segmentation. Here we compile the hitherto most complete land gravity dataset in the region which enables the currently highest resolution plausible analysis. To study lateral variations in collisional structure we compute arc-parallel gravity anomalies (APaGA) by subtracting the average arc-perpendicular profile from our dataset; we compute likewise for topography (APaTA). We find no direct correlation between APaGA, APaTA and background seismicity, as suggested in oceanic subduction context. In the Himalayas APaTA mainly reflect relief and erosional effects, whereas APaGA reflect the deep structure of the orogen with clear lateral boundaries. Four segments are outlined and have disparate flexural geometry: NE India, Bhutan, Nepal & India until Dehradun, and NW India. The segment boundaries in the India plate are related to inherited structures, and the boundaries of the Shillong block are highlighted by seismic activity. We find that large earthquakes of the past millennium do not propagate across the segment boundaries defined by APaGA, therefore these seem to set limits for potential rupture of megathrust earthquakes. PMID:27649782

  3. Snow and glacier cover assessment in the high mountains of Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Pramod Krishna, Akhouri

    2005-08-01

    This study highlights the assessment of snow and glacier cover for possible inferences of global climate change impacts in high mountains like the Himalaya. The test catchment of the River Tista lies in the Sikkim state of the Indian Himalayan region, with steep mountains crossing nearly all ecozones, from subtropical to glacial. River flows are highly fluctuating, especially during the peak rainy season and snowmelt periods. Annual rainfall patterns are non-uniform and can cause large floods. Runoff and discharge downstream are highly dependent upon snow and glacier extent. The temporary storage of frozen water brings about a delay in seasonal runoff. Snow cover built up in the higher regions during the winter months melts in the spring-summer-autumn cycles and contributes to groundwater recharge. A spatial baseline inventory of snow cover/glacier, the permanent snowline and its short-term temporal changes in the remote high-mountain areas have been analysed using multidate Indian Remote Sensing Satellite data of 1992 to 1997. A geographic information system-based overlay has led to inferences on snow cover characteristics and the alignment, dimension, slope disposition, heights of the snout and associated features of each of the glaciers. Snow and glacier recession are to be monitored in future on a long-term basis to derive correlations with climate-change parameters.

  4. Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition

    NASA Astrophysics Data System (ADS)

    Li, Chaoliu; Yan, Fangping; Kang, Shichang; Chen, Pengfei; Han, Xiaowen; Hu, Zhaofu; Zhang, Guoshuai; Hong, Ye; Gao, Shaopeng; Qu, Bin; Zhu, Zhejing; Li, Jiwei; Chen, Bing; Sillanpää, Mika

    2017-10-01

    Black carbon (BC) is the second most important warming component in the atmosphere after CO2. The BC in the Himalayas and the Tibetan Plateau (HTP) has influenced the Indian monsoon and accelerated the retreat of glaciers, resulting in serious consequences for billions of Asian residents. Although a number of related studies have been conducted in this region, the BC concentrations and deposition rates remain poorly constrained. Because of the presence of arid environments and the potential influence of carbonates in mineral dust (MD), the reported BC concentrations in the HTP are overestimated. In addition, large discrepancies have been reported among the BC deposition derived from lake cores, ice cores, snow pits and models. Therefore, the actual BC concentration and deposition values in this sensitive region must be determined. A comparison between the BC concentrations in acid (HCl)-treated and untreated total suspected particle samples from the HTP showed that the BC concentrations previously reported for the Nam Co station (central part of the HTP) and the Everest station (northern slope of the central Himalayas) were overestimated by approximately 52 ± 35 and 39 ± 24 %, respectively, because of the influence of carbonates in MD. Additionally, the organic carbon (OC) levels were overestimated by approximately 22 ± 10 and 22 ± 12 % for the same reason. Based on previously reported values from the study region, we propose that the actual BC concentrations at the Nam Co and Everest stations are 61 and 154 ng m-3, respectively. Furthermore, a comprehensive comparison of the BC deposition rates obtained via different methods indicated that the deposition of BC in HTP lake cores was mainly related to river sediment transport from the lake basin as a result of climate change (e.g., increases in temperature and precipitation) and that relatively little BC deposition occurred via atmospheric deposition. Therefore, previously reported BC deposition rates from lake

  5. Concentrations and source regions of light-absorbing particles in snow/ice in northern Pakistan and their impact on snow albedo

    NASA Astrophysics Data System (ADS)

    Gul, Chaman; Praveen Puppala, Siva; Kang, Shichang; Adhikary, Bhupesh; Zhang, Yulan; Ali, Shaukat; Li, Yang; Li, Xiaofei

    2018-04-01

    Black carbon (BC), water-insoluble organic carbon (OC), and mineral dust are important particles in snow and ice which significantly reduce albedo and accelerate melting. Surface snow and ice samples were collected from the Karakoram-Himalayan region of northern Pakistan during 2015 and 2016 in summer (six glaciers), autumn (two glaciers), and winter (six mountain valleys). The average BC concentration overall was 2130 ± 1560 ng g-1 in summer samples, 2883 ± 3439 ng g-1 in autumn samples, and 992 ± 883 ng g-1 in winter samples. The average water-insoluble OC concentration overall was 1839 ± 1108 ng g-1 in summer samples, 1423 ± 208 ng g-1 in autumn samples, and 1342 ± 672 ng g-1 in winter samples. The overall concentration of BC, OC, and dust in aged snow samples collected during the summer campaign was higher than the concentration in ice samples. The values are relatively high compared to reports by others for the Himalayas and the Tibetan Plateau. This is probably the result of taking more representative samples at lower elevation where deposition is higher and the effects of ageing and enrichment are more marked. A reduction in snow albedo of 0.1-8.3 % for fresh snow and 0.9-32.5 % for aged snow was calculated for selected solar zenith angles during daytime using the Snow, Ice, and Aerosol Radiation (SNICAR) model. The daily mean albedo was reduced by 0.07-12.0 %. The calculated radiative forcing ranged from 0.16 to 43.45 W m-2 depending on snow type, solar zenith angle, and location. The potential source regions of the deposited pollutants were identified using spatial variance in wind vector maps, emission inventories coupled with backward air trajectories, and simple region-tagged chemical transport modeling. Central, south, and west Asia were the major sources of pollutants during the sampling months, with only a small contribution from east Asia. Analysis based on the Weather Research and Forecasting (WRF-STEM) chemical transport model identified a

  6. Glacial lakes amplify glacier recession in the central Himalaya

    NASA Astrophysics Data System (ADS)

    King, Owen; Quincey, Duncan; Carrivick, Jonathan; Rowan, Ann

    2016-04-01

    The high altitude and high latitude regions of the world are amongst those which react most intensely to climatic change. Across the Himalaya glacier mass balance is predominantly negative. The spatial and temporal complexity associated with this ice loss across different glacier clusters is poorly documented however, and our understanding of the processes driving change is limited. Here, we look at the spatial variability of glacier hypsometry and glacial mass loss from three catchments in the central Himalaya; the Dudh Koshi basin, Tama Koshi basin and an adjoining section of the Tibetan Plateau. ASTER and SETSM digital elevation models (2014/15), corrected for elevation dependant biases, co-registration errors and along or cross track tilts, are differenced from Shuttle Radar Topographic Mission (SRTM) data (2000) to yield surface lowering estimates. Landsat data and a hypsometric index (HI), a classification scheme used to group glaciers of similar hypsometry, are used to examine the distribution of glacier area with altitude in each catchment. Surface lowering rates of >3 m/yr can be detected on some glaciers, generally around the clean-ice/debris-cover boundary, where dark but thin surface deposits are likely to enhance ablation. More generally, surface lowering rates of around 1 m/yr are more pervasive, except around the terminus areas of most glaciers, emphasising the influence of a thick debris cover on ice melt. Surface lowering is only concentrated at glacier termini where glacial lakes have developed, where surface lowering rates are commonly greater than 2.5 m/yr. The three catchments show contrasting hypsometric distributions, which is likely to impact their future response to climatic changes. Glaciers of the Dudh Koshi basin store large volumes of ice at low elevation (HI > 1.5) in long, debris covered tongues, although their altitudinal range is greatest given the height of mountain peaks in the catchment. In contrast, glaciers of the Tama Koshi

  7. Use of Indigenous Knowledge in Environmental Decision-Making by Communities in the Kumaon Himalayas

    ERIC Educational Resources Information Center

    Honwad, Sameer

    2010-01-01

    This study is designed to find out how people in rural communities residing in the middle Himalayas use indigenous knowledge to support environmental decisions while addressing water and land use related concerns. The study not only serves to enrich our understanding of community decision-making, especially as connected to land use and ecological…

  8. Fate of Metals in Relation to Water and Sediment Properties in a Subtropical Lake in Central Himalaya, India.

    PubMed

    Inaotombi, Shaikhom; Gupta, Prem Kumar

    2017-04-01

    Lakes of Himalaya are one of the most fragile ecosystems on earth. Tourism and urban development in the upland region strongly affect its water resources. The high rate of sedimentation and organic matter deposition alters the ecological state of sediment bed, which indirectly influences on dynamics of metallic elements. We investigated spatial and temporal variations of water and sediment characteristic in Lake Sattal of Central Himalaya, India. Samples were collected seasonally from four sampling locations from January 2011 to December 2012. Pearson's correlation and Canonical correspondence analysis (CCAs) were applied to examine the dynamics and behaviors of heavy metals. Concentrations of elements were in the order of fluoride (Fl) > zinc (Zn) > copper (Cu) > iron (Fe) > manganese (Mn). Sand size fraction was higher in the littoral zone while clay particle was dominant in the profundal zone of the lake. Dissolved oxygen at sediment-water-interface (SWI) and water temperature were the major factors influencing the dynamics of metallic contents in the water column. Spatially, total organic matter (TOM) was higher in the deeper portion of the lake. Our study revealed that mobility of Fe is temperature-dependent, whereas speciation of Mn and Cu are primarily controlled by the suboxic condition of SWI in organic-rich site. Upland lakes are more vulnerable to anoxic condition and have severe implications on heavy metals speciation. Proper implementation of land use policies and management practices, including stormwater detention, can be integrated into resolving such problems.

  9. SERVIR: The Regional Visualization and Monitoring System

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2010-01-01

    This slide presentation reviews the SERVIR program. SERVIR is a partnership between NASA and USAID and three international nodes: Central America, Africa, and the Himalaya region. SERVIR,using satellite observations and ground based observations, is used by decision makers to allow for improved monitoring of air quality, extreme weather, biodiversity, and changes in land cove and has also been used to respond to environmental threats, such as wildfires, floods, landslides, harmful algal blooms, and earthquakes.

  10. Monitoring Intense Thunderstorms in the Hindu-Kush Himalayan Region

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick; Cecil, Daniel; Case, Jonathan; Bell, Jordan; Petersen, Walter; Adhikary, Bhupesh

    2016-01-01

    Some of the most intense thunderstorms on the planet routinely occur in the Hindu-Kush Himalaya region(HKH) region where many government organizations lack the capacity needed to predict, observe and effectively respond to the threats and hazards associated with high impact convective weather. This project combines innovative numerical weather prediction, satellite-based precipitation and land imagery techniques into a high impact weather assessment toolkit (HIWAT) that will build the capabilities of national meteorological departments and other weather sensitive agencies in the HKH region to assess the potential threats and impacts of high impact convective weather.

  11. Forest tree species discrimination in western Himalaya using EO-1 Hyperion

    NASA Astrophysics Data System (ADS)

    George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.

    2014-05-01

    The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

  12. Long-term premonitory seismicity patterns in Tibet and the Himalayas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keilis-Borok, V.; Knopoff, L.; Allen, C.R.

    1980-02-10

    An attempt is made to identify seismicity patterns precursory to great earthquakes in most of Tibet as well as the central and eastern Himalayas. The region has considerable tectonic homogeneity and encompasses parts of China. India, Nepal, Bhutan, Bangladesh, and Burma. Two seismicity patterns previously described were used (1) pattern ..sigma.. is a peak in the sum of earthquake energies raised to the power of about 2/3, taken over a sliding time window and within a magnitude range less than that of events we are trying to predict; and (2) pattern S (Swarms) consists of the spatial clustering of earthquakesmore » during a time interval when the seismicity is above average. Within the test region, distinct peaks in pattern ..sigma.. have occurred twice during the 78-year-long test period: in 1948--49, prior to the great 1950 Assam-Tibet earthquake (M=8.6) and in 1976. Peaks in pattern S have occurred three times; in 1932--1933, prior to the great 1934 Bihar-Nepal earthquake (M=8.3), in 1946, and in 1978. The 1934 and 1950 earthquakes were the only events in the region that exceeded M=8.0 during the test period. On the basis of experience here and elsewhere, the current peaks in both ..sigma.. and S suggest the likelihood of an M=8.0 event within 6 years or an M=8.5 event within 14 years. Such a prognostication should be viewed more as an experimental long-term enhancement of the probability that a large earthquake will occur than as an actual prediction, in view of the exceedingly large area encompassed and the very lengthy time window. Furthermore, the chances of a randomly occurring event as large as M=8.0 in the region are perhaps 21% within the next 6 years, and the present state of the art is such that we can place only limited confidence in such forecasts.« less

  13. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis

    NASA Astrophysics Data System (ADS)

    Nie, Yong; Liu, Qiao; Wang, Jida; Zhang, Yili; Sheng, Yongwei; Liu, Shiyin

    2018-05-01

    Glacial lake outburst floods (GLOFs) are a unique type of natural hazard in the cryosphere that may result in catastrophic fatalities and damages. The Himalayas are known as one of the world's most GLOF-vulnerable zones. Effective hazard assessments and risk management require a thorough inventory of historical GLOF events across the Himalayas, which is hitherto absent. Existing studies imply that numerous historical GLOF events are contentious because of discrepant geographic coordinates, names, or outburst time, requiring further verifications. This study reviews and verifies over 60 historical GLOF events across the Himalayas using a comprehensive method that combines literature documentations, archival remote sensing observations, geomorphological analysis, and field investigations. As a result, three unreported GLOF events were discovered from remote sensing images and geomorphological analysis. Eleven suspicious events were identified and suggested to be excluded. The properties of five outburst lakes, i.e., Degaco, Chongbaxia Tsho, Geiqu, Lemthang Tsho, and a lake on Tshojo Glacier, were corrected or updated. A total of 51 GLOF events were verified to be convincing, and these outburst lakes were classified into three categories according to their statuses in the past decades, namely disappeared (12), stable (30), and expanding (9). Statistics of the verified GLOF events show that GLOF tended to occur between April and October in the Himalayas. We suggest that more attention should be paid to rapidly expanding glacial lakes with high possibility of repetitive outbursts. This study also demonstrates the effectiveness of integrating remote sensing and geomorphic interpretations in identifying and verifying GLOF events in remote alpine environments. This inventory of GLOFs with a range of critical attributes (e.g., locations, time, and mechanisms) will benefit the continuous monitoring and prediction of potentially dangerous glacial lakes and contribute to

  14. White pine blister rust in Korea, Japan and other Asian regions: comparisons and implications for North America

    Treesearch

    M.-S. Kim; N. B. Klopfenstein; Y. Ota; S. K. Lee; K.-S. Woo; S. Kaneko

    2010-01-01

    This article briefly reviews the history of white pine blister rust, attributed to Cronartium ribicola, and addresses current research and management issues in South Korea, Japan and other regions of eastern Asia (China, Russia and Himalaya). For each region, the distribution, damage, aecial hosts, telial hosts and management of C. ribicola and other blister rust fungi...

  15. Terrain changes, caused by the 15-17 June 2013 heavy rainfall in the Garhwal Himalaya, India: A case study of Alaknanda and Mandakini basins

    NASA Astrophysics Data System (ADS)

    Mehta, Manish; Shukla, Tanuj; Bhambri, Rakesh; Gupta, Anil K.; Dobhal, D. P.

    2017-05-01

    Exceptional early high monsoon rains between 15 and 17 June 2013 combined with discharge from snowmelt water caused widespread floods in every major river of the Garhwal Himalaya. This catastrophic event triggered widespread landslides and devastation in the region, affecting the movement of the people that led to stranding of pilgrims in various pilgrimage routes. This event caused many casualties and irreparable damage to the infrastructures and property in the Garhwal Himalaya. A large volume of debris was deposited in Kedarnath town (3.9 × 106 m3), and a huge amount of debris was removed from Rambara and surrounding areas (2.6 × 108 m3). The study also found that villages like Lambaghar, Bhyundar (Alaknanda River Valley), and Rambara (Mandakini River Valley) were completely washed away, leaving no trace of earlier settlement. Govindghat and Pulna villages in the Alaknanda River Valley were also badly damaged. Approximately 0.3 × 106 and 0.72 × 106 m3 of debris was deposited, respectively. Similarly in the Mandakini Valley, Kedarnath and Sonprayag towns were also badly damaged and 3.9 × 106 and 1.4 × 106 m3 of debris was deposited in the area, respectively. Simultaneously, the moraine-dammed Chorabari Lake breached releasing 6.1 × 105 m3 of water with an average rate of 1429 m3/s (discharge of lake). The towns of Pandukeshwar in the Alaknanda Valley and Gaurikund in the Mandakini Valley were partially damaged. However, no evidence of such magnitude of destruction was reported from the Yamuna River Valley during the same period. This catastrophic event changed the landscape in many parts of Uttarakhand, making the whole region more fragile and vulnerable. A disaster of such magnitude was perhaps not witnessed by the region for at least the last 100 years.

  16. Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya

    PubMed Central

    Uniyal, Sanjay Kr; Singh, KN; Jamwal, Pankaj; Lal, Brij

    2006-01-01

    The importance of medicinal plants in traditional healthcare practices, providing clues to new areas of research and in biodiversity conservation is now well recognized. However, information on the uses for plants for medicine is lacking from many interior areas of Himalaya. Keeping this in view the present study was initiated in a tribal dominated hinterland of western Himalaya. The study aimed to look into the diversity of plant resources that are used by local people for curing various ailments. Questionnaire surveys, participatory observations and field visits were planned to illicit information on the uses of various plants. It was found that 35 plant species are commonly used by local people for curing various diseases. In most of the cases (45%) under ground part of the plant was used. New medicinal uses of Ranunculus hirtellus and Anemone rupicola are reported from this area. Similarly, preparation of "sik" a traditional recipe served as a nutritious diet to pregnant women is also not documented elsewhere. Implication of developmental activities and changing socio-economic conditions on the traditional knowledge are also discussed. PMID:16545146

  17. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya.

    PubMed

    Dolezal, Jiri; Dvorsky, Miroslav; Kopecky, Martin; Liancourt, Pierre; Hiiesalu, Inga; Macek, Martin; Altman, Jan; Chlumska, Zuzana; Rehakova, Klara; Capkova, Katerina; Borovec, Jakub; Mudrak, Ondrej; Wild, Jan; Schweingruber, Fritz

    2016-05-04

    A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003-2013), detailed monitoring of vegetation changes in permanent plots (2009-2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable.

  18. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya

    NASA Astrophysics Data System (ADS)

    Dolezal, Jiri; Dvorsky, Miroslav; Kopecky, Martin; Liancourt, Pierre; Hiiesalu, Inga; Macek, Martin; Altman, Jan; Chlumska, Zuzana; Rehakova, Klara; Capkova, Katerina; Borovec, Jakub; Mudrak, Ondrej; Wild, Jan; Schweingruber, Fritz

    2016-05-01

    A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003-2013), detailed monitoring of vegetation changes in permanent plots (2009-2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable.

  19. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya

    PubMed Central

    Dolezal, Jiri; Dvorsky, Miroslav; Kopecky, Martin; Liancourt, Pierre; Hiiesalu, Inga; Macek, Martin; Altman, Jan; Chlumska, Zuzana; Rehakova, Klara; Capkova, Katerina; Borovec, Jakub; Mudrak, Ondrej; Wild, Jan; Schweingruber, Fritz

    2016-01-01

    A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003–2013), detailed monitoring of vegetation changes in permanent plots (2009–2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable. PMID:27143226

  20. Soil gas radon-thoron monitoring in Dharamsala area of north-west Himalayas, India using solid state nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Kumar, Gulshan; Kumar, Arvind; Walia, Vivek; Kumar, Jitender; Gupta, Vikash; Yang, Tsanyao Frank; Singh, Surinder; Bajwa, Bikramjit Singh

    2013-10-01

    The study described here is based on the measurements of soil gas radon-thoron concentrations performed at Dharamsala region of north-west (NW) Himalayas, India. The study area is tectonically and environmentally significant and shows the features of ductile shear zone due to the presence of distinct thrust planes. Solid state nuclear track detectors (LR-115 films) have been used for the soil gas radon-thoron monitoring. Twenty five radon-thoron discriminators with LR-115 films were installed in the borehole of about 50 cm in the study areas. The recorded radon concentration varies from 1593 to 13570 Bq/m3 with an average value of 5292 Bq/m3. The recorded thoron concentration varies from 223 to 2920 Bq/m3 with an average value of 901 Bq/m3. The anomalous value of radon-thoron has been observed near to the faults like main boundary thrust (MBT and MBT2) as well as neotectonic lineaments in the region.

  1. Endorsing the declining indigenous ethnobotanical knowledge system of seabuckthorn in Central Himalaya, India.

    PubMed

    Dhyani, D; Maikhuri, R K; Misra, S; Rao, K S

    2010-02-03

    Based on research findings this study is aimed to generate database on ethnobotanical aspects, sustainable utilization by value addition and awareness generation through outreach programme related to Hippophae salicifolia D. Don. (Elaeagnaceae) in the higher Himalayan zone of Uttarakhand in Central Himalaya, India. An in-depth survey from June 2004 to July 2006 followed by 480 interviews with the help of semi-structured questionnaires was carried out in 24 Hippophae growing locations in 12 different valleys of Uttarakhand. Plant has immense multipurpose properties and is traditionally utilized for food (20(Min)-90%(Max)), medicine (10(Min)-60%(Max)), veterinary (20(Min)-100%(Max)), fuel (10(Min)-80%(Max)), fencing (20(Min)-80%(Max)), agricultural tools (20(Min)-50%(Max)) and dye mordant (60%). Besides, awareness programmes and value added product demonstration resulted in economical upliftment of local inhabitants of Central Himalaya. The present manuscript will certainly provide an ethnobotanical statistics' impact on the modern scientific societies regarding conservation, cultivation and popularization of this underutilized wild edible species at mass scale. Simultaneously, these findings have important connotations in light of upcoming organic food and nutraceutical industries in the country. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Soil CO2 efflux from two mountain forests in the eastern Himalayas, Bhutan: components and controls

    NASA Astrophysics Data System (ADS)

    Wangdi, Norbu; Mayer, Mathias; Prasad Nirola, Mani; Zangmo, Norbu; Orong, Karma; Uddin Ahmed, Iftekhar; Darabant, Andras; Jandl, Robert; Gratzer, Georg; Schindlbacher, Andreas

    2017-01-01

    The biogeochemistry of mountain forests in the Hindu Kush Himalaya range is poorly studied, although climate change is expected to disproportionally affect the region. We measured the soil CO2 efflux (Rs) at a high-elevation (3260 m) mixed forest and a lower-elevation (2460 m) broadleaf forest in Bhutan, eastern Himalayas, during 2015. Trenching was applied to estimate the contribution of autotrophic (Ra) and heterotrophic (Rh) soil respiration. The temperature (Q10) and the moisture sensitivities of Rh were determined under controlled laboratory conditions and were used to model Rh in the field. The higher-elevation mixed forest had a higher standing tree stock, reflected in higher soil C stocks and basal soil respiration. Annual Rs was similar between the two forest sites (14.5 ± 1.2 t C ha-1 for broadleaf; 12.8 ± 1.0 t C ha-1 for mixed). Modelled annual contribution of Rh was ˜ 65 % of Rs at both sites with a higher heterotrophic contribution during winter and lower contribution during the monsoon season. Rh, estimated from trenching, was in the range of modelled Rh but showed higher temporal variability. The measured temperature sensitivity of Rh was similar at the mixed and broadleaf forest sites (Q10 2.2-2.3) under intermediate soil moisture but decreased (Q10 1.5 at both sites) in dry soil. Rs closely followed the annual course of field soil temperature at both sites. Covariation between soil temperature and moisture (cold dry winters and warm wet summers) was likely the main cause for this close relationship. Under the prevailing weather conditions, a simple temperature-driven model was able to explain more than 90 % of the temporal variation in Rs. A longer time series and/or experimental climate manipulations are required to understand the effects of eventually occurring climate extremes such as monsoon failures.

  3. Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya)

    NASA Astrophysics Data System (ADS)

    Miehe, Georg; Miehe, Sabine; Schlütz, Frank

    2009-05-01

    The vegetation of the treeline ecotone of the southern declivity of arid High Asia (Hindu Kush, northern areas of Pakistan; Himalaya, northern central Nepal) is dominated by hedgehog-like open dwarf shrublands of thorny cushions. Since climatically sensitive ecotones are always also sensitive to human impact, the question arises whether the current lack of forests is a result of the Subboreal climate decline or of human impact. Due to inadequate knowledge of the pollen flora and of ecological indicator values of the plants, pollen analyses in High Asia have mainly been limited to the regional verification of globally known climatic impulses. However, the role of human impact on regional vegetation patterns has been widely neglected. We postulate that today's open dwarf shrublands replace woodlands and forests. Isolated vigorous juniper trees and successful reforestation appear to confirm our hypothesis. An abrupt decline of Pinus forests before 5700 and 5400 ka cal yr BP can be demonstrated. As the first indicator pollen of human impact appeared at both sites synchronous with the forest pollen decline, we infer human impact to be a more decisive cause for this environment change superimposing the effects of a climatic deterioration. The forests were displaced by open dwarf shrublands.

  4. Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation

    NASA Astrophysics Data System (ADS)

    Neupane, Ram P.; White, Joseph D.; Alexander, Sara E.

    2015-06-01

    In mountain headwaters, climate and land use changes affect short and long term site water budgets with resultant impacts on landslide risk, hydropower generation, and sustainable agriculture. To project hydrologic change associated with climate and land use changes in the Himalaya Mountains, we used the Soil and Water Assessment Tool (SWAT) calibrated for the Tamor and Seti River basins located at eastern and western margins of Nepal. Future climate change was modeled using averaged temperature and precipitation for 2080 derived from Special Report on Emission Scenarios (SRES) (B1, A1B and A2) of 16 global circulation models (GCMs). Land use change was modeled spatially and included expansion of (1) agricultural land, (2) grassland, and (3) human settlement area that were produced by considering existing land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use type. From these simulations, higher annual stream discharge was found for all GCM-derived scenarios compared to a baseline simulation with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. On seasonal basis, we assessed higher precipitation during monsoon season in all scenarios that corresponded with higher stream discharge of 72 and 68% for Tamor and Seti basins, respectively. This effect appears to be geographically important with higher influence in the eastern Tamor basin potentially due to longer and stronger monsoonal period of that region. However, we projected minimal changes in stream discharge for the land use scenarios potentially due to higher water transmission to groundwater reservoirs associated with fractures of the Himalaya Mountains rather than changes in surface runoff. However, when combined the effects of climate and land use changes, discharge was moderately increased indicating counteracting mechanisms of hydrologic yield in these mountains

  5. Temporal fluctuations and frontal area change of Bangni and Dunagiri glaciers from 1962 to 2013, Dhauliganga Basin, central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kumar, Vinit; Mehta, Manish; Mishra, Ajai; Trivedi, Anjali

    2017-05-01

    Glaciers have been receding for the last 100 years in many glaciated regions of the world, and the rate of recession has accelerated during the last 60 years. Recent assessments of changes in glaciers in the Himalaya have usually recognized their variable rate of recession. The present study deals with snout retreat, frontal area vacation, and estimation of the equilibrium line altitude (ELA) of Bangni and Dunagiri glaciers, in the Dhauliganga Basin, central Himalaya (India), using multi-image satellite data (Landsat MSS, 1976; Landsat TM, 1990; Landsat ETM +, 2005) and Survey of India topographic maps (1962; 1:50,000) along with field surveys (2012 to 2014) for the period of 1962-2013. The meteorological data of the India Meteorological Department (IMD) and TRMM suggested that the central Himalaya received less precipitation between 1960 and 1990. Because of the less precipitation, glaciers receded rapidly during this period. The present study shows that Bangni and Dunagiri glaciers retreated 2080 ± 162 m and 484 ± 38 m with average rates of 41 ± 3.2 m a- 1 and 9 ± 0.6 m a- 1 between 1962 and 2013, respectively. During this period Bangni and Dunagiri glaciers lost about 17% and 11% of their length, respectively. The result also suggested that Bangni Glacier vacated 598,948 ± 12,257 m2 frontal area, while Dunagiri Glacier vacated 170,428 ± 7833 m2 frontal area between 1962 and 2013. Moreover, the estimated ELA change for Bangni Glacier was 64 ± 30 m upward during the study period. The Geological Survey of India (GSI, 1998a,b) suggested that the ELA of Dunagiri Glacier rose 28 m between 1984 and 1992 and that the glacier lost (-)16 × 106 m3 w.e. ice with an average rate of loss of (-)1.04 m w.e. a- 1. The geomorphology of the Dunagiri Valley reflected that Bangni and Dunagiri glaciers were joined together in the past. Nevertheless, these two glaciers retreat at different rates, indicating that climate change is not the only factor in glacier retreat but that

  6. 25 April 2015 Gorkha Earthquake in Nepal Himalaya (Part 2)

    NASA Astrophysics Data System (ADS)

    Rao, N. Purnachandra; Burgmann, Roland; Mugnier, Jean-Louis; Gahalaut, Vineet; Pandey, Anand

    2017-06-01

    The response from the geosciences community working on Himalaya in general, and the 2015 Nepal earthquakes in specific, was overwhelming, and after a rigorous review process, thirteen papers were selected and published in Part-1. We are still left with a few good papers which are being brought out as Part-2 of the special issue. In the opening article Jean-Louis Mugnier and colleagues attempt to provide a structural geological perspective of the 25 April 2015 Gorkha earthquake and highlight the role of segmentation in generating the Himalayan mega-thrusts. They could infer segmentation by stable barriers in the HT that define barrier-type earthquake families. In yet another interesting piece of work, Pandey and colleagues map the crustal structure across the earthquake volume using Receiver function approach and infer a 5-km thick low velocity layer that connects to the MHT ramp. They are also able to correlate the rupture termination with the highest point of coseismic uplift. The last paper by Shen et al. highlights the usefulness of INSAR technique in mapping the coseismic slip distribution applied to the 25 April 2015 Gorkha earthquake. They infer low stress drop and corner frequency which coupled with hybrid modeling explain the low level of slip heterogeneity and frequency of ground motion. We compliment the journal of Asian Earth Sciences for bringing out the two volumes and do hope that these efforts have made a distinct impact on furthering our understanding of seismogenesis in Himalaya using the very latest data sets.

  7. A multidisciplinary analysis to constrain exhumation and recent erosion history of the Tethyan Himalaya, based on apatite (U-Th-Sm)/He and cosmogenic nuclides dates from Central Nepal (Takkhola graben and the Mustang granite)

    NASA Astrophysics Data System (ADS)

    Rosenkranz, Ruben; Sahragard Sohi, Mohammad; Spiegel, Cornelia

    2015-04-01

    rates through time for the region north to the South Tibetan Detachment. It is our expectation to link the results to the tectonic behavior of the South Tibetan Detachment or to the newly recognized Western Nepal Fault System. Corroborating our results with other ages and diverse methods will provide a robust constraint on the exhumation and erosion history of the Tethyan Himalaya, as well as insights on the U-Th/He dating technique. References Adhikari, B.R. and Wagreich, M., 2011. Provenance evolution of collapse graben fill in the Himalaya-The Miocene to Quaternary Thakkhola-Mustang graben (Nepal). Sedimentary Geology, 233(1), pp.1-14. Blythe, A.E., Burbank, D.W., Carter, A., Schmidt, K., Putkonen, J., 2007. Plio-Quaternary exhumation history of the central Nepalese Himalaya: 1. Apatite and zircon fission track and apatite [U-Th]/He analyses. Tectonics, 26(3). Crouzet, C. et al., 2007. Temperature and age constraints on the metamorphism of the Tethyan Himalaya in Central Nepal: A multidisciplinary approach. Journal of Asian Earth Sciences, 30(1), pp.113-130. Garzione, C.N, DeCelles, P.G., Hokinson, D.G., Ojha, T.P., Upreti, B.N., 2003. East-west extension and Miocene environmental change in the southern Tibetan plateau: Thakkhola graben, central Nepal. Geological Society of America Bulletin, 115(1), pp.3-20. Colchen, M., 1999. The Takkhola-Mustang graben in Nepal and the latee Cenozoic extension in the Higher Himalayas. Journal of Asian Earth Sciences, 17, pp. 683-702.

  8. Gender and climate change in the Indian Hindu-Kush Himalayas: global threats, local vulnerabilities

    NASA Astrophysics Data System (ADS)

    Ogra, M. V.; Badola, R.

    2014-11-01

    Global climate change has numerous implications for members of mountain communities who feel the impacts in both physical and social dimensions. In the Western Himalayas of India, a majority of residents maintain a livelihood strategy that includes a combination of subsistence or small-scale agriculture, seasonal pastoral migration, male out-migration, and localized natural resource extraction. Particularly under conditions of heavy male outmigration, but throughout the region, mountain women play a key role in providing labor and knowledge related to the management of local natural resources, yet often lack authority in related political and economic decision-making processes. This gap has important implications for addressing the impacts of climate change: while warming temperatures, irregular patterns of precipitation and snowmelt, and changing biological systems present challenges to the viability of these traditional livelihood portfolios throughout the region, mountain women increasingly face new challenges in their roles as household managers that have not adequately been emphasized in larger scale planning for climate change adaptation and mitigation. These challenges are complex in nature, and are shaped not only by gender issues but also interacting factors such as class, caste, ethnicity, and age (among others). In this paper, we review the main arguments behind the discursive gender/climate change nexus, discuss the implications for gendered vulnerabilities and transformation of adaptive capacities in the region, and suggest ways that researchers and policymakers seeking to promote "climate justice" can benefit from the incorporation of gender-based perspectives and frameworks.

  9. Evidence of multifaceted SKS/SKKS splitting directions in the Sikkim Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Kumar, Sushil

    2018-06-01

    We have investigated the anisotropy strength and fast-axis orientation using an SKS/SKKS splitting technique of seismic phases at Sikkim Himalaya, which is a seismically active zone situated in the central portion of the Great Himalyan Arc in the Indian region. This region lies between two major plate boundary faults, the Main Central Thrust (MCT) and the Main Boundary Thrust (MBT) at its north and south respectively, along with a few regional lineaments. In this study we deployed eight broadband seismic stations and acquired two years of tele-seismic earthquake data, from which we derived 66 good quality anisotropic measurements. In general, the splitting results from both the SKS and SKKS phases show a complex pattern of fast-axis orientation along the northern periphery of the MCT. However, at the central part of the Sikkim between the MBT and the MCT, both results are consistent with the upper mantle deformation of the Indian Plate. We also observed that the anisotropic strength varies between 0.6 s to 3 s and is skewed towards higher anisotropy with orthogonal polarization, which indicate the presence of a two-layer anisotropy. Results of the modelling of 66 anisotropic measurements indicate that the bottom-layer fast-axis orientations are towards N180E with higher anisotropic strength of ∂t = 1.3 s, which elucidates the pristine nature of the upper mantle deformation as a result of asthenospheric flow. But the tectonic deformation of the upper mantle within the lithosphere is prominently observed in the top layer, where the fast axis orientations are towards N480E with lower anisotropic strength of ∂t = 0.6 s.

  10. Solar Radiation Patterns and Glaciers in the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.

    2013-12-01

    Glacier dynamics in the Himalaya are poorly understood, in part due to variations in topography and climate. It is well known that solar radiation is the dominant surface-energy component governing ablation, although the spatio-temporal patterns of surface irradiance have not been thoroughly investigated given modeling limitations and topographic variations including altitude, relief, and topographic shielding. Glaciation and topographic conditions may greatly influence supraglacial characteristics and glacial dynamics. Consequently, our research objectives were to develop a GIS-based solar radiation model that accounts for Earth's orbital, spectral, atmospheric and topographic dependencies, in order to examine the spatio-temporal surface irradiance patterns on glaciers in the western Himalaya. We specifically compared irradiance patterns to supraglacial characteristics and ice-flow velocity fields. Shuttle Radar Mapping Mission (SRTM) 90 m data were used to compute geomorphometric parameters that were input into the solar radiation model. Simulations results for 2013 were produced for the summer ablation season. Direct irradiance, diffuse-skylight, and total irradiance variations were compared and related to glacier altitude profiles of ice velocity and land-surface topographic parameters. Velocity and surface information were derived from analyses of ASTER satellite data. Results indicate that the direct irradiance significantly varies across the surface of glaciers given local topography and meso-scale relief conditions. Furthermore, the magnitude of the diffuse-skylight irradiance varies with altitude and as a result, glaciers in different topographic settings receive different amounts of surface irradiance. Spatio-temporal irradiance patterns appear to be related to glacier surface conditions including supraglacial lakes, and are spatially coincident with ice-flow velocity conditions on some glaciers. Collectively, our results demonstrate that glacier

  11. Antioxidant, Hepatoprotective Potential and Chemical Profiling of Propolis Ethanolic Extract from Kashmir Himalaya Region Using UHPLC-DAD-QToF-MS

    PubMed Central

    Wali, Adil F.; Avula, Bharathi; Ali, Zulfiqar; Khan, Ikhlas A.; Mushtaq, Ahlam; Rehman, Muneeb U.; Akbar, Seema; Masoodi, Mubashir Hussain

    2015-01-01

    The aim of this study was to examine hepatoprotective effect of ethanolic extract of propolis (KPEt) from Kashmir Himalaya against isoniazid and rifampicin (INH-RIF) induced liver damage in rats. Hepatic cellular injury was initiated by administration of INH-RIF combination (100 mg/kg) intraperitoneal (i.p.) injection for 14 days. We report the protective effects of KPEt against INH-RIF induced liver oxidative stress, inflammation, and enzymatic and nonenzymatic antioxidants. Oral administration of KPEt at both doses (200 and 400 mg/kg body weight) distinctly restricted all modulating oxidative liver injury markers and resulted in the attenuation of INH-RIF arbitrated damage. The free radical scavenging activity of KPEt was evaluated by DPPH, nitric oxide, and superoxide radical scavenging assay. The components present in KPEt identified by ultra high performance liquid chromatography diode array detector time of flight-mass spectroscopy (UHPLC-DAD-QToF-MS) were found to be flavonoids and phenolic acids. The protective efficacy of KPEt is possibly because of free radical scavenging and antioxidant property resulting from the presence of flavonoids and phenolic acids. PMID:26539487

  12. Seismicity Pattern and Fault Structure in the Central Himalaya Seismic Gap Using Precise Earthquake Hypocenters and their Source Parameters

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Ghosh, A.; Rai, S. S.

    2017-12-01

    The devastation brought on by the Mw 7.8 Gorkha earthquake in Nepal on 25 April 2015, reconditioned people to the high earthquake risk along the Himalayan arc. It is therefore imperative to learn from the Gorkha earthquake, and gain a better understanding of the state of stress in this fault regime, in order to identify areas that could produce the next devastating earthquake. Here, we focus on what is known as the "central Himalaya seismic gap". It is located in Uttarakhand, India, west of Nepal, where a large (> Mw 7.0) earthquake has not occurred for over the past 200 years [Rajendran, C.P., & Rajendran, K., 2005]. This 500 - 800 km long along-strike seismic gap has been poorly studied, mainly due to the lack of modern and dense instrumentation. It is especially concerning since it surrounds densely populated cities, such as New Delhi. In this study, we analyze a rich seismic dataset from a dense network consisting of 50 broadband stations, that operated between 2005 and 2012. We use the STA/LTA filter technique to detect earthquake phases, and the latest tools contributed to the Antelope software environment, to develop a large and robust earthquake catalog containing thousands of precise hypocentral locations, magnitudes, and focal mechanisms. By refining those locations in HypoDD [Waldhauser & Ellsworth, 2000] to form a tighter cluster of events using relative relocation, we can potentially illustrate fault structures in this region with high resolution. Additionally, using ZMAP [Weimer, S., 2001], we perform a variety of statistical analyses to understand the variability and nature of seismicity occurring in the region. Generating a large and consistent earthquake catalog not only brings to light the physical processes controlling the earthquake cycle in an Himalayan seismogenic zone, it also illustrates how stresses are building up along the décollment and the faults that stem from it. With this new catalog, we aim to reveal fault structure, study

  13. Estimation of regional mass anomalies from Gravity Recovery and Climate Experiment (GRACE) over Himalayan region

    NASA Astrophysics Data System (ADS)

    Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai

    2014-11-01

    Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and

  14. Geomorphic impacts, age and significance of two giant landslide dams in the Nepal Himalayas: Ringmo-Phoksundo (Dolpo District) and Dhampu-Chhoya (Mustang District).

    NASA Astrophysics Data System (ADS)

    Fort, Monique; Braucher, Regis; Bourlès, Didier; Guillou, Valery; Nath Rimal, Lila; Gribenski, Natacha; Cossart, Etienne

    2014-05-01

    Large catastrophic slope failures have recently retained much attention in the northern dry Himalayas (1). They play a prominent role in the denudation history of active orogens at a wide range of spatial and time scales (2), and they impact durably landforms and process evolution in upstream catchments. Their occurrence mostly results from three different potential triggers: earthquakes, post-glacial debuttressing, and permafrost melting. We focus on two examples of giant rock slope failures that occurred across and north of the Higher Himalaya of Nepal and assess their respective influence on the regional, geomorphic evolution. The Ringmo rockslide (4.5 km3) results from the collapse of a mountain wall (5148 m) cut into palaeozoic dolomites of the Tethysian Himalayas. It caused the damming of the Suli Gad River at the origin of the Phoksumdo Lake (3600 m asl). The presence of glacial till at the very base of the sequence suggests the rockslide event is post-glacial, a field assumption confirmed by cosmogenic dating. Two consistent 36Cl ages of 20,885 ±1675 argue for a single, massive event of paraglacial origin that fits well with the last chronologies available on the Last Glacial Maximum in the Nepal Himalaya. The persistence of the Phoksumdo Lake is due to its dam stability (i.e. high lime content of landslide components) and to low sediment flux from the arid, upper Suli Gad catchment. The Dhampu-Chhoya rock avalanche (about 1 km3, area extent 10 km2) was derived from the northward failure of the Kaiku ridge, uphold by north-dipping, upper crystallines of the Higher Himalaya. It dammed the Kali Gandaki River, with complex interactions with the Late Pleistocene ice tongues derived from the Dhaulagiri (8167 m) and Nilgiris (7061 m) peaks. Both the rock avalanche and glaciers controlled the existence and level of the "Marpha Lake" (lacustrine deposits up to Kagbeni). Again, consistent 10Be ages of 29,680 ± 1015 ka obtained from two large blocks (>1000 m3

  15. The greening of the Himalayas and Tibetan Plateau under climate change

    NASA Astrophysics Data System (ADS)

    Lamsal, Pramod; Kumar, Lalit; Shabani, Farzin; Atreya, Kishor

    2017-12-01

    The possible disruption of climate change (CC) on the ecological, economic and social segments of human interest has made this phenomenon a major issue over the last couple of decades. Mountains are fragile ecosystems, projected to endure a higher impact from the increased warming. This study presents modelled CC projections with respect to the suitability for the growth of nine near-treeline plant species of the Himalayas and Tibetan Plateau through niche modelling technique using CLIMEX and estimates their potential future distribution and the extent of greening in the region. Two global climate models, CSIRO-MK 3.0 (CS) and MIROCH-H (MR) were used under IPCC A1B and A2 emission scenarios for the year 2050 and 2100. The results indicate that climatic suitability of the nine species expands towards higher elevations into areas that are currently unsuitable while currently suitable areas in many regions become climatically unsuitable in the future. The total climatically suitable area for the nine species at current time is around 1.09 million km2, with an additional 0.68 and 0.35 million km2 becoming suitable by 2050 and 2100 respectively. High elevation belts, especially those lying above 3500 m, will see more climatically suitable areas for the nine species in the future. Cold stress is the main factor limiting current distribution and its decrease will affect the overall expansion of climatic suitability in the region. Impacts on nature conservation and water and food security could be expected from such shift of climatic suitability in the region. The species includes (i) Abies spectabilis, (ii) Acer campbellii, (iii) Betula utilis, (iv) Juniperus indica, (v) Quercus semecarpifolia, (vi) Tsuga dumosa, (vii) Rhododendron campanulatum, (viii) Ephedra gerardiana, and (ix) Cassiope fastigiata. The species list from top to bottom are (i) Abies spectabilis, (ii) Acer campbellii, (iii) Betula utilis, (iv) Juniperus indica, (v) Quercus semecarpifolia, (vi) Tsuga

  16. Pliocene episodic exhumation and the significance of the Munsiari thrust in the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Stübner, Konstanze; Grujic, Djordje; Dunkl, István; Thiede, Rasmus; Eugster, Patricia

    2018-01-01

    The Himalayan thrust belt comprises three in-sequence foreland-propagating orogen-scale faults, the Main Central thrust, the Main Boundary thrust, and the Main Frontal thrust. Recently, the Munsiari-Ramgarh-Shumar thrust system has been recognized as an additional, potentially orogen-scale shear zone in the proximal footwall of the Main Central thrust. The timing of the Munsiari, Ramgarh, and Shumar thrusts and their role in Himalayan tectonics are disputed. We present 31 new zircon (U-Th)/He ages from a profile across the central Himachal Himalaya in the Beas River area. Within a ∼40 km wide belt northeast of the Kullu-Larji-Rampur window, ages ranging from 2.4 ± 0.4 Ma to 5.4 ± 0.9 Ma constrain a distinct episode of rapid Pliocene to Present exhumation; north and south of this belt, zircon (U-Th)/He ages are older (7.0 ± 0.7 Ma to 42.2 ± 2.1 Ma). We attribute the Pliocene rapid exhumation episode to basal accretion to the Himalayan thrust belt and duplex formation in the Lesser Himalayan sequence including initiation of the Munsiari thrust. Pecube thermokinematic modelling suggests exhumation rates of ∼2-3 mm/yr from 4-7 to 0 Ma above the duplex contrasting with lower (<0.3 mm/yr) middle-late Miocene exhumation rates. The Munsiari thrust terminates laterally in central Himachal Pradesh. In the NW Indian Himalaya, the Main Central thrust zone comprises the sheared basal sections of the Greater Himalayan sequence and the mylonitic 'Bajaura nappe' of Lesser Himalayan affinity. We correlate the Bajaura unit with the Ramgarh thrust sheet in Nepal based on similar lithologies and the middle Miocene age of deformation. The Munsiari thrust in the central Himachal Himalaya is several Myr younger than deformation in the Bajaura and Ramgarh thrust sheets. Our results illustrate the complex and segmented nature of the Munsiari-Ramgarh-Shumar thrust system.

  17. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  18. Active tectonic of the Medlicott Wadia Thrust (Western Himalaya) inferred from morphotectonic analysis

    NASA Astrophysics Data System (ADS)

    Vignon, V.; Mugnier, J. L.; Replumaz, A.; Vassallo, R.; Ramakrishnan, R.; Srivastava, P.; Malik, M. M.; Jouanne, F.; Carcaillet, J.

    2010-12-01

    and Nodda deposits and the last motion occurred in a syn-sedimentary context between 35-39 ka. Colluvial wedges related to ~few-meters-displacement paleoearthquakes are preserved within the sedimentary pile. The second splay cuts through the alluvial fan, leading to a scarp that increases towards East reaching more than 37-m-high. The southern splay folds the alluvial fan into a fault-cored anticline, leading to a 34-m-high scarp. These two fault segments are the most recent active structures of the MHT. With a total vertical displacement of ~70 m of a surface dated at around 14 ka the long term slip rate can be estimated between 4.5 and 9 mm/yr. This work confirms that the Medlicott Wadia Thrust is one of the main emergences of the Main Himalayan Thrust in western Himalaya and suggests that it is more active in the Riasi area than in the Balakot area. Considering a 5 centuries seismic gap on a >70 km segment, and a faulting behaviour able to generate several meters co-seismic movement, we may expect a major event in the next few decades in the Riasi region.

  19. Using Remote Sensing Observations and Empirical-Statistical Methods to Understand the Present State and Predictable Future Changes in the State of Permafrost Distribution in North-Western Himalayas

    NASA Astrophysics Data System (ADS)

    Baral, P.; Haq, M. A.; Mangan, P.

    2017-12-01

    The impacts of climate change on extent of permafrost degradation in the Himalayas and its effect upon the carbon cycle and ecosystem changes are not well understood due to lack of historical ground-based observations. We have used high resolution optical and satellite radar observations and applied empirical-statistical methods for the estimation of spatial and altitudinal limits of permafrost distribution in North-Western Himalayas. Visual interpretations of morphological characteristics using high resolution optical images have been used for mapping, identification and classification of distinctive geomorphological landforms. Subsequently, we have created a detail inventory of different types of rock glaciers and studied the contribution of topo climatic factors in their occurrence and distribution through Logistic Regression modelling. This model establishes the relationship between presence of permafrost and topo-climatic factors like Mean Annual Air Temperature (MAAT), Potential Incoming Solar Radiation (PISR), altitude, aspect and slope. This relationship has been used to estimate the distributed probability of permafrost occurrence, within a GIS environment. The ability of the model to predict permafrost occurrence has been tested using locations of mapped rock glaciers and the area under the Receiver Operating Characteristic (ROC) curve. Additionally, interferometric properties of Sentinel and ALOS PALSAR datasets are used for the identification and assessment of rock glacier activity in the region.

  20. Enhancing Earth Observation Capacity in the Himalayan Region

    NASA Astrophysics Data System (ADS)

    Shrestha, B. R.

    2012-12-01

    scientists. These courses include relevant theoretical lectures on the specific themes and extensive hands-on exercises using remote sensing and GIS tools and techniques. A one-day policy workshop has been designed to raise awareness among managers and decision-makers. Within the framework of SERVIR-Himalaya, a specialized training and awareness course has been initiated targeting to the youth. This course focuses on utilizing earth observation to sensitize youth and help them better understand climate change in the Himalayas. Furthermore, ICIMOD is strengthening existing partnerships and developing new partnerships to keep pace with rapidly changing technological advancements in order to customize the capacity building needs for the region. ICIMOD is promoting the Himalayan University consortium to extend its capacity building efforts for a longer-term continuity and sustainability. Through the SERVIR-Himalaya initiative, it is aiming to build new capacity building components such as - NASA DEVELOP to engage student research, MYCOE programs for youth, and small grants programs for young researchers and professionals. As a regional center, ICIMOD wants to continue to build regional capacity with the ultimate goal to leverage geospatial information services for the societal benefits to the mountain communities and relevant stakeholders.

  1. Altitude-related deaths in seven trekkers in the Himalayas.

    PubMed Central

    Dickinson, J; Heath, D; Gosney, J; Williams, D

    1983-01-01

    The clinical features and necropsy findings are described for seven trekkers in the Himalayas whose deaths were related to high altitude. The fatal outcome was due to serious pulmonary and cerebral disease. Oedema of the lungs and brain was prominent but so was thrombosis and haemorrhage, features of acute mountain sickness that have received insufficient recognition in the past. Most of the men were middle aged. Some began their trekking soon after flying to high altitude before becoming acclimatised and some remained at high altitude or climbed even higher despite the development of vomiting, breathlessness, and exhaustion. In one case death occurred despite prompt recognition and treatment of symptoms by administration of oxygen and swift evacuation to low altitude. Images PMID:6623417

  2. Back-thrusting in Lesser Himalaya: Evidences from magnetic fabric studies in parts of Almora crystalline zone, Kumaun Lesser Himalaya

    NASA Astrophysics Data System (ADS)

    Agarwal, Amar; Agarwal, K. K.; Bali, R.; Prakash, Chandra; Joshi, Gaurav

    2016-06-01

    The present study aims to understand evolution of the Lesser Himalaya, which consists of (meta) sedimentary and crystalline rocks. Field studies, microscopic and rock magnetic investigations have been carried out on the rocks near the South Almora Thrust (SAT) and the North Almora Thrust (NAT), which separates the Almora Crystalline Zone (ACZ) from the Lesser Himalayan sequences (LHS). The results show that along the South Almora Thrust, the deformation is persistent; however, near the NAT deformation pattern is complex and implies overprinting of original shear sense by a younger deformational event. We attribute this overprinting to late stage back-thrusting along NAT, active after the emplacement of ACZ. During this late stage back-thrusting, rocks of the ACZ and LHS were coupled. Back-thrusts originated below the Lesser Himalayan rocks, probably from the Main Boundary Thrust, and propagated across the sedimentary and crystalline rocks. This study provides new results from multiple investigations, and enhances our understanding of the evolution of the ACZ.

  3. Glacial-hydrogeomorphic process of proglacial lake expansion and exploring its amplification effect on glacier recession in the Himalayas

    NASA Astrophysics Data System (ADS)

    Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Nie, Y.

    2016-12-01

    Glacial lakes, as a key component of the cryosphere in the Himalayas in response to climate change, pose significant threats to the downstream lives and properties and eco-environment via outburst floods, yet our understanding of their evolution and reaction mechanism with connected glaciers is limited. Here, a regional investigation of glacial lake evolution and glacial-hydrogeomorphic process was conducted by integrating optical imagery, satellite altimetry and DEM. A classification scheme was first used to group glacial lakes of similar glacial and geo-morphology. Our studies show that debris-contact proglacial lakes experienced much more rapid expansions than ice cliff-contact and non-glacier-contact lakes. We further estimate the mass balance of parent glaciers and elevation changes in lake surfaces and debris-covered glacier tongues. Results reveal that the upstream expansion of debris-contact proglacial lakes was not directly related to rising water levels but with a geomorphological alternation of upstream lake basins caused by ice melt-induced debris subsidence at glacier termini. It suggests that the hydrogeomorphic process of glacier thinning and retreat, in comparison with direct meltwater supply alone, may have governed primarily the recent glacial lake expansion across the Himalayas. The mechanism of proglacial lake expansion provides an indirect way to estimate the lowering rates of glacier terminus. The debris-covered glacier fronts show considerable ice melts, with the lowering rate ranging from 1.0 to 9.7 m/yr. The rates exhibit obvious correlations with contacted lake sizes, centerline length and area of glaciers, suggesting that the glacier termini thinning is the combined effect of interplays between glacial lakes and ice flux from parent glaciers. Our study implies that substantial mass loss occurred at lake-contact glacier fronts, which cannot be ignored in assessing the overall mass balance of Himalayan glaciers.

  4. Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models' wet bias over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lin, Changgui; Chen, Deliang; Yang, Kun; Ou, Tinghai

    2018-01-01

    Current climate models commonly overestimate precipitation over the Tibetan Plateau (TP), which limits our understanding of past and future water balance in the region. Identifying sources of such models' wet bias is therefore crucial. The Himalayas is considered a major pathway of water vapor transport (WVT) towards the TP. Their steep terrain, together with associated small-scale processes, cannot be resolved by coarse-resolution models, which may result in excessive WVT towards the TP. This paper, therefore, investigated the resolution dependency of simulated WVT through the central Himalayas and its further impact on precipitation bias over the TP. According to a summer monsoon season of simulations conducted using the weather research forecasting (WRF) model with resolutions of 30, 10, and 2 km, the study found that finer resolutions (especially 2 km) diminish the positive precipitation bias over the TP. The higher-resolution simulations produce more precipitation over the southern Himalayan slopes and weaker WVT towards the TP, explaining the reduced wet bias. The decreased WVT is reflected mostly in the weakened wind speed, which is due to the fact that the high resolution can improve resolving orographic drag over a complex terrain and other processes associated with heterogeneous surface forcing. A significant difference was particularly found when the model resolution is changed from 30 to 10 km, suggesting that a resolution of approximately 10 km represents a good compromise between a more spatially detailed simulation of WVT and computational cost for a domain covering the whole TP.

  5. Ethnomedicinal plants used by local inhabitants of Jakholi block, Rudraprayag district, western Himalaya, India.

    PubMed

    Singh, Ankit; Nautiyal, Mohan C; Kunwar, Ripu M; Bussmann, Rainer W

    2017-08-24

    Ethnomedicinal knowledge of the Indian Himalayas is very interesting because of the wide range of medicinal plants used in traditional medical practice. However, there is a danger of knowledge being lost because the knowledge sharing is very limited and passed on orally. The present study is the first ethnomedicinal study in Jakholi area of Rudraprayag district of Northwestern India. The aim of present study was to identify traditional medicinal plants used by the inhabitants to treat different ailments and document the associated knowledge of these medicinal plants. An ethnomedicinal survey was carried out in 72 of 133 villages and alpine pastures of Jakholi block (800-4000 m asl). Door to door surveys and group discussions, applying semi-structured questionnaires were conducted with traditional healers and villagers in local language (Garhwali). Informant Consensus Factor (ICF) was computed to analyse collected ethnomedicinal data. A total of 78 species (Gymnosperms 3 species, Monocotyledons 12 and 63 Dicotyledons) belonging to 73 genera in 46 families were identified to treat 14 different ailments categories. Most dominant family is Asteraceae (5 species). In disease treated categories, Diseases of the skin (DE) have the highest proportion (29.55%) followed by Gastro- intestinal disorder (GA) (25.89%). The most life form of plants used was herb (56%) followed by tree (23%) while root was the most frequently used part of the plants and the traditional preparation was mainly applied in the form of paste (37%). The highest ICF value (0.99) was found for hair ailments (HA) followed ophthalmologic complaints (OP) and mental afflictions (MA) (0.98). The present study provides valuable information about traditional knowledge of medicinal plants of Jakholi Block in the Northwestern Himalaya, India. Local communities still possess large traditional knowledge of plants and their therapeutic uses and that the link of that traditional knowledge to modern research could be

  6. Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century.

    PubMed

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000-2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003-2009). This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000-2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned.

  7. Climate change effects on Glacier recession in Himalayas using Multitemporal SAR data and Automatic Weather Station observations

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Singh, S. K.; Venkataraman, G.

    2009-04-01

    The Himalaya is the highest but the youngest mountain belt (20 to 60 million years B.P.) of the earth running in arc shape for about 2500 km. It has more than 90 peaks above 6000 m and contains about 50% of all glaciers outside of the polar environments (Bahadur, 1993). All glaciers in this region are in general recession since last 150 years (Paul et al.,1979). Gangotri, Siachen, Bara Shigri and Patsio are major glaciers in this region which are showing retreat with different rates and their respective tributary glaciers are completely disconnected from main body of glaciers. Spaceborne synthetic aperture radar data provide an important tool for monitoring the fluctuation of the glaciers. In this paper attempt has been made for quantifying the glacier retreat using multitemporal synthetic aperture radar (SAR) data. SAR intensity and phase information will be exploited separately under SAR intensity tracking and interferometric SAR (InSAR) coherence tracking (Strozzi et al., 2002) respectively. Glacier retreat study have been done using time series coregistered multi temporal SAR images. Simultaneously InSAR coherence thresholding is applied for tracking the snout of Gangotri glacier. It is observed that glacier is retreating at the rate of 21 m/a. Availability of high resolution spotlight mode TerraSAR-X SAR data will supplement the ENVISAT ASAR and ERS-1/2 based observations. The observatory in the proximity of Gangotri glacier has been made functional at Bhojbasa and all weather parameters viz. Snow fall, temperature, pressure, air vector, column water vapor and humidity are recorded twice a day as per WMO standards manually and automatically. Three Automatic Weather Stations (AWS) have been established in the glacier area at Bhojbasa , Kalindipass and Nandaban. Since Himalayan environment is presently under great stress of decay and degeneration, AWS data will be analyzed in the context of climate change effects on fluctuation of glaciers. References 1.Jagdish

  8. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    NASA Astrophysics Data System (ADS)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward

  9. Characteristics of Aerosols over the Garhwal Himalayas: India

    NASA Astrophysics Data System (ADS)

    Soni, A.; Panwar, P.; Sundriyal, S.; Prabhu, V.; Shridhar, V.

    2017-12-01

    Aerosols and Black Carbon (BC) is very important pollutants in context of global warming study. Due to high spatio-temporal variation in aerosols, there is a large uncertainty in climate change study. This study was conducted to understand the particulate pollution level in different altitude ranging from 300 m AMSL to 2600 m AMSL (see fig.). In this study eight different sizes of aerosols (10 µm to 0.43 µm) concentration along with BC measured during summer season (MJJ) of 2014-2016 over 5 different locations of Garhwal Himalayas using Anderson Cascade Impactor (ACI) and Aethalometer AE-33. Sampling was performed continuously for 15-20 days at each site. It is the preliminary study to understand the sources of aerosols. Further chemical analysis of different sizes of aerosols helps to identify sources accurately. It will also help in future policies implications. High altitude site i.e. at 2600 m was very close to the Gangotri Glacier where river Ganga originates. The Ganga is one of the most important river in India, millions people rely on the water of this river. Since last decade many catastrophic events happened in this region because of melting of glacier fastly. Previously, no one studies BC and aerosols over this important fragile landscape. BC concentration was ranging from 4.72 ± 5.64 µg m-3 to 15.06 ± 7.69 µg m-3 at 2600 m to 300 m AMSL. At high altitude site highest aerosol concentration was observed to be 56.43 µg m-3 on the size range of PM3.3-4.7. During April-May there was a big fire event (around 3500 hector forest burnt) and the sampling period at 2600 m was on May. So that, to understand transportation of aerosols from forest fire region backward trajectories were calculated using HYSPLIT model. It gives evidence that during summer months aerosols transported from neighbouring forest fire area. While the concentration at lowest altitude was observed to be 248.95 µg m-3 in the size range of PM9-10 which is much higher than the permissible

  10. Identification of landslide-prone zones in the geomorphically and climatically sensitive Mandakini valley, (central Himalaya), for disaster governance using the Weights of Evidence method

    NASA Astrophysics Data System (ADS)

    Poonam; Rana, Naresh; Champati ray, Parshant Kumar; Bisht, Pinkey; Bagri, Dhirendra Singh; Wasson, Robert James; Sundriyal, Yashpal

    2017-05-01

    The entire Himalayan region is prone to disasters, with many people being vulnerable to hydroclimatic threats such as extreme rainfall-driven floods, glacial lake outburst floods (GLOFs), landslide lake outburst floods (LLOFs), and landslides triggered by rainfall. Landslides and floods are related, as the former cause the lakes that burst, and floods can undercut slopes and cause landslides. During the past 200 years, landslides and floods caused by LLOFs in the Garhwal Himalaya have occurred in 1894, 1970, and 1978; but the most disastrous event, in terms of loss of life and economic impact, occurred in June 2013, which was a result of extreme rainfall in the Higher Himalaya and breaching of a moraine-dammed lake, very short-lived LLOFs, and rainfall-induced runoff and landslides. Outmigration from the area as a result of the 2013 event has caused anxiety about the future of the economy and also concerns about security of a state that has an international border. As a contribution to planning and reconstruction to secure the livelihoods of the local people and to entice migrants to return, this paper identifies zones in the Mandakini valley susceptible to landslides using a 'Weights of Evidence' approach. The roles of climate, geology, and geomorphology of the valley are also given attention to explain the reasons for the disastrous event of June 2013. The results of the research presented here may be an important input to disaster governance.

  11. Enhanced Surface Warming and Accelerated Snow Melt in the Himalayas and Tibetan Plateau Induced by Absorbing Aerosols

    NASA Technical Reports Server (NTRS)

    Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  12. Rainfall-runoff-soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.

    2004-06-01

    The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.

  13. Stream Flow Prediction and Flood Mapping in the Hindu Kush-Himalaya with the ICIMOD Water Resources App Portal (IWRAP)

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Ames, D. P.; Jones, N.; Souffront, M.

    2016-12-01

    Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts that are increasingly available in native as well as other derived products. The European Centre for Medium Range Weather Forecasts (ECMWF) have developed such products for global flood awareness which can be downscaled to smaller regions and used for stream flow prediction in underserved areas such as the Hindu Kush-Himalaya. Combined with digital elevation data, now available at 30 meters through the Shuttle Radar Topography Mission (SRTM) reconnaissance-level flood maps can be generated across wide regions that would otherwise not be possible and where increased information to drive higher resolution models are available the same forecasts can be used to provide forcing inflows for improved flood maps. Advances in cloud computing offer a unique opportunity to facilitate deployment of water resources models as decision-making tools in the cloud-based ICIMOD Water Resources App Portal or IWRAP. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated in the Hindu Kush-Himalaya where both financial and technical capacity are limited. All that is needed to use the system is an Internet connection and a web browser. We will take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization will make results intuitive and information derived actionable. We will also take advantage of the emerging standards for sharing water

  14. Using exhumation histories to constrain Main Himalayan Thrust geometry and seismic hazard in the western Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Burbank, D.

    2016-12-01

    The Himalaya of western Nepal present a challenge to conventional understanding of the geometry and behavior of the Main Himalayan Thrust (MHT), a major seismogenic structure which accommodates 2 cm/yr of Indo-Asian convergence. Slip along a steeper ramp in the MHT drives long-term uplift of the Greater Himalaya along >1000 km of the central range front, resulting in a conspicuous physiographic transition known as PT2. This physiographic break is seemingly absent in western Nepal, which suggests a structural geometry and/or kinematic history distinct from areas along strike. This anomaly must be investigated to clarify how seismic hazard may differ from better-understood areas along strike. The importance of this work is heightened by the recent and catastrophic Gorkha earthquake in 2015. We present a suite of 7 relief transects comprising a mix of apatite and zircon U-Th/He and muscovite Ar-Ar cooling ages. These transects were collected across the more gradual mountain front in western Nepal in an effort to clarify where uplift and exhumation have been focused over the past 10 Ma. We invert these cooling ages using the thermo-kinematic model Pecube in order to constrain exhumation histories that best fit the measured cooling ages. Results confirm that MHT geometry and kinematic history in western Nepal are far more complex than in better-studied areas along strike. Exhumation rates in the along-strike projection of PT2 are slow ( 0.1-0.2 km/Myr) compared with rates 50 km toward the hinterland ( 1.0-1.5 km/Myr), suggesting that exhumation has been more rapid in this more northerly position for the past several Ma. Although a range of kinematic scenarios could explain the anomalous cooling histories, it is likely that a recently active midcrustal ramp in the MHT sits beneath this more northerly position. If the 2015 Gorkha earthquake initiated near the up-dip end of the MHT ramp in central Nepal, it is conceivable that similarly hazardous earthquakes could trigger

  15. Modeling the GLOF Hazard Process Chain at Imja Lake in the Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Lala, J.; McKinney, D. C.; Rounce, D.

    2017-12-01

    The Hindu Kush-Himalaya region contains more glacial ice than any other non-polar region on earth. Many glacial lakes in Nepal are held in place by natural moraine dams, which are inherently unstable. Avalanches or landslides entering glacial lakes can cause tsunami-like waves that can overtop the moraines and trigger glacial lake outburst floods (GLOF). Mass loss at the Imja glacier is the highest in the Mount Everest region, and contributes to the expansion of Imja Tsho, a lake with several villages downstream. A GLOF from the lake might destroy both property and human life, making an understanding of flood triggering processes beneficial for both the downstream villages and other GLOF-prone areas globally. The process chain for an avalanche-induced GLOF was modeled numerically. The volume and velocity of debris from avalanches entering various future lake extents were calculated using RAMMS. Resulting waves and downstream flooding were simulated using BASEMENT to evaluate erosion at the terminal moraine. Wave characteristics in BASEMENT were validated with empirical equations to ensure the proper transfer of momentum from the avalanche to the lake. Moraine erosion was determined for two geomorphologic scenarios: a site-specific scenario using field samples, and a worst-case scenario based on past literature. Both cases resulted in no flooding outside the river channel at downstream villages. Worst-case scenario geomorphology resulted in increased channelization of the lake outlet and some moraine erosion but no catastrophic collapse. Site-specific data yielded similar results but with even less erosion and downstream discharge. While the models confirmed that Imja Tsho is unlikely to produce a catastrophic GLOF in the near future, they also highlight the importance of continued monitoring of the lake. Furthermore, the ease and flexibility of these methods allows for their adoption by a wide range of stakeholders for modeling other high-risk lakes.

  16. The role of strain hardening in the transition from dislocation-mediated to frictional deformation of marbles within the Karakoram Fault Zone, NW India

    NASA Astrophysics Data System (ADS)

    Wallis, David; Lloyd, Geoffrey E.; Hansen, Lars N.

    2018-02-01

    The onset of frictional failure and potentially seismogenic deformation in carbonate rocks undergoing exhumation within fault zones depends on hardening processes that reduce the efficiency of aseismic dislocation-mediated deformation as temperature decreases. However, few techniques are available for quantitative analysis of dislocation slip system activity and hardening in natural tectonites. Electron backscatter diffraction maps of crystal orientations offer one such approach via determination of Schmid factors, if the palaeostress conditions can be inferred and the critical resolved shear stresses of slip systems are constrained. We analyse calcite marbles deformed in simple shear within the Karakoram Fault Zone, NW India, to quantify changes in slip system activity as the rocks cooled during exhumation. Microstructural evidence demonstrates that between ∼300 °C and 200-250 °C the dominant deformation mechanisms transitioned from dislocation-mediated flow to twinning and frictional failure. However, Schmid factor analysis, considering critical resolved shear stresses for yield of undeformed single crystals, indicates that the fraction of grains with sufficient resolved shear stress for glide apparently increased with decreasing temperature. Misorientation analysis and previous experimental data indicate that strain-dependent work hardening is responsible for this apparent inconsistency and promoted the transition from dislocation-mediated flow to frictional, and potentially seismogenic, deformation.

  17. Citizen Science in the Himalaya: The Sherpa-Scientist Initiative

    NASA Astrophysics Data System (ADS)

    Horodyskyj, U. N.; Breashears, D.; Rowe, P.

    2015-12-01

    Since the non-profit educational group, Black Ice Himalaya, launched in 2011 our goal has been to involve local communities in our research expeditions, in the form of a Sherpa-Scientist Initiative (SSI). This goes beyond simply helping with gear carries to research sites. It involves training the local Sherpa in equipment set-up, data collection, and analysis processes, with the goal of turning over this task to local communities and villages in the future. As the terrain continues to change - with the growth and expansion of glacial lakes, along with accumulation of pollutants on snow at higher altitudes - this training program presents an excellent opportunity for long-term data collection in sensitive alpine regions. In association with GlacierWorks and Midwest ROV LLC, skill training has included gigapan high-resolution photography, installing (and downloading) multiple time lapse cameras to track hour-by-hour glacial lake changes; lake bathymetry mapping using side-scan sonar from an unmanned towed platform; installing and managing weather stations; collecting and analyzing data from ASD field spectrometers; and collecting/filtering snow samples to look for contaminants (pollutants) affecting snow melt from 4000 - 6000 meters. A field manual documenting this work and intended to raise awareness of glacial trekking hazards has been disseminated to the International Centre for Integrated Mountain Development (ICIMOD) and Sagarmatha (Everest) National Park. In 2016-17, in collaboration with Vanguard Diving and Exploration, OpenROV, and Midwest ROV LLC, efforts will include SCUBA diving into glacial lakes to collect scientific data, with continued Sherpa training on how to assemble and use portable remotely piloted submersibles to aid in the assessment of glacial lake hazards.

  18. Partitioning of the water budget in the main river basins in High Mountain Asia with GRACE, model output, and other observations.

    NASA Astrophysics Data System (ADS)

    Velicogna, I.; Ciraci, E.; Grogan, D. S.; Lammers, R. B.

    2017-12-01

    Access to freshwater is important as world populations grow, especially in High Mountain Asia, where glaciers are a significant component of the freshwater resources, particularly in summer. Glaciers are sensitive to climate perturbations and affected by climate change. Our understanding of the contribution of glacier runoff to specific watersheds, and projections of glacier runoff in a warming climate, are critical to inform decisions, management and policy development. Here, we quantify changes in glacier mass balance in HMA using GRACE data and determine their contribution to river basin hydrology. We use GRACE data to estimate the HMA glacier mass mas balance and compare the results with changes in total water storage (TWS) for the major watersheds in the HMA regions. We designed ad-hoc mascon configurations to calculate the upstream glacier change in mass balance and contribution to major river basins water supply, determined appropriate corrections and uncertainties for the signal and evaluated the results via comparison with the Water Balance Model (WBM) output and other data (re-analysis data and satellite-derived precipitation and evapotranspiration). Most of the glacier loss is from the Himalaya region (Himalaya, Hengduan Shan S and E Tibet), whereas the western sectors (E and W Tien Shan; and Hindu Kush, Karakoram, W Kunlun, Pamir, Hissar Alay) experienced smaller losses but with larger interannual variability driven by changes in the westerly-driven winter precipitation. For the Indus basin, to evaluate the glacier contribution to the total water budget, we examine the contribution of the upper basin to the lower basin TWS change. Over the Upper Indus basin, we find that the seasonal decline in total water storage between May and September averages 88 Gt during 2002-2012. TRMM cumulative precipitation amounts to 119 Gt, leaving a runoff and evapotranspiration component of 207 Gt. This estimate compares well with an estimate for the WBM modeled runoff of

  19. Local perceptions of climate change validated by scientific evidence in the Himalayas.

    PubMed

    Chaudhary, Pashupati; Bawa, Kamaljit S

    2011-10-23

    The Himalayas are assumed to be undergoing rapid climate change, with serious environmental, social and economic consequences for more than two billion people. However, data on the extent of climate change or its impact on the region are meagre. Based on local knowledge, we report perceived changes in climate and consequences of such changes for biodiversity and agriculture. Our analyses are based on 250 household interviews administered in 18 villages, and focused group discussions conducted in 10 additional villages in Darjeeling Hills, West Bengal, India and Ilam district of Nepal. There is a widespread feeling that weather is getting warmer, the water sources are drying up, the onset of summer and monsoon has advanced during last 10 years and there is less snow on mountains than before. Local perceptions of the impact of climate change on biodiversity included early budburst and flowering, new agricultural pests and weeds and appearance of mosquitoes. People at high altitudes appear more sensitive to climate change than those at low altitudes. Most local perceptions conform to scientific data. Local knowledge can be rapidly and efficiently gathered using systematic tools. Such knowledge can allow scientists to test specific hypotheses, and policy makers to design mitigation and adaptation strategies for climate change, especially in an extraordinarily important part of our world that is experiencing considerable change.

  20. Geospatial tools for assessing land degradation in Budgam district, Kashmir Himalaya, India

    NASA Astrophysics Data System (ADS)

    Rashid, Mehnaz; Lone, Mahjoor Ahmad; Romshoo, Shakil Ahmad

    2011-06-01

    Land degradation reduces the ability of the land to perform many biophysical and chemical functions. The main aim of this study was to determine the status of land degradation in the Budgam area of Kashmir Himalaya using remote sensing and geographic information system. The satellite data together with other geospatial datasets were used to quantify different categories of land degradation. The results were validated in the field and an accuracy of 85% was observed. Land use/land cover of the study area was determined in order to know the effect of land use on the rate of land degradation. Normalized differential vegetation index (NDVI) and slope of the area were determined using LANDSAT-enhanced thematic mapper plus (ETM+) data, advanced space borne thermal emission and reflection radiometer, and digital elevation model along with other secondary data were analysed to create various thematic maps, viz., land use/land cover, geology, NDVI and slopes used in modelling land degradation in the Kashmir Himalayan region. The vegetation condition, elevation and land use/land cover information of the area were integrated to assess the land degradation scenario in the area using the ArcGIS `Spatial Analyst Module'. The results reveal that about 13.19% of the study area has undergone moderate to high degradation, whereas about 44.12% of the area has undergone slight degradation.

  1. Permafrost in the Himalayas: specific characteristics, evolution vs. climate change and impacts on potential natural hazards

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2015-04-01

    Mountain environments are very sensitive to climate change, yet assessing the potential impacts of these changes is not easy because of the complexity and diversity of mountain systems. The Himalayan permafrost belt presents three main specificities: (1) it develops in a geodynamically active mountain, which means that the controlling factors are not only temperature but also seismo-tectonic activity; (2) due to the steepness of the southern flank of the Greater Himalaya and potential large scale rock failures, permafrost evidence manifests itself best in the inner valleys and on the northern, arid side of the Himalayas (elevations >4000m); (3) the east-west strike of the mountain range creates large spatial discontinuity in the "cold" belt, mostly related to precipitation nature and availability. Only limited studies have been carried to date, and there is no permanent "field laboratory", nor continuous records but a few local studies. Based on preliminary observations in the Nepal Himalayas (mostly in Mustang and Dolpo districts), and Indian Ladakh, we present the main features indicating the existence of permafrost (either continuous or discontinuous). Rock-glaciers are quite well represented, though their presence may be interpreted as a combined result from both ground ice and large rock collapse. The precise altitudinal zonation of permafrost belt (specifying potential permafrost, probable permafrost, observed permafrost belts) still requires careful investigations in selected areas. Several questions arise when considering the evolution of permafrost in a context of climate change, with its impacts on the development of potential natural hazards that may affect the mountain population. Firstly, permafrost degradation (ground ice melting) is a cause of mountain slope destabilization. When the steep catchments are developed in frost/water sensitive bedrock (shales and marls) and extend to high elevations (as observed in Mustang or Dolpo), it would supply more

  2. DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains.

    PubMed

    Yan, Li-Jun; Liu, Jie; Möller, Michael; Zhang, Lin; Zhang, Xue-Mei; Li, De-Zhu; Gao, Lian-Ming

    2015-07-01

    The Himalaya-Hengduan Mountains encompass two global biodiversity hotspots with high levels of biodiversity and endemism. This area is one of the diversification centres of the genus Rhododendron, which is recognized as one of the most taxonomically challenging plant taxa due to recent adaptive radiations and rampant hybridization. In this study, four DNA barcodes were evaluated on 531 samples representing 173 species of seven sections of four subgenera in Rhododendron, with a high sampling density from the Himalaya-Hengduan Mountains employing three analytical methods. The varied approaches (nj, pwg and blast) had different species identification powers with blast performing best. With the pwg analysis, the discrimination rates for single barcodes varied from 12.21% to 25.19% with ITS < rbcL < matK < psbA-trnH. Combinations of ITS + psbA-trnH + matK and the four barcodes showed the highest discrimination ability (both 41.98%) among all possible combinations. As a single barcode, psbA-trnH performed best with a relatively high performance (25.19%). Overall, the three-marker combination of ITS + psbA-trnH + matK was found to be the best DNA barcode for identifying Rhododendron species. The relatively low discriminative efficiency of DNA barcoding in this genus (~42%) may possibly be attributable to too low sequence divergences as a result of a long generation time of Rhododendron and complex speciation patterns involving recent radiations and hybridizations. Taking the morphology, distribution range and habitat of the species into account, DNA barcoding provided additional information for species identification and delivered a preliminary assessment of biodiversity for the large genus Rhododendron in the biodiversity hotspots of the Himalaya-Hengduan Mountains. © 2014 John Wiley & Sons Ltd.

  3. Terrestrial water storage variations and surface vertical deformation derived from GPS and GRACE observations in Nepal and Himalayas

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Shen, W.; Hwang, C.

    2015-12-01

    As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  4. Late Quaternary glaciation history of monsoon-dominated Dingad basin, central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Shukla, Tanuj; Mehta, Manish; Jaiswal, Manoj K.; Srivastava, Pradeep; Dobhal, D. P.; Nainwal, H. C.; Singh, Atul K.

    2018-02-01

    The study presents the Late Quaternary glaciation history of monsoon-dominated Dokriani Glacier valley, Dingad basin, central Himalaya, India. The basin is tested for the mechanism of landforms preservation in high relief and abundant precipitation regimes of the Higher Himalaya. Field geomorphology and remote sensing data, supported by Optical Stimulated Luminescence (OSL) dating enabled identification of five major glacial events of decreasing magnitude. The oldest glacial stage, Dokriani Glacial Stage I (DGS-I), extended down to ∼8 km (2883 m asl) from present-day snout (3965 m asl) followed by other four glaciations events viz. DGS-II, DGS-III, DGS-IV and DGS-V terminating at ∼3211, 3445, 3648 and ∼3733 m asl respectively. The DGS-I glaciation (∼25-∼22 ka BP) occurred during early Marine Isotope Stage (MIS) -2, characterized as Last Glacial Maximum (LGM) extension of the valley. Similarly, DGS-II stage (∼14-∼11 ka BP) represents the global cool and dry Older Dryas and Younger Dryas event glaciation. The DGS-III glaciation (∼8 ka BP) coincides with early Holocene 8.2 ka cooling event, the DGS-IV glaciations (∼4-3.7 ka BP) corresponds to 4.2 ka cool and drier event, DGS-V (∼2.7-∼1 ka BP) represents the cool and moist late Holocene glacial advancement of the valley. This study suggests that the Dokriani Glacier valley responded to the global lowering of temperature and variable precipitation conditions. This study also highlights the close correlation between the monsoon-dominated valley glaciations and Northern Hemisphere cooling events influenced by North Atlantic climate.

  5. Spatiotemporal assessment of historical skill and projected future changes in CORDEX South Asia ensemble simulation of precipitation and temperature for the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Fowler, Hayley; Pritchard, David

    2017-04-01

    High mountain Asia (HMA), including the Hindu Kush-Karakoram, Himalayas and Tibetan Plateau, constitutes one the key "water towers of the world", giving rise to river basins whose resources support hundreds of millions of people. This area is currently experiencing substantial demographic growth and socio-economic development. This evolution will likely continue for the next few decades and compound pressure on resource managements systems from inevitable climate change. In order to develop climate services to support water resources planning and facilitate adaptive capacity building, it is essential to critically characterise the skill and biases of the evaluation (reanalysis-driven) and control (historical period) components of presently available regional climate model (RCM) experiments. For mountain regions in particular, the ability of RCMs to reasonably reproduce the influence of complex topography, through lapse rates and orographic forcing, on sub-regional climate - notably temperature and precipitation - must be assessed in detail. This is vital because the spatiotemporal distribution of precipitation and temperature in mountains determine the seasonality of streamflow from the headwater reaches and of major river basins. Once the biases of individual GCM/RCM experiments have been identified methodologies can be developed for modulating (correcting) the projected patterns of change identified by comparing simulated climate sub-regional climate under specific emissions scenarios (e.g. RCP8.5) to historical representations by the same model (time-slice approach). Such methods could for example include calculating temperature change factors as a function elevation difference from present 0°C (freezing) isotherm rather than simply using the overlying RCM grid cell if for instance the RCM showed exacerbated temperature increase at snow line (i.e. albedo feedback in elevation dependent warming) but also showed a pronounced bias in the historical (vertical

  6. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya

    PubMed Central

    Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively. PMID:29664961

  7. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya.

    PubMed

    Thapa, Sunil; Chitale, Vishwas; Rijal, Srijana Joshi; Bisht, Neha; Shrestha, Bharat Babu

    2018-01-01

    Invasive alien plant species (IAPS) can pose severe threats to biodiversity and stability of native ecosystems, therefore, predicting the distribution of the IAPS plays a crucial role in effective planning and management of ecosystems. In the present study, we use Maximum Entropy (MaxEnt) modelling approach to predict the potential of distribution of eleven IAPS under future climatic conditions under RCP 2.6 and RCP 8.5 in part of Kailash sacred landscape region in Western Himalaya. Based on the model predictions, distribution of most of these invasive plants is expected to expand under future climatic scenarios, which might pose a serious threat to the native ecosystems through competition for resources in the study area. Native scrublands and subtropical needle-leaved forests will be the most affected ecosystems by the expansion of these IAPS. The present study is first of its kind in the Kailash Sacred Landscape in the field of invasive plants and the predictions of potential distribution under future climatic conditions from our study could help decision makers in planning and managing these forest ecosystems effectively.

  8. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Ader, Thomas; Avouac, Jean-Philippe; Liu-Zeng, Jing; Lyon-Caen, HéLèNe; Bollinger, Laurent; Galetzka, John; Genrich, Jeff; Thomas, Marion; Chanard, Kristel; Sapkota, Soma Nath; Rajaure, Sudhir; Shrestha, Prithvi; Ding, Lin; Flouzat, Mireille

    2012-04-01

    We document geodetic strain across the Nepal Himalaya using GPS times series from 30 stations in Nepal and southern Tibet, in addition to previously published campaign GPS points and leveling data and determine the pattern of interseismic coupling on the Main Himalayan Thrust fault (MHT). The noise on the daily GPS positions is modeled as a combination of white and colored noise, in order to infer secular velocities at the stations with consistent uncertainties. We then locate the pole of rotation of the Indian plate in the ITRF 2005 reference frame at longitude = - 1.34° ± 3.31°, latitude = 51.4° ± 0.3° with an angular velocity of Ω = 0.5029 ± 0.0072°/Myr. The pattern of coupling on the MHT is computed on a fault dipping 10° to the north and whose strike roughly follows the arcuate shape of the Himalaya. The model indicates that the MHT is locked from the surface to a distance of approximately 100 km down dip, corresponding to a depth of 15 to 20 km. In map view, the transition zone between the locked portion of the MHT and the portion which is creeping at the long term slip rate seems to be at the most a few tens of kilometers wide and coincides with the belt of midcrustal microseismicity underneath the Himalaya. According to a previous study based on thermokinematic modeling of thermochronological and thermobarometric data, this transition seems to happen in a zone where the temperature reaches 350°C. The convergence between India and South Tibet proceeds at a rate of 17.8 ± 0.5 mm/yr in central and eastern Nepal and 20.5 ± 1 mm/yr in western Nepal. The moment deficit due to locking of the MHT in the interseismic period accrues at a rate of 6.6 ± 0.4 × 1019 Nm/yr on the MHT underneath Nepal. For comparison, the moment released by the seismicity over the past 500 years, including 14 MW ≥ 7 earthquakes with moment magnitudes up to 8.5, amounts to only 0.9 × 1019 Nm/yr, indicating a large deficit of seismic slip over that period or very infrequent

  9. "No former travellers having attained such a height on the Earth's surface": Instruments, inscriptions, and bodies in the Himalaya, 1800-1830.

    PubMed

    Fleetwood, Lachlan

    2018-03-01

    East India Company surveyors began gaining access to the high Himalaya in the 1810s, at a time when the mountains were taking on increasing political significance as the northern borderlands of British India. Though never as idiosyncratic as surveyors insisted, these were spaces in which instruments, fieldbook inscriptions, and bodies were all highly prone to failure. The ways surveyors managed these failures (both rhetorically and in practice) demonstrate the social performances required to establish credible knowledge in a world in which the senses were scrambled. The resulting tensions reveal an ongoing disconnect in understanding between those displaced not only from London, but also from Calcutta, something insufficiently emphasized in previous histories of colonial science. By focusing on the early nineteenth century, often overlooked in favor of the later period, this article shows the extent to which the scientific, imaginative, and political constitution of the Himalaya was haphazard and contested.

  10. Climate-driven sediment aggradation and incision phases since the Late Pleistocene in the NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Dey, Saptarshi; Thiede, Rasmus C.; Schildgen, Taylor F.; Wittmann, Hella; Bookhagen, Bodo; Scherler, Dirk; Jain, Vikrant; Strecker, Manfred R.

    2016-04-01

    Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution and depositional systems. In the Sub-Himalaya, late Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescale of 103 to 105 years, most likely related to past climatic fluctuations. To evaluate the climatic control on sediment supply and transport capacity, we analyze remnant alluvial fans and terraces in the Kangra Basin of the northwestern Sub-Himalaya. Based on field observations and OSL and CRN-dating, we recognized two sedimentary cycles with major sediment aggradation and subsequent re-incision phases. The large one developed over the entire last glacial period with ˜200 m high alluvial fan (AF1) and the second one during the latest Pleistocene/Holocene with ˜50 m alluvial fan (AF2) and its re-incision . Surface-exposure dating of six terrace levels with in-situ cosmogenic nuclides (10Be) indicates the onset of channel abandonment and ensuing incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest-preserved AF1 dates back to 48.9 ± 4.1 ka and 42.1 ± 2.7 ka (2σ error). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 16.8 ± 2 ka and 14.1 ± 0.9 ka, while terraces sculpted into the late Pleistocene- Holocene fan (AF2) provide ages of 8.4± 0.8 ka, 6.6± 0.7 ka, 4.9± 0.4 ka and 3.1± 0.3 ka. Together with previously-published ages on the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by Indian Summer Monsoon. During stronger monsoon phases and post-LGM glacial retreat manifested by increased sediment delivery (moraines and hillslope-derived) to the trunk streams, causing aggradation in the basin; whereas, weakened monsoon phases characterized by reduced sediment

  11. Elevational Gradients in Fish Diversity in the Himalaya: Water Discharge Is the Key Driver of Distribution Patterns

    PubMed Central

    Bhatt, Jay P.; Manish, Kumar; Pandit, Maharaj K.

    2012-01-01

    Background Studying diversity and distribution patterns of species along elevational gradients and understanding drivers behind these patterns is central to macroecology and conservation biology. A number of studies on biogeographic gradients are available for terrestrial ecosystems, but freshwater ecosystems remain largely neglected. In particular, we know very little about the species richness gradients and their drivers in the Himalaya, a global biodiversity hotspot. Methodology/Principal Findings We collated taxonomic and distribution data of fish species from 16 freshwater Himalayan rivers and carried out empirical studies on environmental drivers and fish diversity and distribution in the Teesta river (Eastern Himalaya). We examined patterns of fish species richness along the Himalayan elevational gradients (50–3800 m) and sought to understand the drivers behind the emerging patterns. We used generalized linear models (GLM) and generalized additive models (GAM) to examine the richness patterns; GLM was used to investigate relationship between fish species richness and various environmental variables. Regression modelling involved stepwise procedures, including elimination of collinear variables, best model selection, based on the least Akaike’s information criterion (AIC) and the highest percentage of deviance explained (D2). This maiden study on the Himalayan fishes revealed that total and non-endemic fish species richness monotonously decrease with increasing elevation, while endemics peaked around mid elevations (700–1500 m). The best explanatory model (synthetic model) indicated that water discharge is the best predictor of fish species richness patterns in the Himalayan rivers. Conclusions/Significance This study, carried out along one of the longest bioclimatic elevation gradients of the world, lends support to Rapoport’s elevational rule as opposed to mid domain effect hypothesis. We propose a species-discharge model and contradict species

  12. New paleomagnetic results from the Paleocene redbeds in the Tethyan Himalaya: Insights into the precollisional extension of Greater India and the time of the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Yang, T.; Jin, J.; Ma, Y.; Bian, W.; Zhang, S.; Gao, F.; Wu, H.; Li, H.; Yang, Z.; Cao, L.

    2017-12-01

    The collision and ongoing convergence between the India and Asia continents have produced the Himalayan-Tibetan Orogen. The precollisional extension of Greater India and the time of the India-Asia collision are very important to understand the tectonic evolution of the Tibetan Plateau, but disputes still remain concerning these two problems. A paleomagnetic and rock-magnetic study has been carried out on the Sangdanlin and Zheya Formation redbeds, which were dated at 60-58.5 Ma, in the Saga area of the Tethyan Himalaya. Thirty-six Paleocene redbed sites provide a tilt-corrected site-mean direction of D=178.3°, I=9.8° with ɑ95=5.5°, corresponding to a paleopole at 55.6°N, 268.5°E with A95 = 4.9°. This Paleocene paleomagnetic dataset passes positive fold tests and shows that the Saga area (29.3°N, 85.3°E) was located at 5.1°S during 60-58.5 Ma. Comparing the Paleocene (60-58.5 Ma) paleomagnetic results observed from the Tethyan Himalaya with those expected from the Indian APWP indicates a paleolatitude difference of 2.1°, which, combined with that the Early Cretaceous paleomagnetic results obtained from the Tethyan Himalaya and the Indian craton also showed a similar paleolatitude difference, suggests that neither a great north-south crustal shortening occurred between the Indian craton and the Tethyan Himalaya after the India-Asia collision, nor that a wide ocean extended between them after the Early Cretaceous. Therefore, high-quality paleomagnetic results show no a big Greater India. Based on our new Paleocene results obtained from the Tethyan Himalaya and the reliable Cretaceous-Early Eocene paleomagnetic results observed from the Lhasa terrane, as well as on extrapolating a constant Indian northward velocity of 18.8 cm/yr, the India-Asia collision occurred at 49.2 Ma for the reference point at 29.3°N, 85.3°E. This work was supported by the National Natural Science Foundation of China (41572205) and the Fundamental Research Fund for the Central

  13. Improving SLCF Science in the Himalayan Region: ICIMOD's Atmosphere Initiative

    NASA Astrophysics Data System (ADS)

    Panday, A. K.; Pradhan, B. B.; Surapipith, V.

    2013-12-01

    What fraction of the black carbon arriving on Yala Glacier in Langtang, Nepal, is from cooking fires in the houses in the valley below? What fraction is from elsewhere in rural Nepal? What fraction is from industrial and transport sources in Kathmandu? What fraction is from northern India and beyond? What fraction is from the high altitude forest fires that take place during March or April? Effectively mitigating the impacts of black carbon and other short-lived climate forcers requires detailed understanding not just of emissions and impacts, but also of the atmospheric transport pathways that connect the two. In mountainous areas of the Hindu-Kush Himalaya detailed quantitative knowledge about emissions, atmospheric processes, and impacts is still largely missing. The International Centre for Integrated Mountain Development (ICIMOD) is an intergovernmental organization covering Afghanistan, Pakistan, India, Nepal, China, Bhutan, Bangladesh, and Myanmar. ICIMOD's recently established Atmosphere Initiative not only assesses mitigation options and contributes to policy and capacity building in the region, but also works actively to promote collaboration among researchers in the region, while building up an in-house team whose research will address key questions about SLCF. In Spring 2013 ICIMOD's Atmosphere Initiative, in collaboration with the Institute for Advanced Sustainability Studies (IASS) in Potsdam, Germany, carried out the largest field campaign to date in Nepal, hosting instruments belonging to dozens of institutions around the world, at nine field site within and upwind of the Kathmandu Valley, Nepal. The dataset that has been collected gives unprecedented insights into the emissions and atmospheric processes taking place downwind of and within the largest urban agglomeration in the Himalaya region. Meanwhile, in collaboration with national partner institutions, ICIMOD is in the process of setting up one atmospheric observatory each in Bhutan and in

  14. The promotion of geosites along a major trail of the Nepal Himalayas: the middle Kali Gandaki Valley.

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan; Fort, Monique; Sapkota, Somanath

    2017-04-01

    The Himalayas mountains, the highest in the world, offer exceptional landscapes, characterized by a large bio- and geo-diversity that should be preserved. Besides World Heritage Sites, recognized by UNESCO and inscribed for their outstanding universal value, a series of National Parks (Khumbu, Langtang, etc.) and Conservation areas (e.g. ACAP…) have been created by the Nepal Government, with the aim of integrating protection, education and sustainable development, in order to protect environmental heritages (flora, fauna, geosites), together with local culture and history, hence encouraging better knowledge and perception of the landscape elements by the visitors in connection with local people. The Himalayas, the result of the India-Asia plates collision, may also be considered both as real outdoor laboratory and museum, where geodynamic activity can be directly tackled and interpreted at different spatial and time scales by scientists. Their findings should be « translated » in simple words and sketches, in such a way that travelers, both local visitors and foreign trekkers, may learn along their itinerary. The conception of posters to be set in specific sites (outcrops and rock types, geological and geomorphological processes, such as major faults, landslides, relicts of glaciation etc.) is certainly the best way to promote geosciences and bring an additional value to travels across the Nepal Himalayas. The Department of Mines and Geology has taken the initiative of such a project. We present here a few examples of such geosites that would worth being illustrated along the famous trail, recently transformed as a motorable road, across the Kali Gandaki valley (Myadi and Mustang districts). On the basis of their geomorphic activity and their significance for local population, we have selected a few scenic places of significant scientific and educational interest (not exhaustive list). (1) Tatopani, famous for its hot-springs, was recently flooded by a

  15. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO4 2− and black carbon) were higher (76% for black carbon and 96% for fine mode SO4 2−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  16. Effect of dust and anthropogenic aerosols on columnar aerosol optical properties over Darjeeling (2200 m asl), eastern Himalayas, India.

    PubMed

    Chatterjee, Abhijit; Ghosh, Sanjay K; Adak, Anandamay; Singh, Ajay K; Devara, Panuganti C S; Raha, Sibaji

    2012-01-01

    The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca(2+)) during pre-monsoon (Apr-May) which was higher by 162% than its annual mean whereas during winter (Dec-Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO(4)(2-) and black carbon) were higher (76% for black carbon and 96% for fine mode SO(4)(2-)) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas.

  17. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert.

    PubMed

    Řeháková, Klára; Chroňáková, Alica; Krištůfek, Václav; Kuchtová, Barbora; Čapková, Kateřina; Scharfen, Josef; Čapek, Petr; Doležal, Jiří

    2015-01-01

    Although bacterial assemblages are important components of soils in arid ecosystems, the knowledge about composition, life-strategies, and environmental drivers is still fragmentary, especially in remote high-elevation mountains. We compared the quality and quantity of heterotrophic bacterial assemblages between the rhizosphere of the dominant cushion-forming plant Thylacospermum ceaspitosum and its surrounding bulk soil in two mountain ranges (East Karakoram: 4850-5250 m and Little Tibet: 5350-5850 m), in communities from cold steppes to the subnival zone in Ladakh, arid Trans-Himalaya, northwest India. Bacterial communities were characterized by molecular fingerprinting in combination with culture-dependent methods. The effects of environmental factors (elevation, mountain range, and soil physico-chemical parameters) on the bacterial community composition and structure were tested by multivariate redundancy analysis and conditional inference trees. Actinobacteria dominate the cultivable part of community and represent a major bacterial lineage of cold desert soils. The most abundant genera were Streptomyces, Arthrobacter, and Paenibacillus, representing both r- and K-strategists. The soil texture is the most important factor for the community structure and the total bacteria counts. Less abundant and diverse assemblages are found in East Karakoram with coarser soils derived from leucogranite bedrock, while more diverse assemblages in Little Tibet are associated with finer soils derived from easily weathering gneisses. Cushion rhizosphere is in general less diverse than bulk soil, and contains more r-strategists. K-strategists are more associated with the extremes of the gradient, with drought at lowest elevations (4850-5000 m) and frost at the highest elevations (5750-5850 m). The present study illuminates the composition of soil bacterial assemblages in relation to the cushion plant T. ceaspitosum in a xeric environment and brings important information about

  18. Glacier-induced Hazards in the Trans-Himalaya of Ladakh (NW-India)

    NASA Astrophysics Data System (ADS)

    Schmidt, Susanne; Dame, Juliane; Nüsser, Marcus

    2016-04-01

    Glaciers are important water resources for irrigated crop cultivation in the semi-arid Trans-Himalaya of Ladakh (NW-India). Due to global warming, many glaciers of South Asia have retreated over the last century and further ice loss will threaten local livelihoods in the long run. In the short term, an increase of flood events caused by melting glaciers and permafrost is expected for the Himalayan region. Beside large catastrophic events, small outburst floods are 'more' regularly reported for various parts of the region. This also holds true for the Trans-Himalayan region of Ladakh, where small glaciers exist at high altitudes. Caused by glacier retreat, a number of proglacial lakes have been formed, most of them dammed by ice filled moraines. The potential risk of these lakes is shown by recent reports on glacial lake outburst flood in the villages Nidder in October 2010 and Gya in August 2014. The 2014 flood destroyed several agricultural terraces, a new concrete bridge and two houses. Own remote sensing analyses shows the increase of a moraine dammed proglacial lake in the upper catchment area, which grew from about 0.03 to 0.08 km2 between 1969 and 2014. Because of the relatively stable altitude of the lake level, one can assume that the flood was caused by a piping process, initiated by melted ice bodies in the moraine. Already in the 1990s a small GLOF was observed in the village, which destroyed some fields. As in 2014, the lake was not completely spilled and a short-term decrease of the lake area is detectable in remote sensing data. Thus, further GLOF-events can be expected for the future. Beside physical risk factors, population growth and new infrastructure development along the streams and valleys increases potential damages of floods. Therefore, investigations are required to estimate the risks of these small glacial lakes and the potential flood effected area for the case study of Gya as well as for the whole region of Ladakh. Remote sensing data are

  19. Earthquakes of the Nepal Himalaya: Towards a physical model of the seismic cycle

    NASA Astrophysics Data System (ADS)

    Ader, Thomas J.

    Documenting geodetic strain across the Nepal Himalaya with various GPS and leveling data, we show that unlike other subduction zones that exhibit a heterogeneous and patchy coupling pattern along strike, the last hundred kilometers of the Main Himalayan Thrust fault, or MHT, appear to be uniformly locked, devoid of any of the "creeping barriers" that traditionally ward off the propagation of large events. The approximately 20 mm/yr of reckoned convergence across the Himalaya matching previously established estimates of the secular deformation at the front of the arc, the slip accumulated at depth has to somehow elastically propagate all the way to the surface at some point. And yet, neither large events from the past nor currently recorded microseismicity nearly compensate for the massive moment deficit that quietly builds up under the giant mountains. Along with this large unbalanced moment deficit, the uncommonly homogeneous coupling pattern on the MHT raises the question of whether or not the locked portion of the MHT can rupture all at once in a giant earthquake. Univocally answering this question appears contingent on the still elusive estimate of the magnitude of the largest possible earthquake in the Himalaya, and requires tight constraints on local fault properties. What makes the Himalaya enigmatic also makes it the potential source of an incredible wealth of information, and we exploit some of the oddities of Himalayan seismicity in an effort to improve the understanding of earthquake physics and cipher out the properties of the MHT. Thanks to the Himalaya, the Indo-Gangetic plain is deluged each year under a tremendous amount of water during the annual summer monsoon that collects and bears down on the Indian plate enough to pull it away from the Eurasian plate slightly, temporarily relieving a small portion of the stress mounting on the MHT. As the rainwater evaporates in the dry winter season, the plate rebounds and tension is increased back on the

  20. Controls on Cenozoic exhumation of the Tethyan Himalaya from fission-track thermochronology and detrital zircon U-Pb geochronology in the Gyirong basin area, southern Tibet

    NASA Astrophysics Data System (ADS)

    Shen, Tianyi; Wang, Guocan; Leloup, Philippe Hervé; van der Beek, Peter; Bernet, Matthias; Cao, Kai; Wang, An; Liu, Chao; Zhang, Kexin

    2016-07-01

    The Gyirong basin, southern Tibet, contains the record of Miocene-Pliocene exhumation, drainage development, and sedimentation along the northern flank of the Himalaya. The tectonic controls on basin formation and their potential link to the South Tibetan Detachment System (STDS) are not well understood. We use detrital zircon (ZFT) and apatite (AFT) fission-track analysis, together with detrital zircon U-Pb dating to decipher the provenance of Gyirong basin sediments and the exhumation history of the source areas. Results are presented for nine detrital samples of Gyirong basin sediments (AFT, ZFT, and U-Pb), two modern river-sediment samples (ZFT and AFT), and six bedrock samples (ZFT) from transect across the Gyirong fault bounding the basin to the east. The combination of detrital zircon U-Pb and fission-track data demonstrates that the Gyirong basin sediments were sourced locally from the Tethyan Sedimentary Sequence. This provenance pattern indicates that deposition was controlled by the Gyirong fault, active since 10 Ma, whose vertical throw was probably < 5000 m, rather than being controlled by normal faults associated with the STDS. The detrital thermochronology data contain two prominent age groups at 37-41 and 15-18 Ma, suggesting rapid exhumation at these times. A 15-18 Ma phase of rapid exhumation has been recorded widely in both southern Tibet and the Himalaya. A possible interpretation for such a major regional exhumation event might be detachment of the subducting Indian plate slab during the middle Miocene, inducing dynamic uplift of the Indian plate overriding its own slab.

  1. Using titanite petrochronology to monitor CO2-degassing episodes from the Himalayas

    NASA Astrophysics Data System (ADS)

    Rapa, Giulia; Groppo, Chiara; Rolfo, Franco; Petrelli, Maurizio; Mosca, Pietro

    2017-04-01

    Metamorphic degassing from active collisional orogens supplies a significant fraction of CO2 to the atmosphere, playing a fundamental role in the long-term (> 1 Ma) global carbon cycle (Gaillardet & Galy, 2008). The petro-chronologic study of the CO2-source rocks (e.g. calc-silicate rocks) in collisional settings is therefore fundamental to understand the nature, timing, duration and magnitude of the orogenic carbon cycle. So far, the incomplete knowledge of these systems hindered a reliable quantitative modelling of metamorphic CO2 fluxes. A detailed petrological modelling of a clinopyroxene + scapolite + K-feldspar + plagioclase + biotite + zoisite ± calcite calc-silicate rock from central Nepal Himalaya allowed us to identify and fully characterize - for the first time - different metamorphic reactions that led to the simultaneous growth of titanite and production of CO2. These reactions involve biotite (rather than rutile) as the Ti-bearing reactant counterpart of titanite. The results of petrological modelling combined with Zr-in-Ttn thermometry and U-Pb geochronology suggest that in the studied sample, most titanite grains grew during two nearly continuous episodes of titanite formation: a near-peak event at 730-740°C, 10 kbar, 25.5±1.5 Ma, and a peak event at 740-765°C, 10.5 kbar, 22±3 Ma. Both episodes of titanite growth are correlated to specific CO2-producing reactions, thus allowing to constrain the timing, duration and P-T conditions of the main CO2-producing events, as well as the amounts of CO2 produced. Assuming that fluids released at a depth of ca. 30 km are able to reach the Earth's surface 10 Ma after their production, it is therefore possible to speculate on the role exerted by the Himalayan orogenesis on the climate in the past. Gaillardet J. & Galy A. (2008): Himalaya-carbon sink or source? Science, 320, 1727-1728.

  2. Understanding Earthquake Hazard & Disaster in Himalaya - A Perspective on Earthquake Forecast in Himalayan Region of South Central Tibet

    NASA Astrophysics Data System (ADS)

    Shanker, D.; Paudyal, ,; Singh, H.

    2010-12-01

    It is not only the basic understanding of the phenomenon of earthquake, its resistance offered by the designed structure, but the understanding of the socio-economic factors, engineering properties of the indigenous materials, local skill and technology transfer models are also of vital importance. It is important that the engineering aspects of mitigation should be made a part of public policy documents. Earthquakes, therefore, are and were thought of as one of the worst enemies of mankind. Due to the very nature of release of energy, damage is evident which, however, will not culminate in a disaster unless it strikes a populated area. The word mitigation may be defined as the reduction in severity of something. The Earthquake disaster mitigation, therefore, implies that such measures may be taken which help reduce severity of damage caused by earthquake to life, property and environment. While “earthquake disaster mitigation” usually refers primarily to interventions to strengthen the built environment, and “earthquake protection” is now considered to include human, social and administrative aspects of reducing earthquake effects. It should, however, be noted that reduction of earthquake hazards through prediction is considered to be the one of the effective measures, and much effort is spent on prediction strategies. While earthquake prediction does not guarantee safety and even if predicted correctly the damage to life and property on such a large scale warrants the use of other aspects of mitigation. While earthquake prediction may be of some help, mitigation remains the main focus of attention of the civil society. Present study suggests that anomalous seismic activity/ earthquake swarm existed prior to the medium size earthquakes in the Nepal Himalaya. The mainshocks were preceded by the quiescence period which is an indication for the occurrence of future seismic activity. In all the cases, the identified episodes of anomalous seismic activity were

  3. Irrigation as a Potential Driver for Anomalous Glacier Behavior in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    de Kok, Remco J.; Tuinenburg, Obbe A.; Bonekamp, Pleun N. J.; Immerzeel, Walter W.

    2018-02-01

    Many glaciers in the northwest of High Mountain Asia (HMA) show an almost zero or positive mass balance, despite the global trend of melting glaciers. This phenomenon is often referred to as the "Karakoram anomaly," although strongest positive mass balances can be found in the Kunlun Shan mountain range, northeast of the Karakoram. Using a regional climate model, in combination with a moisture-tracking model, we show that the increase in irrigation intensity in the lowlands surrounding HMA, particularly in the Tarim basin, can locally counter the effects of global warming on glaciers in Kunlun Shan, and parts of Pamir and northern Tibet, through an increase in summer snowfall and decrease in net radiance. Irrigation can thus affect the regional climate in a way that favors glacier growth, and future projections of glacier melt, which may impact millions of inhabitants surrounding HMA, will need to take into account predicted changes in irrigation intensity.

  4. Structure and genetic diversity of natural populations of Morus alba in the trans-Himalayan Ladakh region.

    PubMed

    Bajpai, Prabodh K; Warghat, Ashish R; Sharma, Ram Kumar; Yadav, Ashish; Thakur, Anil K; Srivastava, Ravi B; Stobdan, Tsering

    2014-04-01

    Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei's gene diversity 0.2286, and Shannon's information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.

  5. Widespread Albedo Decreasing and Induced Melting of Himalayan Snow and Ice in the Early 21st Century

    PubMed Central

    Ming, Jing; Wang, Yaqiang; Du, Zhencai; Zhang, Tong; Guo, Wanqin; Xiao, Cunde; Xu, Xiaobin; Ding, Minghu; Zhang, Dongqi; Yang, Wen

    2015-01-01

    Background The widely distributed glaciers in the greater Himalayan region have generally experienced rapid shrinkage since the 1850s. As invaluable sources of water and because of their scarcity, these glaciers are extremely important. Beginning in the twenty-first century, new methods have been applied to measure the mass budget of these glaciers. Investigations have shown that the albedo is an important parameter that affects the melting of Himalayan glaciers. Methodology/Principal Findings The surface albedo based on the Moderate Resolution Imaging Spectroradiometer (MODIS) data over the Hindu Kush, Karakoram and Himalaya (HKH) glaciers is surveyed in this study for the period 2000–2011. The general albedo trend shows that the glaciers have been darkening since 2000. The most rapid decrease in the surface albedo has occurred in the glacial area above 6000 m, which implies that melting will likely extend to snow accumulation areas. The mass-loss equivalent (MLE) of the HKH glacial area caused by surface shortwave radiation absorption is estimated to be 10.4 Gt yr-1, which may contribute to 1.2% of the global sea level rise on annual average (2003–2009). Conclusions/Significance This work probably presents a first scene depicting the albedo variations over the whole HKH glacial area during the period 2000–2011. Most rapidly decreasing in albedo has been detected in the highest area, which deserves to be especially concerned. PMID:26039088

  6. Assessing the utility of passive microwave data for Snow Water Equivalent (SWE) estimation in the Sutlej River Basin of the northwestern Himalaya

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Bookhagen, B.; Dozier, J.

    2014-12-01

    Since 1978, space based passive microwave (PM) radiometers have been used to comprehensively measure Snow Water Equivalent (SWE) on a global basis. The ability of PM radiometers to directly measure SWE at high temporal frequencies offers some distinct advantages over optical remote sensors. Nevertheless, in mountainous terrain PM radiometers often struggle to accurately measure SWE because of wet snow, saturation in deep snow, forests, depth hoar and stratigraphy, variable relief, and subpixel heterogeneity inherent in large pixel sizes. The Himalaya, because of their high elevation and high relief—much above tree line—offer an opportunity to examine PM products in the mountains without the added complication of trees. The upper Sutlej River basin— the third largest Himalayan catchment—lies in the western Himalaya. The river is a tributary of the Indus River and seasonal snow constitutes a substantial part of the basin's hydrologic budget. The basin has a few surface stations and river gauges, which is unique for the region. As such, the Sutlej River basin is a good location to analyze the accuracy and effectiveness of the current National Snow and Ice Data Center's (NSIDC) standard AMSR-E/Aqua Daily SWE product in mountainous terrain. So far, we have observed that individual pixels can "flicker", i.e. fluctuate from day to day, over large parts of the basin. We consider whether this is an artifact of the algorithm or whether this is embedded in the raw brightness temperatures themselves. In addition, we examine how well the standard product registers winter storms, and how it varies over heavily glaciated pixels. Finally, we use a few common measures of algorithm performance (precision, recall and accuracy) to test how well the standard product detects the presence of snow, using optical imagery for validation. An improved understanding of the effectiveness of PM imagery in the mountains will help to clarify the technology's limits.

  7. Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas.

    PubMed

    Rashid, Irfan; Romshoo, Shakil Ahmad

    2013-06-01

    The pristine waters of Kashmir Himalaya are showing signs of deterioration due to multiple reasons. This study researches the causes of deteriorating water quality in the Lidder River, one of the main tributaries of Jhelum River in Kashmir Himalaya. The land use and land cover of the Lidder catchment were generated using multi-spectral, bi-seasonal IRS LISS III (October 2005 and May 2006) satellite data to identify the extent of agriculture and horticulture lands that are the main non-point sources of pollution at the catchment scale. A total of 12 water quality parameters were analyzed over a period of 1 year. Water sampling was done at eight different sampling sites, each with a varied topography and distinct land use/land cover, along the length of Lidder River. It was observed that water quality deteriorated during the months of June-August that coincides with the peak tourist flow and maximal agricultural/horticultural activity. Total phosphorus, orthophosphate phosphorus, nitrate nitrogen, and ammoniacal nitrogen showed higher concentration in the months of July and August, while the concentration of dissolved oxygen decreased in the same period, resulting in deterioration in water quality. Moreover, tourism influx in the Lidder Valley shows a drastic increase through the years, and particularly, the number of tourists visiting the valley has increased in the summer months from June to September, which is also responsible for deteriorating the water quality of Lidder River. In addition to this, the extensive use of fertilizers and pesticides in the agriculture and horticulture lands during the growing season (June-August) is also responsible for the deteriorating water quality of Lidder River.

  8. Clockwise rotation of the Brahmaputra Valley relative to India: Tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau

    NASA Astrophysics Data System (ADS)

    Vernant, P.; Bilham, R.; Szeliga, W.; Drupka, D.; Kalita, S.; Bhattacharyya, A. K.; Gaur, V. K.; Pelgay, P.; Cattin, R.; Berthet, T.

    2014-08-01

    GPS data reveal that the Brahmaputra Valley has broken from the Indian Plate and rotates clockwise relative to India about a point a few hundred kilometers west of the Shillong Plateau. The GPS velocity vectors define two distinct blocks separated by the Kopili fault upon which 2-3 mm/yr of dextral slip is observed: the Shillong block between longitudes 89 and 93°E rotating clockwise at 1.15°/Myr and the Assam block from 93.5°E to 97°E rotating at ≈1.13°/Myr. These two blocks are more than 120 km wide in a north-south sense, but they extend locally a similar distance beneath the Himalaya and Tibet. A result of these rotations is that convergence across the Himalaya east of Sikkim decreases in velocity eastward from 18 to ≈12 mm/yr and convergence between the Shillong Plateau and Bangladesh across the Dauki fault increases from 3 mm/yr in the west to >8 mm/yr in the east. This fast convergence rate is inconsistent with inferred geological uplift rates on the plateau (if a 45°N dip is assumed for the Dauki fault) unless clockwise rotation of the Shillong block has increased substantially in the past 4-8 Myr. Such acceleration is consistent with the reported recent slowing in the convergence rate across the Bhutan Himalaya. The current slip potential near Bhutan, based on present-day convergence rates and assuming no great earthquake since 1713 A.D., is now ~5.4 m, similar to the slip reported from alluvial terraces that offsets across the Main Himalayan Thrust and sufficient to sustain a Mw ≥ 8.0 earthquake in this area.

  9. Gradient distribution of persistent organic contaminants along northern slope of central-Himalayas, China.

    PubMed

    Wang, Xiao-Ping; Yao, Tan-Dong; Cong, Zhi-Yuan; Yan, Xing-Liang; Kang, Shi-Chang; Zhang, Yong

    2006-12-15

    High mountains may serve as condenser for persistent organic pollutants (POPs) and the vegetation in remote areas has been used as a means to characterized atmospheric concentrations of air pollutants. In this study, organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in Himalayan spruce needle samples from Zhangmu-Nyalam region (central-Himalayas) were analyzed and the altitudinal gradient of these pollutants was investigated. Total HCHs and DDTs concentration in needles were in the range of 1.3-2.9 ng g(-1) dry weight and 1.7-11 ng g(-1) dry weight, which were lower than concentrations reported in spruce needles from Alps, however higher than concentrations in conifer needles from mountain areas of Alberta. Total Himalayan spruce needle PAHs was below 600 ng g(-1) and fluorene, phenanthrene and acenaphthene were abundant individual compounds measured. The ratios of alpha-HCH/gamma-HCH in pine needles were similar with the usual values for technical HCH, implying technical HCHs might be used in this region. The high ratios of o-p'-DDT/p-p'-DDT and no p-p'-DDE measured in this study led to the suspicion that a new source of o-p'-DDT and/or p-p'-DDT existed in this region. In addition, higher ratios of low molecular weight-/high molecular weight-PAHs in this region indicated that petroleum combustion, vehicle emission and low-temperature combustion might be the major contributions of PAH source. To examine the POPs distillation, the analyte concentrations were correlated with altitude. The more volatile OCPs, alpha-HCH, gamma-HCH, aldrin and alpha-endosulfan positively correlated with altitude, however, less volatile OCPs (DDT and DDD) inversely related with elevation. Almost all PAHs detected in this area showed positive correlations with altitude. It is worthy to note that heavy PAHs (Benzo[k] fluoranthene and Benzo[a]anthracene) displayed positive correlation, which implied the sources of PAHs were near the sampling sites. The

  10. Epidemiological study of chronic mountain sickness in natives of Spiti Valley in the Greater Himalayas.

    PubMed

    Negi, Prakash Chand; Asotra, Sanjeev; V, Ravi Kumar; Marwah, Rajeev; Kandoria, Arvind; Ganju, Neeraj Kumar; Sharma, Rajesh; Bhardwaj, Rajeev

    2013-09-01

    This study determined the prevalence of chronic mountain sickness (CMS) and its predisposing factors among natives of Spiti Valley in the northern state of Indian Himalayas. A cross-sectional survey study was conducted in natives of Spiti Valley aged ≥ 20 years residing at altitudes of 3000 to 4200 meters. CMS was diagnosed using Qinghai criteria. Demographics, behavioral characteristics, specified symptoms of CMS were recorded, including BP, anthropometrics, evidence of RHF, PAH, and severe cyanosis. ECG, echocardiography, PFT, and Sao2 were recorded, and Hb level was estimated with the cyanmethhemoglobin method. 694 subjects free of cardiorespiratory diseases were analyzed. Prevalence of CMS was 28.7%, (95% C.I. of 25.9%-32.8%) and was higher in women than in men (36.6% vs. 15.7%, p<0.001). Erythrocythemia and hypoxemia were recorded in 10.5% and 7.5%, respectively. Age, truncal obesity, female gender, altitude of residence, and physical activity index were independent predictors of CMS with z statistics of 4.2, 2.29, -3.7, 2.8, and -2.8, respectively, and were statistically significant p<0.001. 6.2% of the surveyed population had HAPH. 28.7% (95% C.I. of 25.9%-32.8%) of the natives of the Spiti Valley in the Indian Himalayas are affected with CMS. Higher prevalence of CMS amongst women needs further studies. Westernized lifestyle appears to have predisposition to CMS.

  11. Magnetic fabric and Petrofabric of Amphibolites in Eastern Himalaya Syntaxis

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Zhang, Junfeng; Xu, Haijun

    2017-04-01

    The Himalaya orogenic belt was formed by the collision of the Eurasian plate and the Indian plate. There are two syntaxies along the orogenic belt, where the lower crust are extruded because of the strong stress and deep melting. Our samples are from the eastern Himalaya syntaxis, which is near the Namchabarwa Mount. The sample TO-38 is composed of hornblende, garnet, plagioclase, quartz, ilmenite, magnetite and rutile. The hornblendes are strongly deformed and have clear lineation. While the garnets are relative strong and undeformed, they have a white rim of retrograded minerals with S-C fabric. The ilmenites are distributed extensively and are also deformed, with a slight SPO parallel to lineation. The magnetite are almost cubic with no SPO. We obtained the magnetic fabric of sample TO-38 from anisotropy of magnetic susceptibility (AMS) measurements, and crystallographic fabrics from EBSD analysis. The hornblende shows that [001] forms a well defined point maximum parallel to lineation; poles to {110}{010} plot as a girdle normal to the foliation. The ilmenite fabric shows less pronounced distribution of [0001] axis normal to foliation and weak subparallel distribution of [11-20] axis to lineation. The magnetite is very little, and shows no LPO. The AMS measurement shows that the maximum susceptibility direction correspond to the lineation, also parallel to the [11-20] axis of ilmenite and [001] axis of hornblende. The minimum susceptibility direction is parallel to the [0001] axis of ilmenite. The thermomagnetic curves and values of bulk susceptibility reveal a magnetic mineralogy dominated by a mixed contribution of paramagnetic minerals and magnetite. The mean susceptibility are from 7.06×10-3SI to 33.1×10-3SI. We also calculated the seismic anisotropy of amphibolites, and it shows the fast P wave propagate in lineation direction and has a 11.5% anisotropy. Meanwhile, the shear wave splitting polarization is also along the lineation, and has a 6% anisotropy

  12. Calculation of former ELA depressions in the Himalaya - a comparative analysis

    NASA Astrophysics Data System (ADS)

    Wagner, M.

    2009-04-01

    For the reconstruction of former Equilibrium Line Altitudes (ELA) and ELA depressions in the Himalaya, the group of the Toe-to-Summit-Altitude-Methods (TSAM) is most suited. In this investigation the Kuhle (1986) method that is particularly tailored to the extreme high mountain relief, as well as the widely used Höfer (1879) method and Louis (1954/55) method, have been applied. Applying the relief specific correction factor FSD (Factor for snowline deviation) in the Kuhle method, it is thereby possible to simulate the shifting position of the ELA within the vertical extension of the glacier in dependence on the relief characteristics and glacial type. The results of this work, carried out along the Kali Gandaki in central Nepal, illustrate that as a rule, the Louis method results in the highest ELAs and the lowest ELA depressions, while the Höfer method yields the lowest ELAs and the highest ELA depressions. In affirmation of the literature, the Louis method tends to overestimate the ELA, since using the maximum peak height, especially for large glaciers in mountain ranges with high relief energy, leads to an overly high position of the glacier upper limit. With respect to the Höfer method, the suspicion already voiced by Höfer (1879) himself, that with the use of his method, the for the Himalaya typically high elevated, and with marginal gradient toward the valley moving ridge progressions, would lead to a too low ELA, can be affirmed. Clearly to be disputed, however, is the statement of Gross et al. (1976) that the Höfer method leads to an overestimation of the ELA. The reason for this can be found in a wrong computation of the mean ridge height above the ELA and consequently of the ELA itself within the Höfer method, based on the erroneous assumption that otherwise the ELA could not be calculated due to a circular conclusion (Gross et al. 1976). As is evidenced by this study, the Kuhle method mediates between the empiric overly high values of the Louis

  13. Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya.

    PubMed

    Adnan, Muhammad; Hölscher, Dirk

    2012-12-01

    Diversity of Medicinal Plants among Different Forest-use Types of the Pakistani Himalaya Medicinal plants collected in Himalayan forests play a vital role in the livelihoods of regional rural societies and are also increasingly recognized at the international level. However, these forests are being heavily transformed by logging. Here we ask how forest transformation influences the diversity and composition of medicinal plants in northwestern Pakistan, where we studied old-growth forests, forests degraded by logging, and regrowth forests. First, an approximate map indicating these forest types was established and then 15 study plots per forest type were randomly selected. We found a total of 59 medicinal plant species consisting of herbs and ferns, most of which occurred in the old-growth forest. Species number was lowest in forest degraded by logging and intermediate in regrowth forest. The most valuable economic species, including six Himalayan endemics, occurred almost exclusively in old-growth forest. Species composition and abundance of forest degraded by logging differed markedly from that of old-growth forest, while regrowth forest was more similar to old-growth forest. The density of medicinal plants positively correlated with tree canopy cover in old-growth forest and negatively in degraded forest, which indicates that species adapted to open conditions dominate in logged forest. Thus, old-growth forests are important as refuge for vulnerable endemics. Forest degraded by logging has the lowest diversity of relatively common medicinal plants. Forest regrowth may foster the reappearance of certain medicinal species valuable to local livelihoods and as such promote acceptance of forest expansion and medicinal plants conservation in the region. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12231-012-9213-4) contains supplementary material, which is available to authorized users.

  14. Recent changes in equilibrium line altitudes of glaciers in the Chandra-Bhaga Catchments, the Western Himalaya

    NASA Astrophysics Data System (ADS)

    Kumari, R.; Vijay, S.; Banerjee, A.; Singh, G.

    2017-12-01

    Abstract: Climatic forcing affects a glacier through a change in the corresponding equilibrium line altitude (ELA). Many approximate methods are available in the literature for estimating ELA of glaciers that are in a steady state. Some of the rudimentary methods e.g. Toe-to-Headwall-Ratio method or mid-point elevation methods are based solely on the elevation range of the glacier cover, and ignore the variations in slope, valley width or the mass-balance profile. The mean-elevation method is more accurate in that it takes into account the glacier hypsometry. In this study, we extend this method to estimate the ELA of a glacier that is not in a steady state. We assume a linear mass-balance profile, and utilize geodetic mass balance and hypsometry of the glacier to obtain ELA. This method is generally useful to track, for example, the spatial pattern of recent ELA changes in a given region. We apply the above method to 46 debris-free glaciers in the Chandra-Bhaga catchments, the Western Himalaya, to understand the regional ELA forcing during 2000 to 2012. Shuttle Radar Topographic Mission (2000) and TanDEM-X (2012) digital elevation model (DEM) are used to get elevation data. A strong correlation (r2=0.90 and p<0.001) of the estimated ELAs with the corresponding end-of-summer-snowline-elevation data derived from cloud-free Landsat images validates our method. Our estimate for the recent ELA of Chhota shigri Glacier from the region are consistent with published glaciological ELA values. On a regional scale, the estimated ELAs are negatively correlated (r2= 0.66 and p<0.001) with the mean Tropical Rainfall Measuring Mission (TRMM 2b31) precipitation data. This implies a strong control of local precipitation on glacier mass balance profile, with 18 +/- 2 m rise of ELA per 10 mm/year reduction in rainfall. We shall also discuss the regional patterns of the changes in transient ELA between 2000 and 2012.

  15. Spiny frogs (Paini) illuminate the history of the Himalayan region and Southeast Asia

    PubMed Central

    Che, Jing; Zhou, Wei-Wei; Hu, Jian-Sheng; Yan, Fang; Papenfuss, Theodore J.; Wake, David B.; Zhang, Ya-Ping

    2010-01-01

    Asian frogs of the tribe Paini (Anura: Dicroglossidae) range across several first-order tectono-morphological domains of the Cenozoic Indo-Asian collision that include the Tibetan Plateau, the Himalayas, and Indochina. We show how the tectonic events induced by the Indo-Asian collision affected the regional biota and, in turn, how the geological history of the earth can be viewed from a biological perspective. Our analysis of a concatenated dataset comprising four nuclear gene sequences of Paini revealed two main radiations, corresponding to the genera Nanorana (I) and Quasipaa (II). Five distinct clades are recognized: Tibetan plateau clade (I-1), Himalaya clade (I-2), environs of Himalaya–Tibetan plateau clade (I-3), South China clade (II-1), and Indochina clade (II-2). This pattern of relationships highlights the significance of geography in shaping evolutionary history. Building on our molecular dating, ancestral region reconstruction, and distributional patterns, we hypothesize a distinct geographic and climatic transition in Asia beginning in the Oligocene and intensifying in the Miocene; this stimulated rapid diversification of Paini. Vicariance explains species formation among major lineages within Nanorana. Dispersal, in contrast, plays an important role among Quasipaa, with the southern Chinese taxa originating from Indochina. Our results support the tectonic hypothesis that an uplift in the Himalaya–Tibetan plateau region resulting from crustal thickening and lateral extrusion of Indochina occurred synchronously during the transition between Oligocene and Miocene in reaction to the Indo-Asian collision. The phylogenetic history of Paini illuminates critical aspects of the timing of geological events responsible for the current geography of Southeast Asia. PMID:20643945

  16. Accounting for water levels and black carbon-inclusive sediment-water partitioning of organochlorines in Lesser Himalaya, Pakistan using two-carbon model.

    PubMed

    Ali, Usman; Sweetman, Andrew James; Jones, Kevin C; Malik, Riffat Naseem

    2018-06-18

    This study was designed to monitor organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in riverine water of Lesser Himalaya along the altitude. Further, the sediment-water partitioning employing organic carbon and black carbon models were assessed. Results revealed higher water levels of organochlorine pesticides (0.07-41.4 ng L -1 ) and polychlorinated biphenyls (0.671-84.5 ng L -1 ) in Lesser Himalayan Region (LHR) of Pakistan. Spatially, elevated levels were observed in the altitudinal zone (737-975 masl) which is influenced by anthropogenic and industrial activities. Sediment-water partitioning of OCPs and PCBs were deduced using field data by employing one-carbon (f OC K OC ) and two-carbon Freundlich models (f OC K OC + f BC K BC C W nF-1 ). Results suggested improved measured vs predicted model concentrations when black carbon was induced in the model and suggested adsorption to be the dominant mechanism in phase partitioning of organochlorines in LHR.

  17. Annual and seasonal mass balances of Chhota Shigri Glacier (benchmark glacier, Western Himalaya), India

    NASA Astrophysics Data System (ADS)

    Mandal, Arindan; Ramanathan, Alagappan; Farooq Azam, Mohd; Wagnon, Patrick; Vincent, Christian; Linda, Anurag; Sharma, Parmanand; Angchuk, Thupstan; Bahadur Singh, Virendra; Pottakkal, Jose George; Kumar, Naveen; Soheb, Mohd

    2015-04-01

    Several studies on Himalayan glaciers have been recently initiated as they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring program was initiated on Chhota Shigri Glacier (15.7 square km, 9 km long, 6263-4050 m a.s.l.) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) and is a representative glacier in Lahaul and Spiti Valley. While annual mass balances have been measured continuously since 2002 using the glaciological method, seasonal scale observations began in 2009. The annual and seasonal mass balances were then analyzed along with meteorological conditions in order to understand the role of winter and summer balances on annual glacier-wide mass balance of Chhota Shigri glacier. During the period 2002-2013, the glacier experienced a negative glacier-wide mass balance of -0.59±0.40 m w.e. a-1 with a cumulative glaciological mass balance of -6.45 m w.e. Annual glacier-wide mass balances were negative except for four years (2004/05, 2008/09, 2009/10 and 2010/11) where it was generally close to balanced conditions. Equilibrium line altitude (ELA) for steady state condition is calculated as 4950 m a.s.l. corresponding to an accumulation area ratio (AAR) of 62% using annual glacier-wide mass balance, ELA and AAR data between 2002 and 2013. The winter glacier-wide mass balance between 2009 and 2013 ranges from a maximum value of 1.38 m w.e. in 2009/10 to a minimum value of 0.89 in 2012/13 year whereas the summer glacier-wide mass balance varies from the highest value of -0.95 m w.e. in 2010/11 to the lowest value of -1.72 m w.e. in 2011/12 year. The mean vertical mass balance gradient between 2002 and 2013 was 0.66 m w.e. (100 m)-1 quite similar to Alps, Nepalese Himalayas etc. Over debris covered area, the gradients are highly variable with a negative mean value of -2.15 m w.e. (100 m)-1 over 2002

  18. Where There's Smoke: Using Satellites to Monitor Impact of Human Activities on Agriculture and Glaciers in the Andes and Himalayas

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Banach, D. M.

    2017-12-01

    Burning of agricultural fields are important sources of black carbon deposition on mountain glaciers in the Andes and Himalayas. Fire is commonly used to support agricultural and pasture management, specifically to remove excess crop residue and other agricultural waste, but these fires can spread into wildland areas during the dry season. Occasionally, agricultural burning causes extreme air pollution events, like occurred in New Delhi, India in October 2016. Satellite data provides a monitoring method of human-caused fire near glaciers that is open-source, easily replicable, and free- to low-cost. We will be able to determine if the climate-smart intervention strategies have reduced or eliminated open burning in these glacier-adjacent agricultural regions. Historic fire and fire emission records have been constructed for the Andean and Himalayan regions, with finer-scale assessments of the regions where farm-level training for conservation agriculture and no-burn techniques are taking place, going back to 2003. Present-day and future (2017-2020) fires and emissions will be mapped and recorded to compare to the historical record, providing an independent assessment and monitoring of how effective the no-burn climate-smart agriculture intervention strategies are at the farm-, village-, region-, and country-level. We can then compare this with our ground-based observations from regional partners for further verification. Using geospatial and geoscience data and methods is important for the success of this project and allows for full transparency of the effectiveness of climate-smart agricultural interventions to improve crop yields for farmers in South America and South Asia while also slowing the melt of the Third Pole.

  19. Denudational slope processes and slope response to global climate changes and other disturbances: insights from the Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Hillslope geomorphology results from a large range of denudational processes mainly controlled by relief, structure, lithology, climate, land-cover and land use. In most areas of the world, the "critical zone" concept is a good integrator of denudation that operates on a long-term scale. However, in large and high mountain areas, short-time scale factors often play a significant role in the denudational pattern, accelerating and/or delaying the transfer of denudation products and fluxes, and creating specific, spatially limited disturbances. We focus on the Nepal Himalayas, where the wide altitudinal range of bio-climatic zones and the intense geodynamic activity create a complex mosaic of landforms, as expressed by the present geomorphology of mountain slopes. On the basis of examples selected in the different Himalayan mountain belts (Siwaliks hills, middle mountains, High Himalaya), we illustrate different types of slopes and disturbances induced by active tectonics, climate extremes, and climate warming trends. Special attention is paid to recent events, such as landslide damming, triggered by either intense rainfalls (Kali Gandaki and Sun Kosi valleys) or the last April-May 2015 Gorkha seismic sequence (southern Khumbu). Lastly, references to older, larger events show that despite the highly dynamic environment, landforms caused by large magnitude disturbances may persist in the landscape in the long term.

  20. Regional waveform calibration in the Pamir-Hindu Kush region

    NASA Astrophysics Data System (ADS)

    Zhu, Lupei; Helmberger, Donald V.; Saikia, Chandan K.; Woods, Bradley B.

    1997-10-01

    Twelve moderate-magnitude earthquakes (mb 4-5.5) in the Pamir-Hindu Kush region are investigated to determine their focal mechanisms and to relocate them using their regional waveform records at two broadband arrays, the Kyrgyzstan Regional Network (KNET), and the 1992 Pakistan Himalayas seismic experiment array (PAKH) in northern Pakistan. We use the "cut-and-paste" source estimation technique to invert the whole broadband waveforms for mechanisms and depths, assuming a one-dimensional velocity model developed for the adjacent Tibetan plateau. For several large events the source mechanisms obtained agree with those available from the Harvard centroid moment tensor (CMT) solutions. An advantage of using regional broadband waveforms is that focal depths can be better constrained either from amplitude ratios of Pnl to surface waves for crustal events or from time separation between the direct P and the shear-coupled P wave (sPn + sPmP) for mantle events. All the crustal events are relocated at shallower depths compared with their International Seismological Centre bulletin or Harvard CMT depths. After the focal depths are established, the events are then relocated horizontally using their first-arrival times. Only minor offsets in epicentral location are found for all mantle events and the bigger crustal events, while rather large offsets (up to 30 km) occur for the smaller crustal events. We also tested the performance of waveform inversion using only two broadband stations, one from the KNET array in the north of the region and one from the PAKH array in the south. We found that this geometry is adequate for determining focal depths and mechanisms of moderate size earthquakes in the Pamir-Hindu Kush region.

  1. Terrain classification and land hazard mapping in Kalsi-Chakrata area (Garhwal Himalaya), India

    NASA Astrophysics Data System (ADS)

    Choubey, Vishnu D.; Litoria, Pradeep K.

    Terrain classification and land system mapping of a part of the Garhwal Himalaya (India) have been used to provide a base map for land hazard evaluation, with special reference to landslides and other mass movements. The study was based on MSS images, aerial photographs and 1:50,000 scale maps, followed by detailed field-work. The area is composed of two groups of rocks: well exposed sedimentary Precambrian formations in the Himalayan Main Boundary Thrust Belt and the Tertiary molasse deposits of the Siwaliks. Major tectonic boundaries were taken as the natural boundaries of land systems. A physiographic terrain classification included slope category, forest cover, occurrence of landslides, seismicity and tectonic activity in the area.

  2. Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya.

    PubMed

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Hoelzmann, Philipp; Adhikari, Basanta R; Andermann, Christoff; Tofelde, Stefanie; Merchel, Silke; Rugel, Georg; Fort, Monique; Korup, Oliver

    2016-01-08

    Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Copyright © 2016, American Association for the Advancement of Science.

  3. On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya.

    PubMed

    Negi, H R

    2000-12-01

    A total of 3211 colonies of macrolichens, from twelve 50 m x 10 m plots distributed across four macrohabitat (vegetation) types between 1500 m-3700 m in the Chopta-Tunganath landscape of the Garhwal Himalaya, yielded 13 families with 15 genera and 85 species. Lobaria retigera stood out as a broad-niched generalist species with moderate levels of abundance in all the three major microhabitats, viz. rock, soil and wood across 83% of all the plots sampled, whereas Umbilicaria indica emerged as an abundantly occurring specialist confined to rock substrates. Heterodermia incana and Leptogium javanicum appeared to be rare members of the community as they were encountered only once during the field survey. Woody microhabitats turned out to be richer than rock and soil substrates for macrolichens. Amongst the macrohabitats, middle altitude (2500-2800 m) Quercus forest was richest in species and genera followed by high altitude (2900-3200 m) Rhododendron forest, higher altitude grasslands (3300-3700 m) and then the lower elevation (1500 m) Quercus forest. Species, genus and family level alpha- as well as beta-diversities were significantly correlated with each other, implying that higher taxonomic ranks such as genera may be used as surrogates for species thus facilitating cost- and time-effective periodic monitoring of the biodiversity of macrolichens. Dynamics of the diversity of lichen communities in relation to various forms of environmental disturbance including livestock grazing and tourism as dominant land use activities in the higher Himalaya need further research.

  4. Tree Ring Analyses Unlock a Century of Hydroclimatic Variability Across the Himalayas

    NASA Astrophysics Data System (ADS)

    Brunello, C. F.; Andermann, C.; Helle, G.; Comiti, F.; Tonon, G.; Hovius, N.

    2017-12-01

    Climate change has altered precipitation patterns and impacted the spatio-temporal distribution and availability of water in high mountain environments. For example, intensification of the Indian Summer Monsoon (ISM) increases the potential for moisture laden air to breach the Himalayan orographic barrier and penetrate into the arid, elevated southern Tibetan Plateau, with geomorphological and hydrological consequences. Such trends should be considered against a solid background, but a consistent record of centennial monsoon dynamics in the trans-Himalayan region has never been developed. Instrumental data are sparse and only cover a limited time period as well as remotely sensed information. Meanwhile, models have major systematic bias and substantial uncertainty in reproducing ISM interannual variability. In this context, hydro-climatic proxies, such as oxygen stable isotope ratios in cellulose of tree rings, are a valuable source of data, especially because isotope mass spectroscopy can unlock yearly resolved information by tracing the isotopic signature (18O) stored within each growth ring. Here we present three centennial records of monsoon dynamics, along a latitudinal transect, spanning a pronounced precipitation gradient across the Himalayan orogen. Three sites were selected along the Kali Gandaki valley in the central Himalayas (Nepal), this valley connects the wet, monsoon dominated Gangetic plain with the arid Tibetan Plateau. Our transect covers the sensitive northern end of the precipitation gradient, located in the upper part of the catchment. Our results show that inter-annual variation of monsoon strength can be reconstructed by tree ring δ18O. The inferred monsoon dynamics are compared against independent constraints on precipitation, snow cover and river discharge. Different water sources contribute disproportionally at the three sites, reflecting spatial and temporal shifts of the westerlies and the Indian summer monsoon. These two dominant

  5. Temporal variations in the cooling and denudation history of the Hunza plutonic complex, Karakoram Batholith, revealed by 40Ar/39Ar thermochronology

    NASA Astrophysics Data System (ADS)

    Krol, Michael A.; Zeitler, Peter K.; Poupeau, GéRard; Pecher, Arnaud

    1996-04-01

    The 40Ar/39Ar thermochronology of the Late Cretaceous Hunza plutonic complex reveals an episodic cooling and denudation history for this regional-scale pluton. The 40Ar/39Ar analyses of biotites from a vertical relief section of >3200 m reveal a pulse of rapid cooling at ˜20 Ma. In the interval of 110-27 Ma, age-elevation distributions suggest denudation rates of the order of 0.02 ± 0.003 mm/yr. At ˜20 Ma, denudation rates increased significantly to 2.7 ± 0.7 mm/yr, then returned to much slower rates until 12 Ma. A second pulse of rapid cooling beginning at 12 Ma is revealed by inverse numerical modeling of multidiffusion domain alkali feldspars from a vertical section of 1700 m. Decreasing in elevation, these samples record the onset of rapid cooling at 12, 9, and 7 Ma, respectively. All of the alkali feldspars record a period of nearly isothermal conditions prior to the onset of rapid cooling when rates increased to 30°C/m.y. Assuming a geothermal gradient of 30°C/km, these cooling rates translate into denudation rates of 1.0 mm/yr. Apatite fission track analysis indicates denudation rates of 0.7 ± 0.1 mm/yr over the interval of 6.6 Ma to 2.4 Ma in agreement with the alkali feldspar data. These data suggest denudation of 2.9 ± 0.4 km since the Plio-Pleistocene. Together, the alkali feldspar and apatite data indicate that a minimum of 10 km of overburden has been removed since the mid-late Miocene. An electronic supplement of this material may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GET and the name of the file to get it. Finally, type EXIT to leave the system).(Paper 95TC02424, Temporal variations in the cooling and denudation history of the Hunza plutonic complex, Karakoram Batholith, revealed by 40Ar/39Ar thermochronology, M.A. Krol, P.K. Zeitler, G

  6. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India.

    PubMed

    Bhat, Jahangeer A; Kumar, Munesh; Bussmann, Rainer W

    2013-01-02

    Himalayan forests are the most important source of medicinal plants and with useful species for the local people. Kedarnath Wildlife Sanctuary (KWLS) is situated in the interior part of the Garhwal Himalayan region. The presented study was carried out in Madhmeshwar area of KWLS for the ecological status of medicinal plants and further focused on the ethnomedicinal uses of these plants in the study area. Ecological information about ethnomedicinal plants were collected using random quadrats in a random sampling technique along an altitudinal gradient in the KWLS. Information on medicinal properties of plants encountered in the present study was generated by questionnaire survey and was also compared with relevant literature. A total of 152 medicinally important plant species were reported, in which 103 were found herbs, 32 shrubs and 17 were tree species which represented 123 genera of 61 families. A total of 18 plant species fell into the rare, endangered (critically endangered) and vulnerable status categories. The present study documented the traditional uses of medicinal plants, their ecological status and importance of these plants in the largest protected area of Garhwal Himalaya. This study can serve as baseline information on medicinal plants and could be helpful to further strengthen the conservation of this important resource.

  7. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India

    PubMed Central

    2013-01-01

    Background Himalayan forests are the most important source of medicinal plants and with useful species for the local people. Kedarnath Wildlife Sanctuary (KWLS) is situated in the interior part of the Garhwal Himalayan region. The presented study was carried out in Madhmeshwar area of KWLS for the ecological status of medicinal plants and further focused on the ethnomedicinal uses of these plants in the study area. Methods Ecological information about ethnomedicinal plants were collected using random quadrats in a random sampling technique along an altitudinal gradient in the KWLS. Information on medicinal properties of plants encountered in the present study was generated by questionnaire survey and was also compared with relevant literature. Results A total of 152 medicinally important plant species were reported, in which 103 were found herbs, 32 shrubs and 17 were tree species which represented 123 genera of 61 families. A total of 18 plant species fell into the rare, endangered (critically endangered) and vulnerable status categories. Conclusion The present study documented the traditional uses of medicinal plants, their ecological status and importance of these plants in the largest protected area of Garhwal Himalaya. This study can serve as baseline information on medicinal plants and could be helpful to further strengthen the conservation of this important resource. PMID:23281594

  8. Seasonal variations in the sources of natural and anthropogenic lead deposited at the East Rongbuk Glacier in the high-altitude Himalayas.

    PubMed

    Burn-Nunes, Laurie; Vallelonga, Paul; Lee, Khanghyun; Hong, Sungmin; Burton, Graeme; Hou, Shugui; Moy, Andrew; Edwards, Ross; Loss, Robert; Rosman, Kevin

    2014-07-15

    Lead (Pb) isotopic compositions and concentrations, and barium (Ba) and indium (In) concentrations have been analysed at sub-annual resolution in three sections from a <110 m ice core dated to the 18th and 20th centuries, as well as snow pit samples dated to 2004/2005, recovered from the East Rongbuk Glacier in the high-altitude Himalayas. Ice core sections indicate that atmospheric chemistry prior to ~1,953 was controlled by mineral dust inputs, with no discernible volcanic or anthropogenic contributions. Eighteenth century monsoon ice core chemistry is indicative of dominant contributions from local Himalayan sources; non-monsoon ice core chemistry is linked to contributions from local (Himalayan), regional (Indian/Thar Desert) and long-range (North Africa, Central Asia) sources. Twentieth century monsoon and non-monsoon ice core data demonstrate similar seasonal sources of mineral dust, however with a transition to less-radiogenic isotopic signatures that suggests local and regional climate/environmental change. The snow pit record demonstrates natural and anthropogenic contributions during both seasons, with increased anthropogenic influence during non-monsoon times. Monsoon anthropogenic inputs are most likely sourced to South/South-East Asia and/or India, whereas non-monsoon anthropogenic inputs are most likely sourced to India and Central Asia. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal-Climate Observatory at Pyramid (5079 m)

    NASA Astrophysics Data System (ADS)

    Bonasoni, P.; Laj, P.; Marinoni, A.; Sprenger, M.; Angelini, F.; Arduini, J.; Bonafè, U.; Calzolari, F.; Colombo, T.; Decesari, S.; di Biagio, C.; di Sarra, A. G.; Evangelisti, F.; Duchi, R.; Facchini, M. C.; Fuzzi, S.; Gobbi, G. P.; Maione, M.; Panday, A.; Roccato, F.; Sellegri, K.; Venzac, H.; Verza, G. P.; Villani, P.; Vuillermoz, E.; Cristofanelli, P.

    2010-02-01

    South Asia is strongly influenced by the so-called Atmospheric Brown Cloud (ABC), a wide polluted layer extending from the Indian Ocean to the Himalayas during the winter and pre-monsoon seasons (November to April). This thick, grey-brown haze blanket substantially interacts with the incoming solar radiation, causing a cooling of the Earth's surface and a warming of the atmosphere, thus influencing the monsoon system and climate. In this area, the Himalayan region, particularly sensitive to climate change, offers a unique opportunity to detect global change processes and to analyse the influence of anthropogenic pollution on background atmospheric conditions through continuous monitoring activities. This paper provides a detailed description of the atmospheric conditions characterizing the high Himalayas, thanks to continuous observations begun in March 2006 at the Nepal Climate Observatory - Pyramid (NCO-P) located at 5079 m a.s.l. on the southern foothills of Mt. Everest, in the framework of ABC-UNEP and SHARE-Ev-K2-CNR projects. Besides giving an overview of the measurement site and experimental activities, the work presents an in-depth characterization of meteorological conditions and air-mass circulation at NCO-P during the first two years of activity (March 2006-February 2008). The mean values of atmospheric pressure, temperature and wind speed recorded at the site were: 551 hPa, -3.0 °C, 4.7 m s-1, respectively. The highest seasonal values of temperature (1.7 °C) and relative humidity (94%) were registered during the monsoon season, which was also characterized by thick clouds present in about 80% of the afternoon hours and by a frequency of cloud-free sky less than 10%. The lowest temperature and relative humidity values were registered during winter, -6.3 °C and 22%, respectively, the season being characterised by mainly cloud-free sky conditions and rare thick clouds. The summer monsoon influenced the rain precipitation (seasonal mean 237 mm), while

  10. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming.

    PubMed

    Li, Haidong; Jiang, Jiang; Chen, Bin; Li, Yingkui; Xu, Yuyue; Shen, Weishou

    2016-03-01

    The eastern Himalayas, especially the Yarlung Zangbo Grand Canyon Nature Reserve (YNR), is a global hotspot of biodiversity because of a wide variety of climatic conditions and elevations ranging from 500 to > 7000 m above sea level (a.s.l.). The mountain ecosystems at different elevations are vulnerable to climate change; however, there has been little research into the patterns of vegetation greening and their response to global warming. The objective of this paper is to examine the pattern of vegetation greening in different altitudinal zones in the YNR and its relationship with vegetation types and climatic factors. Specifically, the inter-annual change of the normalized difference vegetation index (NDVI) and its variation along altitudinal gradient between 1999 and 2013 was investigated using SPOT-VGT NDVI data and ASTER global digital elevation model (GDEM) data. We found that annual NDVI increased by 17.58% in the YNR from 1999 to 2013, especially in regions dominated by broad-leaved and coniferous forests at lower elevations. The vegetation greening rate decreased significantly as elevation increased, with a threshold elevation of approximately 3000 m. Rising temperature played a dominant role in driving the increase in NDVI, while precipitation has no statistical relationship with changes in NDVI in this region. This study provides useful information to develop an integrated management and conservation plan for climate change adaptation and promote biodiversity conservation in the YNR.

  11. Influence of Tectonics on the Channel Pattern of Alaknanda River in Srinagar Valley (Garhwal Himalaya)

    NASA Astrophysics Data System (ADS)

    Datt, Devi

    2017-04-01

    This paper describes the results of a continuing investigation of tectonic influence on channel pattern and morphology of Alaknanda River in Lesser Garhwal Himalaya, Uttarakhand, India. Extensive field investigations using conventional methods supported by topographical sheets and remote sensing data (LISS IV), were undertaken.The results are classified into three sections :- tectonics, channel pattern and impact of tectonics on channel pattern. The channel length is divided into 8 meanders sets of 3 segments from Supana to Kirtinagar. Thereafter, a litho-tectonic map of the Srinagar valley was prepared. The style of active tectonics on deformation and characterization of fluvial landscape was investigated on typical strike-slip transverse faults near the zone of North Almora Thrust (NAT). NAT is a major tectonic unit of the Lesser Himalaya which passes through the northern margin from NW to SE direction.. The structural and lithological controls on the Alaknanda River system in Srinagar valley are reflected on distinct drainage patterns, abrupt change in flow direction, incised meandering, offset river channels, straight river lines, palaeo-channels, multi levels of terraces, knick points and pools in longitudinal profile. The results of the study show that the sinuosity index of the river is 1.35. Transverse faulting is very common along the NAT. An earlier generation of linear tectonic features were displaced by the latter phase of deformation. Significant deviations were observed in river channel at deformation junctions. Moreover, all 8 sets of meanders are strongly influenced by tectonic features. The meandering course is, thereby, correlated with tectonic features. It is shown that the river channel is strongly influenced by the tectonic features in the study area. Key Words: Tectonic, Meander, Channel pattern, deformation, Knick point.

  12. Recently Deglaciated High-Altitude Soils of the Himalaya: Diverse Environments, Heterogenous Bacterial Communities and Long-Range Dust Inputs from the Upper Troposphere

    PubMed Central

    Stres, Blaz; Sul, Woo Jun; Murovec, Bostjan; Tiedje, James M.

    2013-01-01

    Background The Himalaya with its altitude and geographical position forms a barrier to atmospheric transport, which produces much aqueous-particle monsoon precipitation and makes it the largest continuous ice-covered area outside polar regions. There is a paucity of data on high-altitude microbial communities, their native environments and responses to environmental-spatial variables relative to seasonal and deglaciation events. Methodology/Principal Findings Soils were sampled along altitude transects from 5000 m to 6000 m to determine environmental, spatial and seasonal factors structuring bacterial communities characterized by 16 S rRNA gene deep sequencing. Dust traps and fresh-snow samples were used to assess dust abundance and viability, community structure and abundance of dust associated microbial communities. Significantly different habitats among the altitude-transect samples corresponded to both phylogenetically distant and closely-related communities at distances as short as 50 m showing high community spatial divergence. High within-group variability that was related to an order of magnitude higher dust deposition obscured seasonal and temporal rearrangements in microbial communities. Although dust particle and associated cell deposition rates were highly correlated, seasonal dust communities of bacteria were distinct and differed significantly from recipient soil communities. Analysis of closest relatives to dust OTUs, HYSPLIT back-calculation of airmass trajectories and small dust particle size (4–12 µm) suggested that the deposited dust and microbes came from distant continental, lacustrine and marine sources, e.g. Sahara, India, Caspian Sea and Tibetan plateau. Cyanobacteria represented less than 0.5% of microbial communities suggesting that the microbial communities benefitted from (co)deposited carbon which was reflected in the psychrotolerant nature of dust-particle associated bacteria. Conclusions/Significance The spatial, environmental and

  13. Impact of Climate Change on Potential Distribution of Chinese Caterpillar Fungus (Ophiocordyceps sinensis) in Nepal Himalaya

    PubMed Central

    Shrestha, Uttam Babu; Bawa, Kamaljit S.

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11–4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species. PMID:25180515

  14. Impact of climate change on potential distribution of Chinese caterpillar fungus (Ophiocordyceps sinensis) in Nepal Himalaya.

    PubMed

    Shrestha, Uttam Babu; Bawa, Kamaljit S

    2014-01-01

    Climate change has already impacted ecosystems and species and substantial impacts of climate change in the future are expected. Species distribution modeling is widely used to map the current potential distribution of species as well as to model the impact of future climate change on distribution of species. Mapping current distribution is useful for conservation planning and understanding the change in distribution impacted by climate change is important for mitigation of future biodiversity losses. However, the current distribution of Chinese caterpillar fungus, a flagship species of the Himalaya with very high economic value, is unknown. Nor do we know the potential changes in suitable habitat of Chinese caterpillar fungus caused by future climate change. We used MaxEnt modeling to predict current distribution and changes in the future distributions of Chinese caterpillar fungus in three future climate change trajectories based on representative concentration pathways (RCPs: RCP 2.6, RCP 4.5, and RCP 6.0) in three different time periods (2030, 2050, and 2070) using species occurrence points, bioclimatic variables, and altitude. About 6.02% (8,989 km2) area of the Nepal Himalaya is suitable for Chinese caterpillar fungus habitat. Our model showed that across all future climate change trajectories over three different time periods, the area of predicted suitable habitat of Chinese caterpillar fungus would expand, with 0.11-4.87% expansion over current suitable habitat. Depending upon the representative concentration pathways, we observed both increase and decrease in average elevation of the suitable habitat range of the species.

  15. Assessment of chemical and genetic variability in Tanacetum gracile accessions collected from cold desert of Western Himalaya.

    PubMed

    Mahajan, Vidushi; Chouhan, Rekha; Kitchlu, Surinder; Bindu, Kushal; Koul, Sushma; Singh, Bikarma; Bedi, Yashbir S; Gandhi, Sumit G

    2018-06-01

    Genetic diversity is essential for survival and adaptation of high altitude plants such as those of Tanacetum genus, which are constantly exposed to environmental stress. We collected flowering shoots of ten accessions of Tanacetum gracile Hook.f. & Thomson (Asteraceae) (Tg 1-Tg 10), from different regions of cold desert of Western Himalaya. Chemical profile of the constituents, as inferred from GC-MS, exhibited considerable variability. Percentage yield of essential oil ranged from 0.2 to 0.75% (dry-weight basis) amongst different accessions. Tg 1 and Tg 6 were found to produce high yields of camphor (46%) and lavandulol (41%), respectively. Alpha -phellendrene, alpha -bisabool, p -cymene and chamazulene were the main oil components in other accessions. Genetic variability among the accessions was studied using RAPD markers as well as by sequencing and analyzing nuclear 18S rDNA, and plastid rbcL and matK loci. The polymorphic information content (PIC) of RAPD markers ranged from 0.18 to 0.5 and the analysis clustered the accessions into two major clades. The present study emphasized the importance of survey, collection, and conservation of naturally existing chemotypes of medicinal and aromatic plants, considering their potential use in aroma and pharmaceutical industry.

  16. Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas.

    PubMed

    Gorkhali, Neena Amatya; Dong, Kunzhe; Yang, Min; Song, Shen; Kader, Adiljian; Shrestha, Bhola Shankar; He, Xiaohong; Zhao, Qianjun; Pu, Yabin; Li, Xiangchen; Kijas, James; Guan, Weijun; Han, Jianlin; Jiang, Lin; Ma, Yuehui

    2016-07-22

    Sheep has successfully adapted to the extreme high-altitude Himalayan region. To identify genes underlying such adaptation, we genotyped genome-wide single nucleotide polymorphisms (SNPs) of four major sheep breeds living at different altitudes in Nepal and downloaded SNP array data from additional Asian and Middle East breeds. Using a di value-based genomic comparison between four high-altitude and eight lowland Asian breeds, we discovered the most differentiated variants at the locus of FGF-7 (Keratinocyte growth factor-7), which was previously reported as a good protective candidate for pulmonary injuries. We further found a SNP upstream of FGF-7 that appears to contribute to the divergence signature. First, the SNP occurred at an extremely conserved site. Second, the SNP showed an increasing allele frequency with the elevated altitude in Nepalese sheep. Third, the electrophoretic mobility shift assays (EMSA) analysis using human lung cancer cells revealed the allele-specific DNA-protein interactions. We thus hypothesized that FGF-7 gene potentially enhances lung function by regulating its expression level in high-altitude sheep through altering its binding of specific transcription factors. Especially, FGF-7 gene was not implicated in previous studies of other high-altitude species, suggesting a potential novel adaptive mechanism to high altitude in sheep at the Himalayas.

  17. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs

    DOE PAGES

    Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; ...

    2016-09-19

    Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and themore » trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. Ultimately, these results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.« less

  18. Dominant Drivers of GCMs Errors in the Simulation of South Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Ashfaq, Moetasim

    2017-04-01

    Accurate simulation of the South Asian summer monsoon (SAM) is a longstanding unresolved problem in climate modeling science. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to demonstrate that most of the simulation errors in the summer season and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation over land further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land-atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land-atmosphere interactions in the development and maintenance of SAM.

  19. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui

    2016-09-19

    Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and themore » trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land–atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land–atmosphere interactions in the development and maintenance of SAM.« less

  20. Diversity and Distribution of Thermophilic Bacteria in Hot Springs of Pakistan.

    PubMed

    Amin, Arshia; Ahmed, Iftikhar; Salam, Nimaichand; Kim, Byung-Yong; Singh, Dharmesh; Zhi, Xiao-Yang; Xiao, Min; Li, Wen-Jun

    2017-07-01

    Chilas and Hunza areas, located in the Main Mantle Thrust and Main Karakoram Thrust of the Himalayas, host a range of geochemically diverse hot springs. This Himalayan geothermal region encompassed hot springs ranging in temperature from 60 to 95 °C, in pH from 6.2 to 9.4, and in mineralogy from bicarbonates (Tato Field), sulfates (Tatta Pani) to mixed type (Murtazaabad). Microbial community structures in these geothermal springs remained largely unexplored to date. In this study, we report a comprehensive, culture-independent survey of microbial communities in nine samples from these geothermal fields by employing a bar-coded pyrosequencing technique. The bacterial phyla Proteobacteria and Chloroflexi were dominant in all samples from Tato Field, Tatta Pani, and Murtazaabad. The community structures however depended on temperature, pH, and physicochemical parameters of the geothermal sites. The Murtazaabad hot springs with relatively higher temperature (90-95 °C) favored the growth of phylum Thermotogae, whereas the Tatta Pani thermal spring site TP-H3-b (60 °C) favored the phylum Proteobacteria. At sites with low silica and high temperature, OTUs belonging to phylum Chloroflexi were dominant. Deep water areas of the Murtazaabad hot springs favored the sulfur-reducing bacteria. About 40% of the total OTUs obtained from these samples were unclassified or uncharacterized, suggesting the presence of many undiscovered and unexplored microbiota. This study has provided novel insights into the nature of ecological interactions among important taxa in these communities, which in turn will help in determining future study courses in these sites.

  1. Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; Touma, Danielle; Ruby Leung, L.

    2017-07-01

    Accurate simulation of the South Asian summer monsoon (SAM) is still an unresolved challenge. There has not been a benchmark effort to decipher the origin of undesired yet virtually invariable unsuccessfulness of general circulation models (GCMs) over this region. This study analyzes a large ensemble of CMIP5 GCMs to show that most of the simulation errors in the precipitation distribution and their driving mechanisms are systematic and of similar nature across the GCMs, with biases in meridional differential heating playing a critical role in determining the timing of monsoon onset over land, the magnitude of seasonal precipitation distribution and the trajectories of monsoon depressions. Errors in the pre-monsoon heat low over the lower latitudes and atmospheric latent heating over the slopes of Himalayas and Karakoram Range induce significant errors in the atmospheric circulations and meridional differential heating. Lack of timely precipitation further exacerbates such errors by limiting local moisture recycling and latent heating aloft from convection. Most of the summer monsoon errors and their sources are reproducible in the land-atmosphere configuration of a GCM when it is configured at horizontal grid spacing comparable to the CMIP5 GCMs. While an increase in resolution overcomes many modeling challenges, coarse resolution is not necessarily the primary driver in the exhibition of errors over South Asia. These results highlight the importance of previously less well known pre-monsoon mechanisms that critically influence the strength of SAM in the GCMs and highlight the importance of land-atmosphere interactions in the development and maintenance of SAM.

  2. Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau

    NASA Astrophysics Data System (ADS)

    Najman, Yani; Bracciali, Laura; Parrish, Randall R.; Chisty, Emdad; Copley, Alex

    2016-01-01

    The Shillong Plateau is the only raised topography (up to 2000 m elevation) in the Himalayan foreland. It is proposed to have had a major influence on strain partitioning and thus tectonics in the Eastern Himalaya. Additionally, its position on the trajectory of the summer monsoon means it has influenced the regional climate, with reduced erosion rates proposed over geological timescales in its lee. The timing of surface uplift of the plateau has been difficult to determine. Exhumation rates have been calculated over geological timescales, but these seem at variance with estimates based upon extrapolating the present day velocity field measured with GPS, and it has thus been suggested that exhumation and surface uplift are decoupled. We determine the timing of surface uplift using the sedimentary record in the adjacent Surma Basin to the south, which records the transition from a passive margin with southward thickening sedimentary packages to a flexural basin with north-thickening strata, due to loading by the uplifting plateau. Our method involves using all available 2D seismic data for the basin, coupled to well tie information, to produce isochore maps and construct a simple model of the subsidence of the Surma basin in order to assess the timing and magnitude of flexural loading by the Shillong Plateau. We conclude that the major period of flexural loading occurred from the deposition of the Tipam Formation (3.5- ∼ 2 Ma) onwards, which is likely to represent the timing of significant topographic growth of the Shillong Plateau. Our isochore maps and seismic sections also allow us to constrain the timing of thinning over the north-south trending anticlines of the adjacent basin-bounding Indo-Burman Ranges, as occurring over this same time interval. The combined effect of the uplift of the Shillong Plateau and the westward encroachment of the Indo-Burman Ranges to this region served to sever the palaeo-Brahmaputra drainage connection between Himalayan source

  3. Ethnomedicinal plants traditionally used in health care practices by inhabitants of Western Himalaya.

    PubMed

    Malik, Zubair A; Bhat, Jahangeer A; Ballabha, Radha; Bussmann, Rainer W; Bhatt, A B

    2015-08-22

    Inspite of tremendous advances made in allopathic medicine, herbal practice still plays an important role in management and curing various ailments in remote and rural areas of India. However, traditional knowledge on the use of medicinal plants is eroding day by day and there is a need to document such knowledge, before it is lost forever. The aim of the present study was to document the indigenous and traditional knowledge of medicinal plants used by local inhabitants in and around Kedarnath Wildlife Sanctuary of Indian Himalaya for the advancement of biomedical research and development. The intensive field survey was carried out at three different altitudes of Kedarnath Wildlife Sanctuary (KWLS) and its adjoining areas. The inhabitants were interviewed about the local name of plants having ethno-medicinal values, plant parts used, mode of processing/application and preparation and dosage through discussions and semi structured questionnaires. A total of 97 medicinal plant species belonging to 52 families and 83 genera were reported for curing various ailments like fever, cough, cold, digestive disorders, constipation, menstrual disorders etc. Out of 97 plant species reported, 21 are rare or threatened. Literature review revealed that 11 out of the 97 plant species are reported with new therapeutic uses. The most frequently utilized plant part was the root/rhizome (33%) followed by leaf (27%). In some cases whole plant was utilized. A few medicinal plants had some veterinary uses also. The study provides comprehensive information about the eroding indigenous and traditional knowledge of medicinal plants used by local inhabitants in a part of Western Himalaya, India. The identification of the active ingredients of the plants used by the local people may provide some useful leads for the development of new drugs and such new approaches of traditional knowledge regarding medicinal plants and laboratory analysis might help pharmaceutical industry in new chapters for

  4. Landscape disequilibrium on 1000-10,000 year scales Marsyandi River, Nepal, central Himalaya

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, Beth; Burbank, Douglas W.; Heimsath, Arjun; Ojha, Tank

    2004-03-01

    In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 10 5-10 7 years. Over shorter times, <10 5 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 10 4-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50-35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9-6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2-8% of the sediments which flushed through the Marsyandi during the accumulation period. At ˜10 4-year timescales, maximum bedrock incision rates are ˜7 mm/year in the Greater Himalaya and ˜1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more "equilibrium" profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals

  5. Tectonic Signals Deduced from Quantitative Analysis of Geomorphic Parameters in Bedrock Rivers and Structural Mapping: A case study from the Surai Khola Siwalik Section, Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Bhattarai, I.; Gani, N. D.

    2016-12-01

    The Nepalese Himalaya is one of the most active regions within the Himalayan Mountain Belt, which is characterized by a thick succession of Siwalik sedimentary rocks deposited at its foreland basin. To date, much of the tectonic geomorphologic study in the Nepalese Siwalik is poorly understood, particularly in the Surai Khola section. Thus, the study of quantitative analysis of bedrock river parameters will provide crucial information regarding tectonic activities in the area. This study investigates geomorphic parameters of longitudinal river profiles from 54 watersheds within the Siwalik section of the Nepalese Himalaya. We extracted a total of 140 bedrock rivers from these watersheds using stream power-law function and 30-meter resolution ASTER DEM. In addition, we used 90-meter resolution SRTM DEM for structural mapping within the Surai Khola section. Our new results show presence of major and minor knickpoints that were classified on the basis of relief of the longitudinal profiles. We identified 180 major knickpoints out of 305 total knickpoints. Normalized steepness index (ksn) and concavity index values vary above and below these knicpoints. The ksn values range from 5.3 to 140.6 while concavity index of the streams in the study area ranges from as low as -12.1 to as high as 31.1. We also identified a total of 133 structural lineations that were mapped for the first time using various sun illumination angles and azimuths, and slope. Most of these structural lineations are likely faults that follow the similar east-west trends of the Main Frontal Thrust (MFT) Fault. The length of these faults ranges from 0.5 km to 8 km. We interpreted that a few measured knickpoints might be associated with our mapped mesoscale faults, while the majority of the knickpoints in the river profiles are locally adjusting to the MFT related uplift.

  6. Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.

    2011-09-01

    This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  7. Neotectonic inversion of the Hindu Kush-Pamir mountain region

    USGS Publications Warehouse

    Ruleman, C.A.

    2011-01-01

    The Hindu Kush-Pamir region of southern Asia is one of Earth's most rapidly deforming regions and it is poorly understood. This study develops a kinematic model based on active faulting in this part of the Trans-Himalayan orogenic belt. Previous studies have described north-verging thrust faults and some strike-slip faults, reflected in the northward-convex geomorphologic and structural grain of the Pamir Mountains. However, this structural analysis suggests that contemporary tectonics are changing the style of deformation from north-verging thrusts formed during the initial contraction of the Himalayan orogeny to south-verging thrusts and a series of northwest-trending, dextral strike-slip faults in the modern transpressional regime. These northwest-trending fault zones are linked to the major right-lateral Karakoram fault, located to the east, as synthetic, conjugate shears that form a right-stepping en echelon pattern. Northwest-trending lineaments with dextral displacements extend continuously westward across the Hindu Kush-Pamir region indicating a pattern of systematic shearing of multiple blocks to the northwest as the deformation effects from Indian plate collision expands to the north-northwest. Locally, east-northeast- and northwest-trending faults display sinistral and dextral displacement, respectively, yielding conjugate shear pairs developed in a northwest-southeast compressional stress field. Geodetic measurements and focal mechanisms from historical seismicity support these surficial, tectono-morphic observations. The conjugate shear pairs may be structurally linked subsidiary faults and co-seismically slip during single large magnitude (> M7) earthquakes that occur on major south-verging thrust faults. This kinematic model provides a potential context for prehistoric, historic, and future patterns of faulting and earthquakes.

  8. Himalayan glaciers: understanding contrasting patterns of glacier behavior using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Racoviteanu, A.

    2014-12-01

    High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m

  9. Botanical ethnoveterinary therapies in three districts of the Lesser Himalayas of Pakistan

    PubMed Central

    2013-01-01

    Background Ethnoveterinary knowledge is highly significant for persistence of traditional community-based approaches to veterinary care. This is of particular importance in the context of developing and emerging countries, where animal health (that of livestock, especially) is crucial to local economies and food security. The current survey documents the traditional veterinary uses of medicinal plants in the Lesser Himalayas-Pakistan. Methods Data were collected through interviews, focus groups, participant observation, and by administering questionnaires. A total of 105 informants aged between 20–75 years old who were familiar with livestock health issues (i.e. farmers, shepherds, housewives and herbalists) participated in the study. Results A total of 89 botanical taxa, belonging to 46 families, were reported to have ethnoveterinary applications. The most quoted families were Poaceae (6 taxa), Fabaceae (6), Asteraceae (5), and Polygonaceae (5). Adhatoda vasica was the most cited species (43%), followed by Trachyspermum ammi (37%), and Zanthoxylum armatum var. armatum (36%). About 126 medications were recorded against more than 50 veterinary conditions grouped into seven categories. The highest cultural index values were recorded for Trachyspermum ammi, Curcuma longa, Melia azedarach, Zanthoxylum armatum var. armatum and Adhatoda vasica. The highest informant consensus factor was found for pathologies related to respiratory and reproductive disorders. Comparison with the local plant-based remedies used in human folk medicine revealed that many of remedies were used in similar ways in local human phytotherapy. Comparison with other field surveys conducted in surrounding areas demonstrated that approximately one-half of the recorded plants uses are novel to the ethnoveterinary literature of the Himalayas. Conclusion The current survey shows a remarkable resilience of ethnoveterinary botanical knowledge in the study area. Most of the species reported for

  10. InSAR Constraints on the Deformation of Debris-Covered Glaciers in the Khumbu Region of Nepal

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.; Hallet, B.; Barker, A. D.; Shean, D. E.; Conway, H.

    2016-12-01

    We present InSAR results for the Khumbu region of Nepal that document the downslope displacement and subsidence of the glacier's terminus. Meltwater from glaciers in the Himalaya is an important water resource to the region during the dry season. Climate change is negatively impacting this frozen reservoir by increasing the melt rates, causing the glaciers to thin and recede. Documenting the response of these glaciers is critical to forecasting the future impacts of climate change on this system. To constrain the thinning rates of glaciers in the Khumbu region, we exploit SAR data from the ALOS-1 satellite, which exhibits good coherence on the debris-covered glaciers. We also explore the use of SAR data from more recent satellite missions (i.e TerraSAR-X, Sentinel, ALOS-2). The ALOS-1 interferograms reveal the slow, down-slope movement of the debris-covered terminus ( mm/yr), as well as anomalous subsidence along the northwestern edge of Khumbu glacier, which may indicate local thinning. Deformation rates are generally consistent with campaign GPS observations, which also help to differentiate vertical from horizontal deformation. Elsewhere within the SAR scene, active movement is detected on the glacier-moraine dam of Imja Tsho, which has implications for the stability of the terminal moraine and for assessing the risk of a glacial lake outburst flood. Elsewhere, localized subsidence signals may indicate the melting of entrained ice in debris-covered landforms. The significant vertical relief in the Himalaya region poses a challenge for doing differential radar interferometry, as artifacts in the digital elevation model (DEM) can propagate into the differential interferograms. We explore the impacts of using different DEMs in our analysis, in an attempt to separate the topographic artifacts from the real deformation signals.

  11. Climate variability, vulnerability, and coping mechanism in Alaknanda catchment, Central Himalaya, India.

    PubMed

    Kumar, Kireet; Joshi, Sneh; Joshi, Varun

    2008-06-01

    A study was carried out to discover trends in the rainfall and temperature pattern of the Alaknanda catchment in the Central Himalaya. Data on the annual rainfall, monsoon rainfall for the last decade, and average annual temperatures over the last few decades were analyzed. Nonparametric methods (Mann-Kendall and Sen's method) were employed to identify trends. The Mann-Kendall test shows a decline in rainfall and rise in temperature, and these trends were found to be statistically significant at the 95% confidence level for both transects. Sen's method also confirms this trend. This aspect has to be considered seriously for the simple reason that if the same trend continues in the future, more chances of drought are expected. The impact of climate change has been well perceived by the people of the catchment, and a coping mechanism has been developed at the local level.

  12. P-T-t-d History of the Lahul Valley, NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Nieblas, A.; Leech, M. L.

    2015-12-01

    The Lahul Valley of NW India is located between the Zanskar Shear zone to the northwest and the Sangla detachment to the southeast. This region contains three east-trending, laterally-continuous tectonostratigraphic units separated by two major fault zones. To the south, low-grade metasediments of the Lesser Himalayan Sequence (LHS) are separated from high-grade crystalline rocks of the Greater Himalayan Sequence (GHS) by the north dipping Main Central Thrust (MCT). The northern extent of the GHS is separated from overlying low-grade sedimentary rocks of the Tethyan Himalayan Sequence (THS) along the north dipping South Tibetan Detachment System (STDS). There is controversy over the location and type of shear motion for the STDS in the ~50 km strip running through Lahul Valley where the STD is interpreted as a discrete fault, a dextral shear zone, and is unidentified in some areas along the trend of the STDS. This study focuses on understanding the pressure-temperature-time-deformation (P-T-t-d) evolution of THS and GHS rocks in Lahul Valley to better understand regional Cenozoic deformation and the location and role of the STDS in the extrusion of the GHS. Deformed granitics, migmatites, and leucogranites from the GHS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt ± Ky ± St. Schists and phyllites from the THS contain a dominant mineralogy of Qz + Kfs + Pl + Bt + Ms ± Grt. Isochemical phase equilibria diagrams (pseudosections) are calculated in Perple_X using whole-rock chemistry data with solution models based on these mineral assemblages. Ti-in-quartz thermometry and the Fe-Mg exchange thermometry from garnet-biotite pairs used with mineral growth relationships constrain conditions during deformation and to establish P-T paths. U-Pb SHRIMP dating of zircon constrains peak metamorphic conditions and 40Ar/39Ar thermochronology of micas provide the cooling history along the valley and across the STDS. This multi-component approach to understand

  13. Exhumation of the Ladakh batholith revealed through the combined analysis of bedrock and detrital zircon (U-Th)/He data

    NASA Astrophysics Data System (ADS)

    Tripathy-Lang, A.; Fox, M.; Bohon, W.; Van Soest, M. C.; Hodges, K. V.; Dortch, J.

    2013-12-01

    Recent studies of the Ladakh batholith, in the northwestern Indian Himalaya, have yielded various hypotheses for its exhumation history and relationship with the evolution of the southwestern margin of the Tibetan Plateau, which is today bounded by the Karakoram fault. Different hypotheses are supported by various datasets with differing spatial and temporal resolution. First, low-temperature thermochronologic and thermobarometric data provide constraints on long term exhumation (10^6 - 10^7 yr) and suggest that the Ladakh batholith experienced multiple tilting events since ~40 Ma (Kirstein, Tectonophysics, 2011). Second, cosmogenic nuclide concentrations (CNCs), which provide evidence for erosion rates averaged over millennial timescales (10^2-10^4 yr), suggest that erosion rates increase toward the Karakoram fault (Dortch et al., Geomorphology, 2011). A third dataset comprises detrital zircon (U-Th)/He data obtained from the mouth of the Basgo catchment, on the southern flank of the Ladakh batholith (Tripathy-Lang et al., JGR-ES, 2013). This exceptionally large detrital dataset provides information about both the bedrock age distribution and recent erosion rates that sample different parts of the catchment. Interpreting this dataset requires an understanding of the erosion history at multiple timescales. To these already existing datasets, we add new bedrock zircon (U-Th)/He data from an age-elevation transect collected from the base to range crest of the Basgo catchment, which we use to verify models of bedrock age distribution. Through the combined analysis of the datasets, the resolution of both the long term exhumation rate and the spatial distribution of modern erosion rates can be greatly improved, thus advancing our understanding of this part of the Tibetan margin. With this aim, we use thermo-kinematic models to predict bedrock ages that we compare to our new bedrock data. We test different modern erosion rate distributions to generate synthetic detrital

  14. Uses of Local Plant Biodiversity among the Tribal Communities of Pangi Valley of District Chamba in Cold Desert Himalaya, India

    PubMed Central

    Rana, Pawan Kumar; Kumar, Puneet; Singhal, Vijay Kumar; Rana, Jai Chand

    2014-01-01

    Pangi Valley is the interior most tribal area in Himachal Pradesh of Northwest Himalaya. An ethnobotanical investigation is attempted to highlight the traditional knowledge of medicinal plants being used by the tribes of Pangi Valley. Various localities visited in the valley 2-3 times in a year and ethnobotanical information was collected through interviews with elderly people, women, shepherds, and local vaids during May 2009 to September 2013. This paper documented 67 plant species from 59 genera and 36 families along with their botanical name, local name, family name, habit, medicinal parts used, and traditional usage, including the use of 35 plants with new ethnomedicinal and other use from the study area for the first time. Wild plants represent an important part of their medicinal, dietary, handicraft, fuel wood, veterinary, and fodder components. These tribal inhabitants and migrants depend on the wild plant resources for food, medicines, fuel, fibre, timber, and household articles for their livelihood security. The present study documents and contributes significant ethnobotanical information from the remote high altitude and difficult region of the world, which remains cut off from rest of the world for 6-7 months due to heavy snowfall. PMID:24696658

  15. Pre-Himalayan tectono-magmatic imprints in the Darjeeling-Sikkim Himalaya (DSH) constrained by 40Ar/39Ar dating of muscovite

    NASA Astrophysics Data System (ADS)

    Acharyya, Subhrangsu K.; Ghosh, Subhajit; Mandal, Nibir; Bose, Santanu; Pande, Kanchan

    2017-09-01

    The Lower Lesser Himalayan Sequence (L-LHS) in Darjeeling-Sikkim Himalaya (DSH) displays intensely deformed, low-grade meta-sedimentary rocks, frequently intervened by granite intrusives of varied scales. The principal motivation of our present study is to constrain the timing of this granitic event. Using 40Ar/39Ar geochronology, we dated muscovite from pegmatites emplaced along the earliest fabric in the low grade Daling phyllite, and obtained ∼1850 Ma Ar-Ar muscovite cooling age, which is broadly coeval with crystallization ages of Lingtse granite protolith (e.g., 1800-1850 Ma U-Pb zircon ages) reported from the L-LHS. We present here field observations to show the imprints (tectonic fabrics) of multiple ductile deformation episodes in the LHS terrain. The earliest penetrative fabric, axial planar to N-S trending reclined folds, suggest a regional tectonic event in the DSH prior to the active phase of Indo-Asia collision. Based on the age of granitic bodies and their structural correlation with the earliest fabric, we propose that the L-LHS as a distinct convergent tectono-magmatic belt, delineating the northern margin of Indian craton in the framework of the ∼1850 Ma Columbia supercontinent assembly.

  16. The Himalayas as a directional barrier to gene flow.

    PubMed

    Gayden, Tenzin; Cadenas, Alicia M; Regueiro, Maria; Singh, Nanda B; Zhivotovsky, Lev A; Underhill, Peter A; Cavalli-Sforza, Luigi L; Herrera, Rene J

    2007-05-01

    High-resolution Y-chromosome haplogroup analyses coupled with Y-short tandem repeat (STR) haplotypes were used to (1) investigate the genetic affinities of three populations from Nepal--including Newar, Tamang, and people from cosmopolitan Kathmandu (referred to as "Kathmandu" subsequently)--as well as a collection from Tibet and (2) evaluate whether the Himalayan mountain range represents a geographic barrier for gene flow between the Tibetan plateau and the South Asian subcontinent. The results suggest that the Tibetans and Nepalese are in part descendants of Tibeto-Burman-speaking groups originating from Northeast Asia. All four populations are represented predominantly by haplogroup O3a5-M134-derived chromosomes, whose Y-STR-based age (+/-SE) was estimated at 8.1+/-2.9 thousand years ago (KYA), more recent than its Southeast Asian counterpart. The most pronounced difference between the two regions is reflected in the opposing high-frequency distributions of haplogroups D in Tibet and R in Nepal. With the exception of Tamang, both Newar and Kathmandu exhibit considerable similarities to the Indian Y-haplogroup distribution, particularly in their haplogroup R and H composition. These results indicate gene flow from the Indian subcontinent and, in the case of haplogroup R, from Eurasia as well, a conclusion that is also supported by the admixture analysis. In contrast, whereas haplogroup D is completely absent in Nepal, it accounts for 50.6% of the Tibetan Y-chromosome gene pool. Coalescent analyses suggest that the expansion of haplogroup D derivatives--namely, D1-M15 and D3-P47 in Tibet--involved two different demographic events (5.1+/-1.8 and 11.3+/-3.7 KYA, respectively) that are more recent than those of D2-M55 representatives common in Japan. Low frequencies, relative to Nepal, of haplogroup J and R lineages in Tibet are also consistent with restricted gene flow from the subcontinent. Yet the presence of haplogroup O3a5-M134 representatives in Nepal

  17. Tectonic and climatic control on river profiles for rivers draining northwards from the Pamir and Kunlun (Central Asia).

    NASA Astrophysics Data System (ADS)

    Brookfield, M. E.

    2004-12-01

    Collision orogens developed between two plates result not only in shortening, uplift and erosion of the rocks, but also compression, uplift and modification of the drainage systems.Many studies now relate orogenic uplifts to the interaction of plate compression with isostatic changes due to active denudation (England and Molnar, 1990). In this paper I outline the relationships between river profiles, drainage patterns, tectonics and climate during the indentation of Asia in the Pamir range and adjacent areas: it extends a previous study of rivers draining south (Brookfield, 1998). The reasons for choosing the Pamir and Kunlun are the following. a) The indentation is relatively simple and can thus be modelled with a relatively simple rigid indentation model. The major complication is due to the different behaviour of the western and eastern edges of the indenter. The western edge involves mostly ductile deformation of the Tadjik back-arc basin to form a fold and thrust belt. The eastern edge involves strong shearing between continental crust of the Pamir and Tarim basins to form a complex collisional transform zone (marked by the Karakoram and associated faults) linking the Pamir arc with the Kunlun and Himalaya. b) The compression pattern is relatively simple and various tectonic units can mostly be traced from west to east across the Pamir indenter. Individual tectonic elements and ancient sedimentary basins can be followed almost continuously from the hardly compressed Afghan area through the highly compressed Pamir indent into the less compressed Kunlun and Tibetan plateau area. c) The displacements are enormous, relatively recent, and measurable. The Pamir arc only started developing in the Miocene around 20 ma. Since then over 800 km of internal shortening has occurred between the Indian shield and the Tien Shan(Dewey et al., 1989). Most of this post-Oligocene shortening occurred in the Pamir arc itself. And because of this, the earlier progressive Paleocene

  18. Effects of national forest-management regimes on unprotected forests of the Himalaya.

    PubMed

    Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy

    2017-12-01

    Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that

  19. Atmospheric aerosol brown carbon in the high Himalayas

    NASA Astrophysics Data System (ADS)

    Kirillova, Elena; Decesari, Stefano; Marinoni, Angela; Bonasoni, Paolo; Vuillermoz, Elisa; Facchini, M. Cristina; Fuzzi, Sandro

    2016-04-01

    Anthropogenic light-absorbing atmospheric aerosol can reach very high concentrations in the planetary boundary layer in South-East Asia ("brown clouds"), affecting atmospheric transparency and generating spatial gradients of temperature over land with a possible impact on atmospheric dynamics and monsoon circulation. Besides black carbon (BC), an important light-absorbing component of anthropogenic aerosols is the organic carbon component known as 'brown carbon' (BrC). In this research, we provided first measurements of atmospheric aerosol BrC in the high Himalayas during different seasons. Aerosol sampling was conducted at the GAW-WMO Global station "Nepal Climate Observatory-Pyramid" (NCO-P) located in the high Khumbu valley at 5079 m a.s.l. in the foothills of Mt. Everest. PM10 aerosol samples were collected from July 2013 to November 2014. The sampling strategy was set up in order to discriminate the daytime valley breeze bringing polluted air masses up to the observatory and free tropospheric air during nighttime. Water-soluble BrC (WS-BrC) and methanol-soluble BrC (MeS-BrC) were extracted and analyzed using a UV/VIS spectrophotometer equipped with a 50 cm liquid waveguide capillary cell. In the polluted air masses, the highest levels of the BrC light absorption coefficient at 365 nm (babs365) were observed during the pre-monsoon season (1.83±1.46 Mm-1 for WS-BrC and 2.86±2.49 Mm-1 for MeS-BrC) and the lowest during the monsoon season (0.21±0.22 Mm-1 for WS-BrC and 0.32±0.29 Mm-1 for MeS-BrC). The pre-monsoon season is the most frequently influenced by a strong atmospheric brown cloud (ABC) transport to NCO-P due to increased convection and mixing layer height over South Asia combined with the highest up-valley wind speed and the increase of the emissions from open fires due to the agricultural practice along the Himalayas foothills and the Indo-Gangetic Plain. In contrast, the monsoon season is characterized by a weakened valley wind regime and an

  20. Stress Regime in the Nepalese Himalaya from Recent Earthquakes.

    NASA Astrophysics Data System (ADS)

    Pant, M.; Karplus, M. S.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Sapkota, S. N.; Klemperer, S. L.; Patlan, E.

    2017-12-01

    The two recent earthquakes, April 25, 2015 Mw 7.8 (Gorkha earthquake) and May 12, 2015 Mw 7.2, at the Indo-Eurasian plate margin killed thousands of people and caused billion dollars of property loss. In response to these events, we deployed a dense array of seismometers to record the aftershocks along Gorkha earthquake rupture area. Our network NAMASTE (Nepal Array Measuring Aftershock Seismicity Trailing Earthquake) included 45 different seismic stations (16 short period, 25 broadband, and 4 strong motion sensors) covering a large area from north-central Nepal to south of the Main Frontal Thrust at a spacing of 20 km. The instruments recorded aftershocks from June 2015 to May 2016. We used time domain short term average (STA) and long term average (LTA) algorithms (1/10s and 4/40s) respectively to detect the arrivals and then developed an earthquake catalog containing 9300 aftershocks. We are manually picking the P-wave first motion arrival polarity to develop a catalog of focal mechanisms for the larger magnitude (>M3.0) events with adequate (>10) arrivals. We hope to characterize the seismicity and stress mechanisms of the complex fault geometries in the Nepalese Himalaya and to address the geophysical processes controlling seismic cycles in the Indo-Eurasian plate margin.

  1. Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen

    2017-04-01

    General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All

  2. A Multi-analytical Approach for the Characterization of Marbles from Lesser Himalayas (Northwest Pakistan)

    NASA Astrophysics Data System (ADS)

    Fahad, M.; Iqbal, Y.; Riaz, M.; Ubic, R.; Redfern, S. A. T.

    2015-12-01

    The KP province of Pakistan hosts widespread deposits of thermo-metamorphic marbles that were extensively used as a building and ornamental stones since the time of earliest flourishing civilization in this region known as Indus Valley Civilization (2500 BC). The macroscopic characteristics of 22 marble varieties collected from three different areas of Lesser Himalayas (Northwest Pakistan), its chemical, mineralogical, petrographic features, temperature conditions of metamorphic re-crystallization, and the main physical properties are presented in order to provide a solid basis for possible studies on the provenance and distribution of building stones from this region. The results provide a set of diagnostic parameters that allow discriminating the investigated marbles and quarries. Studied marbles overlap in major phase assemblage, but the accessory mineral content, chemistry, the maximum grain size (MGS) and other petrographic characteristics are particularly useful in the distinction between them. On the basis of macroscopic features, the studied marbles can be classifies into four groups: (i) white (ii) grey-to-brown veined, (iii) brown-reddish to yellowish and (iv) dark-grey to blackish veined marbles. The results show that the investigated marbles are highly heterogeneous in both their geochemical parameters and minero-petrographic features. Microscopically, the white, grey-to-brown and dark-grey to blackish marbles display homeoblastic/granoblastic texture, and the brown-reddish to yellowish marbles display a heteroblastic texture with traces of slightly deformed polysynthetic twining planes. Minero-petrography, XRD, SEM and EPMA revealed that the investigated marbles chiefly consist of calcite along with dolomite, quartz, muscovite, pyrite, K-feldspar, Mg, Ti and Fe-oxides as subordinates. The magnesium content of calcite coexisting with dolomite was estimated by both XRD and EPMA/EDS, indicating the metamorphic temperature of re-crystallization from 414

  3. Gas exchange variability and water use efficiency of thirty landraces of rice still under cultivation in Kumaun region of the Indian Central Himalaya.

    PubMed

    Agnihotri, R K; Palni, L M S; Chandra, Suman; Joshi, S C

    2009-10-01

    Gas exchange characteristics of thirty landraces of rice (Oryza sativa L.) along with an introduced variety VL-206 (recommended high yielding variety for rainfed uplands of the Indian Central Himalaya, ICH), grown in earthen pots and kept in the open at the Institute nursery at Kosi (1150m amsl, 79°38'10″E and 29°38'15″N) were studied. The photosynthetic rate (Pn) and other related parameters were found to vary considerably among landraces. Based on the comparison of Pn of landraces with that of VL-206, these were categorized into two groups: i) high (〉6.0 µmol m(-2)s(-1)), and ii) low (<6.0 µmol m(-2)s(-1)) Pn groups. Overall the landraces belonging to the high Pn group (Saurajubawan, Syaudhan and Taichin) which had higher stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE), mesophyll efficiency (low Ci/gs ratio) and chlorophyll (Chl) content in comparison to landraces in the low Pn group. However, significant differences were not found in the intercellular CO2 concentration (Ci) between landraces belonging to the high and low Pn groups. Differences among landraces were found with regard to dark respiration; landraces with low Pn respired proportionately more of the carbon fixed than those of high Pn group. Based on the studied gas exchange characteristics Saurajubawan, Syaudhan and Taichin, local landraces of rice, may be identified as potential cultivars with high Pn and WUE.

  4. Leucogranites in Lhozag, southern Tibet: Implications for the tectonic evolution of the eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Huang, Chunmei; Zhao, Zhidan; Li, Guangming; Zhu, Di-Cheng; Liu, Dong; Shi, Qingshang

    2017-12-01

    Petrogenesis of the Himalayan leucogranite is strongly influenced by conditions which are associated with the tectonic evolution of Himalayan orogen. In this article, we present petrological, geochronological and geochemical results of the Lhozag leucogranites that crop out alongside the South Tibetan Detachment System (STDS) in the east of Himalaya. Zircon U-Pb dating revealed three episodes of leucogranitic magmatism in Lhozag at 17.8 ± 0.1 Ma, 15.1 ± 0.1 Ma, and 12.0 ± 0.1 Ma, respectively. The Lhozag leucogranites show relatively low εNd(t), low zircon εHf(t) and high initial 87Sr/86Sr ratios, which are similar to the High Himalayan Crystalline Series (HHCS), indicating that they were derived from the HHCS. The characteristics of relatively high Na2O and Rb contents, high Rb/Sr ratios and low CaO, MgO, TFe2O3, TiO2, and Sr contents indicate that both the ca. 18 Ma Lhozag tourmaline leucogranites and the ca. 15 Ma Lhozag two-mica granites were derived from fluid-absent muscovite-dehydration melting of metasediments. The opposite geochemistry characteristics of the ca. 12 Ma Khula Kangri two-mica granites imply that these granites are derived from fluid-present melting of metasediments. Four Khula Kangri two-mica granite samples with relatively lower TiO2, TFe2O3, MgO, and CaO contents, higher Rb concentrations and Rb/Sr ratios could be evolved from the Khula Kangri two-mica granites with relatively lower Rb/Sr ratios. The melting behaviors of the Lhozag leucogranites varied from fluid-absent melting to fluid-present melting, implying that there were P-T-XH2O variations in the deep crust. The tectonic evolution would give rise to variation of P-T-XH2O variation, and subsequent transformation of melting behavior. Our new results display the transformation of melting behavior of the Lhozag leucogranites, which implies the tectonic evolution from earlier N-S extension to later E-W extension in the eastern Himalaya at ca. 12 Ma.

  5. Decoupling of long-term exhumation and short-term erosion rates in the Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Abrahami, Rachel; van der Beek, Peter; Huyghe, Pascale; Hardwick, Elisabeth; Carcaillet, Julien

    2016-01-01

    Understanding the relative strengths of tectonic and climatic forcing on erosion at different spatial and temporal scales is important to understand the evolution of orogenic topography. To address this question, we quantified exhumation rates at geological timescales and erosion rates at millennial timescales in modern river sands from 10 sub-catchments of the Tista River drainage basin in the Sikkim Himalaya (northeast India) using detrital apatite fission-track thermochronology and cosmogenic 10Be analyses, respectively. We compare these rates to several potential geomorphic or climatic forcing parameters. Our results show that millennial erosion rates are generally higher and spatially more variable than long-term exhumation rates in Sikkim. They also show strongly contrasting spatial patterns, suggesting that the processes controlling these rates are decoupled. At geological timescales, exhumation rates decrease from south to north, with rates up to 1.2 ± 0.6 mm/yr recorded in southwest Sikkim and as low as 0.5 ± 0.2 mm/yr in the northernmost catchment. Long-term exhumation rates do not correlate with any geomorphic or climatic parameter. We suggest they are tectonically controlled: high rates in southwest Sikkim may be linked to the building of the Lesser Himalaya Rangit Duplex, whereas low rates in north Sikkim are consistent with cessation of extensional exhumation along the South Tibetan Detachment after 13 Ma. The highest apparent erosion rates recorded by cosmogenic nuclides (∼5 mm/yr) occur in catchments spanning the Main Central Thrust Zone, but these appear to be strongly influenced by recent landsliding. High millennial erosion rates (1-2 mm/yr) also occur in north Sikkim and may be climatically driven through strong glacial inheritance of the landscape, as attested by high channel-steepness values close to the maximum extent of glaciers during the Last Glacial Maximum. In contrast, variations in rainfall rate do not seem to strongly influence

  6. Sustainable utilization and conservation of plant biodiversity in montane ecosystems: the western Himalayas as a case study.

    PubMed

    Khan, Shujaul Mulk; Page, Sue E; Ahmad, Habib; Harper, David M

    2013-08-01

    Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities' utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities.

  7. Sustainable utilization and conservation of plant biodiversity in montane ecosystems: the western Himalayas as a case study

    PubMed Central

    Khan, Shujaul Mulk; Page, Sue E.; Ahmad, Habib; Harper, David M.

    2013-01-01

    Background Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Scope Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities’ utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Conclusions Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities. PMID:23825353

  8. Active tectonics and earthquake potential of the Myanmar region

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than

    2014-04-01

    This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.

  9. Reforesting severely degraded grassland in the Lesser Himalaya of Nepal: Effects on soil hydraulic conductivity and overland flow production

    NASA Astrophysics Data System (ADS)

    Ghimire, Chandra Prasad; Bonell, Mike; Bruijnzeel, L. Adrian; Coles, Neil A.; Lubczynski, Maciek W.

    2013-12-01

    degraded hillslopes in the Lesser Himalaya challenge local communities as a result of the frequent occurrence of overland flow and erosion during the rainy season and water shortages during the dry season. Reforestation is often perceived as an effective way of restoring predisturbance hydrological conditions but heavy usage of reforested land in the region has been shown to hamper full recovery of soil hydraulic properties. This paper investigates the effect of reforestation and forest usage on field-saturated soil hydraulic conductivities (Kfs) near Dhulikhel, Central Nepal, by comparing degraded pasture, a footpath within the pasture, a 25 year old pine reforestation, and little disturbed natural forest. The hillslope hydrological implications of changes in Kfs with land-cover change were assessed via comparisons with measured rainfall intensities over different durations. High surface and near-surface Kfs in natural forest (82-232 mm h-1) rule out overland flow occurrence and favor vertical percolation. Conversely, corresponding Kfs for degraded pasture (18-39 mm h-1) and footpath (12-26 mm h-1) were conducive to overland flow generation during medium- to high-intensity storms and thus to local flash flooding. Pertinently, surface and near-surface Kfs in the heavily used pine forest remained similar to those for degraded pasture. Estimated monsoonal overland flow totals for degraded pasture, pine forest, and natural forest were 21.3%, 15.5%, and 2.5% of incident rainfall, respectively, reflecting the relative ranking of surface Kfs. Along with high water use by the pines, this lack of recovery of soil hydraulic properties under pine reforestation is shown to be a critical factor in the regionally observed decline in base flows following large-scale planting of pines and has important implications for regional forest management.

  10. Distribution, diversity patterns and faunogenesis of the millipedes (Diplopoda) of the Himalayas

    PubMed Central

    Golovatch, Sergei I.; Martens, Jochen

    2018-01-01

    Abstract The Himalayas support a highly rich, diverse, multi-layered, mostly endemic diplopod fauna which presently contains >270 species, 53 genera, 23 families and 13 orders. This is the result of mixing the ancient, apparently Tertiary and younger, Plio-Pleistocene elements of various origins, as well as the most recent anthropochore (= man-mediated) introductions. At the species and, partly, generic levels, the fauna is largely autochthonous and sylvicolous, formed through abounding in situ radiation and vicariance events. In general, the species from large genera and families tend to occupy a wide range of altitudes, but nearly each of the constituent species shows a distribution highly localized both horizontally and altitudinally, yet quite often with sympatry or even syntopy involved. The bulk of the fauna is Indo-Malayan in origin, with individual genera or families shared with those of SE Asia (mostly) and/or S India (few). Sino-Himalayan and, especially, Palaearctic components are subordinate, but also clearly distinguishable. PMID:29706770

  11. Meiotic Studies in Some Species of Tribe Cichorieae (Asteraceae) from Western Himalayas

    PubMed Central

    Gupta, Raghbir Chand; Goyal, Henna; Singh, Vijay; Goel, Rajesh Kumar

    2014-01-01

    The present paper deals with meiotic studies in 15 species belonging to 6 genera of the tribe Cichorieae from various localities of Western Himalayas. The chromosome number has been reported for the first time in Hieracium crocatum (2n = 10) and Lactuca lessertiana (2n = 2x = 16). Further, intraspecific variability has been reported for the first time in H. umbellatum (2n = 2x = 10 and 2n = 6x = 54), Tragopogon dubius (2n = 2x = 14 and 2n = 4x = 28), and T. gracilis (2n = 2x = 14). The chromosome report of 2n = 2x = 10 in Youngia tenuifolia is made for the first time in India. Maximum numbers of the populations show laggards, chromosome stickiness, and cytomixis from early prophase to telophase-II, leading to the formation of aneuploid cells or meiocytes with double chromosome number. Such meiotic abnormalities produce unreduced pollen grains and the reduced pollen viability. PMID:25489603

  12. In vitro antibacterial activity of selected medicinal plants from lower Himalayas.

    PubMed

    Zulqarnain; Rahim, Abdur; Ahmad, Khalid; Ullah, Faizan; Ullah, Hamid; Nishan, Umar

    2015-03-01

    The present studies cover antibacterial activity of the crude methanolic extracts of 11 medicinal plants viz. Adhatoda vasica, Bauhenia variegate, Bombax ceiba, Carrisa opaca, Caryopteris grata, Debregeasia salicifolia, Lantana camara, Melia azedarach, Phyllanthus emblica, Pinus roxburghii and Olea ferruginea collected from lower Himalayas against two Gram positive (Staphylococcus aureus, Micrococcus luteus) and two Gram negative (Escherichia coli, Pseudomonas aureginosa) bacterial strains. The extracts were applied at four different concentrations (120 mg/mL, 90mg/mL, 60mg/mL and 30mg/mL) in dimethyl sulfoxide (DMSO) by using agar well diffusion method. Antibacterial activities against Staphylococcus aureus and Micrococcus luteus were observed formethanolic extracts of all the above mentioned plants. Greater antibacterial activity against Pseudomonas aeruginosa was only exhibited by Phyllanthus emblica, Pinus roxburghii, Debregeasia salicifolia and Lantana camara. Escherichia coli was highly resistant to all the plant extracts at all concentrations. It is inferred that methanolic crude extracts of the above mentioned plantsexhibitantibacterial activities against pathogenic bacteria, which proved the ethnobotanical importance of the selected plants that indigenous people use for cure against various diseases.

  13. Late Miocene-Early Pliocene reactivation of the Main Boundary Thrust: Evidence from the seismites in southeastern Kumaun Himalaya, India

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Srivastava, Deepak C.; Shah, Jyoti

    2013-05-01

    Tectonic history of the Himalaya is punctuated by successive development of the faults that run along the boundaries between different lithotectonic terrains. The Main Boundary Fault, defining the southern limit of the Lesser Himalayan terrain, is tectonically most active. A review of published literature reveals that the nature and age of reactivation events on the Main Boundary Fault is one of the poorly understood aspects of the Himalayan orogen. By systematic outcrop mapping of the seismites, this study identifies a Late Miocene-Early Pliocene reactivation on the Main Boundary Thrust in southeast Kumaun Himalaya. Relatively friable and cohesionless Neogene sedimentary sequences host abundant soft-sediment deformation structures in the vicinity of the Main Boundary Thrust. Among a large variety of structures, deformed cross-beds, liquefaction pockets, slump folds, convolute laminations, sand dykes, mushroom structures, fluid escape structures, flame and load structures and synsedimentary faults are common. The morphological attributes, the structural association and the distribution pattern of the soft-sediment deformation structures with respect to the Main Boundary Fault strongly suggest their development by seismically triggered liquefaction and fluidization. Available magnetostratigraphic age data imply that the seismites were developed during a Late Miocene-Early Pliocene slip on the Main Boundary Thrust. The hypocenter of the main seismic event may lie on the Main Boundary Thrust or to the north of the study area on an unknown fault or the Basal Detachment Thrust.

  14. The northward shift of the Tibetan Plateau as an important factor for understanding East Asian climate during Cenozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Jiang, Dabang; Ramstein, Gilles; Zhang, Zhongshi; Lippert, Peter C.; Yu, Entao

    2017-04-01

    Previous climate modeling studies suggest that the surface uplift of the Himalaya-Tibetan plateau (TP) is a crucial parameter for the onset and enhancement of the East Asian monsoon during the Cenozoic. However, most of these studies have only considered the Himalaya-TP in its present location despite numerous geophysical studies that reconstruct the Himalaya-TP 10° or more of latitude to the south during the early Paleogene. We have designed a series of climate simulations that account for not only changes in the surface elevation of the Himalaya-TP, but also the latitudinal distribution of this regionally high elevation. Here we demonstrate that the East Asian climate strongly depends on the latitude of the Himalaya-TP. The northward motion of the Himalaya-TP likely contribute to the reorganization atmospheric circulation in East Asia, thereby leading to intensified inland Asian aridity and enhanced monsoon climate over East Asia. Moreover, our simulations also bring new constrains on the southern margin of a modern-elevation proto-Himalaya-TP in the Eocene.

  15. MACS-Himalaya: A photogrammetric aerial oblique camera system designed for highly accurate 3D-reconstruction and monitoring in steep terrain and under extreme illumination conditions

    NASA Astrophysics Data System (ADS)

    Brauchle, Joerg; Berger, Ralf; Hein, Daniel; Bucher, Tilman

    2017-04-01

    The DLR Institute of Optical Sensor Systems has developed the MACS-Himalaya, a custom built Modular Aerial Camera System specifically designed for the extreme geometric (steep slopes) and radiometric (high contrast) conditions of high mountain areas. It has an overall field of view of 116° across-track consisting of a nadir and two oblique looking RGB camera heads and a fourth nadir looking near-infrared camera. This design provides the capability to fly along narrow valleys and simultaneously cover ground and steep valley flank topography with similar ground resolution. To compensate for extreme contrasts between fresh snow and dark shadows in high altitudes a High Dynamic Range (HDR) mode was implemented, which typically takes a sequence of 3 images with graded integration times, each covering 12 bit radiometric depth, resulting in a total dynamic range of 15-16 bit. This enables dense image matching and interpretation for sunlit snow and glaciers as well as for dark shaded rock faces in the same scene. Small and lightweight industrial grade camera heads are used and operated at a rate of 3.3 frames per second with 3-step HDR, which is sufficient to achieve a longitudinal overlap of approximately 90% per exposure time at 1,000 m above ground at a velocity of 180 km/h. Direct georeferencing and multitemporal monitoring without the need of ground control points is possible due to the use of a high end GPS/INS system, a stable calibrated inner geometry of the camera heads and a fully photogrammetric workflow at DLR. In 2014 a survey was performed on the Nepalese side of the Himalayas. The remote sensing system was carried in a wingpod by a Stemme S10 motor glider. Amongst other targets, the Seti Valley, Kali-Gandaki Valley and the Mt. Everest/Khumbu Region were imaged at altitudes up to 9,200 m. Products such as dense point clouds, DSMs and true orthomosaics with a ground pixel resolution of up to 15 cm were produced in regions and outcrops normally inaccessible to

  16. Early-Holocene intensified Indian summer monsoon and its impact on vegetation: study based on hydrogen and carbon isotope values in long chain alkane from relict lake sediments in the Central Himalaya

    NASA Astrophysics Data System (ADS)

    Sanyal, P.; Ghosh, S.; Bhushan, R.; Juyal, N.

    2017-12-01

    The early Holocene was characterized by intensified monsoon, however none of the paleoclimatic records showed the magnitude required to shape the observed landform in the Ganges plain and sediment discharge in the Bay of Bengal. The Tropical Rainfall Measurement Mission data suggests that the Central Himalaya ( 2 km altitude) is characterized by high rainfall and hence paleoclimate proxies from this region would provide excellent opportunity to reconstruct the Holocene monsoon. An attempt has been made, for the first time, to reconstruct the Holocene monsoon using n-alkane δDC29 values of lake sediments from Benital area in the Central Himalaya which receives ca. 80% of the mean annual rainfall during summer monsoon. The n-alkane δDC29 values indicated that early Holocene (ca. 9 ka) was characterised by a wet phase with 70% increase in the rainfall followed by the dry middle-late Holocene which is in agreement with existing continental records. However, the change in intensity as inferred in the present study is maximum compared to the existing records. The comparison of δDC29values and the solar insolation data at 30 °N latitude suggested that migration of the Inter Tropical Convergence Zone controlled the variation in monsoonal rainfall. Comparison with the modern plants, the δ13CC29 values indicated that during ca. pre and post 7 ka the lake catchment was dominated by woody and non-woody plants, respectively. The cross plot between δDC29 and δ13CC29 indicated that at higher rainfall, the δ13CC29 values of catchment vegetation were less-responsive.

  17. The recent deglaciation of Kolahoi valley in Kashmir Himalaya, India in response to the changing climate

    NASA Astrophysics Data System (ADS)

    Rashid, Irfan; Romshoo, Shakil Ahmad; Abdullah, Tariq

    2017-05-01

    In the present study, the retreat of Kolahoi glacier was mapped from the satellite observations and historical maps supplemented by the extensive field observations to understand the recent deglaciation of the Kolahoi valley, Kashmir Himalaya, India. The glacier has retreated by 2.85 km during the last 157 years from 1857 to 2014 with an average retreat of about 18.2 m year-1; however, the glacier snout has shown higher recession during the last decade. The geomorphological evidence reveals glaciation of the Kolahoi valley during the Quaternary. These evidences include glacial till at Pahalgam and Aru besides terminal and lateral moraines at Lidderwat, Satlanjan and Kolahoi Gunj in the Kolahoi valley. The glacier has shrunk by 2.81 km2 during the last 51 years (1962-2013) losing an ice volume of 0.30 km3. The observed glacier changes were correlated with the climate data from PMIP3-CMIP5 models. The temperatures are predicted to increase almost ten times more than that observed during the Last Glacial Maximum (LGM). The future temperature is predicted to rise between 0.18 °C and 0.61 °C per decade under RCP 2.6 and RCP 8.5 respectively. The projected rise in the temperature, if realized, will have an adverse effect on the glaciers and would, in all likelihood, adversely affect the water availability for various sectors in the region.

  18. Stochastic landslide vulnerability modeling in space and time in a part of the northern Himalayas, India.

    PubMed

    Das, Iswar; Kumar, Gaurav; Stein, Alfred; Bagchi, Arunabha; Dadhwal, Vinay K

    2011-07-01

    Little is known about the quantitative vulnerability analysis to landslides as not many attempts have been made to assess it comprehensively. This study assesses the spatio-temporal vulnerability of elements at risk to landslides in a stochastic framework. The study includes buildings, persons inside buildings, and traffic as elements at risk to landslides. Building vulnerability is the expected damage and depends on the position of a building with respect to the landslide hazard at a given time. Population and vehicle vulnerability are the expected death toll in a building and vehicle damage in space and time respectively. The study was carried out in a road corridor in the Indian Himalayas that is highly susceptible to landslides. Results showed that 26% of the buildings fall in the high and very high vulnerability categories. Population vulnerability inside buildings showed a value >0.75 during 0800 to 1000 hours and 1600 to 1800 hours in more buildings that other times of the day. It was also observed in the study region that the vulnerability of vehicle is above 0.6 in half of the road stretches during 0800 hours to 1000 hours and 1600 to 1800 hours due to high traffic density on the road section. From this study, we conclude that the vulnerability of an element at risk to landslide is a space and time event, and can be quantified using stochastic modeling. Therefore, the stochastic vulnerability modeling forms the basis for a quantitative landslide risk analysis and assessment.

  19. The deformation of ice-debris landforms in the Khumbu Region from InSAR

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.; Barker, A. D.; Hallet, B.

    2014-12-01

    We present new interferometric synthetic aperture radar (InSAR) results for the Khumbu region, Nepal, using PALSAR data from the ALOS1 satellite. Glaciers and ice-debris landforms represent a critical water resource to communities in the Himalayas and other relatively arid alpine environments. Changes in climate have impacted this resource as the volume of ice decreases. The monitoring of rock glaciers and debris covered glaciers is critical to the assessment of these natural resources and associated hazards (e.g. Glacial Lake Outburst Floods--GLOFs). Satellite data provide one means to monitor ice-containing landforms over broad regions. InSAR measures the subtle deformation of the surface, with mm precision, that is related to deformation or changes in ice volume within rock glaciers and debris-covered glaciers. While previous work in the region had used C-band (6 cm wavelength) SAR data from the ERS satellite, we utilize L-band data (24 cm) from the ALOS satellite, which provides better coherence, especially where the phase gradient is large. After processing 20 differential interferograms that span from 2008 to 2011, we focus on the 5 interferograms with the best overall coherence. Based on three 45-day interferograms and two 3-year interferograms, all of which have relatively small perpendicular baselines (<260 m), we report line-of-sight surface displacement rates within the Khumbu region and calculate the down-slope surface speed of the active glaciers. From the 3-year interferograms, we map the boundary of active movement along the perimeter of the debris-covered toe of Khumbu Glacier. Movement over this longer time period leads to a loss of coherence, clearly delimiting actively moving areas. Of particular note, active movement is detected in the glacier-moraine dam of Imja Lake, which has implications for GLOF hazard. The significant vertical relief in the Himalaya region poses a challenge for doing differential radar interferometry, as artifacts in the

  20. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India.

    PubMed

    Dar, Javid Ahmad; Sundarapandian, Somaiah

    2015-02-01

    An accurate characterization of tree, understory, deadwood, floor litter, and soil organic carbon (SOC) pools in temperate forest ecosystems is important to estimate their contribution to global carbon (C) stocks. However, this information on temperate forests of the Himalayas is lacking and fragmented. In this study, we measured C stocks of tree (aboveground and belowground biomass), understory (shrubs and herbaceous), deadwood (standing and fallen trees and stumps), floor litter, and soil from 111 plots of 50 m × 50 m each, in seven forest types: Populus deltoides (PD), Juglans regia (JR), Cedrus deodara (CD), Pinus wallichiana (PW), mixed coniferous (MC), Abies pindrow (AP), and Betula utilis (BU) in temperate forests of Kashmir Himalaya, India. The main objective of the present study is to quantify the ecosystem C pool in these seven forest types. The results showed that the tree biomass ranged from 100.8 Mg ha(-1) in BU forest to 294.8 Mg ha(-1) for the AP forest. The understory biomass ranged from 0.16 Mg ha(-1) in PD forest to 2.36 Mg ha(-1) in PW forest. Deadwood biomass ranged from 1.5 Mg ha(-1) in PD forest to 14.9 Mg ha(-1) for the AP forest, whereas forest floor litter ranged from 2.5 Mg ha(-1) in BU and JR forests to 3.1 Mg ha(-1) in MC forest. The total ecosystem carbon stocks varied from 112.5 to 205.7 Mg C ha(-1) across all the forest types. The C stocks of tree, understory, deadwood, litter, and soil ranged from 45.4 to 135.6, 0.08 to 1.18, 0.7 to 6.8, 1.1 to 1.4, and 39.1-91.4 Mg ha(-1), respectively, which accounted for 61.3, 0.2, 1.4, 0.8, and 36.3 % of the total carbon stock. BU forest accounted 65 % from soil C and 35 % from biomass, whereas PD forest contributed only 26 % from soil C and 74 % from biomass. Of the total C stock in the 0-30-cm soil, about 55 % was stored in the upper 0-10 cm. Soil C stocks in BU forest were significantly higher than those in other forests. The variability of C pools of different ecosystem components is

  1. POP and PAH contamination in the southern slopes of Mt. Everest (Himalaya, Nepal): Long-range atmospheric transport, glacier shrinkage, or local impact of tourism?

    PubMed

    Guzzella, Licia; Salerno, Franco; Freppaz, Michele; Roscioli, Claudio; Pisanello, Francesca; Poma, Giulia

    2016-02-15

    Due to their physico-chemical properties, POPs and PAHs are subjected to long-range atmospheric transport (LRAT) and may be deposited in remote areas. In this study, the contamination with DDx, PCBs, PBDEs, and PAHs was investigated in sediments and soils collected on the southern slopes of Mt. Everest (Himalaya, Nepal) in two different sampling campaigns (2008 and 2012). The results showed a limited contamination with POPs and PAHs in both soil and sediment samples. Therefore, the southern slopes of Mt. Everest can be considered a remote area in almost pristine condition. The LRAT mechanism confirmed its primary role in the transfer of contaminants to remote regions, while the gradual melting of glaciers, due to global warming, and the subsequent release of contaminants was suggested to be a secondary source of pollution of the lake sediments. In addition, the increase of tourism in this area during the last decades might have influenced the present concentrations of PAHs in the sediments and soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: Seasonality, sources, meteorology and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bhat, Mudasir Ahmad; Romshoo, Shakil Ahmad; Beig, Gufran

    2017-09-01

    Black carbon (BC) mass concentration was measured first-time at a high altitude urban site-Srinagar (1600 m asl), in northwestern Himalaya, India using an Aethalometer during 2013 to study temporal variations (monthly, diurnal and seasonal), meteorological influences, source and its radiative forcing. Diurnal variations with two peaks (at 8-10 h and 20-23 h) and two dips (at 13-17 h and 0-3 h) were observed throughout the year with varying magnitude. November and April showed the highest (13.6 μg/m3) and the lowest (3.4 μg/m3) mean monthly BC concentration respectively. Seasonally, autumn displayed the highest (9.2 μg/m3) and spring the lowest (3.5 μg/m3) mean BC concentration. Annual average BC concentration was quite higher (6 μg/m3) than those reported for other high altitude stations. Wind speed, Minimum temperature and total precipitation showed a clear negative correlation with BC (r = -0.63, -0.51 and -0.55 respectively), while as, the evening relative humidity showed positive correlation (r = 0.56). During autumn, spring and winter seasons, the main source of BC at Srinagar is the biomass burning, while during summer season, equal contribution of BC is from fossil fuel and biomass burning. Back trajectory simulations revealed that, except summer, westerly air masses are the dominant winds, transporting BC from central Asia, west Asia, south Asia, Africa and some parts of Europe to Srinagar adding to its local sources. Clear-sky short wave radiative forcing of atmosphere due to BC was highest (58.2 W m-2) during autumn which leads to the increase in lower atmospheric heating rate by 1.6 K/d. The high concentration of BC observed over the high-altitude Himalayan Kashmir region has serious implications for the regional climate, hydrology and cryosphere which needs to be investigated.

  3. Forcing Mechanisms for the Variations of Near-surface Temperature Lapse Rates along the Himalayas, Tibetan Plateau (HTP) and Their Surroundings

    NASA Astrophysics Data System (ADS)

    Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.

    2016-12-01

    This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.

  4. Giant landslide deposits and the modalities of their removal by fluvial sediment export in the central Himalayas

    NASA Astrophysics Data System (ADS)

    Lave, Jerome; Lénard, Sébastien; Lanord, Christian France

    2017-04-01

    Slope failures and deep seated landslides are usually considered as the most efficient processes for hillslope erosion in active orogens. Erosion in the Narayani basin in central Himalaya (Nepal) confirms such assertion, with in addition the probable predominance of the very large landslides in the erosive budget of the range. In the High Himalayan part of this basin, a number of pluri-kilometric giant landslides have been described and involve up to ten cubic kilometres mass wasting (e.g. Weidinger et al., 2002). In this contribution, we discuss how the fluvial network do respond to such massive and sudden supply of debris, basing our analysis on several cases, documented by sedimentologic and geomorphologic observations, lithologic counting, geochemical tracing (down to the Ganga plain), and 14C or CRN dating. We first demonstrate that several massive fill terraces preserved along the Lesser Himalayan intramontane reaches are not climatically induced, but rather represent transient storage following giant landslide material export. Two types of deposits and therefore of sediment export modalities have been identified: either (1), as observed along a 100km long stretch of the Marsyandi river, through massive debris flow(s) runout following the break of a landslide-induced dam on main rivers, or (2) by the more gradual but efficient fluvial removal of the giant landslide deposits. In the second case, in particular when bedrock fracturing and crushing during landslide fall has strongly reduced the average debris size, because the steep Himalayan rivers are usually in strong over capacity or largely underloaded with fine to medium-size sediment, their can carry up to several cubic kilometres of sediments in one or two centuries. The coarsest part of the exported material is temporarily stored through aggradation in the massive Lesser Himalayan fill terraces because river gradient drops suddenly when river exits the High Himalaya, whereas the finest fraction is

  5. Changes in Migration Pattern of Transhumance due to Climate Change: An Empirical Analysis of Gaddi Community of Himachal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Mishra, Himanshu; Wasini Pandey, Bindhy

    2017-04-01

    Transhumance is a complex and traditional livelihood system seeking to maintain equilibrium between pastures, livestock and local people in variable and inhospitable environments. In Western Himalayas in the Indian state of Himachal Pradesh, pastoral groups of Gaddis inhabit almost inaccessible areas, where scarce resources and extreme climatic conditions limit options for alternative land use and livelihood systems. In such a harsh and unforgiving environment, mobility in the form of transhumance has been the traditional ecological response to climatic extremes. However, recently, such additional factors as global as well as regional climate change have brought about changes in the tree line, snow line and pastoral grounds along the historical route of seasonal migration of the Gaddis. The growing unpredictability of the once static route of migration has raised the possibility of Gaddis shifting to alternative land use and land management techniques. In the present research, we explore how transhumant pastoralism has been sustained and stimulated in the context of socioeconomic and climate change in the mountainous region of Himachal Pradesh and the future challenges that it faces. Based on case study research conducted in Chamba district in Himachal Pradesh; we have analysed the status, opportunities, and constraints of transhumant pastoralism in the changing context and modeled the possible alternative land use decisions. Finally we conclude that unless there are affirmative and progressive policy and institutional framework to support transhumant system, the indigenous practice will soon disappear from this part of the world. Keywords: Climate change, Gaddis, Himachal Pradesh, Transhumance, Alternative Land Use

  6. Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation

    NASA Astrophysics Data System (ADS)

    Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi

    2017-04-01

    The instrumental seismicity of Bhutan is characterized by a lower activity compared to most other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. From the recorded seismicity, earthquake moment tensors, and local earthquake tomography, we reveal along-strike variations in structure and crustal deformation regime. Imaged structural variations, primarily a thickened crust in western Bhutan, suggest lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting interseismic coupling and style of deformation. Sikkim, western Bhutan, and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking dextral fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) might segment the MHT between eastern Nepal and western Bhutan and connect the deformation front of the Himalaya with the Shillong Plateau in the foreland by forming the western boundary of a West-Assam block. In contrast, the eastern boundary of this block, hitherto associated with the Kopili foreland fault, appears to be diffuse. In eastern Bhutan, we image a seismogenic, flat portion of the MHT, which might be related to a partially creeping fault segment or increased background seismicity originating from the 2009 MW6.1 earthquake. In western-central Bhutan, clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes beneath the densely populated foreland basin as documented by the Dhubri

  7. Seismotectonics of Bhutan: Evidence for segmentation of the Eastern Himalayas and link to foreland deformation

    NASA Astrophysics Data System (ADS)

    Diehl, Tobias; Singer, Julia; Hetényi, György; Grujic, Djordje; Clinton, John; Giardini, Domenico; Kissling, Edi; Gansser Working Group

    2017-08-01

    The instrumental record of Bhutan is characterized by a lower seismicity compared to other parts of the Himalayan arc. To understand this low activity and its impact on the seismic hazard, a seismic network was installed in Bhutan for 22 months between 2013 and 2014. Recorded seismicity, earthquake moment tensors and local earthquake tomography reveal along-strike variations in structure and crustal deformation regime. A thickened crust imaged in western Bhutan suggests lateral differences in stresses on the Main Himalayan Thrust (MHT), potentially affecting the interseismic coupling and deformation regime. Sikkim, western Bhutan and its foreland are characterized by strike-slip faulting in the Indian basement. Strain is particularly localized along a NW-SE striking mid-crustal fault zone reaching from Chungthang in northeast Sikkim to Dhubri at the northwestern edge of the Shillong Plateau in the foreland. The dextral Dhubri-Chungthang fault zone (DCF) causes segmentation of the Indian basement and the MHT between eastern Nepal and western Bhutan and connects the deformation front of the Himalaya with the Shillong Plateau by forming the western boundary of the Shillong block. The Kopili fault, the proposed eastern boundary of this block, appears to be a diffuse zone of mid-crustal seismicity in the foreland. In eastern Bhutan we image a seismogenic, flat portion of the MHT, which might be either related to a partially creeping segment or to increased background seismicity originating from the 2009 MW 6.1 earthquake. In western-central Bhutan clusters of micro-earthquakes at the front of the High-Himalayas indicate the presence of a mid-crustal ramp and stress buildup on a fully coupled MHT. The area bounded by the DCF in the west and the seismogenic MHT in the east has the potential for M7-8 earthquakes in Bhutan. Similarly, the DCF has the potential to host M7 earthquakes as documented by the 2011 Sikkim and the 1930 Dhubri earthquakes, which were potentially

  8. Chaudhuriomyia, a new tanypod genus of Macropelopiini (Diptera: Chironomidae: Tanypodinae) from the Eastern Himalaya.

    PubMed

    Paul, Nilotpol; Mazumdar, Abhijit

    2015-05-06

    A new genus, Chaudhuriomyia in the tribe Macropelopiini belonging to subfamily Tanypodinae is described and illustrated in all life stages. The genus can be distinguished from all the other known Macropelopiini by the presence of a blunt claw on fore leg and a smooth surface of tibial spur in adult male, seminal capsules without proper neck in adult female, round anal lobe in pupa, and slightly inwardly bent inner tooth of ligula in larva. Generic diagnoses for larva, pupa and adult are provided. Taxonomic position and distribution of the genus are discussed along with a new adult key of tribe Macropelopiini. The specimens were collected from a stream in Indo-Bhutan border area of Eastern Himalaya in Indian Subcontinent. A note on the ecology and biology of the new genus is included.

  9. Comment on: "Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya", by Kothyari et al. 2017, Geomorphology (285), 272-286

    NASA Astrophysics Data System (ADS)

    Rana, Naresh; Sharma, Shubhra

    2018-01-01

    The recent paper by Kothyari et al. (2017) suggests that the North Almora Thrust (NAT) and a few subsidiary faults in the central Lesser Himalaya were active during the late Quaternary and Holocene. Considering that in the Indian Summer Monsoon (ISM) dominated and tectonically active central Himalaya, the landscape owes their genesis to a coupling between the tectonics and climate. The present study would have been a good contribution toward improving our understanding on this important topic. Unfortunately, the inferences drawn by the authors are based on inadequate/vague field observations, supported by misquoted references, which reflects their poor understanding of the geomorphic processes. For example, authors implicate tectonics in the landform evolution without providing an argument to negate the role of climate (ISM). In view of this, the above contribution does not add anything substantial in improving our existing knowledge of climate-tectonic interaction in landform evolution. On the contrary, if the above publication is not questioned for its scientific merit, it may create enormous confusion and proliferation of wrong scientific data and inferences.

  10. Seasonal variation of benthic macro invertebrates from Tons River of Garhwal Himalaya Uttarakhand.

    PubMed

    Negi, R K; Mamgain, Sheetal

    2013-11-15

    Present investigation was carried out to assess the seasonal variation of benthic macro-invertebrates from the Tons river, a tributary of Yamuna River in Garhwal Himalaya, Uttrakhand during December, 2007 to November, 2009. The seasonal benthic diversity was correlated with various physic-chemical parameters which documented that the macrobenthic diversity is mostly regulated by the dissolved oxygen in the water while temperature and free CO2 were found to be inversely correlated with the benthic fauna. Maximum diversity of benthos was reported at the upstream site ('H' 0.204) during the winter season while it was recorded minimum during the rainy season at all the sites. Maximum diversity is reported during the winter season at all the sites. The benthic fauna is represented by three phylum, 4 classes and 10 orders with Insecta emerging as the most dominant class. Maximum genera were reported from midstream site as it acts as ecotone between upstream and downstream.

  11. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Aggarwal, Suruchi; Rai, S. C.; Thakur, P. K.; Emmer, Adam

    2017-10-01

    Climatic changes alter the climate system, leading to a decrease of glacier mass volumes and swelling glacial lakes. This study provides a new inventory of glacial and high-altitude lakes for Sikkim, Eastern Himalaya, and evaluates the susceptibility of lakes to Glacial Lake Outburst Flood (GLOF). By using satellite data of high spatial resolution (5 m), we obtain 1104 glacial and high-altitude lakes with total area 30.498 km2, of which 472 have an area > 0.01 km2. Applying pre-defined GLOF susceptibility criteria on these 472 lakes yields 21 lakes susceptible to GLOF, which all increased in area from 1972-2015. Using Analytic Hierarchy Processes (AHP), the pairwise comparison matrix further reveals that 5 of these glacial lakes have low, 14 have medium and 2 have high GLOF susceptibility. Especially these 16 glacial lakes with high and medium GLOF susceptibility may threaten downstream communities and infrastructure and need further attention.

  12. Jurassic carbonate microfacies, sea-level changes and the Toarcian anoxic event in the Tethys Himalaya (South Tibet)

    NASA Astrophysics Data System (ADS)

    Han, Zhong; Hu, Xiumian; Garzanti, Eduardo

    2016-04-01

    Detailed microfacies analysis of carbonate rocks from the Tingri and Nyalam areas of South Tibet allowed us to reconstruct the evolution of sedimentary environments during the Early to Middle Jurassic. Based on texture, sedimentary structure, grain composition and fossil content of about 500 thin sections, 17 microfacies overall were identified, and three evolutionary stages were defined. Stage 1 (Rhaetian?-lower Sinemurian Zhamure Formation) was characterized by siliciclastic and mixed siliciclastic-carbonate sedimentation on a barrier shore environment, stage 2 (upper Sinemurian-Pliensbachian Pupuga Formation) by high-energy grainstones with rich benthic faunas thriving on a carbonate platform, and stage 3 (Toarcian-lower Bajocian Nieniexiongla Formation) by low-energy mudstones intercalated with frequent storm layers on a carbonate ramp. Besides, Carbon isotope analyses (δ13Ccarb and δ13Corg) were performed on the late Pliensbachian-early Toarcian interval, and the organic matter recorded a pronounced stepped negative excursion -4.5‰ corresponding to characteristics of the early Toarcian oceanic anoxic event globally, which began just below the stage 2-stage 3 facies shifting boundary. The comparison between the Tethys Himalaya (South Tibet) and the tropical/subtropical zones of the Western Tethys and Panthalassa was carried out to discuss the factors controlling sedimentary evolution. The change from stage 1 to stage 2 was possibly induced by sea-level rise, when the Tibetan Tethys Himalaya was located at tropical/subtropical latitudes in suitable climatic and ecological conditions for carbonate sedimentation. The abrupt change from stage 2 to stage 3 is interpreted as a consequence of the early Toarcian oceanic anoxic event, accompanied by obvious carbon-isotope negative excursion and sea-level rise. The failed recovery from the carbonate crisis in the early Bajocian, with continuing deposition on a low-energy carbonate ramp, is ascribed to the tectonic

  13. Examination of elevation dependency in observed and projected temperature change in the Upper Indus Basin and Western Himalaya

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Forsythe, N. D.; Blenkinsop, S.; Archer, D.; Hardy, A.; Janes, T.; Jones, R. G.; Holderness, T.

    2013-12-01

    We present results of two distinct, complementary analyses to assess evidence of elevation dependency in temperature change in the UIB (Karakoram, Eastern Hindu Kush) and wider WH. The first analysis component examines historical remotely-sensed land surface temperature (LST) from the second and third generation of the Advanced Very High Resolution Radiometer (AVHRR/2, AVHRR/3) instrument flown on NOAA satellite platforms since the mid-1980s through present day. The high spatial resolution (<4km) from AVHRR instrument enables precise consideration of the relationship between estimated LST and surface topography. The LST data product was developed as part of initiative to produce continuous time-series for key remotely sensed spatial products (LST, snow covered area, cloud cover, NDVI) extending as far back into the historical record as feasible. Context for the AVHRR LST data product is provided by results of bias assessment and validation procedures against both available local observations, both manned and automatic weather stations. Local observations provide meaningful validation and bias assessment of the vertical gradients found in the AVHRR LST as the elevation range from the lowest manned meteorological station (at 1460m asl) to the highest automatic weather station (4733m asl) covers much of the key range yielding runoff from seasonal snowmelt. Furthermore the common available record period of these stations (1995 to 2007) enables assessment not only of the AVHRR LST but also performance comparisons with the more recent MODIS LST data product. A range of spatial aggregations (from minor tributary catchments to primary basin headwaters) is performed to assess regional homogeneity and identify potential latitudinal or longitudinal gradients in elevation dependency. The second analysis component investigates elevation dependency, including its uncertainty, in projected temperature change trajectories in the downscaling of a seventeen member Global Climate

  14. Analysis of High Resolution Satellite imagery to acsees Glacier Mass Balance and Lake Hazards in Sikkim Himalayas

    NASA Astrophysics Data System (ADS)

    Bhushan, S.; Shean, D. E.; Haritashya, U. K.; Arendt, A. A.; Syed, T. H.; Setiawan, L.

    2017-12-01

    Glacial lake outburst floods can impact downstream communities due to the sudden outflux of huge quantities of stored water. In this study, we develop a hazard assessment of the moraine dammed glacial lakes in Sikkim Himalayas by analyzing the morphometry of proglacial features, and the surface velocity and mass balance of glaciers. We generated high-resolution digital elevation models (DEMs) using the open-source NASA Ames Stereo Pipeline (ASP) and use other open-source tools to calculate surface velocity and patterns of glacier downwasting over time. Geodetic glacier mass balance is obtained for three periods using high-resolution WorldView/GeoEye stereo DEMs (8 m posting, 2014-2016), Cartosat-1 stereo DEMs (10 m, 2006-2008) and SRTM (30 m, 2000). Initial results reveal a region-wide mass balance of -0.31±0.13 m w.eq.a-1 for the 2007-2015 period, with some debris covered glaciers showing a very low mass loss rate. Additionally, 12 annual glacier velocity fields spanning from 1991 to 2017.derived from Landsat imagery are used to explore the relationship between glacier dynamics and changes in proglacial lakes. Multi-temporal glacial lake mapping is conducted using Landsat and Cartosat imagery. Avalanche and rockfall modeling are combined with morphometric analysis of the proglacial lake area to assess the likelihood of glacial lake dam failure. The above parameters are integrated into a decision tree approach enabling categorization of moraine-dammed lakes according to their potential for outburst events.

  15. Exhumation history of the NW Indian Himalaya revealed by fission track and 40Ar/39Ar ages

    USGS Publications Warehouse

    Schlup, M.; Steck, A.; Carter, A.; Cosca, M.; Epard, J.-L.; Hunziker, J.

    2011-01-01

    New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) - Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55. Ma and metamorphosed by ca. 48-40. Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10. km) by 40-30. Ma in the Tso Morari dome (northern section of the transect) and by 30-20. Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene. High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26. Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19. Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10. km) between 20 and 6. Ma, while its southern front reached this depth at 10-5. Ma. ?? 2010 Elsevier Ltd.

  16. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data

    USGS Publications Warehouse

    Unsworth, M.J.; Jones, A.G.; Wei, W.; Marquis, G.; Gokarn, S.G.; Spratt, J.E.; Bedrosian, P.; Booker, J.; Leshou, C.; Clarke, G.; Shenghui, L.; Chanhong, L.; Ming, D.; Sheng, J.; Solon, K.; Handong, T.; Ledo, J.; Roberts, B.

    2005-01-01

    The Cenozoic collision between the Indian and Asian continents formed the Tibetan plateau, beginning about 70 million years ago. Since this time, at least 1,400 km of convergence has been accommodated by a combination of underthrusting of Indian and Asian lithosphere, crustal shortening, horizontal extrusion and lithospheric delamination. Rocks exposed in the Himalaya show evidence of crustal melting and are thought to have been exhumed by rapid erosion and climatically forced crustal flow. Magnetotelluric data can be used to image subsurface electrical resistivity, a parameter sensitive to the presence of interconnected fluids in the host rock matrix, even at low volume fractions. Here we present magnetotelluric data from the Tibetan-Himalayan orogen from 77??E to 92??E, which show that low resistivity, interpreted as a partially molten layer, is present along at least 1,000 km of the southern margin of the Tibetan plateau. The inferred low viscosity of this layer is consistent with the development of climatically forced crustal flow in Southern Tibet. ?? 2005 Nature Publishing Group.

  17. Active out-of-sequence thrust faulting in the central Nepalese Himalaya.

    PubMed

    Wobus, Cameron; Heimsath, Arjun; Whipple, Kelin; Hodges, Kip

    2005-04-21

    Recent convergence between India and Eurasia is commonly assumed to be accommodated mainly along a single fault--the Main Himalayan Thrust (MHT)--which reaches the surface in the Siwalik Hills of southern Nepal. Although this model is consistent with geodetic, geomorphic and microseismic data, an alternative model incorporating slip on more northerly surface faults has been proposed to be consistent with these data as well. Here we present in situ cosmogenic 10Be data indicating a fourfold increase in millennial timescale erosion rates occurring over a distance of less than 2 km in central Nepal, delineating for the first time an active thrust fault nearly 100 km north of the surface expression of the MHT. These data challenge the view that rock uplift gradients in central Nepal reflect only passive transport over a ramp in the MHT. Instead, when combined with previously reported 40Ar-39Ar data, our results indicate persistent exhumation above deep-seated, surface-breaking structures at the foot of the high Himalaya. These results suggest that strong dynamic interactions between climate, erosion and tectonics have maintained a locus of active deformation well to the north of the Himalayan deformation front.

  18. Himalayan Glacier Disasters: Changing Geomorphological Process Landscape, or a Changing Human Landscape?

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Leonard, G. J.

    2012-12-01

    Recent deadly glacier-related disasters in the Himalayan-Karakoram region—the Attabad landslide and formation of glacier meltwater-fed Lake Gojal, the Gayari ice avalanche/landslide and burial of a Pakistani Army base, and the Seti River outburst disaster—beg the question of whether disasters may be on the rise. Science is not yet ready to offer a full answer, but it is an important one to resolve, because future land-use planning and mitigative measures may be affected. Natural disasters have been commonplace throughout the long human history of the Himalaya-Karakoram region. The broad outlines of the changing natural process, natural hazard, and risk environment may be established. The risk is rising rapidly primarily due to increased human presence in these once-forbidding mountains. Risk is shifting also because climate change is modifying the land surface process system. Rapidly changing glaciers cause a destabilization of the landscape. Glaciers are fundamentally a mestastable phenomenon put in motion by the high gravitational potential energies of the components of glacial systems: snow, ice, water, and debris. Any change in the climate-land-glacier system MUST result in a change in the land process system, with hazards and risks rising or falling or changing location or type. Most commonly, glacier-related disasters include a natural process cascade; as the factors affecting land surface processes and the frequency or magnitude of any one of the elements of the process cascade changes, the net hazard and risk to people changes. Otherwise similar glaciers and glacierized basins have differing sets of hazardous conditions and processes depending on whether the glacier is stable, advancing or retreating. The consequences for the overall risk to people will depend on the details of a specific glacier near a particular village or bridge or railroad. One size does not fit all. Generalizations about trends in natural hazards as related to climate change

  19. Influence of biomass burning emissions on black carbon and ozone variability in the Southern Himalayas (NCO-P, 5079 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Putero, Davide; Landi, Tony Christian; Cristofanelli, Paolo; Marinoni, Angela; Laj, Paolo; Duchi, Rocco; Adhikary, Bhupesh; Calzolari, Francescopiero; Bonafè, Ubaldo; Stocchi, Paolo; Vuillermoz, Elisa; Bonasoni, Paolo

    2013-04-01

    Black carbon (BC) and tropospheric ozone (O3) play a key role in the climate system, since they are short-lived climate forcers (SLCF) that contribute to climate change. BC and O3 precursors are emitted from several natural and anthropogenic sources; one of the most important is biomass burning, i.e. the combustion of organic matter from natural or man-made activities. Studying BC and O3 variations in connection to biomass burning is critical, mainly because of the effects that these SLCF have on the ecosystems, agriculture and human health. The issue appears urgent in several regions of the world, such as South Asia, where a vast region extending from the Indian Ocean to the Himalayas is characterized by large amounts of aerosols and pollutant gases. Here we present the variability of BC and O3 concentrations observed at the Nepal Climate Observatory-Pyramid (NCO-P, 5079 m a.s.l.), the highest WMO-GAW global station, installed in the high Khumbu valley (Nepal, Everest region) since March 2006. Considering over 5 years of continuous measurements, the BC and O3 concentrations have shown an average value of 48.7 ± 12.6 ppbv and 208.1 ± 364.1 ng m-3, respectively. The possible contribution of open biomass burning to the average BC and O3 levels is investigated, using various satellite observations, such as MODIS fire products, the USGS Land Use Cover Characterization and TRMM rainfall measurements, linking these products to the air-mass back-trajectories reaching the sampling site (computed using LAGRANTO model). On 162 days (9% of the entire dataset), characterized by acute pollution events at NCO-P, 90 days (56%) were characterized by the transport of pollutants originated by agricultural and forest fires located in regions very close to the Himalayan sampling site. These analyses have shown that biomass burning emissions, especially at regional scale, are likely to play a key role in BC and O3 variations at NCO-P, particularly concerning the development of acute

  20. Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Mukherjee, Soumyajit

    2010-05-01

    Applicability of Channel flow as an extrusion mechanism of the Higher Himalayan Shear Zone from Sutlej, Zanskar, Dhauliganga and Goriganga Sections, Indian Himalaya Soumyajit Mukherjee Department of Earth Sciences, Indian Institute of Technology Bombay Powai, Mumbai- 400076, INDIA, e-mail: soumyajitm@gmail.com Mukherjee & Koyi (1,2) evaluated the applicability of channel flow extrusion of the Higher Himalayan Shear Zone (HHSZ) in the Zanskar and the Sutlej sections based on field- and micro-structural studies, analytical- and analog models. Further work on the Dhauliganga and the Goriganga sections of the HHSZ reveal complicated structural geology that is untenable to explain simply in terms of channel flow. For example, in the former section, flexure slip folds exist in a zone spatially separated from the upper strand of the South Tibetan Detachment System (STDSU). On the other hand, in the later section, an STDSU- in the sense of Mukherjee and Koyi (1)- is absent. Instead, a steep extensional shear zone with northeasterly dipping shear plane cuts the pre-existing shear fabrics throughout the HHSZ. However, the following common structural features in the HHSZ were observed in these sections. (1) S-C fabrics are the most ubiquitous ductile shear sense indicators in field. (2) Brittle shearing along the preexisting ductile primary shear planes in a top-to-SW sense. (3) Less ubiquitous ductile compressional shearing in the upper part of the shear zone including the STDSU. (4) A phase of local brittle-ductile extension throughout the shear zone as revealed by boudins of various morphologies. (5) The shear zone is divisible into a southern non-migmatitic and a northern migmatitic zone. No special structural dissimilarity is observed across this lithological boundary. Keywords: Channel flow, Extrusion, Higher Himalaya, Structural Geology, Shear zone, Deformation References 1. Mukherjee S, Koyi HA (in press) Higher Himalayan Shear Zone, Sutlej section: structural geology

  1. Early Cretaceous ( 140 Ma) aluminous A-type granites in the Tethyan Himalaya, Tibet: Products of crust-mantle interaction during lithospheric extension

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Kerr, Andrew C.; Wang, Qiang; Jiang, Zi-Qi; Hu, Wan-Long

    2018-02-01

    A-type granites have been the focus of considerable research due to their distinctive major- and trace-element signatures and tectonic significance. However, their petrogenesis, magmatic source and tectonic setting remain controversial, particularly for aluminous A-type granites. The earliest Cretaceous (ca. 140 Ma) Comei granite in the eastern Tethyan Himalaya is associated with coeval oceanic island basalt (OIB)-type mafic lava, and has A-type granite geochemical characteristics including high 10,000 × Ga/Al (up to 6), FeOtotal/MgO (4.6-6.1) and (Na2O + K2O)/Al2O3 (0.50-0.61) ratios but low CaO (0.6-1.6 wt%) and Na2O (1.8-2.6 wt%) contents. The Comei granite also has variable peraluminous compositions (A/CNK = 1.00-1.36) along with zircon δ18O, εNd(t) and initial 87Sr/86Sr values of 8.2‰ to 9.3‰, - 13.0 to - 12.4 and 0.7238 to 0.7295, respectively. This range of compositions can be interpreted as the interaction between high-temperature upwelling OIB type basaltic magmas and a shallow crustal (< 5 kbar) metapelitic source. The Comei granite and coeval OIB type basaltic rock could represent the earliest stage (145-140 Ma) of a large igneous event in eastern Tethyan Himalaya, which may well have been triggered by pre-breakup lithospheric extension prior to the arrival of the Kerguelen plume head.

  2. The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution

    NASA Astrophysics Data System (ADS)

    Singh, Vimal; Tandon, S. K.

    2008-12-01

    The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the

  3. Preliminary assessment of active rock slope instabilities in the high Himalaya of Bhutan

    NASA Astrophysics Data System (ADS)

    Dini, Benedetta; Manconi, Andrea; Leith, Kerry; Loew, Simon

    2016-04-01

    The small kingdom of Bhutan, nested between India and Tibet (between 88° and 92° east and 26° and 28° north), is characterised by markedly different landscapes and climatic zones. V-shaped, forest-covered valleys in the south, affected by the monsoonal rains, give gradually way to steep, barren slopes of U-shaped valleys in the drier north, host of the highest peaks, a large number of glaciers and glacial lakes. A transition zone of vegetated, elevated plateaus collects the towns in which most of the population lives. Landslides in the high Himalaya of Bhutan have not been extensively studied despite the primary and secondary hazards related to them. The regulations and restrictions to travel to and within Bhutan imposed by the government, as well as the extremely rugged terrain hinder the accessibility to remote slopes and valleys, both of which have resulted in lack of data and investigations. In this work, we aim at producing an inventory of large rock slope instabilities (> 1 million m3) across the high Himalaya of Bhutan, identifying types of failure, assessing the activity and analysing the distribution of landslides in combination with predisposing and preparatory factors, such as lithology, tectonic structures, hypsometry, deglaciation, fluvial erosive power and climate. At this stage, we rely on the information retrieved through satellite remote sensing data, i.e. medium and high resolution DEMs, optical images and space borne Synthetic Aperture Radar (SAR) data. An initial inventory was compiled based on the identification of geomorphological features associated with slope instabilities using the available Google Earth images. Moreover, we assessed the SAR data coverage and the expected geometrical distortions by assuming different sensors (ERS, Envisat, and ALOS Palsar-1). As we are mainly interested in detecting the surface deformation related to large unstable slopes by applying Differential SAR, we also computed the percentage of potentially

  4. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    PubMed

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, B.; Cong, Z.; Wang, Y.; Xin, J.; Wan, X.; Pan, Y.; Liu, Z.; Wang, Y.; Zhang, G.; Kang, S.

    2016-12-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at Ngari, Qomolangma (QOMS), Nam Co, and SouthEastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Combining surface aerosols data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from barren to forest, in inverse relation to the PM2.5 ratios. The seasonality of aerosol mass parameters was land-cover dependent. Over forest and grassland areas, TSP mass, PM2.5 mass, MISR-AOD and fine-mode AOD were higher in spring and summer, followed by relatively lower values in autumn and winter. At the barren site (the QOMS station), there were inconsistent seasonal variations between surface TSP mass (PM2.5 mass) and atmospheric column AOD (fine-mode AOD). Our findings implicate that, HTP aerosol masses (especially their reginal characteristics and fine particle emissions) need to be treated sensitively in relation to assessments of their climatic

  6. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region

    NASA Astrophysics Data System (ADS)

    Kamp, Ulrich; Growley, Benjamin J.; Khattak, Ghazanfar A.; Owen, Lewis A.

    2008-11-01

    The Mw 7.6 October 8, 2005 Kashmir earthquake triggered several thousand landslides throughout the Himalaya of northern Pakistan and India. These were concentrated in six different geomorphic-geologic-anthropogenic settings. A spatial database, which included 2252 landslides, was developed and analyzed using ASTER satellite imagery and geographical information system (GIS) technology. A multi-criterion evaluation was applied to determine the significance of event-controlling parameters in triggering the landslides. The parameters included lithology, faults, slope gradient, slope aspect, elevation, land cover, rivers and roads. The results showed four classes of landslide susceptibility. Furthermore, they indicated that lithology had the strongest influence on landsliding, particularly when the rock is highly fractured, such as in shale, slate, clastic sediments, and limestone and dolomite. Moreover, the proximity of the landslides to faults, rivers, and roads was also an important factor in helping to initiate failures. In addition, landslides occurred particularly in moderate elevations on south facing slopes. Shrub land, grassland, and also agricultural land were highly susceptible to failures, while forested slopes had few landslides. One-third of the study area was highly or very highly susceptible to future landsliding and requires immediate mitigation action. The rest of the region had a low or moderate susceptibility to landsliding and remains relatively stable. This study supports the view that (1) earthquake-triggered landslides are concentrated in specific zones associated with event-controlling parameters; and (2) in the western Himalaya deforestation and road construction contributed significantly to landsliding during and shortly after earthquakes.

  7. Natural Hazards Education in the Himalayan Region of Ladakh, India

    NASA Astrophysics Data System (ADS)

    Gill, Joel; Tostevin, Rosalie

    2015-04-01

    Here we present a review of a geohazards education and engagement project in the Indian region of Ladakh. Located in the Indian Himalaya, Ladakh is home to historically-disadvantaged and endangered indigenous groups. It is also an area of extreme topography, climate and vulnerability, with a growing tourist industry. This combination of factors makes it an important region to improve geohazards understanding and observe the complex interactions between nature, society, and culture. This project: (i) delivered a geoscience education programme, in conjunction with a range of local and international partners, to multiple schools in the region; (ii) utilised interactive demonstrations to teach students about the key physical dynamics of landslides and earthquakes; and (iii) integrated aspects of physical and social science within the teaching, to give students a holistic understanding of natural hazards and disaster risk reduction. In total three programmes were delivered, to a range of different ethnic and socio-economic backgrounds. This presentation will particularly highlight (i) the importance of delivering material in a culturally appropriate way, (ii) challenges regarding the sustainability of delivering high quality geoscience education projects, and (iii) ways in which geoscience education outreach can be mainstreamed into overseas research visits.

  8. Long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, X.; Liu, Y.; Shichang, K.; Ma, Y.

    2017-12-01

    An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize high time-resolved submicron particulate matter (PM1) and obtain the influence of biomass burning emissions to the Himalayas, frequently transported from south Asia during pre-monsoon season. Two high aerosol loading periods were observed during the study. Overall, the average (± 1σ) PM1 mass concentration was 4.44 (± 4.54) µg m-3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosols (OA) was the dominant PM1 species (accounting for 54.3% of total PM1 mass on average) and its contribution increased with the increase of total PM1 mass loading. The average size distributions of PM1 species all peaked at an overlapping accumulation mode ( 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportations. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a biomass burning related OA (BBOA, 43.7%) and two oxygenated OA (Local-OOA and LRT-OOA; 13.9% and 42.4%) represented sources from local emissions and long-range transportations, respectively. Two polluted air mass origins (generally from the west and southwest of QOMS) and two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions were observed, respectively, suggesting the important sources of wildfires from south Asia. One of polluted aerosol plumes was investigated in detail to illustrate the evolution of aerosol characteristics at QOMS driving by different impacts of wildfires, air mass origins, meteorological conditions and

  9. Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya.

    PubMed

    Pandit, Maharaj K; Grumbine, R Edward

    2012-12-01

    Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land-cover loss. We analyzed land-cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth- through seventh-order rivers and compared these estimates with current global figures. We used a species-area relation model (SAR) to predict short- and long-term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species-rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam-related activities. A dam density of 0.3247/1000 km(2) would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species-rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. ©2012 Society for Conservation

  10. Identification of trends in intensity and frequency of extreme rainfall events in part of the Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Alok; Ziegler, Alan D.; Wasson, Robert J.; Chow, Winston; Sharma, Mukat L.

    2017-04-01

    Extreme monsoon rainfall is the primary reason of floods and other secondary hazards such as landslides in the Indian Himalaya. Understanding the phenomena of extreme monsoon rainfall is therefore required to study the natural hazards. In this work, we study the characteristics of extreme monsoon rainfall including its intensity and frequency in the Garhwal Himalaya in India, with a focus on the Mandakini River Catchment, the site of devastating flood and multiple large landslides in 2013. We have used two long term rainfall gridded data sets: the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) product with daily rainfall data from 1951-2007 and the India Meteorological Department (IMD) product with daily rainfall data from 1901 to 2013. Two methods of Mann Kendall and Sen Slope estimator are used to identify the statistical significance and magnitude of trends in intensity and frequency of extreme monsoon rainfall respectively, at a significance level of 0.05. The autocorrelation in the time series of extreme monsoon rainfall is identified and reduced using the methods of: pre-whitening, trend-free pre-whitening, variance correction, and block bootstrap. We define extreme monsoon rainfall threshold as the 99th percentile of time series of rainfall values and any rainfall depth greater than 99th percentile is considered as extreme in nature. With the IMD data set, significant increasing trend in intensity and frequency of extreme rainfall with slope magnitude of 0.55 and 0.02 respectively was obtained in the north of the Mandakini Catchment as identified by all four methods. Significant increasing trend in intensity with a slope magnitude of 0.3 is found in the middle of the catchment as identified by all methods except block bootstrap. In the south of the catchment, significant increasing trend in intensity with a slope magnitude of 0.86 for pre-whitening method and 0.28 for trend-free pre

  11. The Contribution to High Asia Runoff from Ice and Snow (CHARIS): Understanding the source and trends of cryospheric contributions to the water balance

    NASA Astrophysics Data System (ADS)

    Rittger, K.; Armstrong, R. L.; Bair, N.; Racoviteanu, A.; Brodzik, M. J.; Hill, A. F.; Wilson, A. M.; Khan, A. L.; Ramage, J. M.; Khalsa, S. J. S.; Barrett, A. P.; Raup, B. H.; Painter, T. H.

    2017-12-01

    The Contribution to High Asia Runoff from Ice and Snow, or CHARIS, project is systematically assessing the role that glaciers and seasonal snow play in the freshwater resources of Central and South Asia. The study area encompasses roughly 3 million square kilometers of the Himalaya, Karakoram, Hindu Kush, Pamir and Tien Shan mountain ranges that drain to five major rivers: the Ganges, Brahmaputra, Indus, Amu Darya and Syr Darya. We estimate daily snow and glacier ice contributions to the water balance. Our automated partitioning method generates daily maps of 1) snow over ice (SOI), 2) exposed glacier ice (EGI), 3) debris covered glacier ice (DGI) and 4) snow over land (SOL) using fractional snow cover, snow grain size, and annual minimum ice and snow from the 500 m MODIS-derived MODSCAG and MODICE products. Maps of snow and ice cover are validated using high-resolution (30 m) maps of snow, ice, and debris cover from Landsat. The probability of detection is 0.91 and precision is 0.85 for MODICE. We examine trends in annual and monthly snow and ice maps and use daily maps as inputs to a calibrated temperature-index model and an uncalibrated energy balance model, ParBal. Melt model results and measurements of isotopes and specific ions used as an independent validation of melt modeling indicate a sharp geographic contrast in the role of snow and ice melt to downstream water supplies between the arid Tien Shan and Pamir ranges of Central Asia, where melt water dominates dry season flows, and the monsoon influenced central and eastern Himalaya where rain controls runoff. We also compare melt onset and duration from the melt models to the Calibrated, Enhanced Resolution Passive Microwave Brightness Temperature Earth Science Data Record. Trend analysis of annual and monthly area of permanent snow and ice (the union of SOI and EGI) for 2000 to 2016 shows statistically significant negative trends in the Ganges and Brahmaputra basins. There are no statistically significant

  12. Glacier changes in the Ravi basin, North-Western Himalaya (India) during the last four decades (1971-2010/13)

    NASA Astrophysics Data System (ADS)

    Chand, Pritam; Sharma, Milap Chand

    2015-12-01

    A glacier inventory of the Ravi basin, north-western Himalaya has been generated for the year 2002 using Landsat ETM + and ASTER Global DEM (GDEM V2) as the baseline data for the change analysis. The Ravi basin consists of 285 glaciers (> 0.02 km2) covering an area of 164.5 ± 7.5 km2, including 71 debris-covered glaciers with an area of 36.1 ± 2.1 km2 (22% of total glacierized area) in 2002. Change analysis based on Corona KH-4B (1971), Worldview (2010) and Landsat 8 OLI/TRIS (2013) images was restricted to a subset of 157 glaciers (covering an area of 121.4 ± 5.4 km2 in 2002) due to cloud cover. Glacier area decreased from 125.8 ± 1.9 km2 (1971) to 119.9 ± 4.8 km2 (2010/13), a loss of 4.7 ± 4.1% or 0.1 ± 0.1% a- 1. The glacier recession rate has decreased, to a minimum for the recent decades (2002-2010/13). The debris-covered glacier area increased by 19.2 ± 2.2% (0.5 ± 0.05% a- 1) in the Ravi basin. However, there were significant variation in its sub-basins i.e. in Budhil and Upper Ravi sub-basin, where the debris-covered area increased by 28.6 ± 3.1% (0.7 ± 0.1% a- 1) and 14 ± 1.6% (0.3 ± 0.04% a- 1), respectively, between 1971 and 2010/13. Field investigation of selected glaciers (2010-2014) supports glacier recession trend from remote sensing data. Glacier retreat rates in the Ravi basin were lower than previously reported for selected glaciers in the similar basin and other basins (e.g. Chenab, Beas, Parbati, Baspa and Tirungkhad) of the Himachal Himalaya.

  13. ­Oligo-Miocene Monazite Ages in the Lesser Himalaya Sequence, Arunachal Pradesh, India; Geological Content of Age Variations

    NASA Astrophysics Data System (ADS)

    Clarke, G. L.; Bhowmik, S. K.; Ireland, T. R.; Aitchison, J. C.; Chapman, S. L.; Kent, L.

    2016-12-01

    A telescoped and inverted greenschist-upper amphibolite facies sequence in the in the Siyom Valley of eastern Arunachal Pradesh is tectonically overlain by an upright (grade decreasing upward) granulite to lower amphibolite facies sequence. Such grade relationships would normally attribute the boundary to a Main Central Thrust (MCT) structure, and predict a change from underlying Lesser Himalaya Sequence (LHS) to Greater Himalaya Sequence rocks across the boundary. However, all pelitic and psammitic samples have similar detrital zircon age spectra, involving c. 2500, 1750-1500, 1200 and 1000 Ma Gondwanan populations correlated with the LHS. Isograds are broadly parallel to a penetrative NW-dipping S2 foliation, developed contemporaneously with the inversion. Garnet growth in garnet, staurolite and kyanite zone schists beneath the thrust commenced at P>8 kbar and T≈550°C, before syn- to post-S2 heating of staurolite and kyanite zone rocks to T≈640°C at P≈8.5 kbar, most probably at c. 18.5 Ma. Kyanite-rutile-garnet migmatite immediately above the thrust records peak conditions of P≈10 kbar and T≈750°C and c. 21.5 Ma monazite ages. Complexity in c. 21-1000 Ma monazite ages in overlying amphibolite facies schists reflects the patchy recrystallization of detrital grains, intra-grain complexity being dependent on whole rock composition, metamorphic grade and evolition. Slip on a SE-propagating thrust was likely contemporaneous with early Miocene metamorphism, based on the distribution of structure, metamorphic textures, and overlap of age relationships. It is inferred to have initially controlled the uplift of granulite to mid-crustal levels between 22 and 19 Ma, thermal relaxation within a disrupted LHS metamorphic profile inducing a post-S2 thermal peak in lower grade footwall rocks.

  14. Overland flow, sediment output and nutrient loss from certain forested sites in the central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Pathak, P. C.; Pandey, A. N.; Singh, J. S.

    1984-03-01

    Overland flow, sediment output and input and output of precipitation nutrients were evaluated on six forested sites in the central Himalaya during the 1981 and 1982 monsoon seasons. Overland flow was significantly different across the forests and the months of the rainy season. It was positively related with rainfall quantity and intensity, and was negatively related with tree canopy cover and with ground vegetation cover. Average overland flow was only 0.66% of the total incident rainfall, indicating that these sites are subsurface-flow systems. Sediment output was positively related to overland flow. Rainfall added a significant amount of nutrients to the forests. This extra-system input was greater than loss through overland flow + sediment output. The loss of nutrients from the forested sites was in the order: Mg > C > Ca > K = N = P.

  15. Glacial lake outburst floods and fluvial erosion in the Himalaya - insights from the 2016 Bhote Koshi GLOF

    NASA Astrophysics Data System (ADS)

    Cook, K. L.; Gimbert, F.; Andermann, C.; Hovius, N.; Adhikari, B. R.

    2017-12-01

    The Himalaya is a region of rapid erosion where fluvial processes are assumed to be driven by precipitation delivered during the annual Indian Summer Monsoon. However, the rivers in this region are also subject to catastrophic floods caused by the failure of glacial lake and landslide dams. Because these floods are rarely observed, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan valleys is largely unknown. In July 2016, the Bhotekoshi/Sunkoshi River in central Nepal was hit by a glacial lake outburst flood (GLOF) that caused substantial changes to the channel bed, banks, and adjacent hillslopes, causing at least 26 landslides and an average of 11 m of channel widening. The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. Our data indicate that impacts of the GLOF far exceed those driven by the annual summer monsoon, likely due to extremely coarse sediment that armors much of the channel. The relatively frequent occurrence of GLOFs and the extremely high discharges relative to monsoon floods suggest that GLOFs may

  16. Comment on “Geochemistry of buried river sediments from Ghaggar Plains, NW India: Multi-proxy records of variations in provenance, paleoclimate, and paleovegetation patterns in the late quaternary” by Ajit Singh, Debajyoti Paul, Rajiv Sinha, Kristina J. Thomsen, Sanjeev Gupta

    USGS Publications Warehouse

    Clift, Peter D.; Giosan, Liviu; East, Amy E.

    2016-01-01

    Singh et al. (2016) published a geochemical record of sediment compositions from the flood plain of the Ghaggar River in western India and use the changing provenance, particularly as traced by Nd isotope composition, to reconstruct how erosion patterns have changed over the past 100 k.y. In doing so they propose a link between climate change and erosion, and they argue for more erosion from the Higher Himalaya during warmer interglacial periods and more from the Lesser Himalaya during glacial intervals. While we support the concept of erosion patterns being climatically modulated we here take the opportunity to compare the data presented by Singh et al. (2016) to relevant published records within the region greater Ghaggar region and to open a balanced discussion on how climate and erosion are coupled in the western Himalaya.

  17. Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas.

    PubMed

    Tamang, Jyoti Prakash; Tamang, Buddhiman; Schillinger, Ulrich; Guigas, Claudia; Holzapfel, Wilhelm H

    2009-09-30

    A total of 94 strains of Lactic acid bacteria (LAB), previously isolated from ethnic fermented vegetables and tender bamboo shoots of the Himalayas, were screened for functional properties such as acidification capacity, enzymatic activities, degradation of antinutritive factors and oligosaccharides, production of biogenic amines, hydrophobicity and adherence to mucus secreting HT29 MTX cells. Strong acidification and coagulation activities of LAB strains were recorded. Most of the LAB strains showed antimicrobial activities against the used indicator strains; however, only Lb. plantarum IB2 (BFE 948) isolated from inziangsang, a fermented leafy vegetable product, produced a bacteriocin against Staphylococcus aureus S1. LAB strains showed enzymatic activities and also degraded oligosaccharides. Almost all the strains of LAB were non-producers of biogenic amines except few strains. Some strains of Lb. plantarum showed more than 70% hydrophobicity. Adherence to the mucus secreting HT29 MTX cells was also shown by seven strains indicating their probiotic nature.

  18. Contribution of the GOCE gradiometer components to regional gravity solutions

    NASA Astrophysics Data System (ADS)

    Naeimi, Majid; Bouman, Johannes

    2017-05-01

    The contribution of the GOCE gravity gradients to regional gravity field solutions is investigated in this study. We employ radial basis functions to recover the gravity field on regional scales over Amazon and Himalayas as our test regions. In the first step, four individual solutions based on the more accurate gravity gradient components Txx, Tyy, Tzz and Txz are derived. The Tzz component gives better solution than the other single-component solutions despite the less accuracy of Tzz compared to Txx and Tyy. Furthermore, we determine five more solutions based on several selected combinations of the gravity gradient components including a combined solution using the four gradient components. The Tzz and Tyy components are shown to be the main contributors in all combined solutions whereas the Txz adds the least value to the regional gravity solutions. We also investigate the contribution of the regularization term. We show that the contribution of the regularization significantly decreases as more gravity gradients are included. For the solution using all gravity gradients, regularization term contributes to about 5 per cent of the total solution. Finally, we demonstrate that in our test areas, regional gravity modelling based on GOCE data provide more reliable gravity signal in medium wavelengths as compared to pre-GOCE global gravity field models such as the EGM2008.

  19. Genetic consequences of Quaternary climatic oscillations in the Himalayas: Primula tibetica as a case study based on restriction site-associated DNA sequencing.

    PubMed

    Ren, Guangpeng; Mateo, Rubén G; Liu, Jianquan; Suchan, Tomasz; Alvarez, Nadir; Guisan, Antoine; Conti, Elena; Salamin, Nicolas

    2017-02-01

    The effects of Quaternary climatic oscillations on the demography of organisms vary across regions and continents. In taxa distributed in Europe and North America, several paradigms regarding the distribution of refugia have been identified. By contrast, less is known about the processes that shaped the species' spatial genetic structure in areas such as the Himalayas, which is considered a biodiversity hotspot. Here, we investigated the phylogeographic structure and population dynamics of Primula tibetica by combining genomic phylogeography and species distribution models (SDMs). Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and past distribution ranges. Four distinct lineages were identified. Approximate Bayesian computation analyses showed that each of them have experienced both expansions and bottlenecks since their divergence, which occurred during or across the Quaternary glacial cycles. The two lineages at both edges of the distribution were found to be more vulnerable and responded in different ways to past climatic changes. These results illustrate how past climatic changes affected the demographic history of Himalayan organisms. Our findings highlight the significance of combining genomic approaches with environmental data when evaluating the effects of past climatic changes. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Long-distance dispersal or postglacial contraction? Insights into disjunction between Himalaya-Hengduan Mountains and Taiwan in a cold-adapted herbaceous genus, Triplostegia.

    PubMed

    Niu, Yan-Ting; Ye, Jian-Fei; Zhang, Jin-Long; Wan, Ji-Zhong; Yang, Tuo; Wei, Xiao-Xin; Lu, Li-Min; Li, Jian-Hua; Chen, Zhi-Duan

    2018-01-01

    Current disjunct patterns can result from long-distance dispersal or postglacial contraction. We herein investigate the evolutionary history of Triplostegia to elucidate the disjunction between the Himalaya-Hengduan Mountain region (HHM) and Taiwan (TW). Genetic structure of Triplostegia was investigated for 48 populations using sequences from five chloroplast loci and the ribosomal nuclear internal transcribed spacer. Divergence time estimation, ancestral area reconstruction, and species distribution modeling (SDM) were employed to examine the biogeographic history of Triplostegia . Substantial genetic differentiation among populations from southwestern China (SW), Central China (CC), and TW was detected. Triplostegia was inferred to have originated in SW, and diversification began during the late Miocene; CC was colonized in the mid-Pliocene, and TW was finally colonized in the early Pleistocene. SDM suggested an expansion of climatically suitable areas during the Last Glacial Maximum and range contraction during the Last interglacial in Triplostegia . Disjunction between HHM and TW in Triplostegia is most likely the consequence of topographic isolation and postglacial contraction. The potential climatic suitability areas for Triplostegia by 2070s (2061-2080) are predicted to slightly shrink and move northward. With continued global warming and human-induced deforestation, extinction risk may increase for the cold-adapted species, and appropriate strategies should be employed for ecosystem conservation.