Sample records for karenia mikimotoi dinophyceae

  1. Diverse algicidal bacteria associated with harmful bloom-forming Karenia mikimotoi in estuarine soil and seawater.

    PubMed

    Zheng, Ningning; Ding, Ning; Gao, Peike; Han, Meiaoxue; Liu, Xiuxia; Wang, Jianguo; Sun, Li; Fu, Baoyan; Wang, Renjun; Zhou, Jing

    2018-08-01

    Algicidal bacteria associated with Karenia mikimotoi have been isolated, yet the distribution of the algicidal bacteria has been rarely studied. Here, we postulated and demonstrated that terrestrial environment harbors diverse algicidal bacteria, which can survive in seawater along water flowing into marine and suppress Karenia mikimotoi. In summary, 9 and 5 bacteria with algicidal activity on Karenia mikimotoi were isolated from seawater and estuarine soil, respectively. Similar with the marine bacteria (Alteromonas sp., Halomonas sp., Marinobacter sp., Paracoccus sp., Rhodobacteraceae, Idiomarina sp.), the soil strains (Pseudoalteromonas sp. and Flavobaterium sp.) showed high mortality in Karenia mikimotoi with the inhibitory rate of 87% and 93.5%, respectively, after two days co-cultivation. Algicidal activity of the two strains was detected in the cell-free filtrate not in bacterial cells. The results suggest that algicidal bacteria associated with Karenia mikimotoi widely exist in terrestrial and marine environments, and have application potential on controlling Karenia mikimotoi. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effects of co-existing microalgae and grazers on the production of hemolytic toxins in Karenia mikimotoi

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Zhang, Naisheng; Cui, Weimin; Xu, Yanyan; Li, Hongye; Liu, Jiesheng

    2011-11-01

    Karenia mikimotoi (Miyake & Kominami ex Oda) Hansen & Moestrup is associated with harmful algal blooms in temperate and subtropical zones of the world. The hemolytic substances produced by K. mikimotoi are thought to cause mortality in fishes and invertebrates. We evaluated the composition of the hemolytic toxin produced by K. mikimotoi cultured in the laboratory using thin-layer chromatography. In addition, we evaluated the effect of co-occuring algae ( Prorocentrum donghaiense and Alexandrium tamarense) and the cladoceran grazer Moina mongolica on hemolytic toxin production in K. mikimotoi. The hemolytic toxins from K. mikimotoi were a mixture of 2 liposaccharides and 1 lipid. Waterborne clues from P. donghaiense and A. tamarense inhibited the growth of K. mikimotoi but increased the production of hemolytic toxins. Conversely, K. mikimotoi strongly inhibited the growth of caged P. donghaiense and A. tamarense. In addition, the ingestion of K. mikimotoi by M. mongolica induced the production of hemolytic toxins in K. mikimotoi. Taken together, our results suggest that the presence of other microalgae and grazers may be as important as environmental factors for controlling the production of hemolytic substances. K. mikimotoi secreted allelochemicals other than unstable fatty acids with hemolytic activity. The production of hemolytic toxins in dinoflagellates was not only dependent on resource availability, but also on the risk of predation. Hemolytic toxins likely play an important role as chemical deterrents secreted by K. mikimotoi.

  3. Effects of temperature on growth, photophysiology, Rubisco gene expression in Prorocentrum donghaiense and Karenia mikimotoi

    NASA Astrophysics Data System (ADS)

    Shen, Anglu; Ma, Zengling; Jiang, Keji; Li, Daoji

    2016-12-01

    To explore the effects of temperature changes on dinoflagellate bloom succession in the coastal waters of the East China Sea, changes in the growth, photophysiology, and Rubisco gene expression of Prorocentrum donghaiense and Karenia mikimotoi, two harmful algal species, were investigated at different temperatures (16 to 28°C). The maximal specific growth rate and the maximal mRNA expression of Rubisco gene in P. donghaiense and K. mikimotoi occurred at 20 and 24°C, respectively. The photosynthetic activity of P. donghaiense was generally stable, but K. mikimotoi photosynthesis increased when temperatures rose from 16 to 28°C. The effective photochemical efficiency ( F q ' / F m ' ) and the maximal relative electron transfer rate (rETRmax) of K. mikimotoi increased significantly with increasing temperature, and the lowest and highest values occurred at 16 and 28°C, respectively. It seems that P. donghaiense has higher photosynthetic capacity than K. mikimotoi due to its higher F q ' / F m ' , rETRmax, and photosynthetic efficiency (α). However, K. mikimotoi has a higher growth rate than P. donghaiense. These results suggest that the photosynthetic activity and genetic responses of dinoflagellates are species-dependent. It is likely that temperature changes affect species composition during blooms, leading to the observed patterns of bloom succession.

  4. Drivers and effects of Karenia mikimotoi blooms in the western English Channel

    NASA Astrophysics Data System (ADS)

    Barnes, Morvan K.; Tilstone, Gavin H.; Smyth, Timothy J.; Widdicombe, Claire E.; Gloël, Johanna; Robinson, Carol; Kaiser, Jan; Suggett, David J.

    2015-09-01

    Naturally occurring red tides and harmful algal blooms (HABs) are of increasing importance in the coastal environment and can have dramatic effects on coastal benthic and epipelagic communities worldwide. Such blooms are often unpredictable, irregular or of short duration, and thus determining the underlying driving factors is problematic. The dinoflagellate Karenia mikimotoi is an HAB, commonly found in the western English Channel and thought to be responsible for occasional mass finfish and benthic mortalities. We analysed a 19-year coastal time series of phytoplankton biomass to examine the seasonality and interannual variability of K. mikimotoi in the western English Channel and determine both the primary environmental drivers of these blooms as well as the effects on phytoplankton productivity and oxygen conditions. We observed high variability in timing and magnitude of K. mikimotoi blooms, with abundances reaching >1000 cells mL-1 at 10 m depth, inducing up to a 12-fold increase in the phytoplankton carbon content of the water column. No long-term trends in the timing or magnitude of K. mikimotoi abundance were evident from the data. Key driving factors were identified as persistent summertime rainfall and the resultant input of low-salinity high-nutrient river water. The largest bloom in 2009 was associated with highest annual primary production and led to considerable oxygen depletion at depth, most likely as a result of enhanced biological breakdown of bloom material; however, this oxygen depletion may not affect zooplankton. Our data suggests that K. mikimotoi blooms are not only a key and consistent feature of western English Channel productivity, but importantly can potentially be predicted from knowledge of rainfall or river discharge.

  5. Interspecific competition and allelopathic interaction between Karenia mikimotoi and Dunaliella salina in laboratory culture

    NASA Astrophysics Data System (ADS)

    He, Dong; Liu, Jiao; Hao, Qiang; Ran, Lihua; Zhou, Bin; Tang, Xuexi

    2016-03-01

    Algal allelopathy is a manifold ecological/physiological phenomenon that is focused on chemical interactions and autotoxicity. We investigated the allelopathic interactions between Karenia mikimotoi and Dunaliella salina in laboratory cultures based on diff erent temperature (15°C, 20°C, and 25°C) and lighting (40, 80, and 160 μmol/(m2·s)) conditions. The growth of D. salina in bi-algae culture (1:1 size/density) was significantly restrained. The results of cell-free filtrate culture indicate that direct cell-tocell contact was not necessary in interspecific competition. Further experimental results demonstrated that allelochemicals released from K. mikimotoi were markedly influenced by both temperature ( P =0.013) and irradiance ( P =0.003), resulting in diff erent growth characteristics of D. salina in filtrate mediums. Compared with the plateau period, K. mikimotoi exudates in the exponential phase had a stronger short-term inhibition effect on D. salina in normal conditions. A clear concentration-dependent relationship was observed in the effect of allelochemicals released from K. mikimotoi with low-promoting and high-repressing effects on D. Salina in a short time-scale. In addition, allelopathic substances remain stable and effective under high temperature and pressure stress. Many flocculent sediments adhering with D. salina cells were observed in all filtrate mediums, while the quantity and color depended on the original culture conditions.

  6. A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi.

    PubMed

    Lu, Xiuhua; Zhou, Bin; Xu, Lili; Liu, Lin; Wang, Gangyuan; Liu, Xiaodong; Tang, Xuexi

    2016-06-01

    The aim of the present study was to obtain a marine bacterium active against Karenia mikimotoi from the East China Sea and to characterize its extracellular algicidal substances. Using preparative high-performance liquid chromatography (prep-HPLC) and electrospray ionization/quadrupole-time of flight mass spectrometer coupled with a high-performance liquid chromatography (LC/MS-Q-TOF) system, we purified the alga-lysing substance produced by strain ZR-2 and determined its molecular structure. Based on morphology and l6S ribosomal DNA (rDNA) sequence analysis, the ZR-2 strain was highly homologous to Thalassospira species. Algicidal activity against K. mikimotoi was detected in the cell-free filtrate but not in bacterial cells. The alga-lysing substance produced by ZR-2 was ethanol-soluble and thermostable, with a retention time of 6.3 min and a measured elemental composition of C7H5O2 ([M-H](-) ion at m/z 121.0295). The alga-lysing substance produced by ZR-2 was determined to be benzoic acid. Compared with the negative control, both purified ZR-2 bacteria-free filtrate and standard benzoic acid promoted K. mikimotoi cell disruption and induced K. mikimotoi cell content leakage. Our study is the first to report benzoic acid activity against K. mikimotoi as well as production of benzoic acid by a Thalassospira species.

  7. Diversity of transcripts and transcript processing forms in plastids of the dinoflagellate alga Karenia mikimotoi.

    PubMed

    Dorrell, Richard G; Hinksman, George A; Howe, Christopher J

    2016-02-01

    Plastids produce a vast diversity of transcripts. These include mature transcripts containing coding sequences, and their processing precursors, as well as transcripts that lack direct coding functions, such as antisense transcripts. Although plastid transcriptomes have been characterised for many plant species, less is known about the transcripts produced in other plastid lineages. We characterised the transcripts produced in the fucoxanthin-containing plastids of the dinoflagellate alga Karenia mikimotoi. This plastid lineage, acquired through tertiary endosymbiosis, utilises transcript processing pathways that are very different from those found in plants and green algae, including 3' poly(U) tail addition, and extensive substitutional editing of transcript sequences. We have sequenced the plastid transcriptome of K. mikimotoi, and have detected evidence for divergent evolution of fucoxanthin plastid genomes. We have additionally characterised polycistronic and monocistronic transcripts from two plastid loci, psbD-tRNA (Met)-ycf4 and rpl36-rps13-rps11. We find evidence for a range of transcripts produced from each locus that differ in terms of editing state, 5' end cleavage position, and poly(U) tail addition. Finally, we identify antisense transcripts in K. mikimotoi, which appear to undergo different processing events from the corresponding sense transcripts. Overall, our study provides insights into the diversity of transcripts and processing intermediates found in plastid lineages across the eukaryotes.

  8. Effect of CO2-induced seawater acidification on growth, photosynthesis and inorganic carbon acquisition of the harmful bloom-forming marine microalga, Karenia mikimotoi.

    PubMed

    Hu, Shunxin; Zhou, Bin; Wang, You; Wang, Ying; Zhang, Xinxin; Zhao, Yan; Zhao, Xinyu; Tang, Xuexi

    2017-01-01

    Karenia mikimotoi is a widespread, toxic and non-calcifying dinoflagellate, which can release and produce ichthyotoxins and hemolytic toxins affecting the food web within the area of its bloom. Shifts in the physiological characteristics of K. mikimotoi due to CO2-induced seawater acidification could alter the occurrence, severity and impacts of harmful algal blooms (HABs). Here, we investigated the effects of elevated pCO2 on the physiology of K. mikimotoi. Using semi-continuous cultures under controlled laboratory conditions, growth, photosynthesis and inorganic carbon acquisition were determined over 4-6 week incubations at ambient (390ppmv) and elevated pCO2 levels (1000 ppmv and 2000 ppmv). pH-drift and inhibitor-experiments suggested that K. mikimotoi was capable of acquiring HCO3-, and that the utilization of HCO3- was predominantly mediated by anion-exchange proteins, but that HCO3- dehydration catalyzed by external carbonic anhydrase (CAext) only played a minor role in K. mikimotoi. Even though down-regulated CO2 concentrating mechanisms (CCMs) and enhanced gross photosynthetic O2 evolution were observed under 1000 ppmv CO2 conditions, the saved energy did not stimulate growth of K. mikimotoi under 1000 ppmv CO2, probably due to the increased dark respiration. However, significantly higher growth and photosynthesis [in terms of photosynthetic oxygen evolution, effective quantum Yield (Yield), photosynthetic efficiency (α), light saturation point (Ek) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity] were observed under 2000 ppmv CO2 conditions. Furthermore, elevated pCO2 increased the photo-inhibition rate of photosystem II (β) and non-photochemical quenching (NPQ) at high light. We suggest that the energy saved through the down-regulation of CCMs might lead to the additional light stress and photo-damage. Therefore, the response of this species to elevated CO2 conditions will be determined by more than regulation and efficiency of

  9. Spatio-temporal variations in bloom of the red-tide dinoflagellate Karenia mikimotoi in Imari Bay, Japan, in 2014: Factors controlling horizontal and vertical distribution.

    PubMed

    Aoki, Kazuhiro; Kameda, Takahiko; Yamatogi, Toshifumi; Ishida, Naoya; Hirae, Sou; Kawaguchi, Mayumi; Syutou, Toshio

    2017-11-15

    A massive bloom of the dinoflagellate Karenia mikimotoi appeared in 2014 in Imari Bay, Japan. Bloom dynamics and hydrographical conditions were examined by field survey. The bloom initially developed in the eastern area of Imari Bay, subsequently after rainfall during the neap tides, cell density exceeded over 10,000cellsml. Vertical distribution of K. mikimotoi was primarily controlled by the light intensity and secondarily by the water quality during the daytime. Almost all cell-density maxima occurred in depths with weak daytime light intensities of <300μmolm -2 s -1 . In some cases of weak light intensity, cell-density maxima occurred in depths with favorable hydrodynamic conditions for the growth. Spatially classified areas were identified by cluster analysis using the growth rate calculated from seawater temperature and salinity. This study quantitatively evaluated the environmental factors of the eastern area, where the bloom initially occurred, during the development of the bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland.

    PubMed

    O'Boyle, Shane; McDermott, Georgina; Silke, Joe; Cusack, Caroline

    2016-03-01

    In the summer of 2005 an exceptional bloom of the dinoflagellate Karenia mikimotoi occurred along Ireland's Atlantic seaboard and was associated with the mass mortality of both benthic and pelagic marine life. Oxygen depletion, cellular toxicity and physical smothering, are considered to be the main factors involved in mortality. In this paper we use a theoretical approach based on stoichiometry (the Anderson ratio) and an average K. mikimotoi cellular carbon content of 329pgCcell -1 (n=20) to calculate the carbonaceous and nitrogenous oxygen demand following bloom collapse. The method was validated against measurements of biochemical oxygen demand and K. mikimotoi cell concentration. The estimated potential oxygen utilisation (POU) was in good agreement with field observations across a range of cell concentrations. The magnitude of POU following bloom collapse, with the exception of three coastal areas, was considered insufficient to cause harm to most marine organisms. This indicates that the widespread occurrence of mortality was primarily due to other factors such as cellular toxicity and/or mucilage production, and not oxygen depletion or related phenomena. In Donegal Bay, Kilkieran Bay and inner Dingle Bay, where cell densities were in the order of 10 6 cellsL -1 , estimated POU was sufficient to cause hypoxia. Of the three areas, Donegal Bay is considered to be the most vulnerable due to its hydrographic characteristics (seasonally stratified, weak residual flow) and hypoxic conditions (2.2mgL -1 O 2 ) were directly observed in the Bay post bloom collapse. Here, depending on the time of bloom collapse, depressed DO levels could persist for weeks and continue to have a potentially chronic impact on the Bay. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. SURVEY OF THE STEROL COMPOSITION OF THE MARINE DINOFLAGELLATES KARENIA BREVIS, KARENIA MIKIMOTOI, AND KARLODINIUM MICRUM: DISTRIBUTION OF STEROLS WITHIN OTHER MEMBERS OF THE CLASS DINOPHYCEAE

    EPA Science Inventory

    The sterol composition of different marine microalgae was examined to determine the utility of sterols as biomarkers to distinguish members of various algal classes. For example, members of the class Dinophyceae possess certain 4-methyl sterols, such as dinosterol, which are rare...

  12. The role of hydrographic parameters, measured from a ship of opportunity, in bloom formation of Karenia mikimotoi in the English Channel

    NASA Astrophysics Data System (ADS)

    Hartman, S. E.; Hartman, M. C.; Hydes, D. J.; Smythe-Wright, D.; Gohin, F.; Lazure, P.

    2014-12-01

    Unusually high chlorophyll values (~ 14 mg Chl m- 3 at 5 m depth), recorded on a ship of opportunity (SOO) in July 2010, indicated the occurrence of a potential Harmful Algal Bloom (HAB) in the Western approaches of the English Channel. This bloom, located at 49.7°N, 3.2°W was observed via complementary datasets. These included data from samples collected for microscopic phytoplankton identification, information from satellite maps to follow geographical bloom development and in situ data to identify hydrographic factors related to bloom initiation. The relationships between chlorophyll-fluorescence, temperature, salinity and wind speed were examined. The intense summer bloom predominantly consisted of the dinoflagellate Karenia mikimotoi and followed an increase in sea surface temperature (to 18.5 °C). A mid-channel bloom of this magnitude along the SOO route was last seen in 2003. In both years the peak biomass was associated with K. mikimotoi blooms, which occurred at the same location and coincided with the least saline, warmest water and lowest wind speeds. This study demonstrates that ships of opportunity are a useful tool to identify and track HAB events through continuous in situ measurements and for the frequent sampling opportunities that they provide.

  13. Lipid Class, Carotenoid, and Toxin Dynamics of Karenia Brevis (Dinophyceae) During Diel Vertical Migration

    EPA Science Inventory

    Karenia brevis’ (Hansen and Moestrup) internal lipid, carotenoid, and toxin concentrations are influenced by its ability to use ambient light and nutrients for growth and reproduction. This project investigated changes of K. brevis toxicity, lipid class and carotenoid concentrat...

  14. Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates

    NASA Astrophysics Data System (ADS)

    Ryan, D.

    2016-02-01

    The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces < 2 pg PbTx/cell, and the mutant low-toxin Wilson clone produces undetectable to low (<0.05 pg/cell) amounts. Further, PbTx-2 has been measured in Karenia papilionacea but not Karenia mikimotoi. We compared the transcriptomes of four K. brevis clones (Wilson-CCFWC268, SP3, SP1, and mutant low-toxin Wilson) with K. papilionacea and K. mikimotoi to investigate nucleotide-level genetic variations and differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high

  15. The cicada genus Karenia Distant, 1888 (Hemiptera: Cicadidae), with description of a new species.

    PubMed

    Pham, Hong-Thai; Constant, Jerome

    2014-08-19

    The cicadas of the genus Karenia are reviewed, and Karenia tibetensis sp.nov. (Hemiptera: Cicadidae) is described from Tibet, China. Pictures of the male adult and illustrations of the male genitalia are provided. A key to the species of Karenia is presented and the distribution of the Karenia species is discussed.

  16. Simulations of Karenia Brevis on the West Florida Shelf

    NASA Astrophysics Data System (ADS)

    Lenes, J. M.; Darrow, B. P.; Chen, F. R.; Walsh, J. J.; Dieterle, D. A.; Weisberg, R. H.

    2010-12-01

    The ecological model, HABSIM, was developed and tested to examine the initiation and maintenance of red tides of the toxic dinoflagellate Karenia brevis on the West Florida shelf (WFS). Phytoplankton competition among K. brevis, nitrogen fixing cyanophytes (Trichodesmium spp.), large siliceous phytoplankton (diatoms), and small non-siliceous phytoplankton (microflagellates) thus explores the sequence of events required to support the observed bloom from August to December 2001. The ecological model contains twenty two state variables within four submodels: atmospheric (iron deposition), biological (phytoplankton, bacteria, zooplankton, and fish), chemical (multiple species of carbon, nitrogen, phosphorus, silica, and iron), and benthic (nutrient regeneration). Here, we present results for the 2001 1-d hindcast simulations, with and without data assimilation of the Karenia state variable, as well as preliminary 3-d results.

  17. Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data.

    PubMed

    Gottschling, Marc; Soehner, Sylvia; Zinssmeister, Carmen; John, Uwe; Plötner, Jörg; Schweikert, Michael; Aligizaki, Katerina; Elbrächter, Malte

    2012-01-01

    The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present. The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage apparently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA sequence data of the Alveolata including the Dinophyceae. Phylogenetic analyses were performed using Maximum Likelihood and Bayesian approaches. The Thoracosphaeraceae were monophyletic, but included also a number of non-calcareous dinophytes (such as Pentapharsodinium and Pfiesteria) and even parasites (such as Duboscquodinium and Tintinnophagus). Bysmatrum had an isolated and uncertain phylogenetic position outside the Thoracosphaeraceae. The phylogenetic relationships among calcareous dinophytes appear complex, and the assumption of the single origin of the potential to produce calcareous structures is challenged. The application of concatenated ribosomal RNA sequence data may prove promising for phylogenetic reconstructions of the Dinophyceae in future. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Hemocyte responses of Manila clams, Ruditapes philippinarum, with varying parasite, Perkinsus olseni, severity to toxic-algal exposures.

    PubMed

    Hégaret, Hélène; da Silva, Patricia Mirella; Wikfors, Gary H; Lambert, Christophe; De Bettignies, Thibaut; Shumway, Sandra E; Soudant, Philippe

    2007-10-30

    This study assessed the possible combined effects of harmful algae and parasite infection on hemocyte and hemolymph parameters of a bivalve mollusc. Manila clams Ruditapes philippinarum, were exposed for 1 week, under controlled laboratory conditions, to bloom concentrations of two cultured dinoflagellates: Karenia selliformis, and Karenia mikimotoi, with demonstrated, sub-lethal, pathological effects upon these bivalves. Each dinoflagellate treatment was added to a basal diet of Chaetoceros neogracile; controls consisted of clams fed only C. neogracile. Hemocyte characteristics measured with flow-cytometric analyses, and agglutination titer, condition index, and prevalence and intensity of Perkinsus olseni, were assessed for individual clams before and after 3 and 6 days of microalgal exposure. Multifactor analysis of variance tests were conducted to determine possible effects of the harmful algae, time of exposure, and P. olseni intensity, as well as interactions between these three factors, upon each physiological variable measured. There was no relationship between P. olseni intensity and hemolymph measures. Both Karenia species, however, had a significant effect upon hemocyte profiles of the clams, and this effect was dependent upon duration of exposure; 3 days of exposure to the dinoflagellates generally was sufficient to resolve the effects on the clams. K. selliformis had a stronger effect than K. mikimotoi, which was intermediate between K. selliformis and clams fed the non-toxic control, C. neogracile. Total hemocyte counts increased in clams exposed to the harmful algae, while the percentage of dead hemocytes, as well as hemocyte size and complexity, decreased. Furthermore, these immunomodulating effects of K. selliformis were significantly more extreme in clams with a high parasite burden, compared with lightly infected clams. This report is, to our knowledge, the first study assessing the combined effects of harmful algae and parasite infection on a

  19. Diel Vertical Migration Thresholds of Karenia brevis (Dinophyceae).

    EPA Science Inventory

    Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with subpopulation location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a subpopulation can vertical...

  20. Inhibitory mechanism of phthalate esters on Karenia brevis.

    PubMed

    Liu, Ning; Wen, Fuling; Li, Fengmin; Zheng, Xiang; Liang, Zhi; Zheng, Hao

    2016-07-01

    The occurrence of phthalate esters (PAEs), a class of widely used and environmentally prevalent chemicals, raises concern to environmental and human health globally. The PAEs have been demonstrated to inhibit algae growth, but the underlying mechanisms remain unclear. In this research, diethyl ortho-phthalate (DEP), diallyl phthalate (DAP), di-n-butyl ortho-phthalate (DBP), di-iso-butyl ortho-phthalate, and benzyl-n-butyl ortho-phthalate (BBP) were screened from 11 species of PAEs to study their inhibitory effects on Karenia brevis and determine their target sites on algae. With increasing the alkyl chains of these five PAEs, the values of EC50,96h decreased. The content of malondialdehyde increased with the continuous accumulation of reactive oxygen species (ROS) in the algae cells. Moreover, the superoxide dismutase and catalase contents were first activated and then inhibited. The ultrastructures of Karenia brevis cells were detected by transmission electron microscopy, and cells treated with PAEs exhibiting distorted shapes and large vacuoles. Thus, the algae were damaged by ROS accumulation, resulting in lipid oxidation and algal growth inhibition. The inhibitors of the electron transport chain showed that the sites of ROS production and accumulation in K. brevis cells under DEP and BBP were the mitochondria and chloroplast, respectively. Moreover, the target sites of DAP and DBP were both the chloroplast and mitochondria. These results are useful for controlling PAEs contamination in and revealing the fate of PAEs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Algicidal activity of glycerolipids from brown alga Ishige sinicola toward red tide microalgae.

    PubMed

    Hirao, Shotaro; Tara, Kenji; Kuwano, Kazuyoshi; Tanaka, Junji; Ishibashi, Fumito

    2012-01-01

    Bioassay-guided fractionation of a methanol extract of the brown alga, Ishige sinicola, led to the isolation of five algicidal compounds. Their structures were determined to be α-monoglycerides of eicosa-5Z,8Z,11Z,14Z-tetraenoic (arachidonic) acid, octadeca-6Z,9Z,12Z,15Z-tetraenoic acid, linoleic acid and oleic acid, and 1-O-palmitoyl-3-O-(6-sulfo-α-D-quinovopyranosyl)-sn-glycerol on the basis of spectroscopic data and a comparison with the data in the literature. These glycerolipids showed moderate-to-high cell lysis activity against the red tide microalgal species, Heterosigma akashiwo, Karenia mikimotoi and Alexandrium catenella, at a concentration of 20 µg/mL.

  2. FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM IN THE GULF OF MEXICO

    EPA Science Inventory

    In the Gulf of Mexico, recurring algal blooms, caused by Karenia brevis (formerly known as Gymnodinium breve), have significant adverse health and economic impacts. K. brevis is one member of a small group of dinoflagellates, related morphologically and by DNA-based phylogenetic ...

  3. BIOCHEMISTRY OF DINOFLAGELLATE LIPIDS, WITH PARTICULAR REFERENCE TO THE FATTY ACID AND STEROL COMPOSITION OF A KARENIA BREVIS BLOOM

    EPA Science Inventory

    Leblond, Jeffrey D., Terence J. Evens and Peter J. Chapman. 2003. Biochemistry of Dinoflagellate Lipids, with Particular Reference to the Fatty Acid and Sterol Composition of a Karenia brevis Bloom. Phycologia. 42(4):324-331. (ERL,GB 1160).

    The harmful marine dinoflagella...

  4. A NUMERICAL ANALYSIS OF LANDFALL OF THE 1979 RED TIDE OF KARENIA BREVIS ALONG THE WEST COAST OF FLORIDA. (R827085)

    EPA Science Inventory

    Abstract

    A simple ecological model, coupled to a primitive equation circulation model, is able to replicate the observed alongshore transport of the toxic dinoflagellate Karenia brevis on the West Florida shelf during a fall red tide in 1979. Initial land fall o...

  5. Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Kumar, P. Sathish; Kumaraswami, M.; Rao, G. Durga; Ezhilarasan, P.; Sivasankar, R.; Rao, V. Ranga; Ramu, K.

    2018-06-01

    The seasonal variation in phytoplankton composition as well as the influencing factors on phytoplankton community were examined for the coastal waters of Kochi, southeastern Arabian Sea during 2015. The elevated flux of total nitrogen (TN) and silica (Si) during the summer monsoon (SM) induced the harmful algal blooms (HABs) of Scrippsiella trochoidea (11.9 × 105 cells L-1) and Karenia mikimotoi (6 × 105 cells L-1) near the inlets of Kochi estuary. Blooms of S. trochoidea were recorded for the first time in the Indian waters. The satellite data of chlorophyll-a showed the significant correlation with insitu observations of phytoplankton abundance and provided a better understanding of the spatio-temporal distribution. The canonical correspondence analysis indicates that the increased TN and Si fluxes and lower temperature induced the HABs during the SM. The reduction in the load of N and Si in the coastal waters of southeastern Arabian Sea is essential for controlling the HABs.

  6. Brevisulcatic acids, marine ladder-frame polyethers from the red tide dinoflagellate Karenia brevisulcata in New Zealand.

    PubMed

    Suzuki, Rina; Irie, Raku; Harntaweesup, Yanit; Tachibana, Kazuo; Holland, Patrick T; Harwood, D Tim; Shi, Feng; Beuzenberg, Veronica; Itoh, Yoshiyuki; Pascal, Steven; Edwards, Patrick J B; Satake, Masayuki

    2014-11-21

    The isolation and structural determination of new marine ladder-frame polyethers, brevisulcatic acids-1 (1) and -4 (2) are reported. Brevisulcatic acids were isolated from the dinoflagellate Karenia brevisulcata, which was identified as the causative species of a major red tide event in New Zealand in 1998. The ether ring composition and a β-hydroxy, γ-methylene valeric acid side chain of 1 and 2 are common, but 2 has a γ-lactone as the 5-membered A-ring while 1 is the seco acid analogue. Compound 2 has structural and bioactivity similarities to brevetoxin A.

  7. Increased Toxicity of Karenia brevis during Phosphate Limited Growth: Ecological and Evolutionary Implications

    PubMed Central

    Hardison, Donnie Ransom; Sunda, William G.; Shea, Damian; Litaker, Richard Wayne

    2013-01-01

    Karenia brevis is the dominant toxic red tide algal species in the Gulf of Mexico. It produces potent neurotoxins (brevetoxins [PbTxs]), which negatively impact human and animal health, local economies, and ecosystem function. Field measurements have shown that cellular brevetoxin contents vary from 1–68 pg/cell but the source of this variability is uncertain. Increases in cellular toxicity caused by nutrient-limitation and inter-strain differences have been observed in many algal species. This study examined the effect of P-limitation of growth rate on cellular toxin concentrations in five Karenia brevis strains from different geographic locations. Phosphorous was selected because of evidence for regional P-limitation of algal growth in the Gulf of Mexico. Depending on the isolate, P-limited cells had 2.3- to 7.3-fold higher PbTx per cell than P-replete cells. The percent of cellular carbon associated with brevetoxins (%C-PbTx) was ∼ 0.7 to 2.1% in P-replete cells, but increased to 1.6–5% under P-limitation. Because PbTxs are potent anti-grazing compounds, this increased investment in PbTxs should enhance cellular survival during periods of nutrient-limited growth. The %C-PbTx was inversely related to the specific growth rate in both the nutrient-replete and P-limited cultures of all strains. This inverse relationship is consistent with an evolutionary tradeoff between carbon investment in PbTxs and other grazing defenses, and C investment in growth and reproduction. In aquatic environments where nutrient supply and grazing pressure often vary on different temporal and spatial scales, this tradeoff would be selectively advantageous as it would result in increased net population growth rates. The variation in PbTx/cell values observed in this study can account for the range of values observed in the field, including the highest values, which are not observed under N-limitation. These results suggest P-limitation is an important factor regulating cellular

  8. Long-term increase in Karenia brevis abundance along the Southwest Florida Coast

    PubMed Central

    Brand, Larry E.; Compton, Angela

    2008-01-01

    Data collected along the southwest coast of Florida between Tampa Bay and Sanibel Island on the abundance of the toxic dinoflagellate Karenia brevis from 1954 to 2002 were examined for spatial and temporal patterns. K. brevis was found to be approximately 20-fold more abundant within 5 km of the shoreline than 20-30 km offshore. Overall, K. brevis was approximately 13-18-fold more abundant in 1994-2002 than in 1954-1963. In 1954-1963, K. brevis occurred primarily in the fall months. In 1994-2002, it was more abundant not only in the fall, but also in the winter and spring months. It is hypothesized that greater nutrient availability in the ecosystem is the most likely cause of this increase in K. brevis biomass, and the large increase in the human population and its activities in South Florida over the past half century is a major factor. PMID:18437245

  9. A New Treatment Strategy for Inactivating Algae in Ballast Water Based on Multi-Trial Injections of Chlorine

    PubMed Central

    Sun, Jinyang; Wang, Junsheng; Pan, Xinxiang; Yuan, Haichao

    2015-01-01

    Ships’ ballast water can carry aquatic organisms into foreign ecosystems. In our previous studies, a concept using ion exchange membrane electrolysis to treat ballast water has been proven. In addition to other substantial approaches, a new strategy for inactivating algae is proposed based on the developed ballast water treatment system. In the new strategy, the means of multi-trial injection with small doses of electrolytic products is applied for inactivating algae. To demonstrate the performance of the new strategy, contrast experiments between new strategies and routine processes were conducted. Four algae species including Chlorella vulgaris, Platymonas subcordiformis, Prorocentrum micans and Karenia mikimotoi were chosen as samples. The different experimental parameters are studied including the injection times and doses of electrolytic products. Compared with the conventional one trial injection method, mortality rate time (MRT) and available chlorine concentration can be saved up to about 84% and 40%, respectively, under the application of the new strategy. The proposed new approach has great potential in practical ballast water treatment. Furthermore, the strategy is also helpful for deep insight of mechanism of algal tolerance. PMID:26068239

  10. Phytoplankton invasions: comments on the validity of categorizing the non-indigenous dinoflagellates and diatoms in European seas.

    PubMed

    Gómez, Fernando

    2008-04-01

    The validity of categorizing the diatoms and dinoflagellates reported in the literature as non-indigenous phytoplankton in the European Seas was investigated. Species that are synonymous are often included as separate species (Gessnerium mochimaensis=Alexandrium monilatum, Gymnodinium nagasakiense=Karenia mikimotoi, Pleurosigma simonsenii=P. planctonicum), while other species names are synonyms of cosmopolitan taxa (Prorocentrum redfieldii=P. triestinum, Pseliodinium vaubanii=Gyrodinium falcatum, Gonyaulax grindleyi=Protoceratium reticulatum, Asterionella japonica=Asterionellopsis glacialis). Epithets of an exotic etymology (i.e. japonica, sinensis, indica) imply that a cosmopolitan species may be non-indigenous, and several taxa are even considered as non-indigenous in their type locality (Alexandrium tamarense and A. pseudogoniaulax). The records of Alexandrium monilatum, A. leei and Corethron criophilum are doubtful. Cold or warm-water species expand their geographical ranges or increase their abundances to detectable levels during cooling (Coscinodiscus wailesii) or warming periods (Chaetoceros coarctatus, Proboscia indica, Pyrodinium bahamense). These are a few examples of marginal dispersal associated with climatic events instead of species introductions from remote areas. The number of non-indigenous phytoplankton species in European Seas has thus been excessively inflated.

  11. A Label-Free Microfluidic Biosensor for Activity Detection of Single Microalgae Cells Based on Chlorophyll Fluorescence

    PubMed Central

    Wang, Junsheng; Sun, Jinyang; Song, Yongxin; Xu, Yongyi; Pan, Xinxiang; Sun, Yeqing; Li, Dongqing

    2013-01-01

    Detection of living microalgae cells is very important for ballast water treatment and analysis. Chlorophyll fluorescence is an indicator of photosynthetic activity and hence the living status of plant cells. In this paper, we developed a novel microfluidic biosensor system that can quickly and accurately detect the viability of single microalgae cells based on chlorophyll fluorescence. The system is composed of a laser diode as an excitation light source, a photodiode detector, a signal analysis circuit, and a microfluidic chip as a microalgae cell transportation platform. To demonstrate the utility of this system, six different living and dead algae samples (Karenia mikimotoi Hansen, Chlorella vulgaris, Nitzschia closterium, Platymonas subcordiformis, Pyramidomonas delicatula and Dunaliella salina) were tested. The developed biosensor can distinguish clearly between the living microalgae cells and the dead microalgae cells. The smallest microalgae cells that can be detected by using this biosensor are 3 μm ones. Even smaller microalgae cells could be detected by increasing the excitation light power. The developed microfluidic biosensor has great potential for in situ ballast water analysis. PMID:24287532

  12. Distribution patterns of phytoplankton in the Changjiang River estuary and adjacent waters in spring 2009

    NASA Astrophysics Data System (ADS)

    Kong, Fanzhou; Xu, Zijun; Yu, Rencheng; Yuan, Yongquan; Zhou, Mingjiang

    2016-09-01

    The Changjiang River estuary and adjacent waters are one of the most notable regions for red tides/harmful algal blooms in China's coastal waters. In this study, phytoplankton samples were collected and analyzed during the outbreak stage of red tides in May 2009. It was found that dinoflagellates, Prorocentrum donghaiense and Karenia mikimotoi, and diatoms, Skeletonema spp. and Paralia sulcata, were the major taxa dominating the phytoplankton community. Cluster analysis, non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) was conducted on a data matrix including taxa composition and cell abundance of the phytoplankton samples. The analyses categorized the samples into three groups at a similarity level of 30%. Group I was characterized by estuarine diatoms and distributed mainly in the highly turbid estuarine region. Group II, which was dominated by the diatom Skeletonema spp. and represented the red tide of Skeletonema spp., was situated around Group I in the sea area west of 122°50'E. Group III was characterized by a high proportion of dinoflagellates and was found further offshore compared with Groups I and II. Group III was further divided into two subgroups (III-S1 and III-S2) at a similarity level of 40%. Group III-S1 was characterized by the presence of the benthic diatom P. sulcata, representing phytoplankton samples collected either from the bottom or from the sea area affected by upwelling. Group III-S2 was dominated by dinoflagellates and represented red tides formed by P. donghaiense and K. mikimotoi. A gradual change of red-tide causative species was observed from the estuary to the offshore sea area, from diatoms to armored dinoflagellates and then unarmored dinoflagellates. Environmental factors associated with each group, and thus affecting the distribution of phytoplankton and red tides, are discussed.

  13. Brevetoxin exposure in sea turtles in south Texas (USA) during Karenia brevis red tide.

    PubMed

    Walker, Jennifer Shelby; Shaver, Donna J; Stacy, Brian A; Flewelling, Leanne J; Broadwater, Margaret H; Wang, Zhihong

    2018-01-31

    Five green (Chelonia mydas) and 11 Kemp's ridley (Lepidochelys kempii) sea turtles found dead, or that died soon after stranding, on the southern Texas (USA) coast during 2 Karenia brevis blooms (October 2015, September-October 2016) were tested for exposure to brevetoxins (PbTx). Tissues (liver, kidney) and digesta (stomach and intestinal contents) were analyzed by ELISA. Three green turtles found alive during the 2015 event and 2 Kemp's ridley turtles found alive during the 2016 event exhibited signs of PbTx exposure, including lethargy and/or convulsions of the head and neck. PbTx were detected in 1 or more tissues or digesta in all 16 stranded turtles. Detected PbTx concentrations ranged from 2 to >2000 ng g-1. Necropsy examination and results of PbTx analysis indicated that 10 of the Kemp's ridleys and 2 of the green turtles died from brevetoxicosis via ingestion. This is the first documentation of sea turtle mortality in Texas attributed to brevetoxicosis.

  14. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.

    PubMed

    Sun, Pengfei; Leeson, Cristian; Zhi, Xiaoduo; Leng, Fenfei; Pierce, Richard H; Henry, Michael S; Rein, Kathleen S

    2016-02-01

    Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis.

    PubMed

    Nosenko, Tetyana; Lidie, Kristy L; Van Dolah, Frances M; Lindquist, Erika; Cheng, Jan-Fang; Bhattacharya, Debashish

    2006-11-01

    Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.

  16. Transcriptome remodeling associated with chronological aging in the dinoflagellate, Karenia brevis.

    PubMed

    Johnson, Jillian G; Morey, Jeanine S; Neely, Marion G; Ryan, James C; Van Dolah, Frances M

    2012-03-01

    The toxic dinoflagellate, Karenia brevis, forms dense blooms in the Gulf of Mexico that persist for many months in coastal waters, where they can cause extensive marine animal mortalities and human health impacts. The mechanisms that enable cell survival in high density, low growth blooms, and the mechanisms leading to often rapid bloom demise are not well understood. To gain an understanding of processes that underlie chronological aging in this dinoflagellate, a microarray study was carried out to identify changes in the global transcriptome that accompany the entry and maintenance of stationary phase up to the onset of cell death. The transcriptome of K. brevis was assayed using a custom 10,263 feature oligonucleotide microarray from mid-logarithmic growth to the onset of culture demise. A total of 2958 (29%) features were differentially expressed, with the mid-stationary phase timepoint demonstrating peak changes in expression. Gene ontology enrichment analyses identified a significant shift in transcripts involved in energy acquisition, ribosome biogenesis, gene expression, stress adaptation, calcium signaling, and putative brevetoxin biosynthesis. The extensive remodeling of the transcriptome observed in the transition into a quiescent non-dividing phase appears to be indicative of a global shift in the metabolic and signaling requirements and provides the basis from which to understand the process of chronological aging in a dinoflagellate. Published by Elsevier B.V.

  17. A Harmful Algal Bloom of Karenia brevis in the Northeastern Gulf of Mexico as Revealed by MODIS and VIIRS: A Comparison

    PubMed Central

    Hu, Chuanmin; Barnes, Brian B.; Qi, Lin; Corcoran, Alina A.

    2015-01-01

    The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches—as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L−1 within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission. PMID:25635412

  18. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison.

    PubMed

    Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Corcoran, Alina A

    2015-01-28

    The most recent Visible Infrared Imager Radiometer Suite (VIIRS) is not equipped with a spectral band to detect solar-stimulated phytoplankton fluorescence. The lack of such a band may affect the ability of VIIRS to detect and quantify harmful algal blooms (HABs) in coastal waters rich in colored dissolved organic matter (CDOM) because of the overlap of CDOM and chlorophyll absorption within the blue-green spectrum. A recent HAB dominated by the toxin-producing dinoflagellate Karenia brevis in the northeastern Gulf of Mexico, offshore of Florida's Big Bend region, allowed for comparison of the capacities of VIIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) to detect blooms in CDOM-rich waters. Both VIIRS and MODIS showed general consistency in mapping the CDOM-rich dark water, which measured a maximum area of 8900 km2 by mid-July 2014. However, within the dark water, only MODIS allowed detection of bloom patches-as indicated by high normalized fluorescence line height (nFLH). Field surveys between late July and mid-September confirmed Karenia brevis at bloom abundances up to 20 million cells·L(-1) within these patches. The bloom patches were well captured by the MODIS nFLH images, but not by the default chlorophyll a concentration (Chla) images from either MODIS or VIIRS. Spectral analysis showed that VIIRS could not discriminate these high-phytoplankton water patches within the dark water due to its lack of fluorescence band. Such a deficiency may be overcome with new algorithms or future satellite missions such as the U.S. NASA's Pre-Aerosol-Clouds-Ecology mission and the European Space Agency's Sentinel-3 mission.

  19. Mycosporine-like amino acid (MAAs) production by Heterocapasa sp. (Dinophyceae) in indoor cultures.

    PubMed

    Montero, Olimpio; Lubián, Luis M

    2003-07-01

    The possibility of using mycosporine-like amino acids (MAAs), with an apparent sunscreen function in nature, as ultraviolet radiation (UVR) blockers to prevent skin injury has been raised by diverse authors. Production of MAAs by the dinoflagellate Heterocapsa sp. (Dinophyceae) is shown here. Three major peaks with absorption maxima at 330.8, 332.0 and 333.2 nm were detected by high performance liquid chromatography (HPLC) analysis of methanolic extracts in all tested conditions. Analysis of crude extract by mass spectroscopy with electrospray ionization (MS-EI) showed a set of molecular ions ([M+H](+)) with main peaks being at m/z 242.4, 288.4, 303.3 and 333.3 u.m.a. According to these data, along with retention times, the MAA profile of Heterocapsa sp. is assumed to be composed of shinorine (lambda(max)=334 nm), mycosporine-2-glycine (lambda(max)=331 nm) and palythinol (lambda(max)=332 nm). A constitutive MAA content of about 4 microg (10(6) cells)(-1) was measured under exposure to PAR only. A maximal accumulation of MAA per culture volume of 1.1 mg l(-1) was obtained after 72 h of exposure to PAR+UVA, while the highest production rate (0.025 mg l(-1) h(-1)) was computed after 24 h of exposure to PAR+UVA+UVB.

  20. Drag increase and drag reduction found in phytoplankton and bacterial cultures in laminar flow: Are cell surfaces and EPS producing rheological thickening and a Lotus-leaf Effect?

    NASA Astrophysics Data System (ADS)

    Jenkinson, Ian R.; Sun, Jun

    2014-03-01

    The laminar-flow viscosity of ocean and other natural waters consists of a Newtonian aqueous component contributed by water and salts, and a non-Newtonian one contributed mainly by exopolymeric polymers (EPS) derived largely from planktonic algae and bacteria. Phytoplankton and EPS form thin layers in stratified waters, often associated with density discontinuities. A recent model (Jenkinson and Sun, 2011. J. Plankton Res., 33, 373-383) investigated possible thalassorheological control of pycnocline thickness (PT) by EPS secreted by the harmful dinoflagellate Karenia mikimotoi. The model, based on published measurements of viscosity increase by this species, found that whether it can influence PT depends on the relationship between increased viscosity, deformation rates/stresses and length scale, which the present work has investigated. To do this, flow rate vs. hydrostatic pressure (and hence wall stress) was measured in cultures (relative to that in reference water) in capillaries of 5 radii 0.35-1.5 mm, close to oceanic-turbulence Kolmogorov length. We compared cultures of the potentially harmful algae, K. mikimotoi, Alexandrium catenella, Prorocentrum donghaiense, Skeletonema costatum, Phaeodactylum tricornutum and the bacterium Escherichia coli. Drag increase, ascribed to rheological thickening by EPS, occurred in the smallest capillaries, but drag reduction (DR) occurred in the largest ones. Since this occurred at Reynolds numbers Re too small for turbulence (or turbulent DR) to occur, this was laminar-flow DR. It may have been superhydrophobic DR (SDR), associated with the surfaces of the plankton and bacteria. SDR is associated with the self-cleaning Lotus-leaf Effect, in which water and dirt are repelled from surfaces bearing nm- to μm-sized irregularities coated with hydrophobic polymers. Because DR decreased measured viscosity and EPS thickening increased it, we could not validate the model. DR, however, represents hitherto unknown phenomenon in the

  1. The costs of respiratory illnesses arising from Florida gulf coast Karenia brevis blooms.

    PubMed

    Hoagland, Porter; Jin, Di; Polansky, Lara Y; Kirkpatrick, Barbara; Kirkpatrick, Gary; Fleming, Lora E; Reich, Andrew; Watkins, Sharon M; Ullmann, Steven G; Backer, Lorraine C

    2009-08-01

    Algal blooms of Karenia brevis, a harmful marine algae, occur almost annually off the west coast of Florida. At high concentrations, K. brevis blooms can cause harm through the release of potent toxins, known as brevetoxins, to the atmosphere. Epidemiologic studies suggest that aerosolized brevetoxins are linked to respiratory illnesses in humans. We hypothesized a relationship between K. brevis blooms and respiratory illness visits to hospital emergency departments (EDs) while controlling for environmental factors, disease, and tourism. We sought to use this relationship to estimate the costs of illness associated with aerosolized brevetoxins. We developed a statistical exposure-response model to express hypotheses about the relationship between respiratory illnesses and bloom events. We estimated the model with data on ED visits, K. brevis cell densities, and measures of pollen, pollutants, respiratory disease, and intra-annual population changes. We found that lagged K. brevis cell counts, low air temperatures, influenza outbreaks, high pollen counts, and tourist visits helped explain the number of respiratory-specific ED diagnoses. The capitalized estimated marginal costs of illness for ED respiratory illnesses associated with K. brevis blooms in Sarasota County, Florida, alone ranged from $0.5 to $4 million, depending on bloom severity. Blooms of K. brevis lead to significant economic impacts. The costs of illness of ED visits are a conservative estimate of the total economic impacts. It will become increasingly necessary to understand the scale of the economic losses associated with K. brevis blooms to make rational choices about appropriate mitigation.

  2. The effects of red tide (Karenia brevis) on reflex impairment and mortality of sublegal Florida stone crabs, Menippe mercenaria.

    PubMed

    Gravinese, Philip M; Kronstadt, Stephanie M; Clemente, Talib; Cole, Cody; Blum, Patricia; Henry, Michael S; Pierce, Richard H; Lovko, Vincent J

    2018-06-01

    The Florida stone crab, Menippe mercenaria, is a major commercial fishery that occurs primarily along Florida's west coast, where harmful algal blooms of Karenia brevis frequently develop. To determine sublethal and lethal effects of K. brevis on M. mercenaria, we exposed sublegal stone crabs to three seawater treatments in laboratory conditions: no K. brevis (control), a low-toxin K. brevis strain (Wilson LT), and a toxic K. brevis (New Pass strain). Total food consumed, reflex impairment and survivorship of each crab was monitored throughout the nine-day experiment. Crabs in the toxic treatment consumed 67% less food. The probability of an individual losing a reflex significantly increased with time (days), and there was a 42% decrease in survivorship in the toxic treatment. This is the first study to demonstrate negative effects of K. brevis on the stone crab, presenting the critical need of further investigation to fully understand how red tide may impact sustainability of the fishery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Brevetoxin (PbTx-2) influences the redox status and NPQ of Karenia brevis by way of thioredoxin reductase.

    PubMed

    Chen, Wei; Colon, Ricardo; Louda, J William; Del Rey, Freddy Rodriguez; Durham, Michaella; Rein, Kathleen S

    2018-01-01

    The Florida red tide dinoflagellate, Karenia brevis, is the major harmful algal bloom dinoflagellate of the Gulf of Mexico and plays a destructive role in the region. Blooms of K. brevis can produce brevetoxins: ladder-shaped polyether (LSP) compounds, which can lead to adverse human health effects, such as reduced respiratory function through inhalation exposure, or neurotoxic shellfish poisoning through consumption of contaminated shellfish. The endogenous role of the brevetoxins remains uncertain. Recent work has shown that some forms of NADPH dependent thioredoxin reductase (NTR) are inhibited by brevetoxin-2 (PbTx-2). The study presented herein reveals that high toxin and low toxin K. brevis, which have a ten-fold difference in toxin content, also show a significant difference in their ability, not only to produce brevetoxin, but also in their cellular redox status and distribution of xanthophyll cycle pigments. These differences are likely due to the inhibition of NTR by brevetoxin. The work could shed light on the physiological role that brevetoxin fills for K. brevis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Costs of Respiratory Illnesses Arising from Florida Gulf Coast Karenia brevis Blooms

    PubMed Central

    Hoagland, Porter; Jin, Di; Polansky, Lara Y.; Kirkpatrick, Barbara; Kirkpatrick, Gary; Fleming, Lora E.; Reich, Andrew; Watkins, Sharon M.; Ullmann, Steven G.; Backer, Lorraine C.

    2009-01-01

    Background Algal blooms of Karenia brevis, a harmful marine algae, occur almost annually off the west coast of Florida. At high concentrations, K. brevis blooms can cause harm through the release of potent toxins, known as brevetoxins, to the atmosphere. Epidemiologic studies suggest that aerosolized brevetoxins are linked to respiratory illnesses in humans. Objectives We hypothesized a relationship between K. brevis blooms and respiratory illness visits to hospital emergency departments (EDs) while controlling for environmental factors, disease, and tourism. We sought to use this relationship to estimate the costs of illness associated with aerosolized brevetoxins. Methods We developed a statistical exposure–response model to express hypotheses about the relationship between respiratory illnesses and bloom events. We estimated the model with data on ED visits, K. brevis cell densities, and measures of pollen, pollutants, respiratory disease, and intra-annual population changes. Results We found that lagged K. brevis cell counts, low air temperatures, influenza outbreaks, high pollen counts, and tourist visits helped explain the number of respiratory-specific ED diagnoses. The capitalized estimated marginal costs of illness for ED respiratory illnesses associated with K. brevis blooms in Sarasota County, Florida, alone ranged from $0.5 to $4 million, depending on bloom severity. Conclusions Blooms of K. brevis lead to significant economic impacts. The costs of illness of ED visits are a conservative estimate of the total economic impacts. It will become increasingly necessary to understand the scale of the economic losses associated with K. brevis blooms to make rational choices about appropriate mitigation. PMID:19672403

  5. Cell cycle behavior of laboratory and field populations of the Florida red tide dinoflagellate, Karenia brevis

    NASA Astrophysics Data System (ADS)

    Van Dolah, Frances M.; Leighfield, Tod A.; Kamykowski, Daniel; Kirkpatrick, Gary J.

    2008-01-01

    As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12-14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates ( μmin 0.17-0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.

  6. Toxic dinoflagellates and Vibrio spp. act independently in bivalve larvae.

    PubMed

    De Rijcke, M; Van Acker, E; Nevejan, N; De Schamphelaere, K A C; Janssen, C R

    2016-10-01

    Harmful algal blooms (HABs) and marine pathogens - like Vibrio spp. - are increasingly common due to climate change. These stressors affect the growth, viability and development of bivalve larvae. Little is known, however, about the potential for interactions between these two concurrent stressors. While some mixed exposures have been performed with adult bivalves, no such work has been done with larvae which are generally more sensitive. This study examines whether dinoflagellates and bacteria may interactively affect the viability and immunological resilience of blue mussel Mytilus edulis larvae. Embryos were exposed to environmentally relevant concentrations (100, 500, 2500 & 12,500 cells ml(-1)) of a dinoflagellate (Alexandrium minutum, Alexandrium ostenfeldii, Karenia mikimotoi, Protoceratium reticulatum, Prorocentrum cordatum, P. lima or P. micans), a known pathogen (Vibrio coralliilyticus/neptunius-like isolate or Vibrio splendidus; 10(5) CFU ml(-1)), or both. After five days of exposure, significant (p < 0.05) adverse effects on larval viability and larval development were found for all dinoflagellates (except P. cordatum) and V. splendidus. Yet, despite the individual effect of each stressor, no significant interactions were found between the pathogens and harmful algae. The larval viability and the phenoloxidase innate immune system responded independently to each stressor. This independence may be related to a differential timing of the effects of HABs and pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Operational monitoring and forecasting of bathing water quality through exploiting satellite Earth observation and models: The AlgaRisk demonstration service

    NASA Astrophysics Data System (ADS)

    Shutler, J. D.; Warren, M. A.; Miller, P. I.; Barciela, R.; Mahdon, R.; Land, P. E.; Edwards, K.; Wither, A.; Jonas, P.; Murdoch, N.; Roast, S. D.; Clements, O.; Kurekin, A.

    2015-04-01

    Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008-2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.

  8. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA

    PubMed Central

    Hitchcock, Gary L.; Kirkpatrick, Gary; Minnett, Peter; Palubok, Valeriy

    2013-01-01

    Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis. The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O2 L−1 day−1 with highest rates in bloom waters where abundances exceeded 105 cells L−1. Community dark respiration (R) rates in dark bottles ranged from <10 to 70 µmole O2 L−1 day−1 over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O2 L−1 day−1. The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R) over 24 h, although heterotrophy (NCP < R) characterized the densest sample where K. brevis cell densities exceed 106 cells L−1. PMID:24179460

  9. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA.

    PubMed

    Hitchcock, Gary L; Kirkpatrick, Gary; Minnett, Peter; Palubok, Valeriy

    2010-05-01

    Oxygen-based productivity and respiration rates were determined in West Florida coastal waters to evaluate the proportion of community respiration demands met by autotrophic production within a harmful algal bloom dominated by Karenia brevis . The field program was adaptive in that sampling during the 2006 bloom occurred where surveys by the Florida Wildlife Research Institute indicated locations with high cell abundances. Net community production (NCP) rates from light-dark bottle incubations during the bloom ranged from 10 to 42 µmole O 2 L -1 day -1 with highest rates in bloom waters where abundances exceeded 10 5 cells L -1 . Community dark respiration ( R ) rates in dark bottles ranged from <10 to 70 µmole O 2 L -1 day -1 over 24 h. Gross primary production derived from the sum of NCP and R varied from ca. 20 to 120 µmole O 2 L -1 day -1 . The proportion of GPP attributed to NCP varied with the magnitude of R during day and night periods. Most surface communities exhibited net autotrophic production (NCP > R ) over 24 h, although heterotrophy (NCP < R ) characterized the densest sample where K. brevis cell densities exceed 10 6 cells L -1 .

  10. A competitive ELISA to detect brevetoxins from Karenia brevis (formerly Gymnodinium breve) in seawater, shellfish, and mammalian body fluid.

    PubMed Central

    Naar, Jerome; Bourdelais, Andrea; Tomas, Carmelo; Kubanek, Julia; Whitney, Philip L; Flewelling, Leanne; Steidinger, Karen; Lancaster, Johnny; Baden, Daniel G

    2002-01-01

    We developed a competitive enzyme-linked immunosorbent assay (ELISA) to analyze brevetoxins, using goat anti-brevetoxin antibodies obtained after immunization with keyhole limpet hemocyanin-brevetoxin conjugates, in combination with a three-step signal amplification process. The procedure, which used secondary biotinylated antibodies, streptavidine-horseradish peroxidase conjugate, and chromogenic enzyme substrate, was useful in reducing nonspecific background signals commonly observed with complex matrices. This competitive ELISA detected brevetoxins in seawater, shellfish extract and homogenate, and mammalian body fluid such as urine and serum without pretreatment, dilution, or purification. We investigated the application of this technique for shellfish monitoring by spiking shellfish meat with brevetoxins and by analyzing oysters from two commercial shellfish beds in Florida that were exposed to a bloom of Karenia brevis (formerly Gymnodinium breve). We performed brevetoxin analysis of shellfish extracts and homogenates by ELISA and compared it with the mouse bioassay and receptor binding assay. The detection limit for brevetoxins in spiked oysters was 2.5 microg/100 g shellfish meat. This assay appears to be a useful tool for neurotoxic shellfish poisoning monitoring in shellfish and seawater, and for mammalian exposure diagnostics, and significantly reduces the time required for analyses. PMID:11836147

  11. A filterable lytic agent obtained from a red tide bloom that caused lysis of Karenia brevis (Gymnodinum breve) cultures

    USGS Publications Warehouse

    2002-01-01

    A filterable lytic agent (FLA) was obtained from seawater in the southeastern Gulf of Mexico during a red tide bloom that caused lysis of Karenia brevis (formerly Gymnodinium breve) Piney Island. This agent was obtained from <0.2µ  filtrates that were concentrated by ultrafiltration using a 100 kDa filter. The FLA was propagated by passage on K. brevis cultures, and the filtered supernatants of such cultures resulted in K. brevis lysis when added to such cultures. The lytic activity was lost upon heating to 65°C or by 0.02 µm filtration. Epifluorescence and transmission electron microscopy (TEM) of supernatants of K. brevis cultures treated with the lytic agent indicated a high abundance of viral particles (4 × 109 to 7 × 109 virus-like particles [VLPs] ml–1) compared to control cultures (~107 ml–1). However, viral particles were seldom found in TEM photomicrograph thin sections of lysing K. brevis cells. Although a virus specific for K. brevis may have been the FLA, other explanations such as filterable bacteria or bacteriophages specific for bacteria associated with the K. brevis cultures cannot be discounted.

  12. The Effect of Various Species of Macroalgae on the Growth, Survival, and Toxicity of Karenia brevis

    NASA Astrophysics Data System (ADS)

    Gardner, K. G.; Lovko, V. J.; Henry, M. S.

    2016-02-01

    Harmful algal blooms (HABs) caused by the dinoflagellate Karenia brevis produce toxins that result in negative impacts to both humans and the environment. Little is known about the termination stages of these blooms, and few viable control mechanisms have been suggested. Natural, algae derived compounds have been proposed as a way to limit bloom growth and reduce brevetoxins in the water column. The work presented here examines the ability of macroalgae to inhibit the growth or survival of K. brevis, similar to what has been demonstrated with other red tide species. Additionally, we attempted to determine if macroalgae decreases water column brevetoxins which, to our knowledge, has not been tested with macroalgae but has been demonstrated in other studies with microalgal species. The macroalgae species Dictyota sp. and Gracilaria sp. caused 100% mortality of K. brevis in under 24 hours. Compared to the control, 7 other species significantly decreased the growth rate of K. brevis. The Dictyota treatments showed significant toxin reduction and increase of the antitoxin brevanol. These results indicate that some combination of compounds produced by macroalgae inhibit growth and survival of K. brevis and possibly limit their toxin production. Future studies will attempt to isolate and identify these compounds and test their effects on other marine organisms such as diatoms. Determining the interactions between HAB species K. brevis and macroalgal species will provide insights on the mechanism of bloom termination and a potential control method.

  13. Identification, growth and toxicity assessment of Coolia Meunier (Dinophyceae) from Nova Scotia, Canada.

    PubMed

    Lewis, Nancy I; Wolny, Jennifer L; Achenbach, John Claude; Ellis, Lee; Pitula, Joseph S; Rafuse, Cheryl; Rosales, Detbra S; McCarron, Pearse

    2018-05-01

    Benthic dinoflagellates of the toxigenic genus Coolia Meunier (Dinophyceae) are known to have a global distribution in both tropical and temperate waters. The type species, C. monotis, has been reported from the Mediterranean Sea, the NE Atlantic and from Rhode Island, USA in the NW Atlantic, whereas other species in the genus have been reported from tropical locations. Coolia cells were observed in algal drift samples collected at seven sites in Nova Scotia, Canada. Clonal isolates were established from four of these locations and identified with light and scanning electron microscopy, then confirmed with genetic sequencing to be C. monotis. This is the first record of this species in Nova Scotia. The isolates were established and incubated at 18 °C under a 14:10 L:D photoperiod with an approximate photon flux density of 50-60 μmol m -2  s -1 . Growth experiments using an isolate from Johnston Harbour (CMJH) were carried out at temperatures ranging from 5 to 30 °C under the same photoperiod with an approximate photon flux density of 45-50 μmol m -2  s -1 . Cells tolerated temperatures from 5 to 25 °C with optimum growth and mucilage aggregate production between 15 and 20 °C. Methanol extracts of this isolate examined by Liquid Chromatography-Mass Spectrometry (LC-MS) did not show the presence of the previously reported cooliatoxin. Toxic effects were assayed using two zebrafish bioassays, the Fish Embryo Toxicity (FET) assay and the General Behaviour and Toxicity (GBT) assay. The results of this study demonstrate a lack of toxicity in C. monotis from Nova Scotia, as has been reported for other genetically-confirmed isolates of this species. Conditions in which cell growth that could potentially degrade water quality and provide substrate and dispersal mechanisms for other harmful microorganisms via mucilage production are indicated. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. Benthic herbivores are not deterred by brevetoxins produced by the red tide dinoflagellate Karenia brevis.

    PubMed

    Sotka, Erik E; McCarty, Amanda; Monroe, Emily A; Oakman, Nicole; Van Dolah, Frances M

    2009-07-01

    Gulf of Mexico blooms of the dinoflagellate Karenia brevis produce neurotoxic cyclic polyethers called brevetoxins. During and after a red tide bloom in southwestern Florida, K. brevis cells lyse and release brevetoxins, which then sink to the benthos and coat the surfaces of seagrasses and their epiphytes. We tested the possibility that these brevetoxin-laden foods alter the feeding behavior and fitness of a common benthic herbivore within Floridean seagrass beds, the amphipod Ampithoe longimana. We demonstrated that coating foods with K. brevis extracts that contain brevetoxins at post-bloom concentrations (1 microg g(-1) drymass) does not alter the feeding rates of Florida nor North Carolina populations of A. longimana, although a slight deterrent effect was found at eight and ten-fold greater concentrations. During a series of feeding choice assays, A. longimana tended not to be deterred by foods coated with K. brevis extracts nor with the purified brevetoxins PbTx-2 and PbTx-3. Florida juveniles isolated with either extract-coated or control foods for 10 days did not differ in survivorship nor growth. A similar lack of feeding response to brevetoxin-laden foods also was exhibited by two other generalist herbivores of the southeastern United States, the amphipod A. valida and the urchin Arbacia punctulata. Given that benthic mesograzers constitute a significant portion of the diet for the juvenile stage of many nearshore fishes, we hypothesize that the ability of some mesograzers to feed on and retain brevetoxins in their bodies indicates that mesograzers may represent an important route of vertical transmission of brevetoxins through higher trophic levels within Gulf of Mexico estuaries.

  15. Vertical migration of Karenia brevis in the northeastern Gulf of Mexico observed from glider measurements.

    PubMed

    Hu, Chuanmin; Barnes, Brian B; Qi, Lin; Lembke, Chad; English, David

    2016-09-01

    The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000cellsL -1 , the stratified water shows a two-layer system with the depth of pycnocline ranging between 14-20m and salinity and temperature in the surface layer being <34.8 and >28°C, respectively. The bottom layer shows the salinity of >36 and temperature of <26°C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5-1mh -1 . The upward migration appears to start at sunrise at a depth of 8-10m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterization of Karenia brevis blooms on the West Florida Shelf using ocean color satellite imagery: implications for bloom maintenance and evolution

    NASA Astrophysics Data System (ADS)

    Soto, Inia M.; Muller-Karger, Frank E.; Hu, Chuanmin; Wolny, Jennifer

    2017-01-01

    Satellite ocean color remote sensing techniques, coupled with in situ data, were used to examine the spatial extent and evolution of four Karenia brevis blooms on the West Florida Shelf (WFS) in 2004, 2005, 2006, and 2011. Observations were obtained with the moderate resolution imaging spectroradiometer (MODIS-Aqua). These four blooms were delineated by combining remote-sensing reflectance at 555 nm and normalized fluorescence line height. In 2004 and 2005, the WFS was affected by several hurricanes, including the category 5 storm Hurricane Katrina. These hurricanes led to increased river discharge and vertical mixing which favored bloom intensification and dispersion. No hurricanes passed over the WSF in 2006; however, storms in south Florida may have aided bloom intensification via increased river discharge. In 2011, a bloom appeared off Venice, Florida, where several small creeks discharge. The bloom moved south toward Charlotte Harbor where it intensified and lingered for several months as it received nutrients from riverine discharge and upwelling events. While it is difficult to identify initiation stages of a K. brevis bloom (<˜50,000 cells L-1) using satellite imagery, the techniques used here provide information about bloom evolution (size, duration, and advection) and insight into factors affecting bloom dynamics.

  17. Plastid Transcript Editing across Dinoflagellate Lineages Shows Lineage-Specific Application but Conserved Trends

    PubMed Central

    Klinger, Christen M; Paoli, Lucas; Newby, Robert J; Wang, Matthew Yu-Wei; Carroll, Hyrum D; Leblond, Jeffrey D; Howe, Christopher J; Dacks, Joel B; Bowler, Chris; Cahoon, Aubery Bruce; Dorrell, Richard G

    2018-01-01

    Abstract Dinoflagellates are a group of unicellular protists with immense ecological and evolutionary significance and cell biological diversity. Of the photosynthetic dinoflagellates, the majority possess a plastid containing the pigment peridinin, whereas some lineages have replaced this plastid by serial endosymbiosis with plastids of distinct evolutionary affiliations, including a fucoxanthin pigment-containing plastid of haptophyte origin. Previous studies have described the presence of widespread substitutional RNA editing in peridinin and fucoxanthin plastid genes. Because reports of this process have been limited to manual assessment of individual lineages, global trends concerning this RNA editing and its effect on the biological function of the plastid are largely unknown. Using novel bioinformatic methods, we examine the dynamics and evolution of RNA editing over a large multispecies data set of dinoflagellates, including novel sequence data from the peridinin dinoflagellate Pyrocystis lunula and the fucoxanthin dinoflagellate Karenia mikimotoi. We demonstrate that while most individual RNA editing events in dinoflagellate plastids are restricted to single species, global patterns, and functional consequences of editing are broadly conserved. We find that editing is biased toward specific codon positions and regions of genes, and generally corrects otherwise deleterious changes in the genome prior to translation, though this effect is more prevalent in peridinin than fucoxanthin lineages. Our results support a model for promiscuous editing application subsequently shaped by purifying selection, and suggest the presence of an underlying editing mechanism transferred from the peridinin-containing ancestor into fucoxanthin plastids postendosymbiosis, with remarkably conserved functional consequences in the new lineage. PMID:29617800

  18. Molecular detection and species identification of Alexandrium (Dinophyceae) causing harmful algal blooms along the Chilean coastline

    PubMed Central

    Jedlicki, Ana; Fernández, Gonzalo; Astorga, Marcela; Oyarzún, Pablo; Toro, Jorge E.; Navarro, Jorge M.; Martínez, Víctor

    2012-01-01

    Background and aims On the basis of morphological evidence, the species involved in South American Pacific coast harmful algal blooms (HABs) has been traditionally recognized as Alexandrium catenella (Dinophyceae). However, these observations have not been confirmed using evidence based on genomic sequence variability. Our principal objective was to accurately determine the species of Alexandrium involved in local HABs in order to implement a real-time polymerase chain reaction (PCR) assay for its rapid and easy detection on filter-feeding shellfish, such as mussels. Methodology For species-specific determination, the intergenic spacer 1 (ITS1), 5.8S subunit, ITS2 and the hypervariable genomic regions D1–D5 of the large ribosomal subunit of local strains were sequenced and compared with two data sets of other Alexandrium sequences. Species-specific primers were used to amplify signature sequences within the genomic DNA of the studied species by conventional and real-time PCR. Principal results Phylogenetic analysis determined that the Chilean strain falls into Group I of the tamarensis complex. Our results support the allocation of the Chilean Alexandrium species as a toxic Alexandrium tamarense rather than A. catenella, as currently defined. Once local species were determined to belong to Group I of the tamarensis complex, a highly sensitive and accurate real-time PCR procedure was developed to detect dinoflagellate presence in Mytilus spp. (Bivalvia) samples after being fed (challenged) in vitro with the Chilean Alexandrium strain. The results show that real-time PCR is useful to detect Alexandrium intake in filter-feeding molluscs. Conclusions It has been shown that the classification of local Alexandrium using morphological evidence is not very accurate. Molecular methods enabled the HAB dinoflagellate species of the Chilean coast to be assigned as A. tamarense rather than A. catenella. Real-time PCR analysis based on A. tamarense primers allowed the

  19. Effects of Karenia brevis on clearance rates and bioaccumulation of brevetoxins in benthic suspension feeding invertebrates.

    PubMed

    Echevarria, Michael; Naar, Jerome P; Tomas, Carmelo; Pawlik, Joseph R

    2012-01-15

    Blooms of the toxic alga Karenia brevis occur along coastlines where sessile suspension feeding invertebrates are common components of benthic communities. We studied the effects of K. brevis on four benthic suspension feeding invertebrates common to the coast of the SE United States: the sponge Haliclona tubifera, the bryozoan Bugula neritina, the bivalve Mercenaria mercenaria, and the tunicate Styela plicata. In controlled laboratory experiments, we determined the rate at which K. brevis was cleared from the seawater by these invertebrates, the effect of K. brevis on clearance rates of a non-toxic phytoplankton species, Rhodomonas sp., and the extent to which brevetoxins bioaccumulated in tissues of invertebrates using an enzyme-linked immunosorbent assay (ELISA). All four invertebrate species cleared significant quantities of K. brevis from seawater, with mean clearance rates ranging from 2.27 to 6.71 L g h⁻¹ for H. tubifera and S. plicata, respectively. In the presence of K. brevis, clearance rates of Rhodomonas sp. by B. neritina and S. plicata were depressed by 75% and 69%, respectively, while clearance rates by H. tubifera and M. mercenaria were unaffected. Negative effects of K. brevis were impermanent; after a recovery period of 13 h, B. neritina and S. plicata regained normal clearance rates. All four invertebrates accumulated high concentrations of brevetoxin after a 4h exposure to K. brevis, but when animals were transferred to filtered seawater for 15 h after exposure, brevetoxin concentrations in the tissues of H. tubifera and B. neritina decreased by ∼80%, while there was no change in toxin concentration in the tissues of S. plicata and M. mercenaria. High cell concentrations of K. brevis may cause a suppression of clearance rates in benthic suspension feeding invertebrates, resulting in a positive feedback for bloom formation. Also, high concentrations of toxin may accumulate in the tissues of benthic suspension feeding invertebrates that may

  20. Satellite retrievals of Karenia brevis harmful algal blooms in the West Florida shelf using neural networks and impacts of temporal variabilities

    NASA Astrophysics Data System (ADS)

    El-Habashi, Ahmed; Duran, Claudia M.; Lovko, Vincent; Tomlinson, Michelle C.; Stumpf, Richard P.; Ahmed, Sam

    2017-07-01

    We apply a neural network (NN) technique to detect/track Karenia brevis harmful algal blooms (KB HABs) plaguing West Florida shelf (WFS) coasts from Visible-Infrared Imaging Radiometer Suite (VIIRS) satellite observations. Previously KB HABs detection primarily relied on the Moderate Resolution Imaging Spectroradiometer Aqua (MODIS-A) satellite, depending on its remote sensing reflectance signal at the 678-nm chlorophyll fluorescence band (Rrs678) needed for normalized fluorescence height and related red band difference retrieval algorithms. VIIRS, MODIS-A's successor, does not have a 678-nm channel. Instead, our NN uses Rrs at 486-, 551-, and 671-nm VIIRS channels to retrieve phytoplankton absorption at 443 nm (a). The retrieved a images are next filtered by applying limits, defined by (i) low Rrs551-nm backscatter and (ii) a minimum a value associated with KB HABs. The filtered residual images are then converted to show chlorophyll-a concentrations [Chla] and KB cell counts. VIIRS retrievals using our NN and five other retrieval algorithms were compared and evaluated against numerous in situ measurements made over the four-year 2012 to 2016 period, for which VIIRS data are available. These comparisons confirm the viability and higher retrieval accuracies of the NN technique, when combined with the filtering constraints, for effective detection of KB HABs. Analysis of these results as well as sequential satellite observations and recent field measurements underline the importance of short-term temporal variabilities on retrieval accuracies.

  1. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems

    PubMed Central

    Henry, M. S.

    2009-01-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems. PMID:18758951

  2. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems.

    PubMed

    Pierce, R H; Henry, M S

    2008-10-01

    The Florida red tide is a descriptive name for high concentrations of the harmful marine alga, Karenia brevis. Although most prevalent along the south-west Florida coast, periodic blooms have occurred throughout the entire US and Mexico Gulf coasts and the Atlantic coast to North Carolina. This dinoflagellate produces a suite of polyether neurotoxins, called brevetoxins, that cause severe impacts to natural resources, as well as public health. These naturally produced biotoxins may represent one of the most common chemical stressors impacting South Florida coastal and marine ecosystems. Impacts include massive fish kills, marine mammal, sea turtle and sea bird mortalities, benthic community die-off and public health effects from shellfish contamination and inhalation of air-borne toxins. The primary mode of action is binding to voltage-gated sodium channels causing depolarization of nerve cells, thus interfering with nerve transmission. Other effects include immune depression, bronchial constriction and haemolysis. Parent algal toxins are synthesized within the unicellular organism, others are produced as metabolic products. Recent studies into the composition of brevetoxins in cells, water, air and organisms have shown PbTx-2 to be the primary intracellular brevetoxin that is converted over time to PbTx-3 when the cells are ruptured, releasing extracellular brevetoxins into the environment. Brevetoxins become aerosolized by bubble-mediated transport of extracellular toxins, the composition of which varies depending on the composition in the source water. Bivalved molluscs rapidly accumulate brevetoxins as they filter feed on K. brevis cells. However, the parent algal toxins are rapidly metabolized to other compounds, some of which are responsible for neurotoxic shellfish poisoning (NSP). These results provide new insight into the distribution, persistence and impacts of red tide toxins to south-west Florida ecosystems.

  3. Quantitative assessment of the relationship between biomarker content and biomass in marine phytoplankton in responses to temperature and nutrient supply ratio changes

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Chen, X.; Bi, R.; Zhang, L. H.; Li, L.; Zhao, M.

    2016-12-01

    Alkenones and sterols are useful biomarkers to construct past productivity and community structure changes in aquatic environments. Until now, the quantitative relationship between biomarker content and biomass in marine phytoplankton remains understudied, which hinders the quantitative reconstruction of ocean changes. In this study, we carried out laboratory culture experiments to determine the quantitative relationship between biomarker content and biomass under three temperatures (15°, 20° and 25°) and three N:P supply ratios (N:P=10:1, 24:1 and 63:1 mol mol-1) for three common phytoplankton groups, diatoms (Phaeodactylum tricornutum Bohlin, Skeletonema costatum, Chaetoceros muelleri), dinoflagellates (Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum), and coccolithophores (Emiliania huxleyi). Alkenones were only detected in E. huxleyiand dinosterol was only detected in dinoflagellates, confirming that they are the biomarkers for these two groups of phytoplankton, respectively. Brassicasterol was detected in all three groups of phytoplankton, but its content was higher in diatoms, suggesting that it is still a useful biomarker for diatoms. Cell-normalized alkenone content (pg/cell) increases with increasing growth temperature by up to 30%; while the effect of nutrients on alkenone content is minimum. On the other hand, cell-normalized dinosterol content is not temperature dependent, but it is strongly affected by nutrient ratio changes. The effects of temperature and nutrients on cell-normalized brassicasterol content are phytoplankton dependent. For diatoms, the temperature effect is minimum while the nutrient effect is significant but also varies with temperatures. Our results have strong implications for understanding how different phytoplankton respond to global changes, and for more quantitative reconstruction of past productivity and community structure changes using these biomarkers.

  4. Advection of Karenia brevis blooms from the Florida Panhandle towards Mississippi coastal waters.

    PubMed

    Soto, Inia M; Cambazoglu, Mustafa Kemal; Boyette, Adam D; Broussard, Kristina; Sheehan, Drew; Howden, Stephan D; Shiller, Alan M; Dzwonkowski, Brian; Hode, Laura; Fitzpatrick, Patrick J; Arnone, Robert A; Mickle, Paul F; Cressman, Kimberly

    2018-02-01

    Harmful Algal Blooms (HABs) of Karenia brevis have been documented along coastal waters of every state bordering the Gulf of Mexico (GoM). Some Gulf Coast locations, such as Florida and Texas, suffer from recurrent intense and spatially large blooms, while others such as Mississippi seem to rarely observe them. The main objective of this work is to understand the dynamics that led to the K. brevis bloom in Mississippi coastal waters in fall 2015. Blooms of K. brevis from the Florida Panhandle region are often advected westward towards the Mississippi-Alabama coast; however there is interannual variability in their presence and intensity in Mississippi coastal waters. The 2015 K. brevis bloom was compared to the 2007 Florida Panhandle K. brevis bloom, which showed a westward advection pattern, but did not intensify along the Mississippi coast. Cell counts and flow cytometry were obtained from the Mississippi Department of Marine Resources, Alabama Department of Public Health, Florida Fish and Wildlife Conservation Commission and The University of Southern Mississippi. Ocean color satellite imagery from the Moderate Resolution Imaging Spectroradiometer onboard the Aqua satellite was used to detect and delineate the blooms in 2007 and 2015. Two different regional applications of NCOM-Navy Coastal Ocean Model (1-km resolution NCOM-GoM/Gulf of Mexico and 6-km resolution NCOM-IASNFS/Intra Americas Sea Nowcast Forecast System) were used to understand the circulation and transport pathways. A Lagrangian particle tracking software was used to track the passive movement of particles released at different locations for both bloom events. Ancillary data (e.g., nutrients, wind, salinity, river discharge) from local buoys, monitoring stations and coincident oceanographic cruises were also included in the analysis. The blooms of K. brevis reached the Mississippi coast both years; however, the bloom in 2007 lasted only a few days and there is no evidence that it entered the

  5. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.

    PubMed

    Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M

    2011-07-05

    The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic

  6. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis).

    PubMed

    Carvalho, Gustavo A; Minnett, Peter J; Fleming, Lora E; Banzon, Viva F; Baringer, Warner

    2010-06-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods - July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×10(4) cells l(-1) defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs.

  7. Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis)

    PubMed Central

    Carvalho, Gustavo A.; Minnett, Peter J.; Fleming, Lora E.; Banzon, Viva F.; Baringer, Warner

    2010-01-01

    In a continuing effort to develop suitable methods for the surveillance of Harmful Algal Blooms (HABs) of Karenia brevis using satellite radiometers, a new multi-algorithm method was developed to explore whether improvements in the remote sensing detection of the Florida Red Tide was possible. A Hybrid Scheme was introduced that sequentially applies the optimized versions of two pre-existing satellite-based algorithms: an Empirical Approach (using water-leaving radiance as a function of chlorophyll concentration) and a Bio-optical Technique (using particulate backscatter along with chlorophyll concentration). The long-term evaluation of the new multi-algorithm method was performed using a multi-year MODIS dataset (2002 to 2006; during the boreal Summer-Fall periods – July to December) along the Central West Florida Shelf between 25.75°N and 28.25°N. Algorithm validation was done with in situ measurements of the abundances of K. brevis; cell counts ≥1.5×104 cells l−1 defined a detectable HAB. Encouraging statistical results were derived when either or both algorithms correctly flagged known samples. The majority of the valid match-ups were correctly identified (~80% of both HABs and non-blooming conditions) and few false negatives or false positives were produced (~20% of each). Additionally, most of the HAB-positive identifications in the satellite data were indeed HAB samples (positive predictive value: ~70%) and those classified as HAB-negative were almost all non-bloom cases (negative predictive value: ~86%). These results demonstrate an excellent detection capability, on average ~10% more accurate than the individual algorithms used separately. Thus, the new Hybrid Scheme could become a powerful tool for environmental monitoring of K. brevis blooms, with valuable consequences including leading to the more rapid and efficient use of ships to make in situ measurements of HABs. PMID:21037979

  8. Differential Growth Responses of Marine Phytoplankton to Herbicide Glyphosate

    PubMed Central

    Wang, Cong; Lin, Xin; Li, Ling; Lin, Senjie

    2016-01-01

    Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton

  9. Coyote (Canis latrans) and domestic dog (Canis familiaris) mortality and morbidity due to a Karenia brevis red tide in the Gulf of Mexico.

    PubMed

    Castle, Kevin T; Flewelling, Leanne J; Bryan, John; Kramer, Adam; Lindsay, James; Nevada, Cheyenne; Stablein, Wade; Wong, David; Landsberg, Jan H

    2013-10-01

    In October 2009, during a Karenia brevis red tide along the Texas coast, millions of dead fish washed ashore along the 113-km length of Padre Island National Seashore (PAIS). Between November 2009 and January 2010, at least 12 coyotes (Canis latrans) and three domestic dogs (Canis familiaris) died or were euthanized at PAIS or local veterinary clinics because of illness suspected to be related to the red tide. Another red tide event occurred during autumn 2011 and, although fewer dead fish were observed relative to the 2009 event, coyotes again were affected. Staff at PAIS submitted carcasses of four coyotes and one domestic dog from November 2009 to February 2010 and six coyotes from October to November 2011 for necropsy and ancillary testing. High levels of brevetoxins (PbTxs) were measured by enzyme-linked immunosorbent assay in seven of the coyotes and the dog, with concentrations up to 634 ng PbTx-3 eq/g in stomach contents, 545 ng PbTx-3 eq/g in liver, 195 ng PbTx-3 eq/g in kidney, and 106 ng PbTx-3 eq/mL in urine samples. Based on red tide presence, clinical signs, and postmortem findings, brevetoxicosis caused by presumptive ingestion of toxic dead fish was the likely cause of canid deaths at PAIS. These findings represent the first confirmed report of terrestrial mammalian wildlife mortalities related to a K. brevis bloom. The implications for red tide impacts on terrestrial wildlife populations are a potentially significant but relatively undocumented phenomenon.

  10. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen)

    NASA Astrophysics Data System (ADS)

    Kubiszyn, A. M.; Wiktor, J. M.; Wiktor, J. M.; Griffiths, C.; Kristiansen, S.; Gabrielsen, T. M.

    2017-05-01

    We investigated the size and trophic structure of the annual planktonic protist community structure in the ice-free Adventfjorden in relation to environmental factors. Our high-resolution (weekly to monthly) study was conducted in 2012, when warm Atlantic water was advected into the fjord in winter and summer. We observed a distinct seasonality in the protist communities. The winter protist community was characterised by extremely low levels of protist abundance and biomass (primarily Dinophyceae, Ciliophora and Bacillariophyceae) in a homogenous water column. In the second half of April, the total protist abundance and biomass rapidly increased, thus initiating the spring bloom in a still well-mixed water column. The spring bloom was initially dominated by the prymnesiophyte Phaeocystis pouchetii and Bacillariophyceae (primarily from the genera Thalassiosira, Fragilariopsis and Chaetoceros) and was later strictly dominated by Phaeocystis colonies. When the bloom terminated in mid-June, the community shifted towards flagellates (Dinophyceae, Ciliophora, Cryptophyceae and nanoflagellates 3-7 μm in size) in a stratified, nutrient-depleted water column. Decreases in the light intensity decreased the protist abundance and biomass, and the fall community (Dinophyceae, Cryptophyceae and Bacillariophyceae) was followed by the winter community.

  11. Gross morphology and ultrastructure of salivary glands of the mute cicada Karenia caelatata Distant (Hemiptera: Cicadoidea).

    PubMed

    Zhong, Hai-ying; Wei, Cong; Zhang, Ya-lin

    2013-02-01

    Salivary glands of the cicada Karenia caelatata Distant were investigated using light microscopy and transmission electron microscopy. The salivary glands are paired structures and consist of principal glands and accessory glands. The principal gland is subdivided into anterior lobe and posterior lobe; the former contains about 34-39 long digitate lobules, while the latter contains approximately 30-33 long digitate lobules and 13-22 short digitate lobules. These short digitate lobules, about one fifth or sixth as long as the long digitate lobules, locate at the base of the long digitate lobules of posterior lobe. All of these digitate lobules vary in size, disposition, length and shape. The anterior lobe and the posterior lobe are connected by an anterior-posterior duct. Two efferent salivary ducts, which connect with the posterior lobe, fuse to form a common duct. The accessory gland is composed of three parts: a greatly tortuous and folded accessory salivary tube, a circlet of gular gland constituting of several acini of the same size, and a non-collapsible accessory salivary duct. The digitate lobules and gular glands possess secretory cells containing abundant secretory granules vary in size, shape, and electron density, as might indicate different materials are synthesized in different secretory regions. The anterior-posterior duct lines with a player of cuticular lining, and cells beneath the cuticular lining lack of basal infoldings, as suggests the duct serves just to transport secretions. The accessory salivary duct is lined with cuticular lining; cells of the duct have well developed basal infoldings associated with abundant mitochondria, as probably suggests the duct is a reabsorptive region of ions. The cells of the accessory salivary tube possess deep basal infoldings and well developed apical dense microvilli, indicating the cells of the tube are secretory in function. Concentric lamellar structures and a peculiar structure with abundant membrane

  12. Differences in the toxicity of six Gambierdiscus (Dinophyceae) species measured using an in vitro human erythrocyte lysis assay.

    PubMed

    Holland, William C; Litaker, R Wayne; Tomas, Carmelo R; Kibler, Steven R; Place, Allen R; Davenport, Erik D; Tester, Patricia A

    2013-04-01

    This study examined the toxicity of six Gambierdiscus species (Gambierdiscus belizeanus, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri, Gambierdiscus ribotype 2 and Gambierdiscus ruetzleri) using a human erythrocyte lysis assay. In all, 56 isolates were tested. The results showed certain species were significantly more toxic than others. Depending on the species, hemolytic activity consistently increased by ∼7-40% from log phase growth to late log - early stationary growth phase and then declined in mid-stationary growth phase. Increasing growth temperatures from 20 to 31 °C for clones of G. caribaeus showed only a slight increase in hemolytic activity between 20 and 27 °C. Hemolytic activity in the G. carolinianus isolates from different regions grown over the same 20-31 °C range remained constant. These data suggest that growth temperature is not a significant factor in modulating the inter-isolate and interspecific differences in hemolytic activity. The hemolytic activity of various isolates measured repeatedly over a 2 year period remained constant, consistent with the hemolytic compounds being constitutively produced and under strong genetic control. Depending on species, greater than 60-90% of the total hemolytic activity was initially associated with the cell membranes but diffused into solution over a 24 h assay incubation period at 4 °C. These findings suggest that hemolytic compounds produced by Gambierdiscus isolates were held in membrane bound vesicles as reported for brevetoxins produced by Karenia brevis. Gambierdiscus isolates obtained from other parts of the world exhibited hemolytic activities comparable to those found in the Caribbean and Gulf of Mexico confirming the range of toxicities is similar among Gambierdiscus species worldwide. Experiments using specific inhibitors of the MTX pathway and purified MTX, Gambierdiscus whole cell extracts, and hydrophilic cell extracts containing MTX, were consistent with

  13. Fate and distribution of brevetoxin (PbTx) following lysis of Karenia brevis by algicidal bacteria, including analysis of open A-ring derivatives.

    PubMed

    Roth, Patricia B; Twiner, Michael J; Wang, Zhihong; Bottein Dechraoui, Marie-Yasmine; Doucette, Gregory J

    2007-12-15

    Flavobacteriaceae (strain S03) and Cytophaga sp. (strain 41-DBG2) are algicidal bacteria active against the brevetoxin (PbTx)-producing, red tide dinoflagellate, Karenia brevis. Little is known about the fate of PbTx associated with K. brevis cells following attack by such bacteria. The fate and distribution of PbTx in K. brevis cultures exposed to these algicidal strains were thus examined by receptor binding assay and liquid chromatography/mass spectrometry (LC/MS) in three size fractions (>5, 0.22-5, <0.22microm) over a 2-week time course. In control cultures, brevetoxin concentrations in the >5microm particulate size fraction correlated with changes in cell density, whereas significant increases in dissolved (i.e., <0.22microm) toxin were observed in the later stages of culture growth. Exposure of K. brevis to either of the two algicidal bacteria tested caused cell lysis, coinciding with a rapid decline in the >5microm PbTX size fraction and a simultaneous release of dissolved toxin into the growth medium. Upon cell lysis, dissolved brevetoxin accounted for ca. 60% of total toxin and consisted of 51-82% open A-ring derivatives. Open A-ring PbTx-2 and PbTx-3 derivatives bound with lower affinity (approximately 22- and 57-fold, respectively) to voltage-gated sodium channels and were considerably less cytotoxic (86- and 142-fold, respectively) to N2A cells than their individual parent toxins (i.e., PbTx-2 and PbTx-3). These novel findings of changes in PbTx size-fractioned distribution and overall reduction in K. brevis toxicity following attack by algicidal bacteria improve our understanding of potential trophic transfer routes and the fate of PbTx during red tide events. Moreover, this information will be important to consider when evaluating the potential role of algicidal bacteria in harmful algal bloom (HAB) management strategies involving control of bloom populations.

  14. Intracellular haemolytic agents of Heterocapsa circularisquama exhibit toxic effects on H. circularisquama cells themselves and suppress both cell-mediated haemolytic activity and toxicity to rotifers (Brachionus plicatilis).

    PubMed

    Nishiguchi, Tomoki; Cho, Kichul; Yasutomi, Masumi; Ueno, Mikinori; Yamaguchi, Kenichi; Basti, Leila; Yamasaki, Yasuhiro; Takeshita, Satoshi; Kim, Daekyung; Oda, Tatsuya

    2016-10-01

    A harmful dinoflagellate, Heterocapsa circularisquama, is highly toxic to shellfish and the zooplankton rotifer Brachionus plicatilis. A previous study found that H. circularisquama has both light-dependent and -independent haemolytic agents, which might be responsible for its toxicity. Detailed analysis of the haemolytic activity of H. circularisquama suggested that light-independent haemolytic activity was mediated mainly through intact cells, whereas light-dependent haemolytic activity was mediated by intracellular agents which can be discharged from ruptured cells. Because H. circularisquama showed similar toxicity to rotifers regardless of the light conditions, and because ultrasonic ruptured H. circularisquama cells showed no significant toxicity to rotifers, it was suggested that live cell-mediated light-independent haemolytic activity is a major factor responsible for the observed toxicity to rotifers. Interestingly, the ultrasonic-ruptured cells of H. circularisquama suppressed their own lethal effect on the rotifers. Analysis of samples of the cell contents (supernatant) and cell fragments (precipitate) prepared from the ruptured H. circularisquama cells indicated that the cell contents contain inhibitors for the light-independent cell-mediated haemolytic activity, toxins affecting H. circularisquama cells themselves, as well as light-dependent haemolytic agents. Ethanol extract prepared from H. circularisquama, which is supposed to contain a porphyrin derivative that displays photosensitising haemolytic activity, showed potent toxicity to Chattonella marina, Chattonella antiqua, and Karenia mikimotoi, as well as to H. circularisquama at the concentration range at which no significant toxicity to rotifers was observed. Analysis on a column of Sephadex LH-20 revealed that light-dependent haemolytic activity and inhibitory activity on cell-mediated light-independent haemolytic activity existed in two separate fractions (f-2 and f-3), suggesting that both

  15. Potential impacts of blooms of the toxic dinoflagellate Karenia brevis on the growth, survival and juvenile recruitment of the non-native green mussel Perna viridis in southeastern United States.

    PubMed

    McFarland, Katherine; Jean, Fred; Thébault, Julien; Volety, Aswani K

    2016-01-01

    Red tide blooms formed by Karenia brevis are frequent along the Gulf coast of Florida and it is unclear what tolerance the green mussel Perna viridis, a recently introduced species to coastal waters, has toward these events. Established populations of P. viridis were monitored along the coastal waters of Estero Bay, Florida before, during and following two consecutive red tide blooms to assess the potential effects on growth, survival and juvenile recruitment. Upon onset of the bloom, growth rates fell from 6 to 10 mm month(-1) (March 2011-November 2011) to less than 3 mm month(-1). In the succeeding years, K. brevis blooms were present, and average growth of individually tagged mussels remained below 3 mm month(-1). During growth monitoring the use of calcein as an internal marker was tested with positive staining results and no observed effect on growth or survival. In March 2012, following the first red tide bloom, a population-wide mortality event was observed. Following this event, increased mortality rates were observed with peaks during onset of the bloom in the fall of 2012 and 2013. Juvenile recruitment was also limited during years in which blooms persisted into the spring spawning period suggesting gamete and/or larval sensitivity to K. brevis. Although it cannot be conclusively determined that the cause of reduced growth and survival is due to red tide events, the parallels observed suggest that K. brevis is a factor in the observed changes in population structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. STEROLS AS BIOMARKERS IN GYMNODINIUM BREVE DISTRIBUTION IN DINOFLAGELLATES

    EPA Science Inventory

    The sterol composition of marine microalgae has been shown to be a chemotaxonomic property potentially of value in distinguishing members of different algal classes. For example, members of the class Dinophyceae display sterol compositions ranging from as few as two (cholesterol ...

  17. Neural network retrievals of Karenia brevis harmful algal blooms in the West Florida Shelf (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ahmed, Samir; El-Habashi, Ahmed

    2016-10-01

    Effective detection and tracking of Karenia brevis Harmful Algal Blooms (KB HAB) that frequently plague the coasts and beaches of the West Florida Shelf (WFS) is important because of their negative impacts on ecology. They pose threats to fisheries, human health, and directly affect tourism and local economies. Detection and tracking capabilities are needed for use with the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite, so that HABs monitoring capabilities, which previously relied on imagery from the Moderate Resolution Imaging Spectroradiometer Aqua, can be extended to VIIRS. Unfortunately, VIIRS, unlike its predecessor MODIS-A, does not have a 678 nm channel to detect chlorophyll fluorescence, which is used in the normalized fluorescence height (nFLH) algorithm, or in the Red Band Difference (RBD) algorithm. Both these techniques have demonstrated that the remote sensing reflectance signal from the MODIS-A fluorescence band (Rrs 678 nm) helps in effectively detecting and tracking KB HABs in the WFS. To overcome the lack of a fluorescence channel on VIIRS, the approach described here, bypasses the need for measurements at 678nm, and permits extension of KB HABs satellite monitoring to VIIRS. The essence of the approach is the application of a standard multiband neural network (NN) inversion algorithm, previously developed and reported by us, that takes VIIRS Rrs measurements at the 486, 551 and 671nm bands as inputs, and produces as output the related Inherent Optical Properties (IOPs), namely: absorption coefficients of phytoplankton (aph443) dissolved organic matter (ag) and non-algal particulates (adm) as well as the particulate backscatter coefficient, (bbp) all at 443nm. We next need to relate aph443 in the VIIRS NN retrieved image to equivalent KB HABs concentrations. To do this, we apply additional constraints, defined by (i) low backscatter manifested as a maximum Rrs551 value and (ii) a minimum [Chla] threshold (and hence an equivalent

  18. Long-term evaluation of three satellite ocean color algorithms for identifying harmful algal blooms (Karenia brevis) along the west coast of Florida: A matchup assessment

    PubMed Central

    Carvalho, Gustavo A.; Minnett, Peter J.; Banzon, Viva F.; Baringer, Warner; Heil, Cynthia A.

    2011-01-01

    We present a simple algorithm to identify Karenia brevis blooms in the Gulf of Mexico along the west coast of Florida in satellite imagery. It is based on an empirical analysis of collocated matchups of satellite and in situ measurements. The results of this Empirical Approach is compared to those of a Bio-optical Technique – taken from the published literature – and the Operational Method currently implemented by the NOAA Harmful Algal Bloom Forecasting System for K. brevis blooms. These three algorithms are evaluated using a multi-year MODIS data set (from July, 2002 to October, 2006) and a long-term in situ database. Matchup pairs, consisting of remotely-sensed ocean color parameters and near-coincident field measurements of K. brevis concentration, are used to assess the accuracy of the algorithms. Fair evaluation of the algorithms was only possible in the central west Florida shelf (i.e. between 25.75°N and 28.25°N) during the boreal Summer and Fall months (i.e. July to December) due to the availability of valid cloud-free matchups. Even though the predictive values of the three algorithms are similar, the statistical measure of success in red tide identification (defined as cell counts in excess of 1.5 × 104 cells L−1) varied considerably (sensitivity—Empirical: 86%; Bio-optical: 77%; Operational: 26%), as did their effectiveness in identifying non-bloom cases (specificity—Empirical: 53%; Bio-optical: 65%; Operational: 84%). As the Operational Method had an elevated frequency of false-negative cases (i.e. presented low accuracy in detecting known red tides), and because of the considerable overlap between the optical characteristics of the red tide and non-bloom population, only the other two algorithms underwent a procedure for further inspecting possible detection improvements. Both optimized versions of the Empirical and Bio-optical algorithms performed similarly, being equally specific and sensitive (~70% for both) and showing low levels of

  19. Effects of the red tide dinoflagellate, Karenia brevis, on early development of the eastern oyster Crassostrea virginica and northern quahog Mercenaria mercenaria.

    PubMed

    Rolton, Anne; Vignier, Julien; Soudant, Philippe; Shumway, Sandra E; Bricelj, V Monica; Volety, Aswani K

    2014-10-01

    The brevetoxin-producing dinoflagellate, Karenia brevis, adversely affects many shellfish species including the commercially and ecologically important bivalve molluscs, the northern quahog (=hard clam) Mercenaria mercenaria and eastern oyster Crassostrea virginica, in the Gulf of Mexico, USA. This study assessed the effects of exposure of these bivalves to K. brevis during their early development. In separate experiments, embryos of 2-4 cell stage of M. mercenaria and C. virginica were exposed to both whole and lysed K. brevis cells isolated from Manasota Key, Florida. Low bloom concentrations of 500 to 3000 cells mL(-1) were simulated for 96 h. Shell length, percent abnormality (and normality), and percent mortality of resulting larvae were measured. Percentages were recorded after 6, 24, and 96 h of exposure; larval shell length was measured at 24 and 96 h. For both quahogs and oysters, the effects of exposing embryos to K. brevis on all larval responses were generally dose- and time-dependent. Percent mortalities and abnormalities of both clam and oyster embryos increased significantly after only 6h of exposure to whole cells of K. brevis. For clams, these parameters were significantly higher in whole and lysed treatments (at 3000 cells mL(-1)) than in controls. Percent mortalities of oysters were significantly higher in the whole-cell treatment (3000 cells mL(-1)) than under control conditions. After 24h of exposure, mean larval shell length of both bivalve species was significantly reduced relative to controls. This was evident for clam larvae in both the lysed treatment at 1500 cells mL(-1) and in whole and lysed treatments at 3000 cells mL(-1), and for oyster larvae in the lysed treatment at 3000 cells mL(-1). After 96 h, both species exposed to the lysed cell treatment at 3000 cells mL(-1) had significantly smaller larvae compared to those in the control. Overall, lysed cells of K. brevis had a more pronounced effect on shell length, percent abnormality

  20. A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control.

    PubMed

    Wu, Ying; Lee, Yew; Jung, Seul-Gi; Kim, Minju; Eom, Chi-Yong; Kim, Si Wouk; Cho, Hoon; Jin, Eonseon

    2014-05-01

    Thiazolidinedione (TD) derivatives have been found to have an algicidal effect on harmful algal bloom microalgae. In this study, 75 TD derivatives were synthesized and analyzed for algicidal activity. Among these synthetic TDs, 18 TD derivatives showed specific algicidal activity on two strains belonging to the classes Raphidophyceae (Chattonella marina and Heterosigma akashiwo) and Dinophyceae (Cochlodinium polykrikoides). Two strains belonging to Bacillariophyceae (Navicula pelliculosa and Phaeodactylum EPV), one strain belonging to Dinophyceae (Amphidinium sp.), and a Eustigmatophycean microalga (Nannochloropsis oculata) showed less sensitivity to the TD derivatives than the other two phyla. The most reactive TD derivative, compound 2 (TD118), was selected and tested for morphological and physiological changes. TD118 effectively damaged the cell membrane of C. marina, H. akashiwo and C. polykrikoides. The O₂ evolution and photosystem II efficiency (F(v)/F(m)) of C. marina, H. akashiwo and C. polykrikoides were also severely reduced by TD118 treatment. Amphidinium sp., N. pelliculosa, Phaeodactylum EPV and N. oculata showed less reduction of O₂ evolution and the F(v)/F(m) by TD118. These results imply that the species-specific TD structure relationship may be due to structural and/or physiological differences among microalgal species.

  1. ECOHAB - HYDROGRAPHY AND BIOLOGY TO PROVIDE INFORMATION FOR THE CONSTRUCTION OF A MODEL TO PREDICT THE INITIATION, MAINTANENCE AND DISPERSAL OF RED TIDE ON THE WEST COAST OF FLORIDA

    EPA Science Inventory

    This program is part of a larger program called ECOHAB: Florida that includes this study as well as physical oceanography, circulation patterns, and shelf scale modeling for predicting the occurrence and transport of Karenia brevis (=Gymnodinium breve) red tides. The physical par...

  2. An expert elicitation process to project the frequency and magnitude of Florida manatee mortality events caused by red tide (Karenia brevis)

    USGS Publications Warehouse

    Martin, Julien; Runge, Michael C.; Flewelling, Leanne J.; Deutsch, Charles J.; Landsberg, Jan H.

    2017-11-20

    Red tides (blooms of the harmful alga Karenia brevis) are one of the major sources of mortality for the Florida manatee (Trichechus manatus latirostris), especially in southwest Florida. It has been hypothesized that the frequency and severity of red tides may increase in the future because of global climate change and other factors. To improve our ecological forecast for the effects of red tides on manatee population dynamics and long-term persistence, we conducted a formal expert judgment process to estimate probability distributions for the frequency and relative magnitude of red-tide-related manatee mortality (RTMM) events over a 100-year time horizon in three of the four regions recognized as manatee management units in Florida. This information was used to update a population viability analysis for the Florida manatee (the Core Biological Model). We convened a panel of 12 experts in manatee biology or red-tide ecology; the panel met to frame, conduct, and discuss the elicitation. Each expert provided a best estimate and plausible low and high values (bounding a confidence level of 80 percent) for each parameter in each of three regions (Northwest, Southwest, and Atlantic) of the subspecies’ range (excluding the Upper St. Johns River region) for two time periods (0−40 and 41−100 years from present). We fitted probability distributions for each parameter, time period, and expert by using these three elicited values. We aggregated the parameter estimates elicited from individual experts and fitted a parametric distribution to the aggregated results.Across regions, the experts expected the future frequency of RTMM events to be higher than historical levels, which is consistent with the hypothesis that global climate change (among other factors) may increase the frequency of red-tide blooms. The experts articulated considerable uncertainty, however, about the future frequency of RTMM events. The historical frequency of moderate and intense RTMM (combined) in

  3. Phytoplankton IF-FISH: Species-specific labeling of cellular proteins by immunofluorescence (IF) with simultaneous species identification by fluorescence immunohybridization (FISH).

    PubMed

    Meek, Megan E; Van Dolah, Frances M

    2016-05-01

    Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sesquiterpenoids with antialgal activity against the common red tide microalgae from marine macroalga Porphyra yezoensis.

    PubMed

    Sun, Ying-Ying; Xing, Jing-Zeng; Zhang, Jian-Shuo; Zhou, Wen-Jing; Pu, Yin-Fang

    2018-03-01

    Previous studies showed that methanol extracts from Porphyra yezoensis significantly inhibited Karenia mikimitoi and Skeletonema costatum. Five sesquiterpenoids (1-5) were successfully isolated from this marine macroalga through a combination of silica gel column chromatography and repeated preparative thin-layer chromatography in this paper. Their structure was identified as gossonorol (1), 7,10-epoxy-ar-bisabol-11-ol (2), cyclonerodiol (3), cadinol, (4) and 4-cadinen-1-ol (5) on the basis of spectroscopic data. These sesquiterpenoids were isolated from Porphyra yezoensis for the first time, and cyclonerodiol (3) and cadinol (4) isolated from marine macroalgae for the first time. Further, a quantitative relationship between the inhibition of algal growth and the concentration of each antialgal sesquiterpenoid (gossonorol, 7,10-epoxy-ar-bisabol-11-ol and cyclonerodiol) was determined and important parameters, e.g., EC 50-96h for future practical HAB control are to be obtained. Results showed that three sesquiterpenoids (1-3) had selective antialgal activity against the growth of red tide microalgae (Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense, and Skeletonema costatum). More than two test red tide microalgae were significantly inhibited by these three sesquiterpenoids (1-3). Their antialgal activity against red tide microalgae has not been previously reported. Furthermore, EC 50-96h of gossonorol (1) and 7,10-epoxy-ar-bisabol-11-ol (2) for specific test red microalgae were not only significantly less than 10 μg/mL, but also were smaller than/or very close to those of potassium dichromate. Gossonorol (1) and 7,10-epoxy-ar-bisabol-11-ol (2) possessed good application potential than potassium dichromate as a characteristic antialgal agent against the specific harmful red tide microalgae (Heterosigma akashiwo, Phaeocystis globosa, and Prorocentrum donghaiense) (or Heterosigma akashiwo and Karenia

  5. Winter-summer succession of unicellular eukaryotes in a meso-eutrophic coastal system.

    PubMed

    Christaki, Urania; Kormas, Konstantinos A; Genitsaris, Savvas; Georges, Clément; Sime-Ngando, Télesphore; Viscogliosi, Eric; Monchy, Sébastien

    2014-01-01

    The objective of this study was to explore the succession of planktonic unicellular eukaryotes by means of 18S rRNA gene tag pyrosequencing in the eastern English Channel (EEC) during the winter to summer transition. The 59 most representative (>0.1%, representing altogether 95% of total reads), unique operational taxonomic units (OTUs) from all samples belonged to 18 known high-level taxonomic groups and 1 unaffiliated clade. The five most abundant OTUs (69.2% of total reads) belonged to Dinophyceae, Cercozoa, Haptophyceae, marine alveolate group I, and Fungi. Cluster and network analysis between samples distinguished the winter, the pre-bloom, the Phaeocystis globosa bloom and the post-bloom early summer conditions. The OTUs-based network revealed that P. globosa showed a relatively low number of connections-most of them negative-with all other OTUs. Fungi were linked to all major taxonomic groups, except Dinophyceae. Cercozoa mostly co-occurred with the Fungi, the Bacillariophyceae and several of the miscellaneous OTUs. This study provided a more detailed exploration into the planktonic succession pattern of the EEC due to its increased depth of taxonomic sampling over previous efforts based on classical monitoring observations. Data analysis implied that the food web concept in a coastal system based on predator-prey (e.g. grazer-phytoplankton) relationships is just a part of the ecological picture; and those organisms exploiting a variety of strategies, such as saprotrophy and parasitism, are persistent and abundant members of the community.

  6. Developing a Phytoplankton Biotic Index as an Indicator of Freshwater Inflow within a Subtropical Estuary

    NASA Astrophysics Data System (ADS)

    Steichen, J. L.; Quigg, A.; Lucchese, A.; Preischel, H.

    2016-02-01

    Freshwater inflows drive the water and sediment quality in coastal bays and estuaries influencing the ecosystem and health of the biological community. Phytoplankton accessory pigments (used as a proxy for major taxonomic groups) have been utilized to develop a biotic index of physical, chemical and biotic disturbances in Chesapeake Bay (USA) and other estuarine systems. In this study we have used the Chesapeake Bay - Phytoplankton Index of Biotic Integrity model as a guide in developing an index for Galveston Bay, TX (USA) as an indicator of sufficient freshwater inflow to a subtropical estuary. Multivariate statistical analyses were run using PRIMER-E+PERMANOVA to determine the correlations between phytoplankton accessory pigment concentrations and a suite of abiotic factors associated with freshwater inflow (salinity, DIN, PO4, secchi). Phytoplankton pigment concentrations and water quality parameters were collected across Galveston Bay on a monthly basis from 2008-2013. In the upper region of the bay nearest the river source Dinophyceae, Cryptophyceae (winter (Dec-Feb)) and Chlorophyceae (winter and spring (Mar-May)) were significantly correlated to freshwater inflow and nutrient concentrations PO4 (p<0.05). Increased concentrations of Bacillariophyceae and Cyanophyceae (summer (Jun-Aug)) were significantly correlated to lower concentrations of DIN (p<0.05). Near the mouth of the estuary there was a significant correlation between the increase in Bacillariophyceae, Cyanophyceae, Cryptophyceae and Dinophyceae with decreasing PO4 (p<0.05). Within the dynamic system of Galveston Bay we are working to apply a Phytoplankton Index of Biotic Integrity as a means of monitoring the biological health of this ecologically and economically important estuarine ecosystem.

  7. Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae).

    PubMed

    Gómez, Fernando; Moreira, David; López-García, Purificación

    2010-07-01

    The order Noctilucales or class Noctiluciphyceae encompasses three families of aberrant dinoflagellates (Noctilucaceae, Leptodiscaceae and Kofoidiniaceae) that, at least in some life stages, lack typical dinoflagellate characters such as the ribbon-like transversal flagellum or condensed chromosomes. Noctiluca scintillans, the first dinoflagellate to be described, has been intensively investigated. However, its phylogenetic position based on the small subunit ribosomal DNA (SSU rDNA) sequence is unstable and controversial. Noctiluca has been placed either as an early diverging lineage that diverged after Oxyrrhis and before the dinokaryotes -core dinoflagellates- or as a recent lineage branching from unarmoured dino fl agellates in the order Gymnodiniales. So far, the lack of other noctilucoid sequences has hampered the elucidation of their phylogenetic relationships to other dino fl agellates. Furthermore, even the monophyly of the noctilucoids remained uncertain. We have determined SSU rRNA gene sequences for Kofoidiniaceae, those of the type Spatulodinium (=Gymnodinium) pseudonoctiluca and another Spatulodinium species, as well as of two species of Kofoidinium, and the first gene sequence of Leptodiscaceae, that of Abedinium (=Leptophyllus) dasypus. These taxa were collected from their type localities, the English Channel and the NW Mediterranean Sea, respectively. Phylogenetic analyses place the Noctilucales as a monophyletic group at a basal position close to parasites of the Marine Alveolate Group I (MAGI) and the Syndiniales (MAGII), before the core of dinokaryotic dinoflagellates, although with moderate support. 2010 Elsevier GmbH. All rights reserved.

  8. Sichuan Snub-Nosed Monkeys (Rhinopithecus roxellana) Consume Cicadas in the Qinling Mountains, China.

    PubMed

    Yang, Bin; Zhang, Peng; Garber, Paul A; Hedley, Richard; Li, Baoguo

    2016-01-01

    There is limited information on insectivory in folivorous primates. Here, we report that wild Sichuan snub-nosed monkeys (Rhinopithecus roxellana) consume cicadas (Karenia caelatata) in the Qinling Mountains of China. Our research suggests that snub-nosed monkeys expand their diet and prey on cicadas during summer and early autumn, possibly in response to increased availability of these insects and their relatively high protein and fat content relative to leaves. © 2016 S. Karger AG, Basel.

  9. Mixotrophy and Nitrogen Uptake by Pfiesteria Piscicida (Dinophyceae)

    Treesearch

    Alan J. Lewitus; Bonnie M. Willis; Kenneth C. Hayes; JoAnn M. Burkholder; Howard B. Gasgow; Patricia M. Gilbert

    1999-01-01

    The nutritional versatility of dinoflagellates is a complicating factor in identifying potential links between nutrient eurichment and the proliferation of harmful algal bloom. For exmaple, although dinoflagellates associated with hamful algal blooms (e.g. red tides) are generally considered to be phototrophic and we inorganic nutrients such as nitrate or phosphate,...

  10. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae).

    PubMed

    Thornhill, D J; Howells, E J; Wham, D C; Steury, T D; Santos, S R

    2017-05-01

    Symbiodinium is a diverse genus of unicellular dinoflagellate symbionts associating with various marine protists and invertebrates. Although the broadscale diversity and phylogenetics of the Symbiodinium complex is well established, there have been surprisingly few data on fine-scale population structure and biogeography of these dinoflagellates. Yet population-level processes contribute strongly to the biology of Symbiodinium, including how anthropogenic-driven global climate change impacts these symbionts and their host associations. Here, we present a synthesis of population-level characteristics for Symbiodinium, with an emphasis on how phylogenetic affinities, dynamics within and among host individuals, and a propensity towards clonality shape patterns on and across reefs. Major inferences include the following: (i) Symbiodinium populations within individual hosts are comprised mainly of cells belonging to a single or few genetic clones. (ii) Symbiont populations exhibit a mixed mode of reproduction, wherein at least one sexual recombination event occurs in the genealogy between most genotypes, but clonal propagation predominates overall. (iii) Mutualistic Symbiodinium do not perpetually persist outside their hosts, instead undergoing turnover and replacement via the continuous shedding of viable clonal cells from host individuals. (iv) Symbiont populations living in the same host, but on different reefs, are often genetically subdivided, suggesting low connectivity, adaptation to local conditions, or prolific asexual reproduction and low effective population sizes leading to disproportionate success within and among hosts. Overall, this synthesis forms a basis for future investigations of coral symbiosis ecology and evolution as well as delimitation of species boundaries in Symbiodinium and other eukaryotic microorganisms. © 2017 John Wiley & Sons Ltd.

  11. Specific toxic effect of dinoflagellate Heterocapsa circularisquama on the rotifer Brachionus plicatilis.

    PubMed

    Kim, D; Sato, Y; Oda, T; Muramatsu, T; Matsuyama, Y; Honjo, T

    2000-12-01

    Heterocapsa circularisquama (Dinophyceae), a noxious red tide dinoflagellate, is known to have a specifically lethal effect on shellfish, especially bivalves such as pearl oyster (Pinctada fucata), but no detrimental effects of this alga on fishes have not been observed so far. In this study, we found that H. circularisquama was toxic to a microzooplankton, a rotifer (Brachionus plicatilis) in a cell concentration-dependent manner, while the cultured supernatant or ultrasonic ruptured H. circularisquama had no significant toxic effect on the rotifer. Since no such toxic effects on the rotifer were observed in Chattonella marina, Heterosigma akashiwo, or Cochlodinium polykrikoides, other species of harmful red tide plankton, H. circularisquama may have a strictly specific toxic mechanism against the rotifer as well as bivalves.

  12. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis.

    PubMed

    Glibert, Patricia M; Icarus Allen, J; Artioli, Yuri; Beusen, Arthur; Bouwman, Lex; Harle, James; Holmes, Robert; Holt, Jason

    2014-12-01

    Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services. © 2014 John Wiley & Sons Ltd.

  13. How do "mute" cicadas produce their calling songs?

    PubMed

    Luo, Changqing; Wei, Cong; Nansen, Christian

    2015-01-01

    Insects have evolved a variety of structures and mechanisms to produce sounds, which are used for communication both within and between species. Among acoustic insects, cicada males are particularly known for their loud and diverse sounds which function importantly in communication. The main method of sound production in cicadas is the tymbal mechanism, and a relative small number of cicada species possess both tymbal and stridulatory organs. However, cicadas of the genus Karenia do not have any specialized sound-producing structures, so they are referred to as "mute". This denomination is quite misleading, as they indeed produce sounds. Here, we investigate the sound-producing mechanism and acoustic communication of the "mute" cicada, Karenia caelatata, and discover a new sound-production mechanism for cicadas: i.e., K. caelatata produces impact sounds by banging the forewing costa against the operculum. The temporal, frequency and amplitude characteristics of the impact sounds are described. Morphological studies and reflectance-based analyses reveal that the structures involved in sound production of K. caelatata (i.e., forewing, operculum, cruciform elevation, and wing-holding groove on scutellum) are all morphologically modified. Acoustic playback experiments and behavioral observations suggest that the impact sounds of K. caelatata are used in intraspecific communication and function as calling songs. The new sound-production mechanism expands our knowledge on the diversity of acoustic signaling behavior in cicadas and further underscores the need for more bioacoustic studies on cicadas which lack tymbal mechanism.

  14. How Do “Mute” Cicadas Produce Their Calling Songs?

    PubMed Central

    Luo, Changqing; Wei, Cong; Nansen, Christian

    2015-01-01

    Insects have evolved a variety of structures and mechanisms to produce sounds, which are used for communication both within and between species. Among acoustic insects, cicada males are particularly known for their loud and diverse sounds which function importantly in communication. The main method of sound production in cicadas is the tymbal mechanism, and a relative small number of cicada species possess both tymbal and stridulatory organs. However, cicadas of the genus Karenia do not have any specialized sound-producing structures, so they are referred to as “mute”. This denomination is quite misleading, as they indeed produce sounds. Here, we investigate the sound-producing mechanism and acoustic communication of the “mute” cicada, Karenia caelatata, and discover a new sound-production mechanism for cicadas: i.e., K. caelatata produces impact sounds by banging the forewing costa against the operculum. The temporal, frequency and amplitude characteristics of the impact sounds are described. Morphological studies and reflectance-based analyses reveal that the structures involved in sound production of K. caelatata (i.e., forewing, operculum, cruciform elevation, and wing-holding groove on scutellum) are all morphologically modified. Acoustic playback experiments and behavioral observations suggest that the impact sounds of K. caelatata are used in intraspecific communication and function as calling songs. The new sound-production mechanism expands our knowledge on the diversity of acoustic signaling behavior in cicadas and further underscores the need for more bioacoustic studies on cicadas which lack tymbal mechanism. PMID:25714608

  15. Antialgal compounds with antialgal activity against the common red tide microalgae from a green algae Ulva pertusa.

    PubMed

    Sun, Ying-Ying; Zhou, Wen-Jing; Wang, Hui; Guo, Gan-Lin; Su, Zhen-Xia; Pu, Yin-Fang

    2018-08-15

    Nine antialgal active compounds, (i.e. trehalose (1), twenty-two methyl carbonate (2), (-)-dihydromenisdaurilide (3), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (4), isophytol (5), 8-hexadecenol (6), 17-hydroxyheptadecanoic acid (7), trans-asarone (8) and 2-amino-3-mercaptopropanoic acid (9)) were isolated from Ulva pertusa for the first time by sephadex LH-20 column chromatography, silica gel column chromatography and repeated preparative TLC. Except for compound 4, all compounds represented novel isolated molecules from marine macroalgae. Further, antialgal activities of these compounds against Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globosa, Prorocentrum donghaiense and Skeletonema costatum were investigated for the first time. Results showed these nine compounds have selectivity antialgal effects on all test red tide microalgae, and antialgal activities against red tide microalgae obviously enhanced with the increase of concentration of antialgal compounds. Based on this, EC 50-96 h values of these nine compounds for six red tide microalgae were obtained for the first time. By analyzing and comparing EC 50-96 h values, it has been determined that seven compounds (1, 3, 4, 6, 7, 8 and 9) showed the superior application potential than potassium dichromate or gossonorol and other six compounds as a characteristic antialgal agent against Heterosigma akashiwo, Karenia mikimitoi and Prorocentrum donghaiense. Overall this study has suggested that green algae Ulva pertusa is a new source of bioactive compounds with antialgal activity. Copyright © 2018. Published by Elsevier Inc.

  16. Exacerbation of asthma by Florida "red tide" during an ocean sailing trip.

    PubMed

    Steensma, David P

    2007-09-01

    A 36-year-old man with adult-onset nonallergic triad asthma developed acute bronchospasm and copious sputum production during an offshore sailing excursion on the Gulf Coast of Florida. Symptoms were linked to proximity to blooms of the marine dinoflagellate Karenia brevis (red tide) and heavy aerosolized brevetoxin exposure, and symptoms recurred during rechallenge. Patients with respiratory disease who are planning a visit to red tide-prone seaside areas should be cautioned to bring their pulmonary medications, and clinicians should be aware that reactive airway symptoms may be triggered by exposure to red tide.

  17. Responses of phytoplankton community to the input of different aerosols in the East China Sea

    NASA Astrophysics Data System (ADS)

    Meng, X.; Chen, Y.; Wang, B.; Ma, Q. W.; Wang, F. J.

    2016-07-01

    Atmospheric deposition can affect marine phytoplankton by supplying macronutrients and trace elements. We conducted mesocosm experiments by adding aerosols with different composition (dominated by mineral dust, biomass burning and high Cu, and secondary aerosol, respectively) to the surface seawater of the East China Sea. Chlorophyll a concentrations were found to be the highest and lowest after adding aerosols containing the highest Fe and dissolved inorganic nitrogen (DIN), respectively. The relative abundance of Haptophyceae increased significantly after adding mineral dust, whereas diatom, Dinophyceae and Cryptophyceae reached the maximum accompanied with the highest DIN. Our results suggest that Fe may be more important than DIN in promoting primary productivity in the sampled seawater. The input of mineral dust and anthropogenic aerosols may result in distinct changes of phytoplankton community structure.

  18. Expanding the Symbiodinium (Dinophyceae, Suessiales) Toolkit Through Protoplast Technology.

    PubMed

    Levin, Rachel A; Suggett, David J; Nitschke, Matthew R; van Oppen, Madeleine J H; Steinberg, Peter D

    2017-09-01

    Dinoflagellates within the genus Symbiodinium are photosymbionts of many tropical reef invertebrates, including corals, making them central to the health of coral reefs. Symbiodinium have therefore gained significant research attention, though studies have been constrained by technical limitations. In particular, the generation of viable cells with their cell walls removed (termed protoplasts) has enabled a wide range of experimental techniques for bacteria, fungi, plants, and algae such as ultrastructure studies, virus infection studies, patch clamping, genetic transformation, and protoplast fusion. However, previous studies have struggled to remove the cell walls from armored dinoflagellates, potentially due to the internal placement of their cell walls. Here, we produce the first Symbiodinium protoplasts from three genetically and physiologically distinct strains via incubation with cellulase and osmotic agents. Digestion of the cell walls was verified by a lack of Calcofluor White fluorescence signal and by cell swelling in hypotonic culture medium. Fused protoplasts were also observed, motivating future investigation into intra- and inter-specific somatic hybridization of Symbiodinium. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Generation of Symbiodinium protoplasts opens exciting, new avenues for researching these crucial symbiotic dinoflagellates, including genetic modification. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  19. Red tides in the Gulf of Mexico: Where, when, and why?

    PubMed Central

    Walsh, J. J.; Jolliff, J. K.; Darrow, B. P.; Lenes, J. M.; Milroy, S. P.; Remsen, A.; Dieterle, D. A.; Carder, K. L.; Chen, F. R.; Vargo, G. A.; Weisberg, R. H.; Fanning, K. A.; Muller-Karger, F. E.; Shinn, E.; Steidinger, K. A.; Heil, C. A.; Tomas, C. R.; Prospero, J. S.; Lee, T. N.; Kirkpatrick, G. J.; Whitledge, T. E.; Stockwell, D. A.; Villareal, T. A.; Jochens, A. E.; Bontempi, P. S.

    2010-01-01

    [1] Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of ~1 ug chl l–1 of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of ~10 ug chl l–1. The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication. PMID:20411040

  20. Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates.

    PubMed

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S

    2008-05-22

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  1. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    PubMed Central

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S.

    2008-01-01

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum. PMID:18728765

  2. MIXOTROPHY AND NITROGEN UPTAKE BY PFIESTERIA PISCICIDA (DINOPHYCEAE). (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. A SECOND SPECIES OF ICHTHYOTOXIC PFIESTERIA (DINAMOEBALES, DINOPHYCEAE). (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. Synonymy and biogeography of the dinoflagellate genus Histioneis (Dinophysiales: Dinophyceae).

    PubMed

    Gómez, Fernando

    2007-06-01

    The genus Histioneis (=Parahistioneis) contains an excessive number of poorly described species, often based on the observation of a single specimen and ignoring the intraspecific variability. In order to investigate the validity of the species and to suggest synonyms, the original illustrations of all known species of Histioneis are reproduced and grouped based on the morphological similarity. The scarce records and the uncertainties on the identification at the species level are responsible of the lack of biogeographical information. Large and highly ornamented species tended to appear in tropical waters, whereas smaller and less ornamented species showed a wider distribution and they can also found in temperate waters such as the Mediterranean Sea.

  5. Optimal N:P ratios of growth media: quantification of nutrient-replete growth rates in five ion hyperspace for Chlorella vulgaris (Dinophyceae) and Peridinium cinctum (Dinophyceae).

    USDA-ARS?s Scientific Manuscript database

    In this study our principal goal was to quantify the main effects and interactions of several primary nutrient and bulk solution ions. The total ion concentration range chosen spans fresh to brackish waters (1-30 milliMolar) and explores most of the hypervolume delineated by the five ion/concentrat...

  6. Interpretation of an index of phytoplankton population composition calculated from Remote Airborne Fluorsensor (RAF) data

    NASA Technical Reports Server (NTRS)

    Farmer, F. H.

    1981-01-01

    The calculation of indices of phytoplankton population composition from chlorophyll a fluorescence at 685 nm excited by narrow band light at 454 and 539 nm is discussed. The ratio of the fluorescence excited by light of these two wavelengths is a function of the distribution of the phytoplankton between two color groups, designated the golden-brown and the green. The golden-brown group consists of those species which have the highly photosynthetically active carotenoid-chlorophyll-a-protein complexes, i.e. members of the classes Bacillariophyceae, diatoms Dinophyceae, dinoflagellates, and some members of the class Prymnesiophyceae. The green color group consists those species of phytoplankton which apparently lack those complexes, i.e. members of the classes Chlorophyceae, Euglenophyceae, Prasinophyceae, Eustigmatophyceae, Xanthophyceae, and a few members of the Prymnesiophyceae. A few species of phytoplankton appear to have intermediate characteristics, and would apparently belong to neither group. Most of these species are members of the class Cryptophyceae. The composition index for this class is examined in detail.

  7. Influence of solar and geomagnetic activity in Gymnodinium catenatum (Dinophyceae) cultures.

    PubMed

    Vale, Paulo

    2017-01-01

    Laboratory cultures of the paralytic shellfish poisoning producing microalga Gymnodinium catenatum were subjected to a hypo-osmotic shock and changes in cell concentration were observed in two separate experiments of 8 and 24 hours duration, respectively. The increase in geomagnetic activity (GMA), radio and X-ray fluxes and solar X-ray flares were negatively correlated with cell numbers. Cell losses were observed in the short experiment, but not in the longest one. GMA action was related to the course of the experimental period, while electromagnetic radiation (EMR) was only significantly related when the previous hours before the experiments were considered. The differential action windows might be indicative of two differential disruptive mechanisms: EMR might act on DNA synthesis and mitosis phases of the cell cycle (taking place in the dark period) and GMA might be more disruptive at the end of mytosis or cytokinesis phases taking place in the light period. Formation of long chains (> 4 cells/chain) was reduced with salinity and with temperatures above 27ºC but increased with EMR and GMA, particularly when grown at the highest temperatures recorded during the study period (≥28ºC).

  8. Kofoidinium, Spatulodinium and other kofoidiniaceans (Noctilucales, Dinophyceae) in the Pacific Ocean.

    PubMed

    Gómez, Fernando; Furuya, Ken

    2007-06-01

    Examples of rarely reported dinoflagellates of the family Kofoidiniaceae F.J.R. Taylor (Noctilucales) from the northwest, equatorial and southeast Pacific Ocean are described and illustrated. Kofoidinium was the most ubiquitous genus with a maximum abundance of 10 cells L(-1). Specimens of this genus were identified to four species: Kofoidinium sp. that showed a pointed extension that emerges from the antero-ventral region and K. velelloides, both of which had diameters that ranged from 40 to 200 microm; Kofoidinium pavillardii which showed a rounded epitheca and a larger size (approximately 300-700 microm in diameter); and another species, tentatively identified as K. splendens, that contained red circular inclusions. Further research is needed to clarify the characteristics that separate K. splendens from the other species. This study is the first to record the genus Spatulodinium in tropical waters and in the southern hemisphere. S. cf. pseudonoctiluca was found in the southeast Pacific Ocean, as well as other smaller specimens with a different shape or disposition of the tentacle that may belong to two other species. In the northwest and equatorial Pacific, specimens of Spatulodinium showed a green pigmentation that suggested the existence of the first species known in the order Noctilucales to contain its own chloroplasts. Immature stages of kofoidiniaceans, some containing symbiotic microalgae, are illustrated, as well as mature stages related to Pomatodinium and to unknown genera of kofoidiniaceans. Kofoidiniaceans are shown to be common and widely distributed in the Pacific, and are probably also frequent in other oceans, but are rarely recognised.

  9. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution

    PubMed Central

    Xu, Yixiao; Richlen, Mindy L.; Liefer, Justin D.; Robertson, Alison; Kulis, David; Smith, Tyler B.; Parsons, Michael L.; Anderson, Donald M.

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain their broad geographic distribution. In contrast, G. silvae and Gambierdiscus sp. types 4–5 all displayed a comparatively narrow range of tolerance to temperature, salinity, and irradiance. PMID:27074134

  10. EFFECTS OF RED TIDE (KARENIA BREVIS) ON PISCIVOROUS BIRDS IN SARASOTA BAY, FLORIDA

    EPA Science Inventory

    Red tide will cause changes in the abundance and distribution of fishes, which will be accompanied by changes in the patterns of habitat use by birds. Birds will be affected by exposure to brevetoxin via their prey and they will also face decreased availability of prey during...

  11. Molecular Quantification of the Florida Red Tide Dinoflagellate and the Development of Low Cost, Volunteer-attended Handheld Sensor Networks

    NASA Astrophysics Data System (ADS)

    Nieuwkerk, D.; Ulrich, R. M.; Paul, J. H.; Hubbard, K.; Kirkpatrick, B. A.; Fanara, T. A.; Bruzek, S.; Hoeglund, A.

    2016-02-01

    Harmful algal blooms of the dinoflagellate Karenia brevis can cause massive fish-kills and marine mammal mortalities, as well as impact human health via the consumption of brevetoxin-contaminated shellfish and the inhalation of aerosolized toxins. There is a strong effort to predict human health impacts by monitoring the bloom stages of K. brevis, and to prevent health impacts by closing shellfish beds when K. brevis cell concentrations reach toxic levels. The current standard method for quantifying K. brevis is by microscopic enumeration, which requires taxonomic expertise to discern K. brevis cells from other Karenia species as well as a long turnover time to generate data, which limits the number of water samples that can be processed. This EPA-funded study compared a variety of technologies against the current standard (microscopic counts) to quantify the number of K. brevis cells per liter in the water column. Results of this study showed a strong correlation between Real Time Nucleic Acid Sequence-Based Amplification (RT-NASBA) and enumeration by microscopy performed by members of the Florida Fish and Wildlife Research Institute, who are responsible for such monitoring. We are adapting the bench-top RT-NASBA assay to the AmpliFire platform (a handheld sensor that can be used in the field), for point of need K. brevis detection. These handheld sensors will be used by a trained volunteer network and government agencies (FWC, NOAA, and Mote Marine Lab.) to quantify K. brevis cells in the water column of core Gulf of Mexico sites; the results from these sensors will be reported back to the GCOOS observation systems to provide real-time monitoring of K. brevis counts. The real-time information will allow agencies to better monitor fishery closures and predict human health impacts of harmful algal blooms, because a larger number of samples can be processed each week, as the NASBA process removes the rate-limiting step of microscope time.

  12. A novel portable filtration system for sampling and concentration of microorganisms: Demonstration on marine microalgae with subsequent quantification using IC-NASBA.

    PubMed

    Loukas, Christos-Moritz; Mowlem, Matthew C; Tsaloglou, Maria-Nefeli; Green, Nicolas G

    2018-05-01

    This paper presents a novel portable sample filtration/concentration system, designed for use on samples of microorganisms with very low cell concentrations and large volumes, such as water-borne parasites, pathogens associated with faecal matter, or toxic phytoplankton. The example application used for demonstration was the in-field collection and concentration of microalgae from seawater samples. This type of organism is responsible for Harmful Algal Blooms (HABs), an example of which is commonly referred to as "red tides", which are typically the result of rapid proliferation and high biomass accumulation of harmful microalgal species in the water column or at the sea surface. For instance, Karenia brevis red tides are the cause of aquatic organism mortality and persistent blooms may cause widespread die-offs of populations of other organisms including vertebrates. In order to respond to, and adequately manage HABs, monitoring of toxic microalgae is required and large-volume sample concentrators would be a useful tool for in situ monitoring of HABs. The filtering system presented in this work enables consistent sample collection and concentration from 1 L to 1 mL in five minutes, allowing for subsequent benchtop sample extraction and analysis using molecular methods such as NASBA and IC-NASBA. The microalga Tetraselmis suecica was successfully detected at concentrations ranging from 2 × 10 5  cells/L to 20 cells/L. Karenia brevis was also detected and quantified at concentrations between 10 cells/L and 10 6  cells/L. Further analysis showed that the filter system, which concentrates cells from very large volumes with consequently more reliable sampling, produced samples that were more consistent than the independent non-filtered samples (benchtop controls), with a logarithmic dependency on increasing cell numbers. This filtering system provides simple, rapid, and consistent sample collection and concentration for further analysis, and could be

  13. Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects

    PubMed Central

    Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.

    2005-01-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773

  14. Overview of aerosolized Florida red tide toxins: exposures and effects.

    PubMed

    Fleming, Lora E; Backer, Lorraine C; Baden, Daniel G

    2005-05-01

    Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins.

  15. Seasonal and interannual study of volatile reduced sulfur compounds (VRSC) in coastal environment: the Bay of Quiberon (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Cozic-Houly, A.; Viollier, E.; Sarazin, G.; Knoery, J.

    2009-10-01

    Seasonal and annual variability of hydrogen sulfide (H2S), carbonyl sulfide (OCS), methane thiol (MeSH), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) concentrations and supporting parameters (e.g., phytoplanktonic cells abundance) were investigated in a coastal marine environment, the Bay of Quiberon (Brittany, France) from July 2004 to August 2006. The sampling was conducted in the water column, within two meters of the sediment water interface (SWI). Minimum and maximum values were <0.1-1.6 nmol L-1 for H2S, <0.1-4.2 nmol L-1 for OCS, <0.1-7.8 nmol L-1 for MeSH, <0.1-17.5 nmol L-1 for DMS and <0.1-1.7 nmol L-1 for DMDS. Vertical carbonyl sulfide distribution showed seasonal variations with lower concentration near the SWI in winter and bottom enrichments near sediments in summer. Vertical sulfide distribution not seems to be influenced by the shallow sediments. The likely influence of Dinophyceae abundance on the MeSH, DMS and DMDS concentrations was evident for the 3-summer monitored period.

  16. Genetic diversity patterns of microeukaryotic plankton communities in Shenhu Bay, southeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Pan, Yongbo; Yu, Lingyu; Liu, Lemian

    2017-06-01

    Microeukaryotic plankton is an abundant and diverse component of marine environments and plays an important role in microbial food webs. However, few studies have been conducted on the genetic diversity of microeukaryotes in the subtropical bays of China. In the present study, we investigated the microeukaryotic plankton in the Shenhu Bay by using denaturing gradient gel electrophoresis (DGGE) and sequencing of prominent bands. Our results indicated that Copepoda and Dinophyceae were the most diverse groups, and that the microeukaryotic communities varied significantly between summer and autumn, with the autumn communities exhibited a higher diversity than summer communities. Furthermore, the community composition and diversity from both surface and bottom waters showed more significant differences in summer than in autumn. Environmental parameters also displayed obvious seasonal patterns. Redundancy analysis (RDA) showed that temperature was the most significant environmental factor shaping the seasonal patterns of the microplanktonic members in the Shenhu Bay. Community-level molecular techniques such as DGGE appear as useful tools to detect the presence of red tide causing species and to guide the management of coastal water mariculture.

  17. The physiology of dimethylsulfoniopropionate (DMSP) production in phytoplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, M.D.; Bellows, W.K.

    1990-06-01

    Dimethylsulfoniopropionate (DMSP) is the precursor of dimethyl sulfide (DMS), the primary volatile organic sulfur compound released from the world's oceans. DMS flux from the oceans is estimated currently at {approximately}1.2 Tmol S.y{sup {minus}1}, or about half the amount of sulfur resulting from anthroprogenic activities, and has been implicated in important global atmospheric processes. Significant production of DMSP is confined to a few classes of marine phytoplankton, primarily the Dinophyceae and Prymnesiophyceae. In these groups, DMSP can account for up to 80% of total organic sulfur. DMSP remains intracellular and fairly constant over the growth cycle until late stationary phase whenmore » extracellular levels begin to rise, suggesting leakage. We have examined the effects of a number of environmental variables on DMSP production and release in several marine phytoplankton. In particular the effects of perturbations in light, temperature and nutrient status have been determined. These results will be discussed in relation to marine sulfur chemistry, with ancillary comments on freshwater phytoplankton.« less

  18. OVERVIEW AND PRESENT STATUS OF THE TOXIC PFIESTERIA COMPLEX (DINOPHYCEAE). (R825551)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Bloom of the Yessotoxin producing dinoflagellate Protoceratium reticulatum (Dinophyceae) in Northern Chile

    NASA Astrophysics Data System (ADS)

    Álvarez, Gonzalo; Uribe, Eduardo; Díaz, Rosario; Braun, Mauricio; Mariño, Carmen; Blanco, Juan

    2011-05-01

    In summer 2007, a dinoflagellate preliminarily identified as Protoceratium reticulatum bloomed in Bahía Mejillones, northern Chile. Phytoplankton samples were analyzed in detail by light and scanning electron microscopy revealing the presence of resting cyst and motile cells of P. reticulatum. Oceanographic and phytoplankton data suggest that the bloom was initiated offshore by motile cells and germinated cysts during an upwelling pulse. These cells were advected into the bay when upwelling relaxed and grew without any relevant competitor. Phytoplankton net samples were found to contain yessotoxin as the only toxin in an estimated proportion of 0.2 and 0.4 pg cell - 1 , thus confirming that P. reticulatum is a source of yessotoxin in northern Chilean waters and consequently that it poses a risk for human health and mollusk exploitation in the area.

  20. Molecular phylogeny of the ocelloid-bearing dinoflagellates erythropsidinium and warnowia (warnowiaceae, dinophyceae).

    PubMed

    Gómez, Fernando; López-García, Purificación; Moreira, David

    2009-01-01

    Members of the family Warnowiaceae are unarmored phagotrophic dinoflagellates that possess an ocelloid. The genus Erythropsidinium (=Erythropsis) has also developed a unique dynamic appendage, the piston, which is able to independently retract and extend for at least 2 min after the cell lyses. We provide the first small subunit ribosomal RNA gene sequences of warnowiid dinoflagellates, those of the type Erythropsidinium agile and one species of Warnowia. Phylogenetic analyses show that warnowiid dinoflagellates branch within the Gymnodinium sensu stricto group, forming a cluster separated from the Polykrikos clade and with autotrophic Pheopolykrikos beauchampii as closest relative. This reinforces their classification as unarmored dinoflagellates based on the shape of the apical groove, despite the strong ecological and ultrastructural diversity of the Gymnodinium s.s. group. Other structures, such as the ocelloid and piston, have no systematic value above the genus level.

  1. Sinophysis and Pseudophalacroma are distantly related to typical Dinophysoid dinoflagellates (Dinophysales, Dinophyceae).

    PubMed

    Gómez, Fernando; Moreira, David; López-García, Purificación

    2012-01-01

    Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Dinophysoid dinoflagellates are usually considered a large monophyletic group. Large subunit and small subunit (SSU) rDNA phylogenies suggest a basal position for Amphisoleniaceae (Amphisolenia,Triposolenia) with respect to two sister groups, one containing most Phalacroma species plus Oxyphysis and the other Dinophysis,Ornithocercus, Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. Histioneis,Citharistes and some Phalacroma species. We provide here new SSU rDNA sequences of Pseudophalacroma (pelagic) and Sinophysis (the only benthic dinophysoid genus). Molecular phylogenies support that they are very divergent with respect to the main clade of Dinophysales. Additional molecular markers of these two key genera are needed to elucidate the evolutionary relations among the dinophysoid dinoflagellates. © 2011 The Author(s) Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  2. Allelopathic effect of Chattonella marina var. marina (Raphidophyceae) on Gymnodinium catenatum (Dinophycea).

    PubMed

    Fernández-Herrera, Leyberth J; Band-Schmidt, Christine J; López-Cortés, David J; Hernández-Guerrero, Claudia J; Bustillos-Guzmán, José J; Núñez-Vázquez, Erick

    2016-01-01

    The allelopathic effect of the raphidophyte Chattonella marina var. marina on the dinoflagellate Gymnodinium catenatum was determined. Both species are harmful algal bloom forming algae, produce toxic metabolites, and can co-exist in the environment. In general, raphidophytes tend to dominate over dinoflagellates, which may indicate an allelopathic effect of the former algae. Strains of C. marina var. marina and G. catenatum isolated from Bahía de La Paz were cultured in bi-algal cultures with and without cell contact. Additionally, cultures of G. catenatum were exposed to cell-free culture filtrates of the raphidophyte to test whether soluble allelopathic molecules are active. During late stationary phase, both species were cultivated in mixed cultures for 72h using the following cell abundance proportions: 20×10 3 cellsL -1 : 20×10 3 cellsL -1 (1:1; G. catenatum: C. marina); 10×10 3 cellsL -1 : 20×10 3 cellsL -1 (1:2), and 20×10 3 cellsL -1 : 10×10 3 cellsL -1 (2:1). Cells of G. catenatum were also exposed to different volumes of cell filtrates of C. marina (10, 20, and 50mL) using the same cell abundance proportions for 24h. Samples were taken daily for cell counts and microscopic observations. Growth inhibition was higher when there was cell contact between both species, however mortality of G. catenatum was also observed without direct cell contact, indicating that toxic metabolites are liberated to the culture medium. Changes in cell morphology of G. catenatum occurred in the presence of cells and filtrates of C. marina, such as loss of flagella and motility, swelling, loss of girdle and sulci, prominent nucleus, rupture of cell membrane, and cell lysis. Induction of temporary cysts was also observed. These results suggest that toxic metabolites are liberated to the medium by C. marina, affecting G. catenatum by inhibiting its growth and causing changes in its life history, providing new insights of interactions between raphidophytes and dinoflagellates that could happen in the natural environment when both species are present. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. [Marine biotoxins on the Tunisian coast: current state of knowledge].

    PubMed

    Marrouchi, R; Belayouni, N; Dziri, F; Kharrat, R

    2012-01-01

    In Tunisia, the most important sector of aquaculture is shellfish farming industry. Unfortunately, in recent years this sub-sector knows many problems of shellfish contamination due to blooms of toxic algae. This phenomenon occurred for the first time in 1994 in the Gulf of Gabes after the proliferation of Karenia cf. selliformis which synthesizes gymnodimine, a potent neurotoxin. Following these effects, several collection sites especially Boughrara lagoon, were closed for extended periods. Recently, an atypical toxicity was detected, initial characterization studies carried out by LC-MS showed that the toxins detected probably belong to the family PSP toxins. The lagoon of Bizerte was also known since 2006, a repeatable events of contamination of mussels and oysters. As a result, many samples were DSP and PSP positive with concentrations up to 2100 microg eq.STX/100 g meat.

  4. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea.

    PubMed

    Pearman, J K; Kürten, S; Sarma, Y V B; Jones, B H; Carvalho, S

    2016-03-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Toxicity of clay flocculation of the toxic dinoflagellate, Karenia brevis, to estuarine invertebrates and fish

    EPA Science Inventory

    The benthic environmental effects of proposed control procedures for red tide events are relatively unknown but important to understand. The objective of this study was to determine the laboratory-derived toxicities of a clay flocculation technique proposed for the Florida red ti...

  6. STEROLS OF THE HETEROTROPHIC DINOFLAGELLATE, PFIESTERIA PISCICIDA (DINOPHYCEAE): IS THERE A LIPID BIOMARKER?

    EPA Science Inventory

    Within United States waters, blooms of the dinoflagellate, Pfiesteria piscicida, have been recorded on an almost regular basis in the Chesapeake Bay and surrounding mid-Atlantic regions for the last two decades. Despite the apparent significance of such blooms to the environment ...

  7. Development of compound microsatellite markers in red-tide-causing dinoflagellate Akashiwo sanguinea (Dinophyceae).

    PubMed

    Cho, S-Y; Nagai, S; Nishitani, G; Han, M-S

    2009-05-01

    We isolated 13 polymorphic microsatellites from the red-tide causing dinoflagellate Akashiwo sanguinea. These loci were highly variable, with between 2 and 10 alleles per locus, and estimated gene diversity ranging from 0.08 to 0.82. These loci have the potential to reveal genetic structure and estimate gene flow among A. sanguinea populations. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  8. The cytotoxic mechanism of karlotoxin 2 (KmTx 2) from Karlodinium veneficum (Dinophyceae)

    PubMed Central

    Deeds, Jonathan R.; Hoesch, Robert E.; Place, Allen R.; Kao, Joseph P.Y.

    2015-01-01

    This study demonstrates that the polyketide toxin karlotoxin 2 (KmTx 2) produced by Karlodinium veneficum, a dinoflagellate associated with fish kills in temperate estuaries worldwide, alters vertebrate cell membrane permeability. Microfluorimetric and electrophysiological measurements were used to determine that vertebrate cellular toxicity occurs through non-selective permeabilization of plasma membranes, leading to osmotic cell lysis. Previous studies showed that KmTx 2 is lethal to fish at naturally-occurring concentrations measured during fish kills, while sub-lethal doses severely damage gill epithelia. This study provides a mechanistic explanation for the association between K. veneficum blooms and fish kills that has long been observed in temperate estuaries worldwide. PMID:25546005

  9. [Species of dinoflagellates of the genus Gambierdiscus (Dinophyceae) in the Mexican Caribbean Sea].

    PubMed

    Hernández-Becerril, D U; Almazán Becerril, A

    2004-09-01

    Some dinoflagellates with benthic habits are related to ciguatera intoxication by fish consumption, especially in tropical areas. In the Mexican Caribbean, ciguatera is relatively common, but only one paper seems to have been published on the subject, and there are very few publicactions on phytoplankton and benthic microalgae. Material collected along the coast of the State of Quintana Roo with phytoplankton net (54 mm) and directly from sediment and epiphytes of macroscopic plants, was searched for toxic and other associated dinoflagellates. Samples were studied by light and scanning electron microscopy. Morphological characters were useful for species identification, but eventually physiological, ecological and molecular characters could also be used. Three species of Gambierdiscus, related to the production of ciguatera toxins, were identified: G. belizeanus, G. toxicus and G. yasumotoi. They are distributed in shallow coastal areas, including coastal lagoons.

  10. Morphology and phylogeny of Triadinium polyedricum (Pouchet) Dodge (Dinophyceae) from Korean coastal waters

    NASA Astrophysics Data System (ADS)

    Shin, Hyeon Ho; Li, Zhun; Kim, Eun Song; Youn, Joo Yeon; Jeon, Seul Gi; Oh, Seok Jin; Lim, Weol-Ae

    2016-12-01

    To identify features that can be used to differentiate Triadinium polyedricum from other related species, such as Fukuyoa paulensis and Alexandrium species, the detailed morphology and phylogeny of T. polyedricum collected from Korean coastal waters were investigated. The cells had a plate formula of Po, 3', 7″, 5‴, 1p and 2″″, which is consistent with morphological descriptions in previous reports. Large subunit ribosomal DNA sequences also revealed that T. polyedricum from Korean coastal waters is identical to previously recorded isolates. T. polyedricum is morphologically characterized by a ventral pore in the 1″ plate that is comparable to F. paulensis and Alexandrium species. This result indicates that the location and presence of this ventral pore seems suitable for differentiating T. polyedricum from other related species.

  11. Polyketide synthesis genes associated with toxin production in two species of Gambierdiscus (Dinophyceae).

    PubMed

    Kohli, Gurjeet S; John, Uwe; Figueroa, Rosa I; Rhodes, Lesley L; Harwood, D Tim; Groth, Marco; Bolch, Christopher J S; Murray, Shauna A

    2015-05-28

    Marine microbial protists, in particular, dinoflagellates, produce polyketide toxins with ecosystem-wide and human health impacts. Species of Gambierdiscus produce the polyether ladder compounds ciguatoxins and maitotoxins, which can lead to ciguatera fish poisoning, a serious human illness associated with reef fish consumption. Genes associated with the biosynthesis of polyether ladder compounds are yet to be elucidated, however, stable isotope feeding studies of such compounds consistently support their polyketide origin indicating that polyketide synthases are involved in their biosynthesis. Here, we report the toxicity, genome size, gene content and transcriptome of Gambierdiscus australes and G. belizeanus. G. australes produced maitotoxin-1 and maitotoxin-3, while G. belizeanus produced maitotoxin-3, for which cell extracts were toxic to mice by IP injection (LD50 = 3.8 mg kg(-1)). The gene catalogues comprised 83,353 and 84,870 unique contigs, with genome sizes of 32.5 ± 3.7 Gbp and 35 ± 0.88 Gbp, respectively, and are amongst the most comprehensive yet reported from a dinoflagellate. We found three hundred and six genes involved in polyketide biosynthesis, including one hundred and ninety-two ketoacyl synthase transcripts, which formed five unique phylogenetic clusters. Two clusters were unique to these maitotoxin-producing dinoflagellate species, suggesting that they may be associated with maitotoxin biosynthesis. This work represents a significant step forward in our understanding of the genetic basis of polyketide production in dinoflagellates, in particular, species responsible for ciguatera fish poisoning.

  12. Green tree frog (Hyla cinerea) and ground squirrel (Xerospermophilus spilosoma) mortality attributed to inland brevetoxin transportation at Padre Island National Seashore, Texas, 2015

    USGS Publications Warehouse

    Buttke, Danielle E.; Walker, Alicia; Huang, I-Shuo; Flewelling, Leanne; Lankton, Julia S.; Ballmann, Anne E.; Clapp, Travis; Lindsay, James; Zimba, Paul V.

    2018-01-01

    On 16 September 2015, a red tide (Karenia brevis) bloom impacted coastal areas of Padre Island National Seashore Park. Two days later and about 0.9 km inland, 30–40 adult green tree frogs (Hyla cinerea) were found dead after displaying tremors, weakness, labored breathing, and other signs of neurologic impairment. A rainstorm, accompanied by high winds, rough surf, and high tides, which could have aerosolized brevetoxin, occurred on the morning of the mortality event. Frog carcasses were healthy but contained significant brevetoxin in tissues. Tissue brevetoxin was also found in two dead or dying spotted ground squirrels (Xerospermophilus spilosoma) and a coyote (Canis latrans). Rainwater collected from the location of the mortality event contained brevetoxin. Mortality of green tree frog and ground squirrel mortality has not been previously attributed to brevetoxin exposure and such mortality suggested that inland toxin transport, possibly through aerosols, rainfall, or insects, may have important implications for coastal species.

  13. Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform.

    PubMed

    Tsaloglou, Maria-Nefeli; Laouenan, Florian; Loukas, Christos-Moritz; Monsalve, Lisandro Gabriel; Thanner, Christine; Morgan, Hywel; Ruano-López, Jesus M; Mowlem, Matthew C

    2013-01-21

    Quantitation of specific RNA sequences is a useful technique in marine biology that can elucidate cell abundance, speciation and viability, especially for early detection of harmful algal blooms. We are thus developing an integrated microfluidic system for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system is based on a microfluidic cartridge, or "lab-card", using a low-cost injection moulded device, with a laminated lid. Here we present real-time isothermal RNA amplification using reagent master-mixes preserved on-chip in a gel at 4 °C for up to eight months. We demonstrate quantitation by reference to an internal control in a competitive assay with 500 cell equivalents of the toxic microalga Karenia brevis. Annealing of primers, amplification at 41 °C and real-time fluorescence detection of the internal control and target using sequence-specific molecular beacons were all performed on-chip.

  14. The Art of Red Tide Science

    PubMed Central

    Hall, Emily R.; Nierenberg, Kate; Boyes, Anamari J.; Heil, Cynthia A.; Flewelling, Leanne J.; Kirkpatrick, Barbara

    2012-01-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined “The Art of Red Tide Science,” consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues. PMID:22712002

  15. The Art of Red Tide Science.

    PubMed

    Hall, Emily R; Nierenberg, Kate; Boyes, Anamari J; Heil, Cynthia A; Flewelling, Leanne J; Kirkpatrick, Barbara

    2012-05-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined "The Art of Red Tide Science," consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues.

  16. Some dinophycean red tide plankton species generate a superoxide scavenging substance.

    PubMed

    Sato, Emiko; Niwano, Yoshimi; Matsuyama, Yukihiko; Kim, Daekyung; Nakashima, Takuji; Oda, Tatsuya; Kohno, Masahiro

    2007-03-01

    Recent studies indicate that some raphidophycean red tide flagellates produce substances able to scavenge superoxide, whereas there have been no reports on superoxide scavenger production by dinophycean red tide flagellates. In this study, we examined the superoxide-scavenging activity of aqueous extracts from dinophycean red tide flagellates, Gymnodinium spp., Scrippsiella trochoidea, and Karenia sp., by a luminol analog L-012-dependent chemiluminescence (CL) method and an electron spin resonance (ESR)-spin trapping method, and compared the activity to that of raphidophycean red tide flagellates, Chattonella spp., Heterosigma akashiwo, and Fibrocapsa japonica. In the experiment applying the L-012-dependent CL method, only the aqueous extracts from raphidophycean red tide flagellates showed superoxide-scavenging activity. On the other hand, applying the ESR-spin trapping method, we found that the aqueous extracts from dinophycean red tide flagellates also showed superoxide-scavenging activity. This is the first report on the production of a superoxide-scavenger by dinophycean red tide flagellates.

  17. Brevetoxin, the Dinoflagellate Neurotoxin, Localizes to Thylakoid Membranes and Interacts with the Light-Harvesting Complex II (LHCII) of Photosystem II.

    PubMed

    Cassell, Ryan T; Chen, Wei; Thomas, Serge; Liu, Li; Rein, Kathleen S

    2015-05-04

    The brevetoxins are neurotoxins that are produced by the "Florida red tide" dinoflagellate Karenia brevis. They bind to and activate the voltage-gated sodium channels in higher organisms, specifically the Nav 1.4 and Nav 1.5 channel subtypes. However, the native physiological function that the brevetoxins perform for K. brevis is unknown. By using fluorescent and photoactivatable derivatives, brevetoxin was shown to localize to the chloroplast of K. brevis where it binds to the light-harvesting complex II (LHCII) and thioredoxin. The LHCII is essential to non-photochemical quenching (NPQ), whereas thioredoxins are critical to the maintenance of redox homeostasis within the chloroplast and contribute to the scavenging of reactive oxygen. A culture of K. brevis producing low levels of toxin was shown to be deficient in NPQ and produced reactive oxygen species at twice the rate of the toxic culture, implicating a role in NPQ for the brevetoxins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms

    USGS Publications Warehouse

    Stumpf, Richard P.

    2001-01-01

    The new satellite ocean color sensors offer a means of detecting and monitoring algal blooms in the ocean and coastal zone. Beginning with SeaWiFS (Sea Wide Field-of-view Sensor) in September 1997, these sensors provide coverage every 1 to 2 days with 1-km pixel view at nadir. Atmospheric correction algorithms designed for the coastal zone combined with regional chlorophyll algorithms can provide good and reproducible estimates of chlorophyll, providing the means of monitoring various algal blooms. Harmful algal blooms (HABs) caused by Karenia brevis in the Gulf of Mexico are particularly amenable to remote observation. The Gulf of Mexico has relatively clear water and K. brevis, in bloom conditions, tends to produce a major portion of the phytoplankton biomass. A monitoring program has begun in the Gulf of Mexico that integrates field data from state monitoring programs with satellite imagery, providing an improved capability for the monitoring of K. brevis blooms.

  19. Waking the dead: morphological and molecular characterization of extant †Posoniella tricarinelloides (Thoracosphaeraceae, Dinophyceae).

    PubMed

    Gu, Haifeng; Kirsch, Monika; Zinssmeister, Carmen; Soehner, Sylvia; Meier, K J Sebastian; Liu, Tingting; Gottschling, Marc

    2013-09-01

    The Thoracosphaeraceae are dinophytes that produce calcareous shells during their life history, whose optical crystallography has been the basis for the division into subfamilies. To evaluate the validity of the classification (mainly applied by palaeontologists), living material of phylogenetic key species is necessary albeit frequently difficult to access for contemporary morphological and molecular analyses. We isolated and established five living strains of the rare fossil-taxon †Posoniella tricarinelloides from different sediment samples collected in the South China Sea, Yellow Sea and in the Mediterranean Sea (west coast off Italy). Here, we provide detailed descriptions of its morphology and conducted phylogenetic analyses based on hundreds of accessions and thousands of informative sites on concatenated rRNA datasets. Within the monophyletic Peridiniales, †P. tricarinelloides was reliably nested in the Thoracosphaeraceae and exhibited two distinct morphological types of coccoid cells. The two morphologies of coccoid cells would have been assigned to different taxa at the subfamily level if found separately in fossil samples. Our results thus challenge previous classification concepts within the dinophytes and underline the importance of comparative morphological and molecular studies to better understand the complex biology of unicellular organisms such as †P. tricarinelloides. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Analysis of Toxic and Non-Toxic Alexandrium (Dinophyceae) Species Using Ribosomal RNA Gene Sequences

    DTIC Science & Technology

    1993-02-01

    Therriault, J.-C. (1988). Cladistic analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonyaulax. Botanica Marina 31: 39- 51. 8... Botanica Marina 34: 575-587. Halegraeff, G. M., and Bolch, C.J. (1992). Transport of toxic dinoflagellate cysts via ship’s ballast water: implications...analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonv-u.!a,. Botanica Marina 31: 39-51. Curran, J., Baillie, D.L

  1. New observations on the meiotic process in the marine dinoflagellate Noctiluca scintillans (Noctilucales, dinophyceae)

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng-Xu; Yan, Xiao-Jun

    2002-03-01

    The meiotic process in Noctiluca scintillans were observed under light microscope. Some abnormal cell divisions, incompletely separated “zoospores” and the changes of the zoospores are described in this paper. Together with the findings of field samplings and the previous results by other researcher, the process of meiosis in N. scintillans was supposed to be a pathway to reduce the extra high density of NH3-N within the cell in order to ensure normal population growth.

  2. Strong Seasonality of Marine Microbial Eukaryotes in a High-Arctic Fjord (Isfjorden, in West Spitsbergen, Norway)

    PubMed Central

    Vader, Anna; Stübner, Eike I.; Reigstad, Marit

    2016-01-01

    The Adventfjorden time series station (IsA) in Isfjorden, West Spitsbergen, Norway, was sampled frequently from December 2011 to December 2012. The community composition of microbial eukaryotes (size, 0.45 to 10 μm) from a depth of 25 m was determined using 454 sequencing of the 18S V4 region amplified from both DNA and RNA. The compositional changes throughout the year were assessed in relation to in situ fjord environmental conditions. Size fractionation analyses of chlorophyll a showed that the photosynthetic biomass was dominated by small cells (<10 μm) most of the year but that larger cells dominated during the spring and summer. The winter and early-spring communities were more diverse than the spring and summer/autumn communities. Dinophyceae were predominant throughout the year. The Arctic Micromonas ecotype was abundant mostly in the early-bloom and fall periods, whereas heterotrophs, such as marine stramenopiles (MASTs), Picozoa, and the parasitoid marine alveolates (MALVs), displayed higher relative abundance in the winter than in other seasons. Our results emphasize the extreme seasonality of Arctic microbial eukaryotic communities driven by the light regime and nutrient availability but point to the necessity of a thorough knowledge of hydrography for full understanding of their succession and variability. PMID:26746718

  3. Morphological transition in kleptochloroplasts after ingestion in the dinoflagellates Amphidinium poecilochroum and Gymnodinium aeruginosum (Dinophyceae).

    PubMed

    Onuma, Ryo; Horiguchi, Takeo

    2013-09-01

    The unarmoured marine dinoflagellate Amphidinium poecilochroum and the unarmoured freshwater dinoflagellate Gymnodinium aeruginosum both belonging to the same clade, are known to possess cryptomonad-derived kleptochloroplasts. Previous studies revealed that G. aeruginosum can synchronise the division of the chloroplast with its own cell division while no simultaneous division takes place in A. poecilochroum, which is interpreted to mean that state of kleptochloroplastidy in G. aeruginosum is closer to that of the initial acquisition of the 'true chloroplast' within the lineage. Although the general ultrastructure of these two species has been reported, the changes in the kleptochloroplast with time have never been followed. We observed morphological changes in kleptochloroplasts of A. poecilochroum and G. aeruginosum following the ingestion of cryptomonad cells, using light and transmission electron microscopes. In A. poecilochroum, the cryptomonad ejectosomes, mitochondria and cytoplasm were all actively transferred into digestive vacuoles within 1h of ingestion. The chloroplasts were deformed and the cryptomonad nucleus was digested after 3h. By contrast, in G. aeruginosum, the cryptomonad cytoplasm and nucleus were retained for 24h following ingestion, and the chloroplast was substantially enlarged. These differences imply that the retention of the cryptomonad nucleus is important for the maintenance of the chloroplast. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Phylogeny of five species of Nusuttodinium gen. nov. (Dinophyceae), a genus of unarmoured kleptoplastidic dinoflagellates.

    PubMed

    Takano, Yoshihito; Yamaguchi, Haruyo; Inouye, Isao; Moestrup, Øjvind; Horiguchi, Takeo

    2014-12-01

    Cells of five unarmoured kleptoplastidic dinoflagellates, Amphidinium latum, Amphidinium poecilochroum, Gymnodinium amphidinioides, Gymnodinium acidotum and Gymnodinium aeruginosum were observed under light and/or scanning electron microscopy and subjected to single-cell PCR. The SSU rDNA and the partial LSU rDNA of all the examined species were sequenced, and the SSU rDNA of G. myriopyrenoides was sequenced. Phylogenetic analyses revealed that the unarmoured kleptoplastidic species formed a monophyletic clade within the Gymnodinium-clade sensu Daugbjerg et al. (2000). The sister taxa for this clade were Gymnodinium palustre and Spiniferodinium galeiforme, both of which possess brown-coloured chloroplasts. The results indicated that acquisition of kleptoplastidy in these unarmoured dinoflagellates was a single event and that these unarmoured kleptoplastidic dinoflagellates may have evolved from a form with permanent chloroplasts. Molecular trees suggested that the acquisition of kleptoplastidy took place in a marine habitat and later some species colonized the freshwater habitat. Because these unarmoured kleptoplastidic dinoflagellates are monophyletic and characterized by distinct morphological and cytological features (including the presence of the same type of apical groove, absence of nuclear chambers in the nuclear envelope, absence of genuine chloroplasts, and the possession of kleptochloroplasts), we propose the establishment of a new genus, Nusuttodinium, to accommodate all these dinoflagellates. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae).

    PubMed

    Gómez, Fernando; Moreira, David; López-García, Purificación

    2010-01-01

    The dinoflagellate genus Ceratium contains marine and freshwater species. Freshwater species possess six cingular plates, thick plates in the concave ventral area and usually develop a third hypothecal horn. The marine Ceratium species (>62 species) possess five cingular plates and thin plates in the concave ventral area; a third hypothecal horn is atypical. Resting cysts, a common feature in the freshwater species, are unreported in marine species. We illustrate for the first time resting cysts in marine Ceratium species (C. furca and C. candelabrum). We obtained small subunit ribosomal RNA gene (SSU rDNA) sequences of 23 Ceratium species (more than one third of the total marine species described so far), with representatives of the four acknowledged subgenera. Phylogenetic analyses including the type species, the freshwater C. hirundinella, showed that the four available sequences of freshwater species formed a strongly supported subclade, very distant from the marine cluster. Our data support the splitting of Ceratium sensu lato into two genera. Ceratium sensu stricto should be reserved for freshwater species possessing six cingular plates (three cingular plates in dorsal view). The new genus name, Neoceratium gen. nov. should be applied to the marine species of Ceratium sensu lato that possess five cingular plates (two cingular plates in dorsal view). Copyright 2009 Elsevier GmbH. All rights reserved.

  6. Rapid and accurate identification by real-time PCR of biotoxin-producing dinoflagellates from the family gymnodiniaceae.

    PubMed

    Smith, Kirsty F; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L

    2014-03-07

    The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  7. Review of Florida Red Tide and Human Health Effects

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.

    2010-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152

  8. Review of Florida Red Tide and Human Health Effects.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Walsh, Cathy J; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G

    2011-01-01

    This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

  9. Florida Red Tide Toxins (Brevetoxins) and Longitudinal Respiratory Effects in Asthmatics.

    PubMed

    Bean, Judy A; Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Nierenberg, Kate; Reich, Andrew; Cheng, Yung Sung; Wanner, Adam; Benson, Janet; Naar, Jerome; Pierce, Richard; Abraham, William M; Kirkpatrick, Gary; Hollenbeck, Julie; Zaias, Julia; Mendes, Eliana; Baden, Daniel G

    2011-09-01

    Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red tide aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red tides do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.

  10. Brevetoxin-2, is a unique inhibitor of the C-terminal redox center of mammalian thioredoxin reductase-1.

    PubMed

    Chen, Wei; Tuladhar, Anupama; Rolle, Shantelle; Lai, Yanhao; Rodriguez Del Rey, Freddy; Zavala, Cristian E; Liu, Yuan; Rein, Kathleen S

    2017-08-15

    Karenia brevis, the Florida red tide dinoflagellate produces a suite of neurotoxins known as the brevetoxins. The most abundant of the brevetoxins PbTx-2, was found to inhibit the thioredoxin-thioredoxin reductase system, whereas the PbTx-3 has no effect on this system. On the other hand, PbTx-2 activates the reduction of small disulfides such as 5,5'-dithio-bis-(2-nitrobenzoic acid) by thioredoxin reductase. PbTx-2 has an α, β-unsaturated aldehyde moiety which functions as an efficient electrophile and selenocysteine conjugates are readily formed. PbTx-2 blocks the inhibition of TrxR by the inhibitor curcumin, whereas curcumin blocks PbTx-2 activation of TrxR. It is proposed that the mechanism of inhibition of thioredoxin reduction is via the formation of a Michael adduct between selenocysteine and the α, β-unsaturated aldehyde moiety of PbTx-2. PbTx-2 had no effect on the rates of reactions catalyzed by related enzymes such as glutathione reductase, glutathione peroxidase or glutaredoxin. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Mapping of trophic states based on nutrients concentration and phytoplankton abundance in Jatibarang Reservoir

    NASA Astrophysics Data System (ADS)

    Rudiyanti, Siti; Anggoro, Sutrisno; Rahman, Arif

    2018-02-01

    Jatibarang Reservoir is one of the Indonesian Reservoirs, which used for human activities such as tourism and agriculture. These activities will provide input of organic matter and nutrients into the water. These materials will impact water quality and eutrophication process. Eutrophication is the water enrichment by nutrients, especially nitrogen and phosphorus which can promote the growth of phytoplankton. Some indicators of eutrophication are increasing nutrients, trophic states, and change of phytoplankton composition. The relationship between water quality and phytoplankton community can be used as an indicator of trophic states in Jatibarang Reservoir. The aim of this study was to analyze the effect of nutrients concentration and phytoplankton abundance to the trophic states and mapping trophic states based on nutrients concentration and phytoplankton in Jatibarang Reservoir. This study was conducted in June and July 2017 at 9 stations around Jatibarang Reservoir. The results showed that average concentration of nitrate, phosphate, and chlorophyll-a in Jatibarang Reservoir was 0.69 mg/L, 0.27 mg/L, and 1.66 mg/m3, respectively. The phytoplankton abundance ranged 16-62,200 cells/L, consists of 21 genera of four classes, i.e. Chlorophyceae, Cyanophyceae, Bacillariophyceae, and Dinophyceae. Cyanophyceae was a dominant phytoplankton group based on the composition of abundance (>80%). High nutrient concentrations and phytoplankton dominated by Anabaena (Cyanophyceae) which indicated that the waters in Jatibarang Reservoir were eutrophic.

  12. Dynamic genetic features of eukaryotic plankton diversity in the Nakdong River estuary of Korea

    NASA Astrophysics Data System (ADS)

    Lee, Jee Eun; Chung, Ik Kyo; Lee, Sang-Rae

    2017-07-01

    Estuaries are environments where freshwater and seawater mix and they display various salinity profiles. The construction of river barrages and dams has rapidly changed these environments and has had a wide range of impacts on plankton communities. To understand the dynamics of such communities, researchers need accurate and rapid techniques for detecting plankton species. We evaluated the diversity of eukaryotic plankton over a salinity gradient by applying a metagenomics tool at the Nakdong River estuary in Korea. Environmental samples were collected on three dates during summer and autumn of 2011 at the Eulsukdo Bridge at the mouth of that river. Amplifying the 18S rDNA allowed us to analyze 456 clones and 122 phylotypes. Metagenomic sequences revealed various taxonomic groups and cryptic genetic variations at the intra- and inter-specific levels. By analyzing the same station at each sampling date, we observed that the phylotypes presented a salinity-related pattern of diversity in assemblages. The variety of species within freshwater samples reflected the rapid environmental changes caused by freshwater inputs. Dinophyceae phylotypes accounted for the highest proportion of overall diversity in the seawater samples. Euryhaline diatoms and dinoflagellates were observed in the freshwater, brackish and seawater samples. The biological data for species composition demonstrate the transitional state between freshwater and seawater. Therefore, this metagenomics information can serve as a biological indicator for tracking changes in aquatic environments.

  13. Paralytic Shellfish Toxins and Cyanotoxins in the Mediterranean: New Data from Sardinia and Sicily (Italy)

    PubMed Central

    Giacobbe, Maria Grazia; Riccardi, Elena; Bruno, Milena; Pigozzi, Silvia; Mariani, Maria Antonietta; Stacca, Daniela; Caddeo, Tiziana; Farina, Pasqualina; Padedda, Bachisio Mario; Pulina, Silvia; Sechi, Nicola; Milandri, Anna

    2017-01-01

    Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell−1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and β-N-methylamino-l-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L−1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated. PMID:29144421

  14. Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats.

    PubMed

    Sauvadet, Anne-Laure; Gobet, Angélique; Guillou, Laure

    2010-11-01

    Protist communities associated with deep seawater and bivalves from six hydrothermal sites in the Pacific Ocean were characterized by microscopy and molecular rRNA gene surveys (18S rRNA) and compared with planktonic communities from Pacific deep-pelagic seawater (from 500 to 3000 m in depth). Genetic libraries from larger size fractions (>3 µm) of deep-pelagic water were mainly dominated by Dinophyceae, whereas small size fractions (<3 µm) mainly revealed radiolarians and Syndiniales. In contrast, more specific opportunistic detritivores and grazers, mostly belonging to Stramenopiles and Cercozoa, were detected from water surrounding vent chimneys. Protist communities were different in the pallial cavity of the giant hydrothermal bivalves Bathymodiolus thermophilus and Calyptogena magnifica, dominated by Ciliophora (primarily belonging to Phyllopharyngea, Oligohymenophorea and Oligotrichea) and Cercozoa. Interestingly, protist communities retrieved from the pallial cavity liquid of hydrothermal bivalves were remarkably homogeneous along the Southern East Pacific Rise, in contrast to bivalves collected on the Mid-Atlantic Ridge hydrothermal vents and cold seeps from the Gulf of Mexico. Hence, complex protist communities seem to occur inside hydrothermal bivalves, and these metazoa may constitute a stable micro-niche for micro-eukaryotes, including grazers, detritivores, symbionts and potential parasites. From these communities, new lineages within the ciliates may emerge. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Whole-lake neutralization experiments in Ontario: a review. [Salvelinus fontinalis; Etheostoma exile; Culaea inconstans; Microterus dolomieui

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheider, W.A.; Brydges, T.G.

    A review is presented which summarizes studies performed in Sudbury, Ontario area lakes during 1973-1979 and outlines an ongoing study which began in 1981. All lakes were neutralized with Ca(OH)/sub 2/ and CaCO/sub 3/ resulting in pH changes. Levels increased from 4.1 to 7.5 and remained high during the study. Following neutralization, waterborne levels of Cu were reduced by 48-95% from pretreatment values of 80-1100 ..mu..g/L/sup -1/ and Ni levels declined by 23-91% from pretreatment values of 250-1900 ..mu..gL/sup -1/. An immediate decline in phytoplankton standing stock followed neutralization but levels returned to pretreatment values within a few months. Phytoplanktonmore » community composition changed such that chrysophytes and diatoms replaced Cryptophyceae and Dinophyceae as dominants. Lakes were stocked with brook trout, Iowa darters, brook stickleback and smallmouth bass after neutralization. Extensive netting yielded no fish and mortality was attributed to Cu toxicity. Further lake neutralization experiments are being conducted to test the feasibility of whole-lake or site-specific neutralization to protect aquatic systems from further damage due to acidic precipitation, and to test the feasibility of using neutralization to rehabilitate an acidified, clear-water lake with low Cu and Ni levels to the point of establishing a self-sustaining lake trout population.« less

  16. Environmental gradients regulate the spatio-temporal variability of phytoplankton assemblages in the Can Gio Mangrove Biosphere Reserve, Vietnam

    NASA Astrophysics Data System (ADS)

    Pham, Thanh-Luu

    2017-12-01

    This paper covers spatial and temporal variation in phytoplankton communities and physico-chemical variables in the Can Gio Mangrove Biosphere Reserve (CGMBR), Vietnam, based on field measurement conducted monthly at nine stations during February 2009 to January 2010. Species diversity, richness and phytoplankton abundance were calculated. Canonical Correspondence Analysis (CCA) was used to investigate the relationship between environmental factors and phytoplankton community. A total of 126 species were recorded with a clear dominance of Bacillariophyceae, which formed about 76.4% of the total phytoplankton counts with an annual average of 44.900 cells/L. Other algal classes like Dinophyceae, Cyanophyceae and Chrysophyceae sustained low counts, forming collectively about 14% of the total abundance of phytoplankton. Although Chaetoceros and Coscinodiscus were the most dominant genera, Schroederella and Skeletonema showed high abundance during the studied period. Among the nine environmental parameters tested in this study, salinity, nitrate and ammonium were found to be significantly different between two seasons. On the other hand, no significant difference was found between stations for the studied variables. Results of CCA indicated that phytoplankton assemblage in the CGMBR was influenced by salinity, nitrate and phosphate concentration. This is the first study simultaneously investigating the phytoplankton communities and their environment in this area and it is essential in order to set up the baseline of future studies.

  17. Paralytic Shellfish Toxins and Cyanotoxins in the Mediterranean: New Data from Sardinia and Sicily (Italy).

    PubMed

    Lugliè, Antonella; Giacobbe, Maria Grazia; Riccardi, Elena; Bruno, Milena; Pigozzi, Silvia; Mariani, Maria Antonietta; Satta, Cecilia Teodora; Stacca, Daniela; Bazzoni, Anna Maria; Caddeo, Tiziana; Farina, Pasqualina; Padedda, Bachisio Mario; Pulina, Silvia; Sechi, Nicola; Milandri, Anna

    2017-11-16

    Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell-1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and β-N-methylamino-L-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L-1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated.

  18. Comparative study of hydrographic conditions for algal bloom formation in the coastal waters of east and west of Hong Kong during 1998

    NASA Astrophysics Data System (ADS)

    Fang, Hongda; Tang, Senming

    2009-02-01

    Phytoplankton abundance was found to be positively correlated with seasonal changes of seawater temperature in Port Shelter and Lamma Channel, Hong Kong in 1998. Rising water temperature from around 20°C to 25°C coincided with an increase in phytoplankton abundance at both locations. Heavy rains from June to September reduced salinity from 30 to 20, but the decrease in salinity was not correlated with a decline in phytoplankton abundance. In spring 1998, over 0.6×106 cells dm-3 and 0.1×106 cells dm-3 of the dinoflagellate, Gymnodinium mikimotoi Miyake et Kominami ex Oda occurred in the coastal waters of Port Shelter and Lamma Channel, respectively. High abundance of the dinoflagellate Ceratium furca (Ehr.) Claparede et Lachmann (>1×106 cells dm-3) produced long-lasting blooms in the waters of Port Shelter from September to October in 1998. The abundances of both diatoms and dinoflagellates were significantly lower in the waters of Lamma Channel than those in Port Shelter due to the less frequent blooms in 1998. Hydrographic conditions such as stable water masses and water column stratification were the main reasons for the differences in the algal abundance and bloom frequency found between the two locations since neither of the two areas appeared to be nutrient-limited. This type water condition for the formation of algal bloom in Port Shelter has not been reported previously and it is not a general case for many bays along China’s coast where algal bloom occurs as well.

  19. The Ecology, Life History, and Phylogeny of the Marine Thecate Heterotrophic Dinoflagellates Protoperidinium and Diplopsalidaceae (Dinophyceae)

    DTIC Science & Technology

    2006-09-01

    specimens, appeared to be identical to Actinophrys sol and other distinct protist species (as discussed in Coats 2002). Being unaware of the...hypothesizes that photosynthetic eukaryotes evolved through a series of symbiotic relationships between heterotrophic protists and autotrophic prokaryotes...species or genus level. Athecate dinoflagellates were not well preserved by formalin-fixation, and thus were not counted. Metazoans and protists

  20. ALGICIDAL BACTERIA ACTIVE AGAINST GYMNODINIUM BREVE (DINOPHYCEAE). BACTERIAL ISOLATION AND CHARACTERIZATION OF KILLING ACTIVITY. (R827085)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. IDENTICAL RIBOSOMAL DNA SEQUENCE DATA FROM PFIESTERIA PISCICIDA (DINOPHYCEAE) ISOLATES WITH DIFFERENT TOXICITY PHENOTYPES. (R827084)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Quantitative proteomic analysis reveals evolutionary divergence and species-specific peptides in the Alexandrium tamarense complex (Dinophyceae).

    PubMed

    Li, Cheng; Zhang, Yong; Xie, Zhang-Xian; He, Zhi-Ping; Lin, Lin; Wang, Da-Zhi

    2013-06-28

    The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear. This study compared protein profiles of the A. tamarense complex collected from different geographic regions using the two dimensional fluorescence difference gel electrophoresis (2-D DIGE) approach, and identified species-specific peptides using MALDI-TOF/TOF mass spectrometry. The results showed that three Alexandrium morphotypes presented significantly different protein expression patterns with about 30-40% shared proteins. However, ecotypes from different geographic regions within a species exhibited the same expression patterns, although a few proteins were altered in abundance. Several proteins, i.e. ribulose-1,5-bisphosphate carboxylase oxygenase form II, plastid protein NAP50, methionine S-adenosyltransferase, and peridinin-chlorophyll a-binding protein, were identified and presented different shift patterns in isoelectric point and/or molecular weight in the 2-D DIGE gels, indicating that amino acid mutation and/or posttranslational modification of these proteins had occurred. The species-specific peptide mass fingerprint and amino acid sequence of ribulose-1,5-bisphosphate carboxylase oxygenase were characterized in the A. tamarense complex, and amino acid substitution occurred among them. This study indicated that evolutionary divergence had occurred at the proteomic level in the A. tamarense complex, and that the species-specific peptides could be used as potential biomarkers to distinguish the three morphotypes. Scientific question: The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear, which has seriously impeded our understanding of Alexandrium-causing HABs and, consequently, the monitoring, mitigation and prevention. Technical significance: This study, for the first time, compared the global protein expression patterns of eight ecotypes from the A. tamarense complex and identified species-specific peptides using a quantitative proteomic approach combining 2-D DIGE and MALDI-TOF/TOF MS. This study demonstrated that the evolutionary divergence had occurred in the A. tamarense complex at the proteomic level, and the complex should be classified into three species, i.e. A. tamarense, A. catenella, and A. fundyense. Moreover, the species-specific peptide mass fingerprints could be used as potential biomarkers to distinguish the three morphotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Effects of temperature and salinity on the growth of Alexandrium (Dinophyceae) isolates from the Salish Sea

    PubMed Central

    Bill, Brian D.; Moore, Stephanie K.; Hay, Levi R.; Anderson, Donald M.; Trainer, Vera L.

    2016-01-01

    Toxin-producing blooms of dinoflagellates in the genus Alexandrium have plagued the inhabitants of the Salish Sea for centuries. Yet the environmental conditions that promote accelerated growth of this organism, a producer of paralytic shellfish toxins, is lacking. This study quantitatively determined the growth response of two Alexandrium isolates to a range of temperatures and salinities, factors that will strongly respond to future climate change scenarios. An empirical equation, derived from observed growth rates describing the temperature and salinity dependence of growth, was used to hindcast bloom risk. Hindcasting was achieved by comparing predicted growth rates, calculated from in situ temperature and salinity data from Quartermaster Harbor, with corresponding Alexandrium cell counts and shellfish toxin data. The greatest bloom risk, defined at μ>0.25 d−1, generally occurred from April through November annually; however, growth rates rarely fell below 0.10 d−1. Except for a few occasions, Alexandrium cells were only observed during the periods of highest bloom risk and paralytic shellfish toxins above the regulatory limit always fell within the periods of predicted bloom occurrence. While acknowledging that Alexandrium growth rates are affected by other abiotic and biotic factors, such as grazing pressure and nutrient availability, the use of this empirical growth function to predict higher risk time frames for blooms and toxic shellfish within the Salish Sea provides the groundwork for a more comprehensive biological model of Alexandrium bloom dynamics in the region and will enhance our ability to forecast blooms in the Salish Sea under future climate change scenarios. PMID:27037588

  4. Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence

    NASA Astrophysics Data System (ADS)

    Bolli, L.; Llaveria, G.; Garcés, E.; Guadayol, Ó.; van Lenning, K.; Peters, F.; Berdalet, E.

    2007-03-01

    In some dinoflagellate species, physiological processes appear to be altered by exposure to certain turbulent conditions. Here we investigated how two levels of turbulent kinetic energy dissipation rates (ɛ = 0.4 and 27 cm2 s-3) affected the toxin and ecdysal cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella. The most striking responses were observed at the high ɛ generated by an orbital shaker. In A. catenella, lower cellular toxin content was measured in cultures shaken for more than 4 days. The same trend was observed in A. minutum, although variability masked statistical significance. For the two species, inhibition of ecdysal cyst production occurred immediately and during the period of exposure of the cultures to stirring (4 or more days) at any time during their growth curve. Recovery of cyst abundances was always observed when turbulence stopped. When turbulence persisted for more than 4 days the net growth rate significantly decreased and the final biomass yield was lower than in the unshaken cultures. This study suggests that high levels of small-scale turbulence would contribute to the modulation of the harmful bloom dynamics through the interaction at the level of toxin and encystment processes.

  5. Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence

    NASA Astrophysics Data System (ADS)

    Bolli, L.; Llaveria, G.; Garcés, E.; Guadayol, Ò.; van Lenning, K.; Peters, F.; Berdalet, E.

    2007-08-01

    Some dinoflagellate species have shown different physiological responses to certain turbulent conditions. Here we investigate how two levels of turbulent kinetic energy dissipation rates (ɛ = 0.4 and 27 cm² s-3) affect the PSP toxins and ecdysal cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella. The most striking responses were observed at the high ɛ generated by an orbital shaker. In the cultures of the two species shaken for more than 4 days, the cellular GTX(1+4) toxin contents were significantly lower than in the still control cultures. In A. minutum this trend was also observed in the C(1+2) toxin content. For the two species, inhibition of ecdysal cyst production occurred during the period of exposure of the cultures to stirring (4 or more days) at any time during their growth curve. Recovery of cyst abundances was always observed when turbulence stopped. When shaking persisted for more than 4 days, the net growth rate significantly decreased in A. minutum (from 0.25±0.01 day-1 to 0.19±0.02 day-1) and the final cell numbers were lower (ca. 55.4%) than in the still control cultures. In A. catenella, the net growth rate was not markedly modified by turbulence although under long exposure to shaking, the cultures entered earlier in the stationary phase and the final cell numbers were significantly lower (ca. 23%) than in the control flasks. The described responses were not observed in the experiments performed at the low turbulence intensities with an orbital grid system, where the population development was favoured. In those conditions, cells appeared to escape from the zone of the influence of the grids and concentrated in calmer thin layers either at the top or at the bottom of the containers. This ecophysiological study provides new evidences about the sensitivity to high levels of small-scale turbulence by two life cycle related processes, toxin production and encystment, in dinoflagellates. This can contribute to the understanding of the dynamics of those organisms in nature.

  6. Erythropsidinium (Gymnodiniales, Dinophyceae) in the Pacific Ocean, a unique dinoflagellate with an ocelloid and a piston.

    PubMed

    Gómez, Fernando

    2008-11-01

    The distribution and morphology of the dinoflagellate Erythropsidinium (=Erythropsis) was studied in the vicinity of the Kuroshio and Oyashio Currents, the Philippine, Celebes, Sulu and South China Seas, western and central equatorial and southeast Pacific Ocean. Ninety-four specimens were observed, most of them collected from depths of less than 90m. The highest abundance (15cellsL(-1)) was recorded in the north Philippine Sea in May (32 degrees N, 138 degrees E, 30-m depth). Twenty-four specimens were found in a station in the offshore Perú-Chile Current (31 degrees 52'S, 91 degrees 24'W). The transition regions between open warm waters and productive currents or upwellings seem to favour the abundance of Erythropsidinium. Specimens with duplicate pistons, with two protuberant ocelloids, and specimens with a piston that attains up to 20 times the body length are illustrated for the first time. All the specimens have been ascribed to the type species, Erythropsidinium agile, until stable taxonomical criteria are established for the species diagnosis. Despite the complexity of its organelles, the ocelloid and piston, the competitiveness of Erythropsidinium in the pelagic ecosystem seems to be low.

  7. Bloom of Cochlodinium polykrikoides (Dinophyceae: Gymnodiniales) in Bahía de La Paz, Gulf of California.

    PubMed

    Gárate-Lizárraga, Ismael

    2013-02-15

    As part of a continuing toxic microalgae monitoring program, phytoplankton samples were collected on 16-17 August 2012 at several sampling sites in the southern part of the Bahía de La Paz. A bloom of the dinoflagellate Cochlodinium polykrikoides was detected. Abundance of C. polykrikoides ranged from 73 to 276×10(3) cells L(-1) on the first day to 980-1425×10(3) cells L(-1) on the second day. Study of live specimens showed great variation in cell size and form, mainly as single cells or chains of two cells. Live cells were 30-47 μm long and 20-35 μm wide (n=30). Seawater temperature during the bloom was 29-30°C. Low densities of Cochlodinium convolutum, Cochlodinium helicoides, and Cochlodinium shuettii were also found in the samples of the bloom event. These high densities of C. polykrikoides did not lead to fish die-offs in the bay. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Rapid growth and concerted sexual transitions by a bloom of the harmful dinoflagellate Alexandrium fundyense (Dinophyceae)

    PubMed Central

    Velo‐Suárez, Lourdes; Ralston, David K.; Fox, Sophia E.; Sehein, Taylor R.; Shalapyonok, Alexi; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2015-01-01

    Abstract Transitions between life cycle stages by the harmful dinoflagellate Alexandrium fundyense are critical for the initiation and termination of its blooms. To quantify these transitions in a single population, an Imaging FlowCytobot (IFCB), was deployed in Salt Pond (Eastham, Massachusetts), a small, tidally flushed kettle pond that hosts near annual, localized A. fundyense blooms. Machine‐based image classifiers differentiating A. fundyense life cycle stages were developed and results were compared to manually corrected IFCB samples, manual microscopy‐based estimates of A. fundyense abundance, previously published data describing prevalence of the parasite Amoebophrya, and a continuous culture of A. fundyense infected with Amoebophrya. In Salt Pond, a development phase of sustained vegetative division lasted approximately 3 weeks and was followed by a rapid and near complete conversion to small, gamete cells. The gametic period (∼3 d) coincided with a spike in the frequency of fusing gametes (up to 5% of A. fundyense images) and was followed by a zygotic phase (∼4 d) during which cell sizes returned to their normal range but cell division and diel vertical migration ceased. Cell division during bloom development was strongly phased, enabling estimation of daily rates of division, which were more than twice those predicted from batch cultures grown at similar temperatures in replete medium. Data from the Salt Pond deployment provide the first continuous record of an A. fundyense population through its complete bloom cycle and demonstrate growth and sexual induction rates much higher than are typically observed in culture. PMID:27667858

  9. Telomere maintenance in liquid crystalline chromosomes of dinoflagellates.

    PubMed

    Fojtová, Miloslava; Wong, Joseph T Y; Dvorácková, Martina; Yan, Kosmo T H; Sýkorová, Eva; Fajkus, Jirí

    2010-10-01

    The organisation of dinoflagellate chromosomes is exceptional among eukaryotes. Their genomes are the largest in the Eukarya domain, chromosomes lack histones and may exist in liquid crystalline state. Therefore, the study of the structural and functional properties of dinoflagellate chromosomes is of high interest. In this work, we have analysed the telomeres and telomerase in two Dinoflagellata species, Karenia papilionacea and Crypthecodinium cohnii. Active telomerase, synthesising exclusively Arabidopsis-type telomere sequences, was detected in cell extracts. The terminal position of TTTAGGG repeats was determined by in situ hybridisation and BAL31 digestion methods and provides evidence for the linear characteristic of dinoflagellate chromosomes. The length of telomeric tracts, 25-80 kb, is the largest among unicellular eukaryotic organisms to date. Both the presence of long arrays of perfect telomeric repeats at the ends of dinoflagellate chromosomes and the existence of active telomerase as the primary tool for their high-fidelity maintenance demonstrate the general importance of these structures throughout eukaryotes. We conclude that whilst chromosomes of dinoflagellates are unique in many aspects of their structure and composition, their telomere maintenance follows the most common scenario.

  10. Prominent Human Health Impacts from Several Marine Microbes: History, Ecology, and Public Health Implications

    PubMed Central

    Bienfang, P. K.; DeFelice, S. V.; Laws, E. A.; Brand, L. E.; Bidigare, R. R.; Christensen, S.; Trapido-Rosenthal, H.; Hemscheidt, T. K.; McGillicuddy, D. J.; Anderson, D. M.; Solo-Gabriele, H. M.; Boehm, A. B.; Backer, L. C.

    2011-01-01

    This paper overviews several examples of important public health impacts by marine microbes and directs readers to the extensive literature germane to these maladies. These examples include three types of dinoflagellates (Gambierdiscus spp., Karenia brevis, and Alexandrium fundyense), BMAA-producing cyanobacteria, and infectious microbes. The dinoflagellates are responsible for ciguatera fish poisoning, neurotoxic shellfish poisoning, and paralytic shellfish poisoning, respectively, that have plagued coastal populations over time. Research interest on the potential for marine cyanobacteria to contribute BMAA into human food supplies has been derived by BMAA's discovery in cycad seeds and subsequent implication as the putative cause of amyotrophic lateral sclerosis/parkinsonism dementia complex among the Chamorro people of Guam. Recent UPLC/MS analyses indicate that recent reports that BMAA is prolifically distributed among marine cyanobacteria at high concentrations may be due to analyte misidentification in the analytical protocols being applied for BMAA. Common infectious microbes (including enterovirus, norovirus, Salmonella, Campylobacter, Shigella, Staphylococcus aureus, Cryptosporidium, and Giardia) cause gastrointestinal and skin-related illness. These microbes can be introduced from external human and animal sources, or they can be indigenous to the marine environment. PMID:20976073

  11. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge

    PubMed Central

    Shmukler, Yuri B.; Nikishin, Denis A.

    2017-01-01

    Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na+-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism. PMID:28726749

  12. Reported respiratory symptom intensity in asthmatics during exposure to aerosolized Florida red tide toxins.

    PubMed

    Milian, Alexyz; Nierenberg, Kate; Fleming, Lora E; Bean, Judy A; Wanner, Adam; Reich, Andrew; Backer, Lorraine C; Jayroe, David; Kirkpatrick, Barbara

    2007-09-01

    Florida red tides are naturally occurring blooms of the marine dinoflagellate, Karenia brevis. K. brevis produces natural toxins called brevetoxins. Brevetoxins become part of the marine aerosol as the fragile, unarmored cells are broken up by wave action. Inhalation of the aerosolized toxin results in upper and lower airway irritation. Symptoms of brevetoxin inhalation include: eye, nose, and throat irritation, coughing, wheezing, chest tightness, and shortness of breath. Asthmatics appear to be more sensitive to the effects of inhaled brevetoxin. This study examined data from 97 asthmatics exposed at the beach for 1 hour during K. brevis blooms, and on separate occasions when no bloom was present. In conjunction with extensive environmental monitoring, participants were evaluated utilizing questionnaires and pulmonary function testing before and after a 1-hour beach walk. A modified Likert scale was incorporated into the questionnaire to create respiratory symptom intensity scores for each individual pre- and post-beach walk. Exposure to Florida red tide significantly increased the reported intensity of respiratory symptoms; no significant changes were seen during an unexposed period. This is the first study to examine the intensity of reported respiratory symptoms in asthmatics after a 1-hour exposure to Florida red tide.

  13. Variable allelopathy among phytoplankton reflected in red tide metabolome.

    PubMed

    Poulin, Remington X; Poulson-Ellestad, Kelsey L; Roy, Jessie S; Kubanek, Julia

    2018-01-01

    Harmful algae are known to utilize allelopathy, the release of compounds that inhibit competitors, as a form of interference competition. Competitor responses to allelopathy are species-specific and allelopathic potency of producing algae is variable. In the current study, the biological variability in allelopathic potency was mapped to the underlying chemical variation in the exuded metabolomes of five genetic strains of the red tide dinoflagellate Karenia brevis using 1 H nuclear magnetic resonance (NMR) spectroscopy. The impacts of K. brevis allelopathy on growth of a model competitor, Asterionellopsis glacialis, ranged from strongly inhibitory to negligible to strongly stimulatory. Unique metabolomes of K. brevis were visualized as chemical fingerprints, suggesting three distinct metabolic modalities - allelopathic, non-allelopathic, and stimulatory - with each modality distinguished from the others by different concentrations of several metabolites. Allelopathic K. brevis was characterized by enhanced concentrations of fatty acid-derived lipids and aromatic or other polyunsaturated compounds, relative to less allelopathic K. brevis. These findings point to a previously untapped source of information in the study of allelopathy: the chemical variability of phytoplankton, which has been underutilized in the study of bloom dynamics and plankton chemical ecology. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Illness associated with red tide--Nassau County, Florida, 2007.

    PubMed

    2008-07-04

    A "red tide" is a harmful algal bloom that occurs when toxic, microscopic algae in seawater proliferate to a higher-than-normal concentration (i.e., bloom), often discoloring the water red, brown, green, or yellow. Red tides can kill fish, birds, and marine mammals and cause illness in humans. Florida red tide is caused by the dinoflagellate Karenia brevis, which produces toxins called brevetoxins and is most commonly found in the Gulf of Mexico; however, K. brevis blooms also can occur along the Atlantic coast. On September 25, 2007, a cluster of respiratory illnesses was reported to the Nassau County Health Department (NCHD) in northeastern Florida. All of the ill persons were employed at a beach restoration worksite by a dredging company operating at Fernandina Beach; they reported symptoms of eye or respiratory irritation (e.g., coughing, sneezing, sniffling, and throat irritation). NCHD and the Florida Department of Health promptly conducted epidemiologic and environmental investigations and determined the illnesses likely were associated with exposure to a red tide along the Atlantic coast. These actions highlight the importance of rapid investigation of health concerns with potential environmental causes to enable timely notification of the public and prevent further illness.

  15. Binational collaboration to study Gulf of Mexico's harmful algae

    NASA Astrophysics Data System (ADS)

    Soto, Inia; Hu, Chuanmin; Steidinger, Karen; Muller-Karger, Frank; Cannizzaro, Jennifer; Wolny, Jennifer; Cerdeira-Estrada, Sergio; Santamaria-del-Angel, Eduardo; Tafoya-del-Angel, Fausto; Alvarez-Torres, Porfirio; Herrera Silveira, Jorge; Allen, Jeanne

    2012-01-01

    Blooms of the toxic marine dinoflagellate Karenia brevis cause massive fish kills and other public health and economic problems in coastal waters throughout the Gulf of Mexico [Steidinger, 2009]. These harmful algal blooms (HABs) are a gulf-wide problem that require a synoptic observing system for better serving decision-making needs. The major nutrient sources that initiate and maintain these HABs and the possible connectivity of blooms in different locations are important questions being addressed through new collaborations between Mexican and U.S. researchers and government institutions. These efforts were originally organized under the U.S./Mexico binational partnership for the HABs Observing System (HABSOS), led by the U.S. Environmental Protection Agency's Gulf of Mexico Program (EPAGMP) and several agencies in Veracruz, Mexico, since 2006. In 2010 these efforts were expanded to include other Mexican states and institutions with the integrated assessment and management of the Gulf of Mexico Large Marine Ecosystem (GoMLME) program sponsored by the Global Environment Facility (GEF), the United Nations Industrial Development Organization (UNIDO), the Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT), and the National Oceanic and Atmospheric Administration (NOAA).

  16. Brevetoxins, like ciguatoxins, are potent ichthyotoxic neurotoxins that accumulate in fish✩

    PubMed Central

    Naar, Jerome P.; Flewelling, Leanne J.; Lenzi, Allison; Abbott, Jay P.; Granholm, April; Jacocks, Henry M.; Gannon, Damon; Henry, Michael; Pierce, Richard; Baden, Daniel G.; Wolny, Jennifer; Landsberg, Jan H.

    2009-01-01

    Brevetoxins and ciguatoxins are closely related potent marine neurotoxins. Although ciguatoxins accumulate in fish to levels that are dangerous for human consumption, live fish have not been considered as potential sources of brevetoxin exposure in humans. Here we show that, analogous to ciguatoxins, brevetoxins can accumulate in live fish by dietary transfer. We experimentally identify two pathways leading to brevetoxin-contaminated omnivorous and planktivorous fish. Fish fed with toxic shellfish and Karenia brevis cultures remained healthy and accumulated high brevetoxin levels in their tissues (up to 2675 ng g−1 in viscera and 1540 ng g−1 in muscle). Repeated collections of fish from St. Joseph Bay in the Florida panhandle reveal that accumulation of brevetoxins in healthy fish occurs in the wild. We observed that levels of brevetoxins in the muscle of fish at all trophic levels rise significantly, but not to dangerous levels, during a K. brevis bloom. Concentrations were highest in fish liver and stomach contents, and increased during and immediately following the bloom. The persistence of brevetoxins in the fish food web was followed for 1 year after the K. brevis bloom. PMID:17675204

  17. Florida Red Tides, Manatee Brevetoxicosis, and Lung Models

    PubMed Central

    Kirkpatrick, Barbara; Colbert, Debborah E.; Dalpra, Dana; Newton, Elizabeth A. C.; Gaspard, Joseph; Littlefield, Brandi; Manire, Charles

    2010-01-01

    In 1996, 149 Florida manatees, Trichechus manatus latirostris, died along the southwest coast of Florida. Necropsy pathology results of these animals indicated that brevetoxin from the Florida red tide, Karenia brevis, caused their death. A red tide bloom had been previously documented in the area where these animals stranded. The necropsy data suggested the mortality occurred from chronic inhalation and/or ingestion. Inhalation theories include high doses of brevetoxin deposited/stored in the manatee lung or significant manatee sensitivity to the brevetoxin. Laboratory models of the manatee lungs can be constructed from casts of necropsied animals for further studies; however, it is necessary to define the breathing pattern in the manatee, specifically the volumes and flow rates per breath to estimate toxin deposition in the lung. To obtain this information, two captive-born Florida manatees, previously trained for husbandry and research behaviors, were trained to breathe into a plastic mask placed over their nares. The mask was connected to a spirometer that measured volumes and flows in situ. Results reveal high volumes, short inspiratory and expiratory times and high flow rates, all consistent with observed breathing patterns. PMID:26448968

  18. Resolution of coi-dominant phytoplankton species in a eutrophiclake using synchrotron-based Fourier transform infraredspectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, A.P.; Martin, Michael C.; Sigee, D.C.

    2006-10-09

    Synchrotron-based Fourier-transform infrared (FTIR)microspectroscopy was used to distinguish micropopulations of thecodominant algae Microcystis aeruginosa (Cyanophyceae) and Ceratiumhirundinella (Dinophyceae) in mixed phytoplankton samples taken from thewater column of a stratified eutrophic lake (Rostherne Mere, UK). FTIRspectra of the two algae showed a closely similar sequence of 10 bandsover the wave-number range 4000-900 cm-1. These were assigned to a rangeof vibrationally active chemical groups using published band assignmentsand on the basis of correlation and factor analysis. In both algae,intracellular concentrations of macromolecular components (determined asband intensity) varied considerably within the same population,indicating substantial intraspecific heterogeneity. Interspecificdifferences were separately analysed in relation tomore » discrete bands and bymultivariate analysis of the entire spectral region 1750-900 cm-1. Interms of discrete bands, comparison of individual intensities (normalisedto amide 1) demonstrated significant (99 percent probability level)differences in relation to six bands between the two algal species. Keyinterspecific differences were also noted in relation to the positions ofbands 2, 10 (carbohydrate) and 7 (protein) and in the 3-D plots derivedby principal component analysis (PCA) of the sequence of bandintensities. PCA of entire spectral regions showed clear resolutionofspecies in the PCA plot, with indication of separation on the basis ofprotein (region 1700-1500 cm1) and carbohydrate (region 1150-900 cm1)composition in the loading plot. Hierarchical cluster analysis (Wardalgorithm) of entire spectral regions also showed clear discrimination ofthe two species within the resulting dendrogram.« less

  19. Phytoplankton abundance and structure as indicator of water quality in the drainage system of the Burullus Lagoon, southern Mediterranean coast, Egypt.

    PubMed

    El-Kassas, Hala Yassin; Gharib, Samiha Mahmoud

    2016-09-01

    This study represents the first detailed account of phytoplankton community structure and seasonal succession in eight drain sites and the Brimbal Canal influx into the Burullus Lagoon. The phytoplankton characteristics were studied based on the data collected seasonally over 4 years, from summer 2012 to spring 2016. Various indices such as Palmer's and Shannon's biotic indices were used for the assessment of the water quality of the different drains. There were a total of 194 species belonging to 65 genera and 6 groups: Bacillariophyceae (76 species), Chlorophyceae (59 species), Cyanophyceae (30 species), Euglenophyceae (25 species), Dinophyceae (3 species), and Xanthophyceae (1 species). The phytoplankton community was dominated with diatoms, green algae, and euglenoids such as Cyclotella, Scenedesmus, Navicula, Nitzschia, Ankistrodesmus, Chlorella, and Euglena. Maximum and minimum phytoplankton abundance was recorded at the Brimbal Canal and Hooks Drain. Maximum and minimum species diversities (H') were found at the Hooks Drain (2.564) and Burullus Drain (2.055). Species evenness fluctuated between 0.595 (Burullus Drain) and 0.750 (West Burullus Drain). The total score of algal genus pollution index and the algal species pollution index at the different drains showed that Drain 7 and the West Burullus Drain had moderate pollution, and the total score of the other drains were greater than 20 indicating the confirmed high organic pollution. Thus, the present investigation can be considered an attempt to use the phytoplankton community as a bioindicator of organic pollution.

  20. Suitability of Phytosterols Alongside Fatty Acids as Chemotaxonomic Biomarkers for Phytoplankton.

    PubMed

    Taipale, Sami J; Hiltunen, Minna; Vuorio, Kristiina; Peltomaa, Elina

    2016-01-01

    The composition and abundance of phytoplankton is an important factor defining ecological status of marine and freshwater ecosystems. Chemotaxonomic markers (e.g., pigments and fatty acids) are needed for monitoring changes in a phytoplankton community and to know the nutritional quality of seston for herbivorous zooplankton. Here we investigated the suitability of sterols along with fatty acids as chemotaxonomic markers using multivariate statistics, by analyzing the sterol and fatty acid composition of 10 different phytoplankton classes including altogether 37 strains isolated from freshwater lakes. We were able to detect a total of 47 fatty acids and 29 sterols in our phytoplankton samples, which both differed statistically significantly between phytoplankton classes. Due to the high variation of fatty acid composition among Cyanophyceae, taxonomical differentiation increased when Cyanophyceae were excluded from statistical analysis. Sterol composition was more heterogeneous within class than fatty acids and did not improve separation of phytoplankton classes when used alongside fatty acids. However, we conclude that sterols can provide additional information on the abundance of specific genera within a class which can be generated by using fatty acids. For example, whereas high C16 ω-3 PUFA (polyunsaturated fatty acid) indicates the presence of Chlorophyceae, a simultaneous high amount of ergosterol could specify the presence of Chlamydomonas spp. (Chlorophyceae). Additionally, we found specific 4α-methyl sterols for distinct Dinophyceae genera, suggesting that 4α-methyl sterols can potentially separate freshwater dinoflagellates from each other.

  1. Microbial activity during a coastal phytoplankton bloom on the Western Antarctic Peninsula in late summer.

    PubMed

    Alcamán-Arias, María E; Farías, Laura; Verdugo, Josefa; Alarcón-Schumacher, Tomás; Díez, Beatriz

    2018-05-01

    Phytoplankton biomass during the austral summer is influenced by freezing and melting cycles as well as oceanographic processes that enable nutrient redistribution in the West Antarctic Peninsula (WAP). Microbial functional capabilities, metagenomic and metatranscriptomic activities as well as inorganic 13C- and 15N-assimilation rates were studied in the surface waters of Chile Bay during two contrasting summer periods in 2014. Concentrations of Chlorophyll a (Chla) varied from 0.3 mg m-3 in February to a maximum of 2.5 mg m-3 in March, together with a decrease in nutrients; however, nutrients were never depleted. The microbial community composition remained similar throughout both sampling periods; however, microbial abundance and activity changed with Chla levels. An increased biomass of Bacillariophyta, Haptophyceae and Cryptophyceae was observed along with night-grazing activity of Dinophyceae and ciliates (Alveolates). During high Chla conditions, HCO3- uptake rates during daytime incubations increased 5-fold (>2516 nmol C L-1 d-1), and increased photosynthetic transcript numbers that were mainly associated with cryptophytes; meanwhile night time NO3- (>706 nmol N L-1 d-1) and NH4+ (41.7 nmol N L-1 d-1) uptake rates were 2- and 3-fold higher, respectively, due to activity from Alpha-/Gammaproteobacteria and Bacteroidetes (Flavobacteriia). Due to a projected acceleration in climate change in the WAP, this information is valuable for predicting the composition and functional changes in Antarctic microbial communities.

  2. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing.

    PubMed

    Massana, Ramon; Gobet, Angélique; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Chambouvet, Aurélie; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Dolan, John R; Dunthorn, Micah; Edvardsen, Bente; Forn, Irene; Forster, Dominik; Guillou, Laure; Jaillon, Olivier; Kooistra, Wiebe H C F; Logares, Ramiro; Mahé, Frédéric; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Probert, Ian; Romac, Sarah; Richards, Thomas; Santini, Sébastien; Shalchian-Tabrizi, Kamran; Siano, Raffaele; Simon, Nathalie; Stoeck, Thorsten; Vaulot, Daniel; Zingone, Adriana; de Vargas, Colomban

    2015-10-01

    Although protists are critical components of marine ecosystems, they are still poorly characterized. Here we analysed the taxonomic diversity of planktonic and benthic protist communities collected in six distant European coastal sites. Environmental deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) from three size fractions (pico-, nano- and micro/mesoplankton), as well as from dissolved DNA and surface sediments were used as templates for tag pyrosequencing of the V4 region of the 18S ribosomal DNA. Beta-diversity analyses split the protist community structure into three main clusters: picoplankton-nanoplankton-dissolved DNA, micro/mesoplankton and sediments. Within each cluster, protist communities from the same site and time clustered together, while communities from the same site but different seasons were unrelated. Both DNA and RNA-based surveys provided similar relative abundances for most class-level taxonomic groups. Yet, particular groups were overrepresented in one of the two templates, such as marine alveolates (MALV)-I and MALV-II that were much more abundant in DNA surveys. Overall, the groups displaying the highest relative contribution were Dinophyceae, Diatomea, Ciliophora and Acantharia. Also, well represented were Mamiellophyceae, Cryptomonadales, marine alveolates and marine stramenopiles in the picoplankton, and Monadofilosa and basal Fungi in sediments. Our extensive and systematic sequencing of geographically separated sites provides the most comprehensive molecular description of coastal marine protist diversity to date. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Nuclear 28S rDNA phylogeny supports the basal placement of Noctiluca scintillans (Dinophyceae; Noctilucales) in dinoflagellates.

    PubMed

    Ki, Jang-Seu

    2010-05-01

    Noctiluca scintillans (Macartney) Kofoid et Swezy, 1921 is an unarmoured heterotrophic dinoflagellate with a global distribution, and has been considered as one of the ancestral taxa among dinoflagellates. Recently, 18S rDNA, actin, alpha-, beta-tubulin, and Hsp90-based phylogenies have shown the basal position of the noctilucids. However, the relationships of dinoflagellates in the basal lineages are still controversial. Although the nuclear rDNA (e.g. 18S, ITS-5.8S, and 28S) contains much genetic information, DNA sequences of N. scintillans rDNA molecules were insufficiently characterized as yet. Here the author sequenced a long-range nuclear rDNA, spanning from the 18S to the D5 region of the 28S rDNA, of N. scintillans. The present N. scintillans had a nearly identical genotype (>99.0% similarity) compared to other Noctiluca sequences from different geographic origins. Nucleotide divergence in the partial 28S rDNA was significantly high (p<0.05) as compared to the 18S rDNA, demonstrating that the information from 28S rDNA is more variable. The 28S rDNA phylogeny of 17 selected dinoflagellates, two perkinsids, and two apicomplexans as outgroups showed that N. scintillans and Oxyrrhis marina formed a clade that diverged separately from core dinoflagellates. Copyright (c) 2009 Elsevier GmbH. All rights reserved.

  4. Ultrastructure and LSU rDNA-based phylogeny of Peridinium lomnickii and description of Chimonodinium gen. nov. (Dinophyceae).

    PubMed

    Craveiro, Sandra C; Calado, António J; Daugbjerg, Niels; Hansen, Gert; Moestrup, Øjvind

    2011-10-01

    Several populations of Peridinium lomnickii were examined by SEM and serial section TEM. Comparison with typical Peridinium, Peridiniopsis, Palatinus and Scrippsiella species revealed significant structural differences, congruent with phylogenetic hypotheses derived from partial LSU rDNA sequences. Chimonodinium gen. nov. is described as a new genus of peridinioids, characterized by the Kofoidian plate formula Po, cp, x, 4', 3a, 7'', 6c, 5s, 5''', 2'''', the absence of pyrenoids, the presence of a microtubular basket with four or five overlapping rows of microtubules associated with a small peduncle, a pusular system with well-defined pusular tubes connected to the flagellar canals, and the production of non-calcareous cysts. Serial section examination of Scrippsiella trochoidea, here taken to represent typical Scrippsiella characters, revealed no peduncle and no associated microtubular strands. The molecular phylogeny placed C. lomnickii comb. nov. as a sister group to a clade composed of Thoracosphaera and the pfiesteriaceans. Whereas the lack of information on fine structure of the swimming stage of Thoracosphaera leaves its affinities unexplained, C. lomnickii shares with the pfiesteriaceans the presence of a microtubular basket and the unusual connection between two plates on the left side of the sulcus, involving extra-cytoplasmic fibres. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. The transcriptome of the novel dinoflagellate Oxyrrhis marina (Alveolata: Dinophyceae): response to salinity examined by 454 sequencing

    PubMed Central

    2011-01-01

    Background The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an environmental factor potentially important in determining O. marina spatial distributions. Results Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity) revealed 164 transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase) was composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5 different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp) inter-genic regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require careful interpretation. Conclusion Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed gene variants are common and indicate potentially complex genomic arrangements in O. marina. Comparison of the reported data set with existing O. marina and other dinoflagellates ESTs indicates little sequence overlap likely as a result of the relatively limited extent of genome scale sequence data currently available for the dinoflagellates. This is one of the first 454-based transcriptome surveys of an ancestral dinoflagellate taxon and will undoubtedly prove useful for future comparative studies aimed at reconstructing the origin of novel features of the dinoflagellates. PMID:22014029

  6. The distribution and life cycle of the dinoflagellate Spatulodinium pseudonoctiluca (Dinophyceae, Noctilucales) in the northeastern English Channel.

    PubMed

    Gómez, Fernando; Souissi, Sami

    2007-03-01

    The distribution of Spatulodinium (= Gymnodinium) pseudonoctiluca (Pouchet) J. Cachon & M. Cachon has been investigated for eight years (1998-2005) in the northeastern English Channel, type locality of the species and its immature stages. The species can be found after the spring diatom bloom from late May to October. The highest abundance was found in June 2004 after the Phaeocystis bloom. Exceptionally, the Phaeocystis bloom was absent in 2005 and only several specimens of S. pseudonoctiluca were observed. The immature and mature stages of Spatulodinium nearly always co-occurred. No other kofoidiniaceans such as Kofoidinium or Pomatodinium were observed. The first stages of the development of Spatulodinium can easily confuse with gymnodiniaceans. The transformation of the stage 'D', which has been described as Gymnodinium lebouriae (= G. fulgens) or Gymnodinium conicum (= G. viridis), into the mature stage, is illustrated. The stage 'D' originates from a cluster of pairs of smaller cells joined by an elongate episome. In the boreal Atlantic Ocean, Spatulodinium pseudonoctiluca, a single species whose life stages are often reported as separate species, is especially adapted to a strongly fluctuant environment.

  7. Neurotoxic Shellfish Poisoning

    PubMed Central

    Watkins, Sharon M.; Reich, Andrew; Fleming, Lora E.; Hammond, Roberta

    2008-01-01

    Neurotoxic shellfish poisoning (NSP) is caused by consumption of molluscan shellfish contaminated with brevetoxins primarily produced by the dinoflagellate, Karenia brevis. Blooms of K. brevis, called Florida red tide, occur frequently along the Gulf of Mexico. Many shellfish beds in the US (and other nations) are routinely monitored for presence of K. brevis and other brevetoxin-producing organisms. As a result, few NSP cases are reported annually from the US. However, infrequent larger outbreaks do occur. Cases are usually associated with recreationally-harvested shellfish collected during or post red tide blooms. Brevetoxins are neurotoxins which activate voltage-sensitive sodium channels causing sodium influx and nerve membrane depolarization. No fatalities have been reported, but hospitalizations occur. NSP involves a cluster of gastrointestinal and neurological symptoms: nausea and vomiting, paresthesias of the mouth, lips and tongue as well as distal paresthesias, ataxia, slurred speech and dizziness. Neurological symptoms can progress to partial paralysis; respiratory distress has been recorded. Recent research has implicated new species of harmful algal bloom organisms which produce brevetoxins, identified additional marine species which accumulate brevetoxins, and has provided additional information on the toxicity and analysis of brevetoxins. A review of the known epidemiology and recommendations for improved NSP prevention are presented. PMID:19005578

  8. Development of a Fluorescence Assay for the Characterization of Brevenal Binding to Rat Brain Synaptosomes

    PubMed Central

    2015-01-01

    The marine dinoflagellate Karenia brevis produces a family of neurotoxins known as brevetoxins. Brevetoxins elicit their effects by binding to and activating voltage-sensitive sodium channels (VSSCs) in cell membranes. K. brevis also produces brevenal, a brevetoxin antagonist, which is able to inhibit and/or negate many of the detrimental effects of brevetoxins. Brevenal binding to VSSCs has yet to be fully characterized, in part due to the difficulty and expense of current techniques. In this study, we have developed a novel fluorescence binding assay for the brevenal binding site. Several fluorescent compounds were conjugated to brevenal to assess their effects on brevenal binding. The assay was validated against the radioligand assay for the brevenal binding site and yielded comparable equilibrium inhibition constants. The fluorescence-based assay was shown to be quicker and far less expensive and did not generate radioactive waste or need facilities for handling radioactive materials. In-depth studies using the brevenal conjugates showed that, while brevenal conjugates do bind to a binding site in the VSSC protein complex, they are not displaced by known VSSC site specific ligands. As such, brevenal elicits its action through a novel mechanism and/or currently unknown receptor site on VSSCs. PMID:25226846

  9. A Hybrid Remote Sensing Approach for Detecting the Florida Red Tide

    NASA Astrophysics Data System (ADS)

    Carvalho, G. A.; Minnett, P. J.; Banzon, V.; Baringer, W.

    2008-12-01

    Harmful algal blooms (HABs) have caused major worldwide economic losses commonly linked with health problems for humans and wildlife. In the Eastern Gulf of Mexico the toxic marine dinoflagellate Karenia brevis is responsible for nearly annual, massive red tides causing fish kills, shellfish poisoning, and acute respiratory irritation in humans: the so-called Florida Red Tide. Near real-time satellite measurements could be an effective method for identifying HABs. The use of space-borne data would be a highly desired, low-cost technique offering the remote and accurate detection of K. brevis blooms over the West Florida Shelf, bringing tremendous societal benefits to the general public, scientific community, resource managers and medical health practitioners. An extensive in situ database provided by the Florida Fish and Wildlife Conservation Commission's Research Institute was used to examine the long-term accuracy of two satellite- based algorithms at detecting the Florida Red Tide. Using MODIS data from 2002 to 2006, the two algorithms are optimized and their accuracy assessed. It has been found that the sequential application of the algorithms results in improved predictability characteristics, correctly identifying ~80% of the cases (for both sensitivity and specificity, as well as overall accuracy), and exhibiting strong positive (70%) and negative (86%) predictive values.

  10. An Altimetry-Derived Index of the Offshore Forcing on the "Pressure Point" of the West Florida Shelf: Anomalous Upwelling and Its Influence on Harmful Algal Blooms

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.; Lenes, J. M.; Zheng, L.; Hubbard, K.; Walsh, J. J.

    2017-12-01

    Gulf of Mexico Loop Current (LC) interactions with the West Florida Shelf (WFS) slope play an important role in shelf ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly the case when the LC impinges upon the shelf slope in the southwest portion of the WFS near the Dry Tortugas. By contacting shallow water isobaths at this "pressure point" the LC forcing sets the entire shelf into motion. Characteristic patterns of LC interactions with the WFS and their occurrences are identified from altimetry data using unsupervised neural network, self-organizing map. The duration of the occurrences of such LC patterns is used as an indicator of offshore forcing of anomalous upwelling. Consistency is found between the altimetry-derived offshore forcing and the occurrence and severity of WFS coastal blooms of the toxic dinoflagellate, Karenia brevis: years without major blooms tend to have prolonged LC contact at the "pressure point," whereas years with major blooms tend not to have prolonged offshore forcing. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology. A satellite altimetry-derived seasonal predictor for major K. brevis blooms is also proposed.

  11. Offshore forcing on the "pressure point" of the West Florida Shelf: Anomalous upwelling and its influence on harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Weisberg, Robert H.; Lenes, Jason M.; Zheng, Lianyuan; Hubbard, Katherine; Walsh, John J.

    2016-08-01

    Gulf of Mexico Loop Current (LC) interactions with the West Florida Shelf (WFS) slope play an important role in shelf ecology through the upwelling of new inorganic nutrients across the shelf break. This is particularly the case when the LC impinges upon the shelf slope in the southwest portion of the WFS near the Dry Tortugas. By contacting shallow water isobaths at this "pressure point" the LC forcing sets the entire shelf into motion. Characteristic patterns of LC interactions with the WFS and their occurrences are identified using unsupervised neural network, self-organizing map, from 23 years (1993-2015) of altimetry data. The duration of the occurrences of such LC patterns is used as an indicator of offshore forcing of anomalous upwelling. Consistency is found between the altimetry-derived offshore forcing and the occurrence and severity of WFS coastal blooms of the toxic dinoflagellate, Karenia brevis: years without major blooms tend to have prolonged LC contact at the "pressure point," whereas years with major blooms tend not to have prolonged offshore forcing. Resetting the nutrient state of the shelf by the coastal ocean circulation in response to deep-ocean forcing demonstrates the importance of physical oceanography in shelf ecology. A satellite altimetry-derived seasonal predictor for major K. brevis blooms is also proposed.

  12. Hurricanes, submarine groundwater discharge, and Florida's red tides

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Muller-Karger, Frank E.; Swarzenski, Peter W.

    2006-06-01

    A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ~1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red tides occur in the same area (approximately 26-29°N, 82-83°W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red tides off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ~35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red tides in other coastal regions of the Gulf of Mexico.

  13. Occupational exposure to aerosolized brevetoxins during Florida red tide events: effects on a healthy worker population.

    PubMed

    Backer, Lorraine C; Kirkpatrick, Barbara; Fleming, Lora E; Cheng, Yung Sung; Pierce, Richard; Bean, Judy A; Clark, Richard; Johnson, David; Wanner, Adam; Tamer, Robert; Zhou, Yue; Baden, Daniel G

    2005-05-01

    Karenia brevis (formerly Gymnodinium breve) is a marine dinoflagellate responsible for red tides that form in the Gulf of Mexico. K. brevis produces brevetoxins, the potent toxins that cause neurotoxic shellfish poisoning. There is also limited information describing human health effects from environmental exposures to brevetoxins. Our objective was to examine the impact of inhaling aerosolized brevetoxins during red tide events on self-reported symptoms and pulmonary function. We recruited a group of 28 healthy lifeguards who are occupationally exposed to red tide toxins during their daily work-related activities. They performed spirometry tests and reported symptoms before and after their 8-hr shifts during a time when there was no red tide (unexposed period) and again when there was a red tide (exposed period). We also examined how mild exercise affected the reported symptoms and spirometry tests during unexposed and exposed periods with a subgroup of the same lifeguards. Environmental sampling (K. brevis cell concentrations in seawater and brevetoxin concentrations in seawater and air) was used to confirm unexposed/exposed status. Compared with unexposed periods, the group of lifeguards reported more upper respiratory symptoms during the exposed periods. We did not observe any impact of exposure to aerosolized brevetoxins, with or without mild exercise, on pulmonary function.

  14. Inland Transport of Aerosolized Florida Red Tide Toxins.

    PubMed

    Kirkpatrick, Barbara; Pierce, Richard; Cheng, Yung Sung; Henry, Michael S; Blum, Patricia; Osborn, Shannon; Nierenberg, Kate; Pederson, Bradley A; Fleming, Lora E; Reich, Andrew; Naar, Jerome; Kirkpatrick, Gary; Backer, Lorraine C; Baden, Daniel

    2010-02-01

    Florida red tides, an annual event off the west coast of Florida, are caused by the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins, brevetoxins, which kill fish, sea birds, and marine mammals, as well as sickening humans who consume contaminated shellfish. These toxins become part of the marine aerosol, and can also be inhaled by humans and other animals. Recent studies have demonstrated a significant increase in symptoms and decrease lung function in asthmatics after only one hour of beach exposure during an onshore Florida red tide bloom.This study constructed a transect line placing high volume air samplers to measure brevetoxins at sites beginning at the beach, moving approximately 6.4 km inland. One non-exposure and 2 exposure studies, each of 5 days duration, were conducted. No toxins were measured in the air during the non-exposure period. During the 2 exposure periods, the amount of brevetoxins varied considerably by site and by date. Nevertheless, brevetoxins were measured at least 4.2 kilometers from the beach and/or 1.6 km from the coastal shoreline. Therefore, populations sensitive to brevetoxins (such as asthmatics) need to know that leaving the beach may not discontinue their environmental exposure to brevetoxin aerosols.

  15. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2011-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide.Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols.

  16. Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure

    PubMed Central

    Kirkpatrick, Barbara; Fleming, Lora E; Bean, Judy A; Nierenberg, Kate; Backer, Lorraine C; Cheng, Yung Sung; Pierce, Richard; Reich, Andrew; Naar, Jerome; Wanner, Adam; Abraham, William M; Zhou, Yue; Hollenbeck, Julie; Baden, Daniel G

    2010-01-01

    Blooms of the toxic dinoflagellate, Karenia brevis, produce potent neurotoxins in marine aerosols. Recent studies have demonstrated acute changes in both symptoms and pulmonary function in asthmatics after only 1 hour of beach exposure to these aerosols. This study investigated if there were latent and/or sustained effects in asthmatics in the days following the initial beach exposure during periods with and without an active Florida red tide. Symptom data and spirometry data were collected before and after 1 hour of beach exposure. Subjects kept daily symptom diaries and measured their peak flow each morning for 5 days following beach exposure. During non-exposure periods, there were no significant changes in symptoms or pulmonary function either acutely or over 5 days of follow-up. After the beach exposure during an active Florida red tide, subjects had elevated mean symptoms which did not return to the pre-exposure baseline for at least 4 days. The peak flow measurements decreased after the initial beach exposure, decreased further within 24 hours, and continued to be suppressed even after 5 days. Asthmatics may continue to have increased symptoms and delayed respiratory function suppression for several days after 1 hour of exposure to the Florida red tide toxin aerosols. PMID:21499552

  17. Reported Respiratory Symptom Intensity in Asthmatics During Exposure to Aerosolized Florida Red Tide Toxins

    PubMed Central

    Milian, Alexyz; Nierenberg, Kate; Fleming, Lora E.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Backer, Lorraine C.; Jayroe, David; Kirkpatrick, Barbara

    2010-01-01

    Florida red tides are naturally occurring blooms of the marine dinoflagellate, Karenia brevis. K. brevis produces natural toxins called brevetoxins. Brevetoxins become part of the marine aerosol as the fragile, unarmored cells are broken up by wave action. Inhalation of the aerosolized toxin results in upper and lower airway irritation. Symptoms of brevetoxin inhalation include: eye, nose, and throat irritation, coughing, wheezing, chest tightness, and shortness of breath. Asthmatics appear to be more sensitive to the effects of inhaled brevetoxin. This study examined data from 97 asthmatics exposed at the beach for 1 hour during K. brevis blooms, and on separate occasions when no bloom was present. In conjunction with extensive environmental monitoring, participants were evaluated utilizing questionnaires and pulmonary function testing before and after a 1-hour beach walk. A modified Likert scale was incorporated into the questionnaire to create respiratory symptom intensity scores for each individual pre- and post-beach walk. Exposure to Florida red tide significantly increased the reported intensity of respiratory symptoms; no significant changes were seen during an unexposed period. This is the first study to examine the intensity of reported respiratory symptoms in asthmatics after a 1-hour exposure to Florida red tide. PMID:17885863

  18. Hurricanes, submarine groundwater discharge, and Florida's red tides

    USGS Publications Warehouse

    Hu, C.; Muller-Karger, F. E.; Swarzenski, P.W.

    2006-01-01

    A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ???1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red tides occur in the same area (approximately 26-29??N, 82-83??W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red tides off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ???35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red tides in other coastal regions of the Gulf of Mexico. Copyright 2006 by the American Geophysical Union.

  19. Tracing the Early Development of Harmful Algal Blooms on the West Florida Shelf with the Aid of Lagrangian Coherent Structures

    PubMed Central

    Olascoaga, M. J.; Beron-Vera, F. J.; Brand, L. E.; Koçak, H.

    2008-01-01

    Several theories have been proposed to explain the development of harmful algal blooms (HABs) produced by the toxic dinoflagellate Karenia brevis on the West Florida Shelf. However, because the early stages of HAB development are usually not detected, these theories have been so far very difficult to verify. In this paper we employ simulated Lagrangian coherent structures (LCSs) to trace potential early locations of the development of a HAB in late 2004 before it was transported to a region where it could be detected by satellite imagery. The LCSs, which are extracted from surface ocean currents produced by a data-assimilative HYCOM (HYbrid-Coordinate Ocean Model) simulation, constitute material fluid barriers that demarcate potential pathways for HAB evolution. Using a simplified population dynamics model we infer the factors that could possibly lead to the development of the HAB in question. The population dynamics model determines nitrogen in two components, nutrients and phytoplankton, which are assumed to be passively advected by surface ocean currents produced by the above HYCOM simulation. Two nutrient sources are inferred for the HAB whose evolution is found to be strongly tied to the simulated LCSs. These nutrient sources are found to be located nearshore and possibly due to land runoff. PMID:19137076

  20. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico.

    PubMed

    Qi, Lin; Hu, Chuanmin; Barnes, Brian B; Lee, Zhongping

    2017-06-01

    In summer 2014, a toxic Karenia brevis bloom (red tide) occurred in the NE Gulf of Mexico, during which vertical migration of K. brevis has been observed from glider measurements. The current study shows that satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) can capture changes in surface reflectance and chlorophyll concentration occurring within 2h, which may be attributed this K. brevis vertical migration. The argument is supported by earlier glider measurements in the same bloom, by the dramatic changes in the VIIRS-derived surface chlorophyll, and by the consistency between the short-term reflectance changes and those reported earlier from field-measured K. brevis vertical migration. Estimates using the quasi-analytical algorithm also indicate significant increases in both total absorption coefficient and backscattering coefficient in two hours. The two observations in a day from a single polar-orbiting satellite sensor are thus shown to be able to infer phytoplankton vertical movement within a short timeframe, a phenomenon difficult to capture with other sensors as each sensor can provide at most one observation per day, and cross-sensor inconsistency may make interpretation of merged-sensor data difficult. These findings strongly support geostationary satellite missions to study short-term bloom dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Seasonal distribution of phytoplankton and its association with physico-chemical parameters in coastal waters of Malvan, west coast of India.

    PubMed

    Hardikar, Revati; Haridevi, C K; Chowdhury, Mintu; Shinde, Namrata; Ram, Anirudh; Rokade, M A; Rakesh, P S

    2017-04-01

    Malvan coast is one of the Marine Protected Area (MPA) of Maharashtra because of its rich coral reef and biodiversity. The study investigated on phytoplankton assemblage and their diversity with respect to physico-chemical parameters covering protected and unprotected area of Malvan coast. Physico-chemical parameters such as salinity, nitrite, nitrate, and ammonia did not display seasonality due to inadequate fresh water influx and allochthonous nutrient input. Positive correlation of phosphate (r = 0.96, p < 0.0001) and silicate (r = 0.91, p < 0.0001) with Total Suspended Solids (TSS) confirmed their autochthonous origin as a result of resuspension of bottom sediments during monsoon. A total of 57 phytoplankton species were identified mostly dominated by Bascillariophyceae (40 species), followed by Dinophyceae (9 species), Chlorophyceae (5 species), Cyanophyceae (2 species), and Dictyochophyceae (1 species) from Malvan coast. Canonical correspondence analysis (CCA) revealed that water temperature and TSS were the most significant parameters influencing the distribution and seasonal shift in phytoplankton species such as Skeletonema costatum and Chaetoceros sp. during pre-monsoon and Psedo-nitzschia sp., Streptotheca thamensis, Eucampia zodiacus, and Lithodesmium undulatum during post-monsoon. Silicate and phosphate had minor influence on phytoplankton distribution. Shannon-Wiener diversity index as a pollution index suggested that the study area was incipiently polluted except at bay stations. Despite of various human interventions the water quality and phytoplankton assemblage of this area has not reached to an alarming situation. The current study provides a valuable baseline data on phytoplankton assemblage from Malvan coast.

  2. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012

    PubMed Central

    Metfies, Katja; von Appen, Wilken-Jon; Kilias, Estelle; Nicolaus, Anja; Nöthig, Eva-Maria

    2016-01-01

    Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2–3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60–90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean. PMID:26895333

  3. LIPID BIOMARKER ANALYSIS OF THE TOXIC DINOFLAGELLATENPFIESTERIA PISCICIDA: DISTRIBUTION OF STEROLS AND FATTY ACIDS WITHIN THE CLASS DINOPHYCEAE

    EPA Science Inventory

    Within United States waters, regular blooms of harmful dinoflagellates occur in the Gulf of Mexico and Chesapeake Bay regions. Although the causes of blooms are not fully understood, events in Gulf of Mexico waters have been recorded for over thirty years, and are almost exclusiv...

  4. Implications of High Molecular Divergence of Nuclear rRNA and Phylogenetic Structure for the Dinoflagellate Prorocentrum (Dinophyceae, Prorocentrales).

    PubMed

    Boopathi, Thangavelu; Faria, Daphne Georgina; Cheon, Ju-Yong; Youn, Seok Hyun; Ki, Jang-Seu

    2015-01-01

    The small and large nuclear subunit molecular phylogeny of the genus Prorocentrum demonstrated that the species are dichotomized into two clades. These two clades were significantly different (one-factor ANOVA, p < 0.01) with patterns compatible for both small and large subunit Bayesian phylogenetic trees, and for a larger taxon sampled dinoflagellate phylogeny. Evaluation of the molecular divergence levels showed that intraspecies genetic variations were significantly low (t-test, p < 0.05), than those for interspecies variations (> 2.9% and > 26.8% dissimilarity in the small and large subunit [D1/D2], respectively). Based on the calculated molecular divergence, the genus comprises two genetically distinct groups that should be considered as two separate genera, thereby setting the pace for major systematic changes for the genus Prorocentrum sensu Dodge. Moreover, the information presented in this study would be useful for improving species identification, detection of novel clades from environmental samples. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  5. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  6. Fukuyoa paulensis gen. et sp. nov., a New Genus for the Globular Species of the Dinoflagellate Gambierdiscus (Dinophyceae)

    PubMed Central

    Gómez, Fernando; Qiu, Dajun; Lopes, Rubens M.; Lin, Senjie

    2015-01-01

    The marine epiphytic dinoflagellate Gambierdiscus is a toxicologically important genus responsible for ciguatera fish poisoning, the principal cause of non-bacterial illness associated with fish consumption. The genus currently contains species exhibiting either globular or anterior-posteriorly compressed morphologies with marked differences in cell shape and plate arrangement. Here we report a third globular, epiphytic and tychoplanktonic species from the coasts of Ubatuba, Brazil. The new species can be distinguished from G. yasumotoi and G. ruetzleri by its broader first apical plate that occupies a larger portion of the epitheca. Accordingly, phylogenetic trees from small subunit (SSU) and large subunit (LSU) ribosomal DNA sequences also showed strongly supported separation of the new species from the G. yasumotoi / G. ruetzleri group albeit with short distance. The molecular phylogenies, which included new sequences of the planktonic species Goniodoma polyedricum, further indicated that the globular species of Gambierdiscus formed a tight clade, clearly separated (with strong bootstrap support) from the clade of lenticular species including the type for Gambierdiscus. The morphological and molecular data in concert support the split of Gambierdiscus sensu lato into two genera. Gambierdiscus sensu stricto should be reserved for the species with lenticular shapes, highly compressed anterioposteriorly, with short-shank fishhook apical pore plate, large 2' plate, low and ascending cingular displacement, and pouch-like sulcal morphology. The new genus name Fukuyoa gen. nov. should be applied to the globular species, slightly laterally compressed, with long-shank fishhook apical pore plate, large 1' plate, greater and descending cingular displacement, and not pouch-like vertically-oriented sulcal morphology. Fukuyoa contains the new species Fukuyoa paulensis gen. et sp. nov., and F. yasumotoi comb. nov. and F. ruetzleri comb. nov. PMID:25831082

  7. Toxin Profile of Gymnodinium catenatum (Dinophyceae) from the Portuguese Coast, as Determined by Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Costa, Pedro R.; Robertson, Alison; Quilliam, Michael A.

    2015-01-01

    The marine dinoflagellate Gymnodinium catenatum has been associated with paralytic shellfish poisoning (PSP) outbreaks in Portuguese waters for many years. PSP syndrome is caused by consumption of seafood contaminated with paralytic shellfish toxins (PSTs), a suite of potent neurotoxins. Gymnodinium catenatum was frequently reported along the Portuguese coast throughout the late 1980s and early 1990s, but was absent between 1995 and 2005. Since this time, G. catenatum blooms have been recurrent, causing contamination of fishery resources along the Atlantic coast of Portugal. The aim of this study was to evaluate the toxin profile of G. catenatum isolated from the Portuguese coast before and after the 10-year hiatus to determine changes and potential impacts for the region. Hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC-MS/MS) was utilized to determine the presence of any known and emerging PSTs in sample extracts. Several PST derivatives were identified, including the N-sulfocarbamoyl analogues (C1–4), gonyautoxin 5 (GTX5), gonyautoxin 6 (GTX6), and decarbamoyl derivatives, decarbamoyl saxitoxin (dcSTX), decarbamoyl neosaxitoxin (dcNeo) and decarbamoyl gonyautoxin 3 (dcGTX3). In addition, three known hydroxy benzoate derivatives, G. catenatum toxin 1 (GC1), GC2 and GC3, were confirmed in cultured and wild strains of G. catenatum. Moreover, two presumed N-hydroxylated analogues of GC2 and GC3, designated GC5 and GC6, are reported. This work contributes to our understanding of the toxigenicity of G. catenatum in the coastal waters of Portugal and provides valuable information on emerging PST classes that may be relevant for routine monitoring programs tasked with the prevention and control of marine toxins in fish and shellfish. PMID:25871287

  8. Identification of Highly Divergent Diatom-Derived Chloroplasts in Dinoflagellates, Including a Description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae).

    PubMed

    Yamada, Norico; Sym, Stuart D; Horiguchi, Takeo

    2017-06-01

    Dinoflagellates are known to possess chloroplasts of multiple origins derived from a red alga, a green alga, haptophytes, or diatoms. The monophyletic "dinotoms" harbor a chloroplast of diatom origin, but their chloroplasts are polyphyletic belonging to one of four genera: Chaetoceros, Cyclotella, Discostella, or Nitzschia. It has been speculated that serial replacement of diatom-derived chloroplasts by other diatoms has caused this diversity of chloroplasts. Although previous work suggested that the endosymbionts of Nitzschia origin might not be monophyletic, this has not been seriously investigated. To infer the number of replacements of diatom-derived chloroplasts in dinotoms, we analyzed the phylogenetic affinities of 14 species of dinotoms based on the endosymbiotic rbcL gene and SSU rDNA, and the host SSU rDNA. Resultant phylogenetic trees revealed that six species of Nitzschia were taken up by eight marine dinoflagellate species. Our phylogenies also indicate that four separate diatom species belonging to three genera were incorporated into the five freshwater dinotoms. Particular attention was paid to two crucially closely related species, Durinskia capensis and a novel species, D. kwazulunatalensis, because they possess distantly related Nitzschia species. This study clarified that any of a total of at least 11 diatom species in five genera are employed as an endosymbiont by 14 dinotoms, which infers a more frequent replacement of endosymbionts in the world of dinotoms than previously envisaged. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Patterns of Symbiodinium (Dinophyceae) diversity and assemblages among diverse hosts and the coral reef environment of Lizard Island, Australia.

    PubMed

    Ziegler, Maren; Stone, Elizabeth; Colman, Daniel; Takacs-Vesbach, Cristina; Shepherd, Ursula

    2018-04-26

    Large-scale environmental disturbances may impact both partners in coral host-Symbiodinium systems. Elucidation of the assembly patterns in such complex and interdependent communities may enable better prediction of environmental impacts across coral reef ecosystems. In this study, we investigated how the community composition and diversity of dinoflagellate symbionts in the genus Symbiodinium were distributed among 12 host species from six taxonomic orders (Actinaria, Alcyonacea, Miliolida, Porifera, Rhizostoma, Scleractinia) and in the reef water and sediments at Lizard Island, Great Barrier Reef before the 3 rd Global Coral Bleaching Event. 454 pyrosequencing of the ITS2 region of Symbiodinium yielded 83 Operational Taxonomic Units (OTUs) at a 97% similarity cut-off. Approximately half of the Symbiodinium OTUs from reef water or sediments were also present in symbio. OTUs belonged to six clades (A-D, F-G), but community structure was uneven. The two most abundant OTUs (100% matches to types C1 and A3) comprised 91% of reads and OTU C1 was shared by all species. However, sequence-based analysis of these dominant OTUs revealed host species-specificity, suggesting that genetic similarity cut-offs of Symbiodinium ITS2 data sets need careful evaluation. Of the less abundant OTUs, roughly half occurred at only one site or in one species and the background Symbiodinium communities were distinct between individual samples. We conclude that sampling multiple host taxa with differing life history traits will be critical to fully understand the symbiont diversity of a given system and to predict coral ecosystem responses to environmental change and disturbance considering the differential stress response of the taxa within. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Capturing diversity of marine heterotrophic protists: one cell at a time

    PubMed Central

    Heywood, Jane L; Sieracki, Michael E; Bellows, Wendy; Poulton, Nicole J; Stepanauskas, Ramunas

    2011-01-01

    Recent applications of culture-independent, molecular methods have revealed unexpectedly high diversity in a variety of functional and phylogenetic groups of microorganisms in the ocean. However, none of the existing research tools are free from significant limitations, such as PCR and cloning biases, low phylogenetic resolution and others. Here, we employed novel, single-cell sequencing techniques to assess the composition of small (<10 μm diameter), heterotrophic protists from the Gulf of Maine. Single cells were isolated by flow cytometry, their genomes amplified, and 18S rRNA marker genes were amplified and sequenced. We compared the results to traditional environmental PCR cloning of sorted cells. The diversity of heterotrophic protists was significantly higher in the library of single amplified genomes (SAGs) than in environmental PCR clone libraries of the 18S rRNA gene, obtained from the same coastal sample. Libraries of SAGs, but not clones contained several recently discovered, uncultured groups, including picobiliphytes and novel marine stramenopiles. Clone, but not SAG, libraries contained several large clusters of identical and nearly identical sequences of Dinophyceae, Cercozoa and Stramenopiles. Similar results were obtained using two alternative primer sets, suggesting that PCR biases may not be the only explanation for the observed patterns. Instead, differences in the number of 18S rRNA gene copies among the various protist taxa probably had a significant role in determining the PCR clone composition. These results show that single-cell sequencing has the potential to more accurately assess protistan community composition than previously established methods. In addition, the creation of SAG libraries opens opportunities for the analysis of multiple genes or entire genomes of the uncultured protist groups. PMID:20962875

  11. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics.

    PubMed

    Tan, Shangjin; Zhou, Jin; Zhu, Xiaoshan; Yu, Shichen; Zhan, Wugen; Wang, Bo; Cai, Zhonghua

    2015-02-01

    Algal blooms are a worldwide phenomenon and the biological interactions that underlie their regulation are only just beginning to be understood. It is established that algal microorganisms associate with many other ubiquitous, oceanic organisms, but the interactions that lead to the dynamics of bloom formation are currently unknown. To address this gap, we used network approaches to investigate the association patterns among microeukaryotes and bacterioplankton in response to a natural Scrippsiella trochoidea bloom. This is the first study to apply network approaches to bloom dynamics. To this end, terminal restriction fragment (T-RF) length polymorphism analysis showed dramatic changes in community compositions of microeukaryotes and bacterioplankton over the blooming period. A variance ratio test revealed significant positive overall associations both within and between microeukaryotic and bacterioplankton communities. An association network generated from significant correlations between T-RFs revealed that S. trochoidea had few connections to other microeukaryotes and bacterioplankton and was placed on the edge. This lack of connectivity allowed for the S. trochoidea sub-network to break off from the overall network. These results allowed us to propose a conceptual model for explaining how changes in microbial associations regulate the dynamics of an algal bloom. In addition, key T-RFs were screened by principal components analysis, correlation coefficients, and network analysis. Dominant T-RFs were then identified through 18S and 16S rRNA gene clone libraries. Results showed that microeukaryotes clustered predominantly with Dinophyceae and Perkinsea while the majority of bacterioplankton identified were Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. The ecologi-cal roles of both were discussed in the context of these findings. © 2014 Phycological Society of America.

  12. Phytoplankton and bacterial community structures and their interaction during red-tide phenomena

    NASA Astrophysics Data System (ADS)

    Ismail, Mona Mohamed; Ibrahim, Hassan Abd Allah

    2017-09-01

    Phytoplankton and bacteria diversity were studied before, during and after red tide phenomena during spring season 2015 in the Eastern Harbour (E.H.) of Alexandria, Egypt. Fifty five species of phytoplankton were identified and represented different distinct classes "Bacillariophyceae; Dinophyceae, Chlorophyceae, Cyanophyceae and Eugelenophyceae". Also, Diatom formed the most dominant group. The average number of the phytoplankton density varied from 4.8 × 104 to 1.1 × 106 cell l-1 during the study period and Skeletonema costatum was the agent causing the red tide. The existence percentages of bacteria ranged from 2.6 to 17.9% on all media tested. The bacterial isolates on the nutrient agar medium represented the highest existence with a total percentage of 43.6%, followed by MSA medium (25.7%), while the lowest percentage was for the AA medium at 7.8%. However, twelve isolates were selected as representative for bacterial community during study interval. Based on the morphological, biochemical, physiological and enzymatic characteristics, the bacterial strains were described. Depending on the 16S rDNA gene sequence, three common antagonists were aligned as: Vibrio toranzoniae strain Vb 10.8, Ruegeria pelagia strain NBRC 102038 and Psychrobacter adeliensis strain DSM 15333. The interaction between these bacteria and S. costatum was studied. The growth of S. costatum was significantly lower whenever each bacterium was present as compared to axenic culture. More specifically, 30% (v/v) of the all tested bacteria showed the strongest algicidal activities, as all S. costatum cells were killed after two days. 10% of R. pelagia and P. adeliensis also showed significant algicidal activities within six days.

  13. Signal recognition particle RNA in dinoflagellates and the Perkinsid Perkinsus marinus.

    PubMed

    Zhang, Huan; Campbell, David A; Sturm, Nancy R; Rosenblad, Magnus A; Dungan, Christopher F; Lin, Senjie

    2013-09-01

    In dinoflagellates and perkinsids, the molecular structure of the protein translocating machinery is unclear. Here, we identified several types of full-length signal recognition particle (SRP) RNA genes from Karenia brevis (dinoflagellate) and Perkinsus marinus (perkinsid). We also identified the four SRP S-domain proteins, but not the two Alu domain proteins, from P. marinus and several dinoflagellates. We mapped both ends of SRP RNA transcripts from K. brevis and P. marinus, and obtained the 3' end from four other dinoflagellates. The lengths of SRP RNA are predicted to be ∼260-300 nt in dinoflagellates and 280-285 nt in P. marinus. Although these SRP RNA sequences are substantially variable, the predicted structures are similar. The genomic organization of the SRP RNA gene differs among species. In K. brevis, this gene is located downstream of the spliced leader (SL) RNA, either as SL RNA-SRP RNA-tRNA gene tandem repeats, or within a SL RNA-SRP RNA-tRNA-U6-5S rRNA gene cluster. In other dinoflagellates, SRP RNA does not cluster with SL RNA or 5S rRNA genes. The majority of P. marinus SRP RNA genes array as tandem repeats without the above-mentioned small RNA genes. Our results capture a snapshot of a potentially complex evolutionary history of SRP RNA in alveolates. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays.

    PubMed

    Bourdelais, Andrea J; Campbell, Susan; Jacocks, Henry; Naar, Jerome; Wright, Jeffery L C; Carsi, Jigani; Baden, Daniel G

    2004-08-01

    1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events. 2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding. 3. A new polyether natural product from Florida's red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature. 4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure. 5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures.

  15. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms.

    PubMed

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2010-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

  16. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms

    PubMed Central

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2009-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure. This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period. These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425

  17. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors.

    PubMed

    Molgó, Jordi; Marchot, Pascale; Aráoz, Rómulo; Benoit, Evelyne; Iorga, Bogdan I; Zakarian, Armen; Taylor, Palmer; Bourne, Yves; Servent, Denis

    2017-08-01

    We present an overview of the toxicological profile of the fast-acting, lipophilic macrocyclic imine toxins, an emerging family of organic compounds associated with algal blooms, shellfish contamination and neurotoxicity. Worldwide, shellfish contamination incidents are expanding; therefore, the significance of these toxins for the shellfish food industry deserves further study. Emphasis is directed to the dinoflagellate species involved in their production, their chemical structures, and their specific mode of interaction with their principal natural molecular targets, the nicotinic acetylcholine receptors, or with the soluble acetylcholine-binding protein, used as a surrogate receptor model. The dinoflagellates Karenia selliformis and Alexandrium ostenfeldii / A. peruvianum have been implicated in the biosynthesis of gymnodimines and spirolides, while Vulcanodinium rugosum is the producer of pinnatoxins and portimine. The cyclic imine toxins are characterized by a macrocyclic skeleton comprising 14-27 carbon atoms, flanked by two conserved moieties, the cyclic imine and the spiroketal ring system. These phycotoxins generally display high affinity and broad specificity for the muscle type and neuronal nicotinic acetylcholine receptors, a feature consistent with their binding site at the receptor subunit interfaces, composed of residues highly conserved among all nAChRs, and explaining the diverse toxicity among animal species. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  18. Modified MODIS fluorescence line height data product to improve image interpretation for red tide monitoring in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hu, Chuanmin; Feng, Lian

    2017-01-01

    Several satellite-based methods have been used to detect and trace Karenia brevis red tide blooms in the eastern Gulf of Mexico. Some require data statistics and multiple data products while others use a single data product. Of these, the MODIS normalized fluorescence line height (nFLH) has shown its advantage of detecting blooms in waters rich in colored dissolved organic matter, thus having been used routinely to assess bloom conditions by the Florida Fish and Wildlife Conservation Commission (FWC), the official state agency of Florida responsible for red tide monitoring and mitigation. However, elevated sediment concentrations in the water column due to wind storms can also result in high nFLH values, leading to false-positive bloom interpretation. Here, a modified nFLH data product is developed to minimize such impacts through empirical adjustments of the nFLH values using MODIS-derived remote sensing reflectance in the green band at 547 nm. The new product is termed as an algal bloom index (ABI), which has shown improved performance over the original nFLH in both retrospective evaluation statistics and near real-time applications. The ABI product has been made available in near real-time through a Web portal and has been used by the FWC on a routine basis to guide field sampling efforts and prepare for red tide bulletins distributed to many user groups.

  19. Concentration and Particle Size of Airborne Toxic Algae (Brevetoxin) Derived from Ocean Red Tide Events

    PubMed Central

    Cheng, Yung Sung; Mcdonald, Jacob D.; Kracko, Dean; Irvin, C. Mitch; Zhou, Yue; Pierce, Richard H.; Henry, Michael S.; Bourdelaisa, Andrea; Naar, Jerome; Baden, Daniel G.

    2009-01-01

    Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 μm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways. PMID:15954221

  20. Phylogenomic analysis of Emiliania huxleyi provides evidence for haptophyte-stramenopile association and a chimeric haptophyte nuclear genome.

    PubMed

    Miller, John J; Delwiche, Charles F

    2015-06-01

    Emiliania huxleyi is a haptophyte alga of uncertain phylogenetic affinity containing a secondarily derived, chlorophyll c containing plastid. We sought to characterize its relationships with other taxa by quantifying the bipartitions in which it was included from a group of single protein phylogenetic trees in a way that allowed for variation in taxonomic content and accounted for paralogous sequences. The largest number of sequences supported a phylogenetic relationship of E. huxleyi with the stramenopiles, in particular Aureococcus anophagefferens. Far fewer nuclear sequences gave strong support to the placement of this coccolithophorid with the cryptophyte, Guillardia theta. The majority of the sequences that did support this relationship did not have plastid related functions. These results suggest that the haptophytes may be more closely allied with the heterokonts than with the cryptophytes. Another small set of genes associated E. huxleyi with the Viridiplantae with high support. While these genes could have been acquired with a plastid, the lack of plastid related functions among the proteins for which they code and the lack of other organisms with chlorophyll c containing plastids within these bipartitions suggests other explanations may be possible. This study also identified several genes that may have been transferred from the haptophyte lineage to the dinoflagellates Karenia brevis and Karlodinium veneficum as a result of their haptophyte derived plastid, including some with non-photosynthetic functions. Published by Elsevier B.V.

  1. The role of dissolved organic matter (DOM) quality in the growth enhancement of Alexandrium fundyense (Dinophyceae) in laboratory culture(1).

    PubMed

    Cawley, Kaelin M; Koerfer, Verena; McKnight, Diane M

    2013-06-01

    Several algal species responsible for harmful algal blooms (HABs), such as Alexandrium fundyense, are mixotrophic under certain environmental conditions. The ability to switch between photosynthetic and heterotrophic modes of growth may play a role in the development of HABs in coastal regions. We examined the influence of humic dissolved organic matter (HDOM) derived from terrestrial (plant/soil) and microbial sources on the growth of A. fundyense. We found that a terrestrially derived HDOM, Suwannee River humic acid (SRHA), did enhance A. fundyense growth; however, a microbially derived HDOM, Pony Lake fulvic acid (PLFA) did not enhance growth. A. fundyense grows in association with bacteria in culture and we observed that bacterial cell densities were much lower in A. fundyense cultures than in bacteria-only cultures, consistent with bacterial grazing by A. fundyense in culture. In bacteria-only cultures with added algal exudates (EX), the addition of PLFA and SRHA resulted in a slight increase in bacterial cell density compared to cultures without HDOM added. Changes over time in the chemical quality of the HDOM in the A. fundyense cultures reflected contributions of microbially derived material with similar characteristics as the PLFA. Overall, these results suggest that the chemical differences between SRHA and PLFA are responsible for the greater effect of SRHA on A. fundyense growth, and that the differential effect is not a result of an effect on the growth of associated bacteria. © 2013 Phycological Society of America.

  2. Intraspecific bloom succession in the harmful dinoflagellate Cochlodinium polykrikoides (Dinophyceae) extended the blooming period in Korean coastal waters in 2009.

    PubMed

    Park, Bum Soo; Kim, Jin Ho; Kim, Joo-Hwan; Baek, Seung Ho; Han, Myung-Soo

    2018-01-01

    Although there have been extensive studies on dinoflagellate blooms in recent decades, the mechanism that allows the maintenance of blooms over long periods remains uncertain, and studies on genetically differentiated subpopulations may provide insights into this mechanism. In this study, the influence of two genetically distinct subpopulations of the dinoflagellate Cochlodinium polykrikoides, referred to as Group I and IV, on bloom duration in Korean coastal waters (KCW) was examined using a quantitative PCR (qPCR) assay. In this study, a C. polykrikoides bloom occurred over a longer period in 2009 (49 days), whereas the bloom period was shorter in 2010 (35 days). The qPCR results indicate that intraspecific bloom succession between Groups I and IV occurred in 2009, whereas only a single subpopulation (Group I) was responsible for the bloom in 2010. Based on the statistical analysis, the Group I and Group IV blooms occurred under significantly different environmental conditions (p ≤ 0.05) in terms of water temperature, pH, and phosphate concentration, and these subpopulations exhibited significantly different relationships with environmental factors, particularly water temperature (p < 0.01). This variability may allow blooms to continue through intraspecific bloom succession even after environmental conditions change. Southern KCW are affected by outer regions via the Tsushima Warm Current (TWC) every summer. Group IV (≤1108 ± 69 cells L -1 ) was primarily observed along the route of the TWC in summer 2009, when the bloom of this subpopulation occurred in southern KCW. These results suggest that Group IV transported via the TWC may have influenced the bloom dynamics of this subpopulation in summer 2009. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Distribution of Alexandrium fundyense (Dinophyceae) cysts in Greenland and Iceland, with an emphasis on viability and growth in the Arctic

    PubMed Central

    Richlen, Mindy L.; Zielinski, Oliver; Holinde, Lars; Tillmann, Urban; Cembella, Allan; Lyu, Yihua; Anderson, Donald M.

    2016-01-01

    The bloom-forming dinoflagellate Alexandrium fundyense has been extensively studied due its toxin-producing capabilities and consequent impacts to human health and economies. This study investigated the prevalence of resting cysts of A. fundyense in western Greenland and Iceland to assess the historical presence and magnitude of bloom populations in the region, and to characterize environmental conditions during summer, when bloom development may occur. Analysis of sediments collected from these locations showed that Alexandrium cysts were present at low to moderate densities in most areas surveyed, with highest densities observed in western Iceland. Additionally, laboratory experiments were conducted on clonal cultures established from isolated cysts or vegetative cells from Greenland, Iceland, and the Chukchi Sea (near Alaska) to examine the effects of photoperiod interval and irradiance levels on growth. Growth rates in response to the experimental treatments varied among isolates, but were generally highest under conditions that included both the shortest photoperiod interval (16h:8h light:dark) and higher irradiance levels (~146–366 μmol photons m−2 s−1), followed by growth under an extended photoperiod interval and low irradiance level (~37 μmol photons m−2 s−1). Based on field and laboratory data, we hypothesize that blooms in Greenland are primarily derived from advected Alexandrium populations, as low bottom temperatures and limited light availability would likely preclude in situ bloom development. In contrast, the bays and fjords in Iceland may provide more favorable habitat for germling cell survival and growth, and therefore may support indigenous, self-seeding blooms. PMID:27721528

  4. Mapping the fundamental niches of two freshwater microalgae, Chlorella vulgaris (Trebouxiophyceae) and Peridinium cinctum (Dinophyceae), in 5-dimensional ion space

    USDA-ARS?s Scientific Manuscript database

    A five dimensional experimental design, i.e. a five component ion mixture design for nitrate, phosphate, potassium, sodium and chloride projected across a total ion concentration gradient of 1-30 mM was utilized to map the ion-based, scenopoetic, or ‘Grinnellian’, niche space for two freshwater alga...

  5. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile.

    PubMed

    Parris, Darren J; Ganesh, Sangita; Edgcomb, Virginia P; DeLong, Edward F; Stewart, Frank J

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2-1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40-70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2-1.6 μm fraction was dominated (11-99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion.

  6. Effects of fomesafen, alone and in combination with an adjuvant, on plankton communities in freshwater outdoor pond mesocosms.

    PubMed

    Caquet, Thierry; Deydier-Stephan, Laurence; Lacroix, Gérard; Le Rouzic, Bertrand; Lescher-Moutoué, Françoise

    2005-05-01

    Ecotoxicological effects of the diphenyl ether herbicide fomesafen, applied alone or in combination with the adjuvant Agral 90 (mixture of polyethoxylated derivatives of nonylphenol), were assessed on planktonic communities in 18-m3 outdoor mesocosms during a nine-month study. Four mesocosms were treated with fomesafen only (nominal concentration: 40 microg/L), four were treated with the mixture fomesafen-Agral 90 (nominal concentration: 40 microg/L and 90 microg/L, respectively), and four were kept as the controls. Five treatments were performed every three weeks from April 18, 2000. Mean (+/- standard error [SE]) values of fomesafen concentration in water of 62.5 (+/-5.3) and 19.4 (+/-7.6) microg/L were measured at the end of the treatment period in fomesafen- and mixture-treated mesocosms, respectively. Fomesafen, either alone or in mixture with Agral 90, had a significant positive effect on the abundance and biovolume of Cyanobacteria, Cryptophyceae, Dinophyceae, and Bacillariophyceae. Chlorophyceae were inhibited by the herbicide and laboratory toxicity tests confirmed that green algae were more sensitive toward fomesafen than other algal classes. A positive effect of treatments on phytoplankton taxonomic diversity also was observed, indicating that, like natural disturbances of intermediate strength, xenobiotics sometimes may enhance the diversity of algal communities. Fomesafen alone did not have any clear effect on zooplankton. Abundance of calanoid copepods was reduced significantly in the mixture-treated ponds, suggesting either a direct effect of the adjuvant and/or an enhancement of herbicide toxicity by Agral 90. The abundance of other zooplanktonic herbivorous groups increased due to a reduced competition for food for herbivorous species and a higher availability of preys for predators. No algal bloom was observed in the treated ponds, presumably because of grazing pressure and the low availability of nutrients.

  7. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile

    PubMed Central

    Parris, Darren J.; Ganesh, Sangita; Edgcomb, Virginia P.; DeLong, Edward F.; Stewart, Frank J.

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2–1.6 μm, >1.6 μm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing of >154,000 amplicons revealed contrasting patterns of phylogenetic diversity across size fractions and depths. Protist and total eukaryote diversity in the >1.6 μm fraction peaked at the chlorophyll maximum in the upper photic zone before declining by ~50% in the OMZ. In contrast, diversity in the 0.2–1.6 μm fraction, though also elevated in the upper photic zone, increased four-fold from the lower oxycline to a maximum at the anoxic OMZ core. Dinoflagellates of the Dinophyceae and endosymbiotic Syndiniales clades dominated the protist assemblage at all depths (~40–70% of sequences). Other protist groups varied with depth, with the anoxic zone community of the larger size fraction enriched in euglenozoan flagellates and acantharean radiolarians (up to 18 and 40% of all sequences, respectively). The OMZ 0.2–1.6 μm fraction was dominated (11–99%) by Syndiniales, which exhibited depth-specific variation in composition and total richness despite uniform oxygen conditions. Metazoan sequences, though confined primarily to the 1.6 μm fraction above the OMZ, were also detected within the anoxic zone where groups such as copepods increased in abundance relative to the oxycline and upper OMZ. These data, compared to those from other low-oxygen sites, reveal variation in OMZ microeukaryote composition, helping to identify clades with potential adaptations to oxygen-depletion. PMID:25389417

  8. Phytoplankton biomass and composition in a well-flushed, sub-tropical estuary: The contrasting effects of hydrology, nutrient loads and allochthonous influences.

    PubMed

    Hart, J A; Phlips, E J; Badylak, S; Dix, N; Petrinec, K; Mathews, A L; Green, W; Srifa, A

    2015-12-01

    The primary objective of this study was to examine trends in phytoplankton biomass and species composition under varying nutrient load and hydrologic regimes in the Guana Tolomato Matanzas estuary (GTM), a well-flushed sub-tropical estuary located on the northeast coast of Florida. The GTM contains both regions of significant human influence and pristine areas with only modest development, providing a test case for comparing and contrasting phytoplankton community dynamics under varying degrees of nutrient load. Water temperature, salinity, Secchi disk depth, nutrient concentrations and chlorophyll concentrations were determined on a monthly basis from 2002 to 2012 at three representative sampling sites in the GTM. In addition, microscopic analyses of phytoplankton assemblages were carried out monthly for a five year period from 2005 through 2009 at all three sites. Results of this study indicate that phytoplankton biomass and composition in the GTM are strongly influenced by hydrologic factors, such as water residence times and tidal exchanges of coastal waters, which in turn are affected by shifts in climatic conditions, most prominently rainfall levels. These influences are exemplified by the observation that the region of the GTM with the longest water residence times but lowest nutrient loads exhibited the highest phytoplankton peaks of autochthonous origin. The incursion of a coastal bloom of the toxic dinoflagellate Karenia brevis into the GTM in 2007 demonstrates the potential importance of allochthonous influences on the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms

    USGS Publications Warehouse

    Smith, Christopher G.; Swarzenski, Peter W.

    2012-01-01

    A cross-shelf, water-column mass balance of radon-222 (222Rn) provided estimates of submarine groundwater discharge (SGD), which were then used to quantify benthic nutrient fluxes. Surface water and groundwater were collected along a shore-normal transect that extended from Tampa Bay, Florida, across the Pinellas County peninsula, to the 10-m isobath in the Gulf of Mexico. Samples were analyzed for 222Rn and radium-223,224,226 (223,224,226Ra) activities as well as inorganic and organic nutrients. Cross-shore gradients of 222Rn and 223,224,226Ra activities indicate a nearshore source for these isotopes, which mixes with water characterized by low activities offshore. Radon-based SGD rates vary between 2.5 and 15 cm d-1 proximal to the shoreline and decrease offshore. The source of SGD is largely shallow exchange between surface and pore waters, although deeper groundwater cycling may also be important. Enrichment of total dissolved nitrogen and soluble reactive phosphorus in pore water combined with SGD rates results in specific nutrient fluxes comparable to or greater than estuarine fluxes from Tampa Bay. The significance of these fluxes to nearshore blooms of Karenia brevis is highlighted by comparison with prescribed nutrient demands for bloom maintenance and growth. Whereas our flux estimates do not indicate SGD and benthic fluxes as the dominant nutrient source to the harmful algal blooms, SGD-derived loads do narrow the deficit between documented nutrient supplies and bloom demands.

  10. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M; Studts, Jamie

    2014-02-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis , occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and 'snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods.

  11. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed Central

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M.; Studts, Jamie

    2013-01-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and ‘snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods. PMID:24563634

  12. Putative Monofunctional Type I Polyketide Synthase Units: A Dinoflagellate-Specific Feature?

    PubMed Central

    Eichholz, Karsten; Beszteri, Bánk; John, Uwe

    2012-01-01

    Marine dinoflagellates (alveolata) are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS) transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales) which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales) and Heterocapsa triquetra (peridiniales) at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3′ UTR and the dinoflagellate specific spliced leader sequence at the 5′end. Each of the five transcripts encoded a single ketoacylsynthase (KS) domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates. PMID:23139807

  13. Role of Modular Polyketide Synthases in the Production of Polyether Ladder Compounds in Ciguatoxin-Producing Gambierdiscus polynesiensis and G. excentricus (Dinophyceae).

    PubMed

    Kohli, Gurjeet S; Campbell, Katrina; John, Uwe; Smith, Kirsty F; Fraga, Santiago; Rhodes, Lesley L; Murray, Shauna A

    2017-09-01

    Gambierdiscus, a benthic dinoflagellate, produces ciguatoxins that cause the human illness Ciguatera. Ciguatoxins are polyether ladder compounds that have a polyketide origin, indicating that polyketide synthases (PKS) are involved in their production. We sequenced transcriptomes of Gambierdiscus excentricus and Gambierdiscus polynesiensis and found 264 contigs encoding single domain ketoacyl synthases (KS; G. excentricus: 106, G. polynesiensis: 143) and ketoreductases (KR; G. excentricus: 7, G. polynesiensis: 8) with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 24 contigs (G. excentricus: 3, G. polynesiensis: 21) encoding multiple PKS domains (forming typical type I PKSs modules) were found. The proposed structure produced by one of these megasynthases resembles a partial carbon backbone of a polyether ladder compound. Seventeen contigs encoding single domain KS, KR, s-malonyltransacylase, dehydratase and enoyl reductase with sequence similarity to type II fatty acid synthases (FAS) in plants were found. Type I PKS and type II FAS genes were distinguished based on the arrangement of domains on the contigs and their sequence similarity and phylogenetic clustering with known PKS/FAS genes in other organisms. This differentiation of PKS and FAS pathways in Gambierdiscus is important, as it will facilitate approaches to investigating toxin biosynthesis pathways in dinoflagellates. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  14. Effect of temperature on growth and paralytic toxin profiles in isolates of Gymnodinium catenatum (Dinophyceae) from the Pacific coast of Mexico.

    PubMed

    Band-Schmidt, Christine J; Bustillos-Guzmán, José J; Hernández-Sandoval, Francisco E; Núñez-Vázquez, Erick J; López-Cortés, David J

    2014-11-01

    The effects of temperature on growth, cell toxicity, toxin content, and profile of paralytic shellfish toxins was determined in eight isolates of Gymnodinium catenatum from several localities along the Pacific Coast of Mexico. The isolates were cultivated in modified f/2 media with Se (10(-8) M), and a reduced concentration of Cu (10(-8) M), under a 12 h:12 h day-night cycle with an irradiance of 150 μE m(-2) s(-1). Isolates were progressively adapted for three generations to each of the temperatures (16, 19, 22, 24, 27, 30, and 33 °C). The cultures were grown in 125 mL Erlenmeyer flasks with 60 mL of media and harvested by filtration in late exponential growth. Toxins were analyzed by HPLC with a post-column oxidation and fluorescent detection (FLD). G. catenatum isolates tolerate temperatures between 16 and 33 °C, with maximum growth rates of 0.32 and 0.39 div day(-1) at 21 °C and 24 °C, respectively; maximum cell densities of 4700 and 5500 cells mL(-1) were obtained at 27 and 21 °C, respectively. No effect of toxicity per cell with temperature was observed, varying between 10.10 and 28.19 pgSXTeq cell(-1). Ten saxitoxin analogues were detected in all isolates, observing changes in the toxin profile with temperature. C1/2 toxins decreased from 80% mol at 16 °C to 20% mol at 33 °C, B1/2 toxins increased from 19% mol at 16 °C to 42% mol at 33 °C, and decarbamoyl toxins were more abundant at 21 °C. These results show that G. catenatum isolates from different regions of the Pacific coast of Mexico have a similar response to temperature and that this parameter can modify growth rate, cell density, and toxin profile of the species, particularly the decarbamoyl and sulfocarbamoyl toxins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The newly described heterotrophic dinoflagellate Gyrodinium moestrupii, an effective protistan grazer of toxic dinoflagellates.

    PubMed

    Yoo, Yeong Du; Yoon, Eun Young; Jeong, Hae Jin; Lee, Kyung Ha; Hwang, Yeong Jong; Seong, Kyeong Ah; Kim, Jae Seong; Park, Jae Yeon

    2013-01-01

    Few protistan grazers feed on toxic dinoflagellates, and low grazing pressure on toxic dinoflagellates allows these dinoflagellates to form red-tide patches. We explored the feeding ecology of the newly described heterotrophic dinoflagellate Gyrodinium moestrupii when it fed on toxic strains of Alexandrium minutum, Alexandrium tamarense, and Karenia brevis and on nontoxic strains of A. tamarense, Prorocentrum minimum, and Scrippsiella trochoidea. Specific growth rates of G. moestrupii feeding on each of these dinoflagellates either increased continuously or became saturated with increasing mean prey concentration. The maximum specific growth rate of G. moestrupii feeding on toxic A. minutum (1.60/d) was higher than that when feeding on nontoxic S. trochoidea (1.50/d) or P. minimum (1.07/d). In addition, the maximum growth rate of G. moestrupii feeding on the toxic strain of A. tamarense (0.68/d) was similar to that when feeding on the nontoxic strain of A. tamarense (0.71/d). Furthermore, the maximum ingestion rate of G. moestrupii on A. minutum (2.6 ng C/grazer/d) was comparable to that of S. trochoidea (3.0 ng C/grazer/d). Additionally, the maximum ingestion rate of G. moestrupii on the toxic strain of A. tamarense (2.1 ng C/grazer/d) was higher than that when feeding on the nontoxic strain of A. tamarense (1.3 ng C/grazer/d). Thus, feeding by G. moestrupii is not suppressed by toxic dinoflagellate prey, suggesting that it is an effective protistan grazer of toxic dinoflagellates. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  16. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  17. Exposure and effect assessment of aerosolized red tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Bean, Judy A; Kirkpatrick, Barbara; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Nierenberg, Kate; Backer, Lorraine C; Wanner, Adam; Reich, Andrew; Zhou, Yue; Watkins, Sharon; Henry, Mike; Zaias, Julia; Abraham, William M; Benson, Janet; Cassedy, Amy; Hollenbeck, Julie; Kirkpatrick, Gary; Clarke, Tainya; Baden, Daniel G

    2009-07-01

    In previous studies we demonstrated statistically significant changes in reported symptoms for lifeguards, general beach goers, and persons with asthma, as well as statistically significant changes in pulmonary function tests (PFTs) in asthmatics, after exposure to brevetoxins in Florida red tide (Karenia brevis bloom) aerosols. In this study we explored the use of different methods of intensive ambient and personal air monitoring to characterize these exposures to predict self-reported health effects in our asthmatic study population. We evaluated health effects in 87 subjects with asthma before and after 1 hr of exposure to Florida red tide aerosols and assessed for aerosolized brevetoxin exposure using personal and ambient samplers. After only 1 hr of exposure to Florida red tide aerosols containing brevetoxin concentrations > 57 ng/m(3), asthmatics had statistically significant increases in self-reported respiratory symptoms and total symptom scores. However, we did not see the expected corresponding changes in PFT results. Significant increases in self-reported symptoms were also observed for those not using asthma medication and those living >/= 1 mile from the coast. These results provide additional evidence of health effects in asthmatics from ambient exposure to aerosols containing very low concentrations of brevetoxins, possibly at the lower threshold for inducing a biologic response (i.e., toxicity). Consistent with the literature describing self-reported symptoms as an accurate measure of asthmatic distress, our results suggest that self-reported symptoms are a valuable measure of the extent of health effects from exposure to aerosolized brevetoxins in asthmatic populations.

  18. Aerosolized red-tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M; Baden, Daniel G

    2007-01-01

    With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.

  19. Aerosolized Red-Tide Toxins (Brevetoxins) and Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M.; Baden, Daniel G.

    2009-01-01

    Background With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Methods Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons ≥ 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Results Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV1, midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). Conclusions This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins. PMID:17218574

  20. Personal exposure to aerosolized red tide toxins (brevetoxins).

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G

    2010-06-01

    Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.

  1. Isolation and purification of antialgal compounds from the red alga Gracilaria lemaneiformis for activity against common harmful red tide microalgae.

    PubMed

    Sun, Ying-Ying; Meng, Kun; Su, Zhen-Xia; Guo, Gan-Lin; Pu, Yin-Fang; Wang, Chang-Hai

    2017-02-01

    Seven antialgal compounds (1-7) were successfully isolated from the red alga Gracilaria lemaneiformis through a combination of silica gel column chromatography and repeated preparative thin-layer chromatography. On the basis of the spectral data, the compounds were identified as gossonorol (1), 7,10-epoxy-ar-bisabol-11-ol (2), glycerol monopalmitate (3), stigmasterol (4), 15-hydroxymethyl-2, 6, 10, 18, 22, 26, 30-heptamethyl-14-methylene-17-hentriacontene (5), 4-hydroxyphenethyl alcohol (6), and margaric acid (7). These seven compounds were isolated from G. lemaneiformis for the first time, while the compounds 4, 6, and 7 were isolated from marine macroalgae for the first time. Furthermore, a quantitative relationship between the inhibition of algal growth and the concentration of each antialgal compound was determined and important parameters for future practical HAB control, e.g., EC 50-96h , were also obtained. The results indicated that isolated compounds 1-7 possess selective antialgal activity against the growth of several red tide microalgae (including Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globsa, Prorocentrum donghaiense, and Skeletonema costatum). Their antialgal activity against test red tide microalgae has not been previously reported. Furthermore, the EC 50-96h of one or more of the compounds towards the tested red microalgae was not only significantly less than 10 μg/mL but also was smaller than that of the characteristic antialgal agent potassium dichromate. The study demonstrates that compounds 1-7 possess significant application potential as antialgal agents against several harmful red tide microalgae.

  2. Environmental conditions and catch rates of predatory fishes associated with a mass mortality on the West Florida Shelf

    NASA Astrophysics Data System (ADS)

    Driggers, W. B.; Campbell, M. D.; Debose, A. J.; Hannan, K. M.; Hendon, M. D.; Martin, T. L.; Nichols, C. C.

    2016-01-01

    While conducting a standardized fisheries-independent longline survey in the northern Gulf of Mexico on August 20-21, 2014, dead and/or moribund fishes, estimated to number in the thousands, were observed within a well-defined area of the West Florida Shelf. Fishes from 15 families were identified; however, numerous individuals of relatively large-bodied serranid species were decomposed beyond a state that would allow for identification below the family level. Based on survey catch data from previous years and morphological characteristics associated with the decomposing fishes, it was determined that most of the large unidentified fishes were red grouper (Epinephelus morio). Water profiler cast data collected within the area demonstrated that when compared to previous years (1995-2013) bottom temperature and salinity were consistent with what would be expected; however, dissolved oxygen concentration was lower than normal, and in some cases, hypoxic and chlorophyll a and transmissivity values were anomalously high and low, respectively. Hypoxia, high chlorophyll a concentrations and low transmissivity are thought to have resulted from a bloom of Karenia brevis, which was documented to have occurred in close proximity to the sampling area. As necropsies were not performed, it was not possible to state a definitive cause of death as the effects of brevetoxins are species-specific. However, numerous individuals of most impacted species were observed floating incapacitated, yet alive, in normoxic surface waters suggesting that the impacts we observed were due to the neurotoxicological and/or hemolytic effects of a harmful algal bloom.

  3. Genomewide investigation of adaptation to harmful algal blooms in common bottlenose dolphins (Tursiops truncatus).

    PubMed

    Cammen, Kristina M; Schultz, Thomas F; Rosel, Patricia E; Wells, Randall S; Read, Andrew J

    2015-09-01

    Harmful algal blooms (HABs), which can be lethal in marine species and cause illness in humans, are increasing worldwide. In the Gulf of Mexico, HABs of Karenia brevis produce neurotoxic brevetoxins that cause large-scale marine mortality events. The long history of such blooms, combined with the potentially severe effects of exposure, may have produced a strong selective pressure for evolved resistance. Advances in next-generation sequencing, in particular genotyping-by-sequencing, greatly enable the genomic study of such adaptation in natural populations. We used restriction site-associated DNA (RAD) sequencing to investigate brevetoxicosis resistance in common bottlenose dolphins (Tursiops truncatus). To improve our understanding of the epidemiology and aetiology of brevetoxicosis and the potential for evolved resistance in an upper trophic level predator, we sequenced pools of genomic DNA from dolphins sampled from both coastal and estuarine populations in Florida and during multiple HAB-associated mortality events. We sequenced 129 594 RAD loci and analysed 7431 single nucleotide polymorphisms (SNPs). The allele frequencies of many of these polymorphic loci differed significantly between live and dead dolphins. Some loci associated with survival showed patterns suggesting a common genetic-based mechanism of resistance to brevetoxins in bottlenose dolphins along the Gulf coast of Florida, but others suggested regionally specific mechanisms of resistance or reflected differences among HABs. We identified candidate genes that may be the evolutionary target for brevetoxin resistance by searching the dolphin genome for genes adjacent to survival-associated SNPs. © 2015 John Wiley & Sons Ltd.

  4. Effects of brevetoxins on murine myeloma SP2/O cells: Aberrant cellular division

    USGS Publications Warehouse

    Han, T.K.; Derby, M.; Martin, D.F.; Wright, S.D.; Dao, M.L.

    2003-01-01

    Massive deaths of manatees (Trichechus manatus latirostris) during the red tide seasons have been attributed to brevetoxins produced by the dinoflagellate Karenia brevis (formerly Ptychodiscus breve and Gymnodinium breve). Although these toxins have been found in macrophages and lymphocytes in the lung, liver, and secondary lymphoid tissues of these animals, the molecular mechanisms of brevetoxicosis have not yet been identified. To investigate the effects of brevetoxins on immune cells, a murine myeloma cell line (SP2/O) was used as a model for in vitro studies. By adding brevetoxins to cultures of the SP2/O cells at concentrations ranging from 20 to 600 ng/ml, an apparent increase in proliferation was observed at around 2 hours post challenge as compared to the unchallenged cell cultures. This was followed by a drop in cell number at around 3 hours, suggesting an aberrant effect of brevetoxins on cellular division, the cells generated at 2 hours being apparently short-lived. In situ immunochemical staining of the SP2/O cells at 1 and 2 hour post challenge showed an accumulation of the toxins in the nucleus. A 21-kDa protein was subsequently isolated from the SP2/O cells as having brevetoxin-binding properties, and immunologically identified as p21, a nuclear factor known to down-regulate cellular proliferation through inhibition of cyclin-dependent kinases. These data are the first on a possible effect of brevetoxins on the cell cycle via binding to p21, a phenomenon that needs to be further investigated and validated in normal immune cells.

  5. Lack of variation in voltage-gated sodium channels of common bottlenose dolphins (Tursiops truncatus) exposed to neurotoxic algal blooms.

    PubMed

    Cammen, Kristina M; Rosel, Patricia E; Wells, Randall S; Read, Andrew J

    2014-12-01

    In coastal marine ecosystems, neurotoxins produced by harmful algal blooms (HABs) often result in large-scale mortality events of many marine species. Historical and frequent exposure to HABs therefore may provide a strong selective pressure for adaptations that result in toxin resistance. Neurotoxin resistance has independently evolved in a variety of terrestrial and marine species via mutations in genes encoding the toxin binding sites within the voltage-gated sodium channel gene complex. Accordingly, we tested the hypothesis that genetic variation in the putative binding site of brevetoxins in common bottlenose dolphins (Tursiops truncatus) explains differences among individuals or populations in resistance to harmful Karenia brevis blooms in the Gulf of Mexico. We found very little variation in the sodium channel exons encoding the putative brevetoxin binding site among bottlenose dolphins from central-west Florida and the Florida Panhandle. Our study included samples from several bottlenose dolphin mortality events associated with HABs, but we found no association between genetic variation and survival. We observed a significant effect of geographic region on genetic variation for some sodium channel isoforms, but this can be primarily explained by rare private alleles and is more likely a reflection of regional genetic differentiation than the cause of different levels of HAB resistance between regions. In contrast to many other previously studied neurotoxin-resistant species, we conclude that bottlenose dolphins have not evolved resistance to HABs via mutations in genes encoding the brevetoxin binding site on the voltage-gated sodium channels. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effects of environmental stressors on lymphocyte proliferation in Florida manatees, Trichechus manatus latirostris.

    PubMed

    Walsh, Cathy J; Luer, Carl A; Noyes, David R

    2005-02-10

    The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected each year by exposure to cold weather or harmful algal blooms (red tide; Karenia brevis). Exposures can be sublethal, resulting in stressed animals that are rescued and taken to authorized facilities for rehabilitation, or lethal if exposures are prolonged or unusually severe. To investigate whether sublethal environmental exposures can impair immune function in manatees, rendering animals vulnerable to disease or death, mitogen-induced proliferation was assessed in lymphocytes from manatees exposed to cold temperatures (N=20) or red tide (N=19) in the wild, and compared to lymphocyte responses from healthy free-ranging manatees (N=32). All animals sampled for this study were adults. Lymphocytes were stimulated in vitro with either concanavalin A (ConA) or phytohemagglutinin (PHA) and proliferation was assessed after 96 h using incorporation of the thymidine analog, bromodeoxyuridine (BrdU), into newly synthesized DNA. Proliferation of lymphocytes from manatees rescued from exposure to red tide or cold-stress was approximately one-third that of lymphocytes from healthy free-ranging manatees. To examine the direct effects of red tide toxins on lymphocyte function, mitogen-induced proliferation was assessed following co-culture of lymphocytes with K. brevis toxin extracts. Stimulation indices decreased with increasing toxin concentration, with a significant decrease in proliferation occurring in the presence of 400 ng red tide toxins/ml. When lymphocytes from cold-stressed manatees were co-cultured with red tide toxin extracts, proliferative responses were reduced even further, suggesting multiple stressors may have synergistic effects on immune function in manatees.

  7. Phytoplankton variability in relation to some environmental factors in the eastern coast of Suez Gulf, Egypt.

    PubMed

    Nassar, Mohamed Z; El-Din, Nihal G Shams; Gharib, Samiha M

    2015-10-01

    Water samples were seasonally collected from 12 stations of the eastern coast of Suez Gulf during autumn of 2012 and winter, spring, and summer of 2013 in order to investigate phytoplankton community structure in relation to some physicochemical parameters. The study area harbored a diversified phytoplankton community (138 species), belonging to 67 genera. Four algal groups were represented and classified as Bacillariophyceae (90 species), Dinophyceae (28 species), Cyanophyceae (16 species), and Chlorophyceae (4 species). The results indicated a relative high occurrence of some species namely.; Pleurotaenium trabecula of green algae; Chaetoceros lorenzianus, Proboscia alata var. gracillima, Pseudosolenia calcar-avis, and Pseudo-nitzschia pungens of diatoms; Trichodesmium erythraeum and Pseudoanabaena limnetica of cyanophytes. Most of other algal species were fairly distributed at the selected stations of the study area. The total abundance of phytoplankton was relatively low (average of 2989 unit/L) in the eastern coast of Suez Gulf, as compared its western coast and the northern part of the Red Sea. The diversity of phytoplankton species was relatively high (2.35-3.82 nats) with an annual average of 3.22 nats in the present study. The results concluded that most of eastern coast of Suez Gulf is still healthy, relatively unpolluted, and oligotrophic area, which is clearly achieved by the low values of dissolved phosphate (0.025-0.3 μM), nitrate (0.18-1.26 μM), and dissolved ammonium (0.81-5.36 μM). Even if the occurrence of potentially harmful algae species was low, the study area should be monitored continuously. The dissolved oxygen ranged between 1.77 and 8.41 mg/L and pH values between 7.6 and 8.41. The multiple regression analysis showed that the dissolved nitrate and pH values were the most effective factors that controlled the seasonal fluctuations of phytoplankton along the eastern coast of Suez Gulf during 2012-2013.

  8. Diversity and community composition of pico- and nanoplanktonic protists in the Vistula River estuary (Gulf of Gdańsk, Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Piwosz, Kasia; Całkiewicz, Joanna; Gołębiewski, Marcin; Creer, Simon

    2018-07-01

    Pico- and nanoplanktonic protists (eukaryotic microorganisms with cell size of <3 μm and 3-20 μm, respectively) are the key component of plankton communities. However, their diversity and distribution patterns along environmental factors are still poorly recognized, largely due to their very large phylogenetic diversity that has been determined only via the application of molecular methods over the past two decades. Here, we compared diversity and composition of active communities of pico- and nanoplantonic protists from three zones of the Vistula River estuary (Gulf of Gdańsk): freshwater, mixing (salinity 3.5) and brackish (salinity 7), in four seasons, by pyrosequencing the V3-V4 fragment of 18S rRNA taxonomy marker gene libraries. Alpha diversity was the highest at the brackish site, but the OTU (Operational Taxonomic Units) richness was characteristic for specific protist groups at each site. The active protistan communities in the freshwater and mixing zones (salinity 0-3.5) were similar (sharing >72% of phylotypes) and included centric diatoms (Stephanodiscus minutulus), synurophytes from clades C, E and F, and cryptophytes. However, at salinity of 7 at the brackish site the communities were significantly different from those in freshwater/mixing zone, and showed higher contributions of Dinophyceae, Mamiellophyceae, Telonemia, and picobiliphytes. The high similarity between the freshwater and mixing site, as well as high dissimilarity of the brackish site was observed in all months, despite seasonal shifts in pico- and nanoplantonic protistan communities. Seventy five percent of the observed variability in the communities was explained by combinations of temperature, salinity, nutrients and geographical distance, indicating interplay between species sorting and mass effects in shaping the active protistan communities in the Vistula River estuary. Groups that were more active in freshwaters and the mixing zone seemed to be more affected by mass effects of

  9. The Synonymy of the Toxic Dinoflagellates Prorocentrum mexicanum and P. rhathymum and the Description of P. steidingerae sp. nov. (Prorocentrales, Dinophyceae).

    PubMed

    Gómez, Fernando; Qiu, Dajun; Lin, Senjie

    2017-09-01

    Prorocentrum mexicanum and P. rhathymum are toxicologically important dinoflagellates, but their relationship is not well defined. We investigated strains from Puerto Rico and Brazil by light and scanning electron microscopies. We provide molecular data from a strain isolated near the type locality of P. rhathymum, and the first morphological and molecular data from the South Atlantic Ocean. The rRNA gene (rDNA) sequences of the Puerto Rican and Brazilian strains were identical, and their morphologies fit the description of P. rhathymum. In the molecular phylogenies, the globally distributed populations under the names P. mexicanum and P. rhathymum are intermixed and branched together, except for several divergent strains from Florida and Cuba. We examined the original descriptions and iconotypes of the species Prorocentrum maximum, P. brochii, P. mexicanum, and P. rhathymum. We conclude that P. maximum sensu Schiller's figure 41a corresponds to the earlier description of this species; the split of P. mexicanum and P. rhathymum was based on a misidentification because P. mexicanum sensu Cortés-Altamirano & Sierra-Beltrán corresponds to P. texanum var. cuspidatum; and P. rhathymum is a junior synonym of P. mexicanum. Several Floridian and Cuban strains correspond to a new species, which we describe as Prorocentrum steidingerae sp. nov. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  10. Phylogeny, morphology and toxicity of benthic dinoflagellates of the genus Fukuyoa (Goniodomataceae, Dinophyceae) from a subtropical reef ecosystem in the South China Sea.

    PubMed

    Leung, Priscilla T Y; Yan, Meng; Lam, Veronica T T; Yiu, Sam K F; Chen, Chia-Yun; Murray, J Sam; Harwood, D Tim; Rhodes, Lesley L; Lam, Paul K S; Wai, Tak-Cheung

    2018-04-01

    Species of Fukuyoa, recently revised from the globular Gambierdiscus, are toxic benthic dinoflagellates associated with ciguatera. In this study, a total of ten strains of Fukuyoa collected from Hong Kong waters were characterized using morphological and phylogenetic analyses. Results from both analyses showed that one of the strains is a putative new species, namely Fukuyoa sp. HK Type 1 (plate formula Po, 3', 7″, 6c, 7s, 5‴, 1p and 2'‴ with a distinctive small and narrow cell shape, narrow Po plate, high Po pore density, large and broad Plate 1' but small and round Po pore size, small and narrow Plate 2', long and narrow Plates 2'‴ and 1p), and the others were F. ruetzleri. This is the first report of these two species of Fukuyoa in the South China Sea and Asia-Pacific region. Phylogenies on 18S, 28S D1/D3 and D8/D10 ribosomal DNA sequences strongly support that Fukuyoa sp. HK Type 1 is currently the most divergent species in the genus Fukuyoa. The diagrammatic plots on the p-distance matrices of 18S, 28S D1/D3 and D8/D10 and ITS regions resolved that the species of Fukuyoa were separated into three main groups, i.e., Fukuyoa sp. HK Type 1, F. paulensis and a group consisting of F. ruetzleri, F. yasumotoi and F. cf. yasumotoi, while Fukuyoa sp. HK Type 1 was always the most distant from the other two groups. Additionally, the pairwise p-distance values calculated based on the ITS region have always been the highest for pairs between Fukuyoa sp. HK Type 1 and other Fukuyoa species, ranging from 0.142 to 0.150. Our molecular results suggested that Fukuyoa sp. HK Type 1 is a putative new species. Both morphological and molecular data of more strains from different localities should be, however, collected to address its intraspecific variability and further evaluate its taxonomic status. A bioassay analysis demonstrated that algal lysates extracted from F. ruetzleri and Fukuyoa sp. HK Type 1 were lethal to brine shrimp larvae, indicating that both species were toxic. Bulk cultures were tested for Pacific ciguatoxins (P-CTXs) and maitotoxins (MTXs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). All isolates of Fukuyoa produced neither P-CTXs nor MTX-1, but isolates of F. ruetzleri produced a compound putatively assigned as MTX-3. This study has updated the current biodiversity and distribution of the toxic benthic dinoflagellates Fukuyoa, and thus contributes to the understanding of their emerging threats to the sub-tropical reef systems locally and regionally. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Cyst-theca relationship of the arctic dinoflagellate cyst Islandinium minutum (Dinophyceae) and phylogenetic position based on SSU rDNA and LSU rDNA.

    PubMed

    Potvin, Éric; Rochon, André; Lovejoy, Connie

    2013-10-01

    Round brown spiny cysts constitute a morphological group common in high latitude dinoflagellate cyst assemblages. The dinoflagellate cyst Islandinium minutum (Harland et Reid) Head, Harland et Matthiessen is the main paleoecological indicator of seasonal sea-ice cover in the Arctic. Despite the importance of this cyst in paleoceanographical studies, its biological affinity has so far been unknown. The biological affinity of the species I. minutum and its phylogenetic position based on the small subunit ribosomal RNA gene (SSU rDNA) and the large subunit ribosomal RNA gene (LSU rDNA) were established from cyst incubation experiments in controlled conditions, optical and scanning electron microscopy, and single-cell PCR. The thecal motile cell obtained was undescribed. Although the motile cell was similar to Archaeperidinium minutum (Kofoid) Jörgensen, the motile cell of I. minutum lacked a transitional plate in the cingular series, which is present in Archaeperidinium spp. Islandinium minutum and Archaeperidinium spp. were paraphyletic in all phylogenetic analyses. Furthermore, Protoperidinium tricingulatum, which also lacks a transitional plate, was closely related to I. minutum and transfered to the genus Islandinium. Based on available data, it is clear that Islandinium is distinct from Archaeperidinium. Therefore, we considered Islandinium Head, Harland et Matthiessen as a non-fossil genus and emend its description, as well as the species I. minutum. This is the first description of a cyst-theca relationship and the first study that reports molecular data based on SSU rDNA and LSU rDNA on a species assigned to the genus Islandinium. © 2013 Phycological Society of America.

  12. Formal Revision of the Alexandrium tamarense Species Complex (Dinophyceae) Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based (rDNA) Classification

    PubMed Central

    John, Uwe; Litaker, R. Wayne; Montresor, Marina; Murray, Shauna; Brosnahan, Michael L.; Anderson, Donald M.

    2015-01-01

    The Alexandrium tamarense species complex is one of the most studied marine dinoflagellate groups due to its ecological, toxicological and economic importance. Several members of this complex produce saxitoxin and its congeners – potent neurotoxins that cause paralytic shellfish poisoning. Isolates from this complex are assigned to A. tamarense, A. fundyense, or A. catenella based on two main morphological characters: the ability to form chains and the presence/absence of a ventral pore between Plates 1′ and 4′. However, studies have shown that these characters are not consistent and/or distinctive. Further, phylogenies based on multiple regions in the rDNA operon indicate that the sequences from morphologically indistinguishable isolates partition into five clades. These clades were initially named based on their presumed geographic distribution, but recently were renamed as Groups I–V following the discovery of sympatry among some groups. In this study we present data on morphology, ITS/5.8S genetic distances, ITS2 compensatory base changes, mating incompatibilities, toxicity, the sxtA toxin synthesis gene, and rDNA phylogenies. All results were consistent with each group representing a distinct cryptic species. Accordingly, the groups were assigned species names as follows: Group I, A. fundyense; Group II, A. mediterraneum; Group III, A. tamarense; Group IV, A. pacificum; Group V, A. australiense. PMID:25460230

  13. Separate introns gained within short and long soluble peridinin-chlorophyll a-protein genes during radiation of Symbiodinium (Dinophyceae) clade A and B lineages

    EPA Science Inventory

    Peridinin-containing dinoflagellates express short (15-17 kD) and/or long (32-35kD) soluble peridinin-chlorophyll a-proteins (sPCP) that harvest blue-green light within chloroplast thylacoid lumens. The previously described pseudo-axis of symmetry in long sPCPs and phylogenetic e...

  14. Developing Predictive Models for Algal Bloom Occurrence and Identifying Factors Controlling their Occurrence in the Charlotte County and Surroundings

    NASA Astrophysics Data System (ADS)

    Karki, S.; Sultan, M.; Elkadiri, R.; Chouinard, K.

    2017-12-01

    Numerous occurrences of harmful algal blooms (Karenia Brevis) were reported from Southwest Florida along the coast of Charlotte County, Florida. We are developing data-driven (remote sensing, field, and meteorological data) models to accomplish the following: (1) identify the factors controlling bloom development, (2) forecast bloom occurrences, and (3) make recommendations for monitoring variables that are found to be most indicative of algal bloom occurrences and for identifying optimum locations for monitoring stations. To accomplish these three tasks we completed/are working on the following steps. Firstly, we developed an automatic system for downloading and processing of ocean color data acquired through MODIS Terra and MODIS Aqua products using SeaDAS ocean color processing software. Examples of extracted variables include: chlorophyll a (OC3M), chlorophyll a Generalized Inherent Optical Property (GIOP), chlorophyll a Garver-Siegel- Maritorena (GSM), sea surface temperature (SST), Secchi disk depth, euphotic depth, turbidity index, wind direction and speed, colored dissolved organic material (CDOM). Secondly we are developing a GIS database and a web-based GIS to host the generated remote sensing-based products in addition to relevant meteorological and field data. Examples of the meteorological and field inputs include: precipitation amount and rates, concentrations of nitrogen, phosphorous, fecal coliform and Dissolved Oxygen (DO). Thirdly, we are constructing and validating a multivariate regression model and an artificial neural network model to simulate past algal bloom occurrences using the compiled archival remote sensing, meteorological, and field data. The validated model will then be used to predict the timing and location of algal bloom occurrences. The developed system, upon completion, could enhance the decision making process, improve the citizen's quality of life, and strengthen the local economy.

  15. Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico.

    PubMed

    Wall, Carrie C; Lembke, Chad; Hu, Chuanmin; Mann, David A

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements.

  16. Fish Sound Production in the Presence of Harmful Algal Blooms in the Eastern Gulf of Mexico

    PubMed Central

    Wall, Carrie C.; Lembke, Chad; Hu, Chuanmin; Mann, David A.

    2014-01-01

    This paper presents the first known research to examine sound production by fishes during harmful algal blooms (HABs). Most fish sound production is species-specific and repetitive, enabling passive acoustic monitoring to identify the distribution and behavior of soniferous species. Autonomous gliders that collect passive acoustic data and environmental data concurrently can be used to establish the oceanographic conditions surrounding sound-producing organisms. Three passive acoustic glider missions were conducted off west-central Florida in October 2011, and September and October 2012. The deployment period for two missions was dictated by the presence of red tide events with the glider path specifically set to encounter toxic Karenia brevis blooms (a.k.a red tides). Oceanographic conditions measured by the glider were significantly correlated to the variation in sounds from six known or suspected species of fish across the three missions with depth consistently being the most significant factor. At the time and space scales of this study, there was no detectable effect of red tide on sound production. Sounds were still recorded within red tide-affected waters from species with overlapping depth ranges. These results suggest that the fishes studied here did not alter their sound production nor migrate out of red tide-affected areas. Although these results are preliminary because of the limited measurements, the data and methods presented here provide a proof of principle and could serve as protocol for future studies on the effects of algal blooms on the behavior of soniferous fishes. To fully capture the effects of episodic events, we suggest that stationary or vertically profiling acoustic recorders and environmental sampling be used as a complement to glider measurements. PMID:25551564

  17. Characterization of marine aerosol for assessment of human exposure to brevetoxins.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Irvin, Clinton M; Pierce, Richard H; Naar, Jerome; Backer, Lorraine C; Fleming, Lora E; Kirkpatrick, Barbara; Baden, Dan G

    2005-05-01

    Red tides in the Gulf of Mexico are commonly formed by the fish-killing dinoflagellate Karenia brevis, which produces nine potent polyether brevetoxins (PbTxs). Brevetoxins can be transferred from water to air in wind-powered white-capped waves. Inhalation exposure to marine aerosol containing brevetoxins causes respiratory symptoms. We describe detailed characterization of aerosols during an epidemiologic study of occupational exposure to Florida red tide aerosol in terms of its concentration, toxin profile, and particle size distribution. This information is essential in understanding its source, assessing exposure to people, and estimating dose of inhaled aerosols. Environmental sampling confirmed the presence of brevetoxins in water and air during a red tide exposure period (September 2001) and lack of significant toxin levels in the water and air during an unexposed period (May 2002). Water samples collected during a red tide bloom in 2001 showed moderate-to-high concentrations of K. brevis cells and PbTxs. The daily mean PbTx concentration in water samples ranged from 8 to 28 microg/L from 7 to 11 September 2001; the daily mean PbTx concentration in air samples ranged from 1.3 to 27 ng/m(3). The daily aerosol concentration on the beach can be related to PbTx concentration in water, wind speed, and wind direction. Personal samples confirmed human exposure to red tide aerosols. The particle size distribution showed a mean aerodynamic diameter in the size range of 6-12 microm, with deposits mainly in the upper airways. The deposition pattern correlated with the observed increase of upper airway symptoms in healthy lifeguards during the exposure periods.

  18. Changes in Work Habits of Lifeguards in Relation to Florida Red Tide.

    PubMed

    Nierenberg, Kate; Kirner, Karen; Hoagland, Porter; Ullmann, Steven; Leblanc, William G; Kirkpatrick, Gary; Fleming, Lora E; Kirkpatrick, Barbara

    2010-05-01

    The marine dinoflagellate, Karenia brevis, is responsible for Florida red tides. Brevetoxins, the neurotoxins produced by K. brevis blooms, can cause fish kills, contaminate shellfish, and lead to respiratory illness in humans. Although several studies have assessed different economic impacts from Florida red tide blooms, no studies to date have considered the impact on beach lifeguard work performance. Sarasota County experiences frequent Florida red tides and staffs lifeguards at its beaches 365 days a year. This study examined lifeguard attendance records during the time periods of March 1 to September 30 in 2004 (no bloom) and March 1 to September 30 in 2005 (bloom). The lifeguard attendance data demonstrated statistically significant absenteeism during a Florida red tide bloom. The potential economic costs resulting from red tide blooms were comprised of both lifeguard absenteeism and presenteeism. Our estimate of the costs of absenteeism due to the 2005 red tide in Sarasota County is about $3,000. On average, the capitalized costs of lifeguard absenteeism in Sarasota County may be on the order of $100,000 at Sarasota County beaches alone. When surveyed, lifeguards reported not only that they experienced adverse health effects of exposure to Florida red tide but also that their attentiveness and abilities to take preventative actions decrease when they worked during a bloom, implying presenteeism effects. The costs of presenteeism, which imply increased risks to beachgoers, arguably could exceed those of absenteeism by an order of magnitude. Due to the lack of data, however, we are unable to provide credible estimates of the costs of presenteeism or the potential increased risks to bathers.

  19. Florida Red Tide Perception: Residents versus Tourists

    PubMed Central

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Tanga, Elvira; Dalpra, Dana R.; Kirkpatrick, Barbara

    2010-01-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide. PMID:20824108

  20. Florida Red Tide Perception: Residents versus Tourists.

    PubMed

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Tanga, Elvira; Dalpra, Dana R; Kirkpatrick, Barbara

    2010-09-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide.

  1. Sublethal red tide toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation responses, inflammation, and oxidative stress.

    PubMed

    Walsh, Catherine J; Butawan, Matthew; Yordy, Jennifer; Ball, Ray; Flewelling, Leanne; de Wit, Martine; Bonde, Robert K

    2015-04-01

    The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida's southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red tide toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red tide toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative responses and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red tide toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p<0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the wild impacts some immune function components, and thus, overall health, in the Florida manatee. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A 1-D Simulation Analysis of the Development and Maintenance of the 2001 Red Tide of the Ichthyotoxic Dinoflagellate Karenia brevis on the West Florida Shelf

    DTIC Science & Technology

    2012-04-26

    subsequent fish kills supplied additional organic nutrients for utilization by these opportunistic toxic algae. Both nutrient vectors represented organic non...ichthyotoxic levels, rapid decay of subsequent fish kills supplied additional organic nutrients for utilization by these opportunistic toxic algae. Both...HABSIM model (Fig. 2) a positive feedback of the recycled organic nutrients (DON and DOP) from decaying fish , killed by K. brevis. Note that dissolved

  3. The Epiphytic Genus Gambierdiscus (Dinophyceae) in the Kermadec Islands and Zealandia Regions of the Southwestern Pacific and the Associated Risk of Ciguatera Fish Poisoning.

    PubMed

    Rhodes, Lesley L; Smith, Kirsty F; Murray, Sam; Harwood, D Tim; Trnski, Tom; Munday, Rex

    2017-07-11

    Species in the genus Gambierdiscus produce ciguatoxins (CTXs) and/or maitotoxins (MTXs), which may cause ciguatera fish poisoning (CFP) in humans if contaminated fish are consumed. Species of Gambierdiscus have previously been isolated from macroalgae at Rangitahua (Raoul Island and North Meyer Islands, northern Kermadec Islands), and the opportunity was taken to sample for Gambierdiscus at the more southerly Macauley Island during an expedition in 2016. Gambierdiscus cells were isolated, cultured, and DNA extracted and sequenced to determine the species present. Bulk cultures were tested for CTXs and MTXs by liquid chromatography-mass spectrometry (LC-MS/MS). The species isolated were G. australes , which produced MTX-1 (ranging from 3 to 36 pg/cell), and G. polynesiensis , which produced neither MTX-1 nor, unusually, any known CTXs. Isolates of both species produced putative MTX-3. The risk of fish, particularly herbivorous fish, causing CFP in the Zealandia and Kermadec Islands region is real, although in mainland New Zealand the risk is currently low. Both Gambierdiscus and Fukuyoa have been recorded in the sub-tropical northern region of New Zealand, and so the risk may increase with warming seas and shift in the distribution of Gambierdiscus species.

  4. The Epiphytic Genus Gambierdiscus (Dinophyceae) in the Kermadec Islands and Zealandia Regions of the Southwestern Pacific and the Associated Risk of Ciguatera Fish Poisoning

    PubMed Central

    Rhodes, Lesley L.; Smith, Kirsty F.; Murray, Sam; Harwood, D. Tim; Trnski, Tom; Munday, Rex

    2017-01-01

    Species in the genus Gambierdiscus produce ciguatoxins (CTXs) and/or maitotoxins (MTXs), which may cause ciguatera fish poisoning (CFP) in humans if contaminated fish are consumed. Species of Gambierdiscus have previously been isolated from macroalgae at Rangitahua (Raoul Island and North Meyer Islands, northern Kermadec Islands), and the opportunity was taken to sample for Gambierdiscus at the more southerly Macauley Island during an expedition in 2016. Gambierdiscus cells were isolated, cultured, and DNA extracted and sequenced to determine the species present. Bulk cultures were tested for CTXs and MTXs by liquid chromatography-mass spectrometry (LC-MS/MS). The species isolated were G. australes, which produced MTX-1 (ranging from 3 to 36 pg/cell), and G. polynesiensis, which produced neither MTX-1 nor, unusually, any known CTXs. Isolates of both species produced putative MTX-3. The risk of fish, particularly herbivorous fish, causing CFP in the Zealandia and Kermadec Islands region is real, although in mainland New Zealand the risk is currently low. Both Gambierdiscus and Fukuyoa have been recorded in the sub-tropical northern region of New Zealand, and so the risk may increase with warming seas and shift in the distribution of Gambierdiscus species. PMID:28696400

  5. Molecular characterization and morphology of Cochlodinium strangulatum, the type species of Cochlodinium, and Margalefidinium gen. nov. for C. polykrikoides and allied species (Gymnodiniales, Dinophyceae).

    PubMed

    Gómez, Fernando; Richlen, Mindy L; Anderson, Donald M

    2017-03-01

    Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (∼200μm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25-40μm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove. Phylogenetic analysis based on LSU rDNA sequences revealed that C. strangulatum and C. polykrikoides/C. fulvescens formed two distally related, independent lineages. Based on morphological and phylogenetic analyses, the diagnosis of Cochlodinium is emended and C. miniatum is proposed as synonym of C. strangulatum. The new genus Margalefidinium gen. nov., and new combinations for C. catenatum, C. citron, C. flavum, C. fulvescens and C. polykrikoides are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    PubMed Central

    Twiner, Michael J.; Fire, Spencer; Schwacke, Lori; Davidson, Leigh; Wang, Zhihong; Morton, Steve; Roth, Stephen; Balmer, Brian; Rowles, Teresa K.; Wells, Randall S.

    2011-01-01

    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health. PMID:21423740

  7. Further insights into brevetoxin metabolism by de novo radiolabeling.

    PubMed

    Calabro, Kevin; Guigonis, Jean-Marie; Teyssié, Jean-Louis; Oberhänsli, François; Goudour, Jean-Pierre; Warnau, Michel; Bottein, Marie-Yasmine Dechraoui; Thomas, Olivier P

    2014-06-10

    The toxic dinoflagellate Karenia brevis, responsible for early harmful algal blooms in the Gulf of Mexico, produces many secondary metabolites, including potent neurotoxins called brevetoxins (PbTx). These compounds have been identified as toxic agents for humans, and they are also responsible for the deaths of several marine organisms. The overall biosynthesis of these highly complex metabolites has not been fully ascertained, even if there is little doubt on a polyketide origin. In addition to gaining some insights into the metabolic events involved in the biosynthesis of these compounds, feeding studies with labeled precursors helps to discriminate between the de novo biosynthesis of toxins and conversion of stored intermediates into final toxic products in the response to environmental stresses. In this context, the use of radiolabeled precursors is well suited as it allows working with the highest sensitive techniques and consequently with a minor amount of cultured dinoflagellates. We were then able to incorporate [U-¹⁴C]-acetate, the renowned precursor of the polyketide pathway, in several PbTx produced by K. brevis. The specific activities of PbTx-1, -2, -3, and -7, identified by High-Resolution Electrospray Ionization Mass Spectrometer (HRESIMS), were assessed by HPLC-UV and highly sensitive Radio-TLC counting. We demonstrated that working at close to natural concentrations of acetate is a requirement for biosynthetic studies, highlighting the importance of highly sensitive radiolabeling feeding experiments. Quantification of the specific activity of the four, targeted toxins led us to propose that PbTx-1 and PbTx-2 aldehydes originate from oxidation of the primary alcohols of PbTx-7 and PbTx-3, respectively. This approach will open the way for a better comprehension of the metabolic pathways leading to PbTx but also to a better understanding of their regulation by environmental factors.

  8. Further Insights into Brevetoxin Metabolism by de Novo Radiolabeling

    PubMed Central

    Calabro, Kevin; Guigonis, Jean-Marie; Teyssié, Jean-Louis; Oberhänsli, François; Goudour, Jean-Pierre; Warnau, Michel; Dechraoui Bottein, Marie-Yasmine; Thomas, Olivier P.

    2014-01-01

    The toxic dinoflagellate Karenia brevis, responsible for early harmful algal blooms in the Gulf of Mexico, produces many secondary metabolites, including potent neurotoxins called brevetoxins (PbTx). These compounds have been identified as toxic agents for humans, and they are also responsible for the deaths of several marine organisms. The overall biosynthesis of these highly complex metabolites has not been fully ascertained, even if there is little doubt on a polyketide origin. In addition to gaining some insights into the metabolic events involved in the biosynthesis of these compounds, feeding studies with labeled precursors helps to discriminate between the de novo biosynthesis of toxins and conversion of stored intermediates into final toxic products in the response to environmental stresses. In this context, the use of radiolabeled precursors is well suited as it allows working with the highest sensitive techniques and consequently with a minor amount of cultured dinoflagellates. We were then able to incorporate [U-14C]-acetate, the renowned precursor of the polyketide pathway, in several PbTx produced by K. brevis. The specific activities of PbTx-1, -2, -3, and -7, identified by High-Resolution Electrospray Ionization Mass Spectrometer (HRESIMS), were assessed by HPLC-UV and highly sensitive Radio-TLC counting. We demonstrated that working at close to natural concentrations of acetate is a requirement for biosynthetic studies, highlighting the importance of highly sensitive radiolabeling feeding experiments. Quantification of the specific activity of the four, targeted toxins led us to propose that PbTx-1 and PbTx-2 aldehydes originate from oxidation of the primary alcohols of PbTx-7 and PbTx-3, respectively. This approach will open the way for a better comprehension of the metabolic pathways leading to PbTx but also to a better understanding of their regulation by environmental factors. PMID:24918358

  9. Initial Evaluation of the Effects of Aerosolized Florida Red Tide Toxins (Brevetoxins) in Persons with Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Dalpra, Dana; Tamer, Robert; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William; Clark, Richard; Zhou, Yue; Henry, Michael S.; Johnson, David; Van De Bogart, Gayl; Bossart, Gregory D.; Harrington, Mark; Baden, Daniel G.

    2005-01-01

    Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic

  10. An integrated microfluidic sensor for real-time detection of RNA in seawater using preserved reagents

    NASA Astrophysics Data System (ADS)

    Tsaloglou, M.-N.; Loukas, C. M.; Ruano-López, J. M.; Morgan, H.; Mowlem, M. C.

    2012-04-01

    Quantitation of RNA sequences coding either for key metabolic proteins or highly conserved ribosomal subunits can provide insight on cell abundance, speciation and viability. Nucleic sequence-based amplification (NASBA) is an isothermal alternative to traditional nucleic acid amplification methods, such as quantitative PCR. We present here an integrated microfluidic sensor for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system uses pre-loaded reagents, stored as a gel on a disposable microfluidic cartridge, which is manufactured using low-cost injection moulding. The NASBA reaction is monitored real-time using a bespoke control unit which includes: an external fluorescence detector, three peristaltic micro-pumps, two heaters and temperature sensors, a battery, seven pin actuated micro-motors (or valve actuators), and an automatic cartridge insertion mechanism. The system has USB connectivity and none of the expensive components require replacing between reactions. Long-term storage of reagents is critically important for any diagnostic tool that will be used in the field, whether for medical or environmental analysis and has not been previously demonstrated for NASBA reagents on-chip. We have shown effective amplification, for as little as 500 cells of the toxic microalga Karenia brevis using reagents which had been preserved as a gel for 45 days. This is the first reported real-time isothermal RNA amplification using with on-chip preservation. Annealing of primers, amplification at 41 °C and real-time fluorescence detection using, also for the first time, an internal control and sequence-specific molecular beacons was all performed on our microfluidic sensor. Our results show excellent promise as a future quantitative tool of in situ phytoplankton analysis and other environmental applications, where long-term reagent storage and low power consumption is essential.

  11. The human health effects of Florida red tide (FRT) blooms: an expanded analysis.

    PubMed

    Hoagland, Porter; Jin, Di; Beet, Andrew; Kirkpatrick, Barbara; Reich, Andrew; Ullmann, Steve; Fleming, Lora E; Kirkpatrick, Gary

    2014-07-01

    Human respiratory and digestive illnesses can be caused by exposures to brevetoxins from blooms of the marine alga Karenia brevis, also known as Florida red tide (FRT). K. brevis requires macro-nutrients to grow; although the sources of these nutrients have not been resolved completely, they are thought to originate both naturally and anthropogenically. The latter sources comprise atmospheric depositions, industrial effluents, land runoffs, or submerged groundwater discharges. To date, there has been only limited research on the extent of human health risks and economic impacts due to FRT. We hypothesized that FRT blooms were associated with increases in the numbers of emergency room visits and hospital inpatient admissions for both respiratory and digestive illnesses. We sought to estimate these relationships and to calculate the costs of associated adverse health impacts. We developed environmental exposure-response models to test the effects of FRT blooms on human health, using data from diverse sources. We estimated the FRT bloom-associated illness costs, using extant data and parameters from the literature. When controlling for resident population, a proxy for tourism, and seasonal and annual effects, we found that increases in respiratory and digestive illnesses can be explained by FRT blooms. Specifically, FRT blooms were associated with human health and economic effects in older cohorts (≥55 years of age) in six southwest Florida counties. Annual costs of illness ranged from $60,000 to $700,000 annually, but these costs could exceed $1.0 million per year for severe, long-lasting FRT blooms, such as the one that occurred during 2005. Assuming that the average annual illness costs of FRT blooms persist into the future, using a discount rate of 3%, the capitalized costs of future illnesses would range between $2 and 24 million. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Initial evaluation of the effects of aerosolized Florida red tide toxins (brevetoxins) in persons with asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Dalpra, Dana; Tamer, Robert; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William; Clark, Richard; Zhou, Yue; Henry, Michael S; Johnson, David; Van De Bogart, Gayl; Bossart, Gregory D; Harrington, Mark; Baden, Daniel G

    2005-05-01

    Florida red tides annually occur in the Gulf of Mexico, resulting from blooms of the marine dinoflagellate Karenia brevis. K. brevis produces highly potent natural polyether toxins, known as brevetoxins, that activate voltage-sensitive sodium channels. In experimental animals, brevetoxins cause significant bronchoconstriction. A study of persons who visited the beach recreationally found a significant increase in self-reported respiratory symptoms after exposure to aerosolized Florida red tides. Anecdotal reports indicate that persons with underlying respiratory diseases may be particularly susceptible to adverse health effects from these aerosolized toxins. Fifty-nine persons with physician-diagnosed asthma were evaluated for 1 hr before and after going to the beach on days with and without Florida red tide. Study participants were evaluated with a brief symptom questionnaire, nose and throat swabs, and spirometry approved by the National Institute for Occupational Safety and Health. Environmental monitoring, water and air sampling (i.e., K. brevis, brevetoxins, and particulate size distribution), and personal monitoring (for toxins) were performed. Brevetoxin concentrations were measured by liquid chromatography mass spectrometry, high-performance liquid chromatography, and a newly developed brevetoxin enzyme-linked immunosorbent assay. Participants were significantly more likely to report respiratory symptoms after Florida red tide exposure. Participants demonstrated small but statistically significant decreases in forced expiratory volume in 1 sec, forced expiratory flow between 25 and 75%, and peak expiratory flow after exposure, particularly those regularly using asthma medications. Similar evaluation during nonexposure periods did not significantly differ. This is the first study to show objectively measurable adverse health effects from exposure to aerosolized Florida red tide toxins in persons with asthma. Future studies will examine the possible chronic

  13. Effects of brevetoxin exposure on the immune system of loggerhead sea turtles.

    PubMed

    Walsh, Catherine J; Leggett, Stephanie R; Carter, Barbara J; Colle, Clarence

    2010-05-10

    Blooms of the toxic dinoflagellate, Karenia brevis, occur almost annually off the Florida coast. These blooms, commonly called "red tides", produce a group of neurotoxins collectively termed brevetoxins. Many species of sealife, including sea turtles, are severely impacted by brevetoxin exposure. Effects of brevetoxins on immune cells were investigated in rescued loggerhead sea turtles, Caretta caretta, as well as through in vitro experiments using peripheral blood leukocytes (PBL) collected from captive sea turtles. In rescued animals, plasma brevetoxin concentrations were measured using a competitive ELISA. Plasma lysozyme activity was measured using a turbidity assay. Lysozyme activity correlated positively with plasma brevetoxin concentrations. Differential expression of genes affected by brevetoxin exposure was determined using two separate suppression subtractive hybridization experiments. In one experiment, genes from PBL collected from sea turtles rescued from red tide toxin exposure were compared to genes from PBL collected from healthy captive loggerhead sea turtles. In the second experiment, PBL from healthy captive loggerhead sea turtles were exposed to brevetoxin (500 ng PbTx-2/ml) in vitro for 18 h and compared to unexposed PBL. Results from the subtraction hybridization experiment conducted with red tide rescued sea turtle PBL indicated that genes involved in oxidative stress or xenobiotic metabolism were up-regulated. Using quantitative real-time PCR, a greater than 2-fold increase in superoxide dismutase and thioredoxin and greater than 10-fold increase in expression of thiopurine S-methyltransferase were observed. Results from the in vitro subtraction hybridization experiment indicated that genes coding for cytochrome c oxidases were the major up-regulated genes. Using quantitative real-time PCR, a greater than 8-fold increase in expression of beta-tubulin and greater than 3-fold increase in expression of ubiquinol were observed. Brevetoxin

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwacke, Lori H., E-mail: Lori.Schwacke@noaa.gov; Twiner, Michael J.; De Guise, Sylvain

    Bottlenose dolphins (Tursiops truncatus) inhabiting coastal waters in the northern Gulf of Mexico have been impacted by recurrent unusual mortality events over the past few decades. Several of these mortality events along the Florida panhandle have been tentatively attributed to poisoning from brevetoxin produced by the dinoflagellate Karenia brevis. While dolphins in other regions of the Florida coast are often exposed to K. brevis blooms, large-scale dolphin mortality events are relatively rare and the frequency and magnitude of die-offs along the Panhandle raise concern for the apparent vulnerability of dolphins in this region. We report results from dolphin health assessmentsmore » conducted near St. Joseph Bay, Florida, an area impacted by 3 unusual die-offs within a 7-year time span. An eosinophilia syndrome, manifested as an elevated blood eosinophil count without obvious cause, was observed in 23% of sampled dolphins. Elevated eosinophil counts were associated with decreased T-lymphocyte proliferation and increased neutrophil phagocytosis. In addition, indication of chronic low-level exposure to another algal toxin, domoic acid produced by the diatom Pseudo-nitzschia spp., was determined. Previous studies of other marine mammal populations exposed recurrently to Pseudo-nitzschia blooms have suggested a possible link between the eosinophilia and domoic acid exposure. While the chronic eosinophilia syndrome could over the long-term produce organ damage and alter immunological status and thereby increase vulnerability to other challenges, the significance of the high prevalence of the syndrome to the observed mortality events in the St. Joseph Bay area is unclear. Nonetheless, the unusual immunological findings and concurrent evidence of domoic acid exposure in this sentinel marine species suggest a need for further investigation to elucidate potential links between chronic, low-level exposure to algal toxins and immune health.« less

  15. Separate introns gained within short and long soluble peridinin-chlorophyll a-protein genes during radiation of Symbiodinium (Dinophyceae) clade A and B lineages - PLoS One

    EPA Science Inventory

    Here we document introns in two Symbiodinium clades that were most likely gained following divergence of this genus from other peridinin-containing dinoflagellate lineages. Soluble peridinin-chlorophyll a-proteins (sPCP) occur in short and long forms in different species, and all...

  16. Environmental exposures to Florida red tides: Effects on emergency room respiratory diagnoses admissions.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Backer, Lorraine C; Bean, Judy A; Tamer, Robert; Kirkpatrick, Gary; Kane, Terrance; Wanner, Adam; Dalpra, Dana; Reich, Andrew; Baden, Daniel G

    2006-10-01

    Human exposure to Florida red tides formed by Karenia brevis, occurs from eating contaminated shellfish and inhaling aerosolized brevetoxins. Recent studies have documented acute symptom changes and pulmonary function responses after inhalation of the toxic aerosols, particularly among asthmatics. These findings suggest that there are increases in medical care facility visits for respiratory complaints and for exacerbations of underlying respiratory diseases associated with the occurrence of Florida red tides.This study examined whether the presence of a Florida red tide affected the rates of admission with a respiratory diagnosis to a hospital emergency room in Sarasota, FL. The rate of respiratory diagnoses admissions were compared for a 3-month time period when there was an onshore red tide in 2001 (red tide period) and during the same 3-month period in 2002 when no red tide bloom occurred (non-red tide period). There was no significant increase in the total number of respiratory admissions between the two time periods. However, there was a 19% increase in the rate of pneumonia cases diagnosed during the red tide period compared with the non-red tide period. We categorized home residence zip codes as coastal (within 1.6 km from the shore) or inland (>1.6 km from shore). Compared with the non-red tide period, the coastal residents had a significantly higher (54%) rate of respiratory diagnoses admissions than during the red tide period. We then divided the diagnoses into subcategories (i.e. pneumonia, bronchitis, asthma, and upper airway disease). When compared with the non-red tide period, the coastal zip codes had increases in the rates of admission of each of the subcategories during the red tide period (i.e. 31, 56, 44, and 64%, respectively). This increase was not observed seen in the inland zip codes.These results suggest that the healthcare community has a significant burden from patients, particularly those who live along the coast, needing emergency

  17. The role of marine biotoxins on the trophic transfer of Mn and Zn in fish.

    PubMed

    Pouil, Simon; Clausing, Rachel J; Metian, Marc; Bustamante, Paco; Dechraoui Bottein, Marie-Yasmine

    2018-05-01

    Essential nutrients are critical for physiological processes of organisms. In fish, they are obtained primarily from the diet, and their transfer and accumulation are known to be impacted by environmental variables such as water temperature, pH and salinity, as well as by diet composition and matrices. Yet, prey items consumed by fish may also contain toxic compounds such as marine toxins associated with harmful algae. These biotoxins have the potential to affect essential trace element assimilation in fish through chemical interactions such as the formation of trace element-toxin complexes or by affecting general fish physiology as in the modification of ion-specific transport pathways. We assessed the influence of dietary exposure to brevetoxins (PbTxs), ichthyotoxic neurotoxins produced by the dinoflagellate Karenia brevis, on trophic transfer of two essential trace elements, Mn and Zn, in a fish model. Using ecologically relevant concentrations of PbTxs and trace elements in controlled laboratory conditions, juvenile turbots Scophthalmus maximus were given food containing PbTxs before or at the same time as a feeding with radiotracers of the chosen essential elements ( 54 Mn and 65 Zn). Treatments included simultaneous exposure (PbTxs +  54 Mn +  65 Zn) in a single-feeding, 3-week daily pre-exposure to dietary PbTx followed by a single feeding with 54 Mn and 65 Zn, and a control ( 54 Mn and 65 Zn only). After a 21-day depuration period, turbot tissue brevetoxin levels were quantified and assimilation efficiencies of 54 Mn and 65 Zn were assessed. PbTxs were found in turbot tissues in each exposure treatment, demonstrating dietary trophic transfer of these toxins; yet, no differences in assimilation efficiencies of Mn or Zn were found between treatments or the control (p > 0.05). These results indicate that, in our experimental conditions, PbTx exposure does not significantly affect the trophic transfer of Mn and Zn in fish. Copyright © 2018

  18. Tissue uptake, distribution and excretion of brevetoxin-3 after oral and intratracheal exposure in the freshwater turtle Trachemys scripta and the diamondback terrapin Malaclemys terrapin.

    PubMed

    Cocilova, Courtney C; Flewelling, Leanne J; Bossart, Gregory D; Granholm, April A; Milton, Sarah L

    2017-06-01

    Harmful algal blooms (HABs) occur nearly annually off the west coast of Florida and can impact both humans and wildlife, resulting in morbidity and increased mortality of marine animals including sea turtles. The key organism in Florida red tides is the dinoflagellate Karenia brevis that produces a suite of potent neurotoxins referred to as the brevetoxins (PbTx). Despite recent mortality events and rehabilitation efforts, still little is known about how the toxin directly impacts sea turtles, as they are not amenable to experimentation and what is known about toxin levels and distribution comes primarily from post-mortem data. In this study, we utilized the freshwater turtle Trachemys scripta and the diamondback terrapin, Malaclemys terrapin as model organisms to determine the distribution, clearance, and routes of excretion of the most common form of the toxin, brevetoxin-3, in turtles. Turtles were administered toxin via esophageal tube to mimic ingestion (33.48μg/kg PbTx-3, 3×/week for two weeks for a total of 7 doses) or by intratracheal instillation (10.53μg/kg, 3×/week for four weeks for a total of 12 doses) to mimic inhalation. Both oral and intratracheal administration of the toxin produced a suite of behavioral responses symptomatic of brevetoxicosis. The toxin distributed to all organ systems within 1h of administration but was rapidly cleared out over 24-48h, corresponding to a decline in clinical symptoms. Excretion appears to be primarily through conjugation to bile salts. Histopathological study revealed that the frequency of lesions varied within experimental groups with some turtles having no significant lesions at all, while similar lesions were found in a low number of control turtles suggesting another common factor(s) could be responsible. The overall goal of this research is better understand the impacts of brevetoxin on turtles in order to develop better treatment protocols for sea turtles exposed to HABs. Copyright © 2017 Elsevier B

  19. [Growth inhibition of the four species of red tide microalgae by extracts from Enteromorpha prolifera extracted with the five solvents].

    PubMed

    Sun, Ying-Ying; Liu, Xiao-Xiao; Wang, Chang-Hai

    2010-06-01

    To study the effects of extracts of Enteromorpha prolifera on the growth of the four species of red tide microalgae (Amphidinium hoefleri, Karenia mikimitoi, Alexandrium tamarense and Skeletonema costatum), the extracts were extracted with five solvents (methanol, acetone, ethyl acetate, chloroform and petroleum ether), respectively. Based on the observation of algal morphology and the measurement of algal density, cell size and the contents of physiological indicators (chlorophyll, protein and polysaccharide), the results showed methanol extracts of E. prolifera had the strongest action. The inhibitory effects of A. hoefleri, K. mikimitoi, A. tamarense and S. costatum by the methanol extracts were 54.0%, 48.1%, 44.0% and 37.5% in day 10, respectively. The extracts of E. prolifera extracted with methanol, acetone and ethyl acetate caused cavities, pieces and pigment reduction in cells, and those with chloroform and petroleum ether caused goffers on cells. The extracts of E. prolifera extracted with all the five solvents decreased athletic ability of the cells, among which those extracted with ethyl acetate, chloroform and petroleum ether decreased cell size of test microalgae. The further investigation found that the methanol extracts significantly decreased contents of chlorophyll, protein and polysaccharide in the cells of those microalgae. The inhibitory effect of chlorophyll, protein and polysaccharide contents of four species of microalgae by the methanol extracts was about 51%. On the basis of the above experiments, dry powder of E. prolifera were extracts with methanol, and extracts were obtained. The methanol extracts were partitioned to petroleum ether phase, ethyl acetate phase, n-butanol phase and distilled water phase by liquid-liquid fractionation, and those with petroleum ether and ethyl acetate significantly inhibited the growth of all test microalgae, and the inhibitory effect of four species of microalgae by those two extracts was above 25% in day

  20. Comparative Analysis of Three Brevetoxin-Associated Bottlenose Dolphin (Tursiops truncatus) Mortality Events in the Florida Panhandle Region (USA)

    PubMed Central

    Twiner, Michael J.; Flewelling, Leanne J.; Fire, Spencer E.; Bowen-Stevens, Sabrina R.; Gaydos, Joseph K.; Johnson, Christine K.; Landsberg, Jan H.; Leighfield, Tod A.; Mase-Guthrie, Blair; Schwacke, Lori; Van Dolah, Frances M.; Wang, Zhihong; Rowles, Teresa K.

    2012-01-01

    In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality

  1. Centers for Oceans and Human Health: a unified approach to the challenge of harmful algal blooms

    PubMed Central

    Erdner, Deana L; Dyble, Julianne; Parsons, Michael L; Stevens, Richard C; Hubbard, Katherine A; Wrabel, Michele L; Moore, Stephanie K; Lefebvre, Kathi A; Anderson, Donald M; Bienfang, Paul; Bidigare, Robert R; Parker, Micaela S; Moeller, Peter; Brand, Larry E; Trainer, Vera L

    2008-01-01

    Background Harmful algal blooms (HABs) are one focus of the national research initiatives on Oceans and Human Health (OHH) at NIEHS, NOAA and NSF. All of the OHH Centers, from the east coast to Hawaii, include one or more research projects devoted to studying HAB problems and their relationship to human health. The research shares common goals for understanding, monitoring and predicting HAB events to protect and improve human health: understanding the basic biology of the organisms; identifying how chemistry, hydrography and genetic diversity influence blooms; developing analytical methods and sensors for cells and toxins; understanding health effects of toxin exposure; and developing conceptual, empirical and numerical models of bloom dynamics. Results In the past several years, there has been significant progress toward all of the common goals. Several studies have elucidated the effects of environmental conditions and genetic heterogeneity on bloom dynamics. New methods have been developed or implemented for the detection of HAB cells and toxins, including genetic assays for Pseudo-nitzschia and Microcystis, and a biosensor for domoic acid. There have been advances in predictive models of blooms, most notably for the toxic dinoflagellates Alexandrium and Karenia. Other work is focused on the future, studying the ways in which climate change may affect HAB incidence, and assessing the threat from emerging HABs and toxins, such as the cyanobacterial neurotoxin β-N-methylamino-L-alanine. Conclusion Along the way, many challenges have been encountered that are common to the OHH Centers and also echo those of the wider HAB community. Long-term field data and basic biological information are needed to develop accurate models. Sensor development is hindered by the lack of simple and rapid assays for algal cells and especially toxins. It is also critical to adequately understand the human health effects of HAB toxins. Currently, we understand best the effects of acute

  2. Characterization of brevetoxin (PbTx-3) exposure in neurons of the anoxia-tolerant freshwater turtle (Trachemys scripta).

    PubMed

    Cocilova, Courtney C; Milton, Sarah L

    2016-11-01

    Harmful algal blooms are increasing in frequency and extent worldwide and occur nearly annually off the west coast of Florida where they affect both humans and wildlife. The dinoflagellate Karenia brevis is a key organism in Florida red tides that produces a suite of potent neurotoxins collectively referred to as the brevetoxins (PbTx). Brevetoxins bind to and open voltage gated sodium channels (VGSC), increasing cell permeability in excitable cells and depolarizing nerve and muscle tissue. Exposed animals may thus show muscular and neurological symptoms including head bobbing, muscle twitching, paralysis, and coma; large HABs can result in significant morbidity and mortality of marine life, including fish, birds, marine mammals, and sea turtles. Brevetoxicosis however is difficult to treat in endangered sea turtles as the physiological impacts have not been investigated and the magnitude and duration of brevetoxin exposure are generally unknown. In this study we used the freshwater turtle Trachemys scripta as a model organism to investigate the effects of the specific brevetoxin PbTx-3 in the turtle brain. Primary turtle neuronal cell cultures were exposed to a range of PbTx-3 concentrations to determine excitotoxicity. Agonists and antagonists of voltage-gated sodium channels and downstream targets were utilized to confirm the toxin's mode of action. We found that turtle neurons are highly resistant to PbTx-3; while cell viability decreased in a dose dependent manner across PbTx-3 concentrations of 100-2000nM, the EC 50 was significantly higher than has been reported in mammalian neurons. PbTx-3 exposure resulted in significant Ca 2+ influx, which could be fully abrogated by the VGSC antagonist tetrodotoxin, NMDA receptor blocker MK-801, and tetanus toxin, indicating that the mode of action in turtle neurons is the same as in mammalian cells. As both turtle and mammalian VGSCs have a high affinity for PbTx-3, we suggest that the high resistance of the turtle

  3. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production.

    PubMed

    Li, Fengmin; Liang, Zhi; Zheng, Xiang; Zhao, Wei; Wu, Miao; Wang, Zhenyu

    2015-01-01

    Given the extensive use of nanomaterials, they may enter aquatic environments and harm the growth of algae, which are primary producers in an aquatic ecosystem. Thus, the balance of an aquatic ecosystem may be destroyed. In this study, Karenia brevis and Skeletonema costatum were exposed to nano-TiO2 (anatase, average particle size of 5-10 nm, specific surface area of 210±10 m(2) g(-1)) to assess the effects of nano-TiO2 on algae. The findings of transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) and scanning electron microscopy (SEM) demonstrate aggregation of nano-TiO2 in the algal suspension. Nano-TiO2 was also found to be inside algal cells. The growth of the two species of algae was inhibited under nano-TiO2 exposure. The 72 h EC50 values of nano-TiO2 to K. brevis and S. costatum were 10.69 and 7.37 mg L(-1), respectively. TEM showed that the cell membrane of K. brevis was destroyed and its organelles were almost undistinguished under nano-TiO2 exposure. The malondialdehyde (MDA) contents of K. brevis and S. costatum significantly increased compared with those of the control (p<0.05). Meanwhile, superoxide dismutase (SOD) and catalase activities (CAT) of K. brevis and S. costatum changed in different ways. The reactive oxygen species (ROS) levels in both species were significantly higher than those of the control (p<0.05). The site of ROS production and accumulation in K. brevis and S. costatum under nano-TiO2 exposure was explored with the addition of inhibitors of different electron transfer chains. This study indicated that nano-TiO2 in algal suspensions inhibited the growth of K. brevis and S. costatum. This effect was attributed to oxidative stress caused by ROS production inside algal cells. The levels of anti-oxidative enzymes changed, which destroyed the balance between oxidation and anti-oxidation. Thus, algae were damaged by ROS accumulation, resulting in lipid oxidation and inhibited algae growth. The inhibitors of the

  4. The University of Miami Center for Oceans and Human Health

    NASA Astrophysics Data System (ADS)

    Fleming, L. E.; Smith, S. L.; Minnett, P. J.

    2007-05-01

    /tropical HAB organism, Karenia brevis, and its environmental interactions; and (3) exploring the relationship between microbial indicators and human health effects in sub/tropical recreational marine waters. There are three Facilities Cores supporting this research in Genomics, Remote Sensing, and Toxic Algal Culture. To accomplish this research program in subtropical/tropical oceans and human health, the University of Miami Oceans & Human Health Center collaborates with interdisciplinary scientists at Florida International University (FIU), the Centers for Disease Control and Prevention (CDC), the Miami Dade County Dept of Health, the University of Florida, and other institutions, as well as other Oceans and Human Health Centers and researchers.

  5. Maternal transfer and sublethal immune system effects of brevetoxin exposure in nesting loggerhead sea turtles (Caretta caretta) from western Florida.

    PubMed

    Perrault, Justin R; Bauman, Katherine D; Greenan, Taylor M; Blum, Patricia C; Henry, Michael S; Walsh, Catherine J

    2016-11-01

    Blooms of Karenia brevis (also called red tides) occur almost annually in the Gulf of Mexico. The health effects of the neurotoxins (i.e., brevetoxins) produced by this toxic dinoflagellate on marine turtles are poorly understood. Florida's Gulf Coast represents an important foraging and nesting area for a number of marine turtle species. Most studies investigating brevetoxin exposure in marine turtles thus far focus on dead and/or stranded individuals and rarely examine the effects in apparently "healthy" free-ranging individuals. From May-July 2014, one year after the last red tide bloom, we collected blood from nesting loggerhead sea turtles (Caretta caretta) on Casey Key, Florida USA. These organisms show both strong nesting and foraging site fidelity. The plasma was analyzed for brevetoxin concentrations in addition to a number of health and immune-related parameters in an effort to establish sublethal effects of this toxin. Lastly, from July-September 2014, we collected unhatched eggs and liver and yolk sacs from dead-in-nest hatchlings from nests laid by the sampled females and tested these samples for brevetoxin concentrations to determine maternal transfer and effects on reproductive success. Using a competitive enzyme-linked immunosorbent assay (ELISA), all plasma samples from nesting females tested positive for brevetoxin (reported as ng brevetoxin-3[PbTx-3] equivalents [eq]/mL) exposure (2.1-26.7ng PbTx-3eq/mL). Additionally, 100% of livers (1.4-13.3ng PbTx-3eq/mL) and yolk sacs (1.7-6.6ng PbTx-3eq/mL) from dead-in-nest hatchlings and 70% of eggs (<1.0-24.4ng PbTx-3eq/mL) tested positive for brevetoxin exposure with the ELISA. We found that plasma brevetoxin concentrations determined by an ELISA in nesting females positively correlated with gamma-globulins, indicating a potential for immunomodulation as a result of brevetoxin exposure. While the sample sizes were small, we also found that plasma brevetoxin concentrations determined by an ELISA in

  6. Florida Red Tide and Human Health: A Pilot Beach Conditions Reporting System to Minimize Human Exposure

    PubMed Central

    Kirkpatrick, Barbara; Currier, Robert; Nierenberg, Kate; Reich, Andrew; Backer, Lorraine C.; Stumpf, Richard; Fleming, Lora; Kirkpatrick, Gary

    2008-01-01

    With over 50% of the US population living in coastal counties, the ocean and coastal environments have substantial impacts on coastal communities. While may of the impacts are positive, such as tourism and recreation opportunities, there are also negative impacts, such as exposure to harmful algal blooms (HABs) and water borne pathogens. Recent advances in environmental monitoring and weather prediction may allow us to forecast these potential adverse effects and thus mitigate the negative impact from coastal environmental threats. One example of the need to mitigate adverse environmental impacts occurs on Florida’s west coast, which experiences annual blooms, or periods of exuberant growth, of the toxic dinoflagellate, Karenia brevis. K. brevis produces a suite of potent neurotoxins called brevetoxins. Wind and wave action can break up the cells, releasing toxin that can then become part of the marine aerosol or sea spray. Brevetoxins in the aerosol cause respiratory irritation in people who inhale it. In addition, asthmatics who inhale the toxins report increase upper and lower airway lower symptoms and experience measurable changes in pulmonary function. Real-time reporting of the presence or absence of these toxic aerosols will allow asthmatics and local coastal residents to make informed decisions about their personal exposures, thus adding to their quality of life. A system to protect public health that combines information collected by an Integrated Ocean Observing System (IOOS) has been designed and implemented in Sarasota and Manatee Counties, Florida. This system is based on real-time reports from lifeguards at the eight public beaches. The lifeguards provide periodic subjective reports of the amount of dead fish on the beach, apparent level of respiratory irritation among beach-goers, water color, wind direction, surf condition, and the beach warning flag they are flying. A key component in the design of the observing system was an easy reporting

  7. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    PubMed

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels