Sample records for karman large deflection

  1. Bending of Rectangular Plates with Large Deflections

    NASA Technical Reports Server (NTRS)

    Levy, Samuel

    1942-01-01

    The solution of von Karman's fundamental equations for large deflections of plates is presented for the case of a simply supported rectangular plate under combined edge compression and lateral loading. Numerical solutions are given for square plates and for rectangular plates with a width-span ratio of 3:1. The effective widths under edge compression are compared with effective widths according to von Karman, Bengston, Marguerre, and Cox and with experimental results by Ramberg, McPherson, and Levy. The deflections for a square plate under lateral pressure are compared with experimental and theoretical results by Kaiser. It is found that the effective widths agree closely with Marguerre's formula and with the experimentally observed values and that the deflections agree with the experimental results and with Kaiser's work.

  2. Plastic and Large-Deflection Analysis of Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Hayduk, R. J.; Robinson, M. P.; Durling, B. J.; Pifko, A.; Levine, H. S.; Armen, H. J.; Levy, A.; Ogilvie, P.

    1982-01-01

    Plastic and Large Deflection Analysis of Nonlinear Structures (PLANS) system is collection of five computer programs for finite-element static-plastic and large deflection analysis of variety of nonlinear structures. System considers bending and membrane stresses, general three-dimensional bodies, and laminated composites.

  3. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  4. Large membrane deflection via capillary force actuation

    NASA Astrophysics Data System (ADS)

    Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.

    2018-06-01

    Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.

  5. Large-deflection theory for end compression of long rectangular plates rigidly clamped along two edges

    NASA Technical Reports Server (NTRS)

    Levy, Samuel; Krupen, Philip

    1943-01-01

    The von Karman equations for flat plates are solved beyond the buckling load up to edge strains equal to eight time the buckling strain, for the extreme case of rigid clamping along the edges parallel to the load. Deflections, bending stresses, and membrane stresses are given as a function of end compressive load. The theoretical values of effective width are compared with the values derived for simple support along the edges parallel to the load. The increases in effective width due to rigid clamping drops from about 20 percent near the buckling strain to about 8 percent at an edge strain equal to eight times the buckling strain. Experimental values of effective width in the elastic range reported in NACA Technical Note No. 684 are between the theoretical curves for the extremes of simple support and rigid clamping.

  6. Von Karman Vortices

    NASA Image and Video Library

    2017-12-08

    July 4th, 2002: Description: As air flows over and around objects in its path, spiraling eddies, known as Von Karman vortices, may form. The vortices in this image were created when prevailing winds sweeping east across the northern Pacific Ocean encountered Alaska’s Aleutian Islands. Source: Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/

  7. Monte Carlo turbulence simulation using rational approximations to von Karman spectra

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1986-01-01

    Turbulence simulation is computationally much simpler using rational spectra, but turbulence falls off as f exp -5/3 in frequency ranges of interest to aircraft response and as predicted by von Karman's model. Rational approximations to von Karman spectra should satisfy three requirements: (1) the rational spectra should provide a good approximation to the von Karman spectra in the frequency range of interest; (2) for stability, the resulting rational transfer function should have all its poles in the left half-plane; and (3) at high frequencies, the rational spectra must fall off as an integer power of frequency, and since the -2 power is closest to the -5/3 power, the rational approximation should roll off as the -2 power at high frequencies. Rational approximations to von Karman spectra that satisfy these three criteria are presented, along with spectra from simulated turbulence. Agreement between the spectra of the simulated turbulence and von Karman spectra is excellent.

  8. Large-deflection statics analysis of active cardiac catheters through co-rotational modelling.

    PubMed

    Peng Qi; Chen Qiu; Mehndiratta, Aadarsh; I-Ming Chen; Haoyong Yu

    2016-08-01

    This paper presents a co-rotational concept for large-deflection formulation of cardiac catheters. Using this approach, the catheter is first discretized with a number of equal length beam elements and nodes, and the rigid body motions of an individual beam element are separated from its deformations. Therefore, it is adequate for modelling arbitrarily large deflections of a catheter with linear elastic analysis at the local element level. A novel design of active cardiac catheter of 9 Fr in diameter at the beginning of the paper is proposed, which is based on the contra-rotating double helix patterns and is improved from the previous prototypes. The modelling section is followed by MATLAB simulations of various deflections when the catheter is exerted different types of loads. This proves the feasibility of the presented modelling approach. To the best knowledge of the authors, it is the first to utilize this methodology for large-deflection static analysis of the catheter, which will enable more accurate control of robot-assisted cardiac catheterization procedures. Future work would include further experimental validations.

  9. Large Deflection of Ideal Pseudo-Elastic Shape Memory Alloy Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Cui, Shitang; Hu, Liming; Yan, Jun

    This paper deals with the large deflections of pseudo-elastic shape memory alloy cantilever beams subjected to a concentrated load at the free end. Because of the large deflections, geometry nonlinearity arises and this analysis employs the nonlinear bending theory. The exact expression of curvature is used in the moment-curvature relationship. As a vertical force at the tip of cantilever, curvature and bending moment distribution expressions are deduced. The curvature changed distinctly when the surface material undergoes phase transformation. The length of phase transformation region was affected greatly with the force at the free end.

  10. Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors

    PubMed Central

    Farvardin, Amirhossein; Grupp, Robert; Murphy, Ryan J.; Taylor, Russell H.; Iordachita, Iulian

    2016-01-01

    Dexterous continuum manipulators (DCMs) can largely increase the reachable region and steerability for minimally and less invasive surgery. Many such procedures require the DCM to be capable of producing large deflections. The real-time control of the DCM shape requires sensors that accurately detect and report large deflections. We propose a novel, large deflection, shape sensor to track the shape of a 35 mm DCM designed for a less invasive treatment of osteolysis. Two shape sensors, each with three fiber Bragg grating sensing nodes is embedded within the DCM, and the sensors’ distal ends fixed to the DCM. The DCM centerline is computed using the centerlines of each sensor curve. An experimental platform was built and different groups of experiments were carried out, including free bending and three cases of bending with obstacles. For each experiment, the DCM drive cable was pulled with a precise linear slide stage, the DCM centerline was calculated, and a 2D camera image was captured for verification. The reconstructed shape created with the shape sensors is compared with the ground truth generated by executing a 2D–3D registration between the camera image and 3D DCM model. Results show that the distal tip tracking accuracy is 0.40 ± 0.30 mm for the free bending and 0.61 ± 0.15 mm, 0.93 ± 0.05 mm and 0.23 ± 0.10 mm for three cases of bending with obstacles. The data suggest FBG arrays can accurately characterize the shape of large-deflection DCMs. PMID:27761103

  11. Effects of Turbulence Model and Numerical Time Steps on Von Karman Flow Behavior and Drag Accuracy of Circular Cylinder

    NASA Astrophysics Data System (ADS)

    Amalia, E.; Moelyadi, M. A.; Ihsan, M.

    2018-04-01

    The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.

  12. Elliptical Instability of Rotating Von Karman Street

    NASA Astrophysics Data System (ADS)

    Stegner, A.; Pichon, T.; Beunier, M.

    Clouds often reveal a meso-scale vortex shedding in the wake of mountainous islands. Unlike the classical bi-dimensional Von-Karman street, these observed vortex street are affected by the earth rot ation and vertical stratification. Theses effects could induce a selective destabilization of anticyclonic vortices. It is well known that inertial instability (also called centrifugal instability) induce a three- dimensional destabilization of anticyclonic structures when the absolute vorticity is larger than the local Coriolis parameter. However, we have shown, by the mean of laboratory experiments, that it is a different type of instability which is mainly responsible for asymmetric rotating Von-Karman street. A serie of experiments were performed to study the wake of a cylinder in a rotating fluid, at medium Reynolds number and order one Rossby number. We have shown that the vertical structure of unstable anticyclonic vortices is characteristic of an elliptical instability. Besides, unlike the inertial instability, the vertical unstable wavelength depends on the Rossby number.

  13. The complete process of large elastic-plastic deflection of a cantilever

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoqiang; Yu, Tongxi

    1986-11-01

    An extension of the Elastica theory is developed to study the large deflection of an elastic-perfectly plastic horizontal cantilever beam subjected to a vertical concentrated force at its tip. The entire process is divided into four stages: I.elastic in the whole cantilever; II.loading and developing of the plastic region; III.unloading in the plastic region; and IV.reverse loading. Solutions for stages I and II are presented in a closed form. A combination of closed-form solution and numerical integration is presented for stage III. Finally, stage IV is qualitatively studied. Computed results are given and compared with those from small-deflection theory and from the Elastica theory.

  14. Large beam deflection using cascaded prism array

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Tsui, Chi-Leung

    2012-04-01

    Endoscopes have been utilize in the medical field to observe the internals of the human body to assist the diagnosis of diseases, such as breathing disorders, internal bleeding, stomach ulcers, and urinary tract infections. Endoscopy is also utilized in the procedure of biopsy for the diagnosis of cancer. Conventional endoscopes suffer from the compromise between overall size and image quality due to the required size of the sensor for acceptable image quality. To overcome the size constraint while maintaining the capture image quality, we propose an electro-optic beam steering device based on thermal-plastic polymer, which has a small foot-print (~5mmx5mm), and can be easily fabricated using conventional hot-embossing and micro-fabrication techniques. The proposed device can be implemented as an imaging device inside endoscopes to allow reduction in the overall system size. In our previous work, a single prism design has been used to amplify the deflection generated by the index change of the thermal-plastic polymer when a voltage is applied; it yields a result of 5.6° deflection. To further amplify the deflection, a new design utilizing a cascading three-prism array has been implemented and a deflection angle to 29.2° is observed. The new design amplifies the beam deflection, while keeping the advantage of simple fabrication made possible by thermal-plastic polymer. Also, a photo-resist based collimator lens array has been added to reduce and provide collimation of the beam for high quality imaging purposes. The collimator is able to collimate the exiting beam at 4 μm diameter for up to 25mm, which potentially allows high resolution image capturing.

  15. Research on conformal dome of Karman-curve shape

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqiang; Chang, Jun; Niu, Yajun

    2018-01-01

    Because the conformal optical technology can obviously improve the aerodynamic performance of the infrared guidance missile, it has been studied deeply in recent years. By comparing the performance of the missiles with conformal dome and conventional missiles, the advantages of the conformal optical technology are demonstrated in the maneuverability and stealth of the missile. At present, the study of conformal optical systems focuses on ellipsoid or quadratic curve types. But in actual use, the dome using these curves is not the best choice. In this paper, the influence of different shape of the dome on aerodynamic performance, aerodynamic heating, internal space volume and other properties is discussed. The result shows infrared optical system with conformal dome of Karman-curve shape has a good application prospect, is the future direction of development. Finally, the difficult problems of conformal dome of Karman-curve shape are discussed.

  16. Predicting Large Deflections of Multiplate Fuel Elements Using a Monolithic FSI Approach

    DOE PAGES

    Curtis, Franklin G.; Freels, James D.; Ekici, Kivanc

    2017-10-26

    As part of the Global Threat Reduction Initiative, the Oak Ridge National Laboratory is evaluating conversion of fuel for the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium. Currently, multiphysics simulations that model fluid-structure interaction phenomena are being performed to ensure the safety of the reactor with the new fuel type. A monolithic solver that fully couples fluid and structural dynamics is used to model deflections in the new design. A classical experiment is chosen to validate the capabilities of the current solver and the method. Here, a single-plate simulation with various boundary conditions as well asmore » a five-plate simulation are presented. Finally, use of the monolithic solver provides stable solutions for the large deflections and the tight coupling of the fluid and structure and the maximum deflections are captured accurately.« less

  17. Nonlinear Large Deflection Theory with Modified Aeroelastic Lifting Line Aerodynamics for a High Aspect Ratio Flexible Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel

    2017-01-01

    This paper investigates the effect of nonlinear large deflection bending on the aerodynamic performance of a high aspect ratio flexible wing. A set of nonlinear static aeroelastic equations are derived for the large bending deflection of a high aspect ratio wing structure. An analysis is conducted to compare the nonlinear bending theory with the linear bending theory. The results show that the nonlinear bending theory is length-preserving whereas the linear bending theory causes a non-physical effect of lengthening the wing structure under the no axial load condition. A modified lifting line theory is developed to compute the lift and drag coefficients of a wing structure undergoing a large bending deflection. The lift and drag coefficients are more accurately estimated by the nonlinear bending theory due to its length-preserving property. The nonlinear bending theory yields lower lift and span efficiency than the linear bending theory. A coupled aerodynamic-nonlinear finite element model is developed to implement the nonlinear bending theory for a Common Research Model (CRM) flexible wing wind tunnel model to be tested in the University of Washington Aeronautical Laboratory (UWAL). The structural stiffness of the model is designed to give about 10% wing tip deflection which is large enough that could cause the nonlinear deflection effect to become significant. The computational results show that the nonlinear bending theory yields slightly less lift than the linear bending theory for this wind tunnel model. As a result, the linear bending theory is deemed adequate for the CRM wind tunnel model.

  18. Deflection angle detecting system for the large-angle and high-linearity fast steering mirror using quadrant detector

    NASA Astrophysics Data System (ADS)

    Ni, Yingxue; Wu, Jiabin; San, Xiaogang; Gao, Shijie; Ding, Shaohang; Wang, Jing; Wang, Tao

    2018-02-01

    A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.

  19. Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street

    NASA Astrophysics Data System (ADS)

    Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang

    1992-03-01

    The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.

  20. Large deflection random response of cross-ply laminated plates with elastically restrained edges and initial imperfections

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Mei, Chuh

    1988-01-01

    The large deflection random response of symmetrically laminated cross-ply rectangular thin plates subjected to random excitation is studied. The out-of-plane boundary conditions are such that all the edges are rigidly supported against translation, but elastically restrained against rotation. The plate is also assumed to have a small initial imperfection. The assumed membrane boundary conditions are such that all the edges are free from normal and tangential forces in the plane of the plate. Mean-square deflections and mean-square strains are determined for a three-layered cross-ply laminate.

  1. Simplified method for calculating shear deflections of beams.

    Treesearch

    I. Orosz

    1970-01-01

    When one designs with wood, shear deflections can become substantial compared to deflections due to moments, because the modulus of elasticity in bending differs from that in shear by a large amount. This report presents a simplified energy method to calculate shear deflections in bending members. This simplified approach should help designers decide whether or not...

  2. Early turbulence in von Karman swirling flow of polymer solutions

    NASA Astrophysics Data System (ADS)

    Burnishev, Yuri; Steinberg, Victor

    2015-01-01

    We present quantitative experimental results on the transition to early turbulence in von Karman swirling flow of water- and water-sugar-based polymer solutions compared to the transition to turbulence in their Newtonian solvents by measurements of solely global quantities as torque Γ(t) and pressure p(t) with large statistics as a function of Re. For the first time the transition values of Re_c\\textit{turb} to fully developed turbulence and turbulent drag reduction regime Re_c\\textit{TDR} are obtained as functions of elasticity El by using the solvents with different viscosities and polymer concentrations ϕ. Two scaling regions for fundamental turbulent characteristics are identified and they correspond to the turbulent and TDR regimes. Both Re_c\\textit{turb} and Re_c\\textit{TDR} are found via the dependence of the friction coefficient Cf and Cp, defined through scaled average torque \\barΓ and rms pressure fluctuations p\\textit{rms} , respectively, on Re for different El and ϕ and via the limits of the two scaling regions.

  3. Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, Majid; Shaat, Mohamed; Abdelkefi, Abdessattar; Shariati, Mahmoud

    2017-01-01

    Buckling and postbuckling behaviors of cracked nanobeams made of single-crystalline nanomaterials are investigated. The nonlocal elasticity theory is used to model the nonlocal interatomic effects on the beam's performance accounting for the beam's axial stretching via von Karman nonlinear theory. The crack is then represented as torsional spring where the crack severity factor is derived accounting for the nonlocal features of the beam. By converting the beam into an equivalent infinite long plate with an edge crack subjected to a tensile stress at the far field, the crack energy release rate, intensity factor, and severity factor are derived according to the nonlocal elasticity theory. An analytical solution for the buckling and the postbuckling responses of cracked nonlocal nanobeams accounting for the beam axial stretching according to von Karman nonlinear theory of kinematics is derived. The impacts of the nonlocal parameter on the critical buckling loads and the static nonlinear postbuckling responses of cracked nonlocal nanobeams are studied. The results indicate that the buckling and postbuckling behaviors of cracked nanobeams are strongly affected by the crack location, crack depth, nonlocal parameter, and length-to-thickness ratio.

  4. Loads and Deformations of Buckled Rectangular Plates. Degree awarded by Virginia Polytechnic Inst., Jun. 1958

    NASA Technical Reports Server (NTRS)

    Stein, Manuel

    1959-01-01

    The nonlinear large-deflection equations of von Karman for plates are converted into a set of linear equations by expanding the displacements Into a power series in terms of an arbitrary parameter. The postbuckling behavior of simply supported rectangular plates subjected to longitudinal compression and subject to a uniform temperature rise is investigated in detail by solving the first few of the equations. Experimental data are presented for the compression problem. Comparisons are made for total shortening and local strains and deflections which indicate good agreement between experimental and theoretical results.

  5. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.

    1972-01-01

    The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  6. Large deflection angle, high-power adaptive fiber optics collimator with preserved near-diffraction-limited beam quality.

    PubMed

    Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei

    2016-05-15

    We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.

  7. Lateral-deflection-controlled friction force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuzawa, Kenji; Hamaoka, Satoshi; Shikida, Mitsuhiro; Itoh, Shintaro; Zhang, Hedong

    2014-08-01

    Lateral-deflection-controlled dual-axis friction force microscopy (FFM) is presented. In this method, an electrostatic force generated with a probe-incorporated micro-actuator compensates for friction force in real time during probe scanning using feedback control. This equivalently large rigidity can eliminate apparent boundary width and lateral snap-in, which are caused by lateral probe deflection. The method can evolve FFM as a method for quantifying local frictional properties on the micro/nanometer-scale by overcoming essential problems to dual-axis FFM.

  8. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  9. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  10. Finite element approximation of an optimal control problem for the von Karman equations

    NASA Technical Reports Server (NTRS)

    Hou, L. Steven; Turner, James C.

    1994-01-01

    This paper is concerned with optimal control problems for the von Karman equations with distributed controls. We first show that optimal solutions exist. We then show that Lagrange multipliers may be used to enforce the constraints and derive an optimality system from which optimal states and controls may be deduced. Finally we define finite element approximations of solutions for the optimality system and derive error estimates for the approximations.

  11. Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalzov, I. V.; Brown, B. P.; Schnack, D. D.

    2011-03-15

    The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMRODmore » code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.« less

  12. Link between von-Karman energy decay and reconnection heating in turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Parashar, T.; Haggerty, C. C.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Cassak, P.; Wu, P.

    2016-12-01

    Coherent structures such as current sheets are prevalent in many turbulent plasmas and have been shown to be correlated with dissipation and heating in observations of solar wind turbulence and dissipation in kinetic particle-in-cell (PIC) simulations. However, the role that they play in the dissipation of turbulent energy and ultimately the heating of the plasma are still not well understood. A recent study [1] using kinetic PIC simulations of turbulence found that the total heating in the plasma is consistent with a von-Karman scaling of the cascade rate, and that the proton to electron heating ratio was proportional to the total heating rate and linked to the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales. We review recent findings regarding the rate of heating in outflow jets during laminar reconnection and apply it to kinetic PIC simulations of turbulence, employing some reasonable assumptions to connect the two theories. The goal is to determine if reconnection is a primary heating mechanism or plays less of a role. Conversely, we also apply the new understanding of the von-Karman cascade to isolated reconnection events to determine if a cascade-like process is controlling the heating rate. [1] W. Matthaeus et al., ApJ Letters, 827, L7, 2016, doi:10.3847/2041-8205/827/1/L7

  13. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  14. Large deflection analysis of a pre-stressed annular plate with a rigid boss under axisymmetric loading

    NASA Astrophysics Data System (ADS)

    Su, Y. H.; Chen, K. S.; Roberts, D. C.; Spearing, S. M.

    2001-11-01

    The large deflection analysis of a pre-stressed annular plate with a central rigid boss subjected to axisymmetric loading is presented. The factors affecting the transition from plate behaviour to membrane behaviour (e.g. thickness, in-plane tension and material properties) are studied. The effect of boss size and pre-tension on the effective stiffness of the plate are investigated. The extent of the bending boundary layers at the edges of the plate are quantified. All results are presented in non-dimensional form. The design implications for microelectromechanical system components are assessed.

  15. Simulations of hypervelocity impacts for asteroid deflection studies

    NASA Astrophysics Data System (ADS)

    Heberling, T.; Ferguson, J. M.; Gisler, G. R.; Plesko, C. S.; Weaver, R.

    2016-12-01

    The possibility of kinetic-impact deflection of threatening near-earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving two independent spacecraft, NASAs DART (Double Asteroid Redirection Test) and ESAs AIM (Asteroid Impact Mission). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos, at a speed of 5 to 7 km/s, is expected to alter the mutual orbit by an observable amount. The velocity imparted to the secondary depends on the geometry and dynamics of the impact, and especially on the momentum enhancement factor, conventionally called beta. We use the Los Alamos hydrocodes Rage and Pagosa to estimate beta in laboratory-scale benchmark experiments and in the large-scale asteroid deflection test. Simulations are performed in two- and three-dimensions, using a variety of equations of state and strength models for both the lab-scale and large-scale cases. This work is being performed as part of a systematic benchmarking study for the AIDA mission that includes other hydrocodes.

  16. Earth observation image of Von Karman Vortices taken during STS-100

    NASA Image and Video Library

    2001-04-30

    STS100-710-182 (19 April-1 May 2001) --- Easily recognizable in this STS-100 70mm frame are phenomena known as the von Karman vortices, which were forming in the stratocumulus field downwind from the volcanic island of Rishiri-to in the northern Sea of Japan off the northwest coast of Hokkaido, Japan. According to NASA scientists studying the STS-100 photo collection, these features form when a stable atmosphere with low clouds flows past a relatively small obstacle with a height greater than the depth of the cloud layer. Because the atmosphere is stable, a series of eddies form in the moving cloud field.

  17. Asteroid Deflection: How, Where and When?

    NASA Astrophysics Data System (ADS)

    Fargion, D.

    2008-10-01

    To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.

  18. A Powerful Friendship: Theodore von Karman and Hugh L. Dryden

    NASA Technical Reports Server (NTRS)

    Gorn, Michael

    2003-01-01

    During their long personal friendship and professional association, Theodore von Karman (1882-1963) and Hugh L. Dryden (1898-1965) exercised a pivotal if somewhat elusive influence over American aeronautics and spaceflight. Both decisive figures in organizing scientists and engineers at home and abroad, both men of undisputed eminence in their technical fields, their range of contacts in government, academia, the armed forces, industry, and professional societies spanned the globe to an extent unparalleled then as now. Moreover, because they coordinated their activities closely, their combined influence far exceeded the sum of each one s individual contributions. This paper illustrates their personal origins as well as the foundations of their friendship, how their relationship became a professional alliance, and their joint impact on the world of aeronautics and astronautics during the twentieth century.

  19. Flow deflection over a foredune

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.; Smyth, Thomas A. G.; Nielsen, Peter; Walker, Ian J.; Bauer, Bernard O.; Davidson-Arnott, Robin

    2015-02-01

    Flow deflection of surface winds is common across coastal foredunes and blowouts. Incident winds approaching obliquely to the dune toe and crestline tend to be deflected towards a more crest-normal orientation across the stoss slope of the foredune. This paper examines field measurements for obliquely incident winds, and compares them to computational fluid dynamics (CFD) modelling of flow deflection in 10° increments from onshore (0°) to alongshore (90°) wind approach angles. The mechanics of flow deflection are discussed, followed by a comparative analysis of measured and modelled flow deflection data that shows strong agreement. CFD modelling of the full range of onshore to alongshore incident winds reveals that deflection of the incident wind flow is minimal at 0° and gradually increases as the incident wind turns towards 30° to the dune crest. The greatest deflection occurs between 30° and 70° incident to the dune crest. The degree of flow deflection depends secondarily on height above the dune surface, with the greatest effect near the surface and toward the dune crest. Topographically forced flow acceleration ("speed-up") across the stoss slope of the foredune is greatest for winds less than 30° (i.e., roughly perpendicular) and declines significantly for winds with more oblique approach angles. There is less lateral uniformity in the wind field when the incident wind approaches from > 60° because the effect of aspect ratio on topographic forcing and streamline convergence is less pronounced.

  20. Analytical results for post-buckling behaviour of plates in compression and in shear

    NASA Technical Reports Server (NTRS)

    Stein, M.

    1985-01-01

    The postbuckling behavior of long rectangular isotropic and orthotropic plates is determined. By assuming trigonometric functions in one direction, the nonlinear partial differential equations of von Karman large deflection plate theory are converted into nonlinear ordinary differential equations. The ordinary differential equations are solved numerically using an available boundary value problem solver which makes use of Newton's method. Results for longitudinal compression show different postbuckling behavior between isotropic and orthotropic plates. Results for shear show that change in inplane edge constraints can cause large change in postbuckling stiffness.

  1. Experimental tests of the von Karman self-preservation hypothesis: decay of an electron plasma to a near-maximum entropy state

    NASA Astrophysics Data System (ADS)

    Rodgers, D.; Servidio, S.; Matthaeus, W. H.; Montgomery, D.; Mitchell, T.; Aziz, T.

    2009-12-01

    The self-preservation hypothesis of von Karman [1] implies that in three dimensiolnal turbulence the energy E decays as dE/dt = - a Z^3/L, where a is a constant, Z is the turbulence amplitude and L is a simlarity length scale. Extensions of this idea to MHD [2] has been of great utility in solar wind and coronal heating studies. Here we conduct an experimental study of this idea in the context of two dimensional electron plasma turbulence. In particular, we examine the time evolution that leads to dynamical relaxation of a pure electron plasma in a Malmberg-Penning (MP) trap, comparing experiments and statistical theories of weakly dissipative two-dimensional (2D) turbulence [3]. A formulation of von Karman-Howarth (vKH) self-preserving decay is presented for a 2D positive-vorticity fluid, a system that corresponds closely to a 2D electron ExB drift plasma. When the enstrophy of the meta-stable equilibrium is accounted for, the enstrophy decay follows the predicted vKH decay for a variety of initial conditions in the MP experiment. Statistical analysis favors a theoretical picture of relaxation to a near-maximum entropy state, evidently driven by a self-preserving decay of enstrophy. [1] T. de Karman and L. Howarth, Proc. Roy. Soc Lon. A, 164, 192, 1938. [2] W. H. Matthaeus, G. P. Zank, and S. Oughton. J. Plas. Phys., 56:659, 1996. [3] D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, and T. Aziz. Phys. Rev. Lett., 102(24):244501, 2009.

  2. Comparison of Spinal Needle Deflection in a Ballistic Gel Model.

    PubMed

    Rand, Ethan; Christolias, George; Visco, Christopher; R Singh, Jaspal

    2016-10-01

    Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial.

  3. Comparison of Spinal Needle Deflection in a Ballistic Gel Model

    PubMed Central

    Rand, Ethan; Christolias, George; Visco, Christopher; R. Singh, Jaspal

    2016-01-01

    Background Percutaneous diagnostic and therapeutic procedures are commonly used in the treatment of spinal pain. The success of these procedures depends on the accuracy of needle placement, which is influenced by needle size and shape. Objectives The purpose of this study is to examine and quantify the deviation of commonly used spinal needles based on needle tip design and gauge, using a ballistic gel tissue simulant. Materials and Methods Six needles commonly used in spinal procedures (Quincke, Short Bevel, Chiba, Tuohy, Hustead, Whitacre) were selected for use in this study. Ballistic gel samples were made in molds of two depths, 40mm and 80 mm. Each needle was mounted in a drill press to ensure an accurate needle trajectory. Distance of deflection was recorded for each needle. Results In comparing the mean deflection of 22 gauge needles of all types at 80 mm of depth, deflection was greatest among beveled needles [Short Bevel (9.96 ± 0.77 mm), Quincke (8.89 ± 0.17 mm), Chiba (7.71 ± 1.16 mm)], moderate among epidural needles [Tuohy (7.64 ± 0.16 mm) and least among the pencil-point needles [Whitacre (0.73 ± 0.34 mm)]. Increased gauge (25 g) led to a significant increase in deflection among beveled needles. The direction of deflection was away from the bevel with Quincke, Chiba and Short Beveled needles and toward the bevel of the Tuohy and Hustead needles. Deflection of the Whitacre pencil-point needle was minimal. Conclusions There is clinical utility in knowing the relative deflection of various needle tips. When a procedure requires a needle to be steered around obstacles, or along non-collinear targets, the predictable and large amount of deflection obtained through use of a beveled spinal needle may prove beneficial. PMID:27847693

  4. Deflection of a flexural cantilever beam

    NASA Astrophysics Data System (ADS)

    Sherbourne, A. N.; Lu, F.

    The behavior of a flexural elastoplastic cantilever beam is investigated in which geometric nonlinearities are considered. The result of an elastica analysis by Frisch-Fay (1962) is extended to include postyield behavior. Although a closed-form solution is not possible, as in the elastic case, simple algebraic equations are derived involving only one unknown variable, which can also be expressed in the standard form of elliptic integrals if so desired. The results, in comparison with those of the small deflection analyses, indicate that large deflection analyses are necessary when the relative depth of the beam is very small over the length. The present exact solution can be used as a reference by those who resort to a finite element method for more complicated problems. It can also serve as a building block to other beam problems such as a simply supported beam or a beam with multiple loads.

  5. Large deflections and vibrations of a tip pulled beam with variable transversal section

    NASA Astrophysics Data System (ADS)

    Kurka, P.; Izuka, J.; Gonzalez, P.; Teixeira, L. H.

    2016-10-01

    The use of long flexible probes in outdoors exploration vehicles, as opposed to short and rigid arms, is a convenient way to grant easier access to regions of scientific interest such as terrain slopes and cliff sides. Longer and taller arms can also provide information from a wider exploration horizon. The drawback of employing long and flexible exploration probes is the fact that its vibration is not easily controlled in real time operation by means of a simple analytic linear dynamic model. The numerical model required to describe the dynamics of a very long and flexible structure is often very large and of slow computational convergence. The present work proposes a simplified numerical model of a long flexible beam with variable cross section, which is statically deflected by a pulling cable. The paper compares the proposed simplified model with experimental data regarding the static and dynamic characteristics of a beam with variable cross section. The simulations show the effectiveness of the simplified dynamic model employed in an active control loop to suppress tip vibrations of the beam.

  6. Igniter adapter-to-igniter chamber deflection test

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1990-01-01

    Testing was performed to determine the maximum RSRM igniter adapter-to-igniter chamber joint deflection at the crown of the inner joint primary seal. The deflection data was gathered to support igniter inner joint gasket resiliency predictions which led to launch commit criteria temperature determinations. The proximity (deflection) gage holes for the first test (Test No. 1) were incorrectly located; therefore, the test was declared a non-test. Prior to Test No. 2, test article configuration was modified with the correct proximity gage locations. Deflection data were successfully acquired during Test No. 2. However, the proximity gage deflection measurements were adversely affected by temperature increases. Deflections measured after the temperature rise at the proximity gages were considered unreliable. An analysis was performed to predict the maximum deflections based on the reliable data measured before the detectable temperature rise. Deflections to the primary seal crown location were adjusted to correspond to the time of maximum expected operating pressure (2,159 psi) to account for proximity gage bias, and to account for maximum attach and special bolt relaxation. The maximum joint deflection for the igniter inner joint at the crown of the primary seal, accounting for all significant correction factors, was 0.0031 in. (3.1 mil). Since the predicted (0.003 in.) and tested maximum deflection values were sufficiently close, the launch commit criteria was not changed as a result of this test. Data from this test should be used to determine if the igniter inner joint gasket seals are capable of maintaining sealing capability at a joint displacement of (1.4) x (0.0031 in.) = 0.00434 inches. Additional testing should be performed to increase the database on igniter deflections and address launch commit criteria temperatures.

  7. The Deflection Question

    NASA Astrophysics Data System (ADS)

    Greenberg, A. H.; Nesvold, E.; van Heerden, E.; Erasmus, N.; Marchis, F.

    2016-12-01

    On 15 February, 2013, a 15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred 33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found? To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to

  8. Optical measurement of propeller blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measurement of propeller blade deflections is described and evaluated. It does not depend on the reflectivity of the blade surface but only on its opaqueness. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained using a single light beam generated by a low-power helium-neon laser. Quantitative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured deflections from a static and a high-speed test are compared with available predicted deflections which are also used to evaluate systematic errors.

  9. Real-world injury patterns associated with Hybrid III sternal deflections in frontal crash tests.

    PubMed

    Brumbelow, Matthew L; Farmer, Charles M

    2013-01-01

    This study investigated the relationship between the peak sternal deflection measurements recorded by the Hybrid III 50th percentile male anthropometric test device (ATD) in frontal crash tests and injury and fatality outcomes for drivers in field crashes. ATD sternal deflection data were obtained from the Insurance Institute for Highway Safety's 64 km/h, 40 percent overlap crashworthiness evaluation tests for vehicles with seat belt crash tensioners, load limiters, and good-rated structure. The National Automotive Sampling System Crashworthiness Data System (NASS-CDS) was queried for frontal crashes of these vehicles in which the driver was restrained by a seat belt and air bag. Injury probability curves were calculated by frontal crash type using the injuries coded in NASS-CDS and peak ATD sternal deflection data. Fatality Analysis Reporting System (FARS) front-to-front crashes with exactly one driver death were also studied to determine whether the difference in measured sternal deflections for the 2 vehicles was related to the odds of fatality. For center impacts, moderate overlaps, and large overlaps in NASS-CDS, the probability of the driver sustaining an Abbreviated Injury Scale (AIS) score ≥ 3 thoracic injury, or any nonextremity AIS ≥ 3 injury, increased with increasing ATD sternal deflection measured in crash tests. For small overlaps, however, these probabilities decreased with increasing deflection. For FARS crashes, the fatally injured driver more often was in the vehicle with the lower measured deflection in crash tests (55 vs. 45%). After controlling for other factors, a 5-mm difference in measured sternal deflections between the 2 vehicles was associated with a fatality odds ratio of 0.762 for the driver in the vehicle with the greater deflection (95% confidence interval = 0.373, 1.449). Restraint systems that reduce peak Hybrid III sternal deflection in a moderate overlap crash test are beneficial in real-world crashes with similar or greater

  10. Intelligent deflection routing in buffer-less networks.

    PubMed

    Haeri, Soroush; Trajković, Ljiljana

    2015-02-01

    Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched networks. The main goal of deflection routing is to successfully deflect a packet based only on a limited knowledge that network nodes possess about their environment. In this paper, we present a framework that introduces intelligence to deflection routing (iDef). iDef decouples the design of the signaling infrastructure from the underlying learning algorithm. It consists of a signaling and a decision-making module. Signaling module implements a feedback management protocol while the decision-making module implements a reinforcement learning algorithm. We also propose several learning-based deflection routing protocols, implement them in iDef using the ns-3 network simulator, and compare their performance.

  11. Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.

    1991-01-01

    Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.

  12. Measurement methods of building structures deflections

    NASA Astrophysics Data System (ADS)

    Wróblewska, Magdalena

    2018-04-01

    Underground mining exploitation is leading to the occurrence of deformations manifested by, in particular, sloping terrain. The structures situated on the deforming subsoil are subject to uneven subsidence which is leading in consequence to their deflection. Before a building rectification process takes place by, e.g. uneven raising, the structure's deflection direction and value is determined so that the structure is restored to its vertical position as a result of the undertaken remedial measures. Deflection can be determined by applying classical as well as modern measurement techniques. The article presents examples of measurement methods used considering the measured elements of building structures' constructions and field measurements. Moreover, for a given example of a mining area, the existing deflections of buildings were compared with mining terrain sloping.

  13. Thermoviscoplastic response of thin plates subjected to intense local heating

    NASA Technical Reports Server (NTRS)

    Byrom, Ted G.; Allen, David H.; Thornton, Earl A.

    1992-01-01

    A finite element method is employed to investigate the thermoviscoplastic response of a half-cylinder to intense localized transient heating. Thermoviscoplastic material behavior is characterized by the Bodner-Partom constitutive model. Structure geometry is modeled with a three-dimensional assembly of CST-DKT plate elements incorporating the large deflection von Karman assumptions. The paper compares the results of a dynamic analysis with a quasi-static analysis for the half-cylinder structure with a step-function transient temperature loading similar to that which may be encountered with shock wave interference on a hypersonic leading edge.

  14. Nonlinear core deflection in injection molding

    NASA Astrophysics Data System (ADS)

    Poungthong, P.; Giacomin, A. J.; Saengow, C.; Kolitawong, C.; Liao, H.-C.; Tseng, S.-C.

    2018-05-01

    Injection molding of thin slender parts is often complicated by core deflection. This deflection is caused by molten plastics race tracking through the slit between the core and the rigid cavity wall. The pressure of this liquid exerts a lateral force of the slender core causing the core to bend, and this bending is governed by a nonlinear fifth order ordinary differential equation for the deflection that is not directly in the position along the core. Here we subject this differential equation to 6 sets of boundary conditions, corresponding to 6 commercial core constraints. For each such set of boundary conditions, we develop an explicit approximate analytical solution, including both a linear term and a nonlinear term. By comparison with finite difference solutions, we find our new analytical solutions to be accurate. We then use these solutions to derive explicit analytical approximations for maximum deflections and for the core position of these maximum deflections. Our experiments on the base-gated free-tip boundary condition agree closely with our new explicit approximate analytical solution.

  15. The assessment of nanofluid in a Von Karman flow with temperature relied viscosity

    NASA Astrophysics Data System (ADS)

    Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.

    2018-06-01

    This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.

  16. The Seven Habits of Highly Deflective Colleagues

    ERIC Educational Resources Information Center

    Maher, Michelle; Chaddock, Katherine

    2009-01-01

    The authors define deflection as a strategy to bounce action or responsibility away from oneself and toward another person, time, or place. Although they contend that deflection occurs in all areas of personal and professional life, the authors limit their focus to the deflective colleague ("collega deflectivus") in academe. In this article, the…

  17. Attractors for non-dissipative irrotational von Karman plates with boundary damping

    NASA Astrophysics Data System (ADS)

    Bociu, Lorena; Toundykov, Daniel

    Long-time behavior of solutions to a von Karman plate equation is considered. The system has an unrestricted first-order perturbation and a nonlinear damping acting through free boundary conditions only. This model differs from those previously considered (e.g. in the extensive treatise (Chueshov and Lasiecka, 2010 [11])) because the semi-flow may be of a non-gradient type: the unique continuation property is not known to hold, and there is no strict Lyapunov function on the natural finite-energy space. Consequently, global bounds on the energy, let alone the existence of an absorbing ball, cannot be a priori inferred. Moreover, the free boundary conditions are not recognized by weak solutions and some helpful estimates available for clamped, hinged or simply-supported plates cannot be invoked. It is shown that this non-monotone flow can converge to a global compact attractor with the help of viscous boundary damping and appropriately structured restoring forces acting only on the boundary or its collar.

  18. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars

    NASA Astrophysics Data System (ADS)

    Mohamed, Osama A.; Khattab, Rania; Hawat, Waddah Al

    2017-10-01

    Fiber-Reinforced Polymer (FRP) bars are gaining popularity as sustainable alternatives to conventional reinforcing steel bars in reinforced concrete applications. The production of FRP bars has lower environmental impact compared to steel reinforcing bars. In addition, the non-corroding FRP materials can potentially decrease the cost or need for maintenance of reinforced concrete structural elements, especially in harsh environmental conditions that can impact both concrete and reinforcement. FRP bars offer additional favourable properties including high tensile strength and low unit weight. However, the mechanical properties of FRP bars can lead to large crack widths and deflections. The objective of this study is to investigate the deflection behaviour of concrete beams reinforced with Glass FRP (GFRP) bars as a longitudinal main reinforcement. Six concrete beams reinforced with GFRP bars were modelled using the finite element computer program ANSYS. The main variable considered in the study is the reinforcement ratio. The deflection equations in current North American codes including ACI 440.1R-06, ACI 440.1R-15 and CSA S806-12 are used to compute deflections, and these are compared to numerical results. It was concluded in this paper that deflections predicted by ACI 440.1R-06 equations are lower than the numerical analysis results while ACI 440.1R-15 is in agreement with numerical analysis with tendency to be conservative. The values of deflections estimated by CSA S806-12 formulas are consistent with results of numerical analysis.

  19. Asteroid Deflection Mission Design Considering On-Ground Risks

    NASA Astrophysics Data System (ADS)

    Rumpf, Clemens; Lewis, Hugh G.; Atkinson, Peter

    The deflection of an Earth-threatening asteroid requires high transparency of the mission design process. The goal of such a mission is to move the projected point of impact over the face of Earth until the asteroid is on a miss trajectory. During the course of deflection operations, the projected point of impact will match regions that were less affected before alteration of the asteroid’s trajectory. These regions are at risk of sustaining considerable damage if the deflecting spacecraft becomes non-operational. The projected impact point would remain where the deflection mission put it at the time of mission failure. Hence, all regions that are potentially affected by the deflection campaign need to be informed about this risk and should be involved in the mission design process. A mission design compromise will have to be found that is acceptable to all affected parties (Schweickart, 2004). A software tool that assesses the on-ground risk due to deflection missions is under development. It will allow to study the accumulated on-ground risk along the path of the projected impact point. The tool will help determine a deflection mission design that minimizes the on-ground casualty and damage risk due to deflection operations. Currently, the tool is capable of simulating asteroid trajectories through the solar system and considers gravitational forces between solar system bodies. A virtual asteroid may be placed at an arbitrary point in the simulation for analysis and manipulation. Furthermore, the tool determines the asteroid’s point of impact and provides an estimate of the population at risk. Validation has been conducted against the solar system ephemeris catalogue HORIZONS by NASA’s Jet Propulsion Laboratory (JPL). Asteroids that are propagated over a period of 15 years show typical position discrepancies of 0.05 Earth radii relative to HORIZONS’ output. Ultimately, results from this research will aid in the identification of requirements for

  20. Approximate analysis of containment/deflection ring responses to engine rotor fragment impact.

    NASA Technical Reports Server (NTRS)

    Wu, R. W.-H.; Witmer, E. A.

    1973-01-01

    The transient responses of containment and/or deflection rings to impact from an engine rotor-blade fragment are analyzed. Energy and momentum considerations are employed in an approximate analysis to predict the collision-induced velocities which are imparted to the fragment and to the affected ring segment. This collision analysis is combined with the spatial finite-element representation of the ring and a temporal finite-difference solution procedure to predict the resulting large transient elastic-plastic deformations of containment/deflection rings. Some comparisons with experimental data are given.

  1. Optical measurement of unducted fan blade deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1988-01-01

    A nonintrusive optical method for measuring unducted fan (or propeller) blade deflections is described and evaluated. The measurement does not depend on blade surface reflectivity. Deflection of a point at the leading edge and a point at the trailing edge in a plane nearly perpendicular to the pitch axis is obtained with a single light beam generated by a low-power, helium-neon laser. Quantitiative analyses are performed from taped signals on a digital computer. Averaging techniques are employed to reduce random errors. Measured static deflections from a series of high-speed wind tunnel tests of a counterrotating unducted fan model are compared with available, predicted deflections, which are also used to evaluate systematic errors.

  2. Calculating the momentum enhancement factor for asteroid deflection studies

    DOE PAGES

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine; ...

    2017-10-17

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate anmore » approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.« less

  3. Calculating the momentum enhancement factor for asteroid deflection studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberling, Tamra; Gisler, Galen; Plesko, Catherine

    The possibility of kinetic-impact deflection of threatening near-Earth asteroids will be tested for the first time in the proposed AIDA (Asteroid Impact Deflection Assessment) mission, involving NASAs DART (Double Asteroid Redirection Test). The impact of the DART spacecraft onto the secondary of the binary asteroid 65803 Didymos at a speed of 5 to 7 km/s is expected to alter the mutual orbit by an observable amount. Furthermore, the velocity transferred to the secondary depends largely on the momentum enhancement factor, typically referred to as beta. Here, we use two hydrocodes developed at Los Alamos, RAGE and PAGOSA, to calculate anmore » approximate value for beta in laboratory-scale benchmark experiments. Convergence studies comparing the two codes show the importance of mesh size in estimating this crucial parameter.« less

  4. Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications

    NASA Astrophysics Data System (ADS)

    Arakida, Hideyoshi

    2018-05-01

    In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.

  5. Deflection monitoring for a box girder based on a modified conjugate beam method

    NASA Astrophysics Data System (ADS)

    Chen, Shi-Zhi; Wu, Gang; Xing, Tuo

    2017-08-01

    After several years of operation, a box girder bridge would commonly experience excessive deflection, which endangers the bridge’s life span as well as the safety of vehicles travelling on it. In order to avoid potential risks, it is essential to constantly monitor the defection of box girders. However, currently, the direct deflection monitoring methods are limited by the complicated environments beneath the bridges, such as rivers or other traffic lanes, which severely impede the layouts of the sensors. The other indirect deflection monitoring methods mostly do not thoroughly consider the inherent shear lag effect and shear deformation in the box girder, resulting in a rather large error. Under these circumstances, a deflection monitoring method suiting box girders is proposed in this article, based on the conjugate beam method and distributed long-gauge fibre Bragg grating (FBG) sensor. A lab experiment was conducted to verify the reliability and feasibility of this method under practical application. Further, the serviceability under different span-depth ratios and web thicknesses was examined through a finite element model.

  6. Study on pipe deflection by using numerical method

    NASA Astrophysics Data System (ADS)

    Husaini; Zaki Mubarak, Amir; Agustiar, Rizki

    2018-05-01

    Piping systems are widely used in a refinery or oil and gas industry. The piping system must be properly designed to avoid failure or leakage. Pipe stress analysis is conducted to analyze the loads and critical stress occurred, so that the failure of the pipe can be avoided. In this research, it is analyzed the deflection of a pipe by using Finite Element Method. The pipe is made of A358 / 304SS SCH10S Stainless Steel. It is 16 inches in size with the distance between supports is 10 meters. The fluid flown is Liquid Natural Gas (LNG) with the range of temperature of -120 ° C to -170 ° C, and a density of 461.1 kg / m 3. The flow of LNG causes deflection of the pipe. The pipe deflection must be within the permissible tolerable range. The objective is to analyze the deflection occurred in the piping system. Based on the calculation and simulation, the deflection is 4.4983 mm, which is below the maximum limit of deflection allowed, which is 20.3 mm.

  7. An Experimental and Computational Analysis of Primary Cilia Deflection Under Fluid Flow

    PubMed Central

    Downs, Matthew E.; Nguyen, An M.; Herzog, Florian A.; Hoey, David A.; Jacobs, Christopher R.

    2013-01-01

    In this work we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilized this model to analyze full three dimensional datasets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviors. We also analyzed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997). In addition our findings indicate the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behavior. PMID:22452422

  8. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, E.C.; Hudson, C.L.

    1995-07-25

    A new deflection structure which deflects a beam of charged particles, such as an electron beam, includes a serpentine set for transmitting a deflection field, and a shielding frame for housing the serpentine set. The serpentine set includes a vertical serpentine deflection element and a horizontal serpentine deflection element. These deflection elements are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage, through which the electron beam passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame includes a plurality of ground blocks, and forms an internal serpentine trough within these ground blocks, for housing the serpentine set. The deflection structure further includes a plurality of feedthrough connectors which are inserted through the shielding frame, and which are electrically connected to the serpentine set. 10 figs.

  9. Deflections from two types of Human Surrogates in Oblique Side Impacts

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.

    2008-01-01

    The objective of the study was to obtain time-dependent thoracic and abdominal deflections of an anthropomorphic test device, the WorldSID dummy, in oblique impact using sled tests, and compare with post mortem human subject (PMHS) data. To simulate the oblique loading vector, the load wall was configured such that the thorax and abdominal plates were offset by twenty or thirty degrees. Deflections were obtained from a chestband placed at the middle thoracic level and five internal deflection transducers. Data were compared from the chestband and the transducer located at the same level of the thorax. In addition, data were compared with deflections from similar PMHS tests obtained using chestbands placed at the level of the axilla, xyphoid process, and tenth rib, representing the upper thorax, middle thorax, and abdominal region of the biological specimen. Peak deflections ranged from 30 to 85 mm in the dummy tests. Peak deflections ranged from 60 to 115 mm in PMHS. Under both obliquities, dummy deflection-time histories at the location along the chestband in close proximity to the internal deflection transducer demonstrated similar profiles. However, the peak deflection magnitudes from the chestband were approximately 20 mm greater than those from the internal transducer. Acknowledging that the chestband measures external deflections in contrast to the transducer which records internal ribcage deformations, peak deflections match from the two sensors. Deflection time histories were also similar between the dummy and PMHS in terms of morphology, although thoracic deflection magnitudes from the dummy matched more closely with PMHS than abdominal deflection magnitudes. The dummy deformed in such a way that peak deflections occurred along the lateral vector. This was in contrast to PMHS tests wherein maximum deflections occurred along the antero-lateral direction, suggesting differing deformation responses in the two models. In addition, peak deflections occurred

  10. Deflection load characteristics of laser-welded orthodontic wires.

    PubMed

    Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya

    2012-07-01

    To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n  =  5) were statistically analyzed using analysis of variance/Tukey test (P < .05). The deflection loads for control wires measured were as follows: SS: 21.7 ± 0.8 N; Co-Cr-Ni: 20.0 ± 0.3 N; β-Ti: 13.9 ± 1.3 N; and Ni-Ti: 6.6 ± 0.4 N. All of the homogeneously welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P < .05) higher deflection load than those of the remaining homogeneously welded groups. In heterogeneous combinations, SS/Co-Cr-Ni and β-Ti/Ni-Ti showed higher deflection loads than those of the remaining heterogeneously welded combinations (significantly higher for SS/Co-Cr-Ni). Significance (P < .01) was shown for the interaction between the two factors (materials combination and welding method). However, no significant difference in deflection load was found between four-point and two-point welding in each homogeneous or heterogeneous combination. Heterogeneously laser-welded SS/Co-Cr-Ni and β-Ti/Ni-Ti wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.

  11. MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Dawei; Li, Yutong; Lu, Xin

    Herbig–Haro (HH) objects associated with newly born stars are typically characterized by two high Mach number jets ejected in opposite directions. However, HH 110 appears to only have a single jet instead of two. Recently, Kajdi et al. measured the proper motions of knots in the whole system and noted that HH 110 is a continuation of the nearby HH 270. It has been proved that the HH 270 collides with the surrounding mediums and is deflected by 58°, reshaping itself as HH 110. Although the scales of the astrophysical objects are very different from the plasmas created in themore » laboratory, similarity criteria of physical processes allow us to simulate the jet deflection in the HH 110/270 system in the laboratory with high power lasers. A controllable and repeatable laboratory experiment could give us insight into the deflection behavior. Here we show a well downscaled experiment in which a laser-produced supersonic-jet is deflected by 55° when colliding with a nearby orthogonal side-flow. We also present a two-dimensional hydrodynamic simulation with the Euler program, LARED-S, to reproduce the deflection. Both are in good agreement. Our results show that the large deflection angle formed in the HH 110/270 system is probably due to the ram pressure from a flow–flow collision model.« less

  12. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    DOEpatents

    Hagen, Edward C.; Hudson, Charles L.

    1995-01-01

    A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).

  13. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Deflection temperature test. 7.47 Section 7.47 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.47 Deflection...

  14. 30 CFR 7.47 - Deflection temperature test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Deflection temperature test. 7.47 Section 7.47 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.47 Deflection...

  15. The influence of asymmetric convections on typhoon cyclonic deflection tracks across Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, L. H.; Su, S. H.

    2016-12-01

    This study focus on the mechanisms of typhoon cyclonic deflection tracks (CDT) approaching the east coast of Taiwan. We analyzed for 84 landfall typhoons which has 49 CDT cases, 18 cases are with very large deflection angles (DA) ( > 20°) and another 7 cases are with cyclonic looping tracks (CLT). Most of the large DA and CLT cases are with relatively slow translation speeds of 4 m s-1 and occurred near the east coast, north of 23 °N in Taiwan. The Weather Research and Forecasting (WRF) Model was used to simulate the typhoon CDT cases. We use the potential vorticity (PV) tendency diagnosis to analyze the typhoon movements, and decompose the wave number one component of PV tendencies into horizontal advection (HA), vertical advection (VA) and diabatic heating (DH) terms. The northern landfall storms have significant vorticity stretching and subsidence warming to the south of the storm. The subsidence warming suppresses convections and produces heating asymmetries for the typhoon structure. The vorticity stretching (VA effect) and diabatic heating asymmetries (DH effect) which lead the southwestward deflection storm motion. The HA effect in general does not contribute to the CDT. Our results highlight the effects of vorticity stretching and asymmetric convective heating in producing the CDT to north of 23 °N near the east coast of Taiwan.

  16. Mechanistic interpretation of nondestructive pavement testing deflections

    NASA Astrophysics Data System (ADS)

    Hoffman, M. S.; Thompson, M. R.

    1981-06-01

    A method for the back calculation of material properties in flexible pavements based on the interpretation of surface deflection measurements is proposed. The ILLI-PAVE, a stress-dependent finite element pavement model, was used to generate data for developing algorithms and nomographs for deflection basin interpretation. Twenty four different flexible pavement sections throughout the State of Illinois were studied. Deflections were measured and loading mode effects on pavement response were investigated. The factors controlling the pavement response to different loading modes are identified and explained. Correlations between different devices are developed. The back calculated parameters derived from the proposed evaluation procedure can be used as inputs for asphalt concrete overlay design.

  17. Photothermal laser deflection, an innovative technique to measure particles in exhausts

    NASA Astrophysics Data System (ADS)

    Hess, Cecil F.

    1993-10-01

    Photothermal Laser Deflection (PLD) is an analytical technique to measure in real-time the mass concentration of particles and gaseous exhaust pollutants in a variety of combustion devices (e.g., gas turbine engines and rockets). PLD uses a pump laser to locally heat the particle or gaseous species, thus changing the refractive index of the surrounding gas to form a thermal lens. A probe laser beam travelling through the thermal lens is temporarily deflected, and the amount of deflection is proportional to the species mass concentration. The experiments and analyses conducted during phase 1 demonstrated the feasibility of PLD in measuring the mass concentration of both soot particles and NO2 at a repetition rate of 25 HZ. PLD response was linear at soot concentrations from 0.3 to 10 mg/cubic meters at NO2 concentrations from approximately 6 to 208 ppm. Strategies to measure lower concentrations have been defined and include focusing the probe beam onto the face of the bi-cell detector. The large dynamic range, fast acquisition rate, and ability to measure particulate and gaseous pollutants makes PLD superior to other available methods.

  18. Relationship Between Frequency and Deflection Angle in the DNA Prism

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    The DNA prism is a modification of the standard pulsed-field electrophoresis protocol to provide a continuous separation, where the DNA are deflected at an angle that depends on their molecular weight. The standard switchback model for the DNA prism predicts a monotonic increase in the deflection angle as a function of the frequency for switching the field until a plateau regime is reached. However, experiments indicate that the deflection angle achieves a maximum value before decaying to a size-independent value at high frequencies. Using Brownian dynamics simulations, we show that the maximum in the deflection angle is related to the reorientation time for the DNA and the decay in deflection angle at high frequencies is due to inadequate stretching. The generic features of the dependence of the deflection angle on molecular weight, switching frequency, and electric field strength explain a number of experimental phenomena. PMID:23410375

  19. Impeller deflection and modal finite element analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options suchmore » as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.« less

  20. Study on the causes and methods of influencing concrete deflection

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  1. Deflection-Compensating Beam for use inside a Cylinder

    NASA Technical Reports Server (NTRS)

    Goodman, Dwight; Myers, Neill; Herren, Kenneth

    2008-01-01

    A design concept for a beam for a specific application permits variations and options for satisfying competing requirements to minimize certain deflections under load and to minimize the weight of the beam. In the specific application, the beam is required to serve as a motion-controlled structure for supporting a mirror for optical testing in the lower third portion of a horizontal, cylindrical vacuum chamber. The cylindrical shape of the chamber is fortuitous in that it can be (and is) utilized as an essential element of the deflection-minimizing design concept. The beam is, more precisely, a table-like structure comprising a nominally flat, horizontal portion with vertical legs at its ends. The weights of the beam and whatever components it supports are reacted by the contact forces between the lower ends of the legs and the inner cylindrical chamber wall. Whereas the bending moments arising from the weights contribute to a beam deflection that is concave with its lowest point at midlength, the bending moments generated by the contact forces acting on the legs contribute to a beam deflection that is convex with its highest point at midlength. In addition, the bending of the legs in response to the weights causes the lower ends of the legs to slide downward on the cylindrical wall. By taking the standard beam-deflection equations, combining them with the geometric relationships among the legs and the horizontal portion of the beam, and treating the sliding as a component of deflection, it is possible to write an equation for the net vertical deflection as a function of the load and of position along the beam. A summary of major conclusions drawn from the equation characterization is included.

  2. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  3. Experiments on Ion Beam Deflection Using Ion Optics with Slit Apertures

    NASA Astrophysics Data System (ADS)

    Okawa, Yasushi; Hayakawa, Yukio; Kitamura, Shoji

    2004-03-01

    An experimental investigation on ion beam deflection by grid translation was performed. The ion beam deflection in ion optics is a desired technology for ion thrusters because thrust vector control utilizing this technique can eliminate the need for conventional gimbaling devices and thus reduce propulsion system mass. A grid translation mechanism consisting of a piezoelectric motor, a ceramic lever, and carbon-based grids with slit apertures was fabricated and high repeatability in beam deflection characteristics was obtained using this mechanism. Results showed that the beam deflection angle was proportional to the grid translation distance and independent of slit width and grid voltage. A numerical simulation successfully reproduced the beam deflection characteristics in a qualitative and quantitative sense. A maximum beam deflection angle of approximately plus or minus 6 degrees, which was comparable to that of the ordinary gimbaling devices used in space, was obtained without a severe drain current. Therefore, the beam deflection by grid translation is promising as a thrust vectoring method in ion thrusters.

  4. High bandwidth deflection readout for atomic force microscopes.

    PubMed

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62fm/√Hz.

  5. High bandwidth deflection readout for atomic force microscopes

    NASA Astrophysics Data System (ADS)

    Steininger, Juergen; Bibl, Matthias; Yoo, Han Woong; Schitter, Georg

    2015-10-01

    This contribution presents the systematic design of a high bandwidth deflection readout mechanism for atomic force microscopes. The widely used optical beam deflection method is revised by adding a focusing lens between the cantilever and the quadrant photodetector (QPD). This allows the utilization of QPDs with a small active area resulting in an increased detection bandwidth due to the reduced junction capacitance. Furthermore the additional lens can compensate a cross talk between a compensating z-movement of the cantilever and the deflection readout. Scaling effects are analyzed to get the optimal spot size for the given geometry of the QPD. The laser power is tuned to maximize the signal to noise ratio without limiting the bandwidth by local saturation effects. The systematic approach results in a measured -3 dB detection bandwidth of 64.5 MHz at a deflection noise density of 62 fm / √{ Hz } .

  6. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, N.J.; Hudson, C.L.

    1992-12-15

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse. 13 figs.

  7. Shielded helix traveling wave cathode ray tube deflection structure

    DOEpatents

    Norris, Neil J.; Hudson, Charles L.

    1992-01-01

    Various embodiments of a helical coil deflection structure of a CRT are described and illustrated which provide shielding between adjacent turns of the coil on either three or four sides of each turn in the coil. Threaded members formed with either male or female threads and having the same pitch as the deflection coil are utilized for shielding the deflection coil with each turn of the helical coil placed between adjacent threads which act to shield each coil turn from adjacent turns and to confine the field generated by the coil to prevent or inhibit cross-coupling between adjacent turns of the coil to thereby prevent generation of fast fields which might otherwise deflect the beam out of time synchronization with the electron beam pulse.

  8. Computation of wind tunnel model deflections. [for transport type solid wing

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Gloss, B. B.

    1981-01-01

    The experimental deflections for a transport type solid wing model were measured for several single point load conditions. These deflections were compared with those obtained by structural modeling of the wing by using plate and solid elements of Structural Performance Analysis and Redesign (SPAR) program. The solid element representation of the wing showed better agreement with the experimental deflections than the plate representation. The difference between the measured and calculated deflections is about 5 percent.

  9. Observing Bridge Dynamic Deflection in Green Time by Information Technology

    NASA Astrophysics Data System (ADS)

    Yu, Chengxin; Zhang, Guojian; Zhao, Yongqian; Chen, Mingzhi

    2018-01-01

    As traditional surveying methods are limited to observe bridge dynamic deflection; information technology is adopted to observe bridge dynamic deflection in Green time. Information technology used in this study means that we use digital cameras to photograph the bridge in red time as a zero image. Then, a series of successive images are photographed in green time. Deformation point targets are identified and located by Hough transform. With reference to the control points, the deformation values of these deformation points are obtained by differencing the successive images with a zero image, respectively. Results show that the average measurement accuracies of C0 are 0.46 pixels, 0.51 pixels and 0.74 pixels in X, Z and comprehensive direction. The average measurement accuracies of C1 are 0.43 pixels, 0.43 pixels and 0.67 pixels in X, Z and comprehensive direction in these tests. The maximal bridge deflection is 44.16mm, which is less than 75mm (Bridge deflection tolerance value). Information technology in this paper can monitor bridge dynamic deflection and depict deflection trend curves of the bridge in real time. It can provide data support for the site decisions to the bridge structure safety.

  10. Post mitigation impact risk analysis for asteroid deflection demonstration missions

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried; Hestroffer, Daniel; Thuillot, William; Bancelin, David; Cano, Juan L.; Cichocki, Filippo

    2015-08-01

    Even though mankind believes to have the capabilities to avert potentially disastrous asteroid impacts, only the realization of mitigation demonstration missions can validate this claim. Such a deflection demonstration attempt has to be cost effective, easy to validate, and safe in the sense that harmless asteroids must not be turned into potentially hazardous objects. Uncertainties in an asteroid's orbital and physical parameters as well as those additionally introduced during a mitigation attempt necessitate an in depth analysis of deflection mission designs in order to dispel planetary safety concerns. We present a post mitigation impact risk analysis of a list of potential kinetic impactor based deflection demonstration missions proposed in the framework of the NEOShield project. Our results confirm that mitigation induced uncertainties have a significant influence on the deflection outcome. Those cannot be neglected in post deflection impact risk studies. We show, furthermore, that deflection missions have to be assessed on an individual basis in order to ensure that asteroids are not inadvertently transported closer to the Earth at a later date. Finally, we present viable targets and mission designs for a kinetic impactor test to be launched between the years 2025 and 2032.

  11. Application of digital image correlation for long-distance bridge deflection measurement

    NASA Astrophysics Data System (ADS)

    Tian, Long; Pan, Bing; Cai, Youfa; Liang, Hui; Zhao, Yan

    2013-06-01

    Due to its advantages of non-contact, full-field and high-resolution measurement, digital image correlation (DIC) method has gained wide acceptance and found numerous applications in the field of experimental mechanics. In this paper, the application of DIC for real-time long-distance bridge deflection detection in outdoor environments is studied. Bridge deflection measurement using DIC in outdoor environments is more challenging than regular DIC measurements performed under laboratory conditions. First, much more image noise due to variations in ambient light will be presented in the images recorded in outdoor environments. Second, how to select the target area becomes a key factor because long-distance imaging results in a large field of view of the test object. Finally, the image acquisition speed of the camera must be high enough (larger than 100 fps) to capture the real-time dynamic motion of a bridge. In this work, the above challenging issues are addressed and several improvements were made to DIC method. The applicability was demonstrated by real experiments. Experimental results indicate that the DIC method has great potentials in motion measurement in various large building structures.

  12. A fiber Bragg grating sensor system for estimating the large deflection of a lightweight flexible beam

    NASA Astrophysics Data System (ADS)

    Peng, Te; Yang, Yangyang; Ma, Lina; Yang, Huayong

    2016-10-01

    A sensor system based on fiber Bragg grating (FBG) is presented which is to estimate the deflection of a lightweight flexible beam, including the tip position and the tip rotation angle. In this paper, the classical problem of the deflection of a lightweight flexible beam of linear elastic material is analysed. We present the differential equation governing the behavior of a physical system and show that this equation although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. We used epoxy glue to attach the FBG sensors to specific locations upper and lower surface of the beam in order to measure local strain measurements. A quasi-distributed FBG static strain sensor network is designed and established. The estimation results from FBG sensors are also compared to reference displacements from the ANSYS simulation results and the experimental results obtained in the laboratory in the static case. The errors of the estimation by FBG sensors are analysed for further error-correction and option-design. When the load weight is 20g, the precision is the highest, the position errors ex and ex are 0.19%, 0.14% respectively, the rotation error eθ, is 1.23%.

  13. Determination of angle of light deflection in higher-derivative gravity theories

    NASA Astrophysics Data System (ADS)

    Xu, Chenmei; Yang, Yisong

    2018-03-01

    Gravitational light deflection is known as one of three classical tests of general relativity and the angle of deflection may be computed explicitly using approximate or exact solutions describing the gravitational force generated from a point mass. In various generalized gravity theories, however, such explicit determination is often impossible due to the difficulty in obtaining an exact expression for the deflection angle. In this work, we present some highly effective globally convergent iterative methods to determine the angle of semiclassical gravitational deflection in higher- and infinite-derivative formalisms of quantum gravity theories. We also establish the universal properties that the deflection angle always stays below the classical Einstein angle and is a strictly decreasing function of the incident photon energy, in these formalisms.

  14. A generalized analytical approach to the coupled effect of SMA actuation and elastica deflection

    NASA Astrophysics Data System (ADS)

    Sreekumar, M.; Singaperumal, M.

    2009-11-01

    A compliant miniature parallel manipulator made of superelastic nitinol pipe as its central pillar and actuated by three symmetrically attached shape memory alloy (SMA) wires is under development. The mobility for the platform is obtained by the selective actuation of one or two wires at a time. If one wire is actuated, the other two unactuated wires provide the counter effect. Similarly, if two wires are actuated simultaneously or in a differential manner, the third unactuated wire resists the movement of the platform. In an earlier work of the authors, the static displacement analysis was presented without considering the effect of unactuated wires. In this contribution, the force-displacement analysis is presented considering the effect of both actuated and unactuated wires. Subsequently, an attempt has been made to obtain a generalized approach from which six types of actuation methods are identified using a group of conditional parameters. Each method leads to a set of large deflection expressions suitable for a particular actuation method. As the large deflection expressions derived for the mechanism are nonlinear and involve interdependent parameters, their simplified form using a parametric approximation have also been obtained using Howell's algorithm. The generalized approach and the solution algorithm developed can be applied to any kind of compliant mechanism having large deflection capabilities, including planar and spatial MEMS devices and stability analysis of long slender columns supported by wires or cables. The procedure developed is also suitable for the static analysis of spatial compliant mechanisms actuated by multiple SMA actuators.

  15. Deflection-Based Aircraft Structural Loads Estimation with Comparison to Flight

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. With a reliable strain and structural deformation measurement system this technique was examined. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  16. Influence of polymer additives on turbulence in von Karman swirling flow between two disks. II

    NASA Astrophysics Data System (ADS)

    Burnishev, Yuri; Steinberg, Victor

    2016-03-01

    We present the experimental studies of the influence of polymer additives on the statistical and scaling properties of the fully developed turbulent regime in a von Karman swirling flow driven either by the smooth or bladed disks using only the global measurements of torque Γ and pressure p fluctuations in water- and water-sugar-based solutions of different viscosities, or elasticity El, and different polymer concentrations ϕ as a function of Re in the same apparatus. There are three highlights achieved and reported in the paper: (i) An observation of turbulent drag reduction (TDR) at both the inertial and viscous flow forcing, in a contradiction to a currently accepted opinion that only the viscous forcing leads to TDR, and the unexpected drastic difference in the transition to the fully developed turbulent and TDR regimes in von Karman swirling flow of water-based polymer solutions depending on the way of the forcing; (ii) a continuous transition to TDR in both the normalized torque drop and the rms pressure fluctuations drop and universality in scaling behavior of Cf in an agreement with theoretical predictions; and (iii) the dramatic differences in the appearance of the frequency power spectra of Γ and in particular p due to the different ways of the forcing are also observed. We discuss and summarize further the results in accordance with these three main achievements. The main message of these studies is that both the inertial forcing and viscous forcing of von Karman swirling flow between two counter-rotating disks lead to TDR in the sharp contrast to the currently accepted opinion [O. Cadot et al., "Turbulent drag reduction in a closed flow system: Boundary layer versus bulk effects," Phys. Fluids 10, 426 (1998); D. Bonn et al., "From scale scales to large scales in three-dimensional turbulence: The effect of diluted polymers," Phys. Rev. E 47, R28 (1993); and D. Bonn et al., "Turbulent drag reduction by polymers," J. Phys.: Condens. Matter 17, S1195

  17. Wind loading analysis and strategy for deflection reduction on HET wide field upgrade

    NASA Astrophysics Data System (ADS)

    South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.

    2010-07-01

    Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.

  18. Optical measurement of propeller blade deflections in a spin facility

    NASA Technical Reports Server (NTRS)

    Ramsey, John K.; Meyn, Erwin H.; Mehmed, Oral; Kurkov, Anatole P.

    1990-01-01

    A nonintrusive optical system for measuring propeller blade deflections has been used in the NASA Lewis dynamic spin facility. Deflection of points at the leading and trailing edges of a blade section can be obtained with a narrow light beam from a low power helium-neon laser. A system used to measure these deflections at three spanwise locations is described. Modifications required to operate the lasers in a near-vacuum environment are also discussed.

  19. North-South Asymmetry in the Magnetic Deflection of Polar Coronal Jets

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Zimbardo, Gaetano; Bothmer, Volker; Patsourakos, Spiros

    Solar jets observed with the Extreme Ultra-Violet Imager (EUVI) and CORonagraphs (COR) instruments aboard the STEREO mission provide a tool to probe and understand the magnetic structure of the corona. Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure, the magnetic field controls the dynamics of plasma and, on average, jets during their propagation trace the magnetic field lines. We discuss the North-South asymmetry of the magnetic field of the Sun as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. We measured the position angle at 1 and at 2 solar radii for the 79 jets of the catalogue of Nisticò et al. (2009), based on the STEREO ultraviolet and visible observations, and we found that the propagation is not radial. The average jet deflection is studied both in the plane perpendicular to the line of sight, and, for a reduced number of jets in the three dimensional (3D) space. We find that the magnetic deflection of jets is larger in the North than in the South, with an asymmetry which is consistent with the N-S asymmetry of the heliospheric magnetic field inferred from the Ulysses in situ measurements, and gives clues to the study of the large scale solar magnetic field.

  20. AIDA: Asteroid Impact & Deflection Assessment

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew; Michel, Patrick; Ulamec, Stephan; Reed, Cheryl; Galvez, Andres; Carnelli, Ian

    On Feb. 15, 2013, an exceptionally close approach to Earth by the small asteroid 2012 DA14 was eagerly awaited by observers, but another small asteroid impacted Earth over Chelyabinsk, Russia the same day without warning, releasing several hundred kilotons TNT of energy and injuring over 1500 people. These dramatic events remind us of the needs to discover hazardous asteroids and to learn how to mitigate them. The AIDA mission is the first demonstration of a mitigation technique to protect the Earth from a potential asteroid impact, by performing a spacecraft kinetic impact on an asteroid to deflect it from its trajectory. We will provide an update on the status of parallel AIDA mission studies supported by ESA and NASA. AIDA is an international collaboration consisting of two independent but mutually supporting missions, one of which is the asteroid kinetic impactor, and the other is the characterization spacecraft which will orbit the asteroid system to monitor the deflection experiment and measure the results. These two missions are the NASA Double Asteroid Redirection Test (DART), which is the kinetic impactor, and the European Space Agency's Asteroid Impact Monitoring (AIM) mission, which is the characterization spacecraft. The target of the AIDA mission will be a binary asteroid, in which DART will target the secondary, smaller member in order to deflect the binary orbit. The resulting period change can be measured to within 10% by ground-based observations. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in great detail by the AIM mission. AIDA will return vital data to determine the momentum transfer efficiency of the kinetic impact and key physical properties of the target asteroid. The two mission components of AIDA, DART and AIM, are each independently valuable, but when combined they provide a greatly increased knowledge return. The AIDA mission will combine

  1. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, C.L.; Spector, J.

    1994-12-27

    A shielded serpentine slow wave deflection structure is disclosed having a serpentine signal conductor within a channel groove. The channel groove is formed by a serpentine channel in a trough plate and a ground plane. The serpentine signal conductor is supported at its ends by coaxial feed through connectors. A beam interaction trough intersects the channel groove to form a plurality of beam interaction regions wherein an electron beam may be deflected relative to the serpentine signal conductor. 4 figures.

  2. Superconducting multi-cell trapped mode deflecting cavity

    DOEpatents

    Lunin, Andrei; Khabiboulline, Timergali; Gonin, Ivan; Yakovlev, Vyacheslav; Zholents, Alexander

    2017-10-10

    A method and system for beam deflection. The method and system for beam deflection comprises a compact superconducting RF cavity further comprising a waveguide comprising an open ended resonator volume configured to operate as a trapped dipole mode; a plurality of cells configured to provide a high operating gradient; at least two pairs of protrusions configured for lowering surface electric and magnetic fields; and a main power coupler positioned to optimize necessary coupling for an operating mode and damping lower dipole modes simultaneously.

  3. 75 FR 12981 - Eligibility for Commercial Flats Failing Deflection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ..., customers expressed concerns about the potential additional postage due for pieces failing the deflection... Service proposed to change the price eligibilities applicable for pieces that fail the deflection... to the comments, a summary of the changes and revisions to the applicable prices for pieces that do...

  4. Electrical Deflection of Polar Liquid Streams: A Misunderstood Demonstration

    NASA Astrophysics Data System (ADS)

    Ziaei-Moayyed, Maryam; Goodman, Edward; Williams, Peter

    2000-11-01

    The electrical deflection of polar liquid streams, commonly used as a textbook illustration of the behavior of polar molecules, is shown to be due to the formation of electrically charged droplets in the polar liquid stream, induced by a nearby charged object, rather than any force exerted on molecular dipoles. Streams of water and polar organic liquids could be deflected in a uniform electric field, which could not have exerted any force on dipolar species. Water and polar organic liquid streams formed within a grounded, electrically screened region could not be deflected after exiting the screened region, demonstrating that there is no electrical force on uncharged polar liquid droplets. Induced charging was observed also in insulating polar organic liquids and is suggested to be due to ionic impurities. A weak deflection of a stream of a nonpolar liquid (tetrachloroethylene) was also observed, indicating that such impurity effects are quite general, even in nonpolar liquids.

  5. Possible influences on bullet trajectory deflection in ballistic gelatine.

    PubMed

    Riva, Fabiano; Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2017-02-01

    The influence of the distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots on a bullet's trajectory, when passing through ballistic gelatine, was studied. No significant difference in deflection was found when trajectories of 9mm Luger bullets, fired at a 3.5cm distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots, were compared to trajectories of bullets fired 7cm or more away from any of the aforementioned aspects. A surprisingly consistent 6.5° absolute deflection angle was found when these bullets passed through 22.5 to 23.5cm of ballistic gelatine. The projection angle, determined by the direction of the deflection, appeared to be random. The consistent absolute angle, in combination with the random projection angle, resulted in a cone-like deflection pattern. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Development of sacrificial support fixture using deflection analysis

    NASA Astrophysics Data System (ADS)

    Ramteke, Ashwini M.; Ashtankar, Kishor M.

    2018-04-01

    Sacrificial support fixtures are the structures used to hold the part during machining while rotating the part about the fourth axis of CNC machining. In Four axis CNC machining part is held in a indexer which is rotated about the fourth axis of rotation. So using traditional fixturing devices to hold the part during machining such as jigs, v blocks and clamping plates needs a several set ups, manufacturing time which increase the cost associated with it. Since the part is rotated about the axis of rotation in four axis CNC machining so using traditional fixturing devices to hold the part while machining we need to reorient the fixture each time for particular orientation of part about the axis of rotation. So our proposed methodology of fixture design eliminates the cost associate with the complicated fixture design for customized parts which in turn reduces the time of manufacturing of the fixtures. But while designing the layout of the fixtures it is found out that the machining the part using four axis CNC machining the accurate machining of the part is directly proportional to the deflection produced in a part. So to machine an accurate part the deflection produced in a part should be minimum. We assume that the deflection produced in a part is a result of the deflection produced in a sacrificial support fixture while machining. So this paper provides the study of the deflection checking in a part machined using sacrificial support fixture by using FEA analysis.

  7. Double deflection system for an electron beam device

    DOEpatents

    Parker, Norman W.; Golladay, Steven D.; Crewe, Albert V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations.

  8. Shielded serpentine traveling wave tube deflection structure

    DOEpatents

    Hudson, Charles L.; Spector, Jerome

    1994-01-01

    A shielded serpentine slow wave deflection structure (10) having a serpene signal conductor (12) within a channel groove (46). The channel groove (46) is formed by a serpentine channel (20) in a trough plate (18) and a ground plane (14). The serpentine signal conductor (12) is supported at its ends by coaxial feed through connectors 28. A beam interaction trough (22) intersects the channel groove (46) to form a plurality of beam interaction regions (56) wherein an electron beam (54) may be deflected relative to the serpentine signal conductor (12).

  9. Light deflection in gadolinium molybdate ferroelastic crystals

    NASA Astrophysics Data System (ADS)

    Staniorowski, Piotr; Bornarel, Jean

    2000-02-01

    The deflection of a He-Ne light beam by polydomain gadolinium molybdate (GMO) crystals has been studied with respect to incidence angle icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i on the sample at room temperature. The A and B deflected beams do not cross each other during the icons/Journals/Common/alpha" ALT="alpha" ALIGN="TOP"/> i variation, in contrast to results and calculations previously published. The model using the Fresnel equation confirms this result. The model presented is more accurate for numerical calculation than that using the Huygens construction.

  10. Asteroid Impact & Deflection Assessment mission: Kinetic impactor

    NASA Astrophysics Data System (ADS)

    Cheng, A. F.; Michel, P.; Jutzi, M.; Rivkin, A. S.; Stickle, A.; Barnouin, O.; Ernst, C.; Atchison, J.; Pravec, P.; Richardson, D. C.; AIDA Team

    2016-02-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor to deflect an asteroid. AIDA is an international cooperation, consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the ESA Asteroid Impact Mission (AIM) rendezvous mission. The primary goals of AIDA are (i) to test our ability to perform a spacecraft impact on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary near-Earth asteroid (65803) Didymos, with the deflection experiment to occur in late September, 2022. The DART impact on the secondary member of the binary at 7 km/s is expected to alter the binary orbit period by about 4 minutes, assuming a simple transfer of momentum to the target, and this period change will be measured by Earth-based observatories. The AIM spacecraft will characterize the asteroid target and monitor results of the impact in situ at Didymos. The DART mission is a full-scale kinetic impact to deflect a 150 m diameter asteroid, with known impactor conditions and with target physical properties characterized by the AIM mission. Predictions for the momentum transfer efficiency of kinetic impacts are given for several possible target types of different porosities, using Housen and Holsapple (2011) crater scaling model for impact ejecta mass and velocity distributions. Results are compared to numerical simulation results using the Smoothed Particle Hydrodynamics code of Jutzi and Michel (2014) with good agreement. The model also predicts that the ejecta from the DART impact may make Didymos into an active asteroid, forming an ejecta coma that may be observable from Earth-based telescopes. The measurements from AIDA of the momentum transfer from the DART impact, the crater size and morphology, and the evolution of an ejecta coma will

  11. Analysis of Deflection Enhancement Using Epsilon Assembly Microcantilevers Based Sensors

    PubMed Central

    Khaled, Abdul-Rahim A.; Vafai, Kambiz

    2011-01-01

    The present work analyzes theoretically and verifies the advantage of utilizing ɛ-microcantilever assemblies in microsensing applications. The deflection profile of these innovative ɛ-assembly microcantilevers is compared with that of the rectangular microcantilever and modified triangular microcantlever. Various force-loading conditions are considered. The theorem of linear elasticity for thin beams is used to obtain the deflections. The obtained defections are validated against an accurate numerical solution utilizing finite element method with maximum deviation less than 10 percent. It is found that the ɛ-assembly produces larger deflections than the rectangular microcantilever under the same base surface stress and same extension length. In addition, the ɛ-microcantilever assembly is found to produce larger deflection than the modified triangular microcantilever. This deflection enhancement is found to increase as the ɛ-assembly’s free length decreases for various types of force loading conditions. Consequently, the ɛ-microcantilever is shown to be superior in microsensing applications as it provides favorable high detection capability with a reduced susceptibility to external noises. Finally, this work paves a way for experimentally testing the ɛ-assembly to show whether detective potential of microsensors can be increased. PMID:22163694

  12. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  13. Electrically-induced stresses and deflection in multiple plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jih-Perng; Tichler, P.R.

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis has been made to evaluate themore » magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.« less

  14. Electrically-induced stresses and deflection in multiple plates

    NASA Astrophysics Data System (ADS)

    Hu, Jih-Perng; Tichler, P. R.

    1992-04-01

    Thermohydraulic tests are being planned at the High Flux Beam Reactor of Brookhaven National Laboratory, in which direct electrical heating of metal plates will simulate decay heating in parallel plate-type fuel elements. The required currents are high if plates are made of metal with a low electrical resistance, such as aluminum. These high currents will induce either attractive or repulsive forces between adjacent current-carrying plates. Such forces, if strong enough, will cause the plates to deflect and so change the geometry of the coolant channel between the plates. Since this is undesirable, an analysis was made to evaluate the magnitude of the deflection and related stresses. In contrast to earlier publications in which either a concentrated or a uniform load was assumed, in this paper an exact force distribution on the plate is analytically solved and then used for stress and deflection calculations, assuming each plate to be a simply supported beam. Results indicate that due to superposition of the induced forces between plates in a multiple-and-parallel plate array, the maximum deflection and bending stress occur at the midpoint of the outermost plate. The maximum shear stress, which is inversely proportional to plate thickness, occurs at both ends of the outermost plate.

  15. Laminated beams: deflection and stress as a function of epoxy shear modulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialek, J.

    1976-01-01

    The large toroidal field coil deflections observed during the PLT power test are due to the poor shear behavior of the insulation material used between layers of copper. Standard techniques for analyzing such laminated structures do not account for this effect. This paper presents an analysis of laminated beams that corrects this deficiency. The analysis explicitly models the mechanical behavior of each layer in a laminated beam and hence avoids the pitfalls involved in any averaging technique. In particular, the shear modulus of the epoxy in a laminated beam (consisting of alternate layers of metal and epoxy) may span themore » entire range of values from zero to classical. Solution of the governing differential equations defines the stress, strain, and deflection for any point within a laminated beam. The paper summarizes these governing equations and also includes a parametric study of a simple laminated beam.« less

  16. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    NASA Astrophysics Data System (ADS)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  17. Deflection Measurements on Propeller 5503 in Ahead and Crashback

    DTIC Science & Technology

    2016-10-01

    the dots on the blade that were visible for the run . Not all points could be determined for each picture during each run . One issue discovered with...Channel (LCC) in February and April of 2009. The deflection of the blades was measured using defocused particle image velocimetry. Comparisons were made... Blade Deflection Measurement CalTech

  18. The Asteroid Impact Mission - Deflection Demonstration (AIM - D2)

    NASA Astrophysics Data System (ADS)

    Küppers, M.; Michel, P.; Carnelli, I.

    2017-09-01

    The Asteroid Impact Mission (AIM) is ESA's contribution to the international Asteroid Impact Deflection Assessment (AIDA) cooperation, targeting the demonstration of deflection of a hazardous near-earth asteroid. AIM will also be the first in-depth investigation of a binary asteroid and make measurements that are relevant for the preparation of asteroid resource utilisation. AIM is foreseen to rendezvous with the binary near-Earth asteroid (65803) Didymos and to observe the system before, during, and after the impact of NASA's Double Asteroid Redirection Test (DART) spacecraft. Here we describe the observations to be done by the simplified version Asteroid Impact Mission - Deflection Demonstration (AIM-D2) and show that most of the original AIM objectives can still be achieved.

  19. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  20. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  1. Teach Deflection Concepts with Hacksaw Blades and Rubber Bands

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…

  2. Deflected mirage mediation: a phenomenological framework for generalized supersymmetry breaking.

    PubMed

    Everett, Lisa L; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M

    2008-09-05

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a "deflected" scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider.

  3. AIDA: The Asteroid Impact & Deflection Assessment Mission

    NASA Astrophysics Data System (ADS)

    Galvez, A.; Carnelli, I.; Michel, P.; Cheng, A. F.; Reed, C.; Ulamec, S.; Biele, J.; Abell, P.; Landis, R.

    2013-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) mission, a joint effort of ESA, JHU/APL, NASA, OCA, and DLR, is the first demonstration of asteroid deflection and assessment via kinetic impact. AIDA consists of two independent but mutually supporting mission elements, one of which is the asteroid kinetic impactor and the other is the characterization spacecraft. These two missions are, respectively, JHU/APL's Double Asteroid Redirection Test (DART) and the European Space Agency's Asteroid Investigation Mission (AIM) missions. As in the separate DART and AIM studies, the target of this mission is the binary asteroid [65803] Didymos in October, 2022. For a successful joint mission, one spacecraft, DART, would impact the secondary of the Didymos system while AIM would observe and measure any change in the relative orbit. AIM will be the first probe to characterise a binary asteroid, especially from the dynamical point of view, but also considering its interior and subsurface composition. The mission concept focuses on the monitoring aspects i.e., the capability to determine in-situ the key physical properties of a binary asteroid playing a role in the system's dynamic behavior. DART will be the first ever space mission to deflect the trajectory of an asteroid in a measurable way.- It is expected that the deflection can be measured as a change in the relative orbit period with a precision better than 10%. The joint AIDA mission will return vital data to determine the momentum transfer efficiency of the kinetic impact [1,2].

  4. Crack deflection: Implications for the growth of long and short fatigue cracks

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    1983-11-01

    The influences of crack deflection on the growth rates of nominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of the local mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

  5. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, C.; Opher, M., E-mail: ckay@bu.edu

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which themore » CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.« less

  6. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow.

    PubMed

    Demori, Marco; Ferrari, Marco; Bonzanini, Arianna; Poesio, Pietro; Ferrari, Vittorio

    2017-09-13

    In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s.

  7. Autonomous Sensors Powered by Energy Harvesting from von Karman Vortices in Airflow

    PubMed Central

    Bonzanini, Arianna; Poesio, Pietro

    2017-01-01

    In this paper an energy harvesting system based on a piezoelectric converter to extract energy from airflow and use it to power battery-less sensors is presented. The converter is embedded as a part of a flexure beam that is put into vibrations by von Karman vortices detached from a bluff body placed upstream. The vortex street has been investigated by Computational Fluid Dynamics (CFD) simulations, aiming at assessing the vortex shedding frequency as a function of the flow velocity. From the simulation results the preferred positioning of the beam behind the bluff body has been derived. In the experimental characterization the electrical output from the converter has been measured for different flow velocities and beam orientations. Highest conversion effectiveness is obtained by an optimal orientation of the beam, to exploit the maximum forcing, and for flow velocities where the repetition frequency of the vortices allows to excite the beam resonant frequency at its first flexural mode. The possibility to power battery-less sensors and make them autonomous has been shown by developing an energy management and signal conditioning electronic circuit plus two sensors for measuring temperature and flow velocity and transmitting their values over a RF signal. A harvested power of about 650 μW with retransmission intervals below 2 min have been obtained for the optimal flow velocity of 4 m/s. PMID:28902139

  8. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022''. However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission?s preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  9. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    NASA Technical Reports Server (NTRS)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022". However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission's preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  10. Unsteady aerodynamic analysis of space shuttle vehicles. Part 4: Effect of control deflections on orbiter unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1973-01-01

    The unsteady aerodynamics of the 040A orbiter have been explored experimentally. The results substantiate earlier predictions of the unsteady flow boundaries for a 60 deg swept delta wing at zero yaw and with no controls deflected. The test revealed a previously unknown region of discontinuous yaw characteristics at transonic speeds. Oilflow results indicate that this is the result of a coupling between wing and fuselage flows via the separated region forward of the deflected elevon. In fact, the large leeward elevon deflections are shown to produce a multitude of nonlinear stability effects which sometimes involve hysteresis. Predictions of the unsteady flow boundaries are made for the current orbiter. They should carry a good degree of confidence due to the present substantiation of previous predictions for the 040A. It is proposed that the present experiments be extended to the current configuration to define control-induced effects. Every effort should be made to account for Reynolds number, roughness, and possible hot-wall effects on any future experiments.

  11. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali; Saavedra, Joel; Vásquez, Yerko; González, P. A.

    2018-06-01

    In this paper, we study the weak gravitational lensing in the spacetime of rotating regular black hole geometries such as Ayon-Beato-García (ABG), Bardeen, and Hayward black holes. We calculate the deflection angle of light using the Gauss-Bonnet theorem (GBT) and show that the deflection of light can be viewed as a partially topological effect in which the deflection angle can be calculated by considering a domain outside of the light ray applied to the black hole optical geometries. Then, we demonstrate also the deflection angle via the geodesics formalism for these black holes to verify our results and explore the differences with the Kerr solution. These black holes have, in addition to the total mass and rotation parameter, different parameters of electric charge, magnetic charge, and deviation parameter. We find that the deflection of light has correction terms coming from these parameters, which generalizes the Kerr deflection angle.

  12. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.

    PubMed

    Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh

    2016-01-01

    This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p < 0.001). Tukey's test indicated no significant difference in mean values between QuiXX and X-tra fil (p = 0.637). Tetric EvoCeram Bulk Fill had significantly lower mean cuspal deflection compared with the two other bulk-fill composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin

  13. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillaney, Prasheel, E-mail: Prasheel.Lillaney@ucsf.edu; Caton, Curtis; Martin, Alastair J.

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image basedmore » methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles

  14. Fast scan control for deflection type mass spectrometers

    NASA Technical Reports Server (NTRS)

    Yeager, P. R.; Gaetano, G.; Hughes, D. B. (Inventor)

    1974-01-01

    A high speed scan device is reported that allows most any scanning sector mass spectrometer to measure preselected gases at a very high sampling rate. The device generates a rapidly changing staircase output which is applied to the accelerator of the spectrometer and it also generates defocusing pulses that are applied to one of the deflecting plates of the spectrometer which when shorted to ground deflects the ion beam away from the collector. A defocusing pulse occurs each time there is a change in the staircase output.

  15. The effect of cracking on the deflection basin of flexible pavements

    NASA Astrophysics Data System (ADS)

    Omar, Hadi Mohamed

    Because of the rapid development of hardware and software during the past decade, it is now possible to use an analytical-empirical (or mechanistic) method of structural pavement evaluation on a routine basis. One reason for using this approach is the increased need for pavement maintenance and rehabilitation. To make the right choice from many potentially feasible maintenance and rehabilitation measures, the engineer must base his decision on a rational evaluation of the mechanical properties of the materials in the existing pavement structure. One of the parameters in terms of pavement response are the deflections; these are of interest to this particular study. The Falling Weight Deflectometer (FWD) has been developed specifically for the purpose of obtaining deflection measurements in order to determine the in-situ elastic moduli. The profile of the deflection at the surface of the pavement is known as the deflection basin, because it resembles a bowl-shaped depression. The magnitude of the deflections and the basin shape are functions of the number of layers making up the pavement cross section, their thicknesses, and their moduli values. A variety of multi-layered linear elastic pavement models are available for use at this present time. A general-purpose finite-element program called ANSYS developed by Swanson Analysis System is very powerful and is capable of solving a layered system such as the pavement. A finite element model was developed to study the effect of the crack on the predicted deflection bowls. A general-purpose finite-element program was used in this study due to its ability to solve this problem and because of the availability of the program. A hypothetical crack problem was assumed and modeled in different ways. The crack depth, crack width, and distance of the crack from the loading point were among the many parameters that were investigated. Considering the shape of the deflection basin, it is very important to study the effect of the

  16. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    NASA Astrophysics Data System (ADS)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    range from around 1 for a porous, compressible body producing negligible ejecta, to 2 when the ejecta momentum matches the spacecraft momentum, and as high as 5--10 for rocky bodies that produce large, high-velocity ejecta fragments. If the impactor hits the centerpoint of a spherical asteroid the momentum of the escaping ejecta directly adds to the momentum of the impacting asteroid, but if the impact is oblique then the ejecta and spacecraft momenta are added to the asteroid in vector sum. This suggests the possibility that for a given intercept trajectory the asteroid deflection could include guidance by targeting an oblique impact that could steer the asteroid Δ V to a more optimal direction that is different from the relative velocity direction of the spacecraft. An oblique impact decreases the net Δ V magnitude, and yet could significantly increase the net deflection at the time of the threatening Earth encounter. We use asteroid (101955) Bennu, which is the target of the OSIRIS-REx asteroid sample return mission and which has a series of potential Earth impacts in the years from 2175--2196, as an example to demonstrate the effectiveness of the oblique impact. These future potential impacts will occur if the asteroid passes through one of a series of keyholes when the asteroid passes the Earth at roughly the lunar distance from the Earth in 2135. To study the Bennu deflection problem we simulate a hypervelocity spacecraft impact on Bennu in March 2021, after the OSIRIS-REx mission is complete. In our example, the spacecraft arrives from approximately the sunward direction, and targeting ahead or behind the center of the asteroid allows non-negligible transverse accelerations for modest values of β. A given impact location on the asteroid surface yields a given Δ V vector, and our approach starts by mapping the net Δ V components on the surface for an assumed value of β. Knowing the mapping from impact location to Δ V and also the mapping from Δ V to the

  17. The effect of asteroid topography on surface ablation deflection

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  18. Can We Predict CME Deflections Based on Solar Magnetic Field Configuration Alone?

    NASA Astrophysics Data System (ADS)

    Kay, C.; Opher, M.; Evans, R. M.

    2013-12-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including predicting CME deflections close to the Sun and through interplanetary space. Deflections of CMEs occur due to variations in the background magnetic field or solar wind speed, magnetic reconnection, and interactions with other CMEs. Using our newly developed model of CME deflections due to gradients in the background solar magnetic field, ForeCAT (Kay et al. 2013), we explore the questions: (a) do all simulated CMEs ultimately deflect to the minimum in the background solar magnetic field? (b) does the majority of the deflection occur in the lower corona below 4 Rs? ForeCAT does not include temporal variations in the magnetic field of active regions (ARs), spatial variations in the background solar wind speed, magnetic reconnection, or interactions with other CMEs. Therefore we focus on the effects of the steady state solar magnetic field. We explore two different Carrington Rotations (CRs): CR 2029 (April-May 2005) and CR 2077 (November-December 2008). Little is known about how the density and magnetic field fall with distance in the lower corona. We consider four density models derived from observations (Chen 1996, Mann et al. 2003, Guhathakurta et al. 2006, Leblanc et al. 1996) and two magnetic field models (PFSS and a scaled model). ForeCAT includes drag resulting from both CME propagation and deflection through the background solar wind. We vary the drag coefficient to explore the effect of drag on the deflection at 1 AU.

  19. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Moorthy, Jayashree

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  20. Comparative study on the wake deflection behind yawed wind turbine models

    NASA Astrophysics Data System (ADS)

    Schottler, Jannik; Mühle, Franz; Bartl, Jan; Peinke, Joachim; Adaramola, Muyiwa S.; Sætran, Lars; Hölling, Michael

    2017-05-01

    In this wind tunnel campaign, detailed wake measurements behind two different model wind turbines in yawed conditions were performed. The wake deflections were quantified by estimating the rotor-averaged available power within the wake. By using two different model wind turbines, the influence of the rotor design and turbine geometry on the wake deflection caused by a yaw misalignment of 30° could be judged. It was found that the wake deflections three rotor diameters downstream were equal while at six rotor diameters downstream insignificant differences were observed. The results compare well with previous experimental and numerical studies.

  1. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2013-10-01

    We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.

  2. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2.

    PubMed

    Zorick, Todd; Mandelkern, Mark A

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness.

  3. An oilspill trajectory analysis model with a variable wind deflection angle

    USGS Publications Warehouse

    Samuels, W.B.; Huang, N.E.; Amstutz, D.E.

    1982-01-01

    The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.

  4. Exploring of PST-TBPM in Monitoring Bridge Dynamic Deflection in Vibration

    NASA Astrophysics Data System (ADS)

    Zhang, Guojian; Liu, Shengzhen; Zhao, Tonglong; Yu, Chengxin

    2018-01-01

    This study adopts digital photography to monitor bridge dynamic deflection in vibration. Digital photography used in this study is based on PST-TBPM (photographing scale transformation-time baseline parallax method). Firstly, a digital camera is used to monitor the bridge in static as a zero image. Then, the digital camera is used to monitor the bridge in vibration every three seconds as the successive images. Based on the reference system, PST-TBPM is used to calculate the images to obtain the bridge dynamic deflection in vibration. Results show that the average measurement accuracies are 0.615 pixels and 0.79 pixels in X and Z direction. The maximal deflection of the bridge is 7.14 pixels. PST-TBPM is valid in solving the problem-the photographing direction not perpendicular to the bridge. Digital photography used in this study can assess the bridge health through monitoring the bridge dynamic deflection in vibration. The deformation trend curves depicted over time also can warn the possible dangers.

  5. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Hernandez, Sonia; Barbee, Brent W.

    2011-01-01

    There are currently over 8,000 known near-Earth asteroids (NEAs), and more are being discovered on a continual basis. More than 1,200 of these are classified as Potentially Hazardous Asteroids (PHAs) because their Minimum Orbit Intersection Distance (MOID) with Earth's orbit is <= 0.05 AU and their estimated diameters are >= 150 m. To date, 178 Earth impact structures have been discovered, indicating that our planet has previously been struck with devastating force by NEAs and will be struck again. Such collisions are aperiodic events and can occur at any time. A variety of techniques have been proposed to defend our planet from NEA impacts by deflecting the incoming asteroid. However, none of these techniques have been tested. Unless rigorous testing is conducted to produce reliable asteroid deflection systems, we will be forced to deploy completely untested -- and therefore unreliable -- deflection missions when a sizable asteroid on a collision course with Earth is discovered. Such missions will have a high probability of failure. We propose to address this problem with a campaign of deflection technology test missions deployed to harmless NEAs. The objective of these missions is to safely evaluate and refine the mission concepts and asteroid deflection system designs. Our current research focuses on the kinetic impactor, one of the simplest proposed asteroid deflection techniques in which a spacecraft is sent to collide with an asteroid at high relative velocity. By deploying test missions in the near future, we can characterize the performance of this deflection technique and resolve any problems inherent to its execution before needing to rely upon it during a true emergency. In this paper we present the methodology and results of our survey, including lists of NEAs for which safe and effective kinetic impactor test missions may be conducted within the next decade. Full mission designs are also presented for the NEAs which offer the best mission opportunities.

  6. Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

    NASA Astrophysics Data System (ADS)

    Chao, Li; Peigang, Yan; Xiangfeng, Wang; Wanjin, Han; Qingchao, Wang

    2017-08-01

    This paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

  7. 3D Structure of the Inverse Karman Vortex Street in the Wake of a Flapping Foil

    NASA Astrophysics Data System (ADS)

    Bozkurttas, Meliha; Mittal, Rajat; Dong, Haibo

    2004-11-01

    Flapping foils are being considered for lift generation and/or propulsion in Micro Aerial Vehicles (MAVs) and Autonomous Underwater Vehicles (AUVs). In the present study, a DNS/LES solver that is capable of simulating these flows in all their complexity will be used. The flow around a NACA 0012 foil undergoing pitch oscillation at a chord Reynolds number of 12600 has been investigated and the comparison of mean thrust coefficient results with the experiment has indicated significant under-prediction of the thrust although good match is observed with a 2D RANS calculation. This discrepancy could be related to the absence of 3D effects in both numerical simulations. Although this conclusion has also been reached in other studies, the details of the physical mechanism that lead to inaccurate prediction of surface pressure and ultimately to thrust force for pitching and heaving flapping foils have not been clarified yet. In this study, the streamwise (secondary) vortical structures in the inverse Karman Vortex Street generated in the wake of a thrust producing flapping foil will be studied.

  8. Simplified Model to Predict Deflection and Natural Frequency of Steel Pole Structures

    NASA Astrophysics Data System (ADS)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.

    2018-04-01

    Steel pole structures are suitable alternate to transmission line towers, due to difficulty encountered in finding land for the new right of way for installation of new lattice towers. The steel poles have tapered cross section and they are generally used for communication, power transmission and lighting purposes. Determination of deflection of steel pole is important to decide its functionality requirement. The excessive deflection of pole may affect the signal attenuation and short circuiting problems in communication/transmission poles. In this paper, a simplified method is proposed to determine both primary and secondary deflection based on dummy unit load/moment method. The predicted deflection from proposed method is validated with full scale experimental investigation conducted on 8 m and 30 m high lighting mast, 132 and 400 kV transmission pole and found to be in close agreement with each other. Determination of natural frequency is an important criterion to examine its dynamic sensitivity. A simplified semi-empirical method using the static deflection from the proposed method is formulated to determine its natural frequency. The natural frequency predicted from proposed method is validated with FE analysis results. Further the predicted results are validated with experimental results available in literature.

  9. Numerical and experimental investigation of plasma plume deflection with MHD flow control

    NASA Astrophysics Data System (ADS)

    Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN

    2018-04-01

    This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.

  10. Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping

    2018-01-01

    In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

  11. USING ForeCAT DEFLECTIONS AND ROTATIONS TO CONSTRAIN THE EARLY EVOLUTION OF CMEs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, C.; Opher, M.; Colaninno, R. C.

    2016-08-10

    To accurately predict the space weather effects of the impacts of coronal mass ejection (CME) at Earth one must know if and when a CME will impact Earth and the CME parameters upon impact. In 2015 Kay et al. presented Forecasting a CME’s Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts and the orientation of the CME upon impact. We first reconstruct the positions of the 2010 April 8 and the 2012 July 12 CMEs frommore » the observations. The first of these CMEs exhibits significant deflection and rotation (34° deflection and 58° rotation), while the second shows almost no deflection or rotation (<3° each). Using ForeCAT, we explore a range of initial parameters, such as the CME’s location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a CME in the low corona, we are able to constrain the expansion and propagation of these CMEs in the low corona.« less

  12. On the post mitigation impact risk assessment of possible targets for an asteroid deflection demonstration mission in the NEOShield project.

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried

    2014-05-01

    Mankind believes to have the capabilities to avert potentially disastrous asteroid impacts. Yet, only the realization of a mitigation demonstration mission can confirm such a claim. The NEOShield project, an international collaboration under European leadership, aims to draw a comprehensive picture of the scientific as well as technical requirements to such an endeavor. One of the top priorities of such a demonstration mission is, of course, that a previously harmless target asteroid shall not be turned into a potentially hazardous object. Given the inherently large uncertainties in an asteroid's physical parameters, as well as the additional uncertainties introduced during the deflection attempt, an in depth analysis of the change in asteroid impact probabilities after a deflection event becomes necessary. We present a post mitigation impact risk analysis of a list of potential deflection test missions and discuss the influence of orbital, physical and mitigation induced uncertainties.

  13. Graphical methods for determining moduli of pavement and sublayers from deflection data.

    DOT National Transportation Integrated Search

    1978-01-01

    In this investigation a relationship between the ratio of the moduli of two layers in a two-layer pavement system and the ratio of deflections in a load deflected basin was developed. Charts correlating the relationship between these ratios are given...

  14. Operational characteristics of a translation screen grid beam deflection system for a 5-cm Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.; Hudson, W. R.

    1972-01-01

    Measurements of beam deflection angle with respect to spring positioning power and accelerator impingement current as a function of deflection angle were made on a 5-cm diameter system. Response time measurements on the translational grid beam deflection system showed that the time for the maximum deflection angle analyzed (+16.4 deg to -16.4 deg) could be reduced by a factor of nine by increasing the heating power applied to the positioning spring from 4 to 16 watts. At 14 watts the response time for maximum deflection was about 1 minute.

  15. A load balancing bufferless deflection router for network-on-chip

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Zhou; Zhangming, Zhu; Duan, Zhou

    2016-07-01

    The bufferless router emerges as an interesting option for cost-efficient in network-on-chip (NoC) design. However, the bufferless router only works well under low network load because deflection more easily occurs as the injection rate increases. In this paper, we propose a load balancing bufferless deflection router (LBBDR) for NoC that relieves the effect of deflection in bufferless NoC. The proposed LBBDR employs a balance toggle identifier in the source router to control the initial routing direction of X or Y for a flit in the network. Based on this mechanism, the flit is routed according to XY or YX routing in the network afterward. When two or more flits contend the same one desired output port a priority policy called nearer-first is used to address output ports allocation contention. Simulation results show that the proposed LBBDR yields an improvement of routing performance over the reported bufferless routing in the flit deflection rate, average packet latency and throughput by up to 13%, 10% and 6% respectively. The layout area and power consumption compared with the reported schemes are 12% and 7% less respectively. Project supported by the National Natural Science Foundation of China (Nos. 61474087, 61322405, 61376039).

  16. A deflectable guiding catheter for real-time MRI-guided interventions.

    PubMed

    Bell, Jamie A; Saikus, Christina E; Ratnayaka, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z; Colyer, Jessica H; Lederman, Robert J; Kocaturk, Ozgur

    2012-04-01

    To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. The catheter shaft incorporated Kevlar braiding. A 180° deflection was attained with a 5-cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057" lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. Copyright © 2011 Wiley Periodicals, Inc.

  17. A deflectable guiding catheter for real-time MRI-guided interventions

    PubMed Central

    Bell, Jamie A.; Saikus, Christina E.; Ratnakaya, Kanishka; Wu, Vincent; Sonmez, Merdim; Faranesh, Anthony Z.; Colyer, Jessica H.; Lederman, Robert J.; Kocaturk, Ozgur

    2011-01-01

    Purpose To design a deflectable guiding catheter that omits long metallic components yet preserves mechanical properties to facilitate therapeutic interventional MRI procedures. Materials and Methods The catheter shaft incorporated Kevlar braiding. 180° deflection was attained with a 5 cm nitinol slotted tube, a nitinol spring, and a Kevlar pull string. We tested three designs: passive, passive incorporating an inductively-coupled coil, and active receiver. We characterized mechanical properties, MRI properties, RF induced heating, and in vivo performance in swine. Results Torque and tip deflection force were satisfactory. Representative procedures included hepatic and azygos vein access, laser cardiac septostomy, and atrial septal defect crossing. Visualization was best in the active configuration, delineating profile and tip orientation. The passive configuration could be used in tandem with an active guidewire to overcome its limited conspicuity. There was no RF-induced heating in all configurations under expected use conditions in vitro and in vivo. Conclusion Kevlar and short nitinol component substitutions preserved mechanical properties. The active design offered the best visibility and usability but reintroduced metal conductors. We describe versatile deflectable guiding catheters with a 0.057” lumen for interventional MRI catheterization. Implementations are feasible using active, inductive, and passive visualization strategies to suit application requirements. PMID:22128071

  18. The importance of being elastic: deflection of a badminton racket during a stroke.

    PubMed

    Kwan, Maxine; Rasmussen, John

    2010-03-01

    The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket-player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.

  19. Estimating needle tip deflection in biological tissue from a single transverse ultrasound image: application to brachytherapy.

    PubMed

    Rossa, Carlos; Sloboda, Ron; Usmani, Nawaid; Tavakoli, Mahdi

    2016-07-01

    This paper proposes a method to predict the deflection of a flexible needle inserted into soft tissue based on the observation of deflection at a single point along the needle shaft. We model the needle-tissue as a discretized structure composed of several virtual, weightless, rigid links connected by virtual helical springs whose stiffness coefficient is found using a pattern search algorithm that only requires the force applied at the needle tip during insertion and the needle deflection measured at an arbitrary insertion depth. Needle tip deflections can then be predicted for different insertion depths. Verification of the proposed method in synthetic and biological tissue shows a deflection estimation error of [Formula: see text]2 mm for images acquired at 35 % or more of the maximum insertion depth, and decreases to 1 mm for images acquired closer to the final insertion depth. We also demonstrate the utility of the model for prostate brachytherapy, where in vivo needle deflection measurements obtained during early stages of insertion are used to predict the needle deflection further along the insertion process. The method can predict needle deflection based on the observation of deflection at a single point. The ultrasound probe can be maintained at the same position during insertion of the needle, which avoids complications of tissue deformation caused by the motion of the ultrasound probe.

  20. Displacement and Deflection of AN Optical Beam by Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Caron, James N.

    2008-02-01

    Gas-Coupled Laser Acoustic Detection enables laser-based sensing of ultrasound from a solid without contact of the surface, and independent of the optical properties of the solid surface. The interaction between the probe beam and acoustic field has typically been modeled as creating a deflection in the optical beam. This paper describes this interaction as a combination of displacement and deflection. Sensing displacement can significantly decrease the system's dependence of length.

  1. An improved equivalent circuit model of a four rod deflecting cavity

    NASA Astrophysics Data System (ADS)

    Apsimon, R.; Burt, G.

    2017-03-01

    In this paper we present an improved equivalent circuit model for a four rod deflecting cavity which calculates the frequencies of the first four modes of the cavity as well as the RT/Q for the deflecting mode. Equivalent circuit models of RF cavities give intuition and understanding about how the cavity operates and what changes can be made to modify the frequency, without the need for RF simulations, which can be time-consuming. We parameterise a generic four rod deflecting cavity into a geometry consisting of simple shapes. Equations are derived for the line impedance of the rods and the capacitance between the rods and these are used to calculate the resonant frequency of the deflecting dipole mode as well as the lower order mode and the model is bench-marked against two test cases; the CEBAF separator and the HL-LHC 4-rod LHC crab cavity. CST and the equivalent circuit model agree within 4% for both cavities with the LOM frequency and within 1% for the deflecting frequency. RT/Q differs between the model and CST by 37% for the CEBAF separator and 25% for the HL-LHC 4-rod crab cavity; however this is sufficient for understanding how to optimise the cavity design. The model has then been utilised to suggest a method of separating the modal frequencies in the HL-LHC crab cavity and to suggest design methodologies to optimise the cavity geometries.

  2. Experimental estimating deflection of a simple beam bridge model using grating eddy current sensors.

    PubMed

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring.

  3. Ion Beam Deflection (AKA Push-Me/Pull-You)

    NASA Technical Reports Server (NTRS)

    Brophy, John

    2013-01-01

    The Ion Beam Deflection provides the following potential advantages over other asteroid deflection systems. Like the gravity tractor, it doesn't require despinning of the asteroid. Unlike the gravity tractor, it provides a significantly higher coupling force that is independent of the asteroid size. The concept could be tested as part of the baseline Asteroid Redirect Robotic Mission. The thrust and total impulse are entirely within the design of the SEP vehicle. The total impulse is potentially competitive with kinetic impactors and eliminates the need for a second rendezvous spacecraft.?Gridded ion thrusters provide beam divergence angles of a few degrees enabling long stand-off distances from the asteroid. Mitigating control issues. Minimizing back-sputter contamination risks

  4. Positively deflected anomaly mediation in the light of the Higgs boson discovery

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Tran, Hieu Minh

    2013-02-01

    Anomaly-mediated supersymmetry breaking (AMSB) is a well-known mechanism for flavor-blind transmission of supersymmetry breaking from the hidden sector to the visible sector. However, the pure AMSB scenario suffers from a serious drawback, namely, the tachyonic slepton problem, and needs to be extended. The so-called (positively) deflected AMSB is a simple extension to solve the problem and also provides us with the usual neutralino lightest superpartner as a good candidate for dark matter in the Universe. Motivated by the recent discovery of the Higgs boson at the Large Hadron Collider (LHC) experiments, we perform the parameter scan in the deflected AMSB scenario by taking into account a variety of phenomenological constraints, such as the dark matter relic density and the observed Higgs boson mass around 125-126 GeV. We identify the allowed parameter region and list benchmark mass spectra. We find that in most of the allowed parameter regions, the dark matter neutralino is Higgsino-like and its elastic scattering cross section with nuclei is within the future reach of the direct dark matter search experiments, while (colored) sparticles are quite heavy and their discovery at the LHC is challenging.

  5. Deflection by Kinetic Impact or Nuclear Ablation: Sensitivity to Asteroid Properties

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.

    2015-12-01

    Impulsive deflection of a threatening asteroid can be achieved by deploying either a kinetic impactor or a standoff nuclear device to impart a modest velocity change to the body. Response to each of these methods is sensitive to the individual asteroid's characteristics, some of which may not be well constrained before an actual deflection mission. Numerical simulations of asteroid deflection, using both hypervelocity impacts and nuclear ablation of the asteroid's surface, provide detailed information on asteroid response under a range of initial conditions. Here we present numerical results for the deflection of asteroids by both kinetic and nuclear methods, focusing on the roles of target body composition, strength, porosity, rotational state, shape, and internal structure. These results provide a framework for evaluating the planetary defense-related value of future asteroid characterization missions and capture some of the uncertainty that may be present in a real threat scenario. Part of this work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking code 12-ERD-005, performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675914.

  6. AIDA DART asteroid deflection test: Planetary defense and science objectives

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew F.; Rivkin, Andrew S.; Michel, Patrick; Atchison, Justin; Barnouin, Olivier; Benner, Lance; Chabot, Nancy L.; Ernst, Carolyn; Fahnestock, Eugene G.; Kueppers, Michael; Pravec, Petr; Rainey, Emma; Richardson, Derek C.; Stickle, Angela M.; Thomas, Cristina

    2018-08-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is an international cooperation between NASA and ESA. NASA plans to provide the Double Asteroid Redirection Test (DART) mission which will perform a kinetic impactor experiment to demonstrate asteroid impact hazard mitigation. ESA proposes to provide the Hera mission which will rendezvous with the target to monitor the deflection, perform detailed characterizations, and measure the DART impact outcomes and momentum transfer efficiency. The primary goals of AIDA are (i) to demonstrate the kinetic impact technique on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary asteroid (65803) Didymos, which is of spectral type Sq, with the deflection experiment to occur in October, 2022. The DART impact on the secondary member of the binary at ∼6 km/s changes the orbital speed and the binary orbit period, which can be measured by Earth-based observatories with telescope apertures as small as 1 m. The DART impact will in addition alter the orbital and rotational states of the Didymos binary, leading to excitation of eccentricity and libration that, if measured by Hera, can constrain internal structure of the target asteroid. Measurements of the DART crater diameter and morphology can constrain target properties like cohesion and porosity based on numerical simulations of the DART impact.

  7. North-south asymmetry in the magnetic deflection of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Zimbardo, G.; Patsourakos, S.; Bothmer, V.; Nakariakov, V. M.

    2015-11-01

    Context. Measurements of the sunspots area, of the magnetic field in the interplanetary medium, and of the heliospheric current sheet (HCS) position, reveal a possible north-south (N-S) asymmetry in the magnetic field of the Sun. This asymmetry could cause the bending of the HCS of the order of 5-10 deg in the southward direction, and it appears to be a recurrent characteristic of the Sun during the minima of solar activity. Aims: We study the N-S asymmetry as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. Methods: Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure (β ≪ 1), we can assume that the magnetic field controls the dynamics of plasma. On average, jets follow magnetic field lines during their propagation, highlighting their local direction. We measured the position angles at 1 R⊙ and at 2 R⊙ of 79 jets, based on the Solar TErrestrial RElations Observatory (STEREO) ultraviolet and white-light coronagraph observations during the solar minimum period March 2007-April 2008. The average jet deflection is studied both in the plane perpendicular to the line of sight and, for a reduced number of jets, in 3D space. The observed jet deflection is studied in terms of an axisymmetric magnetic field model comprising dipole (g1), quadrupole (g2), and esapole (g3) moments. Results: We found that the propagation of the jets is not radial, which is in agreement with the deflection due to magnetic field lines. Moreover, the amount of the deflection is different between jets over the north and those from the south pole. A comparison of jet deflections and field line tracing shows that a ratio g2/g1 ≃ -0.5 for the quadrupole and a ratio g3/g1 ≃ 1.6-2.0 for the esapole can describe the field. The presence of a non-negligible quadrupole moment confirms the N-S asymmetry of the solar magnetic field for the considered period. Conclusions: We find that the

  8. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  9. Deflection-Based Structural Loads Estimation From the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lizotte, Andrew M.; Lokos, William A.

    2005-01-01

    Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.

  10. Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

    PubMed Central

    Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui

    2012-01-01

    A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring. PMID:23112583

  11. Nuclear cycler: An incremental approach to the deflection of asteroids

    NASA Astrophysics Data System (ADS)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  12. Effect of electrical spot welding on load deflection rate of orthodontic wires.

    PubMed

    Alavi, Shiva; Abrishami, Arezoo

    2015-01-01

    One of the methods used for joining metals together is welding, which can be carried out using different techniques such as electric spot welding. This study evaluated the effect of electric spot welding on the load deflection rate of stainless steel and chromium-cobalt orthodontic wires. In this experimental-laboratory study, load deflection rate of 0.016 × 0.022 inch stainless steel and chromium cobalt wires were evaluated in five groups (n =18): group one: Stainless steel wires, group two: chromium-cobalt wires, group three: stainless steel wires welded to stainless steel wires, group four: Stainless steel wires welded to chromium-cobalt wires, group five: chromium-cobalt wire welded to chromium-cobalt wires. Afterward, the forces induced by the samples in 0.5 mm, 1 mm, 1.5 mm deflection were measured using a universal testing machine. Then mean force measured for each group was compared with other groups. The data were analyzed using repeated measure analysis of variance (ANOVA), one-way ANOVA, and paired t-test by the SPSS software. The significance level was set as 0.05. The Tukey test showed that there were significant differences between the load deflection rates of welded groups compared to control ones (P < 0.001). Considering the limitation of this study, the electric spot welding process performed on stainless steel and chromium-cobalt wires increased their load deflection rates.

  13. Characterization of the protective capacity of flooring systems using force-deflection profiling.

    PubMed

    Glinka, Michal N; Karakolis, Thomas; Callaghan, Jack P; Laing, Andrew C

    2013-01-01

    'Safety floors' aim to decrease the risk of fall-related injuries by absorbing impact energy during falls. Ironically, excessive floor deflection during walking or standing may increase fall risk. In this study we used a materials testing system to characterize the ability of a range of floors to absorb energy during simulated head and hip impacts while resisting deflection during simulated single-leg stance. We found that energy absorption for all safety floors (mean (SD)=14.8 (4.9)J) and bedside mats (25.1 (9.3)J) was 3.2- to 5.4-fold greater than the control condition (commercial carpet). While footfall deflections were not significantly different between safety floors (1.8 (0.7)mm) and the control carpet (3.7 (0.6)mm), they were significantly higher for two bedside mats. Finally, all of the safety floors, and two bedside mats, displayed 3-10 times the energy-absorption-to-deflection ratios observed for the baseline carpet. Overall, these results suggest that the safety floors we tested effectively addressed two competing demands required to reduce fall-related injury risk; namely the ability to absorb substantial impact energy without increasing footfall deflections. This study contributes to the literature suggesting that safety floors are a promising intervention for reducing fall-related injury risk in older adults. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Measuring Deflections Of Propeller And Fan Blades

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1993-01-01

    Method based on measurement of interruptions of laser beam provides information on deflections of blades of airplane propeller or unducted turbofan. Bends and twists deduced from timing of laser-beam shadows. Provides for nonintrusive measurement in wind tunnel or on open test stand.

  15. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges

    PubMed Central

    Lee, Jaebeom; Lee, Young-Joo

    2018-01-01

    Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance. PMID:29747421

  16. Long-Term Deflection Prediction from Computer Vision-Measured Data History for High-Speed Railway Bridges.

    PubMed

    Lee, Jaebeom; Lee, Kyoung-Chan; Lee, Young-Joo

    2018-05-09

    Management of the vertical long-term deflection of a high-speed railway bridge is a crucial factor to guarantee traffic safety and passenger comfort. Therefore, there have been efforts to predict the vertical deflection of a railway bridge based on physics-based models representing various influential factors to vertical deflection such as concrete creep and shrinkage. However, it is not an easy task because the vertical deflection of a railway bridge generally involves several sources of uncertainty. This paper proposes a probabilistic method that employs a Gaussian process to construct a model to predict the vertical deflection of a railway bridge based on actual vision-based measurement and temperature. To deal with the sources of uncertainty which may cause prediction errors, a Gaussian process is modeled with multiple kernels and hyperparameters. Once the hyperparameters are identified through the Gaussian process regression using training data, the proposed method provides a 95% prediction interval as well as a predictive mean about the vertical deflection of the bridge. The proposed method is applied to an arch bridge under operation for high-speed trains in South Korea. The analysis results obtained from the proposed method show good agreement with the actual measurement data on the vertical deflection of the example bridge, and the prediction results can be utilized for decision-making on railway bridge maintenance.

  17. 750 GeV diphoton resonance, 125 GeV Higgs and muon g - 2 anomaly in deflected anomaly mediation SUSY breaking scenarios

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wu, Lei; Yang, Jin Min; Zhang, Mengchao

    2016-08-01

    We propose to interpret the 750 GeV diphoton excess in deflected anomaly mediation supersymmetry breaking scenarios, which can naturally predict couplings between a singlet field and vector-like messengers. The CP-even scalar component (S) of the singlet field can serve as the 750 GeV resonance. The messenger scale, which is of order the gravitino scale, can be as light as Fϕ ∼ O (10) TeV when the messenger species NF and the deflection parameter d are moderately large. Such messengers can induce the large loop decay process S → γγ. Our results show that such a scenario can successfully accommodate the 125 GeV Higgs boson, the 750 GeV diphoton excess and the muon g - 2 without conflicting with the LHC constraints. We also comment on the possible explanations in the gauge mediation supersymmetry breaking scenario.

  18. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  19. Measurement of morphing wing deflection by a cross-coherence fiber optic interferometric technique

    NASA Astrophysics Data System (ADS)

    Tomić, Miloš C.; Djinović, Zoran V.; Scheerer, Michael; Petricevic, Slobodan J.

    2018-01-01

    A fiber-optic interferometric technique aimed at measuring the deflection of aircrafts’ morphing wings is presented. The wing deflection induces a strain in the sensing fiber optic coils that are firmly fixed onto the wing. A change of the phase angle of the light propagating through the fiber is measured by an ‘all-in-fiber’ Michelson interferometer based on a 3 × 3 fiber-optic coupler. Two light sources of different coherence lengths and wavelengths are simultaneously used to ensure a wide measurement range and high accuracy. A new technique for determination of the zero deflection point using the cross-correlation of the two interferograms is proposed. The experiments performed on a specimen made of a carbon-fiber-reinforced plastic honeycomb structure demonstrated a relative uncertainty <1% and a precision of about 0.06° in the measuring range ±5° of the morphing wing deflection.

  20. Aerodynamic performance of a wing with a deflected tip-mounted reverse half-delta wing

    NASA Astrophysics Data System (ADS)

    Lee, T.; Su, Y. Y.

    2012-11-01

    The impact of a tip-mounted 65°-sweep reverse half-delta wing (RHDW), set at different deflections, on the aerodynamic performance of a rectangular NACA 0012 wing was investigated experimentally at Re = 2.45 × 105. This study is a continuation of the work of Lee and Su (Exp Fluids 52(6):1593-1609, 2012) on the passive control of wing tip vortex by the use of a reverse half-delta wing. The present results show that for RHDW deflection with -5° ≤ δ ≤ +15°, the lift was found to increase nonlinearly with increasing δ compared to the baseline wing. The lift increment was accompanied by an increased total drag. For negative RHDW deflection with δ < -5°, the RHDW-induced lift decrement was, however, accompanied by an improved drag. The deflected RHDW also significantly modified and weakened the tip vortex, leading to a persistently lowered lift-induced drag, regardless of its deflection, compared to the baseline wing. Physical mechanisms responsible for the observed RHDW-induced phenomenon were also discussed.

  1. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, B.E.

    1997-12-09

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors. 2 figs.

  2. Optical caliper with compensation for specimen deflection and method

    DOEpatents

    Bernacki, Bruce E.

    1997-01-01

    An optical non-contact profilometry system and method provided by an optical caliper with matched optical sensors that are arranged conjugate to each other so that the surface profile and thickness of an article can be measured without using a fixed reference surface and while permitting the article to deflect in space within the acquisition range of the optical sensors. The output signals from the two optical sensors are algebraically added to compensate for any such deflection of the article and provide a so compensated signal, the balance and sign of which provides a measurement of the actual thickness of the article at the optical sensors.

  3. DEFLECTION OF A HETEROGENEOUS WIDE-BEAM UNDER UNIFORM PRESSURE LOAD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. V. Holschuh; T. K. Howard; W. R. Marcum

    2014-07-01

    Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or generic test plate assembly (GTPA), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates onset by hydraulic forces. This test program supports ongoing work conducted for/by the Global Threat Reduction Initiative (GTRI) Fuels Development Program. This study’s focus supports the ongoing collaborative effort by detailing the derivation of an analytic solution for deflection of a heterogeneousmore » plate under a uniform, distributed load in order to predict the deflection of test plates in the GTPA. The resulting analytical solutions for three specific boundary condition sets are then presented against several test cases of a homogeneous plate. In all test cases considered, the results for both homogeneous and heterogeneous plates are numerically identical to one another, demonstrating correct derivation of the heterogeneous solution. Two additional problems are presents herein that provide a representative deflection profile for the plates under consideration within the GTPA. Furthermore, qualitative observations are made about the influence of a more-rigid internal fuel-meat region and its influence on the overall deflection profile of a plate. Present work is being directed to experimentally confirm the analytical solution’s results using select materials.« less

  4. Experimental investigations of the large deflection capabilities of a compliant parallel mechanism actuated by shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Sreekumar, M.; Nagarajan, T.; Singaperumal, M.

    2008-12-01

    This experimental study investigates the coupled effect of the force developed by the shape memory alloy (SMA) actuators and the force required for the large deflection of an elastica member in a compliant parallel mechanism. The compliant mechanism developed in house consists of a moving platform mounted on a superelastic pillar and three SMA wire actuators to manipulate the platform. A three-axis MEMS accelerometer has been mounted on the moving platform to measure its tilt angle. Three miniature force sensors have been designed and fabricated out of cantilever beams, each mounted with a pair of strain gauges, to measure the force developed by the respective actuators. The force sensors are highly sensitive and cost effective compared to commercially available miniature force sensors. Calibration of the force sensors has been accomplished with known weights, and for the three-axis MEMS accelerometer a rotary base has been considered which is usually used in optical applications. The calibration curves obtained, with R-squared values between 0.9997 and 1.0, show that both the tilt and force sensors considered are most appropriate for the respective applications. The mechanism fixed with the sensors and the drivers for the SMA actuators is integrated with a National Instrument's data acquisition system. The experimental results have been compared with the analytical results and it was found that the relative error is less than 2%. This is a preliminary study in the development of a mechanism for eye prosthesis and similar applications.

  5. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  6. White matter tractography using diffusion tensor deflection.

    PubMed

    Lazar, Mariana; Weinstein, David M; Tsuruda, Jay S; Hasan, Khader M; Arfanakis, Konstantinos; Meyerand, M Elizabeth; Badie, Benham; Rowley, Howard A; Haughton, Victor; Field, Aaron; Alexander, Andrew L

    2003-04-01

    Diffusion tensor MRI provides unique directional diffusion information that can be used to estimate the patterns of white matter connectivity in the human brain. In this study, the behavior of an algorithm for white matter tractography is examined. The algorithm, called TEND, uses the entire diffusion tensor to deflect the estimated fiber trajectory. Simulations and imaging experiments on in vivo human brains were performed to investigate the behavior of the tractography algorithm. The simulations show that the deflection term is less sensitive than the major eigenvector to image noise. In the human brain imaging experiments, estimated tracts were generated in corpus callosum, corticospinal tract, internal capsule, corona radiata, superior longitudinal fasciculus, inferior longitudinal fasciculus, fronto-occipital fasciculus, and uncinate fasciculus. This approach is promising for mapping the organizational patterns of white matter in the human brain as well as mapping the relationship between major fiber trajectories and the location and extent of brain lesions. Copyright 2003 Wiley-Liss, Inc.

  7. Experimental results for a two-dimensional supersonic inlet used as a thrust deflecting nozzle

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Burstadt, Paul L.

    1984-01-01

    Nearly all supersonic V/STOL aircraft concepts are dependent on the thrust deflecting capability of a nozzle. In one unique concept, referred to as the reverse flow dual fan, not only is there a thrust deflecting nozzle for the fan and core engine exit flow, but because of the way the propulsion system operates during vertical takeoff and landing, the supersonic inlet is also used as a thrust deflecting nozzle. This paper presents results of an experimental study to evaluate the performance of a supersonic inlet used as a thrust deflecting nozzle for this reverse flow dual fan concept. Results are presented in terms of nozzle thrust coefficient and thrust vector angle for a number of inlet/nozzle configurations. Flow visualization and nozzle exit flow survey results are also shown.

  8. Small-body deflection techniques using spacecraft: Techniques in simulating the fate of ejecta

    NASA Astrophysics Data System (ADS)

    Schwartz, Stephen R.; Yu, Yang; Michel, Patrick; Jutzi, Martin

    2016-04-01

    We define a set of procedures to numerically study the fate of ejecta produced by the impact of an artificial projectile with the aim of deflecting an asteroid. Here we develop a simplified, idealized model of impact conditions that can be adapted to fit the details of specific deflection-test scenarios, such as what is being proposed for the AIDA project. Ongoing studies based upon the methodology described here can be used to inform observational strategies and safety conditions for an observing spacecraft. To account for ejecta evolution, the numerical strategies we are employing are varied and include a large N-Body component, a smoothed-particle hydrodynamics (SPH) component, and an application of impactor scaling laws. Simulations that use SPH-derived initial conditions show high-speed ejecta escaping at low angles of inclination, and very slowly moving ejecta lofting off the surface at higher inclination angles, some of which reimpacts the small-body surface. We are currently investigating the realism of this and other models' behaviors. Next steps will include the addition of solar perturbations to the model and applying the protocol developed here directly to specific potential mission concepts such as the proposed AIDA scenario.

  9. Deflection and Flexural Strength Effects on the Roughness of Aesthetic-Coated Orthodontic Wires.

    PubMed

    Albuquerque, Cibele Gonçalves de; Correr, Américo Bortolazzo; Venezian, Giovana Cherubini; Santamaria, Milton; Tubel, Carlos Alberto; Vedovello, Silvia Amélia Scudeler

    2017-01-01

    The aim was to evaluate the flexural strength and the effects of deflection on the surface roughness of esthetic orthodontic wires. The sample consisted of 70 archwire 0.014-inch: polytetrafluorethylene (PTFE)-coated Nickel-Titanium (Niti) archwires (Titanol Cosmetic-TC, Flexy Super Elastic Esthetic-FSE, esthetic Nickel Titanium Wire-ANT); epoxy resin-coated Niti archwires (Spectra-S, Niticosmetic-TEC); gold and rhodium coated Niti (Sentalloy-STC) and a control group (superelastic Niti (Nitinol-NS). The initial roughness was evaluated with a rugosimeter. After that, the wires were submitted to flexural test in an universal testing machine. Each wire was deflected up to 2 mm at a speed of 1 mm/min. After flexural test, the roughness of the wires was evaluted on the same surface as that used for the initial evaluation. The data of roughness and flexural strength were analyzed by one-way ANOVA and Tukey's test (a=0.05). Student t-test compared roughness before and after deflection (a =0.05). The roughness of S and ANT (epoxy resin and PTFE-coated wires, respectively), before and after deflection, was significantly higher than the other groups (p<0.05). Wire deflection significantly increased the roughness of the wires S and STC (p<0.05). The flexural strength of groups FSE and NS (PTFE and uncoated) was higher compared with that of the other groups (p<0.05). We concluded that the roughness and flexural strength of the orthodontic wires does not depend on the type of the esthetic coating, but it is influenced by the method of application of this coating. The deflection can increase the roughness of the esthetic orthodontic wires.

  10. Review of Chest Deflection Measurement Techniques and Transducers

    DOT National Transportation Integrated Search

    1978-06-01

    A summary is presented of measurement techniques and transducers that have been used, or are presently available and exhibit potential for use in the measurement of dynamic chest deflection. Various techniques and transducers are evaluated for their ...

  11. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand

    PubMed Central

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    Introduction: The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. Methods: A total of 40 nickel-titanium (NiTi) wire segments (Morelli OrtodontiaTM - Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. Results: When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. Conclusion: There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio. PMID:27007760

  12. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand.

    PubMed

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. A total of 40 nickel-titanium (NiTi) wire segments (Morelli Ortodontia™--Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.

  13. Effect of the cosmological constant on the deflection angle by a rotating cosmic string

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Övgün, Ali

    2018-03-01

    We report the effect of the cosmological constant and the internal energy density of a cosmic string on the deflection angle of light in the spacetime of a rotating cosmic string with internal structure. We first revisit the deflection angle by a rotating cosmic string and then provide a generalization using the geodesic equations and the Gauss-Bonnet theorem. We show there is an agreement between the two methods when employing higher-order terms of the linear mass density of the cosmic string. By modifying the integration domain for the global conical topology, we resolve the inconsistency between these two methods previously reported in the literature. We show that the deflection angle is not affected by the rotation of the cosmic string; however, the cosmological constant Λ strongly affects the deflection angle, which generalizes the well-known result.

  14. Environmental Deflection: The Impact of Toxicant Exposures on the Aging Epigenome.

    PubMed

    Kochmanski, Joseph; Montrose, Luke; Goodrich, Jaclyn M; Dolinoy, Dana C

    2017-04-01

    Epigenetic drift and age-related methylation have both been used in the literature to describe changes in DNA methylation that occurs with aging. However, ambiguity remains regarding the exact definition of both of these terms, and neither of these fields of study explicitly considers the impact of environmental factors on the aging epigenome. Recent twin studies have demonstrated longitudinal, pair-specific discordance in DNA methylation patterns, suggesting an effect of the environment on age-related methylation and/or epigenetic drift. Supporting this idea, other new reports have shown clear environment- and toxicant-mediated shifts away from the baseline rates of age-related methylation and epigenetic drift within an organism, a process we now term "environmental deflection." By defining and delineating environmental deflection, this contemporary review aims to highlight the effects of specific toxicological factors on the rate of DNA methylation changes that occur over the life course. In an effort to inform future epigenetics-based toxicology studies, a field of research now classified as toxicoepigenetics, we provide clear definitions and examples of "epigenetic drift" and "age-related methylation," summarize the recent evidence for environmental deflection of the aging epigenome, and discuss the potential functional effects of environmental deflection. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Evaluation of deflection forces of orthodontic wires with different ligation types.

    PubMed

    Henriques, José Fernando Castanha; Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Janson, Guilherme; Fernandes, Thais Maria Freire; Sathler, Renata

    2017-07-03

    The aim of this study was to evaluate deflection forces of orthodontic wires of different alloys engaged into conventional brackets using several ligation types. Stainless steel, conventional superelastic nickel-titanium and thermally activated nickel-titanium archwires tied into conventional brackets by a ring-shaped elastomeric ligature (RSEL), a 8-shaped elastomeric ligature (8SEL) and a metal ligature (ML) were tested. A clinical simulation device was created especially for this study and forces were measured with an Instron Universal Testing Machine. For the testing procedure, the block representing the maxillary right central incisor was moved 0.5 and 1 mm bucco-lingually at a constant speed of 2 mm/min, and the forces released by the wires were recorded, in accordance with the ISO 15841 guidelines. In general, the RSEL showed lighter forces, while 8SEL and ML showed higher values. At the 0.5 mm deflection, the 8SEL presented the greatest force, but at the 1.0 mm deflection the ML had a statistically similar force. Based on our evaluations, to obtain lighter forces, the thermally activated nickel-titanium wire with the RSEL are recommended, while the steel wire with the 8SEL or the ML are recommended when larger forces are desired. The ML exhibited the highest force increase with increased deflections, compared with the elastomeric ligatures.

  16. Close-Range Photogrammetric Measurement of Static Deflections for an Aeroelastic Supercritical Wing

    NASA Technical Reports Server (NTRS)

    Byrdsong, Thomas A.; Adams, Richard R.; Sandford, Maynard C.

    1990-01-01

    Close range photogrammetric measurements were made for the lower wing surface of a full span aspect ratio 10.3 aeroelastic supercritical research wing. The measurements were made during wind tunnel tests for quasi-steady pressure distributions on the wing. The tests were conducted in the NASA Langley Transonic Dynamics Tunnel at Mach numbers up to 0.90 and dynamic pressures up to 300 pounds per square foot. Deflection data were obtained for 57 locations on the wing lower surface using dual non-metric cameras. Representative data are presented as graphical overview to show variations and trends of spar deflection with test variables. Comparative data are presented for photogrammetric and cathetometric results of measurements for the wing tip deflections. A tabulation of the basic measurements is presented in a supplement to this report.

  17. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  18. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses for assessing whether the Door Drive Mechanism (DDM) was subjected to excessive additional stress, and more importantly, to evaluate the magnitude of the induced step or gap with respect to shuttle s body tiles. To model the flexibility of the DDM, a lumped parameter approximation was used to capture the compliance of individual parts within the drive linkage. These stiffness approximations were then validated using FEA and iteratively updated in the model to converge on the actual distributed parameter equivalent stiffnesses. The goal of the analyses is to determine the deflections in the mechanism and whether or not the deflections are in the region of elastic or plastic deformation. Plastic deformation may affect proper closure of the ETD and would impact aero-heating during re-entry.

  19. Static Force-Deflection Properties of Automobile Steering Components

    DOT National Transportation Integrated Search

    1987-06-01

    This report provides the static force-deflection test results for 28 steering columns and 24 steering wheels used in domestic and import passener cars from model year 1975 to 1985. The steering columns and wheels tested include approzimately 90 perce...

  20. Re-rounding of deflected thermoplastic conduit, phase I.

    DOT National Transportation Integrated Search

    2017-03-01

    Shad Sargand (ORCID 0000-0002-1633-1045), Andrew Russ (ORCID 0000-0001-7743-2109), and Kevin White (0000-0002-2902-2524) This study investigated the potential benefits of re-rounding of thermoplastic pipe, a process for reducing the deflection of ins...

  1. Thoracic Injury Risk Curves for Rib Deflections of the SID-IIs Build Level D.

    PubMed

    Irwin, Annette L; Crawford, Greg; Gorman, David; Wang, Sikui; Mertz, Harold J

    2016-11-01

    Injury risk curves for SID-IIs thorax and abdomen rib deflections proposed for future NCAP side impact evaluations were developed from tests conducted with the SID-IIs FRG. Since the floating rib guide is known to reduce the magnitude of the peak rib deflections, injury risk curves developed from SID-IIs FRG data are not appropriate for use with SID-IIs build level D. PMHS injury data from three series of sled tests and one series of whole-body drop tests are paired with thoracic rib deflections from equivalent tests with SID-IIs build level D. Where possible, the rib deflections of SID-IIs build level D were scaled to adjust for differences in impact velocity between the PMHS and SID-IIs tests. Injury risk curves developed by the Mertz-Weber modified median rank method are presented and compared to risk curves developed by other parametric and non-parametric methods.

  2. The effect of ligation on the load deflection characteristics of nickel titanium orthodontic wire.

    PubMed

    Kasuya, Shugo; Nagasaka, Satoshi; Hanyuda, Ai; Ishimura, Sadao; Hirashita, Ayao

    2007-12-01

    This study examined the effect of ligation on the load-deflection characteristics of nickel-titanium (NiTi) orthodontic wire. A modified three-point bending system was used for bending the NiTi round wire, which was inserted and ligated in the slots of three brackets, one of which was bonded to each of the three bender rods. Three different ligation methods, stainless steel ligature (SSL), slot lid (SL), and elastomeric ligature (EL), were employed, as well as a control with neither bracket nor ligation (NBL). The tests were repeated five times under each condition. Comparisons were made of load-deflection curve, load at maximum deflection of 2,000 microm, and load at a deflection of 1,500 microm during unloading. Analysis of Variance (ANOVA) and Dunnett's test were conducted to determine method difference (alpha = 0.05). The interaction between deflection and ligation was tested, using repeated-measures ANOVA (alpha = 0.05). The load values of the ligation groups were two to three times greater than the NBL group at a deflection of 1,500 microm during unloading: 4.37 N for EL, 3.90 N for SSL, 3.02 N for SL, and 1.49 N for NBL (P < 0.01). For the EL, a plateau region disappeared in the unloading curve. SL showed the smallest load. The ligation of the bracket wire may make NiTi wire exhibit a significantly heavier load than that traditionally expected. NiTi wire exhibited the majority of its true superelasticity with SL, whereas EL may act as a restraint on its superelasticity.

  3. Prediction of the Aerodynamic Characteristics of Cruciform Missiles Including Effects of Roll Angle and Control Deflection

    DTIC Science & Technology

    1986-08-01

    CHARACTERISTICS OF CRU.CIFORM MISSILES INCLUDING EFFECTS OF ROLL ANGLE AND CONTROL DEFLECTION N by Daniel J. Lesieutre Michael R. Mendenhall Susana M. Nazario...ANGLE AND CONTROL DEFLECTION Daniel J. Lesieutre Michael R. Mendenhal. Susana M. Nazario Nielsen Engineering & Research, Inc.00 Mountain View, CA 94043...Lo PREDICTION OF THE AERODYNAMIC CHARACTERISTICS OF CRU.CIFORM MISSILES - INCLUDING EFFECTS OF ROLL ANGLE AND CONTROL DEFLECTION by Daniel J

  4. Particle beam and crabbing and deflecting structure

    DOEpatents

    Delayen, Jean [Yorktown, VA

    2011-02-08

    A new type of structure for the deflection and crabbing of particle bunches in particle accelerators comprising a number of parallel transverse electromagnetic (TEM)-resonant) lines operating in opposite phase from each other. Such a structure is significantly more compact than conventional crabbing cavities operating the transverse magnetic TM mode, thus allowing low frequency designs.

  5. The Deflector Selector: A Machine Learning Framework for Prioritizing Hazardous Object Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika; Greenberg, Adam; Erasmus, Nicolas; Van Heerden, Elmarie; Galache, J. L.; Dahlstrom, Eric; Marchis, Franck

    2018-01-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We will present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We will describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  6. The Deflector Selector: A machine learning framework for prioritizing hazardous object deflection technology development

    NASA Astrophysics Data System (ADS)

    Nesvold, E. R.; Greenberg, A.; Erasmus, N.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2018-05-01

    Several technologies have been proposed for deflecting a hazardous Solar System object on a trajectory that would otherwise impact the Earth. The effectiveness of each technology depends on several characteristics of the given object, including its orbit and size. The distribution of these parameters in the likely population of Earth-impacting objects can thus determine which of the technologies are most likely to be useful in preventing a collision with the Earth. None of the proposed deflection technologies has been developed and fully tested in space. Developing every proposed technology is currently prohibitively expensive, so determining now which technologies are most likely to be effective would allow us to prioritize a subset of proposed deflection technologies for funding and development. We present a new model, the Deflector Selector, that takes as its input the characteristics of a hazardous object or population of such objects and predicts which technology would be able to perform a successful deflection. The model consists of a machine-learning algorithm trained on data produced by N-body integrations simulating the deflections. We describe the model and present the results of tests of the effectiveness of nuclear explosives, kinetic impactors, and gravity tractors on three simulated populations of hazardous objects.

  7. Fracture Mechanics of Thin, Cracked Plates Under Tension, Bending and Out-of-Plane Shear Loading

    NASA Technical Reports Server (NTRS)

    Zehnder, Alan T.; Hui, C. Y.; Potdar, Yogesh; Zucchini, Alberto

    1999-01-01

    Cracks in the skin of aircraft fuselages or other shell structures can be subjected to very complex stress states, resulting in mixed-mode fracture conditions. For example, a crack running along a stringer in a pressurized fuselage will be subject to the usual in-plane tension stresses (Mode-I) along with out-of-plane tearing stresses (Mode-III like). Crack growth and initiation in this case is correlated not only with the tensile or Mode-I stress intensity factor, K(sub I), but depends on a combination of parameters and on the history of crack growth. The stresses at the tip of a crack in a plate or shell are typically described in terms of either the small deflection Kirchhoff plate theory. However, real applications involve large deflections. We show, using the von-Karman theory, that the crack tip stress field derived on the basis of the small deflection theory is still valid for large deflections. We then give examples demonstrating the exact calculation of energy release rates and stress intensity factors for cracked plates loaded to large deflections. The crack tip fields calculated using the plate theories are an approximation to the actual three dimensional fields. Using three dimensional finite element analyses we have explored the relationship between the three dimensional elasticity theory and two dimensional plate theory results. The results show that for out-of-plane shear loading the three dimensional and Kirchhoff theory results coincide at distance greater than h/2 from the crack tip, where h/2 is the plate thickness. Inside this region, the distribution of stresses through the thickness can be very different from the plate theory predictions. We have also explored how the energy release rate varies as a function of crack length to plate thickness using the different theories. This is important in the implementation of fracture prediction methods using finite element analysis. Our experiments show that under certain conditions, during fatigue crack

  8. Feasibility study on a strain based deflection monitoring system for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Lee, Kyunghyun; Aihara, Aya; Puntsagdash, Ganbayar; Kawaguchi, Takayuki; Sakamoto, Hiraku; Okuma, Masaaki

    2017-01-01

    The bending stiffness of the wind turbine blades has decreased due to the trend of wind turbine upsizing. Consequently, the risk of blades breakage by hitting the tower has increased. In order to prevent such incidents, this study proposes a deflection monitoring system that can be installed to already operating wind turbine's blades. The monitoring system is composed of an estimation algorithm to detect blade deflection and a wireless sensor network as a hardware equipment. As for the estimation method for blade deflection, a strain-based estimation algorithm and an objective function for optimal sensor arrangement are proposed. Strain-based estimation algorithm is using a linear correlation between strain and deflections, which can be expressed in a form of a transformation matrix. The objective function includes the terms of strain sensitivity and condition number of the transformation matrix between strain and deflection. In order to calculate the objective function, a simplified experimental model of the blade is constructed by interpolating the mode shape of a blade from modal testing. The interpolation method is effective considering a practical use to operating wind turbines' blades since it is not necessary to establish a finite element model of a blade. On the other hand, a sensor network with wireless connection with an open source hardware is developed. It is installed to a 300 W scale wind turbine and vibration of the blade on operation is investigated.

  9. Theory of using magnetic deflections to combine charged particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steckbeck, Mackenzie K.; Doyle, Barney Lee

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these twomore » magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: B s= 1/2(r c/r s) B c, where B s and B c are the magnetic fields in the steering and bending magnet and r c/r s is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.« less

  10. Distribution of flexural deflection in the worldwide outer rise area

    NASA Astrophysics Data System (ADS)

    Lin, Zi-Jun; Lin, Jing-Yi; Lin, Yi-Chin; Chin, Shao-Jinn; Chen, Yen-Fu

    2015-04-01

    The outer rise on the fringe of a subduction system is caused by an accreted load on the flexed oceanic lithosphere. The magnitude of the deflection is usually linked to the stress state beard by the oceanic plate. In a coupled subduction zone, the stress is abundantly accumulated across the plate boundary which should affect the flexural properties of the subducted plate. Thus, the variation of the outer rise in shape may reflect the seismogenic characteristics of the subduction system. In this study, we intent to find the correlation between the flexure deflection (Wb) of the outer rise and the subduction zone properties by comparing several slab parameters and the Wb distribution. The estimation of Wb is performed based on the available bathymetry data and the statistic analysis of earthquakes is from the global ISC earthquake catalog for the period of 1900-2015. Our result shows a progressive change of Wb in space, suggesting a robust calculation. The average Wb of worldwise subduction system spreads from 348 to 682 m. No visible distinction in the ranging of Wb was observed for different subduction zones. However, in a weak coupling subduction system, the standard variation of Wb has generally larger value. Relatively large Wb generally occurs in the center of the trench system, whereas small Wb for the two ends of trench. The comparison of Wb and several slab parameters shows that the Wb may be correlated with the maximal magnitude and the number of earthquakes. Otherwise, no clear relationship with other parameters can be obtained.

  11. Design and development of a chopping and deflecting system for the high current injector at IUAC

    NASA Astrophysics Data System (ADS)

    Kedia, Sanjay Kumar; Mehta, R.

    2018-05-01

    The Low Energy Beam Transport (LEBT) section of the High Current Injector (HCI) incorporates a Chopping cum Deflecting System (CDS). The CDS comprises of a deflecting system and a pair of slits that will remove dark current and produce time bunched beam of 60 ns at different repetition rates of 4, 2, 1, 0.5, 0.25 and 0.125 MHz. The distinguishing feature of the design is the use of a multi-plate deflecting structure with low capacitance to optimize the electric field, which in turn results in higher efficiency in terms of achievable ion current. To maximize the effective electric field and its uniformity, the gap between the deflecting plates has been varied and a semi-circular contour has been incorporated on the deflecting plates. Due to this the electric field variation is less than ±0.5% within the plate length. The length of deflecting plates was chosen to maximize the transmission efficiency. Since the velocity of the charged particles in the LEBT section is constant, therefore the separation between two successive sets of deflecting plates has been kept constant to match the ions transient time within the gap which is nearly 32 ns. A square pulse has been chosen, instead of a sinusoidal one, to increase the transmission efficiency and to decrease the tailing effect. The loaded capacitance of the structure was kept <10 pF to achieve fast rise/fall time of the applied voltage signal. A Python code has been developed to verify the various design parameters. The simulation also shows that one can get an efficient deflection of undesired particles resulting in >90% transmission efficiency with in the bunch length. Various simulation codes like Solid Works, TRACE 3D, CST MWS and homebrew Python codes were used to validate the design.

  12. Laser-driven deflection arrangements and methods involving charged particle beams

    DOEpatents

    Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA

    2011-08-09

    Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.

  13. Solutions of the heat conduction equation in multilayers for photothermal deflection experiments

    NASA Technical Reports Server (NTRS)

    Mcgahan, William A.; Cole, K. D.

    1992-01-01

    Analytical expressions for temperature and laser beam deflection in multilayer medium is derived using Green function techniques. The approach is based on calculation of the normal component of heat fluxes across the boundaries, from which either the beam deflections or the temperature anywhere in space can be found. A general expression for the measured signals for the case of four-quadrant detection is also presented and compared with previous calculations of detector response for finite probe beams.

  14. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    NASA Astrophysics Data System (ADS)

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  15. All-optical optoacoustic microscopy system based on probe beam deflection technique

    NASA Astrophysics Data System (ADS)

    Maswadi, Saher M.; Tsyboulskic, Dmitri; Roth, Caleb C.; Glickman, Randolph D.; Beier, Hope T.; Oraevsky, Alexander A.; Ibey, Bennett L.

    2016-03-01

    It is difficult to achieve sub-micron resolution in backward mode OA microscopy using conventional piezoelectric detectors, because of wavefront distortions caused by components placed in the optical path, between the sample and the objective lens, that are required to separate the acoustic wave from the optical beam. As an alternate approach, an optoacoustic microscope (OAM) was constructed using the probe beam deflection technique (PBDT) to detect laserinduced acoustic signals. The all-optical OAM detects laser-generated pressure waves using a probe beam passing through a coupling medium, such as water, filling the space between the microscope objective lens and sample. The acoustic waves generated in the sample propagate through the coupling medium, causing transient changes in the refractive index that deflect the probe beam. These deflections are measured with a high-speed, balanced photodiode position detector. The deflection amplitude is directly proportional to the magnitude of the acoustic pressure wave, and provides the data required for image reconstruction. The sensitivity of the PBDT detector expressed as noise equivalent pressure was 12 Pa, comparable to that of existing high-performance ultrasound detectors. Because of the unimpeded working distance, a high numerical aperture objective lens, i.e. NA = 1, was employed in the OAM to achieve near diffraction-limited lateral resolution of 0.5 μm at 532nm. The all-optical OAM provides several benefits over current piezoelectric detector-based systems, such as increased lateral and axial resolution, higher sensitivity, robustness, and potentially more compatibility with multimodal instruments.

  16. Design of Spacecraft Missions to Test Kinetic Impact for Asteroid Deflection

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Hernandez, Sonia

    2012-01-01

    Earth has previously been struck with devastating force by near-Earth asteroids (NEAs) and will be struck again. Telescopic search programs aim to provide advance warning of such an impact, but no techniques or systems have yet been tested for deflecting an incoming NEA. To begin addressing this problem, we have analyzed the more than 8000 currently known NEAs to identify those that offer opportunities for safe and meaningful near-term tests of the proposed kinetic impact asteroid deflection technique. In this paper we present our methodology and results, including complete mission designs for the best kinetic impactor test mission opportunities.

  17. Solar Wind Deflection by Mass Loading in the Martian Magnetosheath Based on MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Pätzold, M.; Halekas, J. S.; Mcfadden, J.; Connerney, J. E. P.; Jakosky, B. M.; Vaisberg, O.; Zelenyi, L.

    2018-03-01

    Mars Atmosphere and Volatile EvolutioN observations at Mars show clear signatures of the shocked solar wind interaction with the extended oxygen atmosphere and hot corona displayed in a lateral deflection of the magnetosheath flow in the direction opposite to the direction of the solar wind motional electric field. The value of the velocity deflection reaches ˜50 km/s. The occurrence of such deflection is caused by the "Lorentz-type" force due to a differential streaming of the solar wind protons and oxygen ions originating from the extended oxygen corona. The value of the total deceleration of the magnetosheath flow due to mass loading is estimated as ˜40 km/s.

  18. Gravitational starlight deflection measurements during the 21 August 2017 total solar eclipse

    NASA Astrophysics Data System (ADS)

    Bruns, Donald G.

    2018-04-01

    Precise star positions near the Sun were measured during the 21 August 2017 total solar eclipse in order to measure their gravitational deflections. The equipment, procedures, and analysis are described in detail. A portable refractor, a CCD camera, and a computerized mount were set up in Wyoming. Detailed calibrations were necessary to improve accuracy and precision. Nighttime measurements taken just before the eclipse provided cubic optical distortion corrections. Calibrations based on star field images 7.4° on both sides of the Sun taken during totality gave linear and quadratic plate constants. A total of 45 images of the sky surrounding the Sun were acquired during the middle part of totality, with an integrated exposure of 22 s. The deflection analysis depended on accurate star positions from the USNO’s UCAC5 star catalog. The final result was a deflection coefficient L  =  1.7512 arcsec, in perfect agreement with the theoretical value, with an uncertainty of only 3%.

  19. Spiking and Excitatory/Inhibitory Input Dynamics of Barrel Cells in Response to Whisker Deflections of Varying Velocity and Angular Direction.

    PubMed

    Patel, Mainak

    2018-01-15

    The spiking of barrel regular-spiking (RS) cells is tuned for both whisker deflection direction and velocity. Velocity tuning arises due to thalamocortical (TC) synchrony (but not spike quantity) varying with deflection velocity, coupled with feedforward inhibition, while direction selectivity is not fully understood, though may be due partly to direction tuning of TC spiking. Data show that as deflection direction deviates from the preferred direction of an RS cell, excitatory input to the RS cell diminishes minimally, but temporally shifts to coincide with the time-lagged inhibitory input. This work constructs a realistic large-scale model of a barrel; model RS cells exhibit velocity and direction selectivity due to TC input dynamics, with the experimentally observed sharpening of direction tuning with decreasing velocity. The model puts forth the novel proposal that RS→RS synapses can naturally and simply account for the unexplained direction dependence of RS cell inputs - as deflection direction deviates from the preferred direction of an RS cell, and TC input declines, RS→RS synaptic transmission buffers the decline in total excitatory input and causes a shift in timing of the excitatory input peak from the peak in TC input to the delayed peak in RS input. The model also provides several experimentally testable predictions on the velocity dependence of RS cell inputs. This model is the first, to my knowledge, to study the interaction of direction and velocity and propose physiological mechanisms for the stimulus dependence in the timing and amplitude of RS cell inputs. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Charge control switch responsive to cell casing deflection

    NASA Technical Reports Server (NTRS)

    Fischell, Robert E. (Inventor)

    1981-01-01

    A switch structure, adapted for sensing the state-of-charge of a rechargeable cell, includes a contact element which detects cell casing deflection that occurs as a result of an increase in gaseous pressure within the cell when the cell is returned to its fully charged state during a recharging operation.

  1. Horizontal deflection of single particle in a paramagnetic fluid.

    PubMed

    Liu, S; Yi, Xiang; Leaper, M; Miles, N J

    2014-06-01

    This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility.

  2. Geometrically nonlinear analysis of layered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1983-01-01

    A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.

  3. Deflection and fragmentation of near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Harris, Alan W.

    1992-01-01

    The collision with earth of near-earth asteroids or comet nuclei poses a potential threat to mankind. Objects about 100 m in diameter could be diverted from an earth-crossing trajectory by the impact of a rocket-launched mass, but for larger bodies nuclear explosions seem to be the only practical means of deflection. Fragmentation of the body by nuclear charges is less efficient or secure.

  4. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khdeir, A.A.; Reddy, J.N.

    1991-12-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories. 14 refs.

  5. Thermal stresses and deflections of cross-ply laminated plates using refined plate theories

    NASA Technical Reports Server (NTRS)

    Khdeir, A. A.; Reddy, J. N.

    1991-01-01

    Exact analytical solutions of refined plate theories are developed to study the thermal stresses and deflections of cross-ply rectangular plates. The state-space approach in conjunction with the Levy method is used to solve exactly the governing equations of the theories under various boundary conditions. Numerical results of the higher-order theory of Reddy for thermal stresses and deflections are compared with those obtained using the classical and first-order plate theories.

  6. Modeling and Validation of the Three Dimensional Deflection of an MRI-Compatible Magnetically-Actuated Steerable Catheter

    PubMed Central

    Liu, Taoming; Poirot, Nate Lombard; Franson, Dominique; Seiberlich, Nicole; Griswold, Mark A.; Çavuşoğlu, M. Cenk

    2016-01-01

    Objective This paper presents the three dimensional kinematic modeling of a novel steerable robotic ablation catheter system. The catheter, embedded with a set of current-carrying micro-coils, is actuated by the magnetic forces generated by the magnetic field of the magnetic resonance imaging (MRI) scanner. Methods This paper develops a 3D model of the MRI actuated steerable catheter system by using finite differences approach. For each finite segment, a quasi-static torque-deflection equilibrium equation is calculated using beam theory. By using the deflection displacements and torsion angles, the kinematic model of the catheter system is derived. Results The proposed models are validated by comparing the simulation results of the proposed model with the experimental results of a hardware prototype of the catheter design. The maximum tip deflection error is 4.70 mm and the maximum root-mean-square (RMS) error of the shape estimation is 3.48 mm. Conclusion The results demonstrate that the proposed model can successfully estimate the deflection motion of the catheter. Significance The presented three dimensional deflection model of the magnetically controlled catheter design paves the way to efficient control of the robotic catheter for treatment of atrial fibrillation. PMID:26731519

  7. Deflection by kinetic impact: Sensitivity to asteroid properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. We numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1–30 km/s were investigated, yielding, for amore » particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. Moreover, the kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. Our results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection

  8. Deflection by kinetic impact: Sensitivity to asteroid properties

    DOE PAGES

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. We numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1–30 km/s were investigated, yielding, for amore » particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. Moreover, the kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. Our results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection

  9. The Significance of the Influence of the CME Deflection in Interplanetary Space on the CME Arrival at Earth

    NASA Astrophysics Data System (ADS)

    Zhuang, Bin; Wang, Yuming; Shen, Chenglong; Liu, Siqing; Wang, Jingjing; Pan, Zonghao; Li, Huimin; Liu, Rui

    2017-08-01

    As one of the most violent astrophysical phenomena, coronal mass ejections (CMEs) have strong potential space weather effects. However, not all Earth-directed CMEs encounter the Earth and produce geo-effects. One reason is the deflected propagation of CMEs in interplanetary space. Although there have been several case studies clearly showing such deflections, it has not yet been statistically assessed how significantly the deflected propagation would influence the CME’s arrival at Earth. We develop an integrated CME-arrival forecasting (iCAF) system, assembling the modules of CME detection, three-dimensional (3D) parameter derivation, and trajectory reconstruction to predict whether or not a CME arrives at Earth, and we assess the deflection influence on the CME-arrival forecasting. The performance of iCAF is tested by comparing the two-dimensional (2D) parameters with those in the Coordinated Data Analysis Workshop (CDAW) Data Center catalog, comparing the 3D parameters with those of the gradual cylindrical shell model, and estimating the success rate of the CME Earth-arrival predictions. It is found that the 2D parameters provided by iCAF and the CDAW catalog are consistent with each other, and the 3D parameters derived by the ice cream cone model based on single-view observations are acceptable. The success rate of the CME-arrival predictions by iCAF with deflection considered is about 82%, which is 19% higher than that without deflection, indicating the importance of the CME deflection for providing a reliable forecasting. Furthermore, iCAF is a worthwhile project since it is a completely automatic system with deflection taken into account.

  10. Microwave Tower Deflection Monitor

    NASA Astrophysics Data System (ADS)

    Truax, Bruce E.

    1980-10-01

    This paper describes an instrument which is capable of monitoring both the twist and lateral motion of a microwave tower. The Microwave Tower Deflection Monitor (MTDM) gives designers the capability of evaluating towers, both for troubleshooting purposes and comparison with design theory. The MTDM has been designed to operate on a broad range of tower structures in a variety of weather conditions. The instrument measures tower motion by monitoring the position of two retroreflectors mounted on the top of the tower. The two retroreflectors are located by scanning a laser beam in a raster pattern in the vicinity of the reflector. When a retroreflector is struck its position is read by a microprocessor and stored on a magnetic tape. Position resolution of better than .5 cm at 200 ft. has been observed in actual tests.

  11. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Van Heerden, Elmarie; Erasmus, Nicolas; Greenberg, Adam; Nesvold, Erika; Galache, Jose Luis; Dahlstrom, Eric; Marchis, Franck

    2016-10-01

    On 15 February, 2013, a ~15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred ~33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found?To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to

  12. Galactic magnetic deflections and Centaurus A as a UHECR source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Glennys R.; Jansson, Ronnie; Feain, Ilana J.

    2013-01-01

    We evaluate the validity of leading models of the Galactic magnetic field for predicting UHECR deflections from Cen A. The Jansson-Farrar 2012 GMF model (JF12), which includes striated and random components as well as an out-of-plane contribution to the regular field not considered in other models, gives by far the best fit globally to all-sky data including the WMAP7 22 GHz synchrotron emission maps for Q, U and I and ≈ 40,000 extragalactic Rotation Measures (RMs). Here we test the models specifically in the Cen A region, using 160 well-measured RMs and the Polarized Intensity from WMAP, nearby but outsidemore » the Cen A radio lobes. The JF12 model predictions are in excellent agreement with the observations, justifying confidence in its predictions for deflections of UHECRs from Cen A. We find that up to six of the 69 Auger events above 55 EeV are consistent with originating in Cen A and being deflected ≤ 18°; in this case three are protons and three have Z = 2−4. Others of the 13 events within 18° must have another origin. In order for a random extragalactic magnetic field between Cen A and the Milky Way to appreciably alter these conclusions, its strength would have to be ∼>80 nG — far larger than normally imagined.« less

  13. Rotational and translational considerations in kinetic impact deflection of potentially hazardous asteroids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; Xu, Bo; Circi, Christian; Zhang, Lei

    2017-04-01

    Kinetic impact may be the most reliable and easily implemented method to deflect hazardous asteroids using current technology. Depending on warning time, it can be effective on asteroids with diameters of a few hundred meters. Current impact deflection research often focuses on the orbital dynamics of asteroids. In this paper, we use the ejection outcome of a general oblique impact to calculate how an asteroid's rotational and translational state changes after impact. The results demonstrate how small impactors affect the dynamical state of small asteroids having a diameter of about 100 m. According to these consequences, we propose using several small impactors to hit an asteroid continuously and gently, making the deflection mission relatively flexible. After calculating the rotational variation, we find that the rotational state, especially of slender non-porous asteroids, can be changed significantly. This gives the possibility of using multiple small impactors to mitigate a potentially hazardous asteroid by spinning it up into pieces, or to despin one for future in-situ investigation (e.g., asteroid retrieval or mining).

  14. Relativistic deflection of background starlight measures the mass of a nearby white dwarf star.

    PubMed

    Sahu, Kailash C; Anderson, Jay; Casertano, Stefano; Bond, Howard E; Bergeron, Pierre; Nelan, Edmund P; Pueyo, Laurent; Brown, Thomas M; Bellini, Andrea; Levay, Zoltan G; Sokol, Joshua; Dominik, Martin; Calamida, Annalisa; Kains, Noé; Livio, Mario

    2017-06-09

    Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse provided measurements that confirmed Einstein's general theory of relativity. We have used the Hubble Space Telescope to measure the analogous process of astrometric microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B passed closely in front of a background star, the background star's position was deflected. Measurement of this deflection at multiple epochs allowed us to determine the mass of Stein 2051 B-the sixth-nearest white dwarf to the Sun-as 0.675 ± 0.051 solar masses. This mass determination provides confirmation of the physics of degenerate matter and lends support to white dwarf evolutionary theory. Copyright © 2017, American Association for the Advancement of Science.

  15. Using geologic maps and seismic refraction in pavement-deflection analysis

    DOT National Transportation Integrated Search

    1999-10-01

    The researchers examined the relationship between three data types -- geologic maps, pavement deflection, and seismic refraction data -- from diverse geologic settings to determine whether geologic maps and seismic data might be used to interpret def...

  16. Using traffic speed deflectometer to measure deflections and evaluate bearing capacity of asphalt road pavements at network level

    NASA Astrophysics Data System (ADS)

    Březina, Ilja; Stryk, Josef; Grošek, Jiří

    2017-09-01

    The paper deals with diagnostics of bearing capacity of asphalt pavements by a Traffic Speed Deflectometer (TSD device), which allows to measure pavement deflections continually at the traffic speed on the basis of dynamic loading induced by moving wheel of a reference axle at the speed of up to 80 km/h. The paper aims to inform of a new method to measure road pavement deflections, describes the principles of measuring pavement deflections by TSD device, and presents results of comparative measurements between FWD (Falling Weight Deflectometer) and TSD devices organized by CDV in Italy and Slovakia. Particular attention was paid to the difference between deflections measured by FWD and TSD devices.

  17. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  18. Grid-translation beam deflection systems for 5-cm and 30-cm diameter Kaufman thrusters

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A 5-cm grid translation mechanism has been developed capable of 10 deg beam deflection. A 2026-hour endurance test was run at a preset 10 deg deflection angle and an extrapolated lifetime of better than 10,000 hours obtained. Response time data for grid translation are presented. Preliminary results for a 30-cm diameter system are given and results of a theoretical analysis of a dished grid system are discussed.

  19. Comparison between Deflection and Vibration Characteristics of Rectangular and Trapezoidal profile Microcantilevers

    PubMed Central

    Ansari, Mohd. Zahid; Cho, Chongdu; Kim, Jooyong; Bang, Booun

    2009-01-01

    Arrays of microcantilevers are increasingly being used as physical, biological, and chemical sensors in various applications. To improve the sensitivity of microcantilever sensors, this study analyses and compares the deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Three models of each profile are investigated. The cantilevers are analyzed for maximum deflection, fundamental resonant frequency and maximum stress. The surface stress is modelled as in-plane tensile force applied on the top edge of the microcantilevers. A commercial finite element analysis software ANSYS is used to analyze the designs. Results show paddled trapezoidal profile microcantilevers have better sensitivity. PMID:22574041

  20. Measurement of vertical track deflection from a moving rail car.

    DOT National Transportation Integrated Search

    2013-02-01

    The University of Nebraska has been conducting research sponsored by the Federal Railroad Administrations Office of Research and Development to develop a system that measures vertical track deflection/modulus from a moving rail car. Previous work ...

  1. Electric Solar Wind Sail Kinetic Energy Impactor for Asteroid Deflection Missions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kouhei; Yamakawa, Hiroshi

    2016-03-01

    An electric solar wind sail uses the natural solar wind stream to produce low but continuous thrust by interacting with a number of long thin charged tethers. It allows a spacecraft to generate a thrust without consuming any reaction mass. The aim of this paper is to investigate the use of a spacecraft with such a propulsion system to deflect an asteroid with a high relative velocity away from an Earth collision trajectory. To this end, we formulate a simulation model for the electric solar wind sail. By summing thrust vectors exerted on each tether, a dynamic model which gives the relation between the thrust and sail attitude is proposed. Orbital maneuvering by fixing the sail's attitude and changing tether voltage is considered. A detailed study of the deflection of fictional asteroids, which are assumed to be identified 15 years before Earth impact, is also presented. Assuming a spacecraft characteristic acceleration of 0.5 mm/s 2, and a projectile mass of 1,000 kg, we show that the trajectory of asteroids with one million tons can be changed enough to avoid a collision with the Earth. Finally, the effectiveness of using this method of propulsion in an asteroid deflection mission is evaluated in comparison with using flat photonic solar sails.

  2. Nanocantilevers with Adjustable Static Deflection and Significantly Tunable Spectrum Resonant Frequencies for Applications in Nanomechanical Mass Sensors

    PubMed Central

    Stachiv, Ivo; Sittner, Petr

    2018-01-01

    Nanocantilevers have become key components of nanomechanical sensors that exploit changes in their resonant frequencies or static deflection in response to the environment. It is necessary that they can operate at a given, but adjustable, resonant frequency and/or static deflection ranges. Here we propose a new class of nanocantilevers with a significantly tunable spectrum of the resonant frequencies and changeable static deflection utilizing the unique properties of a phase-transforming NiTi film sputtered on the usual nanotechnology cantilever materials. The reversible frequency tuning and the adjustable static deflection are obtained by intentionally changing the Young’s modulus and the interlayer stress of the NiTi film during its phase transformation, while the usual cantilever elastic materials guarantee a high frequency actuation (up to tens of MHz). By incorporating the NiTi phase transformation characteristic into the classical continuum mechanics theory we present theoretical models that account for the nanocantilever frequency shift and variation in static deflection caused by a phase transformation of NiTi film. Due to the practical importance in nanomechanical sensors, we carry out a complete theoretical analysis and evaluate the impact of NiTi film on the cantilever Young’s modulus, static deflection, and the resonant frequencies. Moreover, the importance of proposed NiTi nanocantilever is illustrated on the nanomechanical based mass sensors. Our findings will be of value in the development of advanced nanotechnology sensors with intentionally-changeable physical and mechanical properties. PMID:29462996

  3. Implications of resin-based composite (RBC) restoration on cuspal deflection and microleakage score in molar teeth: Placement protocol and restorative material.

    PubMed

    McHugh, Lauren E J; Politi, Ioanna; Al-Fodeh, Rami S; Fleming, Garry J P

    2017-09-01

    To assess the cuspal deflection of standardised large mesio-occluso-distal (MOD) cavities in third molar teeth restored using conventional resin-based composite (RBC) or their bulk fill restorative counterparts compared with the unbound condition using a twin channel deflection measuring gauge. Following thermocycling, the cervical microleakage of the restored teeth was assessed to determine marginal integrity. Standardised MOD cavities were prepared in forty-eight sound third molar teeth and randomly allocated to six groups. Restorations were placed in conjunction with (and without) a universal bonding system and resin restorative materials were irradiated with a light-emitting-diode light-curing-unit. The dependent variable was the restoration protocol, eight oblique increments for conventional RBCs or two horizontal increments for the bulk fill resin restoratives. The cumulative buccal and palatal cuspal deflections from a twin channel deflection measuring gauge were summed, the restored teeth thermally fatigued, immersed in 0.2% basic fuchsin dye for 24h, sectioned and examined for cervical microleakage score. The one-way analysis of variance (ANOVA) identified third molar teeth restored using conventional RBC materials had significantly higher mean total cuspal deflection values compared with bulk fill resin restorative restoration (all p<0.0001). For the conventional RBCs, Admira Fusion (bonded) third molar teeth had significantly the lowest microleakage scores (all p<0.001) while the Admira Fusion x-tra (bonded) bulk fill resin restored teeth had significantly the lowest microleakage scores compared with Tetric EvoCeram Bulk Fill (bonded and non-bonded) teeth (all p<0.001). Not all conventional RBCs or bulk fill resin restoratives behave in a similar manner when used to restore standardised MOD cavities in third molar teeth. It would appear that light irradiation of individual conventional RBCs or bulk fill resin restoratives may be problematic such that

  4. Design Criteria for Deflection Capacity of conventionally Reinforced Concrete Slabs. Phase I. State-of-the-Art Report.

    DTIC Science & Technology

    1980-10-01

    Previous Investigations 9 3.2 Ockleston’s Work 9 3.3 Wood’s Work 11 3.3.1 Experimental Investigation 11 3.3.2 Analytical investigation 13 3.3.3 Load...Deflection Relationship 16 3.4 Sawczuck’s Work 17 3.5 Park’s Work on Compressive Membrane Action 19 3.5.1 Experimental Investigation 19 3.5.2 Analysis of...DEFLECTION CAPACITY 104 8.1 Idealized Load-Deflection Behavior of a Restrained Strip 104 8.2 A Comparison with Experimental Results 110 9. DEVELOPMENT OF

  5. Grid-translation beam deflection systems for 5-cm and 30-cm diameter Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A 5-cm grid translation mechanism has been developed capable of 10-deg beam deflection. A 2026-hour endurance test was run at a preset 10-deg deflection angle, and an extrapolated lifetime of better than 10,000 hours was obtained. Response time data for grid translation are presented. Preliminary results for a 30-cm diameter system are given, and results of a theoretical analysis of a dished grid system are discussed.

  6. Safety and performance of a novel embolic deflection device in patients undergoing transcatheter aortic valve replacement: results from the DEFLECT I study.

    PubMed

    Baumbach, Andreas; Mullen, Michael; Brickman, Adam M; Aggarwal, Suneil K; Pietras, Cody G; Forrest, John K; Hildick-Smith, David; Meller, Stephanie M; Gambone, Louise; den Heijer, Peter; Margolis, Pauliina; Voros, Szilard; Lansky, Alexandra J

    2015-05-01

    This study aimed to evaluate the safety and performance of the TriGuard™ Embolic Deflection Device (EDD), a nitinol mesh filter positioned in the aortic arch across all three major cerebral artery take-offs to deflect emboli away from the cerebral circulation, in patients undergoing transcatheter aortic valve replacement (TAVR). The prospective, multicentre DEFLECT I study (NCT01448421) enrolled 37 consecutive subjects undergoing TAVR with the TriGuard EDD. Subjects underwent clinical and cognitive follow-up to 30 days; cerebral diffusion-weighted magnetic resonance imaging (DW-MRI) was performed pre-procedure and at 4±2 days post procedure. The device performed as intended with successful cerebral coverage in 80% (28/35) of cases. The primary safety endpoint (in-hospital EDD device- or EDD procedure-related cardiovascular mortality, major stroke disability, life-threatening bleeding, distal embolisation, major vascular complications, or need for acute cardiac surgery) occurred in 8.1% of subjects (VARC-defined two life-threatening bleeds and one vascular complication). The presence of new cerebral ischaemic lesions on post-procedure DW-MRI (n=28) was similar to historical controls (82% vs. 76%, p=NS). However, an exploratory analysis found that per-patient total lesion volume was 34% lower than reported historical data (0.2 vs. 0.3 cm3), and 89% lower in patients with complete (n=17) versus incomplete (n=10) cerebral vessel coverage (0.05 vs. 0.45 cm3, p=0.016). Use of the first-generation TriGuard EDD during TAVR is safe, and device performance was successful in 80% of cases during the highest embolic-risk portions of the TAVR procedure. The potential of the TriGuard EDD to reduce total cerebral ischaemic burden merits further randomised investigation.

  7. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  8. Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations.

    PubMed

    Nucera, Riccardo; Gatto, Elda; Borsellino, Chiara; Aceto, Pasquale; Fabiano, Francesca; Matarese, Giovanni; Perillo, Letizia; Cordasco, Giancarlo

    2014-05-01

    To evaluate how different bracket-slot design characteristics affect the forces released by superelastic nickel-titanium (NiTi) alignment wires at different amounts of wire deflection. A three-bracket bending and a classic-three point bending testing apparatus were used to investigate the load-deflection properties of one superelastic 0.014-inch NiTi alignment wire in different experimental conditions. The selected NiTi archwire was tested in association with three bracket systems: (1) conventional twin brackets with a 0.018-inch slot, (2) a self-ligating bracket with a 0.018-inch slot, and (3) a self-ligating bracket with a 0.022-inch slot. Wire specimens were deflected at 2 mm and 4 mm. Use of a 0.018-inch slot bracket system, in comparison with use of a 0.022-inch system, increases the force exerted by the superelastic NiTi wires at a 2-mm deflection. Use of a self-ligating bracket system increases the force released by NiTi wires in comparison with the conventional ligated bracket system. NiTi wires deflected to a different maximum deflection (2 mm and 4 mm) release different forces at the same unloading data point (1.5 mm). Bracket design, type of experimental test, and amount of wire deflection significantly affected the amount of forces released by superelastic NiTi wires (P<.05). This phenomenon offers clinicians the possibility to manipulate the wire's load during alignment.

  9. Deflection measurement system for the hybrid iii six-year-old biofidelic abdomen.

    PubMed

    Gregory, T Stan; Howes, Meghan K; Rouhana, Stephen W; Hardy, Warren N

    2012-01-01

    Motor vehicle collisions are the leading cause of death for children ages 5 to 14. Enhancement of child occupant protection is partly dependent on the ability to accurately assess the interaction of child-size occupants with restraint systems. Booster seat design and belt fit are evaluated using child anthropomorphic test devices, such as the Hybrid III 6-year-old dummy., A biofidelic abdomen for the Hybrid III 6-year-old dummy is being developed by the Ford Motor Company to enhance the dummy’s ability to assess injury risk and further quantify submarining risk by measuring abdominal deflection. A practical measurement system for the biofidelic abdominal insert has been developed and demonstrated for three dimensional determination of abdominal deflection. Quantification of insert deflection is achieved via differential signal measurement using electrodes mounted within a conductive medium. Signal amplitude is proportional to the distance between the electrodes. A microcontroller is used to calculate distances between ventral electrodes and a dorsal electrode in three dimensions. This system has been calibrated statically, and its performance demonstrated in a series of sled tests. Deflection measurements from the instrumented abdominal insert indicate performance differences between two booster seat designs, yielding an average peak anterior to posterior displacement of the abdomen of 1.0 ± 3.4 mm and 31.2 ± 7.2 mm for the seats, respectively. Implementation of a 6-year-old abdominal insert with the ability to evaluate submarining potential will likely help safety researchers further enhance booster seat design and interaction with vehicle restraint systems , and help to further understand child occupant injury risk in automobile collisions.

  10. Structure of the Mina Deflection in Mono Lake, CA: Inferences from Paleoseismology

    NASA Astrophysics Data System (ADS)

    Sangani, Radhika Chandrakant

    Walker Lane, a zone of transcurrent faulting along the Sierran range front, is dominated by NNW trending normal faults. Within the Walker Lane, the Mina Deflection is a region of structural anomaly, where a significant component of regional displacement and seismicity is transferred from NNW-trending faults to ENE-trending faults of the Excelsior-Coledale domain. Geographically, the western boundary of the Mina Deflection lies along the western margin of Mono Basin. This is kinematically implied by the distributed tensional and shear stress in the NNW- and ENE- trending faults of the region. Transfer of strain from the NNW-trending, right-lateral oblique slip faults to the ENE-trending, primarily left-lateral faults is poorly understood. The nature of this transfer is complicated by the presence of the young volcanics of Mono Lake at the stepover bend. I undertook detailed study of the sub-km scale geometry and kinematics of the stepover bend, and its relation to nearby recent magmatic fluid flow within the Mono Lake. Fault orientations, slip rates and ages of most recent events allow for understanding strain transfer between faulting and volcanism. The results suggest that strain is transferred from the outer arc to the inner arc of the stepover bend. Within the inner arc, the magmatism on Paoha Island seems to have arisen from a sill-like intrusion. Furthermore, strain transfer is accomplished through sets of faults and fissures that variously act as large-scale Reidel shears and tension gashes allowing the migration of magmatic fluids from depth.

  11. Static deflection analysis of non prismatic multilayer p-NEMS cantilevers under electrical load

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavithra, M., E-mail: pavithramasi78@gmail.com; Muruganand, S.

    2016-04-13

    Deflection of Euler-Bernoulli non prismatic multilayer piezoelectric nano electromechanical (p-NEMS) cantilever beams have been studied theoretically for various profiles of p-NEMS cantilevers by applying the electrical load. This problem has been answered by applying the boundary conditions derived by simple polynomials. This method is applied for various profiles like rectangular and trapezoidal by varying the thickness of the piezoelectric layer as well as the material. The obtained results provide the better deflection for trapezoidal profile with ZnO piezo electric layer of suitable nano cantilevers for nano scale applications.

  12. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    NASA Astrophysics Data System (ADS)

    Baltador, C.; Veltri, P.; Agostinetti, P.; Chitarin, G.; Serianni, G.

    2016-02-01

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. The study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.

  13. Evaluation of temperature effects on bituminous pavement deflections in Virginia.

    DOT National Transportation Integrated Search

    1976-01-01

    Eight satellite projects with asphaltic layer thicknesses varying from 3.5 inches (88 mm) to 13.5 inches (338 mm) were tested for dynaflect deflections during the four seasons of 1974-75. The projects were located throughout Virginia. The evaluation ...

  14. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  15. Deflection of Propeller Blades While Running

    NASA Technical Reports Server (NTRS)

    Katzmayr, R

    1922-01-01

    The forces acting on the blades of a propeller proceed from the mass of the propeller and the resistance of the surrounding medium. The magnitude, direction and point of application of the resultant to the propeller blade is of prime importance for the strength calculation. Since it was obviously impracticable to bring any kind of testing device near the revolving propeller, not so much on account of the element of danger as on account of the resulting considerable disturbance of the air flow, the deflection in both cases was photographically recorded and subsequently measured at leisure.

  16. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  17. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets

    PubMed Central

    Francisconi, Manoela Fávaro; Janson, Guilherme; Henriques, José Fernando Castanha; de Freitas, Karina Maria Salvatore

    2016-01-01

    ABSTRACT Objective: The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Material and Methods: Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342), using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (p<0.05). Results: Self-ligating brackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Conclusions: Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires. PMID:27812620

  18. Evaluation of the force generated by gradual deflection of orthodontic wires in conventional metallic, esthetic, and self-ligating brackets.

    PubMed

    Francisconi, Manoela Fávaro; Janson, Guilherme; Henriques, José Fernando Castanha; Freitas, Karina Maria Salvatore de

    2016-01-01

    The purpose of this study was to evaluate the deflection forces of Nitinol orthodontic wires placed in different types of brackets: metallic, reinforced polycarbonate with metallic slots, sapphire, passive and active self-ligating, by assessing strength values variation according to gradual increase in wire diameter and deflection and comparing different combinations in the different deflections. Specimens were set in a clinical simulation model and evaluated in a Universal Testing Machine (INSTRON 3342), using the ISO 15841 protocol. Data were subjected to One-way ANOVA, followed by Tukey tests (p<0.05). Self-ligating brackets presented the most similar behavior to each other. For conventional brackets there was no consistent behavior for any of the deflections studied. Self-ligating brackets presented the most consistent and predictable results while conventional brackets, as esthetic brackets, showed very different patterns of forces. Self-ligating brackets showed higher strength in all deflections when compared with the others, in 0.020-inch wires.

  19. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  20. Comet deflection by directed energy: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Madajian, Jonathan; Griswold, Janelle; Gandra, Anush; Hughes, Gary B.; Zhang, Qicheng; Rupert, Nic; Lubin, Philip

    2016-09-01

    Comets and Asteroids are viable threats to our planet; if these space rocks are smaller than 25 meters, they burn up in the atmosphere, but if they are wider than 25 meters they can cause damage to the impact area. Anything more than one to two kilometers can have worldwide effects, furthermore a mile-wide asteroid travelling at 30,000 miles per hour has the energy equal to a megaton bomb and is very likely to wipe out most of the life on Earth. Residents near Chelyabinsk, Russia experienced the detrimental effects of a collision with a Near-Earth Asteroid (NEA) on 15 February 2013 as a 20 m object penetrated the atmosphere above that city. The effective yield from this object was approximately 1/2 Megaton TNT equivalent (Mt), or that of a large strategic warhead. The 1908 Tunguska event, also over Russia, is estimated to have had a yield of approximately 15 Mt and had the potential to kill millions of people had it come down over a large city1. In the face of such danger a planetary defense system is necessary and this paper proposes a design for such a system. DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) is a phased array laser system that can be used to oblate, deflect and de-spin asteroids and comets.

  1. Force delivery of NiTi orthodontic arch wire at different magnitude of deflections and temperatures: A finite element study.

    PubMed

    Razali, M F; Mahmud, A S; Mokhtar, N

    2018-01-01

    NiTi arch wires are used widely in orthodontic treatment due to its superelastic and biocompatibility properties. In brackets configuration, the force released from the arch wire is influenced by the sliding resistances developed on the arch wire-bracket contact. This study investigated the evolution of the forces released by a rectangular NiTi arch wire towards possible intraoral temperature and deflection changes. A three dimensional finite element model was developed to measure the force-deflection behavior of superelastic arch wire. Finite element analysis was used to distinguish the martensite fraction and phase state of arch wire microstructure in relation to the magnitude of wire deflection. The predicted tensile and bending results from the numerical model showed a good agreement with the experimental results. As contact developed between the wire and bracket, binding influenced the force-deflection curve by changing the martensitic transformation plateau into a slope. The arch wire recovered from greater magnitude of deflection released lower force than one recovered from smaller deflection. In contrast, it was observed that the plateau slope increased from 0.66N/mm to 1.1N/mm when the temperature was increased from 26°C to 46°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Analysis and Testing of Plates with Piezoelectric Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    1998-01-01

    Piezoelectric material inherently possesses coupling between electrostatics and structural dynamics. Utilizing linear piezoelectric theory results in an intrinsically coupled pair of piezoelectric constitutive equations. One equation describes the direct piezoelectric effect where strains produce an electric field and the other describes the converse effect where an applied electrical field produces strain. The purpose of this study is to compare finite element analysis and experiments of a thin plate with bonded piezoelectric material. Since an isotropic plate in combination with a thin piezoelectric layer constitutes a special case of a laminated composite, the classical laminated plate theory is used in the formulation to accommodated generic laminated composite panels with multiple bonded and embedded piezoelectric layers. Additionally, the von Karman large deflection plate theory is incorporated. The formulation results in laminate constitutive equations that are amiable to the inclusion of the piezoelectric constitutive equations yielding in a fully electro-mechanically coupled composite laminate. Using the finite element formulation, the governing differential equations of motion of a composite laminate with embedded piezoelectric layers are derived. The finite element model not only considers structural degrees of freedom (d.o.f.) but an additional electrical d.o.f. for each piezoelectric layer. Comparison between experiment and numerical prediction is performed by first treating the piezoelectric as a sensor and then again treating it as an actuator. To assess the piezoelectric layer as a sensor, various uniformly distributed pressure loads were simulated in the analysis and the corresponding generated voltages were calculated using both linear and nonlinear finite element analyses. Experiments were carried out by applying the same uniformly distributed loads and measuring the resulting generated voltages and corresponding maximum plate deflections. It is

  3. On Possibility of Direct Asteroid Deflection by Electric Solar Wind Sail

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Janhunen, Pekka

    2010-05-01

    The Electric Solar Wind Sail (E-sail) is a new propulsion method for interplanetary travel which was invented in 2006 and is currently under development. The E-sail uses charged tethers to extract momentum from the solar wind particles to obtain propulsive thrust. According to current estimates, the E-sail is 2-3 orders of magnitude better than traditional propulsion methods (chemical rockets and ion engines) in terms of produced lifetime-integrated impulse per propulsion system mass. Here we analyze the problem of using the E-sail for directly deflecting an Earth-threatening asteroid. The problem then culminates into how to attach the E-sail device to the asteroid. We assess a number of alternative attachment strategies and arrive at a recommendation of using the gravity tractor method because of its workability for a wide variety of asteroid types. We also consider possible techniques to scale up the E-sail force beyond the baseline one Newton level to deal with more imminent or larger asteroid or cometary threats. As a baseline case we consider a 3 million ton asteroid which can be deflected with a baseline 1 N E-sail in 5-10 years. Once developed, the E-sail would appear to provide a safe and reasonably low-cost way of deflecting dangerous asteroids and other heavenly bodies in cases where the collision threat becomes known several years in advance.

  4. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E [Livermore, CA

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  5. Crack deflection in brittle media with heterogeneous interfaces and its application in shale fracking

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaguang; Wei, Yujie

    Driven by the rapid progress in exploiting unconventional energy resources such as shale gas, there is growing interest in hydraulic fracture of brittle yet heterogeneous shales. In particular, how hydraulic cracks interact with natural weak zones in sedimentary rocks to form permeable cracking networks is of significance in engineering practice. Such a process is typically influenced by crack deflection, material anisotropy, crack-surface friction, crustal stresses, and so on. In this work, we extend the He-Hutchinson theory (He and Hutchinson, 1989) to give the closed-form formulae of the strain energy release rate of a hydraulic crack with arbitrary angles with respect to the crustal stress. The critical conditions in which the hydraulic crack deflects into weak interfaces and exhibits a dependence on crack-surface friction and crustal stress anisotropy are given in explicit formulae. We reveal analytically that, with increasing pressure, hydraulic fracture in shales may sequentially undergo friction locking, mode II fracture, and mixed mode fracture. Mode II fracture dominates the hydraulic fracturing process and the impinging angle between the hydraulic crack and the weak interface is the determining factor that accounts for crack deflection; the lower friction coefficient between cracked planes and the greater crustal stress difference favor hydraulic fracturing. In addition to shale fracking, the analytical solution of crack deflection could be used in failure analysis of other brittle media.

  6. Method and apparatus for deflection measurements using eddy current effects

    NASA Astrophysics Data System (ADS)

    Chern, Engmin J.

    1993-05-01

    A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.

  7. Method and apparatus for deflection measurements using eddy current effects

    NASA Technical Reports Server (NTRS)

    Chern, Engmin J. (Inventor)

    1993-01-01

    A method and apparatus for inserting and moving a sensing assembly with a mechanical positioning assembly to a desired remote location of a surface of a specimen under test and measuring angle and/or deflection by sensing the change in the impedance of at least one sensor coil located in a base plate which has a rotatable conductive plate pivotally mounted thereon so as to uncover the sensor coil(s) whose impedance changes as a function of deflection away from the center line of the base plate in response to the movement of the rotator plate when contacting the surface of the specimen under test is presented. The apparatus includes the combination of a system controller, a sensing assembly, an eddy current impedance measuring apparatus, and a mechanical positioning assembly driven by the impedance measuring apparatus to position the sensing assembly at a desired location of the specimen.

  8. Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.

  9. PLASTIC-SASS--A COMPUTER PROGRAM FOR STRESSES AND DEFLECTIONS IN A REACTOR SUBASSEMBLY UNDER THERMAL, HYDRAULIC, AND FUEL EXPANSION LOADS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, C.M.

    1963-05-01

    PLASTlC-SASS, an ALTAC-3 computer program that determines stresses and deflections in a flat-plate, rectangular reactor subassembly is described. Elastic, plastic, and creep properties are used to calculate the results of temperature, pressure, and fuel expansion. Plate deflections increase or decrease local channel thicknesses and thus produce a hydraulic load which is a function of fuel plate deflection. (auth)

  10. TV Trouble-Shooting Manual. Volumes 7-8. Part 3: Synchronisation and Deflection Circuits. Student and Instructor's Manuals.

    ERIC Educational Resources Information Center

    Mukai, Masaaki; Kobayashi, Ryozo

    These volumes are, respectively, the self-instructional student manual and the teacher manual that cover the third set of training topics in this course for television repair technicians. Both contain identical information on synchronization and deflection circuits, including sections on the principle of synchronized deflection, synchronization…

  11. The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment

    NASA Astrophysics Data System (ADS)

    Kennefick, Daniel

    2017-01-01

    August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.

  12. A single axis electrostatic beam deflection system for a 5-cm diameter ion thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1972-01-01

    A single-axis electrostatic beam deflection system has been tested on a 5-cm diameter mercury ion thruster at a thrust level of about 0.43 mlb (25 mA beam current at 1400 volts). The accelerator voltage was 500 volts. Beam deflection capability of plus or minus 10 deg was demonstrated. A life test of 1367 hours was run at the above conditions. Results of the test indicated that the system could possibly perform for upwards of 10,000 hours.

  13. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  14. Multi-beamlet investigation of the deflection compensation methods of SPIDER beamlets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltador, C., E-mail: carlo.baltador@igi.cnr.it; Veltri, P.; Agostinetti, P.

    2016-02-15

    SPIDER (Source for Production of Ions of Deuterium Extracted from a Rf plasma) is an ion source test bed designed to extract and accelerate a negative ion current up to 40 A and 100 kV whose first beam is expected by the end of 2016. Two main effects perturb beamlet optics during the acceleration stage: space charge repulsion and the deflection induced by the permanent magnets (called co-extracted electron suppression magnets) embedded in the EG. The purpose of this work is to evaluate and compare benefits, collateral effects, and limitations of electrical and magnetic compensation methods for beamlet deflection. Themore » study of these methods has been carried out by means of numerical modeling tools: multi-beamlet simulations have been performed for the first time.« less

  15. Rapid design and optimization of low-thrust rendezvous/interception trajectory for asteroid deflection missions

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Zhu, Yongsheng; Wang, Yukai

    2014-02-01

    Asteroid deflection techniques are essential in order to protect the Earth from catastrophic impacts by hazardous asteroids. Rapid design and optimization of low-thrust rendezvous/interception trajectories is considered as one of the key technologies to successfully deflect potentially hazardous asteroids. In this paper, we address a general framework for the rapid design and optimization of low-thrust rendezvous/interception trajectories for future asteroid deflection missions. The design and optimization process includes three closely associated steps. Firstly, shape-based approaches and genetic algorithm (GA) are adopted to perform preliminary design, which provides a reasonable initial guess for subsequent accurate optimization. Secondly, Radau pseudospectral method is utilized to transcribe the low-thrust trajectory optimization problem into a discrete nonlinear programming (NLP) problem. Finally, sequential quadratic programming (SQP) is used to efficiently solve the nonlinear programming problem and obtain the optimal low-thrust rendezvous/interception trajectories. The rapid design and optimization algorithms developed in this paper are validated by three simulation cases with different performance indexes and boundary constraints.

  16. A study of girder deflections during bridge deck construction : final report.

    DOT National Transportation Integrated Search

    1971-01-01

    Problems involved in obtaining the desired thickness of bridge decks were investigated. The study, which was limited to decks which were longitudinally screeded during construction, included (1) field measurements of the girder deflections during con...

  17. Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    2006-04-01

    We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: ˜10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fm/√Hz in air and 16fm/√Hz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fm/√Hz in air and 7.3fm/√Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.

  18. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 3. Deflection of the Velocity Vector

    NASA Astrophysics Data System (ADS)

    Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.

    2018-06-01

    This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015 and Yermolaev et al. in Solar Phys. 292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, φ, in CIRs from -2 to 2° agree with earlier results ( e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle φ in ICMEs changes from 2 to -2°, while in sheaths it changes from -2 to 2° (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle θ on all the intervals of the chosen SW types, the angle θ is almost constant at {˜} 1°. We made for the first time a selection of SW events with increasing and decreasing θ and found that the average θ temporal profiles in the selected events have the same "integral-like" shape as for φ. The difference in φ and θ average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.

  19. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  20. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    PubMed

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the

  1. Characterization of micron-sized, optical coating defects by photothermal deflection microscopy

    NASA Astrophysics Data System (ADS)

    Abate, J. A.; Schmid, A. W.; Guardalben, M. G.; Smith, D. J.; Jacobs, S. D.

    1984-04-01

    Information about the localized absorbing defects in optical thin films is required for a better understanding of laser induced damage. Photothermal deflection microscopy offers a nondestructive optical diagnostic which yields spatially resolved absorption data on simple and multiple layer AR and HR dielectric coatings. The computer controlled apparatus used to generate absorption maps of dielectric thin films and an experiment in which a partial correlation between localized absorption sites and damage caused by nanosecond laser irradiation at 351 nm is established are described. An absolute calibration of absorption for our measurement technique is presented here. Micron sized absorbtive defects of Cu were introduced into our coatings to provide a means of calibration. Also presented here are some preliminary data on the modification of the absorption signatures measured by photothermal deflection as a function of the location of the defect within the coating layers.

  2. A Kinematic Model for Vertical Axis Rotation within the Mina Deflection of the Walker Lane

    NASA Astrophysics Data System (ADS)

    Gledhill, T.; Pluhar, C. J.; Johnson, S. A.; Lindeman, J. R.; Petronis, M. S.

    2016-12-01

    The Mina Deflection, at the boundary between the Central and Southern Walker Lane, spans the California-Nevada border and includes a heavily-faulted Pliocene volcanic field overlying Miocene ignimbrites. The dextral Walker Lane accommodates 25% of relative Pacific-North America plate motion and steps right across the sinistral Mina deflection. Ours and previous work shows that the Mina Deflection partially accommodates deformation by vertical-axis rotation of up to 99.9o ± 6.1o rotation since 11 Ma. This rotation is evident in latite ignimbrite of Gilbert et al. (1971), which we have formalized as three members of Tuff of Huntoon Creek (THC). The welded, basal, normal-polarity Huntoon Valley Member of THC is overlain by the unwelded to partially-welded, reversed-polarity Adobe Hills Mbr. This member includes internal breaks suggesting multiple eruptive phases, but the paleomagnetic results from each are statistically indistinguishable, meaning that they were likely erupted in rapid succession (within a few centuries of one another). THC ends with a welded member exhibiting very shallow inclination and south declination that we call Excursional Mbr. One of the upper members has been dated at 11.17 ± 0.04 Ma. These Miocene units are overlain by Pliocene basalts, Quaternary alluvium, and lacustrine deposits. Our paleomagnetic results show a gradient between the zero rotation domain and high rotation across a 20km baseline. A micropolar model, based on 25 years of earthquake data from the Northern and Southern California Seismic Network, suggest the Mina Deflection is currently experiencing transpressional seismogenic deformation (Unruh et al., 2003). Accepting Unruh's model and assuming continuous rotation since 11 Ma, we propose a kinematic model for the western Mina Deflection that accommodates 90o of vertical axis rotation from N-S to ENE-WSW oriented blocks.

  3. Analysis for lateral deflection of railroad track under quasi-static loading

    DOT National Transportation Integrated Search

    2013-10-15

    This paper describes analyses to examine the lateral : deflection of railroad track subjected to quasi-static loading. : Rails are assumed to behave as beams in bending. Movement : of the track in the lateral plane is constrained by idealized : resis...

  4. CME Interaction with Large-Scale Coronal Structures

    NASA Technical Reports Server (NTRS)

    Gopalswarny, Nat

    2012-01-01

    This talk presents some key observations that highlight the importance of CME interaction with other large scale structures such as CMEs and coronal holes . Such interactions depend on the phase of the solar cycle: during maximum, CMEs are ejected more frequently, so CME-CME interaction becomes dominant. During the rise phase, the polar coronal holes are strong, so the interaction between polar coronal holes and CMEs is important, which also leads to a possible increase in the number of interplanetary CMEs observed as magnetic clouds. During the declining phase, there are more equatorial coronal holes, so CMEs originating near these coronal holes are easily deflected. CMEs can be deflected toward and away from the Sun-Earth line resulting in interesting geospace consequences. For example, the largest geomagnetic storm of solar cycle 23 was due to a CME that was deflected towards the Sun-earth line from E22. CME deflection away from the Sun-Earth line diminishes the chance of a CME producing a geomagnetic storm. CME interaction in the coronagraphic field of view was first identified using enhanced radio emission, which is an indication of acceleration of low energy (approx.10 keV) electrons in the interaction site. CME interaction, therefore, may also have implications for proton acceleration. For example, solar energetic particle events typically occur with a higher intensity, whenever multiple CMEs occur in quick succession from the same source region. CME deflection may also have implications to the arrival of energetic particles to earth because magnetic connectivity may be changed by the interaction. I illustrate the above points using examples from SOHO, STEREO, Wind, and ACE data .

  5. Fast Acting Optical Beam Detection and Deflection System.

    DTIC Science & Technology

    1987-12-07

    should be as low as possible for the same reason. Liquids generally have lower densities and lower acoustic velocities than crystals and glasses . It may...deflection angle. Liquids, with their low sound velocities have higher M values than solids and the best solids are those ( glasses and crystals) which...small glass windows on either side and a thick angled acoustic absorber placed at the back of the cell to absorb most of the forward wave (figure 18

  6. Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators

    NASA Astrophysics Data System (ADS)

    Housley, Kevin; Amitay, Michael

    2017-11-01

    The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.

  7. Time-to-space mapping of a continuous light wave with picosecond time resolution based on an electrooptic beam deflection.

    PubMed

    Hisatake, S; Kobayashi, T

    2006-12-25

    We demonstrate a time-to-space mapping of an optical signal with a picosecond time resolution based on an electrooptic beam deflection. A time axis of the optical signal is mapped into a spatial replica by the deflection. We theoretically derive a minimum time resolution of the time-to-space mapping and confirm it experimentally on the basis of the pulse width of the optical pulses picked out from the deflected beam through a narrow slit which acts as a temporal window. We have achieved the minimum time resolution of 1.6+/-0.2 ps.

  8. K-Ar geochronology of basement rocks on the northern flank of the Huancabama deflection, Ecuador

    USGS Publications Warehouse

    Feininger, Tomas; Silberman, M.L.

    1982-01-01

    The Huancabamba deflection, a major Andean orocline located at the Ecuador-Peru border, constitutes an important geologic boundary on the Pacific coast of South America. Crust to the north of the deflection is oceanic and the basement is composed of basic igneous rocks of Cretaceous age, whereas crust to the south is continental and felsic rocks of Precambrian to Cretaceous age make up the basement. The northern flank of the Huancabamba Deflection in El Oro Province, Ecuador, is underlain by Precambrian polymetamorphic basic rocks of the Piedras Group; shale, siltstone, sandstone, and their metamorphosed equivalents in the Tahuin Group (in part of Devonian age); concordant syntectonic granitic rocks; quartz diorite and alaskite of the Maroabeli pluton; a protrusion of serpentinized harzburgite that contains a large inclusion of blueschist-facies metamorphic rocks, the Raspas Formation, and metamorphic rocks north of the La Palma fault. Biotite from gneiss of the Tahuin Group yields a Late Triassic K-Ar age (210 ? 8 m.y.). This is interpreted as an uplift age and is consistent with a regional metamorphism of Paleozoic age. A nearby sample from the Piedras Group that yielded a hornblende K-Ar age of 196 ? 8 m.y. was affected by the same metamorphic event. Biotite from quartz diorite of the mesozonal Maroabeli pluton yields a Late Triassic age (214 ? 6 m.y.) which is interpreted as an uplift age which may be only slightly younger than the age of magmatic crystallization. Emplacement of the pluton may postdate regional metamorphism of the Tahuin Group. Phengite from politic schist of the Raspas Formation yields an Early Cretaceous K-Ar age (132 ? 5 m.y.). This age is believed to date the isostatic rise of the encasing serpentinized harzburgite as movement along a subjacent subduction zone ceased, and it is synchronous with the age of the youngest lavas of a coeval volcanic arc in eastern Ecuador. A Late Cretaceous K-Ar age (74.4 ? 1.1 m.y.) from hornblende in

  9. Challenges of Deflecting an Asteroid or Comet Nucleus with a Nuclear Burst

    NASA Astrophysics Data System (ADS)

    Bradley, P. A.; Plesko, C. S.; Clement, R. R. C.; Conlon, L. M.; Weaver, R. P.; Guzik, J. A.; Pritchett-Sheats, L. A.; Huebner, W. F.

    2010-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunamis, hurricanes, floods, asteroid strikes, and so on. Some of these disasters occur slowly enough that some advance warning is possible for affected areas. In this case, the response is to evacuate the affected area and deal with the damage later. The Katrina and Rita hurricane evacuations on the U.S. Gulf Coast in 2005 demonstrated the chaos that can result from such a response. In contrast with other natural disasters, it is likely that an asteroid or comet nucleus on a collision course with Earth will be detected with enough warning time to possibly deflect it away. Thanks to Near-Earth Object (NEO) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than ~140 meters in the next fifteen years. The important question then, is how to mitigate the threat from an asteroid or comet nucleus found to be on a collision course with Earth. In this paper, we briefly review some possible deflection methods, describe their good and bad points, and then embark on a more detailed description of using nuclear munitions in a standoff mode to deflect the asteroid or comet nucleus before it can hit Earth.

  10. Deflection of light by black holes and massless wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Jusufi, Kimet; Sarkar, Nayan; Rahaman, Farook; Banerjee, Ayan; Hansraj, Sudan

    2018-04-01

    Weak gravitational lensing by black holes and wormholes in the context of massive gravity (Bebronne and Tinyakov, JHEP 0904:100, 2009) theory is studied. The particular solution examined is characterized by two integration constants, the mass M and an extra parameter S namely `scalar charge'. These black hole reduce to the standard Schwarzschild black hole solutions when the scalar charge is zero and the mass is positive. In addition, a parameter λ in the metric characterizes so-called `hair'. The geodesic equations are used to examine the behavior of the deflection angle in four relevant cases of the parameter λ . Then, by introducing a simple coordinate transformation r^λ =S+v^2 into the black hole metric, we were able to find a massless wormhole solution of Einstein-Rosen (ER) (Einstein and Rosen, Phys Rev 43:73, 1935) type with scalar charge S. The programme is then repeated in terms of the Gauss-Bonnet theorem in the weak field limit after a method is established to deal with the angle of deflection using different domains of integration depending on the parameter λ . In particular, we have found new analytical results corresponding to four special cases which generalize the well known deflection angles reported in the literature. Finally, we have established the time delay problem in the spacetime of black holes and wormholes, respectively.

  11. Random deflections of a string on an elastic foundation.

    NASA Technical Reports Server (NTRS)

    Sanders, J. L., Jr.

    1972-01-01

    The paper is concerned with the problem of a taut string on a random elastic foundation subjected to random loads. The boundary value problem is transformed into an initial value problem by the method of invariant imbedding. Fokker-Planck equations for the random initial value problem are formulated and solved in some special cases. The analysis leads to a complete characterization of the random deflection function.

  12. Expressions for optical scalars and deflection angle at second order in terms of curvature scalars

    NASA Astrophysics Data System (ADS)

    Crisnejo, Gabriel; Gallo, Emanuel

    2018-04-01

    We present formal expressions for the optical scalars in terms of the curvature scalars in the weak gravitational lensing regime at second order in perturbations of a flat background without mentioning the extension of the lens or their shape. Also, by considering the thin lens approximation for static and axially symmetric configurations we obtain an expression for the second-order deflection angle which generalizes our previous result presented by Gallo and Moreschi [Phys. Rev. D 83, 083007 (2011)., 10.1103/PhysRevD.83.083007]. As applications of these formulas we compute the optical scalars for some known family of metrics, and we recover expressions for the deflection angle. In contrast to other works in the subject, our formalism allows a straightforward identification of how the different components of the curvature tensor contribute to the optical scalars and deflection angle. We also discuss in what sense the Schwarzschild solution can be thought as a true thin lens at second order.

  13. Development of a laser-based sensor to measure true road surface deflection.

    DOT National Transportation Integrated Search

    2017-04-01

    The high-speed measurement of accurate pavement surface deflections under a moving wheel at a networklevel : still remains a challenge in pavement engineering. This goal cannot be accomplished with stationary deflectionmeasuring : devices. Engineers ...

  14. Development of a Rolling Dynamic Deflectometer for Continuous Deflection Testing of Pavements

    DOT National Transportation Integrated Search

    1998-05-01

    A rolling dynamic deflectometer (RDD) was developed as a nondestructive method for determining continuous deflection profiles of pavements. Unlike other commonly used pavement testing methods, the RDD performs continuous rather than discrete measurem...

  15. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-05-03

    We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

  16. The Deflector Selector: A Machine Learning Framework for Prioritizing Deflection Technology Development

    NASA Astrophysics Data System (ADS)

    Nesvold, E. R.; Erasmus, N.; Greenberg, A.; van Heerden, E.; Galache, J. L.; Dahlstrom, E.; Marchis, F.

    2017-02-01

    We present a machine learning model that can predict which asteroid deflection technology would be most effective, given the likely population of impactors. Our model can help policy and funding agencies prioritize technology development.

  17. Integrated Blowoff and Breakup Calculations for Asteroid Deflection by Nuclear Ablation

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Owen, M.; Dearborn, D. S.; Miller, P. L.

    2016-12-01

    When the warning timing is short, hazardous asteroids or comets can only be deflected off of an Earth-impacting trajectory by a nuclear device [1]. Here we model asteroid response to a standoff nuclear explosion, a problem which requires sub-millimeter spatial resolution at the body's surface to fully capture x-ray energy deposition. The first stage of the calculation focuses on modeling blowoff momentum from vaporized material, using a problem domain confined to the uppermost surface of the asteroid. Once the blowoff momentum transfer process is complete, the problem is remapped into a coarser resolution and the remainder of the asteroid body is added to the calculation, so that asteroid response can be tracked over longer timescales. This two-stage approach enables an integrated assessment of both the efficacy of momentum delivery and damage incurred by the bulk of the asteroid. Investigating the degree of post-ablation fracture, fragmentation, and fragment dispersion is necessary for modeling the outcomes of cases intended to fully fragment and disperse the body (disruption), as well as cases where the bulk of the asteroid should remain intact (deflection). We begin with 500-m spherical asteroids but also extend our analysis to radar-derived asteroid shape models. [1] Dearborn, D.S.P., Miller, P.L., 2014. Deflecting or Disrupting a Threatening Object, in: Pelton, J.N., Allahdadi, F. (Eds.), Handbook of Cosmic Hazards and Planetary Defense, Springer. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344. LLNL-ABS-699631.

  18. Photothermal Deflection Spectroscopy of materials for energy applications

    NASA Astrophysics Data System (ADS)

    Johnson, Stephen; Day, James; Couch, Brandon; Heller, Brandon; Hart, Blake; Transylvania University Team

    A new photothermal deflection spectroscopy (PDS) setup has been constructed at Transylvania University. This poster will focus on the photothermal behavior of nanomaterials such as quantum dots as well as organic photovoltaic materials. With respect to organic photovoltaic materials, this work aims to understand differences in photothermal behavior between the solution and solid-film phases, where changes in photothermal spectra give insight into changes in electronic structure. A general overview of the PDS capabilities at Transylvania will also be given.

  19. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study

    PubMed Central

    Luo, Ming; Liu, Dongsheng; Luo, Huan

    2016-01-01

    Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors. PMID:27626424

  20. New method for the detection of light deflection by solar gravity.

    PubMed

    Shapiro, I I

    1967-08-18

    The prediction of Einstein's theory of general relativity that light will be deflected by the sun may be tested by sending radio waves from the earth to Venus or Mercury when either passes behind the sun and detecting the echoes with a radar interferometer.

  1. Polymer concentration and properties of elastic turbulence in a von Karman swirling flow

    NASA Astrophysics Data System (ADS)

    Jun, Yonggun; Steinberg, Victor

    2017-10-01

    We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively

  2. Maximum Stress Estimation Model for Multi-Span Waler Beams with Deflections at the Supports Using Average Strains

    PubMed Central

    Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon

    2015-01-01

    The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads. PMID:25831087

  3. Maximum stress estimation model for multi-span waler beams with deflections at the supports using average strains.

    PubMed

    Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon

    2015-03-30

    The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.

  4. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths.

    PubMed

    Olofsson, Martin; Vallin, Adrian; Jakobsson, Sven; Wiklund, Christer

    2010-05-24

    Predators preferentially attack vital body parts to avoid prey escape. Consequently, prey adaptations that make predators attack less crucial body parts are expected to evolve. Marginal eyespots on butterfly wings have long been thought to have this deflective, but hitherto undemonstrated function. Here we report that a butterfly, Lopinga achine, with broad-spectrum reflective white scales in its marginal eyespot pupils deceives a generalist avian predator, the blue tit, to attack the marginal eyespots, but only under particular conditions-in our experiments, low light intensities with a prominent UV component. Under high light intensity conditions with a similar UV component, and at low light intensities without UV, blue tits directed attacks towards the butterfly head. In nature, birds typically forage intensively at early dawn, when the light environment shifts to shorter wavelengths, and the contrast between the eyespot pupils and the background increases. Among butterflies, deflecting attacks is likely to be particularly important at dawn when low ambient temperatures make escape by flight impossible, and when insectivorous birds typically initiate another day's search for food. Our finding that the deflective function of eyespots is highly dependent on the ambient light environment helps explain why previous attempts have provided little support for the deflective role of marginal eyespots, and we hypothesize that the mechanism that we have discovered in our experiments in a laboratory setting may function also in nature when birds forage on resting butterflies under low light intensities.

  5. Effect of Different Composite Restorations on the Cuspal Deflection of Premolars Restored with Different Insertion Techniques- An In vitro Study.

    PubMed

    Singhal, Sakshi; Gurtu, Anuraag; Singhal, Anurag; Bansal, Rashmi; Mohan, Sumit

    2017-08-01

    This study was conducted to assess the effect of different composite materials on the cuspal deflection of premolars restored with bulk placement of resin composite in comparison to horizontal incremental placement and modified tangential incremental placement. The aim of this study was to evaluate the cuspal deflection caused by different composite materials when different insertion techniques were used. Two different composite materials were used that is Tetric N Ceram (Ivoclar Vivadent marketing, India) and SonicFill TM (Kerr Sybron Dental). Forty standardized Mesio-Occluso-Distal (MOD) preparations were prepared on maxillary first premolars. Each group was divided according to composite insertion technique (n=10), as follows: Group I - bulk insertion using Tetric N Ceram, Group II - Horizontal incremental insertion technique using Tetric N Ceram, Group III- Modified tangential incremental technique using Tetric N Ceram, and Group IV- bulk insertion using SonicFill TM . Preparations were acid-etched, and bonded with adhesive resin to provide micro mechanical attachment before restoration using a uniform etching and bonding protocol in all the groups. All groups received the same total photo-polymerization time. Cuspal deflection was measured during the restorative procedure using customized digital micrometer assembly. One-way ANOVA test was applied for the analysis of significant difference between the groups, p-value less than 0.05 was considered statistically significant. The average cuspal deflections for the different groups were as follows: Group I 0.045±0.018, Group II 0.029±0.009, Group III 0.018±0.005 and Group IV 0.017±0.004. The intergroup comparison revealed statistically significant difference. A measurable amount of cuspal deflection was present in all the four studied groups. In general, bulkfill restoration technique with conventional composite showed significantly highest cusp deflection. There were no significant differences in cuspal

  6. Structural stiffness, strength and dynamic characteristics of large tetrahedral space truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.

    1977-01-01

    Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.

  7. Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections.

    PubMed

    Mertz, Harold J; Prasad, Priya; Dalmotas, Dainius J; Irwin, Annette L

    2016-11-01

    Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.

  8. Study of Tensile Properties and Deflection Temperature of Polypropylene/Subang Pineapple Leaf Fiber Composites

    NASA Astrophysics Data System (ADS)

    Hafizhah, R.; Juwono, A. L.; Roseno, S.

    2017-05-01

    The development of eco-friendly composites has been increasing in the past four decades because the requirement of eco-friendly materials has been increasing. Indonesia has a lot of natural fiber resources and, pineapple leaf fiber is one of those fibers. This study aimed to determine the influence of weight fraction of pineapple leaf fibers, that were grown at Subang, to the tensile properties and the deflection temperature of polypropylene/Subang pineapple leaf fiber composites. Pineapple leaf fibers were pretreated by alkalization, while polypropylene pellets, as the matrix, were extruded into sheets. Hot press method was used to fabricate the composites. The results of the tensile test and Heat Deflection Temperature (HDT) test showed that the composites that contained of 30 wt.% pineapple leaf fiber was the best composite. The values of tensile strength, modulus of elasticity and deflection temperature were (64.04 ± 3.91) MPa; (3.98 ± 0.55) GPa and (156.05 ± 1.77) °C respectively, in which increased 187.36%, 198.60%, 264.72% respectively from the pristine polypropylene. The results of the observation on the fracture surfaces showed that the failure modes were fiber breakage and matrix failure.

  9. Calculation of unsteady airfoil loads with and without flap deflection at -90 degrees incidence

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1991-01-01

    A method has been developed for calculating the viscous flow about airfoils with and without deflected flaps at -90 deg incidence. This unique method provides for the direct solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body-fitted computational mesh incorporating a staggered grid method. The vorticity is determined at the node points, and the velocity components are defined at the mesh-cell sides. The staggered-grid orientation provides for accurate representation of vorticity at the node points and for the conservation of mass at the mesh-cell centers. The method provides for the direct solution of the flow field and satisfies the conservation of mass to machine zero at each time-step. The results of the present analysis and experimental results obtained for a XV-15 airfoil are compared. The comparisons indicate that the calculated drag reduction caused by flap deflection and the calculated average surface pressure are in excellent agreement with the measured results. Comparisons of the numerical results of the present method for several airfoils demonstrate the significant influence of airfoil curvature and flap deflection on the predicted download.

  10. Deflected Propagation of CMEs and Its Importance on the CME Arrival Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Zhuang, Bin; Shen, Chenglong

    2017-04-01

    As the most important driver of severe space weather, coronal mass ejections (CMEs) and their geoeffectiveness have been studied intensively. Previous statistical studies have shown that not all the front-side halo CMEs are geoeffective, and not all non-recurrent geomagnetic storms can be tracked back to a CME. These phenomena may cause some failed predictions of the geoeffectiveness of CMEs. The recent notable event exhibiting such a failure was on 2015 March 15 when a fast CME originated from the west hemisphere. Space Weather Prediction Center (SWPC) of NOAA initially forecasted that the CME would at most cause a very minor geomagnetic disturbance labeled as G1. However, the CME produced the largest geomagnetic storm so far, at G4 level with the provisional Dst value of -223 nT, in the current solar cycle 24 [e.g., Kataoka et al., 2015; Wang et al., 2016]. Such an unexpected phenomenon naturally raises the first question for the forecasting of the geoeffectiveness of a CME, i.e., whether or not a CME will hit the Earth even though we know the source location and initial kinematic properties of the CME. A full understanding of the propagation trajectory, e.g., the deflected propagation, of a CME from the Sun to 1 AU is the key. With a few cases, we show the importance of the deflection effect in the space weather forecasting. An automated CME arrival forecasting system containing a deflected propagation model is presented.

  11. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    NASA Technical Reports Server (NTRS)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  12. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.

    PubMed

    Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y

    2018-03-08

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Measurement of Refractive Index Gradients by Deflection of a Laser Beam

    ERIC Educational Resources Information Center

    Barnard, A. J.; Ahlborn, B.

    1975-01-01

    In this simple experiment for an undergraduate laboratory a laser beam is passed through the mixing zone of two liquids with different refractive indices. The spatial variation of the refractive index, at different times during the mixing, can be determined from the observed deflection of the beam. (Author)

  14. The Effects of Streamwise-Deflected Wing Tips on the Aerodynamic Characteristics of an Aspect Ratio-2 Triangular Wing, Body, and Tail Combination

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.

    1959-01-01

    An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.

  15. Connection between black-hole quasinormal modes and lensing in the strong deflection limit.

    PubMed

    Stefanov, Ivan Zh; Yazadjiev, Stoytcho S; Gyulchev, Galin G

    2010-06-25

    The purpose of the current Letter is to give some relations between gravitational lensing in the strong-deflection limit and the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. On the one side, the relations obtained can give a physical interpretation of the strong-deflection limit parameters. On the other side, they also give an alternative method for the measurement of the frequencies of the quasinormal modes of spherically symmetric, asymptotically flat black holes. They could be applied to the localization of the sources of gravitational waves and could tell us what frequencies of the gravitational waves we could expect from a black hole acting simultaneously as a gravitational lens and a source of gravitational waves.

  16. Load deflection characteristics and force level of nickel titanium initial archwires.

    PubMed

    Lombardo, Luca; Marafioti, Matteo; Stefanoni, Filippo; Mollica, Francesco; Siciliani, Giuseppe

    2012-05-01

    To investigate and compare the characteristics of commonly used types of traditional and heat-activated initial archwire by plotting their load/deflection graphs and quantifying three suitable parameters describing the discharge plateau phase. Forty-eight archwires (22 nickel titanium [NiTi] and 26 heat-activated) of cross-sectional diameter ranging from 0.010 to 0.016 inch were obtained from seven different manufacturers. A modified three-point wire-bending test was performed on three analogous samples of each type of archwire at a constant temperature (37.0°C). For each resulting load/deflection curve, the plateau section was isolated, along with the mean value of the average plateau force, the plateau length, and the plateau slope for each type of wire obtained. Statistically significant differences were found between almost all wires for the three parameters considered. Statistically significant differences were also found between traditional and heat-activated archwires, the latter of which generated longer plateaus and lighter average forces. The increase in average force seen with increasing diameter tended to be rather stable, although some differences were noted between traditional and heat-activated wires. Although great variation was seen in the plateau behavior, heat-activated versions appear to generate lighter forces over greater deflection plateaus. On average, the increase in plateau force was roughly 50% when the diameter was increased by 0.002 inch (from 0.012 to 0.014 and from 0.014 to 0.016 inch) and about 150% when the diameter was increased by 0.004 inch (from 0.012 to 0.016), with differences between traditional and heat-activated wires noted in this case.

  17. Effects of differential and symmetrical aileron deflection on the aerodynamic characteristics of an NASA supercritical-wing research airplane model

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1975-01-01

    An investigation has been conducted in the Langley 8 foot transonic pressure tunnel to determine the effects of differential and symmetrical aileron deflection on the longitudinal and lateral directional aerodynamic characteristics of an 0.087 scale model of an NASA supercritical wing research airplane (TF-8A). Tests were conducted at Mach numbers from 0.25 to 0.99 in order to determine the effects of differential aileron deflection and at Mach numbers of 0.25 and 0.50 to determine the effects of symmetrical aileron (flap) deflection. The angle of attack range for all tests varied from approximately -12 deg to 20 deg.

  18. Deflection Missions for Asteroid 2011 AG5

    NASA Technical Reports Server (NTRS)

    Grebow, Daniel; Landau, Damon; Bhaskaran, Shyam; Chodas, Paul; Chesley, Steven; Yeomans, Don; Petropoulos, Anastassios; Sims, Jon

    2012-01-01

    The recently discovered asteroid 2011 AG5 currently has a 1-in-500 chance of impacting Earth in 2040. In this paper, we discuss the potential of future observations of the asteroid and their effects on the asteroid's orbital uncertainty. Various kinetic impactor mission scenarios, relying on both conventional chemical as well as solar-electric propulsion, are presented for deflecting the course of the asteroid safely away from Earth. The times for the missions range from pre-keyhole passage (pre-2023), and up to five years prior to the 2040 Earth close approach. We also include a brief discussion on terminal guidance, and contingency options for mission planning.

  19. Serviceability-related issues for bridge live load deflection and construction closure pours.

    DOT National Transportation Integrated Search

    2015-06-01

    This study investigated the design criteria and practices in an effort to improve the quality of bridge designs in the : State of Maryland and beyond. This first criterion investigated was the live load deflection for steel bridges. The : second desi...

  20. Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data

    NASA Astrophysics Data System (ADS)

    Hirt, C.; Marti, U.; Bürki, B.; Featherstone, W. E.

    2010-10-01

    We assess the new EGM2008 Earth gravitational model using a set of 1056 astrogeodetic vertical deflections over parts of continental Europe. Our astrogeodetic vertical deflection data set originates from zenith camera observations performed during 1983-2008. This set, which is completely independent from EGM2008, covers, e.g., Switzerland, Germany, Portugal and Greece, and samples a variety of topography - level terrain, medium elevated and rugged Alpine areas. We describe how EGM2008 is used to compute vertical deflections according to Helmert's (surface) definition. Particular attention is paid to estimating the EGM2008 signal omission error from residual terrain model (RTM) data. The RTM data is obtained from the Shuttle Radar Topography Mission (SRTM) elevation model and the DTM2006.0 high degree spherical harmonic reference surface. The comparisons between the astrogeodetic and EGM2008 vertical deflections show an agreement of about 3 arc seconds (root mean square, RMS). Adding omission error estimates from RTM to EGM2008 significantly reduces the discrepancies from the complete European set of astrogeodetic deflections to 1 arc second (RMS). Depending on the region, the RMS errors vary between 0.4 and 1.5 arc seconds. These values not only reflect EGM2008 commission errors, but also short-scale mass-density anomalies not modelled from the RTM data. Given (1) formally stated EGM2008 commission error estimates of about 0.6-0.8 arc seconds for vertical deflections, and (2) that short-scale mass-density anomalies may affect vertical deflections by about 1 arc second, the agreement between EGM2008 and our astrogeodetic deflection data set is very good. Further focus is placed on the investigation of the high-degree spectral bands of EGM2008. As a general conclusion, EGM2008 - enhanced by RTM data - is capable of predicting Helmert vertical deflections at the 1 arc second accuracy level over Europe.

  1. The deflection of circular mirrors of linearly varying thickness supported along a central hole and free along the outer edge.

    PubMed

    Prevenslik, T V

    1968-10-01

    Most cassegrainian mirrors supported along the central hole are designed for deflection tolerances using the theory for solid, constant thickness plates. Where tolerances are critical, the mirror is usually made thicker, thereby reducing the deflection, but also increasing the weight of the mirror. Weight can be reduced by using a honeycomb design; however, manufacturing problems result because of the inherent complexity. To circumvent the disadvantages of excessive weight in the solid, constant thickness design and the complexity of the honeycomb design, a lightweight, yet simple design would be desirable. A possible lightweight, yet simple design would be a solid mirror of linearly varying thickness, decreasing in thickness from the center to the outer edge. As mirrors of linearly varying thickness may provide the best solution under combined deflection and weight restraints, a design basis is required and found in small deflection plate theory. The work of H. Conway was extended to account for pressure loading proportional to mirror density for the case when Poisson's ratio is ?. Closed form solutions for the slope of the linearly varying thickness mirrors were obtained for fixed and simply supported boundary conditions along the central hole. Maximum deflections were obtained by numerical integration and compared with the results for comparable constant thickness mirrors.

  2. AIDA: the Asteroid Impact & Deflection Assessment mission

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  3. Deflection of resilient materials for reduction of floor impact sound.

    PubMed

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  4. Fiber optic system for deflection and damage detection in morphing wing structures

    NASA Astrophysics Data System (ADS)

    Scheerer, M.; Djinovic, Z.; Schüller, M.

    2013-04-01

    Within the EC Clean Sky - Smart Fixed Wing Aircraft initiative concepts for actuating morphing wing structures are under development. In order for developing a complete integrated system including the actuation, the structure to be actuated and the closed loop control unit a hybrid deflection and damage monitoring system is required. The aim of the project "FOS3D" is to develop and validate a fiber optic sensing system based on low-coherence interferometry for simultaneous deflection and damage monitoring. The proposed system uses several distributed and multiplexed fiber optic Michelson interferometers to monitor the strain distribution over the actuated part. In addition the same sensor principle will be used to acquire and locate the acoustic emission signals originated from the onset and growth of defects like impact damages, cracks and delamination's. Within this paper the authors present the concept, analyses and first experimental results of the mentioned system.

  5. Deflection of light to second order: A tool for illustrating principles of general relativity

    NASA Astrophysics Data System (ADS)

    Bodenner, Jeremiah; Will, Clifford M.

    2003-08-01

    We calculate the deflection of light by a spherically symmetric body in general relativity, to second order in the quantity GM/dc2, where M is the mass of the body and d is a measure of the distance of closest approach of the ray. Using three different coordinate systems for the Schwarzschild metric we show that the answers for the deflection, while the same at order GM/dc2, differ at order (GM/dc2)2. We demonstrate that all three expressions are really the same by expressing them in terms of measurable, coordinate-independent quantities. These results provide concrete illustrations of the meaning of coordinates and coordinate invariance, which may be useful in teaching general relativity.

  6. Tests of a D vented thrust deflecting nozzle behind a simulated turbofan engine

    NASA Technical Reports Server (NTRS)

    Watson, T. L.

    1982-01-01

    A D vented thrust deflecting nozzle applicable to subsonic V/STOL aircraft was tested behind a simulated turbofan engine in the verticle thrust stand. Nozzle thrust, fan operating characteristics, nozzle entrance conditions, and static pressures were measured. Nozzle performance was measured for variations in exit area and thrust deflection angle. Six core nozzle configurations, the effect of core exit axial location, mismatched core and fan stream nozzle pressure ratios, and yaw vane presence were evaluated. Core nozzle configuration affected performance at normal and engine out operating conditions. Highest vectored nozzle performance resulted for a given exit area when core and fan stream pressure were equal. Its is concluded that high nozzle performance can be maintained at both normal and engine out conditions through control of the nozzle entrance Mach number with a variable exit area.

  7. A data-driven soft sensor for needle deflection in heterogeneous tissue using just-in-time modelling.

    PubMed

    Rossa, Carlos; Lehmann, Thomas; Sloboda, Ronald; Usmani, Nawaid; Tavakoli, Mahdi

    2017-08-01

    Global modelling has traditionally been the approach taken to estimate needle deflection in soft tissue. In this paper, we propose a new method based on local data-driven modelling of needle deflection. External measurement of needle-tissue interactions is collected from several insertions in ex vivo tissue to form a cloud of data. Inputs to the system are the needle insertion depth, axial rotations, and the forces and torques measured at the needle base by a force sensor. When a new insertion is performed, the just-in-time learning method estimates the model outputs given the current inputs to the needle-tissue system and the historical database. The query is compared to every observation in the database and is given weights according to some similarity criteria. Only a subset of historical data that is most relevant to the query is selected and a local linear model is fit to the selected points to estimate the query output. The model outputs the 3D deflection of the needle tip and the needle insertion force. The proposed approach is validated in ex vivo multilayered biological tissue in different needle insertion scenarios. Experimental results in five different case studies indicate an accuracy in predicting needle deflection of 0.81 and 1.24 mm in the horizontal and vertical lanes, respectively, and an accuracy of 0.5 N in predicting the needle insertion force over 216 needle insertions.

  8. Nanoindenting the Chelyabinsk Meteorite to Learn about Impact Deflection Effects in asteroids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyano-Cambero, Carles E.; Trigo-Rodríguez, Josep M.; Martínez-Jiménez, Marina

    The Chelyabinsk meteorite is a highly shocked, low porosity, ordinary chondrite, probably similar to S- or Q-type asteroids. Therefore, nanoindentation experiments on this meteorite allow us to obtain key data to understand the physical properties of near-Earth asteroids. Tests at different length scales provide information about the local mechanical properties of the minerals forming this meteorite: reduced Young’s modulus, hardness, elastic recovery, and fracture toughness. Those tests are also useful to understand the potential to deflect threatening asteroids using a kinetic projectile. We found that the differences in mechanical properties between regions of the meteorite, which increase or reduce themore » efficiency of impacts, are not a result of compositional differences. A low mean particle size, attributed to repetitive shock, can increase hardness, while low porosity promotes a higher momentum multiplication. Momentum multiplication is the ratio between the change in momentum of a target due to an impact, and the momentum of the projectile, and therefore, higher values imply more efficient impacts. In the Chelyabinsk meteorite, the properties of the light-colored lithology materials facilitate obtaining higher momentum multiplication values, compared to the other regions described for this meteorite. Also, we found a low value of fracture toughness in the shock-melt veins of Chelyabinsk, which would promote the ejection of material after an impact and therefore increase the momentum multiplication. These results are relevant to the growing interest in missions to test asteroid deflection, such as the recent collaboration between the European Space Agency and NASA, known as the Asteroid Impact and Deflection Assessment mission.« less

  9. Mechanism of tonal noise generation from circular cylinder with spiral fin

    NASA Astrophysics Data System (ADS)

    Yamashita, Ryo; Hayashi, Hidechito; Okumura, Tetsuya; Hamakawa, Hiromitsu

    2014-12-01

    The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger. In this research, the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation. It is observed that the tonal noise generated from the finned tube at two pitch spaces. The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27. The tone level increases and the frequency decreases with the pitch shorter. The separation flow from the cylinder generates the span-wise vortices, Karman vortices, and the separation flow from the fin generates the stream-wise vortices. When the fin pitch ratio is small, the stream-wise vortices line up to span-wise and become weak rapidly. Only the Karman vortices are remained and integrate in span. So the Karman vortex became large. This causes the low frequency and the large aeolian tone.

  10. Methodology for determining elevon deflections to trim and maneuver the DAST vehicle with negative static margin

    NASA Technical Reports Server (NTRS)

    Perry, B., III

    1982-01-01

    The relationships between elevon deflection and static margin using elements from static and dynamic stability and control and from classical control theory are emphasized. Expressions are derived and presented for calculating elevon deflections required to trim the vehicle in lg straight-and-level flight and to perform specified longitudinal and lateral maneuvers. Applications of this methodology are made at several flight conditions for the ARW-2 wing. On the basis of these applications, it appears possible to trim and maneuver the vehicle with the existing elevons at -15% static margin.

  11. Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.

    DOT National Transportation Integrated Search

    2011-12-01

    We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...

  12. Current deflection NDE for pipeline inspection and monitoring

    NASA Astrophysics Data System (ADS)

    Jarvis, Rollo; Cawley, Peter; Nagy, Peter B.

    2016-02-01

    Failure of oil and gas pipelines can often be catastrophic, therefore routine inspection for time dependent degradation is essential. In-line inspection is the most common method used; however, this requires the insertion and retrieval of an inspection tool that is propelled by the fluid in the pipe and risks becoming stuck, so alternative methods must often be employed. This work investigates the applicability of a non-destructive evaluation technique for both the detection and growth monitoring of defects, particularly corrosion under insulation. This relies on injecting an electric current along the pipe and indirectly measuring the deflection of current around defects from perturbations in the orthogonal components of the induced magnetic flux density. An array of three orthogonally oriented anisotropic magnetoresistive sensors has been used to measure the magnetic flux density surrounding a 6'' schedule-40 steel pipe carrying 2 A quasi-DC axial current. A finite element model has been developed that predicts the perturbations in magnetic flux density caused by current deflection which has been validated by experimental results. Measurements of the magnetic flux density at 50 mm lift-off from the pipe surface are stable and repeatable to the order of 100 pT which suggests that defect detection or monitoring growth of corrosion-type defects may be possible with a feasible magnitude of injected current. Magnetic signals are additionally incurred by changes in the wall thickness of the pipe due to manufacturing tolerances, and material property variations. If a monitoring scheme using baseline subtraction is employed then the sensitivity to defects can be improved while avoiding false calls.

  13. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  14. Force-deflection behavior of piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Singh, Ashok K.; Nagpal, Pawan

    2001-11-01

    In the present endeavour, force - deflection behavior of various piezoelectric actuator configurations has been analyzed for performance comparison. The response of stack actuator has been simulated using MATLAB Simulink, in a stack actuator-pendulum configuration. During simulation, stack actuator has been used in charge control feedback mode, because of the advantage of low hysteresis, and high linearity. The model incorporates three compensation blocks, viz 1) a PID position controller, 2) a PI piezoelectric current controller, and 3) a dynamic force feedback. A typical stack actuator, having 130 layers, 1.20x10-4 m thickness, 3.46x10-5m2 cross sectional area, of PZT-5H type, has been utilized for simulation. The response of the system has been tested by applying a sinusoidal input of frequency 500 Hz, and waveform amplitude of 1x10-3V.

  15. The effect of load position to the accuracy of deflection measured with LVDT sensor in I-girder bridge

    NASA Astrophysics Data System (ADS)

    Hidayat, Irpan; Suangga, Made; Reshki Maulana, Moh

    2017-12-01

    Serviceability of a bridge will decrease based on the function of time. Most likely due to the cyclic load from the traffic. The indicators which can be measured to determine the serviceability is the deflection of the girder. In this research, the PCI-Girder and vehicle load are analyzed by using the finite element method (Midas/Civil) Program. For comparison, the running vehicle test to the bridge has been conducted where the bridge deflections are measured using LVDT sensors on PCI-Girder Bridge. To find the effect of vehicle distance to the LVDV position, the running vehicle goes through on several lanes. The finite element program (Midas/Civil) gives relatively similar result to the measured deflection using LVDT sensors. However, when the vehicle load is situated far from the sensor, the result from both analysis showed significant differences.

  16. Deflection of Resilient Materials for Reduction of Floor Impact Sound

    PubMed Central

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor. PMID:25574491

  17. A study about the split drag flaps deflections to directional motion of UiTM's blended wing body aircraft based on computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Mohamad, Firdaus; Wisnoe, Wirachman; Nasir, Rizal E. M.; Kuntjoro, Wahyu

    2012-06-01

    This paper discusses on the split drag flaps to the yawing motion of BWB aircraft. This study used split drag flaps instead of vertical tail and rudder with the intention to generate yawing moment. These features are installed near the tips of the wing. Yawing moment is generated by the combination of side and drag forces which are produced upon the split drag flaps deflection. This study is carried out using Computational Fluid Dynamics (CFD) approach and applied to low subsonic speed (0.1 Mach number) with various sideslip angles (β) and total flaps deflections (δT). For this research, the split drag flaps deflections are varied up to ±30°. Data in terms of dimensionless coefficient such as drag coefficient (CD), side coefficient (CS) and yawing moment coefficient (Cn) were used to observe the effect of the split drag flaps. From the simulation results, these split drag flaps are proven to be effective from ±15° deflections or 30° total deflections.

  18. Transit time spreads in biased paracentric hemispherical deflection analyzers

    NASA Astrophysics Data System (ADS)

    Sise, Omer; Zouros, Theo J. M.

    2016-02-01

    The biased paracentric hemispherical deflection analyzers (HDAs) are an alternative to conventional (centric) HDAs maintaining greater dispersion, lower angular aberrations, and hence better energy resolution without the use of any additional fringing field correctors. In the present work, the transit time spread of the biased paracentric HDA is computed over a wide range of analyzer parameters. The combination of high energy resolution with good time resolution and simplicity of design makes the biased paracentric analyzers very promising for both coincidence and singles spectroscopy applications.

  19. Planetary Defense From Space: Part 2 (Simple) Asteroid Deflection Law

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2006-06-01

    A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement. The mathematical theory developed by the author in the years 2002 2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);the asteroid's size and density (also supposed to be known from astronomical observations of various types);the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;the distance from the Earth of the two Lagrangian points L1 and L3 where the

  20. Control of Thermal Deflection, Panel Flutter and Acoustic Fatigue at Elevated Temperatures Using Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Huang, Jen-Kuang

    1996-01-01

    The High Speed Civil Transport (HSCT) will have to be designed to withstand high aerodynamic load at supersonic speeds (panel flutter) and high acoustic load (acoustic or sonic fatigue) due to fluctuating boundary layer or jet engine acoustic pressure. The thermal deflection of the skin panels will also alter the vehicle's configuration, thus it may affect the aerodynamic characteristics of the vehicle and lead to poor performance. Shape memory alloys (SMA) have an unique ability to recover large strains completely when the alloy is heated above the characteristic transformation (austenite finish T(sub f)) temperature. The recovery stress and elastic modulus are both temperature dependent, and the recovery stress also depends on the initial strain. An innovative concept is to utilize the recovery stress by embedding the initially strained SMA wire in a graphite/epoxy composite laminated panel. The SMA wires are thus restrained and large inplane forces are induced in the panel at elevated temeperatures. By embedding SMA in composite panel, the panel becomes much stiffer at elevated temperatures. That is because the large tensile inplane forces induced in the panel from the SMA recovery stress. A stiffer panel would certainly yield smaller dynamic responses.

  1. Coherent Bichromatic Force Deflection of Molecules

    NASA Astrophysics Data System (ADS)

    Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.

    2018-02-01

    We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.

  2. Optimization of deflection of a big NEO through impact with a small one.

    PubMed

    Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou

    2014-01-01

    Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed.

  3. Optimization of Deflection of a Big NEO through Impact with a Small One

    PubMed Central

    Zhu, Kaijian; Huang, Weiping; Wang, Yuncai; Niu, Wei; Wu, Gongyou

    2014-01-01

    Using a small near-Earth object (NEO) to impact a larger and potentially threatening NEO has been suggested as an effective method to avert a collision with Earth. This paper develops a procedure for analysis of the technique for specific NEOs. First, an optimization method is used to select a proper small body from the database. Some principles of optimality are achieved with the optimization process. Then, the orbit of the small body is changed to guarantee that it flies toward and impacts the big threatening NEO. Kinetic impact by a spacecraft is chosen as the strategy of deflecting the small body. The efficiency of this method is compared with that of a direct kinetic impact to the big NEO by a spacecraft. Finally, a case study is performed for the deflection of the Apophis NEO, and the efficiency of the method is assessed. PMID:25525627

  4. Monitoring electrostatically-induced deflection, strain and doping in suspended graphene using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Metten, Dominik; Froehlicher, Guillaume; Berciaud, Stéphane

    2017-03-01

    Electrostatic gating offers elegant ways to simultaneously strain and dope atomically thin membranes. Here, we report on a detailed in situ Raman scattering study on graphene, suspended over a Si/SiO2 substrate. In such a layered structure, the intensity of the Raman G- and 2D-mode features of graphene are strongly modulated by optical interference effects and allow an accurate determination of the electrostatically-induced membrane deflection, up to irreversible collapse. The membrane deflection is successfully described by an electromechanical model, which we also use to provide useful guidelines for device engineering. In addition, electrostatically-induced tensile strain is determined by examining the softening of the Raman features. Due to a small residual charge inhomogeneity, we find that non-adiabatic anomalous phonon softening is negligible compared to strain-induced phonon softening. These results open perspectives for innovative Raman scattering-based readout schemes in two-dimensional nanoresonators.

  5. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajaev, V.; Borland, M.; Chae, Y.-C.

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for onemore » APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.« less

  6. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets.

    PubMed

    Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Henriques, José Fernando Castanha; Janson, Guilherme; Sathler, Renata; Fernandes, Thais Maria Freire

    2016-01-01

    The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM), active (In-Ovation RTM) and passive (Damon 3MXTM) self-ligating brackets. Two brands of stainless steel and nickel-titanium (NiTi) wires (MorelliTM and GACTM), in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey's tests. Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  7. Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.; Greenberg, P. S.

    1994-01-01

    Certain functions useful for representing axisymmetric refractive-index distributions are shown to have exact solutions for Abel transformation of the resulting angular deflection data. An advantage of this procedure over direct numerical Abel inversion is that least-squares curve fitting is a smoothing process that reduces the noise sensitivity of the computation

  8. A 5000-hour test of a grid-translation beam-deflection system for a 5-cm diameter Kaufman thruster

    NASA Technical Reports Server (NTRS)

    Lathem, W. C.

    1973-01-01

    A grid-translation type beam deflection system was tested on a 5-cm diameter mercury ion thruster for 5000 hours at a thrust level of about 0.36 mlb. During the first 2000 hours the beam was vectored 10 degrees in one direction. No erosion damage attributable to beam deflection was detected. Results indicate a possible lifetime of 15,000 to 20,000 hours. An optimized neutralizer position was used which eliminated the sputter erosion groove observed on the SERT 2 thrusters.

  9. Integrated Fiber-Optic Light Probe: Measurement of Static Deflections in Rotating Turbomachinery

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1998-01-01

    At the NASA Lewis Research Center, in cooperation with Integrated Fiber Optic Systems, Inc., an integrated fiber-optic light probe system was designed, fabricated, and tested for monitoring blade tip deflections, vibrations, and to some extent, changes in the blade tip clearances of a turbomachinery fan or a compressor rotor. The system comprises a set of integrated fiber-optic light probes that are positioned to detect the passing blade tip at the leading and trailing edges. In this configuration, measurements of both nonsynchronous blade vibrations and steady-state blade deflections can be made from the timing information provided by each light probe-consisting of an integrated fiber-optic transmitting channel and numerical aperture receiving fibers, all mounted in the same cylindrical housing. With integrated fiber-optic technology, a spatial resolution of 50 mm is possible while the outer diameter is kept below 2.5 mm. To evaluate these probes, we took measurements in a single-stage compressor facility and an advanced fan rig in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel.

  10. Integrated fiber optic light probe: Measurement of static deflections in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Mehmud, Ali; Khan, Romel; Kurkov, Anatole

    1996-02-01

    This paper describes the design, fabrication, and testing of an integrated fiber optic light probe system for monitoring blade tip deflections, vibrational modes, and changes in blade tip clearances in the compressor stage of rotating turbomachinery. The system comprises a set of integrated fiber optic light probes which are positioned to detect the passing blade tip at the leading and the trailing edges. In this configuration measurements of both blade vibrations and steady-state blade deflection can be obtained from the timing information provided by each light probe, which comprises an integrated fiber optic transmitting channel and a number of high numerical aperture receiving fibers, all mounted in the same cylindrical housing. A spatial resolution of 50 μm is possible with the integrated fiber optic technology, while keeping the outer diameter below 2.5 mm. Additionally, one fiber sensor provides a capability of monitoring changes in the blade tip clearance of the order of 10 μm. Measurements from a single stage compressor facility and an engine-fan rig in a 9 ft×15 ft subsonic wind tunnel are presented.

  11. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, R.N.; Martin, J.; Paldus, B.A.

    1998-09-29

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available. 5 figs.

  12. Deflecting light into resonant cavities for spectroscopy

    DOEpatents

    Zare, Richard N.; Martin, Juergen; Paldus, Barbara A.

    1998-01-01

    Light is coupled into a cavity ring down spectroscopy (CRDS) resonant cavity using an acousto-optic modulator. The AOM allows in-coupling efficiencies in excess of 40%, which is two to three orders of magnitude higher than in conventional systems using a cavity mirror for in-coupling. The AOM shutoff time is shorter than the roundtrip time of the cavity. The higher light intensities lead to a reduction in shot noise, and allow the use of relatively insensitive but fast-responding detectors such as photovoltaic detectors. Other deflection devices such as electro-optic modulators or elements used in conventional Q-switching may be used instead of the AOM. The method is particularly useful in the mid-infrared, far-infrared, and ultraviolet wavelength ranges, for which moderately reflecting input mirrors are not widely available.

  13. Deflected Pathways: Becoming Aggressive, Socially Withdrawn, or Prosocial with Peers During the Transition to Adolescence

    PubMed Central

    Monahan, Kathryn C.; Booth-LaForce, Cathryn

    2014-01-01

    Although research has suggested strong continuity in children's adaptive or maladaptive behavior with peers across the transition to adolescence, less is known about deflected developmental pathways of peer social competence across this transition. This study investigates how mother-child and best friend relationship quality predict the deflection of youth from adaptive to maladaptive behavior with peers or the reverse. Using data from the NICHD Study of Early Child Care and Youth Development (N=1055), high-quality friendships were associated with changes in peer social competence from 3rd to 6th grade. More positive and fewer negative interactions with a friend were linked with becoming more prosocial with peers, whereas less positive interactions with a friend were linked to becoming aggressive or withdrawn. PMID:27231420

  14. Spacecraft formation flying for Earth-crossing object deflections using a power limited laser ablating

    NASA Astrophysics Data System (ADS)

    Yoo, Sung-Moon; Song, Young-Joo; Park, Sang-Young; Choi, Kyu-Hong

    2009-06-01

    A formation flying strategy with an Earth-crossing object (ECO) is proposed to avoid the Earth collision. Assuming that a future conceptual spacecraft equipped with a powerful laser ablation tool already rendezvoused with a fictitious Earth collision object, the optimal required laser operating duration and direction histories are accurately derived to miss the Earth. Based on these results, the concept of formation flying between the object and the spacecraft is applied and analyzed as to establish the spacecraft's orbital motion design strategy. A fictitious "Apophis"-like object is established to impact with the Earth and two major deflection scenarios are designed and analyzed. These scenarios include the cases for the both short and long laser operating duration to avoid the Earth impact. Also, requirement of onboard laser tool's for both cases are discussed. As a result, the optimal initial conditions for the spacecraft to maintain its relative trajectory to the object are discovered. Additionally, the discovered optimal initial conditions also satisfied the optimal required laser operating conditions with no additional spacecraft's own fuel expenditure to achieve the spacecraft formation flying with the ECO. The initial conditions founded in the current research can be used as a spacecraft's initial rendezvous points with the ECO when designing the future deflection missions with laser ablation tools. The results with proposed strategy are expected to make more advances in the fields of the conceptual studies, especially for the future deflection missions using powerful laser ablation tools.

  15. Postbuckling Investigations of Piezoelectric Microdevices Considering Damage Effects

    PubMed Central

    Sun, Zhigang; Wang, Xianqiao

    2014-01-01

    Piezoelectric material has been emerging as a popular building block in MEMS devices owing to its unique mechanical and electrical material properties. However, the reliability of MEMS devices under buckling deformation environments remains elusive and needs to be further explored. Based on the Talreja's tensor valued internal state damage variables as well as the Helmhotlz free energy of piezoelectric material, a constitutive model of piezoelectric materials with damage is presented. The Kachanvo damage evolution law under in-plane compressive loads is employed. The model is applied to the specific case of the postbuckling analysis of the piezoelectric plate with damage. Then, adopting von Karman's plate theory, the nonlinear governing equations of the piezoelectric plates with initial geometric deflection including damage effects under in-plane compressive loads are established. By using the finite difference method and the Newmark scheme, the damage evolution for damage accumulation is developed and the finite difference procedure for postbuckling equilibrium path is simultaneously employed. Numerical results show the postbuckling behaviors of initial flat and deflected piezoelectric plates with damage or no damage under different sets of electrical loading conditions. The effects of applied voltage, aspect ratio of plate, thick-span ratio of plate, damage as well as initial geometric deflections on the postbuckling behaviors of the piezoelectric plate are discussed. PMID:24618774

  16. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface.

    PubMed

    Zhu, Z; Liu, H; Wang, D; Li, Y X; Guan, C Y; Zhang, H; Shi, J H

    2016-11-22

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell's law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping.

  17. Coherent control of double deflected anomalous modes in ultrathin trapezoid-shaped slit metasurface

    PubMed Central

    Zhu, Z.; Liu, H.; Wang, D.; Li, Y. X.; Guan, C. Y.; Zhang, H.; Shi, J. H.

    2016-01-01

    Coherent light-matter interaction in ultrathin metamaterials has been demonstrated to dynamically modulate intensity, polarization and propagation direction of light. The gradient metasurface with a transverse phase variation usually exhibits an anomalous refracted beam of light dictated by so-called generalized Snell’s law. However, less attention has been paid to coherent control of the metasurface with multiple anomalous refracted beams. Here we propose an ultrathin gradient metasurface with single trapezoid-shaped slot antenna as its building block that allows one normal and two deflected transmitted beams. It is numerically demonstrated that such metasurface with multiple scattering modes can be coherently controlled to modulate output intensities by changing the relative phase difference between two counterpropagating coherent beams. Each mode can be coherently switched on/off and two deflected anomalous beams can be synchronously dictated by the phase difference. The coherent control effect in the trapezoid-shaped slit metasurface will offer a promising opportunity for multichannel signals modulation, multichannel sensing and wave front shaping. PMID:27874053

  18. The Penn State Safety Floor: Part I--Design parameters associated with walking deflections.

    PubMed

    Casalena, J A; Ovaert, T C; Cavanagh, P R; Streit, D A

    1998-08-01

    A new flooring system has been developed to reduce peak impact forces to the hips when humans fall. The new safety floor is designed to remain relatively rigid under normal walking conditions, but to deform elastically when impacted during a fall. Design objectives included minimizing peak force experienced by the femur during a fall-induced impact, while maintaining a maximum of 2 mm of floor deflection during walking. Finite Element Models (FEMs) were developed to capture the complex dynamics of impact response between two deformable bodies. Validation of the finite element models included analytical calculations of theoretical buckling column response, experimental quasi-static loading of full-scale flooring prototypes, and flooring response during walking trials. Finite Element Method results compared well with theoretical and experimental data. Both finite element and experimental data suggest that the proposed safety floor can effectively meet the design goal of 2 mm maximum deflection during walking, while effectively reducing impact forces during a fall.

  19. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  20. Assessment of continuous deflection measurement devices in Louisiana - rolling wheel deflectometer : final report 581.

    DOT National Transportation Integrated Search

    2017-09-01

    The use of the Rolling Wheel Deflectometer (RWD), which measures deflections at highway speeds, offers the potential to characterize the structural capacity of pavements without delays and in a cost-effective way. The objective of this study was twof...

  1. Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Hsun

    2018-06-01

    This paper aims to develop a multidimensional wave digital filtering network for predicting static and dynamic behaviors of composite laminate based on the FSDT. The resultant network is, thus, an integrated platform that can perform not only the free vibration but also the bending deflection of moderate thick symmetric laminated plates with low plate side-to-thickness ratios (< = 20). Safeguarded by the Courant-Friedrichs-Levy stability condition with the least restriction in terms of optimization technique, the present method offers numerically high accuracy, stability and efficiency to proceed a wide range of modulus ratios for the FSDT laminated plates. Instead of using a constant shear correction factor (SCF) with a limited numerical accuracy for the bending deflection, an optimum SCF is particularly sought by looking for a minimum ratio of change in the transverse shear energy. This way, it can predict as good results in terms of accuracy for certain cases of bending deflection. Extensive simulation results carried out for the prediction of maximum bending deflection have demonstratively proven that the present method outperforms those based on the higher-order shear deformation and layerwise plate theories. To the best of our knowledge, this is the first work that shows an optimal selection of SCF can significantly increase the accuracy of FSDT-based laminates especially compared to the higher order theory disclaiming any correction. The highest accuracy of overall solution is compared to the 3D elasticity equilibrium one.

  2. All-optical beam deflection method for simultaneous thermal conductivity and thermo-optic coefficient ( d n / d T ) measurements

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Fairchild, Steven B.; Arends, Armando A.; Urbas, Augustine M.

    2016-05-01

    This work describes an all-optical beam deflection method to simultaneously measure the thermal conductivity ( Λ) and thermo-optic coefficient ( d n / d T ) of materials that are absorbing at λ = 10.6 μm and are transparent to semi-transparent at λ = 632.8 nm. The technique is based on the principle of measuring the beam deflection of a probe beam (632.8 nm) in the frequency-domain due to a spatially and temporally varying index gradient that is thermally induced by 50:50 split pump beam from a CO2 laser (10.6 μm). The technique and analysis methods are validated with measurements of 10 different optical materials having Λ and d n / d T properties ranging between 0.7 W/m K ≲ Λ ≲ 33.5 W/m K and -12 × 10-6 K-1 ≲ d n / d T ≲ 14 × 10-6 K-1, respectively. The described beam deflection technique is highly related to other well-established, all-optical materials characterization methods, namely, thermal lensing and photothermal deflection spectroscopy. Likewise, due to its all-optical, pump-probe nature, it is applicable to materials characterization in extreme environments with minimal errors due to black-body radiation. In addition, the measurement principle can be extended over a broad range of electromagnetic wavelengths (e.g., ultraviolet to THz) provided the required sources, detectors, and focusing elements are available.

  3. Dynamic mode decomposition of separated flow over a finite blunt plate: time-resolved particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Zhang, Qingshan

    2015-07-01

    Dynamic mode decomposition (DMD) analysis was performed on a large number of realizations of the separated flow around a finite blunt plate, which were determined by using planar time-resolved particle image velocimetry (TR-PIV). Three plates with different chord-to-thickness ratios corresponding to globally different flow patterns were particularly selected for comparison: L/D = 3.0, 6.0 and 9.0. The main attention was placed on dynamic variations in the dominant events and their interactive influences on the global fluid flow in terms of the DMD analysis. Toward this end, a real-time data transfer from the high-speed camera to the arrayed disks was built to enable continuous sampling of the spatiotemporally varying flows at the frequency of 250 Hz for a long run. The spectra of the wall-normal velocity fluctuation, the energy spectra of the DMD modes, and their spatial patterns convincingly determined the energetic unsteady events, i.e., St = 0.051 (Karman vortex street), 0.109 (harmonic event of Karman vortex street) and 0.197 (leading-edge vortex) in the shortest system L/D = 3.0, St = 0.159 (Karman vortex street) and 0.242 (leading-edge vortex) in the system L/D = 6.0, and St = 0.156 (Karman vortex street) and 0.241 (leading-edge vortex) in the longest system L/D = 9.0. In the shortest system L/D = 3.0, the first DMD mode pattern demonstrated intensified entrainment of the massive fluid above and below the whole plate by the Karman vortex street. The phase-dependent variation in the low-order flow field elucidated that this motion was sustained by the consecutive mechanisms of the convective leading-edge vortices near the upper and lower trailing edges, and the large-scale vortical structures occurring immediately behind the trailing edge, whereas the leading-edge vortices were entrained and decayed into the near wake. For the system L/D = 6.0, the closely approximated energy spectra at St = 0.159 and 0.242 indicated the balanced dominance of dual unsteady

  4. Investigation of Effectiveness of a Wing Equipped with a 50-percent-chord Sliding Flap, a 30-percent-chord Slotted Flap, and a 30-percent-chord Slat in Deflecting Propeller Slipstreams Downward for Vertical Take-off

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E

    1957-01-01

    Results are presented of an investigation of the effectiveness of a wing equipped with a 50-percent-chord sliding flap and a 30-percent-chord slotted flap in deflecting a propeller slipstream downward for vertical take-off. Tests were conducted at zero forward speed in a large room and included the effects of flap deflection, proximity to the ground, a leading-edge slat, and end plates. A turning angle of about 70 degrees and a resultant force of about 100 percent of the thrust were achieved near the ground. Out of the ground-effect region, the turning angle was also about 70 degrees but the resultant force was reduced to about 86 percent of the thrust.

  5. Analysis of Large-scale Anisotropy of Ultra-high Energy Cosmic Rays in HiRes Data

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Koers, H.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.; High Resolution Fly's Eye Collaboration

    2010-04-01

    Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle θ s . We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless θ s > 10° and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.

  6. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, M.E.; Hudson, C.L.

    1993-05-11

    An improved ultra-high bandwidth helical coil deflection structure for a cathode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  7. Cavity resonance absorption in ultra-high bandwidth CRT deflection structure by a resistive load

    DOEpatents

    Dunham, Mark E.; Hudson, Charles L.

    1993-01-01

    An improved ultra-high bandwidth helical coil deflection structure for a hode ray tube is described comprising a first metal member having a bore therein, the metal walls of which form a first ground plane; a second metal member coaxially mounted in the bore of the first metal member and forming a second ground plane; a helical deflection coil coaxially mounted within the bore between the two ground planes; and a resistive load disposed in one end of the bore and electrically connected to the first and second ground planes, the resistive load having an impedance substantially equal to the characteristic impedance of the coaxial line formed by the two coaxial ground planes to inhibit cavity resonance in the structure within the ultra-high bandwidth of operation. Preferably, the resistive load comprises a carbon film on a surface of an end plug in one end of the bore.

  8. An analysis of clock-shift experiments: is scatter increased and deflection reduced in clock-shifted homing pigeons?

    PubMed

    Chappell

    1997-01-01

    Clock-shifting (altering the phase of the internal clock) in homing pigeons leads to a deflection in the vanishing bearing of the clock-shifted group relative to controls. However, two unexplained phenomena are common in clock-shift experiments: the vanishing bearings of the clock-shifted group are often more scattered (with a shorter vector length) than those of the control group, and the deflection of the mean bearing of the clock-shifted group from that of the controls is often smaller than expected theoretically. Here, an analysis of 55 clock-shift experiments performed in four countries over 21 years is reported. The bearings of the clock-shifted groups were significantly more scattered than those of controls and less deflected than expected, but these effects were not significantly different at familiar and unfamiliar sites. The possible causes of the effects are discussed and evaluated with reference to this analysis and other experiments. The most likely causes appear to be conflict between the directions indicated by the sun compass and either unshifted familiar visual landmarks (at familiar sites only) or the unshifted magnetic compass (possible at both familiar and unfamiliar sites).

  9. Anomalous laser deflection phenomenon based on the interaction of electro-optic and graded refractivity effects in Cu-doped KTa{sub 1−x}Nb{sub x}O{sub 3} crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xuping, E-mail: wangxp@sdas.org; Liu, Bing; Yang, Yuguo

    2014-08-04

    An abnormal laser deflection phenomenon in a copper-doped KTa{sub 1−x}Nb{sub x}O{sub 3} (Cu:KTN) crystal is demonstrated in this Letter. A near-50 mrad beam deflection angle was observed when a voltage of 1.2 kV was applied to a Cu:KTN block with size of 2.8 mm × 1.2 mm × 7.5 mm at room temperature. The special features of this deflection phenomenon are that the laser beam deflection direction is perpendicular to the electric field direction, and the beam deflection angle remains unchanged when the electric field direction is reversed. The operating principle of the phenomenon is investigated and the origin of the deflection phenomenon is attributed to an interactionmore » between the graded refractivity effect and the quadratic electro-optic effect of the crystal.« less

  10. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    NASA Astrophysics Data System (ADS)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  11. An Improved Method for Dynamic Measurement of Deflections of the Vertical Based on the Maintenance of Attitude Reference

    PubMed Central

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-01-01

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch–Tung–Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s. PMID:25192311

  12. An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference.

    PubMed

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-09-03

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch-Tung-Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.

  13. Deflection corridors of abdomen and thorax in oblique side impacts using equal stress equal velocity approach: comparison with other normalization methods.

    PubMed

    Yoganandan, Narayan; Arun, Mike W J; Humm, John; Pintar, Frank A

    2014-10-01

    The first objective of the study was to determine the thorax and abdomen deflection time corridors using the equal stress equal velocity approach from oblique side impact sled tests with postmortem human surrogates fitted with chestbands. The second purpose of the study was to generate deflection time corridors using impulse momentum methods and determine which of these methods best suits the data. An anthropometry-specific load wall was used. Individual surrogate responses were normalized to standard midsize male anthropometry. Corridors from the equal stress equal velocity approach were very similar to those from impulse momentum methods, thus either method can be used for this data. Present mean and plus/minus one standard deviation abdomen and thorax deflection time corridors can be used to evaluate dummies and validate complex human body finite element models.

  14. Large amplitude vibrations of laminated hybrid composite plates

    NASA Astrophysics Data System (ADS)

    Sarma, M. S.; Venkateshwar Rao, A.; Pillai, S. R. R.; Nageswara Rao, B.

    1992-12-01

    A general equation of motion for the nonlinear vibration of a rectangular plate is formulated using Kirchhoff's hypothesis and von Karman type strain-displacement relations. The formulation includes in-plane deformations and neglects the corresponding inertia terms. The amplitudes are written under assumption that mode shapes are approximately the fundamental modes which satisfy the boundary conditions of the problem. It is shown that the method can be used to easily calculate an excellent aproximation to the periodic solutions of the nonlinear antisymmetric quadratic oscillator.

  15. Effect of canard position and wing leading-edge flap deflection on wing buffet at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Henderson, W. P.; Huffman, J. K.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planform typical of highly maneuverable aircraft, was tested. The addition of a canard above the wing chord plane, for the configuration with leading-edge flaps undeflected, produced substantially higher total configuration lift coefficients before buffet onset than the configuration with the canard off and leading-edge flaps undeflected. The wing buffet intensity was substantially lower for the canard-wing configuration than the wing-alone configuration. The low-canard configuration generally displayed the poorest buffet characteristics. Deflecting the wing leading-edge flaps substantially improved the wing buffet characteristics for canard-off configurations. The addition of the high canard did not appear to substantially improve the wing buffet characteristics of the wing with leading-edge flaps deflected.

  16. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.; Akiyama, S.; Gopalswamy, N.

    2012-01-01

    The onset times and peak intensities of solar energetic particle (SEP) events at Earth have long been thought to be influenced by the open magnetic fields of coronal holes (CHs). The original idea was that a CH lying between the solar SEP source region and the magnetic footpoint of the 1 AU observer would result in a delay in onset and/or a decrease in the peak intensity of that SEP event. Recently, Gopalswamy et al. showed that CHs near coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven shocks may show variations attributable to CH deflections of the CME trajectories. Here, we use a CH magnetic force parameter to examine possible effects of CHs on the timing and intensities of 41 observed gradual E approx 20 MeV SEP events with CME source regions within 20 deg. of CM. We find no systematic CH effects on SEP event intensity profiles. Furthermore, we find no correlation between the CME leading-edge measured position angles and SEP event properties, suggesting that the widths of CME-driven shock sources of the SEPs are much larger than the CMEs. Independently of the SEP event properties, we do find evidence for significant CME deflections by CH fields in these events

  17. Evaluation of pavement design in Virginia based on layered deflections, subgrade and its moisture content.

    DOT National Transportation Integrated Search

    1974-01-01

    Studies were conducted to relate the deflection of flexible pavements to such environmental factors as temperature and moisture content of the pavements and their subgrade soils. Also considered were the thickness and the relative positions of the di...

  18. Sagittal and vertical load-deflection and permanent deformation of transpalatal arches connected with palatal implants: an in-vitro study.

    PubMed

    Crismani, Adriano G; Celar, Ales G; Burstone, Charles J; Bernhart, Thomas G; Bantleon, Hans-Peter; Mittlboeck, Martina

    2007-06-01

    The purposes of this laboratory investigation were to (1) measure the sagittal and vertical deflection of loaded transpalatal arches (TPAs) connected to a palatal implant, (2) measure the extent of permanent deformation of the connecting TPA in the sagittal and vertical directions, (3) test various wire dimensions in terms of deflection behavior, and (4) evaluate soldering vs laser welding vs adhesive bonding of TPAs in terms of load deflection behavior. Stainless steel wires of 6 dimensions were tested: 0.8 x 0.8, 0.9, 1, 1.1, 1.2, and 1.2 x 1.2 mm. For each dimension, 10 specimens were soldered to the palatal implant abutment, 10 were laser welded, and 10 were adhesively bonded to the implant abutment (total, 180 specimens). The measuring device applied increments of force of 50 cN, from 0 to 500 cN. Then the specimens were unloaded. The values were statistically described and analyzed with ANOVA and Wilcoxon rank sum tests. Absolute orthodontic anchorage without deformation of TPAs was not observed with the wire dimensions tested. To prevent loss of anchorage greater than 370 mum (sagittal deflection of 1.2 x 1.2 mm adhesively bonded TPA at 500 cN force level), wires thicker than 1.2 x 1.2 mm or cast anchorage elements must be considered for clinical practice. However, larger cross sections might cause more patient discomfort, and laboratory procedures increase costs.

  19. Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions

    PubMed Central

    Park, Yong-Lae; Elayaperumal, Santhi; Daniel, Bruce; Ryu, Seok Chang; Shin, Mihye; Savall, Joan; Black, Richard J.; Moslehi, Behzad; Cutkosky, Mark R.

    2015-01-01

    We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-μm-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner. PMID:26405428

  20. Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Photographer; NACA North American F-100A NASA-200 Super Sabre airplane - wing leading edge deflected 60 degrees for increased lift with boundary=layer control; takeoff preformance was improved 10% (mar 1960)

  1. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    NASA Astrophysics Data System (ADS)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  2. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices.

    PubMed

    Pilan, N; Antoni, V; De Lorenzi, A; Chitarin, G; Veltri, P; Sartori, E

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  3. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BSmore » to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.« less

  4. Cupula displacement, hair bundle deflection, and physiological responses in the transparent semicircular canal of young eel.

    PubMed

    Rüsch, A; Thurm, U

    1989-03-01

    The transparent labyrinth of young eels (Anguilla anguilla L.) was used in toto for studying the configuration of cupula displacement, deflection of the hair bundle, and correlated changes in transepithelial voltage (delta TEV) and nerve activity (delta NA) in the semicircular canal. Microcapillaries were introduced into the canal through holes produced by a microthermocauter. Mechanical stimulation was applied either by injection of fluid into the ampulla or by electromagnetically displacing ferrofluid as a piston within the canal. Motion of individual kinocilia, stained cupulae or the ferrofluid piston was analysed by double-exposed microphotographs, photodiodes, or a video-system. The three-dimensional cupula displacement configuration was found to be piston- to diaphragm-like. Hair bundles at different sites on the crista exhibit differences in amplitude and time course of deflection. The transfer factor between shifts of the canal fluid and the tips of the kinocilia is 0.4-0.6. Displacements in opposite directions induce delta TEV and delta NA of opposite sign. Various tests confirmed delta TEV to reflect receptor potential responses. Nerve activity adapts to a tonic response with a time constant of 6.4 s. No similar adaptation occurred in delta TEV. Stimulus-response curves of TEV- and NA-responses are similar and sigmoid in shape with saturation at ciliary deflections of roughly +6 degrees and -3 degrees.

  5. Simultaneous intrinsic and extrinsic calibration of a laser deflecting tilting mirror in the projective voltage space.

    PubMed

    Schneider, Adrian; Pezold, Simon; Baek, Kyung-Won; Marinov, Dilyan; Cattin, Philippe C

    2016-09-01

    PURPOSE  : During the past five decades, laser technology emerged and is nowadays part of a great number of scientific and industrial applications. In the medical field, the integration of laser technology is on the rise and has already been widely adopted in contemporary medical applications. However, it is new to use a laser to cut bone and perform general osteotomy surgical tasks with it. In this paper, we describe a method to calibrate a laser deflecting tilting mirror and integrate it into a sophisticated laser osteotome, involving next generation robots and optical tracking. METHODS  : A mathematical model was derived, which describes a controllable deflection mirror by the general projective transformation. This makes the application of well-known camera calibration methods possible. In particular, the direct linear transformation algorithm is applied to calibrate and integrate a laser deflecting tilting mirror into the affine transformation chain of a surgical system. RESULTS  : Experiments were performed on synthetic generated calibration input, and the calibration was tested with real data. The determined target registration errors in a working distance of 150 mm for both simulated input and real data agree at the declared noise level of the applied optical 3D tracking system: The evaluation of the synthetic input showed an error of 0.4 mm, and the error with the real data was 0.3 mm.

  6. Kalman filter-based EM-optical sensor fusion for needle deflection estimation.

    PubMed

    Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan

    2018-04-01

    In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.

  7. Deflection Analysis of the Space Shuttle External Tank Door Drive Mechanism

    NASA Technical Reports Server (NTRS)

    Tosto, Michael A.; Trieu, Bo C.; Evernden, Brent A.; Hope, Drew J.; Wong, Kenneth A.; Lindberg, Robert E.

    2008-01-01

    Upon observing an abnormal closure of the Space Shuttle s External Tank Doors (ETD), a dynamic model was created in MSC/ADAMS to conduct deflection analyses of the Door Drive Mechanism (DDM). For a similar analysis, the traditional approach would be to construct a full finite element model of the mechanism. The purpose of this paper is to describe an alternative approach that models the flexibility of the DDM using a lumped parameter approximation to capture the compliance of individual parts within the drive linkage. This approach allows for rapid construction of a dynamic model in a time-critical setting, while still retaining the appropriate equivalent stiffness of each linkage component. As a validation of these equivalent stiffnesses, finite element analysis (FEA) was used to iteratively update the model towards convergence. Following this analysis, deflections recovered from the dynamic model can be used to calculate stress and classify each component s deformation as either elastic or plastic. Based on the modeling assumptions used in this analysis and the maximum input forcing condition, two components in the DDM show a factor of safety less than or equal to 0.5. However, to accurately evaluate the induced stresses, additional mechanism rigging information would be necessary to characterize the input forcing conditions. This information would also allow for the classification of stresses as either elastic or plastic.

  8. ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.

    2010-04-10

    Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle {theta} {sub s}. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless {theta} {sub s}more » > 10 deg. and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.« less

  9. Effect of self-deflection on a totally asymmetric simple exclusion process with functions of site assignments

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Satori; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2018-04-01

    This study proposes a model of a totally asymmetric simple exclusion process on a single-channel lane with functions of site assignments along the pit lane. The system model attempts to insert a new particle to the leftmost site at a certain probability by randomly selecting one of the empty sites in the pit lane, and reserving it for the particle. Thereafter, the particle is directed to stop at the site only once during its travel. Recently, the system was determined to show a self-deflection effect, in which the site usage distribution biases spontaneously toward the leftmost site, and the throughput becomes maximum when the site usage distribution is slightly biased to the rightmost site. Our exact analysis describes this deflection effect and show a good agreement with simulations.

  10. Determining elastic moduli of materials in pavement systems by surface deflection data : a feasibility study.

    DOT National Transportation Integrated Search

    1975-01-01

    The determination of the elastic, or Young's, modulus, E, of the materials in each layer in an n-layered pavement system given the number, order, thicknesses, and Poisson's ratios of the layers, and the surface load and deflection data, is not possib...

  11. Small Deflection Energy Analyzer for Energy and Angular Distributions

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.

    2009-01-01

    The development of the Small Deflection Energy Analyzer (SDEA) charged-particle spectrometer for energy and angle distributions responds to a longstanding need to measure the wind velocity vector in Earth s thermosphere, and to obtain the ion-drift vector in the ionosphere. The air and ions above 120 km are endowed with bulk velocities and temperatures just like air near the ground, but with separate spatial and temporal variations. It is important to understand these not only for study of the physics and chemistry of the Sun-Earth connection, but also for spacecraft orbit predictions, and communications through the ionosphere. The SDEA consists of a pair of parallel conducting plates separated by a small distance, with an entrance slit on one end, and an exit slit on the other. A voltage applied to these plates develops an electric field between the plates, and this field deflects ions passing through it. If an ion has too little energy, it will strike one of the plates. If it has too much, it will strike the back wall. An ion with the amount of energy being searched for will have its trajectory bent just enough to exit the back slit. The SDEA units are compact, rectangular, and operate with low voltages. The units can be built up into small arrays. These arrays could be used either to widen the field of view or to sharpen an existing one. This approach can also be used to obtain angular distributions in two planes simultaneously, thus cutting down the ion source power requirements in half. This geometry has enabled a new mass-spectrometer concept that can provide miniaturized mass spectrometers for use in industrial plants, air-pollution monitoring, and noxious-gas detection.

  12. Planetary Defense: Options for Deflection of Near Earth Objects

    NASA Technical Reports Server (NTRS)

    Adams, R. B.; Statham, G.; Hopkins, R.; Chapman, J.; White, S.; Bonometti, J.; Alexander, R.; Fincher, S.; Polsgrove, T.; Kalkstein, M.

    2003-01-01

    Several recent near-miss encounters with asteroids and comets have focused attention on the threat of a catastrophic impact with the Earth. This document reviews the historical impact record and current understanding of the number and location of Near Earth Objects (NEO's) to address their impact probability. Various ongoing projects intended to survey and catalog the NEO population are also reviewed. Details are then given of an MSFC-led study, intended to develop and assess various candidate systems for protection of the Earth against NEOs. An existing program, used to model the NE0 threat, was extensively modified and is presented here. Details of various analytical tools, developed to evaluate the performance of proposed technologies for protection against the NEO threat, are also presented. Trajectory tools, developed to model the outbound path a vehicle would take to intercept or rendezvous with a target asteroid or comet, are described. Also, details are given of a tool that was created to model both the un-deflected inbound path of an NE0 as well as the modified, post-deflection, path. The number of possible options available for protection against the NE0 threat was too numerous for them to all be addressed within the study; instead, a representative selection were modeled and evaluated. The major output from this work was a novel process by which the relative effectiveness of different threat mitigation concepts can be evaluated during future, more detailed, studies. In addition, several new or modified mathematical models were developed to analyze various proposed protection systems. A summary of the major lessons learned during this study is presented, as are recommendations for future work. It is hoped that this study will serve to raise the level attention about this very real threat and also demonstrate that successful defense is both possible and practicable, provided appropriate steps are taken.

  13. The Remote Observing Working Group for the Asteroid Impact and Deflection Assessment (AIDA)

    NASA Astrophysics Data System (ADS)

    Rivkin, A. S.; Pravec, P.; Thomas, C. A.; Thirouin, A.; Snodgrass, C.; Green, S.; Licandro, J.; Sickafoose, A. A.; Erasmus, N.; Howell, E. S.; Osip, D.; Thomas-Osip, J.; Moskovitz, N.; Scheirich, P.; Oszkiewicz, D.; Richardson, D. C.; Polishook, D.; Ryan, W. H.; Busch, M. W.

    2017-09-01

    The Asteroid Impact and Deflection Assessment (AIDA) is a joint US-European mission concept designed to demonstrate the effectiveness of an kinetic impactor for planetary defense. Ground-based observing is a key component to AIDA and critical for its success. We present the observing campaign we have been conducting of the asteroid Didymos, the AIDA target, and plans for future work.

  14. Temperature and deflection data from the asymmetric heating of cross-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, Michael W.; Cooper, David E.; Tompkins, S. S.; Cohen, David

    1987-01-01

    Data generated while heating several cross-ply graphite-epoxy tubes on one side, along their lengths, and cooling them on the other side are presented. This heating arrangement produces a circumferential temperature gradient, and the data show that the gradient can be represented by a cosinusoidal temperature distribution. The thermally induced bending deflections caused by the temperature gradient are also presented.

  15. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections

    PubMed Central

    Vicente, Miguel A.; Gonzalez, Dorys C.; Minguez, Jesus; Schumacher, Thomas

    2018-01-01

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation. PMID:29587380

  16. A Novel Laser and Video-Based Displacement Transducer to Monitor Bridge Deflections.

    PubMed

    Vicente, Miguel A; Gonzalez, Dorys C; Minguez, Jesus; Schumacher, Thomas

    2018-03-25

    The measurement of static vertical deflections on bridges continues to be a first-level technological challenge. These data are of great interest, especially for the case of long-term bridge monitoring; in fact, they are perhaps more valuable than any other measurable parameter. This is because material degradation processes and changes of the mechanical properties of the structure due to aging (for example creep and shrinkage in concrete bridges) have a direct impact on the exhibited static vertical deflections. This paper introduces and evaluates an approach to monitor displacements and rotations of structures using a novel laser and video-based displacement transducer (LVBDT). The proposed system combines the use of laser beams, LED lights, and a digital video camera, and was especially designed to capture static and slow-varying displacements. Contrary to other video-based approaches, the camera is located on the bridge, hence allowing to capture displacements at one location. Subsequently, the sensing approach and the procedure to estimate displacements and the rotations are described. Additionally, laboratory and in-service field testing carried out to validate the system are presented and discussed. The results demonstrate that the proposed sensing approach is robust, accurate, and reliable, and also inexpensive, which are essential for field implementation.

  17. The vacuole model: new terms in the second order deflection of light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Amrita; Nandi, Kamal K.; Garipova, Guzel M.

    2011-02-01

    The present paper is an extension of a recent work (Bhattacharya et al. 2010) to the Einstein-Strauss vacuole model with a cosmological constant, where we work out the light deflection by considering perturbations up to order M{sup 3} and confirm the light bending obtained previously in their vacuole model by Ishak et al. (2008). We also obtain another local coupling term −5πM{sup 2}Λ/8 related to Λ, in addition to the one obtained by Sereno (2008, 2009). We argue that the vacuole method for light deflection is exclusively suited to cases where the cosmological constant Λ disappears from the path equation.more » However, the original Rindler-Ishak method (2007) still applies even if a certain parameter γ of Weyl gravity does not disappear. Here, using an alternative prescription, we obtain the known term −γR/2, as well as another new local term 3πγM/2 between M and γ. Physical implications are compared, where we argue that the repulsive term −γR/2 can be masked by the Schwarzschild term 2M/R in the halo regime supporting attractive property of the dark matter.« less

  18. The influence of distal-end heat treatment on deflection of nickel-titanium archwire.

    PubMed

    Silva, Marcelo Faria da; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. There were no statistically significant differences between the tested groups with the same size and brand of wire. Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions.

  19. Systems definition study for shuttle demonstration flights of large space structures. Volume 3: Thermal analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    the development of large space structure technology is discussed. A detailed thermal analysis of a model space fabricated 1 meter beam is presented. Alternative thermal coatings are evaluated, and deflections, stresses, and stiffness variations resulting from flight orientations and solar conditions are predicted.

  20. Photogrammetric Deflection Measurements for the Tiltrotor Test Rig (TTR) Multi-Component Rotor Balance Calibration

    NASA Technical Reports Server (NTRS)

    Solis, Eduardo; Meyn, Larry

    2016-01-01

    Calibrating the internal, multi-component balance mounted in the Tiltrotor Test Rig (TTR) required photogrammetric measurements to determine the location and orientation of forces applied to the balance. The TTR, with the balance and calibration hardware attached, was mounted in a custom calibration stand. Calibration loads were applied using eleven hydraulic actuators, operating in tension only, that were attached to the forward frame of the calibration stand and the TTR calibration hardware via linkages with in-line load cells. Before the linkages were installed, photogrammetry was used to determine the location of the linkage attachment points on the forward frame and on the TTR calibration hardware. Photogrammetric measurements were used to determine the displacement of the linkage attachment points on the TTR due to deflection of the hardware under applied loads. These measurements represent the first photogrammetric deflection measurements to be made to support 6-component rotor balance calibration. This paper describes the design of the TTR and the calibration hardware, and presents the development, set-up and use of the photogrammetry system, along with some selected measurement results.

  1. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity

    PubMed Central

    Prudic, Kathleen L.; Stoehr, Andrew M.; Wasik, Bethany R.; Monteiro, Antónia

    2015-01-01

    Some eyespots are thought to deflect attack away from the vulnerable body, yet there is limited empirical evidence for this function and its adaptive advantage. Here, we demonstrate the conspicuous ventral hindwing eyespots found on Bicyclus anynana butterflies protect against invertebrate predators, specifically praying mantids. Wet season (WS) butterflies with larger, brighter eyespots were easier for mantids to detect, but more difficult to capture compared to dry season (DS) butterflies with small, dull eyespots. Mantids attacked the wing eyespots of WS butterflies more frequently resulting in greater butterfly survival and reproductive success. With a reciprocal eyespot transplant, we demonstrated the fitness benefits of eyespots were independent of butterfly behaviour. Regardless of whether the butterfly was WS or DS, large marginal eyespots pasted on the hindwings increased butterfly survival and successful oviposition during predation encounters. In previous studies, DS B. anynana experienced delayed detection by vertebrate predators, but both forms suffered low survival once detected. Our results suggest predator abundance, identity and phenology may all be important selective forces for B. anynana. Thus, reciprocal selection between invertebrate and vertebrate predators across seasons may contribute to the evolution of the B. anynana polyphenism. PMID:25392465

  2. Free-standing thermalized graphene: a hard/soft hybrid

    NASA Astrophysics Data System (ADS)

    Nelson, David

    2015-03-01

    Understanding deformations of macroscopic thin plates and shells has a long and rich history, culminating with the Foeppl-von Karman equations in 1904. These highly nonlinear equations are characterized by a dimensionless coupling constant (the ``Foeppl-von Karman number'') that can easily reach vK = 107 in an ordinary sheet of writing paper. Since the late 1980's, it has been clear that thermal fluctuations in microscopically thin elastic membranes fundamentally alter the long wavelength physics, leading to a negative thermal expansion coefficient, and a strongly scale-dependent bending energy and Young's modulus. Recent experiments from the McEuen group at Cornell that twist and bend individual atomically-thin free-standing graphene sheets (with vK = 1013!) call for a theory of the mechanical deformation of thermally excited membranes with large Foeppl-von Karman number. We present here results for the bending and pulling of thermalized graphene ribbons and tabs in the cantilever mode. Work done in collaboration with Andrej Kosmrlj.

  3. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy.

    PubMed

    Mullin, Nic; Hobbs, Jamie K

    2014-11-01

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  4. Monitoring channel morphology and bluff erosion at two installations of flow-deflecting vanes, North Fish Creek, Wisconsin, 2000-03

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; Schwar, Heather E.; Hoopes, John A.; Diebel, Matthew W.

    2005-01-01

    Flow-deflecting vanes were installed in the streambed along two meander bends with eroding bluffs in 2000 and 2001 in the upper main stem of North Fish Creek, a tributary to Lake Superior in Wisconsin. About 45 vanes were arranged in 15 arrays at each site to deflect the flow away from the eroding toe or base of the bluff (outside of a bend) and toward the point bar (inside of a bend). Channel cross-section and bluff-erosion surveys were done and streamflow and stage were measured before, during, and after vane installation to monitor changes in channel morphology and bluff erosion in the context of hydrologic conditions. There were two large floods in the study area in spring 2001 (recurrence interval of approximately 100 years) and in spring 2002 (recurrence intervals of approximately 50 years). Some maintenance and replacement of vanes were needed after the floods. Most of the channel-morphology changes resulted from the large floods, and fewer changes resulted from near-bankfull or at-bankfull flows (one in October 2002 and four in April and May 2003). At the bluff located 16.4 river miles upstream of the creek mouth (site 16.4), the vanes deflected flow and caused the channel to migrate away from the base of the bluff and toward the point bar, allowing sediment to deposit along the bluff base. The 361-foot reach at site 16.4 had a net gain of 6,740 cubic feet of sediment over the entire monitoring period (2000?03). Deposition (10,660 cubic feet) occurred mainly along the base of the bluff in the downstream part of the bend. Erosion occurred at site 16.4 along the streambed, the point bar side of the channel, and along a midchannel bar (1,220, 1,610, and 1,090 cubic feet, respectively). Less channel migration was observed during 2001-03 at another bluff located 12.2 river miles upstream of the creek mouth (site 12.2), which had a net loss of sediment through the 439-foot reach of 2,800 cubic feet over the monitored time period. The main volume of sediment was

  5. Direct measurement of Vorticella contraction force by micropipette deflection.

    PubMed

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm -1 of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Experimental Study on the Axis Line Deflection of Ti6A14V Titanium Alloy in Gun-Drilling Process

    NASA Astrophysics Data System (ADS)

    Li, Liang; Xue, Hu; Wu, Peng

    2018-01-01

    Titanium alloy is widely used in aerospace industry, but it is also a typical difficult-to-cut material. During Deep hole drilling of the shaft parts of a certain large aircraft, there are problems of bad surface roughness, chip control and axis deviation, so experiments on gun-drilling of Ti6A14V titanium alloy were carried out to measure the axis line deflection, diameter error and surface integrity, and the reasons of these errors were analyzed. Then, the optimized process parameter was obtained during gun-drilling of Ti6A14V titanium alloy with deep hole diameter of 17mm. Finally, we finished the deep hole drilling of 860mm while the comprehensive error is smaller than 0.2mm and the surface roughness is less than 1.6μm.

  7. Challenges of deflecting an asteroid or cometary nucleus with a nuclear burst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Paul A; Plesko, Cathy S; Clement, Ryan R C

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunami, hurricanes, floods, asteroid strikes, and so on. Many of these disasters occur slowly enough that some advance warning of which areas will be affected is possible. However, in almost all cases, the response is to evacuate the area to be affected and deal with the damage later. The evacuations for hurricanes Katrina and Rita on the US Gulf Coast in 2005 demonstrated the chaos that can result. In contrast with other natural disasters. it is likely that an asteroid or cometary nucleus onmore » a collision course with Earth is likely to be detected with enough warning time to possibly deflect it away from the collision course. Thanks to near-Earth object (NEO) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx}140 meters in the next decade. The question is how to mitigate the threat from an asteroid or cometary nucleus found to be on a collision course. We briefly review some possible methods, describing their good and bad points, and then embark on a more detailed description of using a nuclear munition in standoff mode to deflect an asteroid or cometary nucleus before it can hit Earth.« less

  8. Noncontacting devices to indicate deflection and vibration of turbopump internal rotating parts

    NASA Technical Reports Server (NTRS)

    Hamilton, D. B.; Ensminger, D.; Grieser, D. R.; Plummer, A. M.; Saccocio, E. J.; Kissel, J. W.

    1973-01-01

    The research is reported which was conducted to develop devices for measuring vibrations and deflections of parts, such as impellers, shafts, turbine wheels, and inducers in operating turbopumps. Three devices were developed to the breadboard stage: ultrasonic Doppler transducer, flash X-rays, and light-pipe reflectance. It was found that the X-ray technique is applicable to the shaft assembly and the turbine seal of the J-2 pump, and the light-pipe-reflectance device appears to be ideal for cryogenic pump sections.

  9. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat’s principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkus, Harun, E-mail: physicisthakkus@gmail.com

    2013-12-15

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle.

  10. The influence of distal-end heat treatment on deflection of nickel-titanium archwire

    PubMed Central

    da Silva, Marcelo Faria; Pinzan-Vercelino, Célia Regina Maia; Gurgel, Júlio de Araújo

    2016-01-01

    Objective: The aim of this in vitro study was to evaluate the deflection-force behavior of nickel-titanium (NiTi) orthodontic wires adjacent to the portion submitted to heat treatment. Material and Methods: A total of 106 segments of NiTi wires (0.019 x 0.025-in) and heat-activated NiTi wires (0.016 x 0.022-in) from four commercial brands were tested. The segments were obtained from 80 archwires. For the experimental group, the distal portion of each segmented archwire was subjected to heat treatment (n = 40), while the other distal portion of the same archwire was used as a heating-free control group (n = 40). Deflection tests were performed in a temperature-controlled universal testing machine. Unpaired Student's t-tests were applied to determine if there were differences between the experimental and control groups for each commercial brand and size of wire. Statistical significance was set at p < 0.05. Results: There were no statistically significant differences between the tested groups with the same size and brand of wire. Conclusions: Heat treatment applied to the distal ends of rectangular NiTi archwires does not permanently change the elastic properties of the adjacent portions. PMID:27007766

  11. Effect of dry heat and steam sterilization on load-deflection characteristics of β-titanium wires: An in vitro study

    PubMed Central

    Alavi, Shiva; Sinaee, Neda

    2012-01-01

    Background: Sterilization techniques could affect the characteristics of orthodontic wires. The aim of the present study was to evaluate the effect of steam and dry heat sterilization techniques on load-deflection behavior of five types of β-titanium alloy wires. Materials and Methods: The samples consisted of 30 straight lengths of five types of β-titanium alloy wires: Titanium Molybdenum Alloy (TMA) Low Friction (TMAL), TMA Low Friction Colored (HONE), Resolve (RES), BetaForce (BETA), and BETA CNA (CNA). Thirty wire segments were divided into three groups of 10. Group 1 was the control group and the group 2 samples were sterilized by dry heat in an oven (60 minutes at 160°C) and group 3 by steam in an autoclave (15 minutes at 121°C). Then all the wire samples underwent a three-point bending test in a testing machine to evaluate load-deflection properties. Data was analyzed by repeated measures ANOVA and Scheffé's test (α = 0.05). Results: The results showed that dry heat sterilization significantly increased force levels during both loading and unloading of CNA, BETA and RES and during loading of HONE (P < 0.05). Steam sterilization significantly increased force levels during both loading and unloading of BETA and during unloading of HONE (P < 0.05), with no effects on the load-deflection characteristics of TMAL, CNA and RES (P > 0.05). Conclusion: It appears dry heat sterilization increases stiffness of RES, BETA, CNA and HONE but autoclave sterilization did not have any effect on load-deflection characteristics of most of the β-titanium wires tested, indicating that clinicians who want to provide maximum safety for their patients can autoclave TMAL, RES and CNA before applying them. PMID:23559917

  12. An Examination of Parameters Affecting Large Eddy Simulations of Flow Past a Square Cylinder

    NASA Technical Reports Server (NTRS)

    Mankbadi, M. R.; Georgiadis, N. J.

    2014-01-01

    Separated flow over a bluff body is analyzed via large eddy simulations. The turbulent flow around a square cylinder features a variety of complex flow phenomena such as highly unsteady vortical structures, reverse flow in the near wall region, and wake turbulence. The formation of spanwise vortices is often times artificially suppressed in computations by either insufficient depth or a coarse spanwise resolution. As the resolution is refined and the domain extended, the artificial turbulent energy exchange between spanwise and streamwise turbulence is eliminated within the wake region. A parametric study is performed highlighting the effects of spanwise vortices where the spanwise computational domain's resolution and depth are varied. For Re=22,000, the mean and turbulent statistics computed from the numerical large eddy simulations (NLES) are in good agreement with experimental data. Von-Karman shedding is observed in the wake of the cylinder. Mesh independence is illustrated by comparing a mesh resolution of 2 million to 16 million. Sensitivities to time stepping were minimized and sampling frequency sensitivities were nonpresent. While increasing the spanwise depth and resolution can be costly, this practice was found to be necessary to eliminating the artificial turbulent energy exchange.

  13. Toward Identifying Needed Investments in Modeling and Simulation Tools for NEO Deflection Planning

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.

    2009-01-01

    Its time: a) To bring planetary scientists, deflection system investigators and vehicle designers together on the characterization/mitigation problem. b) To develop a comprehensive trade space of options. c) To trade options under a common set of assumptions and see what comparisons on effectiveness can be made. d) To explore the synergy that can be had with proposed scientific and exploration architectures while interest in NEO's are at an all time high.

  14. Deflecting Rayleigh surface acoustic waves by a meta-ridge with a gradient phase shift

    NASA Astrophysics Data System (ADS)

    Xu, Yanlong; Yang, Zhichun; Cao, Liyun

    2018-05-01

    We propose a non-resonant meta-ridge to deflect Rayleigh surface acoustic waves (RSAWs) according to the generalized Snell’s law with a gradient phase shift. The gradient phase shift is predicted by an analytical formula, which is related to the path length of the traveling wave. The non-resonant meta-ridge is designed based on the characteristics of the RSAW: it only propagates along the interface with a penetration depth, and it is dispersion-free with a constant phase velocity. To guarantee that the characteristics are still valid when RSAWs propagate in a three-dimensional (3D) structure, grooves are employed to construct the supercell of the meta-ridge. The horizontal length, inclined angle, and thickness of the ridge, along with the filling ratio of the groove, are parametrically examined step by step to investigate their influences on the propagation of RSAWs. The final 3D meta-ridges are designed theoretically and their capability of deflecting the incident RSAWs are validated numerically. The study presents a new method to control the trajectory of RSAWs, which will be conducive to developing innovative devices for surface acoustic waves.

  15. Guide Vanes for Deflecting Fluid Currents with Small Loss of Energy

    NASA Technical Reports Server (NTRS)

    Krober, G

    1933-01-01

    The transverse momentum of the deflected air stream to be absorbed is divided between the intermediate and outside walls, so that the pressure increase on each wall is much smaller and the danger of separation is diminished. The formation of secondary vortices is also diminished. By taking as the basis profiles with high c(sub a), such as have proved practically favorable, it is not possible to find a satisfactory form of grid simply on the assumption that the flow is potential. The requirements called for the most uniform possible velocity distribution behind the bend and the smallest possible losses.

  16. Residual stresses in high temperature corrosion of pure zirconium using elasto-viscoplastic model: Application to the deflection test in monofacial oxidation

    NASA Astrophysics Data System (ADS)

    Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.

    2015-12-01

    The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.

  17. Self-contained instrument for measuring subterranean tunnel wall deflection

    DOEpatents

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  18. Static deflection control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A. M.

    1986-01-01

    This study deals with the utilization of piezo-electric actuators in controlling the static deformation of flexible beams. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezo-electric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing the structural deformation of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezo-electric actuators. The results obtained emphasize the importance of the devised rational procedure in designing beam-actuator systems with minimal elastic distortions.

  19. Luminal esophageal temperature monitoring with a deflectable esophageal temperature probe and intracardiac echocardiography may reduce esophageal injury during atrial fibrillation ablation procedures: results of a pilot study.

    PubMed

    Leite, Luiz R; Santos, Simone N; Maia, Henrique; Henz, Benhur D; Giuseppin, Fábio; Oliverira, Anderson; Zanatta, André R; Peres, Ayrton K; Novakoski, Clarissa; Barreto, Jose R; Vassalo, Fabrício; d'Avila, Andre; Singh, Sheldon M

    2011-04-01

    Luminal esophageal temperature (LET) monitoring is one strategy to minimize esophageal injury during atrial fibrillation ablation procedures. However, esophageal ulceration and fistulas have been reported despite adequate LET monitoring. The objective of this study was to assess a novel approach to LET monitoring with a deflectable LET probe on the rate of esophageal injury in patients undergoing atrial fibrillation ablation. Forty-five consecutive patients undergoing an atrial fibrillation ablation procedure followed by esophageal endoscopy were included in this prospective observational pilot study. LET monitoring was performed with a 7F deflectable ablation catheter that was positioned as close as possible to the site of left atrial ablation using the deflectable component of the catheter guided by visualization of its position on intracardiac echocardiography. Ablation in the posterior left atrial was limited to 25 W and terminated when the LET increased 2°C from baseline. Endoscopy was performed 1 to 2 days after the procedure. All patients had at least 1 LET elevation >2°C necessitating cessation of ablation. Deflection of the LET probe was needed to accurately measure LET in 5% of patients when ablating near the left pulmonary veins, whereas deflection of the LET probe was necessary in 88% of patients when ablating near the right pulmonary veins. The average maximum increase in LET was 2.5±1.5°C. No patients had esophageal thermal injury on follow-up endoscopy. A strategy of optimal LET probe placement using a deflectable LET probe and intracardiac echocardiography guidance, combined with cessation of radiofrequency ablation with a 2°C rise in LET, may reduce esophageal thermal injury during left atrial ablation procedures.

  20. Relativistic iron lines in accretion disks: the contribution of higher order images in the strong deflection limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldi, Giulio Francesco; Bozza, Valerio, E-mail: giuliofrancesco.aldi@sa.infn.it, E-mail: valboz@sa.infn.it

    The shapes of relativistic iron lines observed in spectra of candidate black holes carry the signatures of the strong gravitational fields in which the accretion disks lie. These lines result from the sum of the contributions of all images of the disk created by gravitational lensing, with the direct and first-order images largely dominating the overall shapes. Higher order images created by photons tightly winding around the black holes are often neglected in the modeling of these lines, since they require a substantially higher computational effort. With the help of the strong deflection limit, we present the most accurate semi-analyticalmore » calculation of these higher order contributions to the iron lines for Schwarzschild black holes. We show that two regimes exist depending on the inclination of the disk with respect to the line of sight. Many useful analytical formulae can be also derived in this framework.« less

  1. Gravitational and relativistic deflection of X-ray superradiance

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Te; Ahrens, Sven

    2015-03-01

    Einstein predicted that clocks at different altitudes tick at various rates under the influence of gravity. This effect has been observed using 57Fe Mössbauer spectroscopy over an elevation of 22.5 m (ref. 1) or by comparing accurate optical clocks at different heights on a submetre scale. However, challenges remain in finding novel methods for the detection of gravitational and relativistic effects on more compact scales. Here, we investigate a scheme that potentially allows for millimetre- to submillimetre-scale studies of the gravitational redshift by probing a nuclear crystal with X-rays. Also, a rotating crystal can force interacting X-rays to experience inhomogeneous clock tick rates within it. We find that an association of gravitational redshift and special-relativistic time dilation with quantum interference is manifested by a time-dependent deflection of X-rays. The scheme suggests a table-top solution for probing gravitational and special-relativistic effects, which should be within the reach of current experimental technology.

  2. NEO-LISP: Deflecting near-Earth objects using high average power, repetitively pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.; Michaelis, M. M.

    Several kinds of Near-Earth objects exist for which one would like to cause modest orbit perturbations, but which are inaccessible to normal means of interception because of their number, distance or the lack of early warning. For these objects, LISP (Laser Impulse Space Propulsion) is an appropriate technique for rapidly applying the required mechanical impulse from a ground-based station. In order of increasing laser energy required, examples are: (1) repositioning specially prepared geosynchronous satellites for an enhanced lifetime; (2) causing selected items of space junk to re-enter and burn up in the atmosphere on a computed trajectory; and (3) safely deflecting Earth-directed comet nuclei and earth-crossing asteroids (ECA's) a few tens of meters in size (the most hazardous size). They will discuss each of these problems in turn and show that each application is best matched by its own matrix of LISP laser pulse width, pulse repetition rate, wavelength and average power. The latter ranges from 100W to 3GW for the cases considered. They will also discuss means of achieving the active beam phase error correction during passage through the atmosphere and very large exit pupil in the optical system which are required in each of these cases.

  3. Polymerization shrinkage and spherical glass mega fillers: effects on cuspal deflection

    PubMed Central

    BASSI, M. ANDREASI; SERRA, S.; ANDRISANI, C.; LICO, S.; BAGGI, L.; LAURITANO, D.

    2016-01-01

    SUMMARY Purpose The Authors analyzed the effect of spherical glass mega fillers (SGMF) on reducing contraction stress in dental composite resins, by means of a cavity model simulating the cuspal deflection which occurs on filled tooth cavity walls in clinical condition. Materials and methods 20 stylized MOD cavities (C-factor = 0.83) were performed in acrylic resin. The inner surface of each cavity was sand blasted and adhesively treated in order to ensure a valid bond with the composite resin. Three different diameter of SGMF were used (i.e. 1, 1,5, 2 mm). The samples were divided in 4 groups of 5 each: Group 1 samples filled with the composite only; Group 2 samples filled with composite added with SGMFs, Ø1mm (16 spheres for each sample); Group 3 samples filled with composite added with SGMFs, Ø1,5 mm (5 spheres for each sample); Group 4 samples filled with composite added with SGMFs, Ø2 mm (2 spheres for each sample). Digital pictures were taken, in standardized settings, before and immediately after the polymerization of the composite material, placed into the cavities. With a digital image analysis software the distances from the coronal reference points of the cavity walls were measured. Then the difference between the first and second measurement was calculated. The data were analyzed by means of the ANOVA test. Results A significative reduction on cavity walls deflection, when the composite resin is used in addiction with the SGMFs was observed. The SGMFs of smallest diameter (1mm) showed the better outcome. Conclusion The SGMFs are reliable in reducing contraction stress in dental composite resins. PMID:28280535

  4. The Calculated Effect of Various Hydrodynamic and Aerodynamic Factors on the Take-Off of a Large Flying Boat

    NASA Technical Reports Server (NTRS)

    Olson, R.E.; Allison, J.M.

    1939-01-01

    Present designs for large flying boats are characterized by high wing loading, high aspect ratio, and low parasite drag. The high wing loading results in the universal use of flaps for reducing the takeoff and landing speeds. These factors have an effect on takeoff performance and influence to a certain extent the design of the hull. An investigation was made of the influence of various factors and design parameters on the takeoff performance of a hypothetical large flying boat by means of takeoff calculations. The parameters varied in the calculations were size of hull (load coefficient), wing setting, trim, deflection of flap, wing loading, aspect ratio, and parasite drag. The takeoff times and distances were calculated to the stalling speeds and the performance above these speeds was studied separately to determine piloting technique for optimum takeoff. The advantage of quick deflection of the flap at high water speeds is shown.

  5. Wind tunnel investigation of the aerodynamic characteristics of symmetrically deflected ailerons of the F-8C airplane. [conducted in the Langley 8-foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Gera, J.

    1977-01-01

    A .042-scale model of the F-8C airplane was investigated in a transonic wind tunnel at high subsonic Mach numbers and a range of angles of attack between-3 and 20 degrees. The effect of symmetrically deflected ailerons on the longitudinal aerodynamic characteristics was measured. Some data were also obtained on the lateral control effectiveness of asymmetrically deflected horizontal tail surfaces.

  6. The effect of cycling deflection on the injection-molded thermoplastic denture base resins.

    PubMed

    Hamanaka, Ippei; Iwamoto, Misa; Lassila, Lippo Vj; Vallittu, Pekka K; Shimizu, Hiroshi; Takahashi, Yutaka

    2016-01-01

    The aim of this study was to evaluate the effect of cycling deflection on the flexural behavior of injection-molded thermoplastic resins. Six injection-molded thermoplastic resins (two polyamides, two polyesters, one polycarbonate, one polymethyl methacrylate) and, as a control, a conventional heat-polymerized denture based polymer of polymethyl methacrylate (PMMA) were used in this study. The cyclic constant magnitude (1.0 mm) of 5000 cycles was applied using a universal testing machine to demonstrate plasticization of the polymer. Loading was carried out in water at 23ºC with eight specimens per group (n = 8). Cycling load (N) and deformation (mm) were measured. Force required to deflect the specimens during the first loading cycle and final loading cycle was statistically significantly different (p < 0.05) with one polyamide based polymer (Valplast) and PMMA based polymers (Acrytone and Acron). The other polyamide based polymer (LucitoneFRS), polyester based polymers (EstheShot and EstheShotBright) and polycarbonate based polymer (ReigningN) did not show significant differences (p > 0.05). None of the materials fractured during the loading test. One polyamide based polymer (Valplast) displayed the highest deformation and PMMA based polymers (Acrytone and Acron) exhibited the second highest deformation among the denture base materials. It can be concluded that there were considerable differences in the flexural behavior of denture base polymers. This may contribute to the fatigue resistance of the materials.

  7. Graphene-polydimethylsiloxane/chromium bilayer-based flexible, reversible, and large bendable photomechanical actuators

    NASA Astrophysics Data System (ADS)

    Leeladhar; Raturi, Parul; Kumar, Ajeet; Singh, J. P.

    2017-09-01

    We demonstrate the fabrication of highly versatile photomechanical actuators based on graphene-polymer/metal bilayers that offers fast, low-cost fabrication, large deflection, reversible actuation under zero applied pre-strain, and wavelength-selective response. The photomechanical actuator consists of a graphene nanoplatelet (GNP)-polydimethylsiloxane (PDMS) nanocomposite with a thin chromium metal coating of 35 nm thickness on the backside of the structure. The photomechanical response of the GNP-PDMS/Cr photomechanical actuator was measured by recording the variation of the bending angle upon infrared (IR) light illumination. The bending in the bilayer actuator is caused by the generation of thermal stress due to the large mismatch (the ratio being 1/20) of the thermal expansion coefficient between the two layers as a result of IR absorption by GNPs and a subsequent increase in the local temperature. The maximum bending angle was found to be about 40 degrees with a corresponding large deflection value of about 6-7 mm within 6 s for IR illumination with an intensity of 550 mW cm-2. The corresponding actuation response and relaxation times were about 1 and 3 s, respectively. The GNP-PDMS/Cr bilayer combination when integrated with the standard surface micromachining technique of micro-electromechanical system fabrication can find useful applications in the realization of micro soft-robotics, controlled drug delivery, and light-driven micro switches i.e. micro-optomechanical systems.

  8. Large-Scale Wind-Tunnel Tests of an Airplane Model with an Unswept, Tilt Wing of Aspect Ratio 5.5, and with Four Propellers and Blowing Flaps

    NASA Technical Reports Server (NTRS)

    Weiberg, James A.; Holzhauser, Curt A.

    1961-01-01

    Tests were made of a large-scale tilt-wing deflected-slipstream VTOL airplane with blowing-type BLC trailing-edge flaps. The model was tested with flap deflections of 0 deg. without BLC, 50 deg. with and without BLC, and 80 deg. with BLC for wing-tilt angles of 0, 30, and 50 deg. Included are results of tests of the model equipped with a leading-edge flap and the results of tests of the model in the presence of a ground plane.

  9. Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source.

    PubMed

    Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi

    2014-01-20

    The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.

  10. From detection to deflection: Mitigation techniques for hidden global threats of natural space objects with short warning time

    NASA Astrophysics Data System (ADS)

    Hussein, Alaa; Rozenheck, Oshri; Entrena Utrilla, Carlos Manuel

    2016-09-01

    Throughout recorded history, hundreds of Earth impacts have been reported, with some catastrophic localized consequences. Based on the International Space University (ISU) Planetary Defense project named READI, we address the impact event problem by giving recommendations for the development of a planetary defense program. This paper reviews the current detection and tracking techniques and gives a set of recommendations for a better preparation to shield Earth from asteroid and cometary impacts. We also extend the use of current deflection techniques and propose a new compilation of those to deflect medium-sized potentially hazardous objects (PHOs). Using an array of techniques from high-energy lasers to defensive missiles, we present a set of protective layers to defend our planet. The paper focused on threats with a short warning period from discovery to impact with Earth, within few years.

  11. Membrane wrinkling patterns and control with SMA and SMPC actuators

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Li, Yunliang; Tan, Huifeng; Zhou, Limin

    2009-07-01

    Wrinkling is a main factor affecting the performance of the membrane structures and is always considered to be a failure as it can cause dramatic decrease of shape accuracy. The study of membrane wrinkling control has the analytical and experimental meanings. In this paper, a feasible membrane shape control method is presented. An expression of wrinkle wavelength using stress extremum principle is established based on the tension field theory and the Von Karman large deflection formula which verifies the generation and evolution reason of membrane wrinkles. The control mechanism for membrane wrinkles is developed using shape memory alloy (SMA) and shape memory polymer composite (SMPC) actuators which are attached to the boundaries of the membrane for producing contraction/expansion forces to adjust the shape of the membrane. The whole control process is monitored by photogrammetric technique. Numerical simulations are also conducted using ANSYS finite element software with the nonlinear post-buckling analytical method. Both the experimental and numerical results show that the amplitudes of wrinkles are effectively controlled by SMA and SMPC actuators. The method introduced in this paper provides the foundation for shape control of the membrane wrinkling and is important to the future work on vibration control of space membrane structures.

  12. An Investigation of Wing and Aileron Loads Due to Deflected Inboard and Outboard Ailerons on a 4-Percent-Thick 30 deg Sweptback Wing at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Whitcomb, Charles F.; Critzos, Chris C.; Brown, Philippa F.

    1961-01-01

    An investigation has been conducted in the Langley 16-foot transonic tunnel to determine the changes in wing loading characteristics due to deflections of a plain faired flap-type inboard aileron, a plain faired flap-type outboard aileron, and a slab-sided thickened trailing edge outboard aileron. The test wing was 4 percent thick and had 30 sweep of the quarter chord, an aspect ratio of 3.0, a taper ratio of 0.2, and NACA 65A004 airfoil sections. The loading characteristics of the deflected ailerons were also investigated. The model was a sting-mounted wing-body combination, and pressure measurements over one wing panel (exposed area) and the ailerons were obtained for angles of attack from 0 to 20 at deflections up to +/- 15 deg for Mach numbers between 0.80 and 1.03. The test Reynolds number based on the wing mean aerodynamic chord was about 7.4 x 10(exp 6). The results of the investigation indicated that positive deflection of the plain faired flap-type inboard aileron caused significant added loading over the wing sections outboard of the aileron at all Mach numbers for model angles of attack from 0 deg or 4 deg up to 12 deg. Positive deflection of the two outboard ailerons (plain faired and slab sided with thickened trailing edge) caused significant added loading over the wing sections inboard of the ailerons for different model angle-of-attack ranges at the several test Mach numbers. The loading shapes over the ailerons were irregular and would be difficult to predict from theoretical considerations in the transonic speed range. The longitudinal and lateral center-of-pressure locations for the ailerons varied only slightly with increasing angle of attack and/or Mach number. Generally, the negative slopes of the variations of aileron hinge-moment coefficient with aileron deflection for all three ailerons varied similarly with Mach number at the test angles of attack.

  13. A static predictor of seismic demand on frames based on a post-elastic deflected shape

    USGS Publications Warehouse

    Mori, Y.; Yamanaka, T.; Luco, N.; Cornell, C.A.

    2006-01-01

    Predictors of seismic structural demands (such as inter-storey drift angles) that are less time-consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square-root-of-sum-of-squares (SRSS) rule by taking a first-mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post-elastic first-mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single-degree-of-freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third-mode response for long-period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright ?? 2006 John Wiley & Sons, Ltd.

  14. Post Deflection Impact Risk Analysis of the Double Asteroid Redirection Test (DART)

    NASA Astrophysics Data System (ADS)

    Eggl, S.; Hestroffer, D.

    2017-09-01

    Collisions between potentially hazardous near-Earth objects and our planet are among the few natural disasters that can be avoided by human intervention. The complexity of such an endeavor necessitates an asteroid orbit deflection test mission, however, ensuring all relevant knowledge is present when an asteroid on a collision course with the Earth is indeed discovered. The double asteroid redirection test (DART) mission concept currently investigated by NASA would serve such a purpose. The aim of our research is to make certain that DART does not turn a previously harmless asteroid into a potentially dangerous one.

  15. Deflected Propagation of Coronal Mass Ejections: One of the Key Issues in Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shen, C.; Zhuang, B.; Pan, Z.

    2016-12-01

    As the most important driver of severe space weather, coronal mass ejections (CMEs) and their geoeffectiveness have been studied intensively. Previous statistical studies have shown that not all the front-side halo CMEs are geoeffective, and not all non-recurrent geomagnetic storms can be tracked back to a CME. These phenomena may cause some failed predictions of the geoeffectiveness of CMEs. The recent notable event exhibiting such a failure was on 2015 March 15 when a fast CME originated from the west hemisphere. Space Weather Prediction Center (SWPC) of NOAA initially forecasted that the CME would at most cause a very minor geomagnetic disturbance labeled as G1. However, the CME produced the largest geomagnetic storm so far, at G4 level with the provisional Dst value of -223 nT, in the current solar cycle 24 [e.g., Kataoka et al., 2015; Wang et al., 2016]. Such an unexpected phenomenon naturally raises the first question for the forecasting of the geoeffectiveness of a CME, i.e., whether or not a CME will hit the Earth even though we know the source location and initial kinematic properties of the CME. A full understanding of the propagation trajectory, e.g., the deflected propagation, of a CME from the Sun to 1 AU is the key. With a few cases, we show the importance of the deflection effect in the space weather forecasting. An automated CME arrival forecasting system containing a deflected propagation model is presented. References:[1] Kataoka, R., D. Shiota, E. Kilpua, and K. Keika, Pileup accident hypothesis of magnetic storm on 17 March 2015, Geophys. Res. Lett., 42, 5155-5161, 2015.[2] Wang, Yuming, Quanhao Zhang, Jiajia Liu, Chenglong Shen, Fang Shen, Zicai Yang, T. Zic, B. Vrsnak, D. F. Webb, Rui Liu, S. Wang, Jie Zhang, Q. Hu, and B. Zhuang, On the Propagation of a Geoeffective Coronal Mass Ejection during March 15 - 17, 2015, J. Geophys. Res., accepted, doi:10.1002/2016JA022924, 2016.

  16. Directed energy deflection laboratory measurements of common space based targets

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  17. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    NASA Astrophysics Data System (ADS)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  18. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Electron beam deflection, focusing, and collimation by a femtosecond laser lens

    NASA Astrophysics Data System (ADS)

    Minogin, V. G.

    2009-11-01

    This work examines spatial separation of femtosecond electron bunches using the ponderomotive potential created by femtosecond laser pulses. It is shown that ponderomotive optical potentials are capable of effectively deflecting, focusing, and collimating narrow femtosecond electron bunches.

  19. Improvement of Latvian Geoid Model Using GNSS/Levelling, GOCE Data and Vertical Deflection Measurements

    NASA Astrophysics Data System (ADS)

    Janpaule, Inese; Haritonova, Diana; Balodis, Janis; Zarins, Ansis; Silabriedis, Gunars; Kaminskis, Janis

    2015-03-01

    Development of a digital zenith telescope prototype, improved zenith camera construction and analysis of experimental vertical deflection measurements for the improvement of the Latvian geoid model has been performed at the Institute of Geodesy and Geoinformatics (GGI), University of Latvia. GOCE satellite data was used to compute geoid model for the Riga region, and European gravimetric geoid model EGG97 and 102 data points of GNSS/levelling were used as input data in the calculations of Latvian geoid model.

  20. Rational function representation of flap noise spectra including correction for reflection effects. [acoustic properties of engine exhaust jets deflected for externally blown flaps

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1974-01-01

    A rational function is presented for the acoustic spectra generated by deflection of engine exhaust jets for under-the-wing and over-the-wing versions of externally blown flaps. The functional representation is intended to provide a means for compact storage of data and for data analysis. The expressions are based on Fourier transform functions for the Strouhal normalized pressure spectral density, and on a correction for reflection effects based on the N-independent-source model of P. Thomas extended by use of a reflected ray transfer function. Curve fit comparisons are presented for blown flap data taken from turbofan engine tests and from large scale cold-flow model tests. Application of the rational function to scrubbing noise theory is also indicated.

  1. Effect of flap deflection on the lift coefficient of wings operating in a biplane configuration

    NASA Technical Reports Server (NTRS)

    Stasiak, J.

    1977-01-01

    Biplane models with a lift flap were tested in a wind tunnel to study the effect of flap deflection on the aerodynamic coefficient of the biplane as well as of the individual wings. Optimization of the position flap was carried out, and the effect of changes in the chord length of the lower wing was determined for the aerodynamic structure of a biplane with a lift flap on the upper wing.

  2. The Development of Pulsed Photoacoustic and Photothermal Deflection Spectroscopy as Diagnostic Tools for Combustion.

    NASA Astrophysics Data System (ADS)

    Rose, Allen Howard

    The application of Photoacoustic Deflection Spectroscopy (PADS) and Photothermal Deflection Spectroscopy (PTDS) to the combustion environment has been made to determine the usefulness of these techniques in combustion diagnostics. Both theoretical models and experimental techniques have been developed. With these tools, PADS and PTDS, one can measure absolute species concentration, temperature, and flow velocity in the combustion environment. These techniques are nonintrusive, with a high sensitivity and excellent spatial and temporal resolution. With PADS it is possible to measure OH concentrations down to 1times 10^{14} OH molecules/cm^3 in a single shot and temperatures to an accuracy of ^{ ~}+/- 100{rm K}. With PTDS it is possible to measure OH concentrations down to 3times 10^{12} OH molecules/cm^3 in a single shot and velocities to an accuracy of ^{ ~}+/- 1{rm m/s} in a flame. Higher accuracies can be obtained with further improvements in the experimental apparatus. The disadvantages are: (1) the need for a strong absorbing species within the combustion environment to generate these signals, (2) the lack of knowledge about the major molecular species concentrations in the combustion environment, and (3) the lack of knowledge about the thermodynamic properties of these major species at combustion temperatures. PADS and PTDS would complement other techniques such as coherent anti-Stokes Raman spectroscopy (CARS), laser-induced fluorescence spectroscopy (LIFS), and optogalvanic spectroscopy.

  3. Rectangular Relief Diffraction Gratings for Coherent Lidar Beam Deflection

    NASA Technical Reports Server (NTRS)

    Cole, H. J.; Dixit, S. N.; Shore, B. W.; Chambers, D. M.; Britten, J. A.; Kavaya, M. J.

    1999-01-01

    LIDAR systems require a light transmitting system for sending a laser light pulse into space and a receiving system for collecting the retro-scattered light, separating it from the outgoing beam and analyzing the received signal for calculating wind velocities. Currently, a shuttle manifested coherent LIDAR experiment called SPARCLE (SPAce Readiness Coherent Lidar Experiment) includes a silicon wedge (or prism) in its design in order to deflect the outgoing beam 30 degrees relative to the incident direction. The intent of this paper is to present two optical design approaches that may enable the replacement of the optical wedge component (in future, larger aperture, post-SPARCLE missions) with a surface relief transmission diffraction grating. Such a grating could be etched into a lightweight, flat, fused quartz substrate. The potential advantages of a diffractive beam deflector include reduced weight, reduced power requirements for the driving scanning motor, reduced optical sensitivity to thermal gradients, and increased dynamic stability.

  4. Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed

    DOEpatents

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-17

    A method for reducing at least one of loads, deflections of rotor blades, or peak rotational speed of a wind turbine includes storing recent historical pitch related data, wind related data, or both. The stored recent historical data is analyzed to determine at least one of whether rapid pitching is occurring or whether wind speed decreases are occurring. A minimum pitch, a pitch rate limit, or both are imposed on pitch angle controls of the rotor blades conditioned upon results of the analysis.

  5. Tensile Properties and Deflection Temperature of Polypropylene/Sumberejo Kenaf Fiber Composites with Fiber Content Variation

    NASA Astrophysics Data System (ADS)

    Ollivia, S. L.; Juwono, A. L.; Roseno, Seto

    2017-05-01

    The use of synthetic fibers as reinforcement in composites has disadvantage which are unsustainable and an adverse impact on the environment. An alternative reinforcement for composites is natural fiber. Polypropylene and Sumberejo kenaf fibers were used respectively as the matrix and reinforcement. The aim of this research was to obtain the optimum tensile properties and deflection temperature with the variation of kenaf fiber fractions. Polypropylene/kenaf fiber composites were fabricated by hot press method. The kenaf fiber was soaked in NaOH solution before being used as the reinforcement and polypropylene was extruded before being used as the matrix. The weight fractions were varied to produce composites and pristine polypropylene samples were also prepared for comparison. The optimum tensile strength, modulus and deflection temperature were found in the composites with the 40 wt% kenaf fiber fraction with an increase up to 80% and 170% compared to the pristine polypropylene with the values of (60.3 ± 4,3) MPa and (159.1 ± 1,8) °C respectively. The Scanning Electron Microscope observation results in the fracture surface of the composites with the 40 wt% fiber fraction showed a relatively good bonding interface between fibers and the matrix and the failure modes were fiber breakage and matrix failures.

  6. On the transfer of radiation at asteroidal surfaces in relation to their orbit deflection - II

    NASA Astrophysics Data System (ADS)

    Yabushita, Shin

    1998-08-01

    The efficiency of absorption of X-rays generated by a nuclear explosion at the surface of an asteroid, estimated earlier, is used to calculate the explosion yield needed to deflect the orbit of an asteroid. Following the work of Ahrens & Harris, it is shown that a recoil velocity of 1 cm s^-1 is required to deflect an asteroid from a collision course with the Earth, and the necessary yield of explosion energy is estimated. If it is assumed that the scaling law between the energy and the diameter of the resulting crater, obtained from experiments carried out on the Earth, remains valid on the asteroid surface, where gravity is much weaker, an explosion energy of 8 and 800 megaton (Mton) equivalent of TNT would be required for asteroids of diameter 1 and 10 km respectively. If, on the other hand, the crater diameter is proportional to a certain power of the gravity g, the power being determined from a dimension analysis, 130 kton and 12 Mton would be required to endow asteroids of diameters 1 and 10 km with the required velocity, respectively. The result indicates that in order to estimate the required explosion energy, a better understanding of cratering under gravity much weaker than on the Earth would be required.

  7. Solving the muon g -2 anomaly in deflected anomaly mediated SUSY breaking with messenger-matter interactions

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Wang, Wenyu; Yang, Jin Min

    2017-10-01

    We propose to introduce general messenger-matter interactions in the deflected anomaly mediated supersymmetry (SUSY) breaking (AMSB) scenario to explain the gμ-2 anomaly. Scenarios with complete or incomplete grand unified theory (GUT) multiplet messengers are discussed, respectively. The introduction of incomplete GUT mulitiplets can be advantageous in various aspects. We found that the gμ-2 anomaly can be solved in both scenarios under current constraints including the gluino mass bounds, while the scenarios with incomplete GUT representation messengers are more favored by the gμ-2 data. We also found that the gluino is upper bounded by about 2.5 TeV (2.0 TeV) in scenario A and 3.0 TeV (2.7 TeV) in scenario B if the generalized deflected AMSB scenarios are used to fully account for the gμ-2 anomaly at 3 σ (2 σ ) level. Such a gluino should be accessible in the future LHC searches. Dark matter (DM) constraints, including DM relic density and direct detection bounds, favor scenario B with incomplete GUT multiplets. Much of the allowed parameter space for scenario B could be covered by the future DM direct detection experiments.

  8. A computational biomechanical analysis to assess the trade-off between chest deflection and spine translation in side impact.

    PubMed

    Pipkorn, Bengt; Subit, Damien; Donlon, John Paul; Sunnevång, Cecilia

    2014-01-01

    The objective of this study is to evaluate how the impact energy is apportioned between chest deflection and translation of the vehicle occupant for various side impact conditions. The Autoliv Total Human Model for Safety (modified THUMS v1.4) was subjected to localized lateral constant velocity impacts to the upper body. First, the impact tests performed on postmortem human subjects (PMHS) were replicated to evaluate THUMS biofidelity. In these tests, a 75-mm-tall flat probe impacted the thorax at 3 m/s at 3 levels (shoulder, upper chest, and mid-chest) and 3 angles (lateral, +15° posterolateral, and -15° anterolateral), for a stroke of 72 mm. Second, a parametric analysis was performed: the Autoliv THUMS response to a 250-mm impact was evaluated for varying impact levels (shoulder to mid-thorax by 50-mm increments), obliquity (0° [pure lateral] to +20° [posterior impacts] and to -20° [anterior impacts], by 5° steps), and impactor pitch (from 0 to 25° by 5° steps). A total of 139 simulations were run. The impactor force, chest deflection, spine displacement, and spine velocity were calculated for each simulation. The Autoliv THUMS biofidelity was found acceptable. Overall, the predictions from the model were in good agreement with the PMHS results. The worst ratings were observed for the anterolateral impacts. For the parametric analysis, maximum chest deflection (MCD) and maximum spine displacement (MSD) were found to consistently follow opposite trends with increasing obliquity. This trend was level dependent, with greater MCD (lower MSD) for the higher impact levels. However, the spine velocity for the 250-mm impactor stroke followed an independent trend that could not be linked to MCD or MSD. This suggests that the spine velocity, which can be used as a proxy for the thorax kinetic energy, needs to be included in the design parameters of countermeasures for side impact protection. The parametric analysis reveals a trade-off between the deformation of

  9. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates.

    PubMed

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-07-26

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations.

  10. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates

    PubMed Central

    Barzaghi, Riccardo; Carrion, Daniela; Pepe, Massimiliano; Prezioso, Giuseppina

    2016-01-01

    Recent studies on the influence of the anomalous gravity field in GNSS/INS applications have shown that neglecting the impact of the deflection of vertical in aerial surveys induces horizontal and vertical errors in the measurement of an object that is part of the observed scene; these errors can vary from a few tens of centimetres to over one meter. The works reported in the literature refer to vertical deflection values based on global geopotential model estimates. In this paper we compared this approach with the one based on local gravity data and collocation methods. In particular, denoted by ξ and η, the two mutually-perpendicular components of the deflection of the vertical vector (in the north and east directions, respectively), their values were computed by collocation in the framework of the Remove-Compute-Restore technique, applied to the gravity database used for estimating the ITALGEO05 geoid. Following this approach, these values have been computed at different altitudes that are relevant in aerial surveys. The (ξ, η) values were then also estimated using the high degree EGM2008 global geopotential model and compared with those obtained in the previous computation. The analysis of the differences between the two estimates has shown that the (ξ, η) global geopotential model estimate can be reliably used in aerial navigation applications that require the use of sensors connected to a GNSS/INS system only above a given height (e.g., 3000 m in this paper) that must be defined by simulations. PMID:27472333

  11. Convergence of an iterative procedure for large-scale static analysis of structural components

    NASA Technical Reports Server (NTRS)

    Austin, F.; Ojalvo, I. U.

    1976-01-01

    The paper proves convergence of an iterative procedure for calculating the deflections of built-up component structures which can be represented as consisting of a dominant, relatively stiff primary structure and a less stiff secondary structure, which may be composed of one or more substructures that are not connected to one another but are all connected to the primary structure. The iteration consists in estimating the deformation of the primary structure in the absence of the secondary structure on the assumption that all mechanical loads are applied directly to the primary structure. The j-th iterate primary structure deflections at the interface are imposed on the secondary structure, and the boundary loads required to produce these deflections are computed. The cycle is completed by applying the interface reaction to the primary structure and computing its updated deflections. It is shown that the mathematical condition for convergence of this procedure is that the maximum eigenvalue of the equation relating primary-structure deflection to imposed secondary-structure deflection be less than unity, which is shown to correspond with the physical requirement that the secondary structure be more flexible at the interface boundary.

  12. Calculation of Centrally Loaded Thin-Walled Columns Above the Buckling Limit

    NASA Technical Reports Server (NTRS)

    Reinitzhuber, F.

    1945-01-01

    When thin-walled columns formed from flanged sheet, such as used in airplane construction, are subjected to axial load, their behavior at failure varies according to the slenderness ratio. On long columns the axis deflects laterally while the cross section form is maintained; buckling results. The respective breaking load in the elastic range is computed by Euler's formula and for the plastic range by the Engesser- Karman formula. Its magnitude is essentially dependent upon the length. On intermediate length columns, especially where open sections are concerned, the cross section is distorted while the cross section form is preserved; twisting failure results. The buckling load in twisting is calculated according to Wagner and Kappus. On short columns the straight walls of low-bending resistance that form the column are deflected at the same time that the cross section form changes - buckling occurs without immediate failure. Then the buckling load of the total section computable from the buckling loads of the section walls is not the ultimate load; quite often, especially on thin-walled sections, it lies considerably higher and is secured by tests. Both loads, the buckling and the ultimate load are only in a small measure dependent upon length. The present report is an attempt to theoretically investigate the behavior of such short, thin-walled columns above the buckling load with the conventional calculating methods.

  13. Realization of Deflection-type Bridge instruments to determine soil moisture using Research-Based Learning

    NASA Astrophysics Data System (ADS)

    Yuliza, E.; Munir, M. M.; Abdullah, M.; Khairurrijal

    2016-08-01

    It is clear that the quality of education is directly related to the quality of teachers and the teaching methods. One of the teaching methods that can improve the quality of education is research-based learning (RBL) method. In this method, students act as the center of learning while teachers become the guides that provide direction and advice. RBL is a learning method that combines cooperative learning, problem solving, authentic learning, contextual case study and inquiry approach discovery. The main goal of this method is to construct a student that can think critically, analyze and evaluate problems, and find a new science from these problems (learning by doing). In this paper, RBL is used to improve the understanding about measurement using deflection-type Bridge that is implemented in the determination of ground water changes. In general, there are three stages that have been done. Firstly the exposure stage, then the experience stage and lastly the capstone stage. The exposure stage aims to increase the knowledge and the comprehension of student about the topic through understanding the basics concepts, reviewing the literature and others. The understanding gained in the exposure stage is being used for application and analysis at the experience stage. While the final stage is the publication of research results both verbally and in writing. Based on the steps that have been conducted, it can be showed that deflection-type Bridge can be utilized in soil moisture meter.

  14. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    NASA Astrophysics Data System (ADS)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  15. The Asteroid Impact and Deflection Assessment (AIDA) mission: Science Proximity Operations

    NASA Astrophysics Data System (ADS)

    Barnouin, Olivier; Bellerose, Julie; Carnelli, Ian; Carrol, Kieran; Ciarletti, Valérie; Cheng, Andrew F.; Galvez, Andres; Green, Simon F.; Grieger, Bjorn; Hirabayashi, Masatoshi; Herique, Alain; Kueppers, Michael; Minton, David A.; Mellab, Karim; Michel, Patrick; Rivkin, Andrew S.; Rosenblatt, Pascal; Tortora, Paolo; Ulamec, Stephan; Vincent, Jean-Baptiste; Zannoni, Marco

    2016-10-01

    The moon of the near-Earth binary asteroid 65803 Didymos is the target of the Asteroid Impact and Deflection Assessment (AIDA) mission. This mission is a joint effort between NASA and ESA to investigate the effectiveness of a kinetic impactor in deflecting an asteroid. The mission is composed of two components: the NASA-led Double Asteroid Redirect Test (DART) that will impact Didymos' moon (henceforth Didymos B), and the ESA-led Asteroid Impact Mission (AIM) that will survey the Didymos system. Both will undertake proximity operations to characterize the physical and dynamical properties of the Didymos system that are of maximum importance in the joint AIDA mission to understand the factors at play when assessing the mometum transfer that follows DART's impact into Didymos B. Using much of ESA's Rosetta experience, the AIM mission will undertake proximity operations both before and after DART's impact. AIM's chracterization includes measuring the precise orbital configuration, masses, internal properties, surface geology and regolith properties of the primary and secondary, using visible and thermal imaging, radar measurements and radio science data. AIM will also release the small MASCOT-2 lander, as well as a suite of a CubeSats to help achieve these objectives. DART proximity observations include two phases of imaging. The first makes use of a suite of long range images that will add light curve data to what will be collected from Earth. These data will refine the orbit period of Didymos B, and provide constraints for modeling the shape of both Didymos A and B. The second phase begins just under an hour before impact when resolved imaging of the Didymos system provides further shape model constraints for the visble parts of both Didymos A and B, some possible constraints on the mass of Didymos B and key geological information of both objects and the impact site. In this presentation, we will summarize the proximity operations undertaken by both DART and AIM

  16. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection

    PubMed Central

    Maruyama, Satoshi; Hizawa, Takeshi; Takahashi, Kazuhiro; Sawada, Kazuaki

    2018-01-01

    We developed a Fabry–Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction. PMID:29304011

  17. Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection.

    PubMed

    Maruyama, Satoshi; Hizawa, Takeshi; Takahashi, Kazuhiro; Sawada, Kazuaki

    2018-01-05

    We developed a Fabry-Perot interferometer sensor with a metal-oxide-semiconductor field-effect transistor (MOSFET) circuit for chemical sensing. The novel signal transducing technique was performed in three steps: mechanical deflection, transmittance change, and photocurrent change. A small readout photocurrent was processed by an integrated source follower circuit. The movable film of the sensor was a 350-nm-thick polychloro-para-xylylene membrane with a diameter of 100 µm and an air gap of 300 nm. The linearity of the integrated source follower circuit was obtained. We demonstrated a gas response using 80-ppm ethanol detected by small membrane deformation of 50 nm, which resulted in an output-voltage change with the proposed high-efficiency transduction.

  18. Measurements of Auger Electron Diffraction Using a 180° Deflection Toroidal Analyzer

    NASA Astrophysics Data System (ADS)

    Shiraki, Susumu; Ishii, Hideshi; Nihei, Yoshimasa; Owari, Masanori

    A 180° deflection toroidal analyzer is a novel electron spectrometer, which allows the simultaneous registration of the wide range of polar angles in a given azimuth of the sample. Therefore, measurements of photo- and Auger electron intensities over π steradians can be performed rapidly by azimuthal rotation of the sample. Using this analyzer, two-dimensional patterns of electron-beam-excited O KVV and Mg KVV Auger electron diffraction (AED) from a MgO(001) surface were measured in short acquisition times. The AED patterns obtained were compared with theoretical ones calculated by the multiple-scattering scheme. The agreement between experimental and theoretical data was good for both O KVV and Mg KVV transitions.

  19. Large amplitude forcing of a high speed 2-dimensional jet

    NASA Technical Reports Server (NTRS)

    Bernal, L.; Sarohia, V.

    1984-01-01

    The effect of large amplitude forcing on the growth of a high speed two dimensional jet was investigated experimentally. Two forcing techniques were utilized: mass flow oscillations and a mechanical system. The mass flow oscillation tests were conducted at Strouhal numbers from 0.00052 to 0.045, and peak to peak amplitudes up to 50 percent of the mean exit velocity. The exit Mach number was varied in the range 0.15 to 0.8. The corresponding Reynolds numbers were 8,400 and 45,000. The results indicate no significant change of the jet growth rate or centerline velocity decay compared to the undisturbed free jet. The mechanical forcing system consists of two counter rotating hexagonal cylinders located parallel to the span of the nozzle. Forcing frequencies up to 1,500 Hz were tested. Both symmetric and antisymmetric forcing can be implemented. The results for antisymmetric forcing showed a significant (75 percent) increase of the jet growth rate at an exit Mach number of 0.25 and a Strouhal number of 0.019. At higher rotational speeds, the jet deflected laterally. A deflection angle of 39 deg with respect to the centerline was measured at the maximum rotational speed.

  20. Studies on deflection area vectors of QRS and T and ventricular gradient in right ventricular hypertrophy.

    PubMed

    Kawaguchi, Y

    1985-04-01

    QRS deflection area vector (Aqrs), T deflection area vector (At) and ventricular gradient (G) in right ventricular hypertrophy were studied in 53 subjects divided on the basis of cardiac catheterization data into four subgroups; normal controls, mild MS group, right ventricular pressure overload group and right ventricular volume overload group. Aqrs, At and G of the four subgroups were calculated using a microcomputer and compared. Aqrs in right ventricular pressure overload group and volume overload group was shifted to the right and slightly anteriorly from that in normal control group. At in right ventricular pressure overload group and volume overload group was shifted slightly upwards and significantly posteriorly from that in the normal control and mild MS groups. G in right ventricular pressure overload group and volume overload group was shifted to the right and significantly posteriorly from that in normal control and mild MS groups. Using multivariative analysis, we developed criteria for diagnosing right ventricular hypertrophy with At: 0.059At(Z) - 0.0145 [At] - 0.2608 less than or equal to 0. Application of this criteria achieved 82.4% (28 of 34) sensitivity in the patients with right ventricular hypertrophy and 90.9% (10 of 11) specificity in the normal control subjects.

  1. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  2. Plasma Deflection Test Setup for E-Sail Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Andersen, Allen; Vaughn, Jason; Schneider, Todd; Wright, Ken

    2016-01-01

    The Electronic Sail or E-Sail is a novel propulsion concept based on momentum exchange between fast solar wind protons and the plasma sheath of long positively charged conductors comprising the E-Sail. The effective sail area increases with decreasing plasma density allowing an E-Sail craft to continue to accelerate at predicted ranges well beyond the capabilities of existing electronic or chemical propulsion spacecraft. While negatively charged conductors in plasmas have been extensively studied and flown, the interaction between plasma and a positively charged conductor is not well studied. We present a plasma deflection test method using a differential ion flux probe (DIFP). The DIFP measures the angle and energy of incident ions. The plasma sheath around a charged body can measured by comparing the angular distribution of ions with and without a positively charged test body. These test results will be used to evaluate numerical calculations of expected thrust per unit length of conductor in the solar wind plasma. This work was supported by a NASA Space Technology Research Fellowship.

  3. Effects of wing leading-edge flap deflections on subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.

    1978-01-01

    An investigation was conducted to determine the effects of wing leading-edge flap deflections on the subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing. The tests were conducted at Mach numbers from 0.40 to 0.85, corresponding to Reynolds numbers (based on wing mean geometric chord) of 2.37 x 1,000,000 to 4.59 x 1,000,000 and at angles of attack from -3 deg to 22 deg. The configurations under study included a wing-fuselage configuration and a wing-fuselage-strake configuration. Each configuration had multisegmented, constant-chord leading-edge flaps which could be deflected independently or in various combinations.

  4. Linearized modified gravity theories with a cosmological term: advance of perihelion and deflection of light

    NASA Astrophysics Data System (ADS)

    Özer, Hatice; Delice, Özgür

    2018-03-01

    Two different ways of generalizing Einstein’s general theory of relativity with a cosmological constant to Brans–Dicke type scalar–tensor theories are investigated in the linearized field approximation. In the first case a cosmological constant term is coupled to a scalar field linearly whereas in the second case an arbitrary potential plays the role of a variable cosmological term. We see that the former configuration leads to a massless scalar field whereas the latter leads to a massive scalar field. General solutions of these linearized field equations for both cases are obtained corresponding to a static point mass. Geodesics of these solutions are also presented and solar system effects such as the advance of the perihelion, deflection of light rays and gravitational redshift were discussed. In general relativity a cosmological constant has no role in these phenomena. We see that for the Brans–Dicke theory, the cosmological constant also has no effect on these phenomena. This is because solar system observations require very large values of the Brans–Dicke parameter and the correction terms to these phenomena becomes identical to GR for these large values of this parameter. This result is also observed for the theory with arbitrary potential if the mass of the scalar field is very light. For a very heavy scalar field, however, there is no such limit on the value of this parameter and there are ranges of this parameter where these contributions may become relevant in these scales. Galactic and intergalactic dynamics is also discussed for these theories at the latter part of the paper with similar conclusions.

  5. Finite-strain large-deflection elastic-viscoplastic finite-element transient response analysis of structures

    NASA Technical Reports Server (NTRS)

    Rodal, J. J. A.; Witmer, E. A.

    1979-01-01

    A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.

  6. Deflections of Fast Coronal Mass Ejections and the Properties of Associated Solar Energetic Particle Events (POSTPRINT)

    DTIC Science & Technology

    2012-09-20

    coronal mass ejection (CME) source regions can deflect fast CMEs from their expected trajectories in space, explaining the appearance of driverless shocks...the appearance of driverless shocks at 1 AU from CMEs ejected near solar central meridian (CM). This suggests that SEP events originating in CME-driven...interplanetary CME (ICME) drivers. Most such driverless shocks occur only from CMEs near the solar limbs, but these disk-center CMEs were located adjacent to CHs

  7. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates.

    PubMed

    Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide

    2008-02-15

    We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.

  8. All-optical optoacoustic microscopy based on probe beam deflection technique.

    PubMed

    Maswadi, Saher M; Ibey, Bennett L; Roth, Caleb C; Tsyboulski, Dmitri A; Beier, Hope T; Glickman, Randolph D; Oraevsky, Alexander A

    2016-09-01

    Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 μV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micron-size details in histological sections of cardiac muscle.

  9. Deflection of light to second order in conformal Weyl gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultana, Joseph, E-mail: joseph.sultana@um.edu.mt

    2013-04-01

    We reexamine the deflection of light in conformal Weyl gravity obtained in Sultana and Kazanas (2010), by extending the calculation based on the procedure by Rindler and Ishak, for the bending angle by a centrally concentrated spherically symmetric matter distribution, to second order in M/R, where M is the mass of the source and R is the impact parameter. It has recently been reported in Bhattacharya et al. (JCAP 09 (2010) 004; JCAP 02 (2011) 028), that when this calculation is done to second order, the term γr in the Mannheim-Kazanas metric, yields again the paradoxical contribution γR (where themore » bending angle is proportional to the impact parameter) obtained by standard formalisms appropriate to asymptotically flat spacetimes. We show that no such contribution is obtained for a second order calculation and the effects of the term γr in the metric are again insignificant as reported in our earlier work.« less

  10. Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer

    NASA Technical Reports Server (NTRS)

    Herrero, Federico A.; Finne, Theodore T.

    2010-01-01

    Determination of neutral winds and ion drifts in low-Earth-orbit missions requires measurements of the angular and energy distributions of the flux of neutrals and ions entering the satellite from the ram direction. The magnitude and direction of the neutral-wind (or ion-drift) determine the location of the maximum in the angular distribution of the flux. Knowledge of the angle of maximum flux with respect to satellite coordinates (pointing) is essential to determine the wind (or ion-drift) vector. The crossed Small-Deflection Energy Analyzer (SDEA) spectrometer (see Figure 1) occupies minimal volume and consumes minimal power. Designed for upper atmosphere/ionosphere investigations at Earth altitudes above 100 km, the spectrometer operates by detecting the angular and energy distributions of neutral atoms/molecules and ions in two mutually perpendicular planes. In this configuration, the two detection planes actually cross at the spectrometer center. It is possible to merge two SDEAs so they share a common optical axis and alternate measurements between two perpendicular planes, and reduce the number of ion sources from two to one. This minimizes the volume and footprint significantly and reduces the ion source power by a factor of two. The area of the entrance aperture affects the number of ions detected/second and also determines the energy resolution. Thermionic emitters require heater power of about 100 mW to produce 1 mA of electron beam current. Typically, electron energy is about 100 eV and requires a 100-V supply for electron acceleration to supply an additional 100 mW of power. Thus, ion source power is at most 200 mW. If two ion sources were to be used, the ion source power would be, at most, 400 mW. Detector power, deflection voltage power, and microcontroller and other functions require less than 150 mW. A WTS (wind/ temperature spectrometer) with two separate optical axes would consume about 650 mW, while the crossed SDEA described here consumes about

  11. Tracking CMEs using data from the Solar Stormwatch project; observing deflections and other properties

    NASA Astrophysics Data System (ADS)

    Jones, Shannon R.; Barnard, Luke A.; Scott, Christopher J.; Owens, Mathew J.; Wilkinson, Julia

    2017-09-01

    With increasing technological dependence, society is becoming ever more affected by changes in the near-Earth space environment caused by space weather. The primary driver of these hazards are coronal mass ejections (CMEs). Solar Stormwatch is a citizen science project in which volunteers participated in several activities which characterized CMEs in the remote sensing images from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) instrument package on the twin STEREO spacecraft. Here we analyze the results of the "Track-it-back" activity, in which CMEs were tracked back through the COR1, COR2, and EUVI images. Analysis of the COR1, COR2, and EUVI data together allows CMEs to be studied consistently throughout the whole field of view spanned by these instruments (out to 15 RS). A total of 4783 volunteers took part in this activity, creating a data set containing 23,801 estimates of CME timing, location, and size. We used these data to produce a catalogue of 41 CMEs, which is the first to consistently track CMEs through each of these instruments. We assess how the CME speeds, propagation directions, and widths vary as the CMEs propagate through the fields of view of the different imagers. In particular, we compare the observed CME deflections between the COR1 and COR2 fields of view to the separation between the CME source region and the heliospheric current sheet (HCS), demonstrating that in general, these CMEs appear to deflect toward the HCS, consistent with other modeling studies of CME propagation.

  12. Application of complex geometrical optics to determination of thermal, transport, and optical parameters of thin films by the photothermal beam deflection technique.

    PubMed

    Korte, Dorota; Franko, Mladen

    2015-01-01

    In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.

  13. Shifting social identities as a strategy for deflecting threatening social comparisons.

    PubMed

    Mussweiler, T; Gabriel, S; Bodenhausen, G V

    2000-09-01

    Results of three studies suggest that the multifaceted nature of identity provides a strategic basis for reducing the threat involved in upward social comparisons. After performing worse than a comparison standard, people may strategically emphasize aspects of their identity that differentiate them from the standard, thereby making the standard less relevant for self-evaluation. On the basis of previous research showing that persons low in self-esteem are less likely to make effective use of self-protection strategies, we hypothesized that this strategy of deflecting the threat involved in upward comparison (i.e., decreasing perceived comparability by emphasizing an unshared social identity) would be used primarily by persons who are characteristically high in self-esteem. This pattern was confirmed in three studies. Moreover, use of the strategy was associated with relatively more positive affect following threatening upward comparisons.

  14. Vertical dynamic deflection measurement in concrete beams with the Microsoft Kinect.

    PubMed

    Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen

    2014-02-19

    The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively.

  15. Vertical Dynamic Deflection Measurement in Concrete Beams with the Microsoft Kinect

    PubMed Central

    Qi, Xiaojuan; Lichti, Derek; El-Badry, Mamdouh; Chow, Jacky; Ang, Kathleen

    2014-01-01

    The Microsoft Kinect is arguably the most popular RGB-D camera currently on the market, partially due to its low cost. It offers many advantages for the measurement of dynamic phenomena since it can directly measure three-dimensional coordinates of objects at video frame rate using a single sensor. This paper presents the results of an investigation into the development of a Microsoft Kinect-based system for measuring the deflection of reinforced concrete beams subjected to cyclic loads. New segmentation methods for object extraction from the Kinect's depth imagery and vertical displacement reconstruction algorithms have been developed and implemented to reconstruct the time-dependent displacement of concrete beams tested in laboratory conditions. The results demonstrate that the amplitude and frequency of the vertical displacements can be reconstructed with submillimetre and milliHz-level precision and accuracy, respectively. PMID:24556668

  16. Wear-caused deflection evolution of a slide rail, considering linear and non-linear wear models

    NASA Astrophysics Data System (ADS)

    Kim, Dongwook; Quagliato, Luca; Park, Donghwi; Murugesan, Mohanraj; Kim, Naksoo; Hong, Seokmoo

    2017-05-01

    The research presented in this paper details an experimental-numerical approach for the quantitative correlation between wear and end-point deflection in a slide rail. Focusing the attention on slide rail utilized in white-goods applications, the aim is to evaluate the number of cycles the slide rail can operate, under different load conditions, before it should be replaced due to unacceptable end-point deflection. In this paper, two formulations are utilized to describe the wear: Archard model for the linear wear and Lemaitre damage model for the nonlinear wear. The linear wear gradually reduces the surface of the slide rail whereas the nonlinear one accounts for the surface element deletion (i.e. due to pitting). To determine the constants to use in the wear models, simple tension test and sliding wear test, by utilizing a designed and developed experiment machine, have been carried out. A full slide rail model simulation has been implemented in ABAQUS including both linear and non-linear wear models and the results have been compared with those of the real rails under different load condition, provided by the rail manufacturer. The comparison between numerically estimated and real rail results proved the reliability of the developed numerical model, limiting the error in a ±10% range. The proposed approach allows predicting the displacement vs cycle curves, parametrized for different loads and, based on a chosen failure criterion, to predict the lifetime of the rail.

  17. Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements.

    PubMed

    Kim, Yong-Hee; Thakor, Nitish V; Schieber, Marc H; Kim, Hyoung-Nam

    2015-05-01

    Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance.

  18. Neuron Selection Based on Deflection Coefficient Maximization for the Neural Decoding of Dexterous Finger Movements

    PubMed Central

    Kim, Yong-Hee; Thakor, Nitish V.; Schieber, Marc H.; Kim, Hyoung-Nam

    2015-01-01

    Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance. PMID:25347884

  19. PECVD silicon-rich nitride and low stress nitride films mechanical characterization using membrane point load deflection

    NASA Astrophysics Data System (ADS)

    Bagolini, Alvise; Picciotto, Antonino; Crivellari, Michele; Conci, Paolo; Bellutti, Pierluigi

    2016-02-01

    An analysis of the mechanical properties of plasma enhanced chemical vapor (PECVD) silicon nitrides is presented, using micro fabricated silicon nitride membranes under point load deflection. The membranes are made of PECVD silicon-rich nitride and low stress nitride films. The mechanical performance of the bended membranes is examined both with analytical models and finite element simulation in order to extract the elastic modulus and residual stress values. The elastic modulus of low stress silicon nitride is calculated using stress free analytical models, while for silicon-rich silicon nitride and annealed low stress silicon nitride it is estimated with a pre-stressed model of point-load deflection. The effect of annealing both in nitrogen and hydrogen atmosphere is evaluated in terms of residual stress, refractive index and thickness variation. It is demonstrated that a hydrogen rich annealing atmosphere induces very little change in low stress silicon nitride. Nitrogen annealing effects are measured and shown to be much higher in silicon-rich nitride than in low stress silicon nitride. An estimate of PECVD silicon-rich nitride elastic modulus is obtained in the range between 240-320 GPa for deposited samples and 390 GPa for samples annealed in nitrogen atmosphere. PECVD low stress silicon nitride elastic modulus is estimated to be 88 GPa as deposited and 320 GPa after nitrogen annealing.

  20. Deflection of natural oil droplets through the water column in deep-water environments: The case of the Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Jatiault, Romain; Dhont, Damien; Loncke, Lies; de Madron, Xavier Durrieu; Dubucq, Dominique; Channelliere, Claire; Bourrin, François

    2018-06-01

    Numerous recurrent seep sites were identified in the deep-water environment of the Lower Congo Basin from the analysis of an extensive dataset of satellite-based synthetic-aperture radar images. The integration of current data was used to link natural oil slicks with active seep-related seafloor features. Acoustic Doppler current profiler measurements across the water column provided an efficient means to evaluate the horizontal deflection of oil droplets rising through the water column. Eulerian propagation model based on a range of potential ascension velocities helped to approximate the path for rising oil plume through the water column using two complementary methods. The first method consisted in simulating the reversed trajectory of oil droplets between sea-surface oil slick locations observed during current measurements and seep-related seafloor features while considering a range of ascension velocities. The second method compared the spatial spreading of natural oil slicks from 21 years of satellite monitoring observations for water depths ranging from 1200 to 2700 m against the modeled deflections during the current measurement period. The mapped oil slick origins are restricted to a 2.5 km radius circle from associated seep-related seafloor features. The two methods converge towards a range of ascension velocities for oil droplets through the water column, estimated between 3 and 8 cm s-1. The low deflection values validate that the sub-vertical projection of the average surface area of oil slicks at the sea surface can be used to identify the origin of expelled hydrocarbon from the seafloor, which expresses as specific seafloor disturbances (i.e. pockmarks or mounds) known to expel fluids.

  1. Performance of engine-driven rotary endodontic instruments with a superimposed bending deflection: V. Gates Glidden and Peeso drills.

    PubMed

    Brantley, W A; Luebke, N H; Luebke, F L; Mitchell, J C

    1994-05-01

    A laboratory study was performed on Gates Glidden and Peeso drills to determine the incidence of shaft fracture when a bending deflection was superimposed on the rotating drills. Samples of sizes #1 to #6 stainless steel Gates Glidden drills, sizes #1 to #6 stainless steel and carbon steel-type P Peeso drills, and sizes #009 to #023 carbon steel-type B-1 Peeso drills from each of two manufacturers were evaluated with a unique apparatus that applied a 2-mm bending deflection while rotating the instruments. The apparatus did not restrict movement of the bur head during rotation. The test drills were rotated at 2500, 4000, and 7000 revolutions per minute, and the number of revolutions at failure was recorded. Scanning electron microscopic observations established that the stainless steel Gates Glidden and Peeso drills failed by ductile fracture, whereas the carbon steel Peeso drills failed by brittle fracture. Instrument fracture was always near the handpiece shank with this test, and the length of the fractured drills was measured from the working tip. It is recommended that this additional test be adopted to determine fatigue properties of engine-driven rotary endodontic instruments in establishing international performance standards.

  2. Ion-optical studies for a range adaptation method in ion beam therapy using a static wedge degrader combined with magnetic beam deflection.

    PubMed

    Chaudhri, Naved; Saito, Nami; Bert, Christoph; Franczak, Bernhard; Steidl, Peter; Durante, Marco; Rietzel, Eike; Schardt, Dieter

    2010-06-21

    Fast radiological range adaptation of the ion beam is essential when target motion is mitigated by beam tracking using scanned ion beams for dose delivery. Electromagnetically controlled deflection of a well-focused ion beam on a small static wedge degrader positioned between two dipole magnets, inside the beam delivery system, has been considered as a fast range adaptation method. The principle of the range adaptation method was tested in experiments and Monte Carlo simulations for the therapy beam line at the GSI Helmholtz Centre for Heavy Ions Research. Based on the simulations, ion optical settings of beam deflection and realignment of the adapted beam were experimentally applied to the beam line, and additional tuning was manually performed. Different degrader shapes were employed for the energy adaptation. Measured and simulated beam profiles, i.e. lateral distribution and range in water at isocentre, were analysed and compared with the therapy beam values for beam scanning. Deflected beam positions of up to +/-28 mm on degrader were performed which resulted in a range adaptation of up to +/-15 mm water equivalence (WE). The maximum deviation between the measured adapted range from the nominal range adaptation was below 0.4 mm WE. In experiments, the width of the adapted beam at the isocentre was adjustable between 5 and 11 mm full width at half maximum. The results demonstrate the feasibility/proof of the proposed range adaptation method for beam tracking from the beam quality point of view.

  3. Restructuring opens new doors. Business ventures redirect deflected revenue.

    PubMed

    Moore, R F

    1989-01-01

    To fulfill its mission of caring for the sick and the poor while remaining competitive, St. Vincent's Medical Center, Jacksonville, FL, underwent corporate restructuring in 1983. Three existing entities--the medical center, a skilled nursing facility, and a fund-raising foundation--incorporated under St. Vincent dePaul Community Stewardship Services, Inc. One of the goals was to make optimal use of existing facilities and expertise while also creating channels to redirect deflected revenue to the corporate mission of service to the poor. Among its projects St. Vincent's established 12 ambulatory care facilities; offered use of its laboratory to physicians' offices, nursing homes, and other entities needing fast, high-quality service; developed a mobile magnetic resonance imaging service; created a nurse staffing business; and entered into services-oriented, price-competitive, for-profit operations. By assuming some of the broad-based responsibilities for planning, financing, marketing, and providing administrative and legal support, the parent company has freed the entities under it to concentrate on the jobs they do best: the delivery of healthcare products and services and the generation of referrals to the medical staff and, in turn, to the medical center.

  4. Moth tails divert bat attack: evolution of acoustic deflection.

    PubMed

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  5. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  6. Optimal trajectories from the Earth-Moon L1 and L3 points to deflect hazardous asteroids and comets.

    PubMed

    Maccone, Claudio

    2004-05-01

    Software code named asteroff was recently created by the author to simulate the deflection of hazardous asteroids off of their collision course with the Earth. This code was both copyrighted and patented to avoid unauthorized use of ideas that could possibly be vital to construct a planetary defense system in the vicinity of the Earth. Having so said, the basic ideas and equations underlying the asteroff simulation code are openly described in this paper. A system of two space bases housing missiles is proposed to achieve the planetary defense of the Earth against dangerous asteroids and comets, collectively called impactors herein. We show that the layout of the Earth-Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L(1) (between the Earth and the Moon) and L(3) (in the direction opposite to the Moon from the Earth). We show that placing missile bases at L(1) and L(3) would enable those missiles to deflect the trajectory of impactors by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement. One additional remark is that the theory developed in this paper is just a beginning for a wider set of future research. In fact, we only develop the Keplerian analytical theory for the optimal planetary defense achievable from the Earth-Moon Lagrangian points L(1) and L(3). Much more sophisticated analytical refinements would be needed to: (1) take into account many perturbation forces of all kinds acting on both the impactors and missiles shot from L(1) and L(3); (2) add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L(4) and L(5) of the Earth-Moon System or from the surface of the

  7. Large-area photogrammetry based testing of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  8. Simplified Techniques for Evaluation and Interpretation of Pavement Deflections for Network-level Analysis : Guide for Assessment of Pavement Structure Performance for PMS Applications

    DOT National Transportation Integrated Search

    2012-06-01

    The objective of this study was to develop an approach for incorporating techniques to interpret and evaluate deflection : data for network-level pavement management system (PMS) applications. The first part of this research focused on : identifying ...

  9. Landsat 7 Reveals Large-scale Fractal Motion of Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    get carried along within the vortices, but these are soon mixed into the surrounding clouds. Landsat is unique in its ability to image both the small-scale eddies that mix clear and cloudy air, down to the 30 meter pixel size of Landsat, but also having a wide enough field-of-view, 180 km, to reveal the connection of the turbulence to large-scale flows such as the subtropical oceanic gyres. Landsat 7, with its new onboard digital recorder, has extended this capability away from the few Landsat ground stations to remote areas such as Alejandro Island, and thus is gradually providing a global dynamic picture of evolving human-scale phenomena. (For more details on von Karman vortices, refer to http://climate.gsfc.nasa.gov/cahalan) Image and caption courtesy Bob Cahalan, NASA GSFC

  10. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  11. Comparison of the Nanopulse Lithotripter to the Holmium Laser: Stone Fragmentation Efficiency and Impact on Flexible Ureteroscope Deflection and Flow.

    PubMed

    Kaplan, Adam G; Chen, Tony T; Sankin, Georgy; Yang, Chen; Dale, Joanne A; Simmons, W Neal; Zhong, Pei; Preminger, Glenn M; Lipkin, Michael Eric

    2016-11-01

    The Nanopulse Lithotripter (NPL; Lithotech Medical, Israel) is a novel intracorporeal device that uses a nanosecond duration electrical discharge through a reusable flexible coaxial probe to endoscopically fragment urinary stones. This device was compared with a holmium laser lithotripsy (HoL) with regard to stone fragmentation efficiency (SFE) and its impact on flexible ureteroscope (URS) deflection and flow of irrigation. Using a custom bench model, a 6 mm BegoStone cylindrical phantom (mixture 5:2) was confined under 0.9% saline atop sequential mesh sieves. The SFE of two NPL probe sizes (2.0F, 3.6F) and two HoL fibers (200, 365 μm) was evaluated using concordant settings of 1 J and 5 Hz. URS deflection and irrigation flow with NPL probes in the working channel were tested in five new fourth generation flexible URS and compared with other adjunct endourologic instruments. The 2.0F NPL showed improved SFE compared with the 200 μm laser (86 mg/min vs 52 mg/min, p = 0.014) as did the 3.6F NPL vs the 365 μm laser (173 mg/min vs 80 mg/min, p = 0.05). The NPL created more 1 to 2 mm fragments; the laser created more dust. URS deflection reduced by 3.75° with the 2.0 NPL probe. URS irrigation flow reduced from 36.5 to 6.3 mL/min with the 2.0F NPL probe. NPL shows improved SFE compared with HoL. Flow with the 2.0F probe is akin to a stone basket. NPL offers an effective alternative to HoL.

  12. Charts relating the compressive buckling stress of longitudinally supported plates to the effective deflectional and rotational stiffness of the supports

    NASA Technical Reports Server (NTRS)

    Anderson, Roger A; Semonian, Joseph W

    1954-01-01

    A stability analysis is made of a long flat rectangular plate subjected to a uniform longitudinal compressive stress and supported along its longitudinal edges and along one or more longitudinal lines by elastic line supports. The elastic supports possess deflectional and rotational stiffness. Such configuration is an idealization of the compression cover skin and internal structure of a wing and tail surfaces. The results of the analysis are presented in the form of charts in which the buckling-stress coefficient is plotted against the buckle length of the plate for a wide range of support stiffnesses. The charts make possible the determination of the compressive buckling stress of plates supported by members whose stiffness may or may not be defined by elementary beam bending and twisting theory but yet whose effective restraint is amenable to evaluation. The deflectional and rotational stiffness provided by longitudinal stiffeners and full-depth webs is discussed and numerical examples are given to illustrate the application of the charts to the design of wing structures.

  13. Load Deflection of Dow Corning SE 1700 Face Centered Tetragonal Direct Ink Write Materials: Effect of Thickness and Filament Spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small, Ward; Pearson, Mark A.; Metz, Tom R.

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW) in a face centered tetragonal (FCT) configuration. The filament diameter was 250 μm. Structures consisting of 4, 8, or 12 layers were fabricated with center-to-center filament spacing (“road width” (RW)) of 475, 500, 525, 550, or 575 μm. Three compressive load-unload cycles to 2000 kPa were performed on four separate areas of each sample; three samples of each thickness and filament spacing were tested. At a given strain during the third loading phase, stress varied inversely with porosity. At 10% strain, the stress was nearlymore » independent of the number of layers (i.e., thickness). At higher strains (20- 40%), the stress was highest for the 4-layer structure; the 8- and 12-layer structures were nearly equivalent suggesting that the load deflection is independent of number of layers above 8 layers. Intra-and inter-sample variability of the load deflection response was higher for thinner and less porous structures.« less

  14. Cryogenic temperature effects on sting-balance deflections in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Popernack, Thomas G., Jr.; Adcock, Jerry B.

    1990-01-01

    An investigation was conducted at the National Transonic Facility (NTF) to document the change in sting-balance deflections from ambient to cryogenic temperatures. Space limitations in some NTF models do not allow the use of on-board angle of attack instrumentation. In order to obtain angle of attack data, pre-determined sting-balance bending data must be combined with arc sector angle measurements. Presently, obtaining pretest sting-balance data requires several cryogenic cycles and cold loadings over a period of several days. A method of reducing the calibration time required is to obtain only ambient temperature sting-balance bending data and correct for changes in material properties at cryogenic temperatures. To validate this method, two typical NTF sting-balance combinations were tested. The test results show excellent agreement with the predicted values and the repeatability of the data was 0.01 degree.

  15. Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings

    NASA Astrophysics Data System (ADS)

    Triebel, W.; Mühlig, C.; Kufert, S.

    2005-10-01

    Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.

  16. Curvature and tangential deflection of discrete arcs: a theory based on the commutator of scatter matrix pairs and its application to vertex detection in planar shape data.

    PubMed

    Anderson, I M; Bezdek, J C

    1984-01-01

    This paper introduces a new theory for the tangential deflection and curvature of plane discrete curves. Our theory applies to discrete data in either rectangular boundary coordinate or chain coded formats: its rationale is drawn from the statistical and geometric properties associated with the eigenvalue-eigenvector structure of sample covariance matrices. Specifically, we prove that the nonzero entry of the commutator of a piar of scatter matrices constructed from discrete arcs is related to the angle between their eigenspaces. And further, we show that this entry is-in certain limiting cases-also proportional to the analytical curvature of the plane curve from which the discrete data are drawn. These results lend a sound theoretical basis to the notions of discrete curvature and tangential deflection; and moreover, they provide a means for computationally efficient implementation of algorithms which use these ideas in various image processing contexts. As a concrete example, we develop the commutator vertex detection (CVD) algorithm, which identifies the location of vertices in shape data based on excessive cummulative tangential deflection; and we compare its performance to several well established corner detectors that utilize the alternative strategy of finding (approximate) curvature extrema.

  17. Comparison of Theoretical Stresses and Deflections of Multicell Wings with Experimental Results Obtained from Plastic Models

    NASA Technical Reports Server (NTRS)

    Zender, George W

    1956-01-01

    The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.

  18. Characterization of the bending stiffness of large space structure joints

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    1989-01-01

    A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member.

  19. Recovering bridge deflections from collocated acceleration and strain measurements

    NASA Astrophysics Data System (ADS)

    Bell, M.; Ma, T. W.; Xu, N. S.

    2015-04-01

    In this research, an internal model based method is proposed to estimate the displacement profile of a bridge subjected to a moving traffic load using a combination of acceleration and strain measurements. The structural response is assumed to be within the linear range. The deflection profile is assumed to be dominated by the fundamental mode of the bridge, therefore only requiring knowledge of the first mode. This still holds true under a multiple vehicle loading situation as the high mode shapes don't impact the over all response of the structure. Using the structural modal parameters and partial knowledge of the moving vehicle load, the internal models of the structure and the moving load can be respectively established, which can be used to form an autonomous state-space representation of the system. The structural displacements, velocities, and accelerations are the states of such a system, and it is fully observable when the measured output contains structural accelerations and strains. Reliable estimates of structural displacements are obtained using the standard Kalman filtering technique. The effectiveness and robustness of the proposed method has been demonstrated and evaluated via numerical simulation of a simply supported single span concrete bridge subjected to a moving traffic load.

  20. Development of a Flyable Acousto-Optic Laser Beam Deflection System for a Head Up Display of the Future.

    DTIC Science & Technology

    Rayleigh criteria). The system was designed for stroke writing but was demonstrated with lissajous writing. The acousto - optic deflectors employed...The report describes a laser display which is to be used in a Head-Up Display of the future. The uniqueness of the display is that it uses acousto ... optic components for the modulation and deflection of the laser beam. As a result, there are no moving parts, which increases the reliability and life